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Abstract (English) 

 
Objective: Women exposed to childhood maltreatment (CM) are more likely to exhibit 

insensitive parenting, which may have consequences for their offspring´s development. 

Variation in the Oxytocin-receptor gene (OXTR) moderates risk of CM-associated long-term 

sequelae associated with mother-child attachment, although functionality of previously 

investigated SNPs remained elusive. Here, we investigated the role of OXTR rs237895, a brain 

tissue expression quantitative trait locus (eQTL), as a moderator of the relationship between 

CM and maternal behavior (MB) and the association between MB and offspring attachment 

security. 

Methods: Of 110 women with information on rs237895 genotype (T-allele=64, CC=46), 

n=107 have information on CM (CTQ) and n=99 on standardized observer-based ratings of MB 

at 6 months postpartum (responsivity and detachment), which were used in principal 

components analysis to obtain a latent factor representing MB. Offspring (n=86) attachment 

was evaluated at 12 months age. Analyses predicting MB were adjusted for socioeconomic 

status (SES), age, postpartum depression (PPD), and genotype-based ethnicity. Analyses 

predicting child attachment were adjusted for infant sex, SES, and PPD.     

Results: rs237895 significantly moderates the relationship between CM and MB (F1;66=7.99, 

p<.01), indicating that CM was associated with maternal insensitivity only in high OXTR-

expressing T-allele carriers but not in low OXTR-expressing CC homozygotes. Moreover, 

maternal insensitivity predicted offspring insecure attachment (B= -.551; p<.05). 

Conclusions: Women with a high OXTR expressing genotype are more susceptible to CM-

related impairments in MB that, in turn, predicts attachment security in their children, 

supporting the role of the OT-system in the intergenerational transmission of risk associated 

with maternal CM.   
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Abstract (Deutsch) 

Hintergrund: Frauen, die in ihrer Kindheit Misshandlung erfahren haben, weisen mit größerer 

Wahrscheinlichkeit wenig feinfühliges mütterliches Verhalten auf, was wiederum 

Konsequenzen für die Entwicklung des Nachwuchses haben kann. Genetische Variation im 

Oxytocin-Rezeptor-Gen (OXTR) moderiert den Zusammenhang zwischen früher 

Kindesmisshandlung und Langzeitfolgen, die wichtig für die Mutter-Kind-Bindung sind. Die 

Funktionalität genetischer Variation blieb bislang jedoch ungeklärt. In der vorliegenden Studie 

haben wir die Rolle des OXTR Einzelnukleotid-Polymorphismus (SNP) rs237895, einen 

hirnspezifischen expression quantitative trait locus (eQTL) als potentiellen Moderator 

zwischen Kindesmisshandlung und mütterlichem Verhalten als auch den Zusammenhang 

zwischen mütterlichem Verhalten und Bindungssicherheit des Nachwuchses untersucht.  

Methoden: Von N=110 Frauen mit Information zum rs237895 Genotyp (T-Allel=64, CC=46) 

lagen zusätzlich Informationen von n=107 zu Kindesmisshandlung (Childhood Trauma 

Questionnaire; CTQ) und von n=99 zu standardisierten Beobachtungs-basierten 

Einschätzungen mütterlichen Verhaltens (Responsivität und Distanziertheit) vor. 

Bindungssicherheit der Kinder (n=86) wurde 12 Monate nach der Geburt beurteilt. Analysen, 

welche mütterliches Verhalten vorhersagen, wurden für sozioökonomischen Status, Alter, 

postnatale Depressionen und Genotyp-basierter Ethnizität kontrolliert. Analysen zur 

Vorhersage von Bindungssicherheit wurden kontrolliert für Geschlecht des Kindes, 

sozioökonomischen Status und postnatale Depression.   

Ergebnisse: rs237895 ist ein signifikanter Moderator des Zusammenhangs zwischen 

Kindesmisshandlung und mütterlichem Verhalten (F1;66=7.99, p<.01). Spezifischer konnte 

gezeigt werden, dass Kindesmisshandlung nur bei Trägerinnen des T-Allels (assoziiert mit 

stärkerer OXTR-Genexpression), nicht jedoch bei CC-homozygoten Frauen (assoziiert mit 

geringerer OXTR-Genexpression), mütterliches Verhalten vorhersagte. Darüber hinaus sagte 

verringerte mütterliche Feinfühligkeit eine unsichere Bindung des Nachwuchses vorher (B= -

.551; p<.05).  

Fazit: Frauen mit einem “hoch-exprimierendem” OXTR-Genotyp sind anfälliger für die Effekte 

von Kindesmisshandlung im Hinblick auf ihr späteres mütterliches Verhalten, welches 

wiederum Bindungssicherheit bei ihren Kindern vorhersagt. Die Ergebnisse der Studie zeigen 

die Bedeutung genetischer Variation im oxytocinergen System in der intergenerationalen 

Transmission von Risiko nach Kindesmisshandlung.  
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a
 The following parts of the theoretical framework are taken from my previously published review article, in which I am the 

sole first author: Toepfer, P., Heim, C., Entringer, S., Binder, E., Wadhwa, P., & Buss, C. (2017). Oxytocin pathways in the 

intergenerational transmission of maternal early life stress. Neuroscience & Biobehavioral Reviews, 73, 293-308: 1. 

Introduction, 2. Oxytocin Signaling in the Central Nervous System – Physiology and its Role in Maternal Behavior (including 

subsections 2.1, 2.2, 2.3), 3. The Role of Genetic Variations in the Oxytocin Signaling Pathway in the Moderation of Individual 

Susceptibility to the Long-term Effects of CM Exposure. An additional section of paragraph 3 was taken from the empirical 

article Toepfer, P., O'Donnell, K. J., Entringer, S., Heim, C. M., Lin, D. T., MacIsaac, J. L., Kobor, M. S., Meaney, M. J., 

Provencal, N., Binder, E. B., Wadhwa, P. D., & Buss, C. (in press). A role of oxytocin receptor gene brain tissue expression 

quantitative trait locus rs237895 in the intergenerational transmission of the effects of maternal childhood maltreatment. 

Journal of the American Academy of Child & Adolescent Psychiatry. 

According to Elsevier´s published guidelines on using copyrighted work “an author can, without asking permission, […] 

include the article in full or in part in a thesis or dissertation”. 

See also: https://www.elsevier.com/about/policies/copyright/permissions 

 

https://www.elsevier.com/about/policies/copyright/permissions
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1. Introduction 

It is well-established that the exposure to one or multiple forms of childhood maltreatment 

(CM), like childhood abuse and neglect, constitutes a major risk factor in the etiology of a wide 

range of somatic and/or psychiatric disorders.1-3 However, it becomes increasingly apparent 

that these adverse long-term consequences are not restricted to the exposed individual alone but 

might be transmitted to the next generation,4 who also are at increased risk for psychiatric and 

somatic disorders5,6 – a phenomenon referred to as intergenerational transmission.7 Several 

recent studies discuss postnatal transmission pathways, such as non-optimal parenting behavior 

and psychopathology in CM-exposed parents,8 as well as offspring victimization.9 

Within the context of the intergenerational perpetuation of the effects of maternal CM exposure, 

I emphasize the role of the neuropeptide oxytocin (OT) as a neuroendocrine factor modulating 

one of the key transmission pathways of maternal CM, i.e., maternal behavior.10 OT has gained 

considerable attention in studies of human social behaviors,11 including parenting11-14 and 

attachment formation.15 Interestingly, there is evidence that CM is associated with lower OT 

concentrations in the cerebrospinal fluid (CSF) of adult women16 and non-human primates.17 

This CM-induced reduction in CSF-OT was linked to pronounced deficiencies in social 

behavior in the study by Winslow et al.17 This suggests that central availability and functioning 

of the OT system may be susceptible to environmental factors such as CM, which persist into 

adulthood and may impact functional integrity of the “maternal brain”. 

To embed the empirical work of this doctoral thesis into a broader theoretical framework, the 

following questions need to be answered. First, what is the function of OT in brain circuits that 

mediate maternal behaviors? Second, what are the potential mechanisms that explain how CM 

exposure may affect OT signaling and thereby influences maternal behavior later in life? Third, 

what is the role of individual genetic differences in the OT signaling pathway that confer higher 

risk or resilience to the effects of CM with respect to maternal behavior? Fourth and in order to 

close the intergenerational cycle of CM exposure effects: What are the consequences of CM-

induced impairments in maternal behavior for the subsequent generation?  

Recent studies address some of these questions by focusing on common genetic variants in OT-

pathway genes (i.e., genes that either code for the peptide and/or its receptor) that may interact 

with environmental factors (e.g., CM) to account for phenotypic variability, such as risk for 

emotional dysregulation, insecure attachment, depression, or suboptimal maternal behavior.18-

21 In particular, sequence variations in the coding region of the oxytocin receptor gene (OXTR) 

have emerged as candidates in numerous studies and will thus receive particular attention in the 

following. One major caveat in these gene-environment interaction studies is the fact that the 
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biological significance of the investigated OXTR genetic variants has not yet been elucidated. 

The empirical part of the proposed doctoral thesis aims to directly address this critical 

knowledge gap by investigating the combined effects of maternal CM exposure and functional 

OXTR variants – so called brain tissue expression quantitative trait loci (eQTLs) on maternal 

behavior in an intergenerational transmission framework.  

 

2. Oxytocin Signaling in the Central Nervous System – Physiology and its Role in 

Maternal Behavior 

2.1. Physiological Aspects of Oxytocin Signaling in the Brain 

OT is a small nonapeptide which is highly conserved among mammalian species.22 The OT 

gene (OXT), which first codes for a preprohormone that is then processed to OT and its carrier 

protein neurophysin 1, contains three exonic and two intronic regions and is located on 

chromosomal region 20p13 in humans.23 Magnocellular neurons of the hypothalamic 

paraventricular nucleus (PVN) and the supraoptic nucleus (SON), the primary sources of OT 

synthesis, project to the posterior pituitary, where OT is stored in large secretory vesicles, so-

called large dense-core vesicles. In response to calcium influx as well as intracellular calcium 

release from the endoplasmic reticulum, OT is released into systemic circulation12 from axonal 

terminals within the neurohypophysis.24,25 The most prominent peripheral OT effects via the 

classical hypothalamic-neurohypophyseal pathway are the induction of parturition through 

increased contractibility of the uterine smooth muscles and milk ejection from the mammary 

gland in response to suckling stimuli in lactating females.11 In the central nervous system 

(CNS), however, OT´s communication pathways are more complex26-28 and still subject to 

investigation. There are two proposed mechanisms through which OT neurons in the 

hypothalamus communicate with extrahypothalamic neurons and brain structures. First, it has 

been suggested that there is a slow, “unwired”, and global transmission of OT that is released 

mainly from neuronal dendrites, but also from axons and soma in the hypothalamus to reach 

extrahypothalamic brain structures, such as the amygdala or the cingulate cortex.29 This diffuse 

mode of communication, referred to as volume transmission,24,27 enables OT to act as a 

neuromodulator within the brain and implies a slow enzymatic degradation of OT, which in 

turn permits OT to travel long distances.27 Second, it has been shown that in the rodent26 and 

human brain29 there is a variety of “hard-wired” oxytocinergic nerve fibers from the 

hypothalamus to limbic, mesencephalic, and cortical brain regions that allow fine-tuned and 

fast modulation of target structures.26,27,30 Effects of OT in the CNS and in the periphery (e.g., 

heart and cardiovascular system, kidney, reproductive organs) are critically dependent on 
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presence of OT-receptors (OTR).31 The OTR is a 389-amino acid polypeptide and belongs to 

the G-protein coupled receptor superfamily.31,32 The OTR expressing gene (OXTR) is located 

on chromosomal region 3p25-3p26.2, spans 17 kb, and consists of 3 introns and 4 exons.31 

Immunohistochemical and mRNA expression studies in the human post mortem brain 

demonstrated high OTR abundance in subcortical limbic structures (i.e., amygdala and 

hippocampus), the striatum (caudate nucleus and putamen), hypothalamic nuclei (medial 

preoptic area [MPOA], PVN, ventromedial nucleus), and anterior cingulate cortex.29,33,34 

 

2.2 OT Brain Circuits Relevant for Maternal Behavior 

Given this spatial distribution of OTRs in the brain, OT is able to modulate an array of CNS-

dependent processes such as social cognition, motivated behavior, and emotion regulation.35,36 

within an extensive neural network that is involved in human and non-human mammalian 

caregiving.35,37-40 This network is comprised of hypothalamic nuclei, importantly the MPOA, 

the mesocorticolimbic system, which encompasses the amygdala, the hippocampus, the nucleus 

accumbens (nAcc), the ventral tegmental area (VTA), the prefrontal cortical regions, the 

ventral pallidum,41-43 as well as the dopaminergic nigrostriatal pathway.39 Extensive research 

in rodents indicates that OTRs are abundantly expressed within this network rendering it 

sensitive to the effects of OT.41,44 Already during pregnancy, the MPOA, which is thought to 

constitute the core of this network, is hormonally primed, likely through an estrogen (E)-

induced upregulation of Oxtr expression.44-47 This E-primed network is then “triggered” by pup 

stimuli after parturition to result in immediate onset of maternal behavior, which is then 

maintained in the postpartum period.44,48 Infusion of OT into the MPOA and VTA facilitates 

postpartum onset of maternal behavior and infusion of an OT antagonist into these regions can 

block pup retrieval and nursing.49 In rodents, it was demonstrated that dams characterized by 

high amounts of pup licking and grooming (high LG) as compared to low LG dams showed 

increased Oxt expression in the MPOA and the PVN, as well as stronger oxytocinergic 

projections from the MPOA and PVN to the VTA.50 Infusion of OT into the VTA increased 

dopamine (DA) turnover in the nAcc, and naturally high LG mothers but not low LG mothers 

showed elevated DA signaling in the nAcc during episodes of interactions with their offspring. 

Interestingly and similar to the finding by Pedersen et al.,49 infusion of an OTR-antagonist into 

the VTA eliminated these differences.  

Despite being less robust than the mechanistic findings in rodents, studies on human parenting 

also support the notion of an important role of OT in the above described brain circuits. In 

observational studies, maternal plasma OT correlates with aspects of maternal behavior, such 



11 

as “motherese” vocalizations and affectionate touch.14 Looking at functional changes in the 

CNS, intranasal OT administration led to an increased activation of the VTA after presentation 

of reproduction-associated stimuli, e.g., pictures of infant stimuli in healthy women.51 

Furthermore, in response to infant cry sounds, women´s amygdala reactivity was diminished 

by intranasal OT.52 Simultaneously, intranasal OT application led to increased activity in the 

insula and inferior frontal gyrus after hearing infant crying.52 These findings indicate that OT 

may selectively attenuate reactivity in limbic structures involved in stress and anxiety 

(amygdala), while simultaneously enhancing activity of dopaminergic motivational circuits that 

underlie reward learning and parenting behaviors (VTA). In addition, OT may contribute to 

enhanced emotion recognition of salient infant social cues through increased activation of 

specific brain regions (insula and inferior frontal gyrus) that are part of the empathy and salience 

related brain networks.53,54 It should be acknowledged, however, that imaging studies using 

intranasal OT challenge are controversial.55 For example, although administering 

supraphysiological doses of OT, only a very small fraction can be detected in the CSF55 and it 

is questionable whether this has direct modulating effects on brain functioning and behavior.56 

Furthermore, it is very likely that strong increases of peripheral OT concentrations after 

intranasal OT application have effects on peripheral organs (e.g., the heart, gastrointestinal 

tract, reproductive tract) – and might confound the direct effects of OT in the brain.  

Despite these methodological drawbacks, central OT seems to play a fundamental role in 

shaping human maternal behavior, which is substantially supported by animal data. Its effects 

are in part dependent upon regulation by other hormones (e.g., E), target brain structures (e.g., 

amygdala vs. VTA), or interactions with other neurotransmitter systems (e.g., DA). Drawing 

primarily from experimental work in rodents, it must be kept in mind that inferences to humans 

should be made with necessary precaution due to important cross-species differences in 

parenting behaviors and its underlying neurobiology. More research in humans is thus 

warranted to better understand how OT affects brain circuits that are involved in parent-

offspring interactions and motivated maternal behavior.  

 

2.3 Effects of CM Exposure on OT Brain Circuits Relevant for Maternal Behavior and 

Implications for Intergenerational Transmission of Maternal CM 

At early stages in the postpartum period, the formation of selective and enduring interpersonal 

bonds between a mother and her newborn is the basis of healthy, normative child 

development.57,58 Critical for the successful establishment of this mother-child bond is the 

mother´s ability to adequately use a behavioral repertoire, which includes child-directed gaze, 
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affectionate touch, “motherese” vocalizations, establishment of physical proximity, the 

expression of positive affect, as well as the regulation of distress and negative emotions. The 

ability of the mother to react immediately and appropriately to the child´s signals during 

episodes of dyadic interaction is referred to as maternal sensitivity59 and is thought to foster 

secure attachment in children.60 Importantly, maternal CM exposure may critically impair 

maternal sensitivity and thus the quality and establishment of the mother-child bond. Consistent 

with this notion, CM-exposed as opposed to unexposed mothers exhibit less sensitivity,61,62 

more hostility,4,63 more rejection,8 and higher intrusiveness64,65 towards their children. 

Together, these observational studies strongly suggest altered maternal behavior in women with 

CM exposure. It is now crucial to understand how the neural circuitry that underlies maternal 

behavior and involves OT signaling can be influenced by early experiences, such as CM 

exposure, to perpetuate a vicious circle of dysfunctional attachment formation.  

The effects of early life experiences on key regions of the neural circuits that underlie parenting 

have been mechanistically studied in animal models.45,66,67 In female offspring of rats, a low 

level of maternal care (LG) is associated with lower Oxtr expression in the MPOA, PVN, the 

central nucleus of the amygdala, and the lateral septum.45 Moreover, downstream targets of 

hypothalamic OT projections in the mesolimbic system, i.e., the VTA and the nAcc, are equally 

affected by early rearing experiences. Offspring of low LG dams exhibit reduced dopaminergic 

projections from the VTA, as well as lower expression of dopamine receptors in the nAcc.67 

These experience-induced differences in OT-DA neural circuits that underlie parenting 

correspond to observable parenting behaviors. Lower levels of Oxtr expression are associated 

with less maternal responsiveness towards pups.45,66 This intergenerational transmission of 

maternal behavior in rats is partly mediated by epigenetic modifications of the estrogen receptor 

α gene with downstream effects on Oxtr gene expression in the brain. A detailed description of 

the role of epigenetic modifications in the context of intergenerational transmission of maternal 

CM and trauma exposure effects is beyond the scope of this dissertation and has been reviewed 

elsewhere.68 

An experience-dependent transmission of early life experiences including maternal CM 

exposure via OT neural pathways is also assumed in humans38,69-71 although direct empirical 

evidence is very limited. As indicated above, adult women who report forms of CM, i.e., 

emotional and physical abuse, exhibit decreased OT concentrations in CSF compared to non-

abused women,16 suggesting that CM has enduring effects on central OT availability. It is highly 

plausible that these decreased CSF OT concentrations that occur as a function of CM exposure 

have implications for maternal behavior, but this has not been directly studied to date. 
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Investigating the neurobiological consequences of CM exposure in the maternal brain, two 

recent functional MRI studies have demonstrated that mothers with and without CM exposure 

differ in their brain responses while completing attachment related tasks.62,72 For example, 

when asked to imagine a conflictual interaction with their children, CM exposed women show 

increased reactivity in salience network structures (i.e., amygdala and insula). In contrast, 

women without CM exposure showed similar activation while imagining pleasant interactions 

with their children. Another study in primiparous women found that mothers who were 

classified as insecurely attached as opposed to mothers with a secure attachment style had lower 

peripheral OT concentrations after interaction with their infants. The maternal OT rise after 

interaction with their infants correlated positively with maternal brain activation in the ventral 

striatum after presentation of visual stimuli of their own child. Involvement of the ventral 

striatum, which is part of the reward-related dopaminergic nigrostriatal system, suggests that 

pictures of one´s own child may have a higher “incentive value” for securely attached mothers 

and hence facilitate maternal responsiveness and approach.73 On the other hand, adult women 

with an insecure attachment representation show increased activation of the amygdala in 

response to baby cries74 and heightened amygdala reactivity may partly stem from insufficient 

OT signaling.75 One may speculate that mothers with an insecure attachment style, which can 

be a result of problematic parental care experiences in the mother´s own childhood, are more 

prone to perceive infant distress as aversive, which can lead to frustration or even abusive 

behavior towards the child.76 In addition, hyper-reactivity of the amygdala in response to infant 

distress is a neural correlate for maternal intrusive parenting,77 which in turn is a risk factor for 

higher infant anxious and depressive behaviors.78 The relevance of these findings to the 

proposed intergenerational framework is immediately evident: they suggest that early maternal 

attachment experiences (in her own childhood) or CM may contribute to alterations in CNS OT 

signaling pathways, which underlie maternal behavior with ensuing consequences for the next 

generations´ development.  

 

3. The Role of Genetic Variations in The Oxytocin Signaling Pathway in the Moderation 

of Individual Susceptibility to the Long-term Effects of CM Exposure  

It is important to note however that not all women (and their offspring) are equally vulnerable 

to the long-term consequences of CM exposure. One prominent line of research investigating 

factors that convey differences in long-term liability after CM exposure has focused on the 

moderating role of common genetic variants, so-called single nucleotide polymorphisms 

(SNPs) in genes that play a biologically plausible role in a phenotype of interest, e.g., maternal 
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behavior.71 Among several candidate genes, e.g. DRD2/4 (dopamine receptors 2 and 4) and 

5HTT (serotonin transporter) that have empirical support for either parenting or individual 

differences in susceptibility after CM exposure, common sequence variations in oxytocin 

pathway genes (OXTR and OXT) have attracted considerable attention.79  

First evidence for a gene-environment interaction including OXTR SNPs reported that rs53576 

GG homozygous subjects who experienced three or more types of CM were at higher risk for 

adult emotional dysregulation and a disorganized attachment style than A allele carriers, 

indicating a higher susceptibility to CM in G allele homozygotes.18 This finding was partly 

replicated in a sample of university students.20 Moreover, it could be shown that rs53576 GG 

homozygous subjects with CM exposure have a smaller bilateral volume of the ventral striatum, 

a key structure of the dopaminergic nigrostriatal pathway80 which is implicated in both 

depression risk81 and parenting behavior.73 A very informative gene-environment interaction in 

the prediction of maternal parenting found that rs53576 GG mothers exhibit differential 

maternal sensitivity towards their 2-year old children, varying as a function of inter-parental 

conflict.82 Specifically, G allele homozygous women under high marital strain were less 

sensitive in interaction with their offspring than A allele mothers, whereas under conditions of 

low marital conflict this pattern reversed – GG allele mothers were more sensitive than their A 

allele counterparts. Despite the focus on OXTR SNPs,83 there is also evidence for the 

moderating effects of other SNPs in OT pathway genes that may help to better understand how 

environmental exposures might affect individuals differently. A sequence variation in the OXT 

gene locus (rs2740210, A/C) has been shown to interact with maternal CM to predict 

postpartum depression (PPD) and breastfeeding duration in two independent samples.84 

Mothers homozygous for the C allele tended to discontinue breastfeeding much earlier when 

they were exposed to CM than women who carried the protective A allele. Likewise, CC 

homozygous mothers were more vulnerable to the long-term effects of CM with regard to 

development of PPD symptoms at six months postpartum. Moreover, only in CC homozygous 

individuals, the association of CM and breastfeeding duration was mediated by maternal 

depression. Another study could indirectly replicate and extend this finding,21 as maternal CM 

in interaction with rs2740210, but also with OXT rs4813627 (A/G), predicted maternal PPD. 

CC (rs2740210) homozygous and GG (rs4813627) homozygous mothers exposed to CM 

reported significantly more depressive symptoms at 6 months postpartum compared to A allele 

carriers of the respective SNPs. Somewhat counterintuitively, there was also a negative 

association between maternal CM and maternal instrumental care in mothers homozygous for 

these genotypes; i.e., homozygous mothers (CC, GG) with CM exposure displayed more 
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instrumental care towards their children compared to women exposed to low CM. In this study, 

the mother-child interaction had been designed to minimize instrumental care behaviors (e.g., 

cleaning the child) and elicit spontaneous free play. This may indicate that women with a more 

susceptible genotype and adverse early experiences may have more difficulties engaging in 

spontaneous free play and rely on more structured and instrumental caregiving. 

As shown above, there is accumulating evidence for common genetic variants in the OT 

pathway (i.e., OXTR/OXT) in moderating the association between CM and long-term risk for a 

variety of phenotypes that are relevant in the context of mother-child attachment formation, 

such as adult attachment style, breastfeeding, and maternal behavior. However, it has been 

unclear until now why genetic variants in OXTR or OXT may have such moderating effects. In 

other words, nothing is known about the biological functionality of these SNPs. The first study 

to address functionality of Oxtr SNPs demonstrated that in monogamous prairie voles, genetic 

variation in Oxtr strongly predicted Oxtr gene expression in the nucleus accumbens, 

accompanied by significant behavioral effects.85 Compared to animals carrying the “low Oxtr-

expression” genotype, homozygous “high Oxtr-expression” genotype carriers displayed 

significantly more attachment towards their partner providing first mechanistic insight into the 

behavioral consequences of a striatal Oxtr expression quantitative trait locus (eQTL).85 

Although not considering the moderating role of environmental variation, this study added a 

critical piece of evidence to better understand how Oxtr genetic variation may contribute to 

behavioral differences. Collectively, these data suggest that genetic variation in OXTR might 

contribute to individual differences in sensitivity to the (early) social environment, mediated by 

increased reactivity of neural circuits that underlie response to the social environment as well 

as MB. 

Addressing the critical issue of functional OXTR gene variants in the intergenerational 

transmission of maternal CM  was the purpose of the study conducted by Toepfer et al.86 

Detailed information on the methods, results as well as implications for practice and future 

research will be presented below.   
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4. The present study: A Role of Oxytocin Receptor Gene Brain Tissue Expression 

Quantitative Trait Locus rs237895 in the Intergenerational Transmission of the 

Effects of Maternal Childhood Maltreatmentb 

 

4.1. Methods 

Participants:  

Mothers and children were part of an ongoing, longitudinal study, conducted at the University 

of California, Irvine (UCI), for which mothers were recruited during the first trimester of 

pregnancy. All women had singleton, intrauterine pregnancies. Women were not eligible for 

study participation if they met the following criteria: use of psychopharmacological treatment, 

corticosteroids, or illicit drugs during pregnancy (verified by urinary cotinine and drug 

toxicology). Exclusion criteria for the newborn were preterm birth (i.e., less than 37 weeks of 

gestational age at birth), as well as any congenital, genetic, or neurologic disorders at birth. The 

cohort is described in greater detail elsewhere.87 The UCI Institutional Review Board approved 

all study procedures, and all participants provided written informed consent. 

 

Genotyping, SNP imputation and OXTR eQTL selection: DNA extraction was performed on 

fasting blood samples collected during the first trimester of pregnancy (N=121). Whole-genome 

SNP genotyping was performed using Illumina HumanOmniExpress BeadChip according to 

the manufacturer’s standard protocols. Quality control (QC) of genotype data was performed 

using PLINK v1.9.48, where variants with call rates < 98%, minor allele frequency (MAF) < 

5%, or Hardy-Weinberg Equilibrium (HWE) test P < 1×10-6 were removed. A total of 599.935 

genotypes passed QC and all mothers had genotyping rates > 98% with no gender mismatches. 

Twelve mothers were identified as relatives (i.e., >25% shared genotype), where one individual 

of each related pair was removed (n=6), leaving n=115 mothers for the analysis. To complete 

the dataset and obtain genotype information of variants not covered on the array, we used 

imputation to predict the unobserved genotypes by linkage disequilibrium (LD) with the 

                                                 
b The following sections are taken from my previously published original article, in which I am the sole first author: Toepfer, 

P., O'Donnell, K. J., Entringer, S., Heim, C. M., Lin, D. T., MacIsaac, J. L., Kobor, M. S., Meaney, M. J., Provencal, N., Binder, 

E. B., Wadhwa, P. D., & Buss, C. (in press). A role of oxytocin receptor gene brain tissue expression quantitative trait locus 

rs237895 in the intergenerational transmission of the effects of maternal childhood maltreatment. Journal of the American 

Academy of Child & Adolescent Psychiatry. 4.1 Methods, 4.2 Results, 4.3 Discussion. All referenced tables and figures appear 

in the original paper.  

According to Elsevier´s published guidelines on using copyrighted work “an author can, without asking permission, […] 
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genotyped SNPs of the array based on an external reference panel of haplotypes. Genotype data 

were imputed to the 1000 Genomes Phase 3 reference panel using SHAPEIT288 and 

IMPUTE2.89 After imputation, variants with a MAF < 5% or an INFO metric < 0.8 were 

removed. The information metric (INFO metric) takes ranges between 0 and 1, where values 

near 1 indicate that a SNP has been imputed with high certainty. The INFO metric is used to 

remove poorly imputed SNPs. Although there is no consensus in filtering the imputed datasets 

based on uncertainty of imputation, we used a conservative threshold of 0.8. To select a 

functional OXTR variant in this subset of n=115 women, we used the GTEx database 

(gtexportal.org).90 Using the tissue eQTL visualizer, we identified a haplotype of twelve OXTR 

brain tissue eQTLs (LD cutoff: r2 ≥ .2) spanning approximately 8kb (Chr20: 8804371-

8812411bp). From this haplotype, we sought to identify an OXTR brain tissue eQTL that 

satisfies two criteria. First, the eQTL should significantly predict gene expression in brain areas 

known to be involved in MB and social information processing (i.e., ventral striatum, amygdala, 

anterior cingulate cortex and frontal cortex). To achieve this, GTEx provides a multi-tissue 

eQTL visualizer indicating the strength, direction and p-value of an eQTL as well as a metric 

(m-value for posterior probabilities ranging between 0 and 1) that indicates whether a given 

SNP has meta-analytical evidence for having an eQTL effect (m-value ≥ .9) in a discrete brain 

region.91 Second, the eQTL should best represent this OXTR eQTL haplotype in our study 

sample consisting primarily of two ethnicity groups (self-identified non-Hispanic white and 

self-identified Hispanic). To that end, we conducted a SNP-tagging analyses 

(https://snpinfo.niehs.nih.gov/snpinfo/snptag.html) for the two ancestry groups separately 

(based on 1000 genomes CEU and MXL populations) by applying a LD threshold of r2 ≥ .2. 

The resulting SNP that meets these two criteria is rs237895 (T > C). In all brain regions of 

interest, this SNP has a significant eQTL effect, i.e., predicts gene expression in caudate nucleus 

(normalized effect size/NES = -0.517, -log10 p-value = 1.2e-10, m-value = 1), putamen (NES 

= -0.419, p = 1.1e-5, m-value = 1), amygdala (NES = -0.428, p = 6.6e-4, m-value = 1), nucleus 

accumbens (NES = -0.317, p = 7.6e-4, m-value = 1), ACC (NES = -0.387, p = 2.1e-5, m-value 

= 1), and frontal cortex (NES = -0.324, p = 7.0e-5, m-value = 1; see supplemental Table S1). 

The negative direction of the effect indicates that the reference allele (T) is associated with 

higher gene expression compared to the alternative allele (C). As an example, supplemental 

Figure S1 depicts OXTR gene expression in the caudate nucleus, which is allele-load 

dependent, i.e. the homozygous T-allele carriers exhibit the highest, T/C heterozygotes 

intermediate, and the homozygous C-allele carriers the lowest gene expression. Furthermore, 

also using the xQTL database (http://mostafavilab.stat.ubc.ca/xQTLServe), in an independent 
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sample of post mortem brain tissue (N=494) rs237895 significantly predicts  OXTR expression 

in the dorsolateral prefrontal cortex (r=-.523; p < 8.0e-10).92 Since rs237895 is not covered on 

the HumanOmniExpress BeadChip, genotypes of rs237895 from the N=115 genetically 

unrelated women were extracted from the imputed data for all participants in this study. 

Rs237895 genotype could be imputed for N=110 women (T/T = 18, T/C = 46, C/C = 46) with 

sufficient quality (i.e., INFO metric >0.8), who were subsequently included in the statistical 

analyses. For the analyses, we assigned women to two genotype-groups depending on the 

presence of the high OXTR expressing T-allele (T/T and T/C combined, n=64) or absence of 

the same, i.e., low expressing CC-homozygotes (n=46).  

 

Maternal CM Exposure: Women provided self-reports about CM exposure using the Childhood 

Trauma Questionnaire (CTQ),93 one of the most widely-used, reliable, and valid instruments to 

retrospectively assess early experiences of abuse and neglect. The CTQ assesses five different 

types of CM: emotional abuse, physical abuse, sexual abuse, emotional neglect, and physical 

neglect.93 For each individual CTQ-subscale, we used established cut-off values (emotional 

abuse ≥ 13; physical abuse ≥ 10; sexual abuse ≥ 8; emotional neglect ≥ 15; and physical neglect 

≥ 10) to create a binary variable indicating moderate or severe exposure for any of the five 

CTQ-subscales. Additionally, an overall binary variable was computed based on the CTQ to 

indicate moderate/severe childhood maltreatment (CM+) on at least one of the five CTQ-scales 

vs. no exposure to childhood maltreatment (CM-). We chose to not use the CTQ sum score as 

a predictor in the statistical analyses because it was not normally distributed as indicated by a 

Kolmogorov-Smirnov test (D(107)= .20; p<.001). 

 

Maternal Postnatal Behavior: At six months postpartum, a home visit was conducted. Research 

staff was trained to reliably assess maternal emotional and verbal responsivity towards the 

infant using the Home Observation Measurement of the Environment Infant-Toddler version 

(HOME-IT).94 Raters were considered reliable once they had two consecutive observations 

where 95% of responses matched the responses of a rater with extensive experience in coding 

the HOME-IT. The responsivity scale of the HOME includes 11 items capturing different 

aspects of maternal responsivity including maternal vocal reactivity to the infant or display of 

positive affect towards the infant. The internal consistency was moderate (Cronbach´s alpha 

=.61) and comparable to previous studies reporting psychometric properties of this scale.94,95 

At the same visit and in addition to the HOME assessment, mothers were instructed to engage 

in a 15-minute standardized play situation as described in Jaeger.96 The play situation was 
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video-recorded and subsequently coded by two trained and reliable independent observers 

(intra-class correlation coefficient [ICC] >.9) using the  coding manual of the NICHD Early 

Child Care Research Network.96 We here focused on non-optimal MB and coded maternal 

detachment (1 = “not at all characteristic” – 5 = “highly characteristic”). Highly detached 

mothers appear emotionally uninvolved and disengaged during dyadic play, do not react to the 

child´s signals in a contingent manner and can thus be considered unresponsive. In a next step, 

we conducted a principal component analysis (PCA) using the two maternal behavioral 

phenotypes responsivity and detachment. Results of the PCA indicated a one-factor solution 

(eigenvalue of factor 1 = 1.19; eigenvalue of factor 2 =.81). Detachment (.78) loaded positively, 

while maternal responsivity (-.78) loaded negatively on this extracted latent factor. Our one-

factor solution explained 60% of the total variance. Higher scores on this latent variable indicate 

less optimal MB (i.e., higher detachment and lower responsivity) and we thus termed it 

“maternal insensitivity”.   

 

Infant Attachment at 12 Months Age: Infant attachment security was assessed at twelve months 

during the Strange Situation Procedure (SSP).60 The SSP, a standardized laboratory observation 

consists of eight episodes, each three minutes long. These episodes include short periods of 

interaction between the mother and child, interaction between the child and an unfamiliar 

female stranger, and separation of the child from the mother followed by a reunion episode 

during which infant attachment is coded. Infants were categorized into three different types of 

attachment: securely attached (B), insecure-avoidant (A), and insecure-ambivalent (C). The 

relative frequencies of attachment categories was as follows: 62.2% were classified as securely 

attached (B), 30.6% as insecure-avoidant (A), and 7.1% as insecure-ambivalent (C). We used 

the dichotomous secure–insecure grouping (i.e., B vs. A and C) for data analysis because of the 

relatively small group size of type C attachment. Classification of attachment was completed 

by one rater with extensive experience in the assessment of attachment.  

 

Covariates: Analyses testing the predictive value of maternal CM and rs237895 genotype  

interactions for MB were adjusted for the potential confounding effects of variables that have 

been shown to be associated with CM exposure, the observed phenotype (MB), or both (see 

supplemental Table S2). For this set of analyses, the covariates included maternal age, socio-

economic status (SES), maternal depressive symptoms and racial/ethnic differences in genetic 

background. Information on annual household income and education (highest degree obtained) 

were aggregated to a composite measure indicative of socio-economic status (SES) as 
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previously described in our study sample.87  Women provided self-reports on postpartum 

depressive symptoms (PPD symptoms) using the Edinburgh Postnatal Depression Scale 

(EPDS),97 a widely-used valid screening tool for PPD symptoms on three occasions during the 

first postnatal year (i.e., at one, six and twelve months). In order to account for the different 

time points in assessing the maternal phenotype (at six months) and infant attachment (at twelve 

months), we averaged EPDS-scores (all highly correlated across postnatal visits: r= .606 - .767; 

all correlation p-values <.001) depending on the predicted outcome. More specifically, we used 

an average of EPDS scores including the one and six month’s assessments for analyses 

predicting maternal behavior at six months and an average including all three EPDS scores 

(one, six, twelve months) in the model predicting infant attachment at twelve months. 

Racial/ethnic differences in genetic background were accounted for by population stratification 

using principal component analysis on genotype data obtained using the Illumina OmniExpress 

array (Illumina, Inc., San Diego, CA). Genotype data for 593.229 SNPs survived quality control 

and SNP filtering (minor allele frequency ≥ 5%). The first three principal components were 

added to account for differences in genetic background (see supplemental Figure S2). We also 

took parity status into account, which has been shown to predict differences in MB. All analyses 

testing the association between MB and offspring attachment were adjusted for SES, infant sex, 

and PPD symptoms.  

 

Statistical Analyses: All statistical analyses were performed using IBM SPSS version 22©. 

Prior to testing the gene-environment interaction in the prediction of MB, we evaluated the 

main effect of CM exposure on maternal behavior using a linear regression model, while 

controlling for all potential confounding variables (i.e., maternal age, SES, PC1-3, PPD 

symptoms). Maternal G-E analyses, were conducted using the SPSS PROCESS macro.98 In the 

simple moderation analyses (Model 1), the binary maternal CM exposure variable (CM+/CM-

) was entered as the main predictor, the latent MB factor as the outcome, maternal dichotomous 

OXTR rs237895 genotype (T-allele vs. CC-homozygotes) as the moderator and maternal age, 

SES, genotype-based ethnicity, and maternal PPD symptoms as the covariates. For the 

prediction of attachment security (secure vs. insecure), a logistic regression analysis was 

performed using MB as the predictor and infant sex, SES, and PPD symptoms as covariates. 

4.2 Results 

Sample characteristics: Information on socio-demographic characteristics, CM-experience, 

MB, PPD symptoms, and infant attachment are shown in Table 1 for the total sample (N=110) 

and stratified by rs237895 genotype as well as CM-exposure status. Importantly, neither CM-



21 

exposure (p >.93), nor maternal insensitivity (p >.82), nor infant attachment (p >.5) were 

significantly different between the genotype groups. Compared to women in the CM – group, 

CM+ subjects have a lower SES (p<.01) and report more PPD symptoms throughout the first 

year postpartum (all p-values <.05). CM groups did not differ in MB or infant attachment (see 

Table 1). Inter-correlations of all study variables are displayed in supplemental Table S2. 

Maternal CM exposure and rs237895 genotype effects on MB: The linear regression model that 

tested the association between CM exposure and MB revealed no significant main effect of CM 

exposure (b = -.31, p=0.2). The main moderation model accounted for 38.36% of the variance 

in MB (F(9,66) = 4.56, p < 0.001; see Table 2). The maternal CM x rs237895 interaction was 

significantly associated with MB (F(1,66) = 7.99, p < 0.01). Confirming our hypothesis, post-

hoc analyses revealed that only women carrying the high OXTR expressing T-allele showed 

significant differences in maternal insensitivity depending on CM exposure (t = -.26; p = 0.015; 

Cohen´s d = .92), with CM-exposed women showing greater maternal insensitivity than non-

CM exposed women. (Figure 1, p. 62). In low-expressing CC-homozygous women, CM was 

not associated with MB (t=.83; p =0.4; Cohen´s d = -.26).  

 

MB and Infant Attachment at 12 Months:  MB significantly predicted offspring attachment 

security at 12 months (B= -.551; p<.05; Cohen´s d = -.51; Figure 2) after controlling for SES, 

infant sex, and PPD symptoms. Infant attachment was higher in children of women with less 

maternal insensitivity. In other words, securely attached infants are overrepresented in the 

group of women who, based on median split, exhibited higher sensitivity (77.8% securely 

attached infants versus 22.2% insecurely attached). In women with greater insensitivity (> 

median), the prevalence of insecurely attached children increased 2-fold (45.0 % insecure 

attachment) compared to the group exhibiting low insensitivity.  

 

4.3 Discussion  

To the best of our knowledge, the findings described here provide first evidence of the 

moderating role of a functional OXTR variant in the process of intergenerational transmission 

of the effects of maternal CM exposure. Only women carrying the high OXTR expressing T-

allele exhibited significant differences in MB in conjunction with CM experience, with CM-

exposed women experiencing greater insensitivity than non-CM-exposed women do. MB in C-

allele homozygous women appears to be less impacted by CM exposure, indicating reduced 

behavioral adaptations after CM exposure in these individuals. Unlike previous studies that 
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have either demonstrated a main effect of CM exposure61 or OXTR genotype13 in predicting 

MB, our findings highlight the importance of gene-environment interactions to predict MB. It 

appears that these observations are in accordance with the Differential Susceptibility Theory 

(DST).99 However, the mere absence of early adversity (i.e., CM-) (conditions under which T-

allele carrying mothers show the least amount of insensitivity) does not, per se, implicate the 

presence of a supportive and enriched early environment, which is an important premise of the 

DST framework that cannot be addressed in the current study. The CTQ, our environmental 

exposure, is not designed to capture positive aspects of the early environment. Nevertheless, 

our results support OXTR rs237895 functioning as a genetic moderator, and they are in line with 

prior research. It has been previously shown that genetic variation in OXTR predicts limbic 

reactivity to social cues100 and MB13 and moderates the association between CM exposure and 

depression as well as disorganized adult attachment.18,20 By adopting a biologically informed 

SNP-selection strategy,90,92 the present study corroborates, extends, and strengthens this line of 

research. In accordance with recent theoretical frameworks that postulate a role for oxytocin in 

modulating the salience of social cues,54 we propose that genetic variation in OXTR eQTLs 

(e.g., rs237895) may operate through increased genotype-dependent OXTR expression in 

socially sensitive neural networks as an important neurobiological mechanism conferring 

heightened social-environmental susceptibility.  

But why would mothers differ in the degree to which they adapt their reproductive (i.e., MB) 

strategies after CM exposure? Environmental variation, especially early social experiences 

(e.g., the mother´s CM exposure) may operate via MB to shape offspring development, thereby 

ultimately promoting reproductive fitness in the next generation.101 Strong support for this 

“maternal mediation hypothesis” comes from rodent studies showing how natural variations in 

MB (licking and grooming [LG]) may induce persistent behavioral and neurobiological changes 

in offspring.101 As examples, offspring of low LG dams exhibit heightened stress-reactivity102 

and increased fearfulness,103 phenotypes that promote survival in a dangerous environment. 

Furthermore, female offspring of low LG dams show alterations in MB consistent with their 

own rearing experience.66 Directly translating this line of research to humans, we would predict 

that women exposed to CM should adapt their MB (i.e., lower responsivity, higher detachment) 

accordingly to transmit information about their own past aversive environment to their 

offspring. However, our data suggest otherwise, since the association between maternal CM 

exposure and MB appears to be dependent on maternal OXTR genotype. A possible explanation 

for this observation is the concept of bet-hedging.104 Since the future is inherently unpredictable 

and early experiences (e.g., CM exposure) may not always accurately predict the future 



23 

environment (e.g., dangerous/adverse environment for offspring), natural selection has 

maintained genes for both environmentally susceptible (e.g., high OXTR expression) as well as 

less susceptible (e.g., low OXTR expression) developmental strategies, to ultimately increase 

fitness payoffs regardless of environmental continuity.99  

These possibly adaptive reproductive strategies may, however, come at a cost from the lens of 

a developmental psychopathology perspective rather than an evolutionary one. We show that 

less responsive and more detached MB is associated with insecure attachment in her child at 12 

months age, which is in accordance with prior research.60,105 Insecure attachment itself predicts 

anxiety,106 internalizing and externalizing behavior107 among other phenotypes, closing the 

cycle of intergenerational transmission of early life experiences.  

Previous research in humans and animals has shown that MB is hormonally primed, and that 

this process starts as early as during pregnancy itself,108 partly mediated via estrogen-induced 

up-regulation of oxytocin receptors.109 An open question now is whether OXTR eQTLs exert 

their effects on brain gene expression through variable accessibility of transcription factors to 

chromatin. Given the fundamental role of sex-steroids in regulating OXTR gene expression and 

the fact that sex-steroids dramatically increase during pregnancy, this period represents a time 

window of critical importance to better understand the contribution of OXTR genetic variation 

in the association between CM and MB. Moreover, it is possible that additional prenatal factors, 

such as alterations in CM-associated maternal-placental-fetal stress physiology operate as 

mechanisms in the intergenerational transmission of risk associated with maternal CM 

exposure.110 It remains to be elucidated whether these transmission pathways differ 

systematically between women carrying high or low susceptibility variants of rs237895. 

Moreover, in addition to maternal interactive behavior, future studies in the context of 

intergenerational transmission during the postnatal period should consider other postnatal 

variables such as breastfeeding status and breast milk composition, which may be different 

based on maternal CM experience. This is a relevant avenue of research aimed at understanding 

the mechanisms underlying intergenerational transmission of maternal CM given the common 

underlying neurobiology for breastfeeding and MB that crucially involve efficient OT-

signaling.111 

MB is a complex phenotype emerging from extensive inter-connected neural circuitry 

underlying a wide array of executive, cognitive, motivational and self-regulatory functions,40 

and can be modulated by early childhood experiences,10,66,112 OT-signaling,35 and interactions 

of OT with other neurotransmitters such as dopamine among many others.40 It would be 

informative for future studies to employ neuroimaging assessments to characterize neural 
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functional and/or structural differences after CM exposure in genetically susceptible women. 

This will then provide further insights into the neural underpinnings of the associations between 

CM exposure and variation in MB. The SNP under investigation here, rs237895, predicts OXTR 

expression across multiple brain regions that are critical for MB, cognition and motivation (e.g., 

amygdala, ventral striatum [VS], ACC, PFC), raising the possibility that alterations in some or 

even most of the above-mentioned OT-associated functions might be critically altered in T-

allele carriers after CM. Intriguingly, a previous study by Loth and colleagues has shown that 

another intronic OXTR SNP (rs237893, A>G), which tags the same OXTR eQTL haplotype as 

rs237895, predicts activity in the VS in response to social cues in an allele-load dependent 

manner.100 VS reactivity was highest in high OXTR-expressing AA carriers and lowest in low 

expressing GG carriers.100 Bearing in mind the well-documented role of OT-signaling in the 

VS for MB (e.g., affecting salience and reward of infant stimuli as well as infant-directed 

behavior),77 the findings by Loth et al, by supporting the notion of higher social sensitivity in 

individuals carrying a high OXTR-expression genotype, provide important insights into 

intermediate phenotypes at the intersection of gene-behavior associations that may theoretically 

vary depending on the early environment. 

There are several limitations of the current study including the relatively small sample size and 

the lack of an independent replication sample. From a methodological point of view, a 

moderated mediation analyses would have been more suitable to test the entire intergenerational 

pathway from maternal CM-exposure to infant attachment in the next generation. However, the 

resulting sample size in the full model with no missing data for both mothers and children would 

have been relatively small (n=69). Consequently, the full model predicting attachment security, 

while including all covariates would have been vulnerable to overfitting in such a small sample, 

which is why we decided to test the paths in 2 separate models. In addition, we had to group 

the T-allele carrying women together for practical reasons because the homozygous T-allele 

group only included n=18 individuals. Given the allele-load dependent eQTL effect of 

rs237895, it would be interesting, in future larger samples to test the CM-MB association for 

all three groups of genotype separately. Also, rs237895 is not covered on the array used for 

genotyping. Thus, we performed an LD-based imputation and applied a conservative threshold 

(INFO metric >0.8) to acquire maternal genotype data with sufficient, albeit not perfect 

certainty. Moreover, only healthy pregnant women and their children participated in the study, 

limiting the number of women with severe CM exposure. Nevertheless, the prevalence estimate 

of CM exposure in the study sample is comparable with recent epidemiological data on CM 

exposure in the general population.113 A retrospective self-report measure (CTQ) was used to 
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assess maternal CM. While there were no differences in reported severity of CM between 

genotype groups and analyses adjusted for current mood, other potential variables that may 

influence self-reported childhood experiences (e.g., forgetting, recollection bias, or non-

disclosure) cannot be ruled out entirely. Following recent recommendations,114 we utilized 

objective observation-based ratings of MB to quantify our outcome, and raters were blind to 

maternal genotype and CM exposure, thereby strengthening confidence in the current findings. 

Also, we did not investigate offspring rs237895 genotype as a potential moderator in the 

association between MB and attachment security at 12 months. To do so, we would have needed 

to statistically control for maternal genotype (with whom children share 50% of genetic 

variation), thereby greatly reducing our ability to detect moderation effects that are exclusively 

attributable to offspring genotype in this small sample. Lastly, it is noteworthy that no infant 

was classified as being disorganized during the Strange Situation Procedure. This finding 

indicates that our study sample may not be entirely representative with respect to this 

characteristic, given prevalence estimates of disorganized attachment of ca. 15% in low-risk 

populations.115 

With these caveats in mind, we conclude that OT-associated bio-behavioral mechanisms may 

be implicated in the postnatal transmission of the effects of maternal CM exposure to her 

offspring. From a translational point of view, two issues warrant particular attention. First, the 

SNP-selection strategy used here critically advances interpretability of gene-environment 

interactions involving OXTR gene variants in conferring differential susceptibility to the 

environment. Investigating the role of genetic variants with known effects on gene expression 

in the brain could help identify susceptible individuals at increased risk for possible maladaptive 

developmental trajectories after CM exposure. Second, once identified, women at risk and their 

children could benefit from early interventions that have proven effective in promoting maternal 

sensitivity and secure attachment. As we have argued earlier,112 it is likely that individuals with 

a genetic predisposition for increased social sensitivity may not only show greater impairments 

after adverse early experience, but also may be the ones who disproportionately profit from 

psychosocial interventions. 
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NEW RESEARCH
A Role of Oxytocin Receptor Gene Brain Tissue
Expression Quantitative Trait Locus rs237895 in the
Intergenerational Transmission of the Effects of
Maternal Childhood Maltreatment
Philipp Toepfer, MSc, Kieran J. O’Donnell, PhD, Sonja Entringer, PhD, Christine M. Heim, PhD,
David T.S. Lin, PhD, Julia L. MacIsaac, PhD, Michael S. Kobor, PhD, Michael J. Meaney, PhD,
Nadine Provençal, PhD, Elisabeth B. Binder, MD, PhD, Pathik D. Wadhwa, MD, PhD,
Claudia Buss, PhD

Objective: Women exposed to childhood maltreatment (CM) are more likely to exhibit insensitive parenting, which may have consequences for their
offspring’s development. Variation in the oxytocin-receptor gene (OXTR) moderates risk of CM-associated long-term sequelae associated with
mother�child attachment, although functionality of previously investigated single nucleotide polymorphisms (SNPs) remained elusive. Here, we
investigated the role of OXTR rs237895, a brain tissue expression quantitative trait locus (eQTL), as a moderator of the relationship between CM and
maternal behavior (MB) and the association between MB and offspring attachment security.

Method: Of 110 women with information on rs237895 genotype (T-allele ¼ 64, CC ¼ 46), 107 had information on CM (CTQ) and 99 on
standardized observer-based ratings of MB at 6 months postpartum (responsivity and detachment), which were used in principal component analysis to
obtain a latent factor representing MB. Offspring (n ¼ 86) attachment was evaluated at 12 months of age. Analyses predicting MB were adjusted for
socioeconomic status, age, postpartum depression, and genotype-based ethnicity. Analyses predicting child attachment were adjusted for infant sex,
socioeconomic status, and postpartum depression.

Results: rs237895 significantly moderated the relationship between CM and MB (F1;66 ¼ 7.99, p < .01), indicating that CM was associated with
maternal insensitivity only in high�OXTR-expressing T-allele carriers but not in low�OXTR-expressing CC homozygotes. Moreover, maternal
insensitivity predicted offspring insecure attachment (B ¼ –0.551; p < .05).

Conclusion: Women with a high OXTR expressing genotype are more susceptible to CM-related impairments in MB that, in turn, predict attachment
security in their children, supporting the role of the OT system in the intergenerational transmission of risk associated with maternal CM.

Key words: gene-environment interaction, childhood maltreatment, intergenerational transmission, cxytocin receptor gene, parenting

J Am Acad Child Adolesc Psychiatry 2019;-(-):-–-.
T

Journal of t
Volume - /
he potentially deleterious long-term conse-
quences of exposure to childhood maltreatment
(CM) on mental and physical health are well
established.1 Furthermore, the detrimental effects of CM
exposure do not seem to be restricted to the exposed indi-
vidual alone, but might also have an impact on the next
generation.2 There is empirical evidence that offspring of
CM-exposed mothers are at increased risk for depressive
symptoms and insecure attachment.3,4 In the context of
maternal CM exposure, this intergenerational transmission
of CM-associated sequelae is hypothesized to occur during
the pre- and postnatal periods of development via multiple,
he American Academy of Child & Adolescent Psychiatry
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partly overlapping pathways,5,6 including altered gestational
maternal�placental�fetal stress physiology in CM-exposed
women,7 increased risk for maternal depression,8 and non-
optimal maternal behavior (MB).9 To date, most research
has focused on behavioral aspects of the postnatal mother-
to-child transmission of maternal CM exposure. It is,
however, evident that not all women (and their offspring)
are equally vulnerable to the long-term consequences of CM
exposure. Addressing this issue of interindividual differences
in susceptibility, we have proposed a conceptual framework6

that highlights the crucial role of the oxytocin (OT) neu-
ropeptide system in the intergenerational transmission of
www.jaacap.org 1
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maternal CM exposure for the following reasons: first,
substantial evidence highlights the importance of OT in
MB,10 which is considered a primary postnatal transmission
pathway of maternal CM exposure to her offspring.11 Sec-
ond, women with exposure to CM exhibit decreased con-
centrations of OT in plasma and cerebrospinal fluid.12,13

Lower OT concentrations, in turn, have been shown to
be associated with non-optimal MB,14 which is a significant
predictor for offspring attachment problems.15 Third,
growing evidence suggests an important role of genetic
variation in oxytocin pathway genes (ie, oxytocin receptor
gene [OXTR] and the oxytocin gene [OXT]) for MB16 in
moderating the association between CM exposure and
subsequent risk for psychopathology,17 and sub-optimal
MB among others.18 At the neural level, genetic variation
in OXTR predicts differential activation within the social
salience network (SSN) during perception of social stim-
uli.19,20 Within the SSN that comprises highly inter-
connected meso-cortico-limbic structures (eg, ventral
striatum [VS], anterior cingulate cortex [ACC], amygdala),
oxytocin, via its receptor, synchronizes neural activity be-
tween SSN nodes,19 providing a potential mechanism to
confer greater sensitivity to the social environment. Most
studies of gene�environment interactions investigating
OT-pathway genes have focused on specific single nucleo-
tide polymorphisms (SNPs) in OXTR, namely, rs53576 and
rs2254298, without clarifying their functionality.6 The first
study to address functionality of Oxtr SNPs demonstrated
that in monogamous prairie voles, genetic variation in Oxtr
strongly predicted Oxtr gene expression in the nucleus
accumbens, accompanied by significant behavioral effects.21

Compared to animals carrying the “low�Oxtr-expression”
genotype, homozygous “high�Oxtr-expression” genotype
carriers displayed significantly more attachment toward
their partner, providing the first mechanistic insight into the
behavioral consequences of a striatal Oxtr expression
quantitative trait locus (eQTL).21 Although it did not
consider the moderating role of environmental variation,
this study added a critical piece of evidence to better un-
derstand how Oxtr genetic variation may contribute to
behavioral differences. Collectively, these data suggest that
genetic variation in OXTR might contribute to individual
differences in sensitivity to the (early) social environment,
mediated by increased reactivity of neural circuits that un-
derlie response to the social environment as well as MB.
Based on this evidence, we hypothesize that a genetic pre-
disposition for increased social sensitivity (due to increased
OXTR expression) may be associated with higher risk for
suboptimal MB after CM exposure, with ensuing conse-
quences for offspring development. We took advantage of
publicly available resources providing information on
2 www.jaacap.org
genetic variation and genotype-specific gene expression in
discrete post mortem brain tissues, so-called brain tissue
eQTLs.22,23 Here, we tested the hypothesis that women
carrying a “high�OXTR-expressing” genotype are more
sensitive to their (early) environment, and we expected
them to exhibit greater CM-associated long-term adapta-
tions in their MB compared to “low�OXTR-expressing”
genotype carriers. Moreover, we expected variation in MB
to predict attachment security in the next generation, as has
been shown previously,15 thus providing evidence for a
pathway transmitting the effects of maternal CM exposure
to the next generation. To test these hypotheses, we con-
ducted a prospective longitudinal study in a total of 121
mother�child dyads. Mothers were genotyped and pro-
vided information on their own CM exposure. During a
home visit at 6 months postpartum, MB was assessed by
video recording behavior of mother�child dyads in
standardized situations, which was later coded by trained
observers. At 1 year of age, infant attachment security
was characterized during the Strange Situation
Paradigm (SSP).
METHOD
Participants
The study was conducted in the Development, Health and
Disease Research Program at the University of California,
Irvine, in a sample of 121 pregnant women with singleton
pregnancies and their children. The cohort is described in
greater detail elsewhere.24 The University of California,
Irvine, Institutional Review Board approved all study pro-
cedures, and all participants provided written informed
consent.
Genotyping, SNP Imputation, and OXTR eQTL Selection
DNA extraction was performed on fasting blood samples
collected during the first trimester of pregnancy (N ¼ 121).
Whole-genome SNP genotyping was performed using
Illumina HumanOmniExpress BeadChip according to the
manufacturer’s standard protocols. Quality control of ge-
notype data was performed using PLINK v1.9.48, where
variants with call rates <98%, minor allele frequency <5%,
or Hardy�Weinberg equilibrium test p < 1�10�6 were
removed. A total of 599.935 genotypes passed quality
control, and all mothers had genotyping rates >98% with
no sex mismatches. Twelve mothers were identified as rel-
atives (ie, >25% shared genotype), of whom one individual
of each related pair was removed (n ¼ 6), leaving 115
mothers for the analysis. To complete the dataset and to
obtain genotype information of variants not covered on the
array, we used imputation to predict the unobserved
Journal of the American Academy of Child & Adolescent Psychiatry
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genotypes by linkage disequilibrium (LD) with the geno-
typed SNPs of the array based on an external reference panel
of haplotypes. Genotype data were imputed to the 1000
Genomes Phase 3 reference panel using SHAPEIT225 and
IMPUTE2.26 After imputation, variants with a minor allele
frequency of <5% or an INFO metric <0.8 were removed.
The information metric (INFO metric) takes ranges be-
tween 0 and 1, where values near 1 indicate that a SNP has
been imputed with high certainty. The INFO metric is used
to remove poorly imputed SNPs. Although there is no
consensus in filtering the imputed datasets based on un-
certainty of imputation, we used a conservative threshold of
0.8. To select a functional OXTR variant in this subset of
115 women, we used the GTEx database (gtexportal.org).22

Using the tissue eQTL visualizer, we identified a haplotype
of 12 OXTR brain tissue eQTLs (LD cutoff: r2 � 0.2)
spanning approximately 8 kb (Chr20:
8804371�8812411bp). From this haplotype, we sought to
identify an OXTR brain tissue eQTL that would satisfy two
criteria. First, the eQTL should significantly predict gene
expression in brain areas known to be involved in MB and
social information processing (ie, ventral striatum, amyg-
dala, anterior cingulate cortex, and frontal cortex). To
achieve this, GTEx provides a multi-tissue eQTL visualizer
indicating the strength, direction, and p value of an eQTL
as well as a metric (m-value for posterior probabilities
ranging between 0 and 1) that indicates whether a given
SNP has meta-analytical evidence for having an eQTL effect
(m-value � 0.9) in a discrete brain region.27 Second, the
eQTL should best represent this OXTR eQTL haplotype in
our study sample consisting primarily of two ethnicity
groups (self-identified non-Hispanic white and self-
identified Hispanic). To that end, we conducted SNP-
tagging analyses (https://snpinfo.niehs.nih.gov/snpinfo/
snptag.html) for the 2 ancestry groups separately (based
on 1,000 genomes CEU and MXL populations) by
applying an LD threshold of r2 � 0.2. The resulting SNP
that meets these two criteria is rs237895 (T > C). In all
brain regions of interest, this SNP has a significant eQTL
effect, that is, it predicts gene expression in the caudate
nucleus (normalized effect size/NES ¼ �0.517, �log10 p
value ¼ 1.2e-10, m-value ¼ 1), putamen (NES ¼ �0.419,
p ¼ 1.1e-5, m¼ 1), amygdala (NES ¼ �0.428, p ¼ 6.6e-4,
m ¼ 1), nucleus accumbens (NES ¼ �0.317, p ¼ 7.6e-4,
m ¼ 1), ACC (NES ¼ �0.387, p ¼ 2.1e-5, m ¼ 1), and
frontal cortex (NES ¼ �0.324, p ¼ 7.0e-5, m ¼ 1) (see
Table S1, available online). The negative direction of the
effect indicates that the reference allele (T) is associated with
higher gene expression compared to the alternative allele
(C). As an example, Figure S1 (available online) depicts
OXTR gene expression in the caudate nucleus, which is
Journal of the American Academy of Child & Adolescent Psychiatry
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allele-load dependent, that is, the homozygous T-allele
carriers exhibit the highest, T/C heterozygotes intermediate,
and the homozygous C-allele carriers the lowest gene
expression. Furthermore, also using the xQTL database
(http://mostafavilab.stat.ubc.ca/xQTLServe), in an inde-
pendent sample of post mortem brain tissue (N ¼ 494),
rs237895 significantly predicts OXTR expression in the
dorsolateral prefrontal cortex (r ¼ –0.523; p < 8.0e-10).23

Because rs237895 is not covered on the Human-
OmniExpress BeadChip, genotypes of rs237895 from the
115 genetically unrelated women were extracted from the
imputed data for all participants in this study. The
rs237895 genotype could be imputed for 110 women (T/
T ¼ 18, T/C ¼ 46, C/C ¼ 46) with sufficient quality (ie,
INFO metric >0.8), who were subsequently included in
the statistical analyses. For the analyses, we assigned women
to 2 genotype groups depending on the presence of the
high�OXTR-expressing T-allele (T/T and T/C combined,
n ¼ 64) or absence of the same, that is, low�OXTR-
expressing CC-homozygotes (n ¼ 46).

Maternal CM Exposure
Women provided self-reports about CM exposure using
the Childhood Trauma Questionnaire (CTQ),28 one of
the most widely used, reliable, and valid instruments to
retrospectively assess early experiences of abuse and
neglect. The CTQ assesses five different types of CM:
emotional abuse, physical abuse, sexual abuse, emotional
neglect, and physical neglect.28 For each individual CTQ
subscale, we used established cut-off values (emotional
abuse, �13; physical abuse, �10; sexual abuse, �8;
emotional neglect, �15; and physical neglect, �10) to
create a binary variable indicating moderate or severe
exposure for any of the five CTQ-subscales. In addition,
an overall binary variable was computed based on the
CTQ to indicate moderate/severe childhood maltreatment
(CMþ) on at least one of the five CTQ scales versus no
exposure to childhood maltreatment (CM�). We chose
not to use the CTQ sum score as a predictor in the sta-
tistical analyses because it was not normally distributed as
indicated by a KolmogorovLSmirnov test (D(107)¼ 0.20;
p < .001).

Maternal Postnatal Behavior
At 6 months postpartum, a home visit was conducted.
Research staff was trained to reliably assess maternal
emotional and verbal responsivity toward the infant using
the Home Observation Measurement of the Environment
InfantLToddler version (HOME-IT).29 Raters were
considered reliable once they had 2 consecutive observa-
tions in which 95% of responses matched the responses of
www.jaacap.org 3
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a rater with extensive experience in coding the HOME-IT.
The responsivity scale of the HOME includes 11 items
capturing different aspects of maternal responsivity,
including maternal vocal reactivity to the infant or display
of positive affect toward the infant. The internal consis-
tency was moderate (Cronbach a ¼0.61) and comparable
to that in previous studies reporting psychometric proper-
ties of this scale.29,30 At the same visit and in addition to
the HOME assessment, mothers were instructed to engage
in a 15-minute standardized play situation as described
elsewhere.31 The play situation was video-recorded and
subsequently coded by two trained and reliable indepen-
dent observers (intraclass correlation coefficient [ICC]
>0.9) using the coding manual of the NICHD Early
Child Care Research Network.31 We here focused on
nonoptimal MB and coded maternal detachment (1 ¼
“not at all characteristic” to 5 ¼ “highly characteristic”).
Highly detached mothers appear to be emotionally unin-
volved and disengaged during dyadic play, do not react to
the child’s signals in a contingent manner, and can thus be
considered unresponsive. In a next step, we conducted a
principal component analysis (PCA) using the two
maternal behavioral phenotypes, namely, responsivity and
detachment. Results of the PCA indicated a one-factor
solution (eigenvalue of factor 1 ¼ 1.19; eigenvalue of
factor 2 ¼ 0.81). Detachment (0.78) loaded positively,
whereas maternal responsivity (–0.78) loaded negatively on
this extracted latent factor. Our one-factor solution
explained 60% of the total variance. Higher scores on this
latent variable indicate less optimal MB (ie, higher
detachment and lower responsivity), and we thus termed it
“maternal insensitivity.”

Infant Attachment at 12 Months of Age
Infant attachment security was assessed at 12 months dur-
ing the Strange Situation Procedure (SSP).32 The SSP, a
standardized laboratory observation, consists of 8 episodes,
each 3 minutes long. These episodes include short periods
of interaction between the mother and child, interaction
between the child and an unfamiliar female stranger, and
separation of the child from the mother followed by a
reunion episode during which infant attachment is coded.
Infants were categorized into three different types of
attachment: securely attached (B), insecure�avoidant (A),
and insecure�ambivalent (C). The relative frequencies of
attachment categories was as follows: 62.2% were classified
as securely attached (B), 30.6% as insecure�avoidant (A),
and 7.1% as insecure�ambivalent (C). We used the
dichotomous secure–insecure grouping (ie, B versus A and
C) for data analysis because of the relatively small group size
of type C attachment. Classification of attachment was
4 www.jaacap.org
completed by one rater with extensive experience in the
assessment of attachment.

Covariates
Analyses testing the predictive value of maternal CM and
rs237895 genotype interactions for MB were adjusted for
the potential confounding effects of variables that have been
shown to be associated with CM exposure, the observed
phenotype (MB), or both (see Table S2, available online).
For this set of analyses, the covariates included maternal age,
socio-economic status (SES), maternal depressive symp-
toms, and racial/ethnic differences in genetic background.
Information on annual household income and education
(highest degree obtained) were aggregated to a composite
measure indicative of socio-economic status (SES) as pre-
viously described in our study sample.24 Women provided
self-reports on postpartum depressive symptoms (PPD
symptoms) using the Edinburgh Postnatal Depression Scale
(EPDS),33 a widely used valid screening tool for PPD
symptoms on 3 occasions during the first postnatal year (ie,
at 1, 6, and 12 months). To account for the different time
points in assessing the maternal phenotype (at 6 months)
and infant attachment (at 12 months), we averaged EPDS
scores (all highly correlated across postnatal visits: r ¼
0.606�0.767; all correlation p values <.001) depending on
the predicted outcome. More specifically, we used an
average of EPDS scores including the 1- and 6-month as-
sessments for analyses predicting maternal behavior at 6
months and an average including all 3 EPDS scores (1, 6,
and 12 months) in the model predicting infant attachment
at 12 months. Racial/ethnic differences in genetic back-
ground were accounted for by population stratification us-
ing principal component analysis on genotype data obtained
using the Illumina OmniExpress array (Illumina, Inc., San
Diego, CA). Genotype data for 593.229 SNPs survived
quality control and SNP filtering (minor allele
frequency �5%). The first three principal components were
added to account for differences in genetic background (see
Figure S2, available online). We also took parity status into
account, which has been shown to predict differences in
MB. All analyses testing the association between MB and
offspring attachment were adjusted for SES, infant sex, and
PPD symptoms.

Statistical Analyses
All statistical analyses were performed using IBM SPSS
version 22. Prior to testing the geneLenvironment inter-
action in the prediction of MB, we evaluated the main effect
of CM exposure on maternal behavior using a linear
regression model, while controlling for all potential con-
founding variables (ie, maternal age, SES, PC1-3, PPD
Journal of the American Academy of Child & Adolescent Psychiatry
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symptoms). Maternal G-E analyses were conducted using
the SPSS PROCESS macro.34 In the simple moderation
analyses (model 1), the binary maternal CM exposure var-
iable (CMþ/CM�) was entered as the main predictor, the
latent MB factor as the outcome, maternal dichotomous
OXTR rs237895 genotype (T-allele versus CC-
homozygotes) as the moderator and maternal age, SES,
genotype-based ethnicity, and maternal PPD symptoms as
the covariates. For the prediction of attachment security
(secure versus insecure), a logistic regression analysis was
performed using MB as the predictor and infant sex, SES,
and PPD symptoms as covariates.
TABLE 1 Characteristics of the Total Sample and Stratified by Ma
(CM) Exposure

Characteristics
Total sample
(N ¼ 110)

OXTR rs237

T-Allele carriers
(n ¼ 64)

Maternal age, y, mean (SD)
at study entry

27.80 (5.07) 27.41 (5.14)

Maternal SESb 3.25 (0.97) 3.21 (0.96)
Maternal race/ethnicity, self-
report, n (%)c,f

Non-Hispanic white 44 (43.1%) 21 (35%)
Hispanic white 38 (37.3%) 25 (41.7%)
Asian 7 (6.9%) 5 (8.3%)
Other 13 (12.8%) 9 (15%)

Maternal behaviord

Responsivity, HOME,
range 0L11

8.28 (1.81) 8.17 (2.12)

Detachment, play
situation, range 1L5

1.49 (0.83) 1.41 (0.76)

PPD symptoms, EPDS score,
1 mo (SD)

6.00 (4.66) 5.63 (4.25)

PPD symptoms, 6 mo 4.96 (4.66) 4.63 (4.02)
PPD symptoms, 12 mo 5.51 (4.37) 5.62 (4.17)
CTQ Total Score, range
25L125a

37.39 (14.97) 38.13 (16.46)

CMD, n (%) 38 (35.5%) 21 (33.3%)
CML, n (%) 69 (64.5%) 42 (66.7%)
Infant attachment at 12
monthse,f

Securely attached, n (%) 56 (65.1%) 29 (61.7%)
Insecurely attached, n (%) 30 (34.9%) 18 (38.3%)

Note: CTQ ¼ Childhood Trauma Questionnaire; EPDS ¼ Edinburgh Postna
Gene; PPD ¼ postpartum depression; SES ¼ socioeconomic status.
aMissing values in CM exposure: n ¼ 3.
bSES is a composite measure of maternal education and annual household
cMissing values in race/ethnicity self-report: n ¼ 8 (n ¼ 4 in each genotype
dMissing values for maternal behavior: n ¼ 11
eMissing values for attachment security: n ¼ 24.
fFor categorical variables (race/ethnicity and infant attachment), c2 tests wer
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RESULTS
Sample Characteristics
Information on socio-demographic characteristics, CM
experience, MB, PPD symptoms, and infant attachment are
shown in Table 1 for the total sample (N ¼ 110) and
stratified by rs237895 genotype as well as CM exposure
status. Importantly, neither CM exposure (p >.93) nor
maternal insensitivity (p >.82) nor infant attachment
(p >.5) was significantly different between the genotype
groups. Compared to women in the CM– group, CMþ
subjects had a lower SES (p < .01) and reported more PPD
symptoms throughout the first year postpartum
ternal OXTR rs237895 Genotype and Childhood Maltreatment

895 genotype

p

CM exposurea

p
CC Carriers
(n ¼ 46) CMþ (n ¼ 38) CMe (n ¼ 69)

28.44 (4.71) NS 26.81 (5.79) 28.37 (4.39) NS

3.27 (0.98) NS 2.87 (0.91) 3.44 (0.94) <.01

23 (54.8%) NS 9 (25.7%) 33 (51.6%) NS
13 (31%) NS 18 (51.4%) 20 (31.3%) NS
2 (4.8%) NS 4 (11.5%) 3 (4.7%) NS
4 (9.6%) NS 4 (11.4%) 8 (12.4%) NS

8.42 (1.38) NS 7.87 (2.43) 8.47 (1.46) NS

1.61 (0.92) NS 1.61 (0.90) 1.45 (0.81) NS

6.56 (5.24) NS 7.54 (4.91) 5.16 (4.41) <.05

5.43 (5.50) NS 6.30 (5.88) 4.16 (3.70) <.05
5.34 (4.72) NS 7.92 (4.35) 4.29 (3.87) <.01

36.89 (12.80) NS 51.37 (17.55) 30.04 (4.46) <.001

17 (38.6%)
27 (61.4%)

27 (69.2%) NS 18 (66.7%) 37 (64.9%) NS
12 (30.8%) NS 9 (33.3%) 20 (35.1%) NS

tal Depression Scale; NS ¼ not significant; OXTR ¼ Oxytocin Receptor

income, coded from 1 (low SES) to 5 (high SES).
group).

e calculated.
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(all p values <.05). CM groups did not differ in MB or
infant attachment (Table 1). Intercorrelations of all study
variables are displayed in Table S2, available online.

Maternal CM Exposure and rs237895 Genotype Effects
on MB
The linear regression model that tested the association be-
tween CM exposure and MB revealed no significant main
effect of CM exposure (b ¼ –0.31, p ¼ .2). The main
moderation model accounted for 38.36% of the variance in
MB (F9,66 ¼ 4.56, p < .001) (Table 2). The maternal
CM � rs237895 interaction was significantly associated
with MB (F1,66 ¼ 7.99, p < .01). Confirming our hy-
pothesis, post hoc analyses revealed that only women car-
rying the high�OXTR-expressing T-allele showed
significant differences in maternal insensitivity depending
on CM exposure (t ¼ –0.26; p ¼ .015; Cohen d ¼ 0.92),
with CM-exposed women showing greater maternal insen-
sitivity than non�CM-exposed women (Figure 1). In
low-expressing CC-homozygous women, CM was
not associated with MB (t ¼ 0.83; p ¼.4; Cohen
d ¼ –0.26).
TABLE 2 Regression Table for Maternal Childhood
Maltreatment (CM) x rs237895 Predicting Maternal
Insensitivitya

Predictor Coefficient SE
t

Statistic p 95% CI
Constant 2.00 0.62 3.21 <.01 0.76 to 3.25
Maternal Age e0.08 0.02 -3.18 <.01 e0.13 to e0.03
SESb e0.05 0.13 e0.39 .70 e0.32 to 0.21
PC1c e3.72 1.35 -2.75 <.01 e6.41 to e1.02
PC2 1.41 1.14 1.24 .22 e0.87 to 3.7
PC3 e0.54 1.47 e0.34 .71 e3.47 to 2.40
PPD
symptomsd

0.47 0.23 2.02 <.05 0.01 to 0.93

OXTR
rs237895e

0.23 0.21 1.05 .30 e0.21 to 0.66

Maternal CMf e0.26 0.25 e1.05 .30 e0.76 to 0.23
CM x rs237895 e1.18 0.42 e2.83 <.01 e2.02 to e0.35

Note: OXTR ¼ Oxytocin Receptor Gene; PC ¼ principal component;
SES ¼ socioeconomic status; SE ¼ standard error.
aMaternal insensitivity: latent factor derived from principal components
analyses (see Methods for details).
bMaternal SES comprised of annual household income and highest
degree of education obtained (see Methods for details).
cPC representing maternal genotype-based ethnicity (see Methods).
dPostpartum depressive symptoms: mean 6-month postpartum symp-
toms assessed at 1 month and 6 months (Edinburgh Postnatal Depres-
sion Scale);
eMaternal OXTR rs237895 genotype dichotomized (T-allele vs CC-
homozygous);
fMaternal CM exposure (dichotomous groups: CM– vs CMþ; see
Methods for details).
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MB and Infant Attachment at 12 Months
MB significantly predicted offspring attachment security at
12 months (B ¼ –0.551; p < .05; Cohen d ¼ –0.51)
(Figure 2) after controlling for SES, infant sex, and PPD
symptoms. Infant attachment was higher in children of
women with less maternal insensitivity. In other words,
securely attached infants were overrepresented in the group
of women who, based on median split, exhibited higher
sensitivity (77.8% securely attached infants versus 22.2%
insecurely attached). In women with greater insensitivity (>
median), the prevalence of insecurely attached children
increased 2-fold (45.0 % insecure attachment) compared to
that in the group exhibiting low insensitivity.

DISCUSSION
To the best of our knowledge, the findings described here
provide the first evidence of the moderating role of a
functional OXTR variant in the process of intergenerational
transmission of the effects of maternal CM exposure. Only
women carrying the high�OXTR-expressing T-allele
exhibited significant differences in MB in conjunction with
CM experience, with CM-exposed women experiencing
greater insensitivity than non�CM-exposed women. MB in
C-allele homozygous women appeared to be less affected by
CM exposure, indicating reduced behavioral adaptations
after CM exposure in these individuals. Unlike previous
studies that have demonstrated either a main effect of CM
exposure9 or OXTR genotype16 in predicting MB, our
findings highlight the importance of gene�environment
interactions to predict MB. It appears that these observa-
tions are in accordance with the Differential Susceptibility
Theory (DST).35 However, the mere absence of early
adversity (ie, CM�) (conditions under which T-allele�
carrying mothers show the least amount of insensitivity)
does not, per se, implicate the presence of a supportive
and enriched early environment, which is an important
premise of the DST framework that cannot be addressed
in the current study. The CTQ, our environmental
exposure, is not designed to capture positive aspects of the
early environment. Nevertheless, our results support
OXTR rs237895 functioning as a genetic moderator, and
they are in line with prior research. It has been previously
shown that genetic variation in OXTR predicts limbic
reactivity to social cues20 and MB16 and moderates the
association between CM exposure and depression as well
as disorganized adult attachment.17,36 By adopting a
biologically informed SNP-selection strategy,22,23 the
present study corroborates, extends, and strengthens this
line of research. In accordance with recent theoretical
frameworks that postulate a role for oxytocin in modu-
lating the salience of social cues,37 we propose that
Journal of the American Academy of Child & Adolescent Psychiatry
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FIGURE 1 Maternal Insensitivity Stratified by Maternal
Childhood Maltreatment (CM) Exposure and OXTR rs237895
Genotype

Note: CM– indicates no Childhood Trauma Questionnaire (CTQ). Q category
above moderate cut-off. CMþ indicates one or more CTQ categories above mod-
erate cut-off. OXTR ¼ Oxytocin Receptor Gene. aLatent factor representing
maternal insensitivity includes measures of maternal responsivity (HOME) and
maternal detachment during play (see Method for details). Higher scores indicate
greater insensitivity. NS ¼ not significant.
*p < .05.

FIGURE 2 Maternal Insensitivity Stratified by Offspring
Attachment Security

Note: aLatent factor representing maternal insensitivity includes measures of
maternal responsivity (HOME) and maternal detachment during play (see Method
for details). Higher scores indicate greater maternal insensitivity.
*p < .05.
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genetic variation in OXTR eQTLs (eg, rs237895) may
operate through increased genotype-dependent OXTR
expression in socially sensitive neural networks as an
important neurobiological mechanism conferring height-
ened social�environmental susceptibility.

However, the question remains as to why mothers
would differ in the degree to which they adapt their
reproductive (ie, MB) strategies after CM exposure. Envi-
ronmental variation, especially early social experiences (eg,
the mother’s CM exposure) may operate via MB to shape
offspring development, thereby ultimately promoting
reproductive fitness in the next generation.38 Strong sup-
port for this “maternal mediation hypothesis” comes from
rodent studies showing how natural variations in MB (eg,
licking and grooming) may induce persistent behavioral and
neurobiological changes in offspring.38 As examples,
offspring of dams low in licking and grooming exhibit
heightened stress reactivity39 and increased fearfulness,40

phenotypes that promote survival in a dangerous environ-
ment. Furthermore, female offspring of dams low in licking
and grooming show alterations in MB consistent with their
Journal of the American Academy of Child & Adolescent Psychiatry
Volume - / Number - / - 2019
own rearing experience.41 Directly translating this line of
research to humans, we would predict that women exposed
to CM should adapt their MB (ie, lower responsivity,
higher detachment) accordingly to transmit information
about their own past aversive environment to their
offspring. However, our data suggest otherwise, as the as-
sociation between maternal CM exposure and MB appears
to be dependent on maternal OXTR genotype. A possible
explanation for this observation is the concept of bet-
hedging.42 Since the future is inherently unpredictable and
early experiences (eg, CM exposure) may not always accu-
rately predict the future environment (eg, dangerous/adverse
environment for offspring), natural selection has maintained
genes for both environmentally susceptible (eg, high OXTR
expression) as well as less susceptible (eg, low OXTR
expression) developmental strategies, to ultimately increase
fitness payoffs regardless of environmental continuity.35

These possibly adaptive reproductive strategies, how-
ever, may come at a cost from the lens of a developmental
psychopathology perspective rather than an evolutionary
one. We show that less responsive and more detached MB is
associated with insecure attachment in her child at 12
months age, which is in accordance with prior research.15,32

Insecure attachment itself predicts anxiety43 and
www.jaacap.org 7
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internalizing and externalizing behavior,44 among other
phenotypes, closing the cycle of intergenerational trans-
mission of early life experiences.

Previous research in humans and animals has shown
that MB is hormonally primed, and that this process starts
as early as during pregnancy itself,45 partly mediated via
estrogen-induced up-regulation of oxytocin receptors.46 An
open question now is whether OXTR eQTLs exert their
effects on brain gene expression through variable accessi-
bility of transcription factors to chromatin. Given the
fundamental role of sex steroids in regulating OXTR gene
expression and the fact that sex steroids dramatically in-
crease during pregnancy, this period represents a time
window of critical importance to better understand the
contribution of OXTR genetic variation in the association
between CM and MB. Moreover, it is possible that addi-
tional prenatal factors, such as alterations in CM-associated
maternal�placental�fetal stress physiology operate as
mechanisms in the intergenerational transmission of risk
associated with maternal CM exposure.5 It remains to be
elucidated whether these transmission pathways differ sys-
tematically between women carrying high- or low-
susceptibility variants of rs237895. Moreover, in addition
to maternal interactive behavior, future studies in the
context of intergenerational transmission during the post-
natal period should consider other postnatal variables such
as breastfeeding status and breast milk composition, which
may be different based on maternal CM experience. This is
a relevant avenue of research aimed at understanding the
mechanisms underlying intergenerational transmission of
maternal CM, given the common underlying neurobiology
for breastfeeding and MB that crucially involve efficient OT
signaling.47

Maternal behavior is a complex phenotype emerging
from extensive interconnected neural circuitry underlying a
wide array of executive, cognitive, motivational, and self-
regulatory functions,48 and can be modulated by early
childhood experiences,6,11,41 OT signaling,49 and in-
teractions of OT with other neurotransmitters such as
dopamine among many others.48 It would be informative
for future studies to use neuroimaging assessments to
characterize neural functional and/or structural differences
after CM exposure in genetically susceptible women. This
will then provide further insights into the neural un-
derpinnings of the associations between CM exposure and
variation in MB. The SNP under investigation here,
rs237895, predicts OXTR expression across multiple brain
regions that are critical for MB, cognition, and motivation
(eg, amygdala, ventral striatum [VS], ACC, PFC), raising
the possibility that alterations in some or even most of the
above-mentioned OT-associated functions might be
8 www.jaacap.org
critically altered in T-allele carriers after CM. Intriguingly, a
previous study by Loth et al. has shown that another
intronic OXTR SNP (rs237893, A>G), which tags the
same OXTR eQTL haplotype as rs237895, predicts activity
in the VS in response to social cues in an allele-
load�dependent manner.20 VS reactivity was highest in
high�OXTR-expressing AA carriers and lowest in low-
expressing GG carriers.20 Bearing in mind the well-
documented role of OT-signaling in the VS for MB (eg,
affecting salience and reward of infant stimuli as well as
infant-directed behavior),50 the findings by Loth et al., by
supporting the notion of higher social sensitivity in in-
dividuals carrying a high OXTR-expression genotype, pro-
vide important insights into intermediate phenotypes at the
intersection of gene�behavior associations that may theo-
retically vary depending on the early environment.

There are several limitations of the current study,
including the relatively small sample size and the lack of an
independent replication sample. From a methodological
point of view, a moderated mediation analysis would have
been more suitable to test the entire intergenerational
pathway from maternal CM exposure to infant attachment
in the next generation. However, the resulting sample size
in the full model with no missing data for both mothers and
children would have been relatively small (n ¼ 69).
Consequently, the full model predicting attachment secu-
rity, while including all covariates, would have been
vulnerable to overfitting in such a small sample, which is
why we decided to test the paths in two separate models. In
addition, we had to group the T-allele�carrying women
together for practical reasons because the homozygous T-
allele group included only 18 individuals. Given the allele-
load�dependent eQTL effect of rs237895, it would be
interesting, in future larger samples, to test the CM�MB
association for all three groups of genotype separately.
Also, rs237895 is not covered on the array used for geno-
typing. Thus, we performed an LD-based imputation and
applied a conservative threshold (INFO metric >0.8) to
acquire maternal genotype data with sufficient, albeit not
perfect, certainty. Moreover, only healthy pregnant women
and their children participated in the study, limiting the
number of women with severe CM exposure. Nevertheless,
the prevalence estimate of CM exposure in the study sample
is comparable with recent epidemiological data on CM
exposure in the general population.51 A retrospective self-
report measure (CTQ) was used to assess maternal CM.
Although there were no differences in reported severity of
CM between genotype groups and analyses adjusted for
current mood, other potential variables that may influence
self-reported childhood experiences (eg, forgetting, recol-
lection bias, or nondisclosure) cannot be ruled out entirely.
Journal of the American Academy of Child & Adolescent Psychiatry
Volume - / Number - / - 2019

http://www.jaacap.org


TRANSMISSION OF CHILDHOOD MALTREATMENT
Following recent recommendations,52 we used objective
observation-based ratings of MB to quantify our outcome,
and raters were blinded to maternal genotype and CM
exposure, thereby strengthening confidence in the current
findings. Also, we did not investigate offspring rs237895
genotype as a potential moderator in the association be-
tween MB and attachment security at 12 months. To do so,
we would have needed to statistically control for maternal
genotype (with whom children share 50% of genetic vari-
ation), thereby greatly reducing our ability to detect
moderation effects that are exclusively attributable to
offspring genotype in this small sample. Finally, it is note-
worthy that no infant was classified as being disorganized
during the Strange Situation Procedure. This finding in-
dicates that our study sample may not be entirely repre-
sentative with respect to this characteristic, given the
prevalence estimates of disorganized attachment of
approximately 15% in low-risk populations.53

With these caveats in mind, we conclude that OT-
associated bio-behavioral mechanisms may be implicated
in the postnatal transmission of the effects of maternal CM
exposure to her offspring. From a translational point of
view, two issues warrant particular attention. First, the
SNP-selection strategy used here critically advances inter-
pretability of gene�environment interactions involving
OXTR gene variants in conferring differential susceptibility
to the environment. Investigating the role of genetic variants
with known effects on gene expression in the brain could
help to identify susceptible individuals at increased risk for
possible maladaptive developmental trajectories after CM
exposure. Second, once identified, women at risk and their
children could benefit from early interventions that have
proved effective in promoting maternal sensitivity and
secure attachment. As we have argued earlier,6 it is likely
Journal of the American Academy of Child & Adolescent Psychiatry
Volume - / Number - / - 2019
that individuals with a genetic predisposition for increased
social sensitivity may not only show greater impairments
after adverse early experience, but also may be the ones who
disproportionately profit from psychosocial interventions.
Accepted March 4, 2019.

Drs. Heim, Entringer, Buss, and Mr. Toepfer are with Charit�e e
Universit€atsmedizin Berlin, corporate member of Freie Universit€at Berlin,
Humboldt-Universit€at zu Berlin, and Berlin Institute of Health (BIH), Institute of
Medical Psychology, Berlin, Germany. Dr. Heim is also with Penn State Uni-
versity, University Park, PA. Drs. Entringer and Buss are also with the Devel-
opment, Health, and Disease Research Program, University of California, Irvine.
Drs. O’Donnell and Meaney are with the Ludmer Centre for Neuroinformatics
and Mental Health, Douglas Mental Health University Institute, McGill Uni-
versity, Montreal, Canada, and the Sackler Program for Epigenetics and Psy-
chobiology at McGill University, Montreal, Canada. Dr. Meaney is also with
Singapore Institute for Clinical Sciences, Singapore. Drs. Lin, MacIsaac, and
Kobor are with the Centre for Molecular Medicine and Therapeutics, University
of British Columbia, Vancouver, Canada. Drs. Provençal and Binder are with the
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Table S1: eQTL Effect of OXTR rs237895 Across Brain Tissues (Table Generated from gtexportal.org) 

 

 
Note:  sample sizes, normalized effect sizes, p-values and m-values (m-value ≥ .9 indicates significant eQTL effect of a SNP) are shown for brain 

regions separately. Negative directions of NES indicate that the reference allele (T) is associated with higher gene expression. NES = normalized 

effect size 
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Figure S1:  eQTL Effect of OXTR rs237895 in Caudate Nucleus Stratified by Genotype 

(Figure Generated from gtexportal.org).  

Note: Homo Ref = homozygous reference allele (T/T); Het = heterozygous (T/C); Homo Alt 

= homozygous alternative allele (C/C) 
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Figure S2:  Scatter Plot Showing Population Stratification of the First Four Principal 

Components from the Principal Component Analysis (PCA) Using Genotyping Data on 593229 

Variants. Note: Colors indicate reported race and ethnicity by the mothers. Top right panel 

shows the eigenvalues for each PC where the first 3 PCs explain most of the variance associated 

with genotype. As can be seen in the figure, our sample primarily consists of two major self-

identified race/ethnicity groups: White/non-Hispanic and White Hispanic. In reference to self-

reported race/ethnicity groups presented in Table 1, “Asian” (n=7) refers to women, who self-

identified as Asian/Hispanic (n=2) or Asian/Non-Hispanic (n=5). Lastly, “other” (n=13) 

includes “Black/non-Hispanic (n=1), “Other/Non-Hispanic” (n=1), “Multiple Races/non-

Hispanic” (n=8), “Other/Hispanic” (n=1), and “Multiple races/Hispanic” (n=2). Women who 

self-identified as white-non Hispanic show consistently higher factor loadings on PC1, while 

self-identified white Hispanic women exhibit higher factor loadings on PC2. PC = principal 

component. 
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