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Utopia is on the horizon.

I move two steps closer; it moves two steps further away:.

I walk another ten steps and the horizon runs ten steps ahead.

No matter how much I may walk, I will never reach it.
What, then, is the purpose of utopia?

It is to cause us to keep walking.

Eduardo Galeano
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Abstract

Recent development in seismological instrumentation has made possible the deployment of
temporary and permanent seismic networks with large numbers of seismometer stations. These
networks register an extensive amount of seismic data that is then available to the scientific
community for carrying out different types of seismological studies. Producing reliable earth-
quake catalogs, based on the implementation of efficient automatic event location procedures,
which can handle such extensive amount of seismic data, is one of the critical steps prior to
perform most studies. Precise and maximally complete event catalogs become essential in re-
gions on the Earth where tectonic plate subduction takes place, such as the Chilean convergent
margin. In subduction zones, seismicity analysis can help to shed light on the different tectonic
processes involved in the generation of great tsunamigenic megathrust earthquakes, which are
usually devastating for the inhabitants of these hazardous regions. Particularly, insights on the
conditions characterizing the frictional behavior of a subduction interplate fault, can be inves-
tigated in detail from seismicity. This ultimately leads to a better assessment of the earthquake
hazard potential in a subduction zone.

In my thesis, I apply a multistage automatic earthquake detection and location workflow to
generate a high-resolution earthquake catalog for the northern Chile region. This automatic
workflow is applied to seismic data recorded by the Integrated Plate Boundary Observatory
Chile (IPOC) permanent seismic network, as well as by a number of complementary temporary
deployments, adding up to >100 seismic stations. The resulting event catalog contains ~19,000
foreshocks, aftershocks and background seismicity occurring in the time interval between one
month preceding and nine months following the 1 April 2014 M8.1 Iquique earthquake. I analyse
the seismicity features, in combination with modelled coseismic slip and modelled static stress
changes, as well as geodetically-derived afterslip and interseismic locking models, in order to
investigate the small-scale frictional heterogeneities on the plate interface and interpret the
seismotectonic behavior of the overlying continental forearc in northern Chile.

Results from this analysis point towards a primarily along-dip segmentation of the frictional
behavior along the plate interface. In the downdip direction, an aseismic velocity-strengthening
segment of the interface and a frictionally transitional region underlay, respectively, an aseismic
frontal prism and a transitional zone in the outer continental wedge. Deeper on the plate in-
terface, the seismogenic segment coincides with the highest coseismic slip underlying the inner
continental wedge. The velocity-weakening segment connects downdip to a frictionally het-
erogeneous region where aftershock seismicity (interpreted as conditionally stable) and highest
afterslip patches (velocity-strengthening) anticorrelate. A sparsity of events, which may be a

generic feature along the Chilean subduction, separates this heterogenous segment from the
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deepest interplate events, where presumably frictionally transitional behaviour predominates.

With the aim of improving the efficiency and simplifying the implementation of the earth-
quake catalog generation workflow, I additionally present DeepPhasePick, an automatic method
entirely based on systematically optimized deep neural networks that carries out the first stages
involved in this workflow: detection and picking of P and S phases originating from local earth-
quakes. DeepPhasePick makes use of a convolutional neural network architecture to perform the
phase detection on three-component seismograms. It then uses two recurrent neural networks
to conduct the phase picking on the vertical component for P phases and on the two-horizontal
components for S phases. The phase time onsets and their corresponding onset uncertainties
returned by the phase picking stage can feed a phase associator algorithm in the next step of
the earthquake location workflow.

DeepPhasePick architectures are optimized and trained using >30,000 manually-picked seis-
mic records extracted from two sets of event waveforms occurring ~7 and ~17 years before the
2014 M8.1 Iquique earthquake, in a region of northern Chile that partially overlaps with the
area covered by the automatically-derived ~19,000 earthquake catalog described above. The
algorithm is then tested on different test sets: a set of manually-picked records independent
from the training set, >1,000,000 automatically-picked records taken from the ~19,000 earth-
quake catalog, and a set of >200,000 automatically-picked records taken from another recently
published earthquake catalog for the northern Chile region. Results from these tests show
that DeepPhasePick is able to detect seismic phases with high accuracy, as well as to predict
phase time onsets with a precision comparable to the more conventional phase picking methods,
be they manual or automatic. Moreover, I demonstrate that DeepPhasePick’s detection and
picking abilities perform effectively not only on the largely lower-seismic noise data recorded
in northern Chile, but also generalize to higher-seismic noise data recorded from a different

tectonic regime in an urban region of Albania.
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Zusammenfassung

Durch die fortlaufende Weiterentwicklung seismologischer Sensoren ist es heute moglich, tem-
porir oder dauerhaft installierte seismische Netzwerke bestehend aus vielen Einzelsensoren
aufzubauen. Diese Netzwerke akkumulieren grofie Datenmengen, welche sodann der seismolo-
gischen Community zur Verfiigung stehen, um mit ihnen verschiedenste Studien durchzufiihren.
Um solche Studien mithilfe dieser umfangreichen Datenmengen in Angriff nehmen zu koénnen,
bedarf es der Erstellung akkurater Bebenkataloge mittels effizienter automatisierter Erdbeben-
Lokationsmethoden. Solche prazise lokalisierten und moglichst kompletten Bebenkataloge sind
vor Allem in Regionen der Erde essentiell, wo die Subduktion einer tektonischen Platte auftritt,
so zum Beispiel entlang des Chilenischen Kontinentalrands. Seismizitédtsanalyse in Subduktion-
szonen kann eine wichtige Rolle bei der Erforschung der verschiedenen aktiven Prozesse spie-
len, die grofle Erdbeben entlang der Megathrust-Verwerfung hervorrufen. Solche Beben, die
wiederum oft Tsunamis auslosen, haben oft katastrophale Auswirkungen fiir die Bewohner der
betroffenen Gegenden. Eine detaillierte Untersuchung der o6rtlichen Seismizitat kann insbeson-
dere zu Erkenntnissen iiber die Reibungseigenschaften der Plattengrenze und den Bedingungen,
von denen diese abhéngen, fithren.

In meiner Dissertationsschrift stelle ich die Anwendung eines mehrstufigen, automatisierten
Bebendetektions- und Lokationsablaufs vor, der zur Erstellung eines hochaufgelosten Bebenkat-
alogs fiir Nordchile benutzt wurde. Dieser automatische Workflow wurde mit Daten angewen-
det, die vom permanenten seismischen Netzwerk des IPOC-Konsortiums (IPOC = Integrated
Plate Boundary Observatory Chile) sowie von einigen zusétzlichen temporar installierten Net-
zwerken aufgezeichnet wurden, so dass insgesamt mehr als 100 Stationen verwendet wurden.
Der erstellte Bebenkatalog enthélt etwa 19,000 Beben, darunter viele Vor- und Nachbeben des
Iquique-Bebens vom 1. April 2014 (Momentenmagnitude 8.1) sowie Hintergrundaktivitat, Alles
in einem Zeitraum von einem Monat vor bis neun Monate nach dem Iquiquebeben. Ich werte
die Seismizitdtsmerkmale zusammen mit Modellierungsergebnissen des coseismischen Versatzes
und der Spannungsédnderungen durch das Beben aus, und beziehe auch geoditisch ermittelte
Modelle von Afterslip und der interseismischen Kopplung zwischen den Platten mit in die Anal-
yse ein. So kann ich die kleinskaligen Heterogenitaten in der Reibungsfestigkeit der Platten-
grenze untersuchen und die seismotektonischen Charakteristika der dariiber liegenden Region
des kontinentalen Forearcs Nordchiles interpretieren.

Die Ergebnisse dieser Forschungstitigkeit zeigen eine Segmentierung in den Reibungeigen-
schaften der Plattengrenze primar in Richtung des Einfallens der abtauchenden Platte. Mit
ansteigender Tiefe entlang der Plattengrenze treten dort zunéchst eine aseismische Region auf,

deren Rheologie velocity-strengthening ist, gefolgt von einer Region die als transitional beze-
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ichnet werden kann. Diese befinden sich unterhalb eines aseismischen Frontal Prisms sowie
des auferen kontinentalen Keils, der konditional stabile Reibungseigenschaften aufweist. In
groferer Tiefe befindet sich die seismogene Zone der Plattengrenze, die die grofiten coseismis-
chen Versitze aufweist und unterhalb des inneren kontinentalen Keils liegt. Auf dieses Segment,
das velocity-weakening aufweist, folgt eine heterogene Region, in der Nachbebenaktivitat und
die hochsten Afterslip-Werte raumlich antikorreliert zu beobachten sind. Darunter liegt eine
Region deutlich verminderter Bebenaktivitit, die moglicherweise iiberall entlang des chilenis-
chen Kontinentalrands auftritt, sowie schlussendlich die tiefsten Interplattenbeben, die wohl in
einer Tiefenregion mit transitionalen Reibungseigen-schaften aufreten.

Zuséatzlich stelle ich DeepPhasePick vor, eine neue automatisierte Methode zum Picken der
Ersteinsdtze von P- und S-Wellen lokaler Beben, die komplett auf systematisch optimierten
neuronalen Netzwerken beruht. Das Ziel dieser Methode ist es, die Effizienz der automatisierten
Bebenkatalogsproduktion zu verbessern sowie diese Prozedur zu vereinfachen. DeepPhasePick
benutzt tiefe neuronale Netzwerkarchitektur, um ankommende Phasen in Drei-Komponenten-
Seismogrammen zu detektieren. Darauthin verwendet es zwei rekurrente neuronale Netze, um
die P-Phase auf der Vertikalkomponente und die S-Phase auf beiden Horizontalkomponenten
zu picken. Die Ersteinsatzzeiten sowie ihre Unsicherheiten, die vom Programm ausgegeben
werden, konnen sodann in einen Phasen-Assoziierungs-Algorithmus eingespeist werden, der
den nachsten Schritt im Workflow der automatisierten Bebenlokation darstellt.

Die Architektur von DeepPhasePick wird optimiert und trainiert mithilfe von >30,000
handgepickter Phasenankiinfte, die aus zwei Datensédtzen aus Nordchile extrahiert wurden,
die Zeitriume ca. 7 und ca. 17 Jahre vor dem Iquiquebeben umfassen. Ortlich {iberlappen
die Regionen dieser Datensatze mit dem oben beschriebenen Bebenkatalog, der ca. 19,000 au-
tomatisch ermittelte Bebenlokationen umfasst. Der Algorithmus wird dann mit verschiedenen
Datensatzen getestet: mit einem Satz handgepickter Datenspuren, der unabhéangig vom Train-
ingsdatensatz ist, mit >1,000,000 automatisch gepickter Spuren aus dem oben beschriebenen,
etwa 19,000 Beben umfassenden Katalog, sowie mit einem weiteren Satz von >200,000 au-
tomatisch gepickter Spuren aus einem anderen, kiirzlich publizierten Bebenkatalog aus der
Region Nordchile. Die Ergebnisse dieser Tests zeigen, dass DeepPhasePick seismische Phasen
sehr akkurat detektiert sowie die Ersteinsitze mit einer Préazision bestimmt, die derer konven-
tioneller Phasenpick-Methoden (seien sie automatisch oder manuell) gleichkommt. Dartiber
hinaus zeige ich, dass die Detektions- und Pickingfiahigkeiten von DeepPhasePick nicht nur fiir
die Daten aus Nordchile, die sich durch sehr niedriges Hintergrundrauschen auszeichnen, gut
funktionieren. Auch Daten mit hoherem Noise-Niveau und aus einem génzlich anderen tek-
tonischen Kontext, ndmlich aus einer urbanen Region in Albanien, werden von DeepPhasePick

prazise ausgewertet.
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Chapter 1

Introduction

On 1 April 2014, the M8.1 Iquique earthquake broke a central piece of the northern Chile-
southern Peru seismic gap, generating a tsunami of ~2 m height along the northern Chile
coast.

In the first part of this thesis I use data from >100 permanent and temporary seismic stations
covering the region of the Iquique earthquake sequence and, implementing classical commonly
used automatic seismic phase detection and earthquake location procedures, I generate a catalog
of ~19,000 earthquakes. I use this dataset to analyze the seismicity patterns related to the
Iquique earthquake sequence and to investigate how this seismicity can give some clues on the
heterogeneous frictional behavior exhibited by the subduction plate boundary in this region.

In the second part of this thesis I develop DeepPhasePick, an algorithm entirely based on
deep neural networks, which I optimize and train for automatic detection and picking of seismic
phases originating from local earthquakes. DeepPhasePick aims at providing a more efficient
phase detection and picking method as an alternative to classical approaches, such as the one
I apply in the first part of this work.

In the next section I give a brief overview of the tectonic processes taking place in subduction
zones, particularly in the northern Chile convergent margin. In section 1.2, I present the
research questions of this thesis and how I address them in the following chapters. Chapter 2
introduces the classical earthquake location and seismic phase detection methods which I use
in this work and presents the key ideas behind deep learning which I leverage to develop the

DeepPhasePick algorithm.

1.1 Essential Concepts

1.1.1 Subduction Zone

Plate tectonics theory explains the motion of the different rigid tectonic plates, formed by
oceanic and thicker continental lithospheres (crust + uppermost solid mantle), on top of the

mechanically weaker asthenosphere (e.g., Turcotte and Schubert, 2014). This theory has been
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2 Chapter 1 Introduction

accepted since the seafloor spreading process was proposed about 60 years ago, and has since
incorporated the preceding idea of continental drift, proposed by Alfred Wegener in the early
20th century.

The area where two tectonic plates meet is called the plate boundary and can be of convergent,
divergent or transform type, depending on whether the plates move towards, away from, or slide
past each other. Convergent margins form either continental collisional zones (e.g., Indian-
Eurasian plates collision) or subduction zones (e.g., Nazca-South American or Pacific-North
American plates subduction). Divergent boundaries are places where either new oceanic crust
is being formed (e.g., the Mid-Atlantic Ridge) or new ocean basins are formed by continental
rifting (e.g., Africa’s East African Rift). Transform boundaries can exhibit right-lateral (e.g.,
San Andreas Fault in USA, or North Anatolian Fault in Turkey) or left-lateral (e.g., East
Anatolian Fault) relative plate motion.

Most of the seismic moment of the Earth (~95%) is released in subduction zones. At these
margins, oceanic lithosphere of a subducting plate descends beneath the continental or oceanic
lithosphere of an overriding plate (Turcotte and Schubert, 2014). The sporadic sudden stress
releases generated at the plate interface by this process have given rise to the largest ever
recorded earthquakes on Earth, such as the 1960 M~9.5 Valdivia (Chile), the 1964 M9.2 Alaska
(USA), the 2004 M~9.2 Sumatra (Indonesia), and the 2011 M9.1 Tohoku (Japan) megathrust
earthquakes (e.g., Hayes et al., 2011; Kanamori, 1977; Lay and Bilek, 2007; Pacheco and Sykes,
1992; Wang and Liu, 2006).
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Figure 1.1: Non-scaled sketch of slip mode segmentation on the Chilean subduction plate interface, adapted
from Lay et al. (2012). It has been suggested that along dip the plate interface features a shallowest portion (1)
which slide aseismically and where large tsunamigenic earthquakes can eventually propagate. Further downdip,
an intermediate region (2) where large megathrust earthquakes are expected to occur is followed by a segment
(8) where condition stability can generate moderate slip. The deepest interface region (4) may slide primarily
aseismically and feature slow slip, which may rupture small seismic patches that populate this region.

The accelerated slip on the plate interface resulting from a megathrust earthquake can last
from seconds to a few minutes and corresponds to the coseismic stage of the seismic cycle
in a subduction zone. In the postseismic stage that follows, the plate interface experiences a
transient deformation induced by the relaxation of coseismic stress changes. The interplate

fault deformation can occur seismically (as aftershocks), aseismically (as afterslip), or in a
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coupled aseismic-seismic process where afterslip may drive aftershock seismicity that decreases
over time (Hsu et al., 2006; Marone et al., 1991; Perfettini et al., 2010). Following and usually
overlapping the postseismic period, the interseismic stage of the seismic cycle can take decades
or even centuries, during which time elastic strain is accumulated once again on the plate
interface before a new earthquake ruptures (e.g., Aki, 1979; Moreno et al., 2011).

The exact mode in which the plate interface slips during a megathrust earthquake is in-
trinsically related to the heterogeneous frictional behavior along the subduction megathrust
(Figure 1.1; e.g., Lay et al., 2012; Perfettini et al., 2010). Understanding this relationship
ultimately determines the earthquake hazard potential in a specific subduction zone, and is

therefore a relevant active matter of study.

1.1.2 Nazca - South American Convergent Margin (Northern Chile)

One of the most active subduction regions on the planet is the western margin of South Amer-
ica, where the subduction of the oceanic Nazca plate beneath the continental South American
plate has generated numerous M>8.0 great megathrust earthquakes which frequently strike
the Chilean coast, the most recent examples being the 1995 M8.0 Antofagasta, the 2010 M8.8
Maule, the 2014 M8.1 Iquique, and the 2015 M8.3 Illapel earthquakes (e.g., Moreno et al.,
2010; Ruegg et al., 1996; Schurr et al., 2014; Tilmann et al., 2016). In addition to recurrent
seismic activity, subduction along this margin has given rise to observed active volcanism and
also to the Andes mountain range, the highest non-collisional orogen with an average altitude
of ~4,000 m.a.s.l. along >8,000 km (Ramos, 1999).

From its northernmost limit (~4°N) at the Cocos-Nazca spreading centre to its southernmost
edge (~46°S) at the Chile Triple Junction (CTJ), the Nazca-South America plate boundary
exhibits several remarkable bathymetric features (Figure 1.2). At the northern end of the
Chilean subduction, the Nazca Ridge is currently subducting at ~15°S (Beck and Ruff, 1989).
The Iquique Ridge has been interpreted to be subducting at ~20°S (Geersen et al., 2015).
Further south, the volcanic chain forming the Juan Fernandez Ridge (JFR) collides with the
oceanic trench at ~32.5°S and the Chile Ridge is being subducted at the CTJ at ~46.5°S (Herron
et al., 1981).

Offshore northern Chile, in the region where the MS&.1 Iquique earthquake ruptured, the
incoming oceanic plate subducts at ~67 mm/yr with a convergence angle of ~76° N, exhibiting
prominent relief consisting of horst-and-grabens, caused by plate bending, and spreading fabrics
together with the subducting Iquique Ridge and its several noticeable seamounts (Geersen et al.,
2018a). From indirect geophysical observations, it has been suggested that other seamounts
are subducting in this area as well (Geersen et al., 2015). Other bathymetric features such as
embayments, antiforms, and synforms, which have been mapped on the overriding continental
plate seafloor, provide further indirect clues that rugged relief is being subducted in this region
(Geersen et al., 2018a).
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Figure 1.2: (Left) Chilean convergent margin, outlining the most important bathymetric features observed on the incoming oceanic plate and the location of the study
region (black box), which is shown in more detail in the right-hand panel. (Right) The various sets of earthquake catalogs and seismic stations used in this work,
which are described in the thesis. Seismic records taken from stations SA and SC are used to automatically derive the earthquake catalog C1, as I describe in detail in
Chapter 3. Manually-picked event records included in catalog C3 are taken from stations SB and SC to train and test the deep learning-based DeepPhasePick algorithm
in the tasks of P- and S-phase detection and picking, as I explain in Chapter 4. Automatically-picked event records extracted from catalogs C1 and C2 are used for
further testing the performance of DeepPhasePick (see Chapter 4). The most important earthquakes occurring in the region covered by the different event catalogs are
also shown for reference.
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Tectonically, northern Chile is considered to be an erosive convergent margin, featuring a
trench starving of sediments. Less than 500 m of sediment thickness accumulated within the
trench cannot cover up the rugged subducting oceanic seafloor, which favors subduction ero-
sion processes (e.g., von Huene and Scholl, 1991; Vélker et al., 2006). This lack of sediment is
primarily caused by the extreme arid conditions (rainfall rate <5 cm/yr) of the Puna-Altiplano
Plateau and the western forearc, and intensified by the JFR presence suppressing the transport
of sediment northward along the trench axis (Yanez et al., 2001). In agreement with obser-
vations in other erosive convergent margins, northern Chile has been also shown to feature a
small frontal prism (~5-30 km) and normal faulting in the outer forearc (Contreras-Reyes et al.,
2012; Geersen et al., 2015; Maksymowicz et al., 2018; Ranero et al., 2006; Sallarés and Ranero,
2005).

1.1.3 Northern Chile-Southern Peru Seismic Gap and the 2014 M8.1

Iquique Earthquake Sequence

In northern Chile, where the recurrence time of megathrust earthquakes is approximately
100 years, no rupture had occurred in the so-called northern Chile-southern Peru seismic gap
since 1877, where the rupture of a M~8.8 extended from near Arica to the Mejillones peninsula
(Comte and Pardo, 1991).

On 1 April 2014, the M8.1 Iquique earthquake broke a central piece of the northern Chile-
southern Peru seismic gap, generating a tsunami of ~2 m height along the northern Chile coast
(Hayes et al., 2014). Several coseismic rupture models of the Iquique mainshock have been
published to date, most of them reporting an ellipsoidal rupture of ~120 km length, associated
with a seismic moment of ~1.7 x 1021 Nm (M = 8.1) and a maximum slip of up to ~12 m (e.g.,
Duputel et al., 2015; Hayes et al., 2014; Lay et al., 2014; Liu et al., 2015; Ruiz et al., 2014;
Schurr et al., 2014).

Seismicity preceding the Iquique mainshock occurring seemingly on the plate boundary in
three weeks-long clusters in July 2013, January 2014, and March 2014, and accompanying
transient aseismic deformation, have been suggested to progressively weaken an intermediate
locking area, which could have finally triggered the mainshock rupture (e.g., Bedford et al.,
2015; Biirgmann, 2014; Ruiz et al., 2014; Schurr et al., 2014, 2020).

The largest foreshock (M6.6, 16 March 2014) occurred in the upper plate (Cesca et al., 2016;
Schurr et al., 2020) and has been suggested to have reactivated a trench-oblique upper plate
reverse fault in the forearc (Gonzélez et al., 2015). After this M6.6 event, foreshocks migrated
northward onto the megathrust, registering three more M>6 events and closing the updip edge
of a distinct Mogi doughnut pattern whose downdip edge had been activated during the past
several years, before the mainshock was finally triggered (Kato and Nakagawa, 2014; Schurr
et al., 2020). It has been proposed that this final stage of events in the foreshock series was
caused by either a slow-slip event (Kato and Nakagawa, 2014; Maksymowicz et al., 2018; Yagi
et al., 2014) or successive multi-event afterslips (Bedford et al., 2015).
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The intense aftershock series following the Iquique mainshock included an M7.6, the largest
aftershock, occurring 2 days later about 100 km south of the mainshock epicenter (Duputel
et al., 2015; Schurr et al., 2014) and nucleated at a depth comparable to the mainshock. Ev-
idence suggests that the M7.6 aftershock, and the mainshock, only ruptured a partly locked
segment of the northern Chile-southern Peru seismic gap since 1) a correlation is observed be-
tween the downdip ends of both event ruptures and the interseismic coupling, and 2) both events
show an accelerated rupture propagation toward higher locking, as calculated by mapping their
high-frequency seismic waves radiation (Schurr et al., 2014).

The fact that a rupture of the northern Chile-southern Peru seismic gap had been expected to
occur for several years fostered an international effort to set up the Integrated Plate Boundary
Observatory Chile (IPOC) in the region. Operative since 2006, the IPOC network made it
possible to exceptionally capture the whole Iquique earthquake sequence. This effort was further
bolstered by the addition of several temporary deployments soon after the beginning of the more
immediate foreshock sequence, as well as a few days after the Iquique mainshock ocurrence.

As described in Figure 1.2, the large amount of seismic data collected from Northern Chile
allows me to address the relevant questions on which the chapters of my thesis are focused,
which are introduced in the following section. Using this seismic data, I first aim to shed
light on the seismotectonic processes that take place in the northern Chilean subduction zone
(Chapter 3). Secondly, I present a novel solution to the classical procedures used for detecting

and picking seismic phases (Chapter 4).

1.2 Research Questions and Qutline

This thesis addresses the following research questions:

1.1 How do observed seismicity patterns of the Iquique earthquake sequence
correlate with static stress changes induced by this earthquake, as well as with

coseismic, afterslip, and interseismic locking?

1.2 What does this relationship tell us about the frictional behavior of the north-

ern Chilean portion of the megathrust and possibly of other subduction regions?

Chapter 3 addresses these two research questions. I present a high-resolution earthquake
catalog containing ~19,000 foreshocks, aftershocks, and background seismicity which occurred
in a time interval covering 1 month preceding and 9 months following the 1 April 2014 M8.1
Iquique earthquake in northern Chile. I describe in detail the foreshock and aftershock spatio-
temporal patterns observed from this seismicity dataset. I further explore the correlation
between the observed seismicity features with calculated induced static stress changes as well
as with different published solutions of coseismic slip, and geodetically inferred afterslip and
interseismic locking. I then interpret, based on the results from this analysis, the different

frictional behaviors that may take place on the plate interface offshore northern Chile.

6
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2. What role may the forearc and incoming plate structures of the northern
Chile convergent margin play in producing the seismicity pattern observed in the

Iquique mainshock sequence?

I address this research question in Chapter 3, by investigating how the Iquique sequence
seismicity and the inferred frictional behavior on the plate interface can be interpreted in
relation to both the seismotectonic processes occurring in the continental wedge overlying the
megathrust as well as the diverse underthrusting relief structures, which seemingly populate

the incoming oceanic plate.

3. Can we make the seismic phase detection and picking procedures involved in
an earthquake location workflow more precise and efficient using the huge amount

of seismic data collected in northern Chile?

In Chapter 4, I address this question by presenting DeepPhasePick, a newly developed deep-
learning based two-stage automatic algorithm for detecting and picking P and S seismic phases
from local earthquakes, trained and optimized using seismic records from earthquakes occur-
ring in northern Chile. I describe the adaptive convolutional and recurrent neural network
architectures used in the two stages involved in DeepPhasePick, as well as the systematic
hyperparameter optimization which I implement for training these models. I show that Deep-
PhasePick is capable of predicting P- and S-phase time onsets with analyst level of precision
as well as computing the associated time onset uncertainties. Hence, the predicted onset and
uncertainties can feed a phase associator algorithm in a next stage of an automatic earthquake

location workflow, as a compelling alternative to other conventional automatic picking methods.

4. Can a potentially alternative phase detection and picking method be general-

ized to other regions where a different tectonic regime is observed?

[ aim to respond this question in Chapter 4, by demonstrating the ability of the deep learning-
based DeepPhasePick method to generalize to a seismotectonic regime other than northern
Chile, from where the data used to train the algorithm was obtained. I do this by testing
DeepPhasePick’s performance on continuous seismic data from a 30-station network deployed
in the rupture area of a recent M6.4 earthquake in a region of convergence between Adriatic and
Eurasian plates, near Durres, Albania. Unlike the northern Chile region, the Albanian network

is located in an urban area, which is therefore more likely to record higher seismic-noise signals.

1.3 Author’s Contributions and Publications

I have reported the outcomes from the analysis of the seismicity patterns related to the 1
April 2014 M8.1 Iquique earthquake presented in Chapter 3 in the publication (Soto et al.,
2019b):

Soto, H., Sippl, C., Schurr, B., Kummerow, J., Asch, G., Tilmann, F., Comte, D., Ruiz, S.,
and Oncken, O. (2019), Probing the northern Chile megathrust with seismicity: the 2014 M8.1

7
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iquique earthquake sequence. Journal of Geophysical Research: Solid Farth, Volume 124, Issue
p. 12,935-12,95/. https://doi.org/10.1029/2019JB017794

Particularly, I want to acknowledge the contribution of Dr. Jérn Kummerow to this publi-
cation, who calculated the set of repeating earthquakes which I have used to complement and
substantiate some of the findings resulting from the analysis of the seismicity patterns observed
during the aftershock series of the Iquique earthquake.

The earthquake catalog generated in this publication has been made available from (Soto
et al., 2019a):

Soto, H., Sippl, C., Schurr, B., Kummerow, J., Asch, G., Tilmann, F., Comte, D., Ruiz, S.,
and Oncken, O. (2019), Catalog of Hypocenters for the 2014 M8.1 Iquique Earthquake Sequence,
recorded by IPOC (plus additional) seismic stations. GFZ Data Services.
https:// doi.org/10.5880/ GFZ.4.1.2019.009

This relocated catalog contains 18,964 earthquakes occurring in the time period between
March and December 2014; 1,137 and 17,826 events before and after the Iquique mainshock,
respectively. The first six columns in the downloadable file represent event origin times (year,
month, day, hour, minute, second). The next four columns indicate: longitude, latitude, depth
(in km) and local magnitude (ML) of each event.

The seismicity contained in this catalog has been partly used to characterize the postseismic
deformation following the Iquique mainshock in the following publication, to which I contributed

as co-author:

Shrivastava, M. N., Gonzdlez, G., Moreno, M., Soto, H., Schurr, B., Salazar, P., and Baez,
J. C. (2019), Earthquake segmentation in northern Chile correlates with curved plate geometry.
Scientific Reports, 9(1), 4403. https://doi.org/10.1038/s41598-019-40282-6

The characteristics of the newly developed deep learning-based automatic algorithm Deep-
PhasePick trained for detecting and picking seismic phases from local earthquakes, as well
as the findings resulting from applying it to seismic data from two different tectonic regimes,
are presented in Chapter 4 and have been included in a publication submitted at Geophysical

Journal International, which is available as a preprint version from EarthArziv:

Soto, H. and Schurr, B. (2020), DeepPhasePick: A method for Detecting and Picking Seismic
Phases from Local Farthquakes based on highly optimized Convolutional and Recurrent Deep
Neural Networks. https://doi.org/10.31223/ X5BC8B

The optimized DeepPhasePick models trained for phase detection and phase picking tasks,
as well as an example script which applies the DeepPhasePick algorithm for both tasks on

continuous waveforms, will be made available via the GitHub repository: https:// github.com/

hsotoparada/ DeepPhasePick.

The Section S2 in the Chapter Supplementary Information of this thesis provides additional

figures and details regarding the multistage automatic procedure, which I have adapted from
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Sippl et al. (2013) in order to conduct the phase detection and picking, as well as the subsequent
localization of the ~19,000 earthquakes used for the analysis carried out in Chapter 3.

The Section S3 in this chapter further includes figures and tables that complement the
results obtained from the application of the DeepPhasePick algorithm introduced in Chapter 4.
Details related to some conditions that can be optionally applied to enhance the performance

of DeepPhasePick in phase detection and picking tasks are also included there.



Chapter 2

Methods

Primarily, my thesis deals with the detection, location and interpretation of a large number
of earthquakes. This chapter introduces the conceptual ideas behind the various methods I
use for performing classical earthquake detection and location. I also present the key concepts
related to deep learning, which I apply in the development of a new automatic seismic phase

detection and picking algorithm.

2.1 Classical Earthquake Detection

2.1.1 Detection and picking of seismic phases

(Classical earthquake location methods rely ultimately on precise identification and picking of
P- and S-phase onsets. This has usually been a task performed manually by analysts, based on
their experience and training. The use of numerous automatic detection techniques developed
in the last half of the past century, however, has recently increased due to the exponential
growth in the seismic data available at hand.

Fundamentally, there exists three groups of classical automatic methods, performing detec-
tions based on: (1) energy or frequency content of the seismic waveforms (e.g., Aldersons,
2004; Allen, 1978; Baer and Kradolfer, 1987; Diehl et al., 2009; Di Stefano et al., 2006), (2)
correlations between template and continuous seismic waveforms (e.g., Gibbons and Ringdal,
2006; Harris, 1991; Van Trees, 1968), and (3) linear combination of orthogonal basis seismic
waveforms (Harris, 1997, 2001; Scharf and Friedlander, 1994).

In this thesis I use three algorithms implementing automatic energy-based detections, namely:
STA/LTA (Allen, 1978; Baer and Kradolfer, 1987), MPX (Aldersons, 2004; Di Stefano et al.,
2006), and Spicker (Diehl et al., 2009). Below I describe the main characteristics of two of them,
which T use to obtain P-phase (MPX) and S-phase (Spicker) time onsets. The STA/LTA
algorithm is an in-house developed version of the STA/LTA trigger algorithm described by
Withers et al. (1998), which T apply to obtain preliminary P time arrivals.

I do not describe correlation based detectors in detail since this type of detector is only

used to calculate the repeating earthquakes which are provided to complement the seismicity
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analysis performed in Chapter 3 (see also Section 1.3). Detectors based on orthogonal basis
waveforms are not used in this study at all and for this reason I will not be discussing these

types of detectors further.

2.1.1.1 MPX

The MPX algorithm (Aldersons, 2004; Di Stefano et al., 2006) performs picking of P seismic
phases in three steps.

First, an adaptive Wiener filter (Aldersons, 2004; Douglas, 1997) is applied to the raw seismic
waveforms. This avoids the distortion of the waveforms, which usually occurs when other filters,
such as a standard Butterworth bandpass filter, are used (Douglas, 1997). The applied Wiener
filter adapts to the frequency content of each analyzed seismogram in order to attenuate the
single or multi frequency bands where noise is predominant.

MPX requires preliminary P picks which have been previously associated to an earthquake
location, from which theoretical P arrival times can be calculated. MPX then defines a pair of
time windows located around the theoretical arrival time, one in the noise and one in the signal
portion of the wavefrom, where spectral analysis is performed to obtain the noise-dominated
frequencies (Aldersons, 2004; Di Stefano et al., 2006).

Following the filtering and spectral analysis, the second stage in MPX consists of running
a picking engine (Baer and Kradolfer, 1987) on the filtered data, where P onsets and their
respective polarities are determined. In a final step, MPX computes time arrival uncertainties
based on a calibrated weighting algorithm that takes into account the waveform sampling rate
and the results from the spectral analysis (Aldersons, 2004; Di Stefano et al., 2006).

2.1.1.2 Spicker

The Spicker algorithm (Diehl et al., 2009) combines three different detection and pick-
ing approaches in order to compute S-phase time arrivals, based on existing manually- or
automatically-derived P-phase picks (tFP,s) and theoretical S-phase arrival times (£S,,.) deter-
mined from a given velocity model.

In the first of these approaches, Spicker applies an STA/LTA detector on the two-horizontal
seismogram components and S-phase search windows are then defined based on tP,,s and tS,,.
A picking algorithm similar to the Baer and Kradolfer (1987) method is applied on the S-phase
search windows of the STA/LTA characteristic function in order to obtain a minimum (¢S, )
and maximum (¢S},,.) possible S onsets.

The second approach used in Spicker consists of applying a polarization detector, based on the
method proposed by Cichowicz (1993), where the degree of linear polarization, the directivity
of the particle motion, and the ratio between transverse and total energy are combined to define
a characteristic function (C'Fs) that is primarily sensitive only to S-wave energy and neglects
P-waves. Then, a picking algorithm similar to that used in the first approach is applied to

2

C'Fs, so as to compute two additional minimum (¢S?, ) and maximum (¢S3,.) possible S-phase

onsets.

11
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In the third approach, Spicker applies an autoregressive Akaike Information Criterion (AR-
AIC) picking algorithm, based on the method proposed by Takanami and Kitagawa (1988), on
a search window defined by the minimum and maximum possible S-phase onsets resulting from
the detectors applied in the first two approaches.

Once the three implemented approaches are performed, Spicker makes use of their com-
bined results to finally calculate S-phase arrival times as well as their corresponding interval of

uncertainty.

2.1.2 Seismic phase association

In the next step of a classical earthquake detection stage, the phase time onsets resulting
from the identification and subsequent picking of the seismic phases are associated to the
earthquakes that originated them. As for the phase detection and picking tasks, the use of
automatic phase association methods has become more common than the conventional manual
approach performed by analysts.

Most of the existent association algorithms follow a similar approach. First, travel times are
computed from each node in a gridded region of interest to each station in the network, given
a presumed seismic velocity structure. Then, for each node in the grid, subsets of phase time
onsets picked at different stations are examined by back-propagating their travel times through
the grid, searching for coherent origin times (e.g., Draelos et al., 2015; Johnson et al., 1995;
LeBras et al., 1994; Stewart, 1977).

In this thesis I use the algorithm Binder (Rietbrock and Heath, pers. comm., 2010), in order
to associate preliminary P-phase picks obtained by applying the STA/LTA detector. In Binder
a migration approach on an orthorhombic grid is implemented, and, following the procedure
described above, events are declared when coherent origin times at one grid node are found for

the back-propagated travel times, within a user-defined error.

2.2 Classical Earthquake Location

An earthquake is a sudden release of energy in the Earth’s crust or mantle induced by tectonic
stress, creating seismic waves. The absolute location (hypocenter) of an earthquake (z, y, 2)
and its origin time (¢) are related to the arrival time (¢;) of the earthquake at an ith network

station, according to:

V(@i =22+ (g — 9)? + (2 — 2)2)

t,=t+ (2.1)
for a homogeneous material with seismic velocity v.

Earthquake location is an inverse problem that is most commonly solved by minimizing the
misfit between the P- and S- seismic phase arrival times observed at stations and the arrival

times calculated based on a given seismic wave velocity model. In order to solve this problem,
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equation 2.1 can be written in a more general manner as

F(m)=d (2.2)

where m(z,y, z,t) is a vector defining the earthquake source parameters and F' is an operator
that calculates the data vector d = (t1,ta,...,t,) from the source parameters m.

Equation 2.1, and therefore also 2.2, is inherently nonlinear, since a change in the hypocentral
coordinates produces a nonlinear perturbation in the observed arrival time. Therefore, the
solution cannot be obtained by simply solving a system of linear equations, and hence numerical
approaches are required. Numerical methods which have been developed to solve equation 2.2,

can be primarily classified as linearized or nonlinearized (direct-search) methods.

2.2.1 Linearized Absolute Earthquake Location

Linearized approaches aim to solve the earthquake location problem by applying Taylor
series expansion to linearize equation 2.2. In this way, m can be iteratively improved by
incremental changes in an initial guess my. In particular, the technique developed by Geiger
(1910) iteratively minimizes the root mean square (RMS) of the travel time residuals ¢,, which
correspond to the difference between the observed and calculated travel times. In the iterative
Taylor series expansion, the time residuals are obtained from

t, = ;;;jémj (2.3)
where dm; represents the small perturbations on the hypocentral parameters m; (Lay and
Wallace, 1995).

Geiger’s method is valid if errors produced by a simplistic assumed velocity model, which are
introduced in the misfits between observed and calculated travel times, are neglected. Since this
approach is relatively computationally inexpensive, it is used in most of the existing software
to calculate earthquake location, such as HYPOELLIPSE (Lahr, 1999) and HYPO71 (Lee and
Lahr, 1975) (Lee and Lahr, 1975).

More accurate earthquake locations, which additionally take into account the velocity struc-
ture in the region and its uncertainty, can be obtained by solving equation 2.2 as a coupled
hypocenter-velocity model problem (Kissling, 1988; Kissling et al., 1994). A solution to the
coupled problem, which is based on damped least square estimation, has been implemented in
the software VELEST (Kissling et al., 1994, 1995) in order to invert for a so-called minimum
1D velocity model. This is the preferred initial 1D velocity model in procedures involving earth-
quake location or seismic tomography, especially in regions where the seismic velocity structure
is not well known. A different version of the damped least squares solution, obtained by apply-
ing the parameter separation method (Pavlis and Booker, 1980), is implemented in the software
simulps (Eberhart-Phillips, 1993; Evans et al., 1994; Thurber, 1983, 1993) in order to invert for
a 2D or 3D velocity model. This usually represents the next step after a VELEST-derived 1D

velocity model is obtained in detailed studies of local earthquake tomography.

13



14 Chapter 2 Methods

2.2.2 Nonlinearized Absolute Earthquake Location

In the nonlinearized earthquake location approach, the solution is probabilistic and does not
involve the explicit calculation of partial derivatives as in equation 2.3. Instead, an optimal
solution is usually found by applying deterministic or stochastic searches over the space of
possible earthquake hypocenters and origin times (Lomax et al., 2009).

As proposed by Tarantola and Valette (1982), the result of this search can be expressed as
a complete solution, given by a posterior probability density function (posterior PDF) that
represents the likelihood of occurrence of all possible solutions for earthquake hypocenters and
origin times. Unlike linearized solutions, which produce a single best-fit earthquake location
and an associated uncertainty, the nonlinearized method returns the full probabilistic solution
representing the discrepancy between calculated and observed phase arrival times.

The most commonly used software that solves the nonlinearized eathquake location problem
is NonLinLoc (Lomax et al., 2000). NonLinLoc estimates the posterior PDF for the hypocenter
coordinates and origin time of events by searching over the solution space based on a given
velocity model and a calculated 3D P- and S-phase travel-time grids.

For sources within the seismic network and far from significant velocity structure gradients,
linearized methods provide stable location and uncertainty estimations (e.g., Husen et al., 2003;
Lomax et al., 2000). However, these methods are less consistent when sources are outside the

network. In such cases nonlinearized solutions can be more precise.

2.2.3 Relative Earthquake Location

Unlike absolute locations, relative earthquake locations are obtained with respect to other
events, or groups of events, and are commonly used to refine the precision of already located
hypocenters.

One of the techniques used to obtain relative locations is the double difference (DD) method,
which has been implemented in the commonly used software HypoDD (Waldhauser and Ellsworth,
2000). This approach relies on an important fact: the difference in travel times between two
events at a common station can be associated to their inter-event distance, as long as the latter
is small compared to the distance between each event and the station.

The DD technique solves an extended version of equation 2.3, where time residual differences
for pairs of earthquakes are minimized by iteratively adjusting the vector difference between
hypocenters in each event pair. By using observed P- and S-phase travel time differences
obtained from both cross-correlation and catalog picks, DD is able to relocate earthquakes
relative to each other with high precision. This allows the determination of relative distances
between near-located events in a cluster with the accuracy level of the cross-correlation data,
while relative distances between different event clusters can be simultaneously obtained with

the accuracy of the catalog travel times data (Waldhauser and Ellsworth, 2000).
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Figure 2.1: Comparison between successive earthquake relocations carried out by some of the methods de-
scribed in this section, as part of the automatic relocation workflow implemented in Chapter 3. (a) Events
relocated by HYPO71, after picking P and S phases. (b) Events relocated by using the 1D velocity model
derived in Velest. (c) Events relocated using the 2D velocity model calculated in simulps. (d) Events relocated
by applying the Double Difference method in HypoDD. As hypocenter locations improve through these stages,
the various seismicity features progressively become more compact and better defined.
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16 Chapter 2 Methods

2.3 Machine Learning: Key Concepts

Machine learning is a field that aims to build algorithms which can learn from data and
make predictions without being explicitly programmed. These algorithms usually implement
either an unsupervised or a supervised learning. In the unsupervised case, there is only non-
labeled input data and no corresponding output data, hence the goal is to learn the underlying
structure in the input data, frequently applying clusterization or association methods. In the
supervised case, which will be further discussed in this section since it is the approach I use
in this study, all data is labeled and the goal is learning to predict the output from the input

data, by solving tasks than can be expressed as:

y = f(x,m) (2.4)

where f is a function or model mapping an input tensor & to an output tensor y, and m
is a tensor including the model parameters which are learned in order to solve the problem at
hand. A common practice in supervised approaches is to subdivide the available data into three
different sets: training, validation and test datasets. The data samples in the training set are
used to fit or train the mapping model. The validation set provides an unbiased performance
evaluation of the trained model and is often used for optimizing the model hyperparameters,
which define the external configuration of the model. Once the model is optimized, a final

unbiased performance can then be evaluated on the test set.

Generally, the supervised tasks to be solved are either regression or classification (binary
or categorical). Regression is the task of finding (or learning) a mapping function f from
the input data to a continuous real-valued predicted output. For instance, predicting the
next amplitude value in a time series based on various related observations. In categorical or
multi-class classification, f is a model learned for mapping input data samples to a vector of
N numbers, each representing the probability of a sample belonging to one of the N tested
classes. For example, classifying event seismic waveforms into P-phase, S-phase and perhaps
also additional phase classes. A binary classification is a special case of multi-class classification
where N = 2, hence f is learned to map uncategorized data samples to numbers between 0 and
1, which represent the probability of a sample belonging to one of two classes. An example of
this task would be the classification of each timestep in a time series as corresponding to one

or another characteristic (e.g., noise or signal).

In each of the abovementioned tasks, the learning consists of finding the set of parameters
that minimize a loss function L, which represents how well a particular model f and set of

parameters m solve the task, and can be expressed as:

L<m7m7yt) = Z l(f<m7m)7yt) = Z l(y7yt) (25)

(-'If,yt) ($7yt)

where [(y, y:) is a penalty function that quantifies the agreement between the model predic-

tions y and the known target values ;.
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For a regression task, common choices of the penalty function are the mean squared error
(MSE), the mean squared logarithmic error (MSLE), or the mean absolute error (MAE). In
classification tasks, the conventionally used penalty function is the cross-entropy, which mea-
sures the distance between assumed probability distributions of the training samples, and can

be the binary cross-entropy

Uy, yt) = —yilog(y) — (1 — y¢) log(1 — y) (2.6)

for binary classification, and the categorical cross-entropy

Uy, ye) = = >_ v, log(v:) (2.7)

for multi-class classification.

Equations 2.6 and 2.7 compute cross-entropies for a single prediction, where predicted and
target categorical values are hot-encoded (as required by most machine learning algorithms)
in binary variables y and y; representing their probability distributions. For multi-class clas-
sification, the classes are modeled as a categorical distribution. For example, in a three-class
classification task, yr = [yt,, Yt,, Ys] = [1, 0, 0] could represent a sample with a label for the
first class, which may be predicted by the model as y = [y1, y2, y3] = [0.7, 0.2, 0.1]. For binary
classification, equation 2.6 is obtained as a especial case of 2.7 for two classes (i = 2) modeled

as a Bernoulli distribution so that y; = [y, Yt,] = [y, 1 — ye] and y = [y1, 2] = [y, 1 — y].

2.3.1 Deep Neural Networks

Deep learning makes use of special tunable models f to solve the equation 2.4, which are
formed by multiple stacked nonlinear operations that activate weighted connections of units.
These tunable functions are called deep neural networks, because they were originally designed
with the aim of modeling the strength (weights) of the firing rate (activation) of the spikes
generated by the neurons (units) synapses. Stacking nonlinear operations allows the network
to learn incremental abstractions from the input, so that inputs can be mapped to output
predictions for solving very complex tasks.

Each of the stacking nonlinear functions in a neural network corresponds to a layer fr, in
which an input vector x is mapped to an output vector by applying a nonlinear function g

(so-called activation function) through weighted sums of the input, so that:

fL(m7vag) :g<bL+w;Zrm) (28)

where mp = (wr, br) represents the learnable parameters of the model layer given by the
weight wy, and the bias by, tensors, and w; is the transpose weight tensor.

Typically, the input data is fed to the input layer of the network and then propagated to the
output layer by the activations applied in the intermediate hidden layers. Depending on the
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task at hand, the activation function g applied can be one of the following commonly predefined

functions (see Figure 2.2):

rectified linear function (ReLU): g¢(t) = max(¢,0) (2.9)
logistic sigmoid functi (t) ! (2.10)
ogistic sigmoid function: = :
g g g Tr o
eli
softmax function: g¢;(t) = ———— (2.11)
Zj:1 eli
el —e!
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Figure 2.2: Activation functions defined in equations 2.9 to 2.12. For the multivariable softmax function,
the plot shows the vector components resulting from applying the activation on input vectors t = [t1,t2,t3] =

[t1,1.5,0.4], so considering t3 and t3 as constant values.

ReLU (Nair and Hinton, 2010) is the activation most commonly applied in the hidden layers

of modern neural networks, although sigmoid and tanh functions are also widely used for this

purpose. The sigmoid function is the preferred activation in a binary classification task, where

it is usually applied to a 1-unit output layer of a network and returns a value between 0 and 1,

which can be interpreted as a class probability. The softmax function is the preferred activation

function in a multi-class classification task, where it is typically applied to an N-unit output

layer of a network, returning an output vector of values that sum to 1, representing the predicted

probabilities for each of the N classes. The tanh activation squashes a real-valued input to the
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range between -1 and 1, and is mostly used in the memory blocks of LSTM networks (see
below).

The most frequently used neural networks may or may not include feedback or recurrent
connections between their units. Networks that have feedback connections are called Recurrent
Neural Networks (RNNs; Rumelhart et al., 1986), which include the Long-Short Term Memory
(LSTM; Hochreiter and Schmidhuber, 1997) network. Networks with no feedback connections
are known as Feedforward Neural Networks (FNNs), the most common of which are the Multi-
Layer Perceptron (MLP; Rumelhart et al., 1986; Werbos, 1988) and the Convolutional Neural
Network (CNN; e.g., Goodfellow et al., 2016).

The simplest type of neural network is the MLP (Figure 2.3), which is formed by one or more
stacked hidden layers. In the simplest case of one hidden layer, MLP is defined by:

fL2 (le (CL‘, mpg,, ng); my,, ng) = gL, (bLz + ’w},—z gr, (bL1 + w; ZL')) (213)

where x, fr,, and f;, are usually called the input, the hidden, and the output layers, re-
spectively. Depending on the problem, the depth of the model can be increased by stacking
more hidden layers. Moreover, the size of each hidden layer can be modified by adjusting the

dimensions of the weight w and bias b tensors.
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Figure 2.3: Visualization of a MLP with one 4-unit hidden layer fr,,, 6-unit input layer X, and 2-unit output
layer f1,,. Bold connections represent the activation of one of the hidden units ( f%l)

The MLP model is formed by fully connected layers, where each unit in a layer is connected
with each other unit in the previous layer. This has proven to be inefficient for solving modern
complex tasks, due to the usually high number of parameters required. Moreover, MLP disre-
gards inherent structure in the input data which can be determinant to learn certain features,
such as 2D pixel distributions forming shapes in images or temporal patterns in time series.

These issues have been overcome with the development of CNNs (Figure 2.4), which are
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networks formed by intermediate layers f; where the input X is convolved with a weight
tensor W

fu(X,muy,g) = g(br + 3 Xi + Wi) (2.14)

In a CNN, W is called filter or kernel. The number of layers, the amount of convolutional
units per layer, and the size of the filters are examples of hyperparameters, which need to be
selected by the user. The input tensor X is usually a matrix which can represent, for instance,
the red, green and blue intensities for respective color channels in an image, or the amplitudes
of different movement components in a sensor time series.

The efficiency of a CNN relies on its particular properties of local connectivity and weight
sharing. Local connectivity means that the elements in the output of a convolutional layer are
related to a certain receptive field area in the vicinity of each of the elements in the input. This
implies that a CNN network can learn local, strongly correlated features in the data, which
in turn reduces the number of learnable parameters needed compared to the fully connected
layers in MLP networks. Weight sharing refers to the fact that the same filters in a CNN layer
are convolved through all the input data, which prevents the filters from learning features that
only exist in certain locations in the data. This additionally reduces the number of learnable

parameters.
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Figure 2.4: Visualization of a CNN with one 4-unit hidden layer fr,,, 6-unit input layer X, and 2-unit output
layer fr,. Bold connections represent the activation of one of the hidden units (f %1), with a convolutional filter
Wi, of size 3.

Even though local connectivity and weight sharing makes CNNs highly efficient, the size
and number of filters required to solve complex tasks can still produce a very high amount of
learnable parameters. One of the common methods that helps to further reduce the number

of parameters is to introduce pooling layers, which summarize some local-scale statistics in the
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input data. For instance, a max-pooling layer computes the maximum in a certain local region,
while average-pooling layers calculate the mean.

MLPs and CNNs can map input patterns to output predictions, however this mapping does
not take into account the history of previous inputs, hence these networks cannot learn contex-
tual information from input data which is sequentially structured. This limitation is overcome
by the RNNs (Figures 2.5a and 2.5b), which are designed to maintain an internal memory
state of previous inputs, thanks to their recurrently connected units. A recurrent layer can be
expressed as a MLP layer, where however the activation is not only defined in function of the

current external input, but it also takes into account the layer activation from the previous

timestep:
A — T(t—-1 —
fr(@ mz.g) = (b +wg &' +adg g0y +wy "V alh) (2.15)
current input previous timestep activation

However, RNNs are only able to capture a limited range of context, due to the fact that
the effect of an input element on units in hidden and output layers in recurrent networks can
exponentially decay or increase. This is known as the vanishing/exploding gradient problem
(Bengio et al., 1994; Hochreiter, 1991; Hochreiter et al., 2001), which can make the network
forget long-term past inputs and thus stop it from learning enough contextual information.

The solution to this problem was achieved with the development of the LSTM network, a
special type of recurrent network that makes use of multiplicative gates contained in memory
blocks to store information that can be available to the network over long periods of time.
Basically, the LSTM architecture is a RNN where memory blocks are used as the hidden units.
A memory block is formed by at least one self-connected memory cell and three multiplicative
gates (forget, input, and output), which control the activation of the cell. The forget gate
multiplies the previous cell state, controlling what information is important to keep from a
previous timestep. The input gate controls which relevant information from the current input
and previous hidden state is added to the cell state. The new cell state is then passed through
a tanh activation and the result is multiplied by the output gate to determine the next hidden
state. Finally, the new cell and hidden states are passed on to be processed in the next timestep
(see Figure 2.5¢).

Even though LSTM networks can learn patterns from very long sequences, they only process
sequential data in chronological order, thus they are limited when learning contextual informa-
tion from both past and future data matters. Bidirectional RNNs (BRNNs; Baldi et al., 1999;
Schuster and Paliwal, 1997; Schuster, 1999) overcame this shortcoming by processing input se-
quences in both forward and backward directions through two separate recurrent layers, which
are connected to a common output layer. Combining LSTM and BRNN architectures leads
to Bidirectional LSTM networks (Chen and Chaudhari, 2005; Graves and Schmidhuber, 2005;
Thireou and Reczko, 2007), which are capable of learning very long sequences by taking into

account a more comprehensive temporal contextual information.
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Figure 2.5: (a) Visualization of a RNN with one 4-unit hidden layer fr,, 3-unit input layer X, and 2-unit
output layer fr,. Bold connections represent the activation of one of the hidden units (f} ). (b) Visualization
of recurrent connections (external loop in (a)) in the unfolded RNN over three timesteps. Each node represents
a layer of units at each timestep. (¢) Memory block representing a hidden unit in a LSTM network. The flow
of relevant information is controlled by the memory cell state and the forget, input and ouput gates, based on
the current input and the previous hidden unit state.

2.3.2 Model Optimization and Generalization

As in machine learning, finding an optimal model in deep learning basically means minimizing
the loss function L in equation 2.5, or in other words finding the model parameters m which

satisfy

0
5 Lm. f,d) =0 (2.16)

Deep neural networks have been designed so that all the operations involved in their layers are
differentiable, hence it would be possible, in theory, to analytically solve the equation 2.16. In
practice, however, this becomes unfeasible in modern neural networks, that are usually formed
by thousands or millions of learnable parameters.

Therefore, an alternative approach is normally used, in which initial model parameters my
(usually random values) are iteratively adjusted in the direction that reduces L. This is achieved
by adjusting the initial parameters in the opposite direction of the gradient of L with respect

to myg, as this gradient represents a local linear approximation of L around myg. That is, a
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parameter is decreased if the gradient is positive and increased if the gradient is negative. A
small positive number )\, called the learning rate, controls how much the initial parameters are
changed in each iteration.

The complete iterative process consists basically of three steps: 1) a forward pass where
network predictions are computed for the training data, 2) the estimation of the gradient of
the loss function L in equation 2.5 with respect to the network output, and 3) a backward pass
where this gradient is propagated from the output to the input layer of the network and all the
learnable network parameters are adjusted so that L is reduced. This learning cycle is repeated
until L does not further decrease.

The backward pass is performed by computing the gradient of the loss function with respect

to the model parameters:

0

0 0 0
%L(m, fid) = (:Z;:t) %l(f(ma’m),yt) = (%) %l(yayt)%f(wvm) (2.17)

This is performed by the backpropagation or backprop (Rumelhart et al., 1986) algorithm in
FNNs and by the backpropagation through time (BPTT; Werbos, 1990; Williams and Zipser,
1995) algorithm in RNNs. The difference between both methods is basically that in BPTT the
dependency of the loss function on the hidden layer activations needs to take into account the
influence from previous timesteps as well (see equation 2.15).

Several different methods, called optimization algorithms, have been developed to decide how
exactly the model parameters are to be adjusted. In the Gradient Descent (GD) method, the
parameters are adjusted in the direction of the fastest reduction of the loss function L, that is,

toward a negative gradient of L:

0L
8m0

An alternative version of GD is the Stochastic Gradient Descent (SGD) method, in which
GD is applied to only a subset (mini batch) of the input data. Other variants, which use the
history of past gradient evaluations to further speed up the convergence to a global minimum
and avoid local minima, include Momentum, Adaptive Moment Estimation (ADAM; Kingma
and Ba, 2014), and RMSprop.

A well-performing deep learning model should have enough parameters in order to learn repre-
sentations and predict well on the data used for the training (avoiding underfitting). Moreover,
the model solution should generalize to data the model has not seen before (avoiding overfit-
ting). The simplest way of fighting overfitting is adding more training samples to solve the
task, which would incorporate additional constraints to the learnable model parameters. This
additional data could include either new samples or sample copies generated by applying certain
transformations on the input data (Data augmentation). For instance, these transformations

can be rotations and horizontal or vertical flips in an image classification task. Alternatively,
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the complexity of the model could be reduced, hence decreasing the number of learnable model
parameters required to solve the problem. An example of this applied to CNNs is the use of
depthwise separable convolutional layers (Chollet, 2017), instead of the conventional convolu-
tion.

Additional approaches to avoid overfitting implement methods such as Farly stopping or
regularization techniques such as Weight regularization and Dropout (Srivastava et al., 2014).
As its name suggests, Early stopping interrupts the model training when the validation loss
has stopped decreasing, even if the training loss continues decreasing after that point. Weight
regularization techniques add a penalty term to the loss function. This has the effect of down-
weighting the learnable model parameters (weights in fully connected layers and filters in convo-
lutional layers) in the backward pass, so preventing small changes in the input from producing
large changes in the output of a layer.

Dropout is a regularization technique that consists of randomly setting a fraction of the out-
put features of a layer (dropout rate) to zero during the training. This introduces noise into
the learned model parameters, so preventing the model from learning patterns which do not
lead to a generalized solution. It has been shown that when using dropout during training,
the predictions made by the trained model in testing data approximate Bayesian variational
inference estimates (Gal and Ghahramani, 2016a,b). This is leveraged by the stochastic regu-
larization technique Monte Carlo Dropout (MCD) in order to obtain uncertainties associated

to the model predictions.
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Chapter 3

Probing the Northern Chile Megathrust
with Seismicity — The 2014 M8.1 Iquique

Earthquake Sequence

Note

This chapter is a reformatted version of a paper with the same title published in Journal of
Geophysical Research: Solid Earth, Volume 124, Issue p. 12,935-12,954. hittps://doi.org/ 10.
1029/ 2019JB017794

Abstract

We used data from >100 permanent and temporary seismic stations to investigate seismicity
patterns related to the 1 April 2014 M8.1 Iquique earthquake in northern Chile. Applying a
multistage automatic event location procedure to the seismic data, we detected and located
~19,000 foreshocks, aftershocks and background seismicity for 1 month preceding and 9 month
following the mainshock. Foreshocks skirt around the updip limit of the mainshock asperity;
aftershocks occur mainly in two belts updip and downdip of it. The updip seismicity pri-
marily locates in a zone of transitional friction on the megathrust and can be explained by
preseismic stress loading due to slow-slip processes and afterslip driven by increased Coulomb
failure stress due to the mainshock and its largest aftershock. Afterslip further south also trig-
gered aftershocks and repeating earthquakes in several EW striking streaks. We interpret the
streaks as markers of surrounding creep that could indicate a change in fault mechanics and
may have structural origin, caused by fluid-induced failure along presumed megathrust corru-
gations. Megathrust aftershocks terminate updip below the seaward frontal prism in the outer
continental wedge that probably behaves aseismically under velocity-strengthening conditions.
The inner wedge locates further landward overlying the megathrust’s seismogenic zone. Further
downdip, aftershocks anticorrelate with the two major afterslip patches resolved geodetically

and partially correlate with increased Coulomb failure stress, overall indicating heterogeneous
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frictional behavior. A region of sparse seismicity at ~40- to 50-km depth is followed by the
deepest plate interface aftershocks at ~55- to 65-km depth, which occur in two clusters of

significantly different dip.

3.1 Introduction

The frictional behavior of subduction megathrusts is heterogeneous, exhibiting regions slip-
ping either in a stable, that is, aseismic, manner or unstably during earthquakes (e.g., Lay et al.,
2012; Perfettini et al., 2010). Mapping and understanding this variability is crucial because it
ultimately determines the earthquake hazard potential. Measuring and inverting interseismic
surface strain patterns due to variable plate locking based on GNSS measurements is one ap-
proach to achieve this (e.g., Birgmann et al., 2005; Métois et al., 2013; Savage, 1983). However,
sparse and one-sided data acquisition limits the resolution of such models. While the interseis-
mic period is often seismically quiet, the coseismic and postseismic periods open a window in
which the full spectrum of slip modes can be observed. Whereas coseismic slip inversions map
the main asperities, aftershocks illuminate mainly the marginal areas (e.g., Asano et al., 2011;
Beroza and Zoback, 1993; Das and Henry, 2003; Hsu et al., 2006; Kato et al., 2010; Mendoza
and Hartzell, 1988; Perfettini et al., 2010; Wetzler et al., 2018; Woessner et al., 2006) for which

slip behavior is varied and often not known.

Large earthquakes induce Coulomb stress changes (e.g., Harris and Simpson, 1998), which are
often relaxed as afterslip (Hsu et al., 2006; Miyazaki et al., 2004; Perfettini and Avouac, 2007;
Perfettini et al., 2010), poroelastic rebound (Hughes et al., 2010; Wang, 2000) and viscoelastic
relaxation (Hergert and Heidbach, 2006; Hu et al., 2004; Rundle, 1978). Afterslip (Marone et al.,
1991) in turn has been suggested as the primary mechanism driving aftershock seismicity (Hsu
et al., 2006; Perfettini et al., 2010). Postseismic slip can be estimated from geodetic observations
(e.g., Hoffmann et al., 2018, for the Iquique earthquake), albeit with the same limitations due
to data coverage as for interseismic observations. Other indicators of aseismic slip may be
repeating earthquakes (e.g., Igarashi et al., 2003), which are interpreted as repeating stick-slip
ruptures on a fault that otherwise creeps (e.g., Nadeau and Johnson, 1998; Schaff et al., 1998).
Hence, repeating earthquakes may directly image the spatiotemporal distribution of aseismic
creep in the interseismic or afterslip in the postseismic stage (e.g., Huang et al., 2017; Meng
et al., 2015).

On 1 April 2014, the M8.1 Iquique earthquake broke a central piece of the long-standing,
>500-km-long northern Chile seismic gap, where no megathrust earthquake M > 8 had occurred
since 1877 (e.g., Comte and Pardo, 1991; Ruiz and Madariaga, 2018). Seismic activity started
several months before the mainshock, with events M > 5 in August 2013 and January 2014
(Bedford et al., 2015). After a large foreshock (M6.6, 16 March 2014), which occurred in the
upper plate (Cesca et al., 2016), the more immediate foreshock series migrated down onto the
megathrust, where three more events of M > 6 were registered, before the mainshock broke a
compact asperity (An et al., 2014; Duputel et al., 2015; Gusman et al., 2015; Hayes et al., 2014;
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Herman et al., 2016; Lay et al., 2014; Liu et al., 2015; Meng et al., 2015; Ruiz et al., 2014; Schurr
et al., 2014; Yagi et al., 2014). The mainshock was followed by a vigorous aftershock sequence,
including an M7.6 event, the largest aftershock, ~100 km south of the mainshock approximately
two days later (Duputel et al., 2015; Schurr et al., 2014). The whole sequence was well recorded
by the permanent seismic network of the Integrated Plate Boundary Observatory Chile (IPOC),
complemented by several temporary deployments (see Section 3.2).

We use these data to derive a 10-month earthquake catalog covering the Iquique earthquake
sequence. This catalog depicts the preseismic and postseismic deformation pattern in unprece-
dented detail, thus allowing us to correlate seismicity features with coseismic slip, geodetically

inferred afterslip and interseismic locking, and induced static stress changes.

3.2 Data and Methods

We used data from 104 seismic stations located throughout northern Chile (Figure 3.1). 19
of these stations belong to the IPOC network, which was complemented soon after the first
large Iquique foreshock by 30 additional temporary seismic stations deployed by the Oficina
Nacional de Emergencia (ONEMI), the Departamento de Geofisica of the Universidad de Chile
(DGF) and the Chilean National Seismological Center (CSN). Beginning on 11 April, the GFZ
German Research Centre for Geosciences installed 23 additional stations. We further used data
from several other temporary networks (see a list of data sources in Section S1). The continuous
seismic data streams were scanned for earthquakes using a multistage automatic earthquake
detection and location procedure adapted from Sippl et al. (2013), which is detailed in the
supporting information (see Section S2) and summarized next. First, picking and repicking of
P phases (Aldersons, 2004; Di Stefano et al., 2006; Lomax et al., 2000) based on an existing
1D velocity model (Husen et al.; 1999), and picking of S phases (Diehl et al., 2009) were
carried out alternated by event relocations (Lee and Lahr, 1975) and followed by calculation
of local magnitudes (Bormann and Dewey, 2014). We then relocated the events in a 1D and a
2D velocity models (Eberhart-Phillips, 1993; Evans et al., 1994; Kissling et al., 1994; Thurber,
1983, 1993) determined from a subset of the earthquake catalog, as well as in a double-difference
scheme (Waldhauser and Ellsworth, 2000) using catalog and cross correlation derived arrival
time differences.

We finally associated several sets of published focal mechanisms (Cesca et al., 2016; Hayes
et al., 2014; Ledn-Rios et al., 2016; GEOFON Data Centre, 2013 and Global CMT project
(www.globalemt.org) with our relocated events in order to better constrain hypocentral depths
of earthquakes with unfavorable event-station geometry and to inform our interpretations of
fault kinematics. Event uncertainties were estimated by relocating our catalog in the calculated

2D velocity model with a probabilistic scheme (Lomax et al., 2000).
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Figure 3.1: Seismicity in the area of the 2014 M8.1 Iquique earthquake. Seismic stations are shown as black
symbols. Focal mechanisms (beachballs) and epicenters (stars) of the 2014 Iquique M8.1 mainshock, its largest
M6.6 foreshock and its largest M7.6 aftershock (Hayes et al., 2014) are plotted in orange, yellow and brown
color, respectively. Gray shaded bathymetry is from Geersen et al. (2018a). The limit between the lower and
middle continental slopes (MLS) is taken from (Maksymowicz et al., 2018). Magenta contours show the slab
surface (Hayes et al., 2018) at 25-, 45- and 65-km depth. Relocated earthquakes are presented in map view and
as projections onto longitudinal and latitudinal planes, colored by days since the mainshock (events before the
mainshock on top of events after). Lower right subplot shows a histogram of the event depths. Labeled regions
outline an area of clearly decreased seismicity (SP) in the latitudinal section (dashed line in map view) and
areas of low seismic activity (LN and LS) in the map view, which are discussed in the text. Red box outlines
the region shown in Figure 3.2a.
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Figure 3.2: (a) Zoom into the study region, showing different seismicity clusters (labels C1-C4), streaks (labels
S) and regions of high (labels R1-R3) and low (labels LS and SP) seismic activity discussed in the text. Cross
Sections AA’ to FF’ of subfigure (b) are marked. Profile GG’ is shown in Figure 3.8. Slip contours of the
mainshock (orange, 2, 6, and 10 m) and the M7.6 aftershock (brown-dashed, 0.56 and 0.85 m) are from Duputel
et al. (2015). Epicenter of these events and the M6.6 foreshock are shown as in Figure 3.1. Bathymetry features
are marked with green (embayments) and magenta (NW-SE antiforms and synforms; Geersen et al., 2018a).
Aftershocks are plotted as blue circles, on top of foreshocks in red. Presumed noninterface seismicity is plotted
in green for upper-plate (circles) and intraslab (crosses) events. (b) Seismicity Cross Sections AA’ to FF’. Slab
surface (Hayes et al., 2018) and swath bathymetry (upper curve; topography at depth > 0 km) are drawn in
black. In Profile BB’, we also plot a histogram of event numbers, the coseismic slip (orange curve), and the
location of the continental Moho (label M, Sodoudi et al., 2011). In Profile DD’, focal mechanisms are plotted
as open colored circles (see Figure 3.3 for a definition of the event classes).
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3.3 Results

The distribution of seismicity is plotted in Figure 3.1. The catalog covers the time period
from March to December 2014. The magnitude distribution of the earthquake catalog is shown
in Figure S3. The magnitude of completeness is 2.7 for the foreshock sequence (before April
1) and 1.7 for the aftershock sequence (after 1 April), where the differences arise due to the
improved station density provided by the temporary networks. The vast majority of events

were recorded after the Iquique mainshock (17,826 vs. 1,137 before).

3.3.1 Spatial Distribution of Events

The events define two main depth ranges, the first of which covers an offshore region of
shallower seismicity (hypocentral depths of 0-65 km) concentrated between 19.5°S and 21°S
and forms an eastward dipping triple seismic zone (Bloch et al., 2014; Sippl et al., 2018), which
we subdivided into upper plate (here defined as events located more than 10 km above the
slab surface and east of 70.7°W), intraslab (events more than 5 km below the slab surface)
and interface (remaining events) seismicity. The latter group of earthquakes belong mostly
to the foreshock and aftershock sequences of the Iquique earthquake and will be analyzed in
detail in this article (see Figure 3.2a). Since west of 70.7°W depth uncertainties are higher
(>6 km; see Figure S2), we do not distinguish events located in this region and for simplicity
color them as interface seismicity but will treat them with caution in our interpretation. The
deeper onshore (east of ~69.5°W) band of intermediate-depth seismicity (80- to 120-km depth)
corresponds to intraslab background seismicity. These events have been previously examined
in great detail (Sippl et al., 2018, 2019), so we omit them from our analysis here. In the
following, we will provide a more detailed description of observed seismicity features (clusters,
streaks, and regions of high and low seismic activity), moving from west to east, that is, in
the downdip direction, through three different sub-regions. We will adopt the coseismic slip
model from Duputel et al. (2015) for comparison with the seismicity patterns that we observe,
as it was derived from the most complete set of observations to date (seismic strong motion
and high-rate GNSS time series, InSAR- and GNSS-derived static surface displacements, tide
gauge, and DART buoy measurements of tsunami height) using a Bayesian inversion scheme,
which does not apply smoothing. We will further discuss some features of this model relevant

to our interpretations in section 3.4.1.

3.3.1.1 Updip Seismicity (0-25-km Depth)

Earthquake mechanisms in the region of the shallow plate interface just landward of the trench
show a predominance of thrust faulting striking in a similar plane as the mainshock mechanism,
but featuring a variety of dip angles. There are also smaller populations of differently oriented
thrust events as well as some strike-slip and normal-faulting earthquakes (Figure 3.3).

In the northern part of the shallowest region of the megathrust, foreshocks and aftershocks

occur in dense clusters that are located at the updip edge of the moderate-to-high (6-10 m)

30



3.3 Results 31

coseismic slip zone, with aftershocks slightly but systematically displaced updip with respect
to the foreshocks (region labeled R1 in map view and in cross section BB’ in Figure 3.2).

Further south, shallow megathrust events locate along ~EW striking streaks (indicated with
S in Figure 3.2a), with the prominent exception of a compact cluster (C1) situated directly west
of the M7.6 aftershock epicenter. The two most distinct streaks locate SSW of the mainshock
main rupture (coseismic slip > 6 m), containing mostly aftershocks and some foreshocks. In
total, the northern (S1) and southern (S2) streaks are composed of 210 (1.5 < M < 5.9) and 148
(1.4 < M < 5.4) earthquakes, respectively. The Western Cluster C1 contains 452 earthquakes
(1.4 <M < 4.9).

Figure 3.4a and S5a show the location of earthquakes at the latitudes of the two main streaks
(S1 and S2) in map view and cross sections. The continuous, eastward dipping geometry out-
lined by these events and most of the focal mechanisms in this area indicate thrust earthquakes
presumably located along the plate interface.

Most of the seismicity updip of the mainshock main rupture appears to locate on the plate
interface in the northern cross sections (Figure 3.2b). However, some events appear to branch
away upward from the slab surface and intersect the seafloor landward of the trench in at
least one of the southern sections, indicating possible activation of a splay fault (Profile DD’;
Figure 3.2b).

3.3.1.2 Mainshock Main Rupture and Central Seismicity (25- to 45-km Depth)

Deeper on the megathrust, the highest coseismic slip area of the Iquique earthquake contains
only a few foreshocks and aftershocks (Figures 3.2a and 3.2b, cross section BB’). In the along-
strike direction, this region is continuous into the area of highest slip of the M7.6 aftershock
and its hypocenter to the south, which is surrounded by several minor ~EW striking seismicity
streaks, similar to the ones observed at shallower depths.

Downdip of the mainshock main rupture, a ~SW-NE oriented region of increased aftershock
seismicity that partially overlaps moderate-to-low (2-6 m) coseismic slip can be observed at
depths of 25-45 km in the Cross Sections BB’ and CC’ and is labeled R2 in map view (Fig-
ure 3.2). Interestingly, no foreshock activity is observed at such depths. A similar region of
aftershocks (R3), slightly more oriented toward E, extends from north of the area of maximum
coseismic slip to ~19.4°S. Aftershocks in R3 connect to the concentration of foreshocks located
updip of the mainshock’s main slip and extend downdip to a similar depth as events in R2
(Cross Section AA’). In fact, between about 35 and 45 km, R2 and R3 merge, forming a belt of
aftershocks just around the downdip edge of the deepest significant coseismic slip. Considerable
upper plate seismicity is also noticeable above these two regions (Cross Sections AA’, BB’ and
CcC).

To the south and north of Regions R2 and R3, respectively, two largely aseismic areas (labeled
LS and LN in Figures 3.1 and 3.2) are observed that extend at least 50 km in both directions.
Northward, low seismicity rates (LN) prevail at this depth until the limit of the region covered

by our catalog, whereas a number of isolated clusters and small ~EW seismicity streaks of
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Figure 3.3: Focal mechanisms (beachballs) related to the Iquique earthquake sequence, compiled from global
catalogs (GEOFON Data Centre and Global CMT project) as well as from Cesca et al. (2016), Hayes et al.
(2014), and Le6n-Rios et al. (2016). We classified the mechanisms by their rake angles into thrust with strike
+45° from north (magenta and green), thrust with significant rotation (orange; deviation >45° from north),
normal (cyan) and strike-slip or oblique faulting (gray). We further subdivided the first group into events with
dip differences <15° (“interface”, magenta) and >15° (“steeper”, green) between the mechanisms and the plate
interface plunge (Slab2; Hayes et al., 2018). Large map covers the time period after the Iquique earthquake,
smaller panel before the mainshock. Other features as in Figure 3.2a. The same colors and definitions are used
in Figure 3.2b, profile DD’.

aftershocks are observed to define the southern termination of the southern low seismicity area
(LS) at ~20.5°S (Figures 3.1 and 3.2).

At this depth range, the belt of intense aftershock activity formed by R2 and R3 downdip of
the main rupture outlines a sharply defined inclined plane in cross section (the plate interface),
which is shallower and shows significant topography relative to the slab surface model Slab2
(Hayes et al., 2018; profiles AA’” and BB’ in Figure 3.2b). Focal mechanisms in this region are
mostly consistent with rupture along the east dipping plate interface (Figure 3.3). There is,
however, a cluster of presumed normal faulting events observed at ~35-km depth in swath C,

at the western edge of the low seismicity area LS (Figures 3.2a, 3.3 and 3.4a).

3.3.1.3 Deep Interface Seismicity (45- to 65-km Depth)

Further downdip, a depth interval with only sparse aftershock seismicity is observed at ~40-
to 50-km depth; it is labeled SP in Figure 3.1 (map view and latitudinal profile) and is also
visible as a subtle minimum in the event depth histogram. Its depth extent is not constant
along strike; it appears wider to the south (up to 25 km), where it connects to the southern
postseismically aseismic patch LS described in Section 3.3.1.2.

This region of low activity separates the previously described offshore lower part of the
central seismicity from the deepest interplate events, which are situated east of the coastline

(Figures 3.1 and 3.2a). Here seismic activity concentrates in three clusters of aftershocks,
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Figure 3.4: Detailed analysis of one seismicity streak (labeled S1 in Figure 3.2a). (a) Map and depth profile
of the events in the region of the streak (red: foreshocks, blue: aftershocks). Focal mechanisms types are shown
in cross section as bold colored circles (as in Figure 3.3). (b-d) 2D histograms for events in the streak (within
cyan box shown in map view of subfigure (a)). Black curves show the results for the median of the data, which
was calculated for a moving window with width of 1 km in subfigures (b) and (d) and 2° in subfigure (c). The
number of data used in each plot is shown in parentheses. (b) dt(S-P) versus interevent distance. Colored curves
show the results for the horizontally (horiz), along-dip (slab) and vertically (vert) oriented artificial streaks. (c)
P and S wave arrival time differences (dt) for all event pairs within S1, normalized by the inverevent distance
d divided by velocity V, versus azimuth. Red curve shows a theoretical cosine (coss) function expected for a
streak oriented in EW direction. (d) CC coefficient versus interevent distance. Colored curves represent the
noise level calculated from noise-noise (no-no) and noise-signal (no-sig) CC. Similar plots for the second major
seismicity streak S2 are shown in Figure S5.

marked C2, C3 and C4 in Figure 3.2. They each contain a large number of events (168, 320
and 539 events, respectively) produced by low-magnitude earthquakes (0.9 < M < 3.3, 0.7 <
M < 3.9 and 0.5 < M < 4.5, respectively), which are well detected under the footprint of the
network. The two deeper clusters form two fingers beneath the Coastal Cordillera to depths of
55-65 km.

Even though we cannot be sure that events within C3 and C4 are located along the plate
interface, they appear to connect further updip to the already described inclined planes of
central-depth seismicity, but their on-profile plunges are observed to be slightly (C4) or clearly
(C3) steeper than suggested by the Slab2 model (Figure 3.2b, Cross Sections BB’ and DD’),
implying a strong plate curvature. Alternatively, they could also indicate faulting in the lower
plate, particularly the steeper dipping cluster C3. However, this alternative interpretation
would imply a small angle between the plate surface and the presumed fault plane in the
subducting oceanic plate, whereas known examples of elongated or sheet-like clusters in the
lower plate tend to indicate faults at high angle to the plate interface (e.g., Fuenzalida et al.,
2013), which also agrees with the focal mechanisms typically observed for intraplate events

(Bloch et al., 2018). In addition, the preexisting fabric of the subducting plate is generally
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characterized by the high angle normal faults formed at the outer rise.

3.3.2 Temporal Evolution of Seismicity

The rich seismicity content of our catalog allows us to inspect the time evolution of the
foreshock and aftershock series with a high level of detail.

We observe that the foreshocks (from 15 March to 1 April, the mainshock origin time) started
updip and NW from where the mainshock rupture later nucleated. Then the region south of
the future mainshock epicenter was rapidly activated, with the occurrence of the largest M6.6
foreshock (Figure 3.5a and Movie S1). Events next propagated southward and northward for
a couple of days, activating in the south the two most prominent observed seismicity streaks
(S1 and S2) on 17-18 March (events occurred 15.5-14 days before the mainshock; Figures 3.5a
and 3.5b). From this point onward, seismicity migrated almost continuously northward to
where the Iquique earthquake finally ruptured (Figure 3.5a and Movie S1). These patterns of
foreshock seismicity migration have been associated with slow-slip events (Ruiz et al., 2014;
Socquet et al., 2017), which would have increased the Coulomb stress in the future mainshock
rupture area and thus contributed to its nucleation and propagation (Kato and Nakagawa,
2014; Yagi et al., 2014).

In the first 2 days after the mainshock, seismicity gradually progressed southward until the
MT7.6 aftershock nucleated on 3 April, while aftershocks also occurred in the updip and central
parts of the main coseismic rupture, including a few events in the two main seismicity streaks
(Figure 3.5¢ and Movie S2). After the M7.6 event, the region surrounding its epicenter, the
minor streaks there as well as the cluster (C1) westward of it were rapidly activated. The
southern and northern onshore cluster (C4 and C3), seismically inactive until then, started to
form just few hours later (Figure 3.5d and 3.5¢ and Movie S3).

During the following days and up to the 16th day after the mainshock (17 April), while the
major streaks (S1 and S2) and clusters (C1, C3 and C4) remained active (Figure 3.5d), several
small clusters of aftershocks progressively populated the region updip of the main rupture (R1)
and formed the regions R2 and R3, previously described in Section 3.3.1.2 (Movie S3). From
18 April until the end of the study period, all the major streaks and clusters, as well as regions
updip and downdip of the mainshock asperity, remained active (Figure 3.5f). Movie S4 shows
a more detailed view of these aftershocks until 30 April. We note that earthquakes along the
major streaks S1 and S2 did not propagate in any particular direction but occurred randomly

over time (Movie S5).
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Figure 3.5: Plots of latitude versus time showing the temporal evolution of the foreshock (red circles in
Figure 3.2, since 15 March 2014) and aftershock (blue circles in Figure 3.2) seismicity, subdivided in four time
periods. Earthquakes are colored by depth and scaled by magnitude. The mainshock, the M6.6 foreshock, and
the M7.6 aftershock are plotted as colored stars. The latitudes where the major seismicity streaks (S1 and S2)
and clusters (C1, C3 and C4) are located are marked with small black arrows. Dashed black arrows indicate

earthquake migration fronts in subperiods shown in subfigures (a)-(c).

(a) t1: foreshocks between 15 M

arch

2014 and the time of the mainshock, which are also shown in Movie S1. (b) More detailed view of the events in
region shown in red box of subfigure (a), for the period between 16.5 and 14 days before the mainshock. (c¢) t2:
time period between the mainshock and the largest M7.6 aftershock, which is also shown in Movie S2. (d) t3:
time period between the M7.6 aftershock and 17 April 2014, which is also shown in Movie S3. (e) More detailed
view of the events in region shown in red box of subfigure (d), during the 24 hr after the M7.6 aftershock. (f)
t4: time interval between 18 April 2014 and the end of the study period (31 December 2014). Seismicity in this
subperiod is further discussed in the main text and plotted in Figures 3.6, 3.7a and S6. A subsample of these
events until 30 April 2014 is shown in Movie S4.
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3.4 Discussion

3.4.1 Relation between Coseismic Slip, Afterslip and Aftershock
Seismicity

Figure 3.6 shows an overlay of the aftershocks (since Day 17 after the mainshock) on a model
of Coulomb Failure Stress change (ACFS) and the geodetically derived afterslip model (cu-
mulative between Day 17 and 334 after the mainshock) of Hoffmann et al. (2018). The time
period was selected for the best overlap of geodetic and seismic stations coverage. Afterslip
is concentrated within two aseismic regions (see Section 3.3.1.2) NNE and SSE of the inter-
seismically highly locked and coseismically ruptured asperity (Li et al., 2015; Schurr et al.,
2014; Figures 3.6 and S6). Modeled afterslip is dominant in the downdip part of the rupture;
however, synthetic tests (Hoffmann et al., 2018) indicate that farther offshore afterslip is not
well resolved. The observed anticorrelation between aftershock seismicity and regions of high
afterslip occurs mostly where afterslip is well resolved (Figure S15d of Hoffmann et al., 2018).
For the ACFS model (Figure 3.6), we projected the coseismic slip from the mainshock and the
M7.6 aftershock (Duputel et al., 2015) onto a representation of the megathrust (Hayes et al.,
2018) that consisted of 232 individual fault patches. We used the software Coulomb3.4 (Lin and
Stein, 2004; Toda et al., 2005) and chose the following parameters: Young’s modulus 8 x 10%
MPa, Poisson’s ratio 0.25 (Lin and Stein, 2004) and friction coefficient 0.1 (Lamb, 2006). The
receiver fault orientation was prescribed to be identical to the plate interface model.

The regions that experienced coseismic slip collocate with decreased Coulomb stress. They
are surrounded by two lobes of elevated Coulomb stress updip and downdip of the two coseismic
ruptures. Both of these lobes extend primarily from ~20°S southward, although the shallower
branch also extends northward to the location of the mainshock epicenter (Figure 3.6). South
of 20°S, the updip distribution of seismicity correlates well with the region of elevated Coulomb
stress, whereas parts of the shallow seismicity directly updip of the mainshock’s highest coseis-
mic slip appears to have occurred in areas that experienced negligible Coulomb stress change
due to an apparent shallow slip patch in the Duputel et al.’s (2015) model (Region R1; Fig-
ure 3.6). Nevertheless, the near-trench part of subduction earthquake slip models is notoriously
underconstrained, and published slip models for the Iquique earthquake also show significant
variability here. For example, the models of Liu et al. (2015) and Gusman et al. (2015) show a
similar region of shallow slip as Duputel et al.’s (2015) model, whereas, for example, An et al.
(2014), Hayes et al. (2014), or Ruiz et al. (2014) do not (see Duputel et al.’s Figure S12 for
comparison of slip models). The most sensitive data to shallow slip are offshore DART buoy
tsunami height measurements, which are incorporated in Duputel et al.’s (2015) and Gusman
et al.’s (2015) models, but also in the model of An et al. (2014). ACFS on the megathrust is
strongly linked to the assumed slip model, and hence, interpretations of details in the pattern
should be made with due caution considering these uncertainties. What seems to be robust is
a general pattern of increased ACFS updip and downdip of the mainshock rupture in regions

of high aftershock seismicity.
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Figure 3.6: Comparison between presumed plate interface aftershock seismicity since Day 17 after the main-
shock (18 April 2014, green circles) and other features in the study region. Small yellow stars represent repeating
earthquake sequences (CC > 0.95; see text for more details) with at least two events detected within the same
time period. Gray triangles and lines across denote the location and width of subducting seamounts identified
by Geersen et al. (2015). High afterslip patches are shown with yellow contours (0.4 m) for the period between
Days 17 and 334 after the mainshock (Hoffmann et al., 2018). The calculated Coulomb Failure Stress changes
(ACFS) due to the mainshock and the M7.6 aftershock are plotted into the map as blue (stress decrease) and
red (stress increase) colors. MLS is shown as in Figure 3.1. Other features are plotted as in Figure 3.2a.

The concentration of aftershocks in a belt updip of the Iquique earthquake main rupture may
be related to the updip extent reached by the mainshock slip. Similar patterns of aftershocks
have been shown for other subduction earthquakes where strong postseismic activation updip of
the main coseismic slip occurred and the rupture did not or did only slightly propagate into the
shallowest domain A (in the classification of Lay et al., 2012; e.g., 2005 Sumatra [Nias] M8.7
and southernmost part of 2004 Sumatra [Aceh-Andaman] M9.2: Hsu et al., 2006; Tilmann
et al., 2010. 2007 Peru [Pisco] M8.0: Perfettini et al., 2010. 2007 Sumatra [Bengkulu] M8.4:
Collings et al., 2012; Konca et al., 2008). In contrast, updip postseismic activation was weak for
coseismic ruptures that extended significantly into the shallowest domain A (e.g., 2011 Japan
[Tohoku] M9.0: Asano et al., 2011. 2015 Chile [Illapel] M8.3: Lange et al., 2012; Tilmann et al.,
2016).

Although it could not be resolved geodetically, this shallow region of the megathrust, which

extends southward along the shallower lobe of positive ACFS, might have undergone significant
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afterslip, driven by the static stress increase due to the mainshock and its largest aftershock.
As we move further south, the observation of decreasing interplate locking (Li et al., 2015;
Figure S6) leads to the expectation of afterslip after a large event; under partial locking, creep
must occur during the interseismic phase, making the region also susceptible to coseismic stress
changes. This spatial correlation between regions of reduced interseismic coupling, significant
afterslip, and increased Coulomb stress has been previously observed in the areas surrounding
main ruptures associated with the 2005 M8.7 Nias-Simeulue (Chlieh et al., 2008; Hsu et al.,
2006) and the 2015 M8.3 Illapel (Huang et al., 2017; Tilmann et al., 2016) earthquakes, which
could point to a similar explanation. Consequently, we interpret our results as indicative of
an upper portion of the megathrust that predominantly undergoes aseismic afterslip. The
occurrence of repeating earthquakes there may be another indication that this part of the
fault is dominated by stable slip except where the seismic clusters and streaks occur (see
Sections 3.4.2 and 3.4.3). To a certain degree, the two deepest seismicity clusters C3 and C4
may resemble the shallower seismicity streaks in fault mechanics and slip properties (Figure S6;
see also Section 3.4.2). They occur close to the upper plate Moho (Figure 3.2b, profiles BB’ and
DD’) and thus where the downdip transition to aseismic behavior was hypothesized to occur,
except for fast and young plates, due to the contact of the lower plate with a serpentinized
mantle wedge (e.g., Oleskevich et al., 1999). In other subduction zones, for example, Sumatra,
however, the seismogenic zone has been shown to extend into the forearc mantle and the mantle

wedge does not always seem to be serpentinized (Dessa et al., 2009; Simoes et al., 2004).

We observe more complicated seismicity patterns in the region downdip and south of the
mainshock main rupture, where aftershocks located in regions R2 and R3 form a belt of seis-
micity located between two nearly aseismic patches of high afterslip (> 0.4 m), which are found
in the vicinity of the M7.6 epicenter in the south and NE of the mainshock in the northern
part of the study region (Figure 3.6). This belt of aftershocks locates in a region of increased
Coulomb stress, significant locking (0.7-0.9) and moderate afterslip (0.3-0.4 m), possibly domi-
nated by conditionally stable frictional behavior. However, considerable seismicity can also be
observed in areas of negligible or negative ACFS. Near R2 high afterslip overlaps both with the
coseismic rupture of the M7.6 aftershock and with high locking (> 0.9), partly accompanied by
aftershocks, partly not. This region is difficult to interpret in detail and maybe best explained
by a velocity-strengthening behavior with small-scale frictional heterogeneity that is not well
represented in the overly smooth coseismic, interseismic, and postseismic models as well as
in the resulting ACFS calculations. High frictional heterogeneity seems to be a hallmark of
the deepest part of the megathrust expressed, for example, in localized coherent short-period
seismic radiation from the mainshock rupture (Lay et al., 2012) and aftershock accumulation
(Schurr et al., 2012). In fact, the deepest interface seismicity was observed to closely coincide
with the short-period emission points in the 2010 M&.8 Maule earthquake aftershock time series
(Palo et al., 2014). The northern patch of high afterslip observed north of 19.5°S has slightly
reduced CF'S in our model due to some coseismic slip. This region may be conditionally stable,

where coseismic slip may propagate to but that behaves as velocity-strengthening at interseis-
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mic low strain rates. This is corroborated by a moderate degree of interseismic locking observed
in this patch (< 0.7; Figure S6).

Downdip of the belt of aftershocks formed by R2 and R3, we see a region of very sparse after-
shock seismicity at ~40- to 50-km depth, approximately delineated by the coastline (Figures 3.1
and 3.2a). A similar along-dip seismicity gap, albeit more pronounced, was observed in the
aftershock series of the 2010 M8.8 Maule earthquake (Lange et al., 2012) as well as before and
after the 2015 MS&.3 Illapel earthquake, and has been suggested to be a general pattern of the
megathrust seismicity in central Chile (Lange et al., 2016). The aseismic area separating the
shallower and deeper clusters has been shown to approximately correlate with the continen-
tal Moho in south-central Chile (Lange et al., 2012, 2016). Our relocated seismicity confirms
the occurrence of an aseismic zone, suggesting that this particular depth segmentation of the
megathrust seismicity may be generic along most of the Chilean subduction zone. However, in
the northern Chile case, the continental Moho (Sodoudi et al., 2011) is imaged at a level below
even the deepest interplate events, downdip of where the seismicity gap occurs (Figure 3.2b,

cross section BB’).

3.4.2 Linear Seismicity Streaks on the Shallow Plate Interface as

Markers of Aseismic Creep

A characteristic feature of our relocated catalog is several ~EW striking seismicity streaks
(Figure 3.2). Similar alignments of microearthquakes have been observed in continental strike-
slip systems like the San Andreas fault (e.g., Rubin et al., 1999), where they were interpreted
as indicative of small regions of brittle failure in a predominantly creeping section of the fault.
Since these streaks are located offshore, that is, outside the seismometer network, the event-
station geometry is unfavorable and location errors in EW direction are nonnegligible (Fig-
ure S2). In order to check whether these alignments are not artifacts of the location process,
we performed a number of tests using travel time differences of P and S phases from the cata-
log as well as cross-correlation (CC) time delays between event pairs of streak earthquakes. In
particular, we analyzed streaks labeled S1 and S2 in Figure 3.2a (cyan boxes in Figures 3.4a
and Sba).

We calculated differential S-P travel times for event pairs (el and e2) detected at the same

station, given by
dts—py = dts — dtp = (tg(e2) — tser)) — (tpie2) — tp(er)), (3.1)

and plotted them against interevent distances (Figures 3.4b and S5b). dt(g_p) should be
independent of a possible trade-off between event location and origin time, thus is a suitable
proxy for the distance between event and station. For this calculation, we used travel times
to stations within a small angle (10°) around the streak, so that the azimuth of the seismic
rays connecting source and receiver is relatively uniform. We compared the observed linear

trend to synthetically calculated dt(s_p) values for a perfectly horizontal chain of earthquakes,
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an alignment along the slab surface as well as a vertical alignment. While we can rule out
the last of these geometries, we can not distinguish between the two other scenarios based
on our data. However, since most available focal mechanisms for intrastreak or neighboring
earthquakes consistently show low-angle thrusting consistent with displacement along the plate
interface (Figures 3.3 and 3.7c), we prefer to infer that these streaks are not purely horizontal

but oriented along the megathrust.

Following Rubin et al. (1999), we also created plots of arrival time differences (dt) between
event pairs in the streak registered at one station against the angle between interevent vector
and recording station (azimuth), normalized by the interevent distance d divided by the seismic
velocity V' in the source region. In this calculation, we used P and S time delays for all the
stations located between 19°S and 22°S that were calculated from CC, and we complemented
those with corresponding delays obtained from catalog picks when a threshold CC coefficient
(CC > 0.5) was not reached for the CC delays. In case of a true linear arrangement, the
observed pattern of time delays should resemble a cosine function, with maximum positive
time delay at an azimuth of 0°, zero time delay at 90° and maximum negative delay at 180°.
Figures 3.4c and S5c¢ show such plots for the two main streaks in our data set, which suggest

that the seismicity streaks we observe are most likely real features.

We additionally searched for repeating earthquakes, that is, sequences of very closely located
seismic events with highly similar waveforms (CC > 0.95 at at least three stations out of a set of
five: PBO1, PB02, PB08, PB11, and PB12). The cross correlation utilizes a 35-s time window
that includes both P and S waves and applies a 1- to 4-Hz bandpass filter). We found a total of
211 such sequences containing at least two events occurred since Day 17 after the mainshock.
The large majority of these sequences is situated in the shallow part of the plate interface,
updip of the highest coseismic slip (Region R1) and within the major ~EW oriented seismicity
streaks, although some are also found in various of the minor lineaments of microearthquakes
that surround the M7.6 aftershock epicenter as well as in the most distinct (C2, C3 and C4) and
some minor clusters located at the deepest part of the plate interface (Figure 3.6). Due to the
fact that waveform similarity between two earthquakes increases the more closely located they
are in space, CC coefficients for pairs of earthquakes along the main streaks show a tendency
to decay with the distance between event epicenters (Figures 3.4d and S5d); thus, repeaters

within these streaks lie in the uppermost left part of these plots.

The observation of numerous repeating earthquakes occurring inside seismicity streaks on
the shallow portion of the megathrust most likely hints at the presence of afterslip (e.g., Huang
et al., 2017; Igarashi et al., 2003; Meng et al., 2015), which loads a number of velocity-weakening
patches on the interface, that then rupture seismically (Nadeau and Johnson, 1998; Schaff et al.,
1998). In this sense, seismicity streaks would be markers of surrounding creep along the plate
interface. A number of repeaters were also found where the deepest onshore clusters C3 and C4
are located, in a region of moderate afterslip. This could suggest similar frictional properties
in the deepest and shallowest parts of the plate interface. As previously seen by Waldhauser

et al. (2004) in a strike-slip environment, the seismicity streaks observed in our catalog occur
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Figure 3.7: (a) Comparison of direction vectors of different processes. Vectors represent the direction of
plate convergence (black; Angermann et al., 1999), the rake (gray; movement of the hanging wall) of the
mainshock and M7.6 aftershock focal mechanisms (Hayes et al., 2014), the afterslip (green; Hoffmann et al.,
2018), and rupture direction estimates for repeating events that occurred before (red) and after (blue) the
Iquique earthquake (Folesky et al., 2018). The red box outlines a region surrounding the major streaks, shown
in subfigure (c). Interface aftershocks are plotted as gray circles. (b) Rose diagram of directions plotted in the
map of subfigure (a). Peripheral numbers are direction azimuths measured in degrees clockwise from the north
(0°), and radial numbers are counts of afterslip directions and augmented counts of rupture directions (x4, for
enhancing visibility). Gray arrow points toward the average (253.7°) rake direction between the mainshock
and the M7.6 aftershock. (c) Map view zoomed in the region of the major streaks (labeled S1 and S2). Focal
mechanisms collected in this area are shown as colored beachballs (as in Figure 3.3). Interface foreshocks and
aftershocks and focal mechanisms are scaled by magnitude as shown in inset on the left. (d) Rose diagram for the
distribution of observed rupture directions in the region of subfigure (c¢). The correlation between orientations
of the major streaks and the preferential ~EW rupture direction observed in subfigure (b) is maintained at this
local scale.

along the edges of the slip patches (both for the mainshock and the M7.6 aftershock), thus
in regions with significant slip gradient. From this observation, and following Bennington
et al. (2011), we speculate that such linear features may also be indicators of a change in

the mechanical properties of the fault and consequently could have played an important role
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in limiting the updip and along-strike extents of both the Iquique mainshock and its largest
aftershock ruptures.

If the streaks were caused by rock destruction induced, for example, by subducting seamounts,
we would expect them to be subparallel to the plate convergence vector (76°; Angermann et al.,
1999), coseismic slip vectors (253.7° direction of movement of the hanging wall, average between
mainshock and M7.6 aftershock; Hayes et al., 2014) or afterslip vectors (250-260°; Hoffmann
et al., 2018). However, the ~EW orientation of the seismicity streaks deviates slightly but
consistently from all of these (Figures 3.7a and 3.7b). Recently published rupture direction
estimates of Iquique earthquake aftershocks (Folesky et al., 2018) appear to strike also predom-
inantly toward east, that is, in line with the streaks (Figure 3.7c and 3.7d). This could imply
that streaks are caused by a local persistent mechanism, rather than related to coseismic or

postseismic processes.

3.4.3 Role of Forearc and Incoming Plate Structures

The northern Chile convergent margin is sediment starved (< 500 m of sediment thickness)
due to the aridity of the Atacama desert and has been classified as erosive (von Huene and
Scholl, 1991). Erosive-dominated margins generally have continental wedges composed of two
segments: (1) an outer wedge at the most seaward part, composed mainly of framework rock of
the upper plate and with a small frontal prism of slump debris derived from land and possibly
some accreted seafloor sediments, and (2) an inner wedge further landward made of more
consolidated framework rock (von Huene et al., 2004; Wang and Hu, 2006). Small frontal prisms
formed of mostly sedimentary debris eroded from the continental slope have been suggested
throughout northern Chile based on reflection seismics, bathymetry and gravity data: ~5 km
wide at ~23°S, the latitude of the Mejillones Peninsula (Sallarés and Ranero, 2005); ~30 km
wide at ~22°S (Contreras-Reyes et al., 2012); ~10-20 km wide at the latitudes of the Iquique
earthquake rupture (Geersen et al., 2015); and on average ~20-30 km wide, estimated from
Arica to Mejillones Peninsula (Maksymowicz et al., 2018).

We observe that the updip limit of seismicity (foreshocks and aftershocks) seems to correlate
well with the approximate location of the limit between lower and middle continental slopes
(MLS, Maksymowicz et al., 2018; Figure 1), which thus marks the boundary between a seaward
aseismic (20-30 km wide) and a landward seismically activated portion of the plate interface
(Figures 3.6 and 3.8a; Maksymowicz et al., 2018). The gradual increase in coseismic slip
landward of this boundary (Figure 3.8b) also supports the idea of a small aseismic frontal
prism. It has been suggested that this frontal prism is composed of highly fractured and
hydrated rocks and acted as a barrier for the updip propagation of the coseismic deformation
during the 2014 Iquique (Contreras-Reyes et al., 2012; Maksymowicz et al., 2018), the 2010
Maule and the 1960 Valdivia earthquakes (Contreras-Reyes et al., 2010, 2017). A transitional
zone may be present landward of the MLS, where seismicity rate and coseismic slip increase
landward, and the degree of fracturing smoothly decreases in the same direction (Maksymowicz
et al., 2018; Wang and Hu, 2006).
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In the context of dynamic Coulomb wedge theory (Wang and Hu, 2006), we envisage that
the frontal prism and the transitional region form the outer wedge, overlying an updip velocity-
strengthening and a transitional (frictionally heterogeneous) segment of the plate interface,
respectively. The inner wedge is located further landward, overlying the velocity-weakening
(seismogenic) segment of the megathrust, where we observe the highest coseismic slip (Fig-
ure 3.8a). During the Iquique earthquake, the outer wedge was elastically compressed and
brought to or beyond the critical state, with an increase in basal and internal stresses and pore
fluid pressure. After the earthquake, once the seismogenic segment is again locked, the outer
wedge is expected to creep in order to relax the coseismically induced stress, returning to a

stable state.

The concentration of aftershocks located in the postulated transitional region updip of the
main coseismic rupture (region R1; Figure 3.6) may be mostly driven by afterslip due to post-
seismic stress relaxation, in a region of the plate interface with dominant conditionally stable
behavior. Given the higher uncertainties of the shallow coseismic slip, it is also plausible that af-
terslip occurs in small-scale velocity-strengthening (“stable”) areas hidden in the stress shadow
of the nearby velocity-weakening coseismic asperity. In this case, the stable areas would not
slip interseismically and thus would appear with high degree of interseismic locking (> 0.9,
Figure S6); however, they would be able to undergo considerable postseismic slip (Biirgmann
et al., 2005; Hetland and Simons, 2010; Métois et al., 2012). The significant concentration of
~NS oriented thrust faulting aftershocks with dip angles considerably steeper than the plate
interface in this region (Figure 3.3) may indicate additional activation of offshore upper plate

faults, associated with the outer wedge deformation due to its postseismic stress relaxation.

Stress accumulation caused by slow-slip prior to the mainshock has been suggested to account
for the concentration of foreshocks in the same region on the plate boundary (Kato and Naka-
gawa, 2014; Maksymowicz et al., 2018; Yagi et al., 2014). And a number of thrust mechanisms,
with significantly rotated planes relative to the plate interface (like the largest foreshock, M6.6;
Figure 3.3), has additionally been interpreted as indication of some degree of preseismic upper
plate deformation (Hayes et al., 2014). Both interplate and upper plate events (foreshocks and
aftershocks) form the seismically active wedge volume observed here (Figure 3.8a). However,
this spread seismicity also reflects very poor event depth resolution, as the depth uncertainties

in this area are the highest (Figure S2).

The incoming Nazca plate features substantial relief, both bending-related horst-and-grabens
and spreading fabrics, as well as single prominent seamounts associated with the Iquique Ridge
offshore our study area (Figure 3.1; Geersen et al., 2018a). Rugged subducting seafloor has
been associated with low interplate locking and aseismic creep on megathrusts (Wang and Bilek,
2014), and we further believe that it may have also had a strong influence on some characteristic
features observed in the aftershock pattern of the Iquique earthquake. In addition to seamounts
visible in the bathymetry, several currently subducting seamounts have been postulated based
on the analysis of reflection seismics (Figure 3.6; Geersen et al., 2015). Further indications of

underthrusting lower plate relief come from large embayments and NW-SE trending antiforms
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Figure 3.8: Cross Section GG’ (for location see Figure 3.2a) through the seismicity in the region of the Iquique
earthquake rupture. (a) Seismotectonic interpretation of the profile, in terms of frictional behavior along the
plate interface and the structural composition of the continental wedge. Slab surface (lower curve; Hayes et al.,
2018) and swath bathymetry (upper curve) are indicated. Hypocenters of the mainshock (orange star), largest
M6.6 foreshock (yellow star), foreshocks (red circles) and aftershocks (blue circles) are plotted. Dashed vertical
lines mark the position of the trench axis (TA), MLS and the presumed boundary between the outer and inner
wedges. Dashed oblique lines separate different regions of seismicity. We interpret the outer wedge as composed
of a small frontal prism (FP) and a transition zone (TZ). Along-dip, the shallow megathrust is subdivided in
an uppermost aseismic velocity-strengthening (v-s) portion, an intermediate conditionally-stable (c-s) area and
a deeper seismic velocity-weakening (v-w) region possibly located below the inner wedge. (b) Coseismic slip
distribution along dip (orange line) plotted on top of a downdip histogram of plate interface event (foreshock
and aftershock) numbers.

and synforms in the lower continental slope seen in high-resolution bathymetry (Figures 3.2a
and 3.6; Geersen et al., 2018a). Embayments are observed in the northern part of the study re-
gion, partially at the location of the northernmost proposed seamount (Figure 3.6). Antiforms
and synforms, located southward of 20°S and westward of the shallowest aftershock seismicity;,
have been interpreted as possible expressions of creep on the plate interface and internal defor-
mation of the upper plate, related to subducting lower plate relief (Geersen et al., 2018b). A
second suggested seamount appears to correlate with where we see the major seismicity streaks
in our relocated earthquake catalog, whereas the southernmost such seamount locates at the
position of the large offshore seismicity cluster C1 in the south, where we did not find repeating
earthquakes (Figures 3.2 and 3.6). Focal mechanism solutions of the events in the earthquake

cluster C1 are significantly more diverse than elsewhere (Figure 3.3), which indicates complex
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deformation involving the upper plate, possibly caused by increased stress due to the nearby
MT7.6 aftershock event activating a network of fractures that may have been generated by the
subducting seamount. Correlations regarding subducting seamounts, however, should be con-
sidered with care. The positions of seamounts in Geersen et al. (2015) are prescribed by the
three analysed active seismic transects; seamounts may easily also be present elsewhere, where
they could not be imaged. Further, the proposed seamounts were suggested based on images
of two-way travel time, which can either be explained with plate interface topography or with
strong lateral variations of seismic wavespeed. As observed in the region updip of the main
coseismic rupture, several thrust events, which are oriented ~NS and feature dips steeper than
the slab surface, likely also indicate the activation of offshore upper plate faults, possibly splay
faults forking off from the megathrust (Profile DD’, Figure 3.2b, may display such a geometry).
Even though location uncertainties are largest in this shallowest segment of the megathrust
(Figure S2), this interpretation is supported by the occurrence of two thrust events with ro-
tated planes and steeper dip angles within the suspected splay (Figure 3.3). Furthermore, a
similar splay was observed in the aftershock sequence of the 2010 Maule earthquake in central
Chile based on ocean bottom data (Lieser et al., 2014), that is, not subject to the same location

uncertainty, such that aftershock activity on a large splay fault is certainly plausible.

Recently, as has been commonly observed at exhumed fault surfaces (Engelder, 1975; Petit,
1987), a 3D seismic reflection study of the Costa Rica margin has shown for the first time
well-defined “corrugations” on a subduction zone megathrust (Edwards et al., 2018). They are
expressed as regular shallow plate interface relief with a dominant wavelength, and an orienta-
tion deviating slightly from the plate convergence direction. From higher reflection amplitudes
along the corrugated portions, Edwards et al. (2018) inferred a higher fluid content/pressure
there and suggested that corrugations may act as fluid conduits. These features were seen in
a region where seamounts, plateaus and ridges are being subducted, which has been shown to
cause extensive fracturing and faulting of the upper plate (e.g., Sak et al., 2009; Zhu et al.,
2009), and also appears to inhibit seismic rupture propagation (DeShon et al., 2003; Wang and
Bilek, 2011). Subducting rough topography and resulting fracturing and modification of the
plate interface in the direction of convergence have also been linked to the formation of linear
seismicity features observed offshore the Aleutian-Alaska subduction zone (Abers et al., 1995).
Structural features aligned to the fault slip direction, such as corrugations or blocks of resistant
host rock, have also been proposed as possible causes of seismicity streaks in strike-slip faulting

environments (Rubin et al., 1999).

We envision that the megathrust offshore Iquique is not only being deformed and fractured by
the effect of underthrusting rough relief, but it may also be corrugated as imaged in the Costa
Rica subduction zone. Numerous fractures produced by subducting seamounts may allow the
escape of fluids from the overpressured oceanic crust to the plate interface, breaking the sealed
plate boundary (Audet et al., 2009). Similar to a proposed possible mechanism for generating
slip-parallel streaking of tremors in the Cascadia subduction zone (Ghosh et al., 2010), the

released fluids at the subduction interface may flow through corrugated conduits along the
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Figure 3.9: Synoptic model summarizing the proposed frictional heterogeneity along the plate interface and the
seismotectonic segmentation of the continental wedge in the study area. The shallowest portion of the plate in-
terface is aseismic (velocity-strengthening), underlying a highly fractured and deformed frontal prism (FP) in the
outer wedge. Further downdip, a transitional zone is characterized by seismically unstable (velocity-weakening,
along seismicity streaks) and conditionally-stable (updip of mainshock asperity) regions embedded in aseis-
mically creeping (velocity-strengthening) areas. Here fracture networks caused by subducting seamounts and
repeating earthquakes hint at afterslip loading unstable/conditionally-stable regions. Above this segment, the
outer wedge forms a transitional zone (TZ) approximately below the middle continental slope, where fracturing
of the upper plate likely gradually decreases landward. Deeper downdip, the seismogenic (velocity-weakening)
segment of the plate interface correlates with the highest coseismic slips, below the inner continental wedge.
This seismically unstable region changes in the downdip direction to a frictionally heterogeneous behavior, where
we observe an anticorrelation between aftershock seismicity (presumably located in conditionally stable areas)
and the two (velocity-strengthening) areas with the highest afterslip. Finally, seismicity clusters are observed
in the deepest portion of the plate interface. Features not described in the legend are plotted as in Figures 3.2
and 3.6.

megathrust. By altering the effective normal stress due to the pressure exerted on the conduit
walls, fluids may eventually cause shear failure on the interface and trigger earthquakes along
the conduits, forming seismic structures such as the ~E-W striking streaks in our relocated
catalog. Some of these ruptures may give rise to the repeating earthquakes along the streaks

that we observe, in case a single fault patch is sequentially activated several times.

In Section 3.4.2, we noted that the streaks are aligned with a preferential eastward rupture
direction. Folesky et al. (2018) speculated that directivity may be caused by the bimaterial
nature of the subduction process, which predicts downdip rupture direction, due to the higher
compliance of the underlying plate material. They estimated that this effect (Weertman, 1980)
would be enhanced due to the geometrical limitation of possible rupture directions given the
along-dip elongated shape of the observed repeater asperities. We believe that the existence
of corrugations is a plausible structural explanation for the observed ~EW oriented seismicity

streaks and thus for the associated elongated repeater asperities. Besides, the corrugations may
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behave as a pathway along the megathrust through which favored rupture directions could be
reinforced.

The presence of corrugations is suggested by the earthquake mechanisms observed in the
region of the major streaks. Although most of them indicate ~NS striking thrust faulting
occurring at the plate interface, a number of them are small (M < 4) thrust events with dips
steeper than the slab surface (Figures 3.4a, Sha and 3.7c), indicating local deviations in the
rupture planes that could reflect structural features such as corrugations. Some shallow events
located at the edges of both major streaks, with thrust focal mechanisms striking along planes
rotated with respect to the plate interface orientation, may additionally hint at upper plate
deformation taking place in areas surrounding the observed streaks and presumed megathrust
corrugations (Figures 3.4a, Sha and 3.7¢). Nevertheless, the scarce number of focal mechanisms
in this region is far from being sufficient, and additional observations are required to confirm

the existence of such features.

3.5 Conclusions

We conducted a detailed seismicity study focused on the aftershock sequence following the
2014 MS8.1 Iquique earthquake. Our results allow us to illuminate small-scale heterogeneity
on the plate interface and the seismotectonic behavior of the overlying continental wedge. We
present our key results in a conceptual model in Figure 3.9. The continental forearc in the study
region can be divided into an outer and an inner wedge. The outer wedge is composed of (1)
a highly fractured and deformed frontal prism (FP) overlying the shallowest aseismic segment
of the plate interface and (2) a transitional region (TZ) where fracturing of the upper plate
gradually decreases landward, located above a transitional frictional segment of the megathrust.
The inner wedge overlays the seismogenic segment of the megathrust, where we observe the
highest coseismic slip (Figures 3.8a and 3.9).

The FP may have acted as a barrier for the updip propagation of the mainshock rupture.
Further downdip, the plate interface is characterized by velocity-weakening and conditionally
stable regions embedded in a primarily velocity-strengthening area, where aseismic afterslip
driven by increased static Coulomb stresses takes place. Afterslip is further favored by sub-
ducted seafloor relief, which may impose conditions such as fracturing of plate interface rocks,
upper plate deformation, and reduction of plate coupling. The presence of earthquakes with
rupture planes significantly different from those expected for megathrust events may indicate
upper plate deformation and the activation of splay faults. A prominent cluster of seismicity
(C1) may be linked to the fracture network developed by a subducting seamount. Numerous
repeating earthquakes updip of the main coseismic rupture and inside seismicity streaks support
the occurrence of afterslip, despite it not being detectable geodetically (Figure 3.9).

We interpret the earthquake streaks and their repeating earthquakes as markers of creep that
takes place in the surrounding aseismic regions of the plate interface. The streaks may indicate

a change in mechanical properties of the fault and consequently could have played an important
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role in limiting the updip and along-strike extents of the ruptures of both the Iquique mainshock
and its largest aftershock. We speculate that the streaks may have a structural origin, possibly
being triggered by shear failure induced by fluid transported along conduits formed due to
presumed corrugations present on the plate interface.

In the central portion of the megathrust, aftershock seismicity surrounds the asperities of
the mainshock and the M7.6 aftershock, which can mostly be explained by the Coulomb stress
redistribution triggered by these events in a region dominated by mixed frictional behavior.
Moreover, maximum afterslip is located in two patches flanking and below the main coseismic
rupture, which correlate with areas of low aftershock seismicity. These areas are thus interpreted
as dominated by a velocity-strengthening frictional regime (Figure 3.9).

The southern low seismicity area connects downdip to a depth interval of sparse aftershock
seismicity at ~40- to 50-km depth, which supports previous observations that hint at a possible
depth segmentation of the interface seismicity along the Chilean margin. Downdip of this
region, the deepest interplate earthquakes reach ~55- to 65-km depth in two individual clusters
beneath the coastal cordillera, which feature a significant difference in dip from each other. At
this depth, the observation of repeating earthquakes and moderate afterslip could imply similar

frictional conditions as proposed for the shallow megathrust transitional zone (Figure 3.9).
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Chapter 4

DeepPhasePick: A Method for Detecting and
Picking Seismic Phases from Local Earthquakes
based on Highly Optimized Convolutional and

Recurrent Deep Neural Networks

Note

This chapter is a reformatted version of a paper with the same title submitted at Geophysical
Journal International, which is available as a preprint version from FarthArziv under https:

//doi.org/10.31223/ X5BC8B

Abstract

Seismic phase detection, identification and first-onset picking are basic but essential routines
to analyse earthquake data. As both the number of seismic stations, globally and regionally,
and the number of experiments greatly increase due to ever greater availability of instrumen-
tation, automated data processing becomes more and more essential. E.g., for modern seis-
mic experiments involving 100s to even 1,000s instruments, conventional human analyst-based
identification and picking of seismic phases is becoming unfeasible, and the introduction of
automatic algorithms mandatory. In this paper, we introduce DeepPhasePick, an automatic
two-stage method that detects and picks P and S seismic phases from local earthquakes. The
method is entirely based on highly optimized deep neural networks, consisting of a first stage
that detects the phases using a convolutional neural network, and a second stage that uses two
recurrent neural networks to pick both phases. Detection is performed on three-component
seismograms. P- and S-picking is then conducted on the vertical and the two-horizontal com-
ponents, respectively. Systematic hyperparameter optimization was applied to select the best
model architectures and to define both the filter applied to preprocess the seismic data as well
as the characteristics of the window sample used to feed the models. We trained DeepPhasePick

using seismic records extracted from two sets of manually-picked event waveforms originating
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from northern Chile (~39,000 records for detection and ~36,000 records for picking). In different
tectonic regimes, DeepPhasePick demonstrated the ability to both detect P and S phases from
local earthquakes with high accuracy, as well as predict P- and S-phase time onsets with an an-
alyst level of precision. DeepPhasePick additionally computes onset uncertainties based on the
Monte Carlo Dropout technique as an approximation of Bayesian inference. This information

can then further feed an associator algorithm in an earthquake location procedure.

4.1 Introduction

One of the most fundamental components in any earthquake hypocenter estimation routine
is the identification and picking of seismic phases, primarily P and S phases from local earth-
quakes. In the past, this task was commonly performed manually by analysts, who identified
each phase arrival based on their training and experience. However, as the available seismic
data has rapidly increased over time, the use of automatic phase detection algorithms has
become increasingly necessary.

These automatic algorithms encompass detectors which are based on the energy or frequency
content of the seismic waveforms such as STA /LTA (e.g., Aldersons, 2004; Allen, 1978; Baer and
Kradolfer, 1987; Diehl et al., 2009; Di Stefano et al., 2006; Earle and Shearer, 1994; Sleeman and
Van Eck, 1999), those based on correlations of template waveforms against continuous seismic
data (e.g., Gibbons and Ringdal, 2006; Harris, 1991; Van Trees, 1968), and detectors based
on the representation of seismic data as a linear combination of orthogonal basis waveforms
(Harris, 1997, 2001; Scharf and Friedlander, 1994).

Phase detectors based on frequency or energy have been used in the past as part of multi-stage
automatic earthquake location procedures that allowed the creation of high-quality earthquake
catalogs, e.g., for the Northern Chile region (Sippl et al., 2018; Soto et al., 2019b). Corre-
lation detectors, such as the matched filter method (Van Trees, 1968), rely on the similarity
of known template waveforms and have been widely used for detecting repeating earthquakes
(e.g., Folesky et al., 2018; Huang et al., 2017; Igarashi et al., 2003; Kato and Igarashi, 2012;
Nadeau and Johnson, 1998) or searching for missing events (e.g., Peng and Zhao, 2009; Ross
et al., 2019a; Shelly et al., 2007) in different tectonic regimes. Subspace detectors, which are
based on orthogonal basis waveforms, have been used for identifying earthquakes associated
to aftershock sequences and low-frequency tremors (Harris and Dodge, 2011; MacEira et al.,
2010).

Despite the fact that energy-based phase detectors do not require strong prior waveform
knowledge, an increase in their ability to detect small onsets also implies higher false positive
rates. Correlation detectors can achieve very low false positive rates, but they can solely
detect similar signals to the ones already present in the selected template waveforms (Harris,
1991). Subspace detectors can further extend the range of detected signals, depending on which
detection threshold and subspace dimension parameters are used. However, they are not easy

to implement efficiently since they require a high computational cost (see e.g., Harris and Paik,
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2006).

All the above described methods exploit a priori assumed attributes of the signals such
as energy or waveform similarity. Instead, deep learning is a representation-learning method
that learns multiple layers of features (a so called “neural network”) directly from input data
by applying non-linear transformations sequentially (Goodfellow et al., 2016; LeCun et al.,
2015). In the supervised version of deep learning, the goal is to reduce the calculated error
(objective function) between the network predictions and the known labels that the network is
fed with. This is achieved by adjusting the units (weights) in each layer after backpropagating
the gradients of the objective function, computed over the units in the last layer, to the input
layer of the network. The network training consists of repeating the whole process until there
is no further decrease in error (Goodfellow et al., 2016; LeCun et al., 2015).

Thanks to the enormous increase in computational calculation capacity, deep learning has
in recent years shown stunning results in diverse fields such as image recognition (Krizhevsky
et al., 2012), speech recognition (Hinton et al., 2012), language translation (Sutskever et al.,
2014) and particle Physics (Kaggle challenge, 2014).

Convolutional neural networks (CNNs) are a class of deep neural networks specialized for
processing grid-like data (Goodfellow et al., 2016). CNNs stand out due to the fact that they are
computationally more efficient, easier to train, and have proven to effectively generalize learned
features in many supervised tasks, ranging from image and document recognition (Krizhevsky
et al., 2012; LeCun et al., 1990, 1998; Simard et al., 2003; Taigman et al., 2014) to seismic waves

simulation (Moseley et al., 2020), or volcanic ash particles classification (Shoji et al., 2018).

Originally inspired by the properties observed in the primary visual cortex (PVC) of the
mammalian brains (Hubel and Wiesel, 1959, 1962), modern CNN architectures are usually
formed by several stages of consecutive operations of convolution, non-linear transformation,
pooling, and regularization. In the first stage, a filter (kernel) performs local weighted sums
(convolutions) through the input data. This linearly activates or detects local features, emulat-
ing the behavior observed in the so-called simple cells of the PVC. The resulting feature maps
are transformed by applying a non-linear function. A further function then summarizes its
statistics in a local scale (pooling). Usually the maximum (max pooling) within a sub-region is
computed in this second function, inspired by the function of PVC complex cells (Goodfellow
et al., 2016; LeCun et al., 2015). Convolution is highly efficient and effective because it takes
advantage of the local connectivity and invariance to location exhibited by meaningful learnable
features in natural signals. Firstly, it detects meaningful locally-connected features by using
kernels smaller than the input, which allows units in deeper layers to preserve information from
the input layer. Secondly, it applies the same filters all over the input, thus permitting the
learning of only one common set of parameters instead of many, as well as ensuring that the
same learned representations can be found at different locations in the data. In addition to
convolution, pooling in neighboring units in a layer can reduce the dimensions of the learned
representation and makes it invariant to small perturbations in the input (Goodfellow et al.,

2016; LeCun et al., 2015). Furthermore, regularization techniques help the learned features to
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better generalize to new unseen data, preventing model overfitting. One of the more effective
and most frequently applied examples of regularization is Dropout (Srivastava et al., 2014),
where noise is introduced in the output features of a layer aiming at inhibiting the network

from learning non-meaningful patterns.

Traditional deep neural networks, including CNNs, are limited by having no memory, hence
they cannot extract meaningful contextual information from sequentially structured data. Re-
current neural networks (RNNs; Rumelhart et al., 1986) overcome this constraint by simplisti-
cally mimicking human beings’ mechanism for processing external information. They achieve
this by implementing an internal loop that iterates over a sequence of data, element by element,
while keeping an internal memory state of data they have already processed. The development
of the Long-Short Term Memory RNNs (LSTMs) was one of the major breakthroughs in RNN
architecture, since it solved the so-called vanishing gradient problem, whereby simple RNNs
proved to be incapable of preserving long-term dependent information (Hochreiter and Schmid-
huber, 1997). By carrying information to later points in the sequence, LSTMs are capable
of retaining patterns, and therefore learning, from very long sequences. LSTM models also
make use of internal dropout and recurrent dropout that help prevent overfitting, so improving
model performance. Another significant advancement was the invention of Bidirectional RNNs
(BRNNs; Schuster and Paliwal, 1997), which make use of two recurrent layers to process se-
quences in both forward and backward directions. BRNNs can make learning more effective in

sequences where both the past and future contexts can provide valuable insights.

In seismology, CNN models have been recently applied for detection (Dokht et al., 2019; Ross
et al., 2018a,b; Woollam et al., 2019; Zhu and Beroza, 2019) and association (McBrearty et al.,
2019) of P and S wave arrivals, as well as for earthquake localization (Kriegerowski et al., 2019;
Perol et al., 2018; Zhang et al., 2020). RNN-based networks have been used for predicting
approximate earthquake times and locations (Panakkat and Adeli, 2009), and for seismic phase
association (Ross et al., 2019b).

The present work adds to these previous studies, and introduces DeepPhasePick, a new
automatized two-stage method for detecting and picking seismic P and S phases from local
earthquakes, entirely based on highly optimized deep neural networks. The first stage in Deep-
PhasePick consists of an adaptive CNN architecture trained for detecting the phases. Here the
type of data preprocessing, as well as the length and position of the seismic phase windows
used to train the network, were included among the optimizable hyperparameters. Phase pick-
ing is conducted in the second stage by applying two additional adaptive Bidirectional LSTM
(BLSTM) networks, which were trained specifically to predict P- and S-phase time onsets. The
onsets, and their uncertainties, are determined on time windows defined based on the predicted

probabilities of the P and S phases in the detection stage.

Here we demonstrate how the optimized CNN network in the first stage of DeepPhasePick,
trained on a rather small dataset of labeled phases in comparison to previous studies, is able to
detect with high accuracy P and S phases from local earthquakes of different tectonic regimes.

We also show how, by leveraging the information of the detected seismic phases, the optimized
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BLSTM models trained for picking are able to predict P- and S-phase time onsets with analyst

levels of precision, while also avoiding inherent human bias.

4.2 Data and Methods

4.2.1 Earthquake Catalog Datasets

In this study, we used two sets of manually picked event waveforms (Figure 4.1). The first
set (S1) consists of 1,125 events from the time period between 1996-12-02T00:54:33.89 and
1997-11-20T02:24:59.41 (Schurr et al., 2006). The second set (S2) contains 1,196 events which
occurred from 2007-06-14T01:18:52.24 to 2007-12-13T07:23:39.24 in the area of the 2007 M7.7
Tocopilla earthquake (Schurr et al., 2012). S1 contains mostly plate interface events, whereas
S2 contains mostly intermediate-depth intraplate events.

From these earthquake catalogs, we extracted three-component seismograms which we subdi-
vided into three window classes: 25,647 P-phase, 25,647 Noise (N), and 14,397 S-phase windows.
16,234 P, 16,234 N and 8,061 S of these samples were obtained from S1, and 9,413 P, 9,413 N
and 6,336 S samples from S2. We used these seismic windows as input data to train adaptive
neural networks in phase detection and phase picking tasks, as will be described in the next

sections.

4.2.2 Hyperparameter Optimization of Adaptive Neural Networks

The architecture of a neural network is defined by its hyperparameters, such as the number of
layers in the network, the training learning rate, and the batch size used during training. The
selection of the model hyperparameters is key when implementing a supervised deep learning
task, since it may lead to a significant improved performance of the trained model, especially
when the available data is limited.

Commonly used hyperparameter optimization approaches, which rely on grid or manual
search, have been shown to be less efficient than an optimization based on random search
(Bergstra and Bengio, 2012). However, all the above mentioned methods select the subsequently
sampled values without an informed criterion. This makes the optimization less effective,
since the sampling of hyperparameter values which do not lead to improved performance tends
to require a significant amount of time. In contrast, Bayesian optimization selects the next
sampled hyperparameters based on previous evaluations. This has proven more efficient in
terms of balancing exploration-exploitation of the search space, time consumption, and model
performance results, compared to random search (Bergstra et al., 2013b; Hinz et al., 2018).

In Bayesian optimization, an objective function is minimized by mapping past evaluations of
the hyperparameters to a surrogate probabilistic model of the objective function, which is then
more simply optimized instead. In this work, we used a Bayesian approach that optimizes a
surrogate model defined by the Tree Parzen Estimator (TPE) algorithm, as implemented in the
Python library Hyperopt (Bergstra et al., 2013a). Basically, TPE algorithm applies the Bayes
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Figure 4.1: Events datasets from which window samples picked by analysts were extracted for training the
phase detection and picking models in DeepPhasePick. Events in S1 and S2 datasets are plotted as green and red
circles, respectively. Focal mechanisms (beachballs) and epicenters (stars) of the 1995-07-30 M8.1 Antofagasta
and the 2007-11-14 M7.7 Tocopilla earthquakes are plotted in green and red, for reference. Window samples
used in this work come from the picked stations plotted as black triangles (from S1) and squares (from S2).
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rules to create two different probability distributions for the hyperparameters, depending on
the score reached by the objective function. The next set of sampled hyperparameters is then
selected based on the expected improvement in the objective function (Bergstra et al., 2011).

We implemented two types of objective functions, which are minimized in order to optimize
the training of different adaptive neural network architectures designed to solve two tasks: phase
detection and phase picking. These architectures will be described in detail in the next sections.
The hyperparameter optimization process was performed using one GPU NVIDIA GeForce
RTX 2080. Multiple iterations (trials) were run for each task, with a different hyperparameter
configuration being attempted in each trial, until a best-performing trained model, i.e., a model
with minimum error, was found. The adaptive neural networks were built in Python using the
machine learning framework Keras (Chollet, 2015) with Tensorflow as backend (Abadi et al.,
2015).

(a) win_size [s] win_size [s] win_size [s]
 —— t ! } !

.

ot tp ts

P ‘s

(b)1.0:

win_pre_N [s] win_pre_P [s] win_pre_S [s]

Figure 4.2: Seismic window extraction. (a) Example of an event waveform, outlining how the seismic window
of three classes (N, P, S) are extracted for the optimized training of the phase detection model. N-, P- and
S-class windows are extracted, respectively, in the vicinity of the event origin time (ot), and the true P- (¢p)
and S- (ts) onset times found by analysts. The hyperparameter win__size [s] defines the length of the extracted
windows, which is equal for the three classes. (b) Zoom into the three-class windows. The starting time of the
window before ot, tp and ts is defined by the hyperparameters frac_pre_ N, frac_pre_ P, and frac_pre_.S
for classes N, P and S, respectively. Here win_pre_ C = win_ size X frac_pre_C, where C = N, P or S.

4.2.3 Phase Detection as a Supervised Multi-class Classification Task

We implemented the phase detection stage as a supervised multi-class classification task,
based on an adaptive neural network formed by two blocks of deep layers. The first block is
made up of between one and five convolutional layers, which extract abstract representations
(features) from three-component seismograms input (samples) and help reduce their dimension-
ality. The output of the convolutional layers is then flattened before entering the second block,
formed by between one and four fully-connected dense layers. All the units in a fully-connected

layer are connected to all the units in the preceding layer. This allows them to better learn

95



56 Chapter 4 DeepPhasePick

correlated features throughout the input data, rather than only the locally-connected features
learned by convolutional layers. Hence, dense layers are well suited for the final classification
stage in the adaptive network. Since the network is adaptive, the number of layers in each
block, as well as specific layer variables such as the number of convolutional filters or dense

units, are adjusted during the hyperparameter optimization.

We chose to use depthwise separable 1D convolutional layers for the feature extraction in the
first block. Depthwise separable convolutional layers implement a 2-step convolution process,
first performing independent convolutions on each channel of the input data and then combining
individual channel outputs through a pointwise (1x1) convolution (Chollet, 2017). This type
of convolution is appropriate for learning patterns from multi-component seismic data, such as
1D amplitude time series from seismic waveforms, since different features can be extracted from
the three input channels (the three components of each seismogram) independently. This may
help the network extract specific patterns from, e.g., the two horizontal components, in order to
better identify S phases. Furthermore, compared to standard convolutional layers, depthwise
separable layers have the additional advantage of helping reduce model overfitting, since they
have fewer weights to adjust, and therefore require fewer calculations. This further reduces
the overall computational cost, since less calculation time is required to complete the multiple

iterations over different network architectures involved in the hyperparameter optimization.

Outputs from each of the convolutional and dense layers in the network, except from the
output of the final dense layer, are passed through a layer that applies a non-linear activation
function that can be either a rectified linear unit (ReLU; Nair and Hinton, 2010) or a sigmoid,
according to the hyperparameter selection. Additional Batch Normalization (Ioffe and Szegedy,
2015) and Dropout (Srivastava et al., 2014) layers are stacked to the activation outputs in both
blocks. In the convolutional block, a further 1D Max Pooling layer is applied between each
Batch Normalization and Dropout layer. The output of the final dense layer is passed instead
through a softmax activation function. This outputs a vector of three probabilities, adding up
to 1.0, each expressing the likelihood of a sample belonging to one of the three possible classes
tested: P, S, or N. The greatest among these probabilities determines the predicted class of the

three-component record.

Prior to initializing the optimized training, we randomly extracted an independent test set
consisting of 1,440 P, S and N three-component time series windows, made up of 888 records
from S1 and 552 records from S2 datasets for each class, so as to keep the proportion of samples
present in each dataset. In order to reduce the possibility of biased phase classification due to
an imbalanced class distribution in our dataset (39% P, 39% N, 22% S), the remaining data
was balanced out at each optimization trial by randomly discarding the surplus samples of the
over-represented P and N classes. Then, the balanced data was shuffled and assigned to the
training and validation sets before carrying out the model training. The resulting training,
validation, and test sets added up to 75% (32,393), 15% (6,478), and 10% (4,320) of the total
balanced data samples respectively. During the training, features of the waveforms were learned

from the training set and the weights in the network layers were adjusted based on this. The
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updated model was then used to predict the sample classes in the validation set, and adjust
the model hyperparameters accordingly. The final performance of the best trained model was
evaluated using the test set. We assigned to each sample in the training, validation and test
sets, binary vectors representing the sample class as follows: [1, 0, 0] for P class [0, 1, 0] for
S class, and [0, 0, 1] for N class. These vectors were used as the known labels which were
compared with the vector of class probabilities predicted by the model.

Before entering the network, the seismic records in the training, validation and test sets
were linearly detrended, resampled at 100 Hz, and then normalized by the maximum ampli-
tude across the three waveform components. We included additional preprocessing criteria as
optimizable hyperparameters. First, the hyperparameter pre_mode controls the type of filter
applied to the seismic data, which can be band-pass (2-10 Hz), high-pass (>0.2 Hz) or no filter.
The length of the extracted seismic windows is given by the hyperparameter win_ size (2-5
[s]), which we imposed to be equal for the three classes. This makes data manageable by the
network during the training. Finally, three additional hyperparameters varying between 0.2
and 1.0 (frac_pre_N, frac_pre_P, and frac_pre_.S), define the fraction of the extracted
windows placed before the event origin time, the true P-phase onset and the true S-phase onset
for classes N, P, and S, respectively (see Figure 4.2).

The total space of hyperparameters searched during the optimization is presented in Ta-
ble 4.1. In order to search for the best-performing network trained in detecting seismic phases,
we ran 1,000 hyperparameter optimization trials (~9 minutes per trial). In each trial we used
the validation accuracy as the optimizable metric and we trained the model for up to 60 epochs
using the categorical cross-entropy loss function. To speed up the training process, we addi-
tionally applied an early stopping callback that stopped the training if the validation accuracy

did not increase in 6 epochs.

4.2.4 Phase Picking as a Supervised Sequence Binary Classification Task

As mentioned previously, phase picking in DeepPhasePick uses two optimized adaptive net-
work architectures, each formed by one or two BLSTM layers, which we implemented as a
supervised sequence binary classification task.

We trained a first model for picking P phases, using as input the amplitude time series taken
from vertical-component seismograms. A second model was trained for picking S phases, based
on the amplitude time series of the two horizontal-component records. We trained each model
to learn patterns from seismic data that account for the transition from noise to signal in both
P and S phases from local earthquakes, therefore allowing identification of P and S time onsets.
BLSTM-based networks are suitable for such task, since they are able to extract and retain
meaningful features while processing input seismic sequences in both chronological and anti-
chronological order, hence learning dependencies between phase onsets and neighboring seismic
patterns. A final dense layer in both picking models applies a sigmoid activation function,
which outputs the probability of the timesteps in the time series corresponding to either noise

or seismic signal.
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Table 4.1: Hyperparameter search space optimized during the training of phase detection models. The second
column lists the hyperparameter values that could be sampled during the optimization. The third column
shows the best-performing value found after 1,000 trials. The hyperparameter pre_mode defines the type of
filter applied to the seismic data before entering the network as follows: pre_mode = 1, 2, 3 correspond to
no filter applied, band-pass filter (2-10 Hz), and high-pass filter (>0.2 Hz), respectively. Hyperparameters
win__size, frac_pre_ P, frac_pre_S, and frac_pre_ N control the length and time position of the extracted
window samples used for the training, as described in the main text and Figure 4.2. The range tested for the
number of filters shown here relates only to the first convolutional layer. Another hyperparameter, not shown
here, allows the number of filters in subsequent convolutional layers to be equal to or twice the value in the
current layer.

Hyperparameter Range tested Best-performing value

Block of convolutional layers

Number of layers [1, 2, 3, 4, 5] 5
Number of filters 2, 4, ..., 30, 32 12, 24, 48, 96, 192
Kernel size 3,5,7,9,11, 13, 15, 17, 19, 21] 17,11, 5,9, 17
Activation function [ReLU, sigmoid] ReLU, ReLU, ReLLU, ReLU, sigmoid
Dropout 0.2, 0.25, 0.30, 0.35, 0.4, 0.45, 0.5] 0.25, 0.25, 0.3, 0.4, 0.25

Block of dense layers

Number of layers [1, 2, 3, 4] 1
Number of units [50, 100, 150, 200, 250, 300] 50
Activation function [ReLU, sigmoid] ReLU

Dropout 0.2, 0.25, 0.30, 0.35, 0.4, 0.45, 0.5] 0.2

Model training

Optimizer [Adam, SGD, RMSprop] RMSprop
Learning rate [1e-05, 1e-04, 1e-03, 1e-02, 1e-01] 1e-03
Batch size [50, 60, ..., 190, 200] 50

Data preprocessing and seismic window extraction

pre__mode [1, 2, 3] 1
win__size [s] [2.0,2.2, ..., 4.8, 5.0] 4.8
frac_pre_P [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] 0.7
frac_pre 8 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] 0.5
frac_pre N 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] 0.9

Before carrying out the model training, 10% of the window samples were randomly extracted
as an independent test set. As in the phase detection stage, the test set includes a proportional
amount of records from S1 and S2 datasets. The remaining samples were first shuffled and
then subdivided into training (65%) and validation (25%) sets. Altogether, this corresponds
to 16,670 training, 6,412 validation, and 2,565 (1,625 from S1, and 940 from S2) test one-
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component samples for P-picking; and 9,358 training, 3,599 validation, and 1,440 (808 from
S1 and 632 from S2) test two-component samples for S-picking. As in the phase detection
stage, weights and hyperparameters of the models were adjusted based on the training set and
validation set, respectively. The test set was then used to evaluate the performance of the best
trained models. The window samples were defined based on the optimized hyperparameter
values for the phase detection model, namely the window length (win_ size) and its relative
position with respect to the true onset (frac_pre_ P and frac_pre_S). This allows the
integration of phase detection and phase picking in a common two-stage workflow, with the
aim of making the overall process more efficient, since both stages share already optimized
information.

However, instead of using the above-described seismic windows, we trained and validated the
picking models on versions of them, which were randomly shifted in time by a range between
-5.0 and 5.0 [s] around the true P and S onsets. This allows the networks to better learn data
patterns in the vicinity of the phase onsets, and so preventing the model from memorizing
only fixed onset times. A similar approach has been applied by Ross et al. (2018a) by using
an artificially augmented number of samples to train a CNN network as regressor for P-phase
picking. In the test set, we kept both the original time windows and their shifted versions, in
order to test the detection capacity of the trained models in both scenarios.

So as to perform the model training, we assigned to each input sample a binary vector
of length equal to the sample window length. This vector is a binary representation of the
ground truth, where all the 0s correspond to timesteps associated to noise, and all the 1s
representing signal, so that the first 1 represents the timestep of the true phase onset. Once
trained, the models output a vector of the same length, which contains numbers between 0 and
1.0 corresponding to binary class probabilities: <0.5 for timesteps predicted as noise and >0.5
for timesteps predicted as signal. Thus, we can determine the predicted phase time onset in a
given sample as the timestep where the output probabilities first rise above 0.5, indicating a
change from noise to signal.

We ran 50 hyperparameter optimization trials for the P- (~130 minutes per trial) and S-phase
(~50 minutes per trial) picking tasks. Table 4.2 presents the hyperparameter space searched
during the optimization. We optimized on the validation accuracy metric, using the binary
cross-entropy loss function and the Adam stochastic optimization algorithm (Kingma and Ba,
2014) in the training. The training was carried out using the same number of epochs and

similar early stopping as in the phase detection stage.

4.2.5 From Predicted Phase Probabilities to Preliminary Onsets

By applying our best-performing models trained for both phase detection and phase picking
on continuous seismic data, we were able to obtain the time onsets of P and S phases originating
from local earthquakes. In this section we explain how we first obtained preliminary time onsets
in the phase detection stage. The next section describes how we refined them in the phase

picking stage to estimate the final phase onsets and their associated uncertainties.
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Table 4.2: Hyperparameter search space optimized during the training of P- and S-phase picking models. The
second column lists the hyperparameter values that could be sampled during the optimization. The third and
fourth columns show the best-performing values found after running 50 P- and S-phase optimization trials.

Hyperparameter Range tested Best value (P-picking) Best value (S-picking)

Recurrent BLSTM layers

Number of layers 1, 2] 2 2
Units 10, 20, ..., 190, 200] 100, 160 20, 30
Dropout [0.2, 0.25, 0.30, 0.35, 0.4, 0.45, 0.5] 0.2, 0.35 0.25, 0.45
Recurrent Dropout 0.2, 0.25, 0.30, 0.35, 0.4, 0.45, 0.5] 0.2, 0.25 0.35, 0.25

Model training

Learning rate [le-05, 1e-04, 1e-03, 1e-02, 1e-01] le-04 le-02
Batch size [50, 60, ..., 190, 200] 60 50

First, we used the optimized phase detection model to predict the class probabilities of
three-component moving windows. By iteratively shifting these windows along the continuous
seismic waveforms, we obtained a discrete probability time series of each class. The length of
the moving window is given by the optimized hyperparameter win_ size. We assigned the pre-
dicted probability at the position within the window defined by the optimized hyperparameters
frac_pre_ N, frac_pre_P, and frac_pre_S for the respective classes (see Table 4.1 and
Figure 4.2). The timestep between consecutive moving windows is a user-defined parameter
that controls the resolution of the probability time series.

Next, we declared a P-phase search window between the time where the P-class probability
time series (pb_ P) rises above certain trigger threshold pb_ P_thl and the time where pb_ P
decreases below a certain detrigger threshold pb_ P th2. We estimated a preliminary P-phase
onset as the time of the maximum pb P within the search window. For waveforms where
a preliminary P onset is found, we followed a similar approach to define a preliminary S-
phase onset at the time of the maximum S-class probability time series (pb_S), within an
S-phase search window delimited by the time interval that satisfies the condition pb_ S thl <
pb_ S < pb S th2. Cases where pb_ P and pb_ .S overlap or are close enough in time at values
above the trigger thresholds cannot be handled solely with the previous criteria. We included
few additional conditions, based on the predicted probabilities, to deal with this and other
particular scenarios. These conditions can be optionally activated by the user and depend on

a few user-defined parameters (see Section S3).

4.2.6 Estimation of Final Phase Onset Times and Their Uncertainties

The preliminary P and S onsets were defined based on probabilities returned by a model
trained for recognizing seismic phases, rather than for actually picking them, and therefore

need to be refined. To this end, we used the search windows corresponding to the preliminary
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P- and S-phase onsets as “picking windows”. On these picking windows, we then applied the
optimized models trained for P- and S-picking to estimate the respective phase onsets as well
as the associated uncertainties.

Uncertainties were determined by applying the stochastic regularization technique Monte
Carlo Dropout (MCD). It has been shown that using dropout for training a deep neural network
can be interpreted as a Bayesian approximation of a Gaussian process, hence MCD can be used
as an approximation of Bayesian variational inference (Gal and Ghahramani, 2016a,b). This
means that a model posterior distribution for a given sample can be represented by multiple
(T) predictions made by the network with dropout. Thus, the value and uncertainty of the
predicted sample can be obtained as the mean and standard deviation of the T inferences.

In practice, we implemented MCD by performing T model predictions with dropout on. In
this case, since phase picking is treated as a sequence binary classification task, MCD generates
a collection of predicted class probabilities of the timesteps in an input time series. This
collection is an approximation of the model posterior distribution for that input sample, which
is described by the mean and standard deviation of the T class probabilities at each of the
sample timesteps.

Then, we estimated the predicted phase time onset (tpred) for the sample as the first timestep
in which the mean of the class probabilities rises above 0.5 (pb), which indicates the predicted
transition from noise to signal. The standard deviation of the class probabilities at tpred
(pb__std) represents the variability of the predicted probability at the assumed time onset. We
propose that a reasonable first order estimation for the time onset uncertainty can be determined
as the interval of timesteps delimited before and after tpred by the projection of pb_std on the
mean class probability (see Figure 4.3). The resulting time uncertainty is asymmetric and
inversely proportional to the slope of the mean predicted probability curve around tpred. That
is, the steeper the decrease/increase in the predicted probability before/after tpred, the lower
the time uncertainty, as one might intuitively expect from an abrupt, easy-to-pick change from
noise to signal. Based on these estimated pick uncertainties, we defined the weighting class
scheme for the phases P and S shown in Table 4.3, which was adapted from (Sippl et al., 2013).

Table 4.3: Weighting scheme for P and S predicted pick classes. Where terr = $(|tons_err~| + |[tons_err™|)
is the mean of the absolute time uncertainties calculated before and after the phase onset shown in insets in
Figures 4.3b and 4.3d.

Quality Class Time onset error (terr)
PO, SO terr < 0.05
P1, S1 0.05 < terr < 0.1
P2, S2 0.1 < terr < 0.2
P3, S3 terr > 0.2
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Figure 4.3: Estimation of time onset and associated uncertainty for predicted P (a-b) and S (c-f) phases. (a),
(c), (e) Examples of predicted Z, E, N (Vertical, East, North) window samples. Red and blue dashed lines
represent the preliminary P and S onsets predicted in the phase detection stage, which were refined in the phase
picking stage (red and blue solid lines). (b), (d), (f) Zoom in centered on the refined P and S time onsets
(tons_pred [8]), estimated by applying MCD (T=50) inference. Predicted class probabilities for each MCD
prediction are plotted as magenta curves (right y-axis); bold curve represents the mean probability. Magenta
horizontal dashed lines indicate the mean (pb) and one standard deviation (pb_std) of the class probabilities at
the onset time. As explained in the main text, from pb and pb__std, we can obtain tons_ pred and its uncertainty
(tons_err [s]), outlined by red and blue vertical dotted lines before and after the refined P- and S-phase onsets.
Based on the weighting class scheme defined in Table 4.3, P and S phases shown here correspond to picks of
class 0 and 1, respectively.

4.3 Results

4.3.1 Phase Detection Model Optimization

Figure 4.4 summarizes how the six main hyperparameters in the phase detection model
evolved over the 1,000 optimization trials attempted. For the majority of the main hyperpa-
rameters, the most frequently sampled hyperparameter value (higher histogram bins) did not
coincide with the value that led to the highest model accuracy found after 1,000 trials (shaded
histogram bin), although this correlation was observed for the number of convolutional layers
and frac_pre_P.

Remarkably, as can be seen from the subplots in Figure 4.5, the best hyperparameter values
or the most frequently sampled values (when both did not coincide) formed clusters at several
times (around trials 150, 260, 400, 590, and 800) during the optimization. This suggests that
the same set of hyperparameter values was systematically found to be effective in producing
highly accurate models during the optimization process, while the rest of the hyperparameters
in the network were probably still being adjusted.

The best-performing hyperparameter values indicate that models in which the convolutional
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block was considerably deeper (five convolutional layers) than the dense block (only one or
two dense layers) proved to be more accurate. Furthermore, models that learned from band-
pass filtered data reached lower training accuracy in comparison to when high-pass filter or
no filter was applied, with the latter approach performing the best. Thus, using the whole
frequency content proved to be more effective for model training than removing very long
period background seismic noise or substantially limiting the frequency content. We note here
that quite a few of the data are from short-period seismometers, hence inherently high-pass
filtered (>1 Hz), which could account for the most frequently sampled value of pre_mode.
Another important constraint in the optimization process seems to be the amount of data
available for the network to learn, since longer window samples (480-500 s) clearly led to more
correctly predicted phases. P phases were more accurately predicted when the sample windows
include a relatively larger portion of noise (70%) compared to signal, whereas S phases were
better predicted from windows containing similar amount of noise relative to signal (50%).
Table 4.1 lists the best-performing values found for each of the optimized hyperparameters,

which were used to train the best phase detection model architecture outlined in Figure 4.6.

4.3.2 Predicted Phase Classes compared to Analyst Labels

Figures 4.7a and 4.7b show that the accuracy of the best phase detection model smoothly
increased on the training set and reached 0.986 after 35 epochs, when the early stopping con-
dition stopped the training. The training loss progressively decreased and reached 0.044 at the
end of the training. The accuracy and loss calculated on the validation set followed a similar
behavior to the training curves, although showing overall higher accuracy and lower loss due to
the use of dropout regularization during training. Dropout disables a certain number of layer
units, therefore some information about the input samples is lost and the network attempts to
learn based on incomplete data representations. However, during validation all the units are
available, thus the network uses its full computational power.

The confusion matrix in Figure 4.7c¢ shows the overall performance of the best trained model
in classifying the classes of the independent test set of 4,320 samples. The cells in this matrix are
filled with the predicted classes, which correspond to the highest of the three-class probabilities
returned by the model for each sample. An overall very high ratio (0.99) of correct predictions
is observed for the three classes, as can be seen from the numbers in the matrix diagonal.
Figure S7 show waveform examples of these correctly predicted P-, S- and N-class samples.

Of the few misclassified samples, only three correspond to S phases predicted as P, whereas
no P phases were mispredicted as S, indicating that the network has a high capability to dis-
criminate between both classes. Figure S8 shows one of these misclassified S phases, where the
pick made by the analyst was somewhat earlier than the most impulsive change in amplitude.
This could be one possible source of misclassification between the two phases, since it may have
led to the network misinterpreting the sample as a P phase.

The remaining mispredictions correspond to either actual P or S phases predicted as noise

(24 samples) or presumed noise predicted as P or S phases (21 samples). From the samples
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Figure 4.4: Distribution over the 1,000 optimization trials of the six main hyperparameters used in the phase
detection model training. Subplots show sampled hyperparameter values colored by trial number and plotted
versus the model accuracy reached at that trial (left y-axis). The distribution of the hyperparameter values
sampled over the trials is presented as a histogram (right y-axis). A gray shaded bin in the histogram represents
the best-performing hyperparameter value, that is, the value with which the model reached the highest accuracy.

in the former group, the majority of the P (90%) and S (~71%) samples were assigned pick
weights higher or equal than 1 (<75% confidence) by analysts (Figure 4.7e). This is indicative
of waveforms with relatively low signal-to-noise ratio (SNR), as can be seen from the examples
of mispredicted P and S phases shown in Figures 4.8a and 4.8b, which may cause the model
misclassification. In the latter group, a significant majority of the noise samples were predicted
as signal with relatively high probability. In fact, of these, 87.5% of the P and ~77% of the S
predictions had a probability higher than 0.7, with 75% of the P and 38% of the S predictions
having a probability higher than 0.9 (Figure 4.7¢). The examples in Figures 4.9a and 4.9b

demonstrate that these apparently mispredicted samples actually correspond to previously un-
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Figure 4.5: Each subplot depict in detail the distribution of the best-performing hyperparameter values (gray
shaded bins in histograms of Figure 4.4; blue circles) that led to higher model accuracies (>0.95) over the
trials. Values plotted are the accuracies on the validation set, reached at the end of each trial training. For the
hyperparameters in which the best-performing value does not coincide with the most frequently sampled value,
the latter are plotted as well (red circles). For reference, magenta horizontal and vertical dashed lines mark the
highest model accuracy (0.990) reached during the optimization and the trial (732) at which it was achieved,
respectively.

detected phases, hence evidencing the powerful detection capacity of the model.

The detection capability of the trained model can be further assessed by calculating the
precision and recall metrics. Precision, given by TP / (TP + FP), describes how well the
model predicts a specific class, by comparing the correct predictions of the class (true positives:
TP) with all the predictions made for that class (TP + FP; where FP means false positives).
Recall is computed as TP / (TP + FN) and reports the ability of the model to identify all the
samples of a given class, by comparing TP with all the samples of that class in the test set (TP
+ FN; where FN are false negatives).
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Figure 4.6: Optimized model architecture trained for phase detection task. The network receives as input
class vectors representing the respective accompanying three-component seismogram samples and outputs three-
probability vectors indicating the predicted classes (P, S, or N). The optimized hyperparameters in each block
of convolutional and dense layers are shown here and also presented in Table 4.1.

Precision and recall vary between 0 and 1, where higher values are associated with better
performing models. In a precision-recall curve, precision is plotted against recall for different
probability thresholds, i.e., the probability above which a sample is predicted to be of a certain
class. The more the curve bends toward the point (1, 1), and therefore the larger the area
under the curve (AUC), the better the model performance. Figure 4.7d shows the precision-
recall curve obtained for the samples in the independent test set. As can be seen here the
performance of the model in predicting both P- and S-class samples was very high, with the
performance being slightly better for the P than for the S class. The model performance on
N-class samples was somewhat lower. However, this calculated performance does not take into
account any presumed N-class samples where the model detected a real seismic signal. As
previously discussed by Ross et al. (2018b), the probability threshold can be tuned so as to
improve precision (reducing false positives) or recall (aiming at reducing missed detections),

depending on the application.

4.3.3 Predicted Phase Time Onsets compared to Analyst Picks

Table 4.2 shows the best-performing hyperparameter values found during the optimization
of the P- and S-phase picking models. These parameters were used to train the best picking
model architectures outlined in Figures 4.10a and 4.10b.

At the end of the training, the best P-picking model reached higher accuracies (0.983 in
training) than the accuracies of the S-picking model (0.972 in training). This is also reflected

in the training and validation loss functions, which reached a lower value for P phases (0.041
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Figure 4.7: (a-b) Evolution of the training and validation accuracy (a) and loss function (b) over the training
epochs of the optimized model trained for phase detection. (c-d) Results from evaluation of the best phase
detection model on the independent test set of 4,320 samples, represented in a confusion matrix (c¢) and a
precision-recall curve (d). In (d), AUC represents the area under the precision-recall curve for each class. (e)
disaggregated histograms of incorrectly predicted P or S phases as noise and presumably misclassified noise
samples as P or S phases. (P, N) means P-phase samples predicted as Noise, and similarly for other cells in the
confusion matrix.
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Figure 4.8: (a) Example of P-phase sample in the test set of 4,320 samples, mispredicted as noise (N). (b)
Example of S-phase sample in this test set, mispredicted as noise. The left subplots in (a) and (b) show the
three-component seismic wavefrom from which the samples were extracted. The extracted samples, as received
by the network, are shown in the right subplots. Examples shown here correspond to P-phase and S-phase
samples with analyst’s pick weights 2 (50% confidence) and 1 (75% confidence), respectively.

(a) Probability (P, S, N) = [0.904, 0.004, 0.092]
250000 € : i

0

-250000 —|

200000+

—-200000

200000

1
1
1
1
]
T
1
1
1
1
Il
I
1
i

0 : t
i
1
1
Il
T
1
1
1
1
I
T
1
1
1
1
|

—-200000

T T T T T T T T T T T T T T T T T T T T T T
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 0.0 05 10 15 20 2.5 3.0 35 40 45
(b) Probability (P, S, N) = [0.0, 0.998, 0.002]
10000

|
1
H ::
S S S S S S —— — — — — S— — —
H i
10000 — N : [
: I
e L L
H 1
H 1
m10000 1T T T T T
—z H I
10000 [H
0 ‘“"W.
H 1
: I
-10000 : I
T T

T T U T T T T T T T U T 1 T T T T T T T T T
0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 0.0 05 1.0 1.5 2.0 25 3.0 3.5 4.0 45

Figure 4.9: (a) Example of noise (N) sample in the test set of 4,320 samples, seemingly mispredicted as a
P-phase. (b) Example of noise sample in this test set, seemingly mispredicted as a S-phase. Subplots are
plotted the same way as in Figure 4.3. The apparent misclassifications shown here are examples of non-picked
phases, which were however detected by the network.
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Figure 4.10: Optimized model architectures trained for P-phase (a) and S-phase (b) picking tasks. The
networks receive as input binary vectors representing the noise (0) and signal (1) content in accompanying time
series taken from the vertical-component (a) and the two horizontal-component (b) seismograms of the samples
used for training. The models output is the probability of the timesteps in input samples corresponding to either
noise or seismic signal. The optimized hyperparameters in each BLSTM layer are shown as (Units, Dropout,
Recurrent dropout), which are also reported in Table 4.2 for both models.
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Figure 4.11: Evolution of the training and validation accuracy and loss function over the training epochs of
the optimized model trained for P-phase (a-b) and S-phase (c-d) picking.
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Figure 4.12: Evaluation of the optimized model trained for P-phase picking on the independent augmented test
set of 2,565 x 2 one-component waveform samples. (a) True time onsets (tons_true) from both the actual and
shifted samples forming the augmented test set. (b) Predicted time onsets (tons_pred, defined as in Figure 4.3)
by the best model trained for P-phase picking. (c¢) Time residuals (¢res) distribution, defined as the difference
between the true and predicted time onsets. (d) Predicted pick quality classes, as defined by weighting scheme
defined in Table 4.3.

in training) than for S phases (0.066 in training) (Figure 4.11). As previously explained, the
MCD estimation of predicted phase time onsets and their uncertainties requires that the picking
models are trained with dropout enabled. For this reason the training and validation curves do

not show the difference in accuracy and loss observed for the best phase detection model.

Figures 4.12 and 4.13 summarize the performance of the optimized models trained for picking
P and S phases, when evaluated on the independent test sets of 2,565 one-component and 1,440
two-component samples respectively. In order to evaluate how the models perform in different
possible picking scenarios, we used an augmented test set formed by two groups of samples: 1)

the actual waveforms in the original test set, as defined by the optimized hyperparameters of
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Figure 4.13: Evaluation of the optimized model trained for S-phase picking on the independent augmented
test set of 1,440 x 2 two-component waveform samples. Subplots are similar as in Figure 4.12.

the best phase detection model (win_size, frac_pre_ P, and frac_pre S), and 2) artificial
versions of the same waveforms, randomly shifted between -0.5 and 0.5 s around the true phase

onsets made by the analysts.

The slightly higher accuracy reached by the P-phase picking model is reflected in the shape
of the true and predicted time onset distributions, which more closely resemble each other for
the P-phase (Figures 4.12a and 4.12b) compared to the S-phase (Figures 4.13a and 4.13b).
Consequently, a narrower distribution of time residuals was obtained for P phases compared to
S phases (Figures 4.12¢ and 4.13c). Overall, however, the time residual distributions for both
P and S phases show a remarkable compliance with analyst picks. Based on the weighting
class scheme defined in Table 4.3, we observe that a significant majority of P- and S-phase
onsets were predicted with lower uncertainties (pick quality classes 0 or 1 in Figures 4.12d

and 4.13d). Even though the distributions of all pick quality classes span over a similar range
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Figure 4.14: (a), (¢) Normalized distribution of analyst P- and S-pick quality classes over the range of predicted
time onset errors (terr in Table 4.3). Time errors were predicted on the augmented test sets, so analyst quality
classes are counted twice. Points defining each colored curve are plotted at the center of the histogram bins
corresponding to each pick class distribution. Dotted vertical black lines mark the time confidence interval limits
used in the weighting scheme to assign the predicted pick classes (Table 4.3). (b), (d) Histograms (bin size =
0.05 [s]) showing disaggregated distributions of analyst P- and S-pick classes shown in (a) and (c), respectively.

of time residuals, the distribution is more flattened for higher uncertainties. This may suggest
that picks predicted with lower uncertainties by the network were also easier to pick by the
analyst, resulting in lower time residuals since both the network and analyst would have picked
a similar onset. Conversely, picks that were harder to pick by the analyst (e.g., due to a low
SNR), were probably predicted with higher uncertainties by the network, which would lead to

higher absolute residuals.

So as to investigate this correlation between predicted and analyst pick classes, we plotted the
distribution of the analyst pick classes against the predicted time onset errors (terr) for both

test sets (Figure 4.14). Essentially, these distributions show that analyst classes do not always
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correlate with equivalent predicted classes, but instead span the entire range of predicted time
onset errors.

However, a couple of observations from the normalized distributions in Figures 4.14a and 4.14c
may indicate that at least some degree of correlation does exist. First, lower-uncertainty an-
alyst picks (classes 0 and 1) concentrate in predicted lower-error intervals (terr < 0.05) in a
considerably higher proportion, compared with higher-uncertainty analyst picks (classes 2 and
3). Second, analyst picks of higher uncertainty decrease more gradually and rise above picks of

lower uncertainty when terr > 0.05.

4.3.4 Evaluation on Independent Test Sets from Automatically-derived

Earthquake Catalogs

We further analyzed the performance of the best trained models of DeepPhasePick on two
additional independent test sets. These test sets consisted of three-component window samples
extracted from two earthquake catalogs recently published for the region where the 2014 M8.1
Iquique megathrust earthquake ruptured the northern Chilean subduction on 1 April 2014
(Figure 4.15). The first catalog (T1) contains 8,278 events occurring in a time window of
nine months before the Iquique mainshock (between 2013-06-01 and 2014-02-28) (Sippl et al.,
2018), from which we extracted 228,230 records (P: 88,449; N: 88,449; S: 51,332). The second
catalog (T2) includes 18,963 events originating between one month before and nine months
after the mainshock (between 2014-03-01 and 2014-12-31) (Soto et al., 2019b), from which we
obtained 1,361,544 records (P: 545,746, N: 545,746, S: 270,052). Event records extracted from
T1 and T2 were automatically picked by applying conventional state-of-the-art phase picking
algorithms (Aldersons, 2004; Diehl et al., 2009; Di Stefano et al., 2006), thus provide a valuable
quantitative assessment when compared to DeepPhasePick predictions. We first analyzed the
performance of the optimized model trained for phase detection. For this analysis, we used
test sets formed by the entire set of samples available from catalogs T1 and T2. Figure 4.16
summarizes the classification results from the evaluation of the model on both test sets. In
the confusion matrices in Figures 4.16a and 4.16c, we observe the highest ratio of correct
predictions for noise samples, comparable to the evaluation performed on the test set extracted
from datasets S1 and S2 (Figure 4.7c). The percentage of correct classifications decreased by
8-15% for P samples and 17-19% for S samples.

From the mispredicted P and S records, only a small fraction corresponds to P phase mis-
predicted as S, or viceversa, compared to the number of P and S records which were predicted
as noise. As we observed for the results in Figure 4.7c, the optimized model can mispredict S
phases as P phases if the true S time onsets are somewhat earlier. Conversely, it is conceivable
that the network classifies a P phase as an S phase if the true P time onset is late.

P and S phases predicted as noise correspond almost entirely to samples which were assigned
automatic pick quality class 1 or worse (<75% confidence), with most of them being assigned
the poorest pick quality class (class 3; <25% confidence) (upper subplots in Figures 4.16b
and 4.16d). As we have discussed, the classification of these hard-to-pick phases by the network
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Figure 4.15: Automatically-derived earthquake catalogs in northern Chile, from which two independent test
sets of three-component samples were used to evaluate the DeepPhasePick performance. A first test set of
228,230 samples was extracted from events occurring between 2013-06-01 and 2014-02-28 (T'1: red circles; Sippl
et al., 2018). A second test set of 1,361,544 samples was taken from events occurring between 2014-03-01 and
2014-12-31 (T2: green circles; Soto et al., 2019b). Window samples obtained from T1 and T2 were registered by
the 21 and 82 stations shown on the map. Focal mechanisms (beachballs) and epicenters (stars) of the Iquique
MS8.1 mainshock, its largest M6.6 foreshock and its largest M7.6 aftershock (Hayes et al., 2014) are plotted for
reference in orange, yellow, and brown color, respectively.
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Figure 4.16: Results from the evaluation of the best model trained for phase detection on independent test sets
taken from automatically-derived earthquake catalogs T1 (a-b) and T2 (c-d). (a), (c) Confusion matrices. (b),
(d) disaggregated histograms of incorrectly predicted P or S phases as noise (upper subplots) and presumably
misclassified noise samples as P or S phases (lower subplots). (P, N) means P-phase samples predicted as Noise,
and similarly for other cells in the confusion matrix.

appears to be challenging. Moreover, about half of the few apparently misclassified noise
samples were predicted as P or S phases with a probability of at least 90% (lower subplots
in Figure 4.16b and d), suggesting that these presumed noise records might actually represent

phases previously undetected by the automatic detection procedure, similar to the examples

shown in Figure 4.9.

We next analyzed the performance of the optimized models trained for P- and S-phase
picking, using test sets formed by 1,000 P- and S-phase samples randomly selected from T1
and T2 catalogs. As described in the previous section, the picking models were evaluated on

augmented versions of these test sets.

Results from the picking predictions are summarized in Figure 4.17. Time residual distri-
butions, which are narrower for P phases (Figures 4.17a and 4.17c) compared to S phases

(Figures 4.17b and 4.17d), are observed in both test sets. Similar distribution shapes were

75



76 Chapter 4 DeepPhasePick

5004 (@) M P 3007 (b) ] S
250 —
400 — sl
200 —
& 300 D
E S 150 — i
(o] (o] —
(] | (5]
200 — ]
100 —
100 50 -
0 i 1 1 1 1 T 0 T T 1 | B
-0.8 -06 -04 -02 0.0 0.2 04 06 0.8 -0.8 -06 -04 -0.2 0.0 02 04 06 0.8
tres (tons_true - tons_pred) [s] tres (tons_true - tons_pred) [s]
300
600 () — P (d) M S
250 —
500 —
200 — [
400 — 1
£ o 5
= €150 -
5 300 — 5 |
8 5 |
200 — 100 —
100 — 50 —
0 I i i i i I 0 T T T T T
-08 -06 -04 -02 00 02 04 06 0.8 -0.8 -06 -04 -02 0.0 0.2 04 06 0.8
tres (tons_true - tons_pred) [s] tres (tons_true - tons_pred) [s]

Figure 4.17: Results from the evaluation of the optimized model trained for P- and S-phase picking on
independent augmented test sets formed by 1,000 x 2 samples taken from the automatically-derived earthquake
catalogs T1 (a-b) and T2 (c-d). (a) P-phase time residuals distribution for test samples taken from T1 (as in
Figure 4.12¢). (b) S-phase time residuals distribution for test samples taken from T1 (as in Figure 4.13c). (c)
P-phase time residuals distribution for test samples taken from T2. (b) S-phase time residuals distribution for
test samples taken from T2.

obtained for the augmented test set derived from S1 and S2 datasets (Figures 4.12c and 4.13c),

hence evidencing that the trained picking models generalize effectively to different datasets.

4.3.5 Prediction on Continuous Seismic Waveform Data

After analyzing the performance of DeepPhasePick with different independent sets, we used
the best-performing trained models in the algorithm to carry out the phase detection and picking
tasks on continuous seismic data recorded in two different tectonic environments. First, we
applied DeepPhasePick on data which covers the time of two megathrust earthquake sequences
that occurred in the northern Chile subduction zone (2007-11-14 M7.7 Tocopilla and 2014-04-
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01 M8.1 Iquique mainshocks). In this case, the data used was recorded by network stations
situated in desertic areas, far from cities, and therefore exposed to low background seismic
noise. Next, DeepPhasePick was applied on seismic data that partly covers the aftershock
series of a recent M6.4 earthquake which occurred on 2019-11-26 near the port town in Durres,
Albania, in a region of convergence between Adriatic and Eurasian plates. Here we used seismic
data from a 30-station network deployed in the rupture area of the M6.4 earthquake, about
one month after its occurrence. This station network covers an urban area, thus being subject
to higher seismic-noise signals compared to northern Chile.

We numerically compared the prediction performance of DeepPhasePick in both tectonic
regimes with the detections done by an in-house developed STA/LTA trigger algorithm applied
to all vertical component waveforms. For this test, we used STA and LTA window lengths of
1.0 and 20.0 s; STA/LTA trigger and detrigger ratios of 8.0 and 1.5; and bandpass filter lower

and upper corner frequencies of 2.0 and 10.0 Hz.
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Figure 4.18: (a), (b) Cumulative number of P (red curve) and S (blue curve) phases predicted by Deep-
PhasePick (pb__P_thl = pb_S_thl = 0.98), and triggered detections by the STA/LTA algorithm (green curve)
on continuous seismic data recorded at the PB06 station (a) and across all IPOC stations with available data
(b). Cumulative curves are plotted for the time interval covering two months before up to two months after the
2007 M7.7 Tocopilla mainshock (2007-11-14), which is marked as a magenta dashed line. An orange dashed line
indicates the time of occurrence of a M7.1 aftershock (2007-12-16) ~50 km south of the mainshock epicenter. (c)
One-hour waveform snippet of PB06 station data, depicting the phases predicted by DeepPhasePick (pb_ P_ thl
= pb_S_thl = 0.98) at the time indicated by the arrows in (a) and (b): red and blue lines represent P and S
phases, respectively.

4.3.5.1 Performance in a Lower-seismic Noise Region: Northern Chile Subduction Zone

The cumulative number of P and S phases predicted by DeepPhasePick on data from one
representative as well as all available stations in northern Chile, depict an abrupt increase right
after the occurrence of the 2007 M7.7 Tocopilla mainshock (Figures 4.18a and 4.18b) and the
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Figure 4.19: (a), (b) Cumulative number of P (red curve) and S (blue curve) phases predicted by Deep-
PhasePick (pb_ P_thl =pb_S thl = 0.98), and triggered detections by the STA/LTA algorithm (green curve)
on continuous seismic data recorded at the PBO01 station (a) and across all IPOC stations with available data
(b). Cumulative curves are plotted for the time interval covering two months before up to two months after the
2014 M8.1 Iquique mainshock (2014-04-01), which is marked as a magenta dashed line. Two additional orange
dashed lines indicate the time of occurrence of the largest foreshock (M6.7; 2014-03-16) and aftershock (M7.6;
2014-04-03) in the Iquique sequence. (c¢) One-hour waveform snippet of PB01 station data, depicting the phases
predicted by DeepPhasePick (pb_ P_thl = pb_S_thl = 0.95) at the time indicated by the arrows in (a) and
(b): red and blue lines represent P and S phases, respectively.

2014 M8.1 Iquique mainshock (Figures 4.19a and 4.19b), corresponding to the beginning of
the aftershock series of these large megathrust earthquakes. Less pronounced increments in
cumulative predictions are observed at other times as well: after a M7.1 aftershock occurring
approximately one month following the Tocopilla mainshock (Figures 4.18a and 4.18b), and
after the occurrence of the largest foreshock (M6.7; 2014-03-16) and aftershock (M?7.6; 2014-
04-03) of the Iquique sequence (Figures 4.19a and 4.19b).

DeepPhasePick successfully captured a large majority of the various sized events occurring in
the early postseismic stage of the Tocopilla and Iquique mainshocks (Figures 4.18c and 4.19¢),
which demonstrates the high resolution power of the algorithm. In particular, DeepPhasePick
was capable of detecting P and S phases of several events occurring only a few minutes after

the M7.6 aftershock in the Iquique earthquake sequence (Figure 4.19c¢).

4.3.5.2 Performance in a Higher-seismic Noise Region: Albania

For most of the stations in northern Chile, the cumulative number of P phases predicted
by DeepPhasePick is comparable to the cumulative detections made by a classical STA/LTA
algorithm (Figures S9 and S10), as one might expect from high-SNR seismic data. However,
this does not hold true for several stations in Albania (Figures S11 and S12), which presumably
recorded lower-SNR seismic data, though the overall cumulative number of predicted P phases

and STA /LTA detections across all the stations in this region is still comparable (Figure 4.20b).
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Figure 4.20: (a), (b) Cumulative number of P (red curve) and S (blue curve) phases predicted by Deep-
PhasePick (pb__P_thl = pb_S_thl = 0.98), and triggered detections by the STA/LTA algorithm (green curve)
on continuous seismic data recorded at the AB21 station (a) and across all Albanian stations with available
data (b). Cumulative curves are plotted for the time interval between 2019-12-19 and 2020-02-24, during the
aftershock sequence of the 2019 M6.4 Albania earthquake (2019-11-26). (c) One-hour waveform snippet of AB21
station data, depicting the phases predicted by DeepPhasePick (pb_ P_thl = pb_S thl = 0.98) at the time
indicated by the arrows in (a) and (b): red and blue lines represent P and S phases, respectively. (d) Green
dashed lines depict the STA/LTA detections produced on the one-hour waveform plotted in (c).

The discrepancy between the cumulative STA/LTA detections and DeepPhasePick predic-
tions in the Albanian data arises mostly in two distinguishable scenarios. In the first scenario,
cumulative STA/LTA detections greatly surpass P- and S-phase predictions (e.g., stations
ABO05, AB12, or AB21). Figures 4.20c and 4.20d illustrate one example of this, where the
STA /LTA algorithm detects numerous false positives in the noisy one-hour waveform, whereas
DeepPhasePick predicts only one P- and S-phase occurrence. In the second scenario, cumulative
P-phase predictions are considerably higher than STA/LTA detections (e.g., stations AB10 or
AB27) (Figures S11 and S12). In this case, presumed false positive predicted by DeepPhasePick
could be discarded, for instance, if they are not detected in a minimum number of stations when

applying a phase associator algorithm.

In spite of eventual mispredictions generated due to noisy data, DeepPhasePick is generally
able to detect multiple events across a station network. One example of multi-station prediction

is shown in Figure 4.21, where six events are well detected in at least five stations within a 400-s
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window. Figure 4.22 shows the corresponding time onsets for one of these events, generated by
applying the MCD method in the picking stage. Similar results for two more events shown in
Figure 4.21 are presented in Figures S13 and S14. From the statistics of the picks predicted
for the three events shown in Figures 4.22, S13, and S14, which are reported in Tables S1, S2,
and 53, we observe that the difference between the preliminary phase time onsets (tons_ prelim)
obtained in the phase detection stage and the refined ones (tons_ pred) computed in the picking

stage can be up to 0.13 [s] for P phases and up to 0.17 [s] for S phases.

4.4 Discussion

We have demonstrated that DeepPhasePick can be successfully applied to accurately detect
and pick P and S phases originating from local earthquakes. The accurate predictions produced
by DeepPhasePick result from the highly optimized set of hyperparameters defining its convo-
lutional and recurrent deep neural networks trained for the tasks of seismic phase detection and
picking, respectively. The systematic optimization process implemented aimed at compensating
the limited seismic data used for training the models.

Results from the phase detection model optimization give us clues on the network architecture
as well as input seismic samples characteristics that make the model perform more efficiently.
Firstly, the optimization indicates that the network detection capacity is enhanced by using a
deeper block of convolutional layers. This can be explained by the fact that the model’s ability
to learn patterns from the input data, as well as the model’s capacity to generalize so as to
identify those patterns in new unseen data, are usually enhanced by adding convolutional layers
to a CNN-based model. A large number of dense layers in the network, which aim at learning
non-local relationships in the input data, does not seem to be required for improving network
performance. Secondly, the network learns features in P and S phases more effectively when it
is fed with relatively long input seismic windows which have not been filtered. Longer windows
may ease the extraction of relevant seismic features in order to better discriminate between
P and S phases and identify noise, particularly if very long-period background seismic noise
is present. Interestingly, the network detects P phases better when sample windows contain a
larger fraction of noise prior to a shorter portion of signal, in a way that resembles how analysts
commonly identify this phase. Unlike P phases, optimized detection of S phases is obtained on
sample windows consisting of a similar fraction of noise relative to signal, which may imply that
the model learns patterns from features such as the S coda in order to recognize this phase.

Predictions performed on seismic samples from two independent test sets show that Deep-
PhasePick is capable of recognizing manually as well as automatically picked P and S phases
with high accuracy, although it decreases for lower-quality automatic picks. These results also
demonstrate that DeepPhasePick predicts phase time onsets which are comparable to those
picked by analysts, as can be seen from the narrow time residual distributions in Figures 4.12¢
and 4.13c. These residuals are comparable to those obtained in previous studies that imple-

mented a deep learning-based picking approach (Ross et al., 2018a; Zhu and Beroza, 2019),
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even though a much smaller dataset was used for training DeepPhasePick. Moreover, some
degree of correlation between predicted and analyst pick classes was found (see Figure 4.14).
We note here that phase-pick weighting made by analysts is not an exact measure, but usually
based on experience and intuition. Hence we would not necessarily expect a perfect correlation,
and the weighting provided by DeepPhasePick might in fact be more objective.

In particular, we have shown that DeepPhasePick predicts P- and S-phase time onsets which
are at least comparable to the time onsets obtained by applying dedicated automatic picking
algorithms such as MPX (Aldersons, 2004; Di Stefano et al., 2006) and Spicker (Diehl et al.,
2009), which served to derive the high resolution catalogs for the Northern Chile region shown
in Figure 4.15. Since DeepPhasePick also computes uncertainties and weights associated to the

predicted picks, it can be used as a compelling alternative to those methods.
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Figure 4.21: Example of multi-station phase prediction made by DeepPhasePick (pb_ P_thl = pb_S thl =
0.98) on continuous seismic data in Albania. Red and blue lines mark predicted P and S phase time onsets,
respectively. Horizontal north component (gray) is plotted on top of vertical component (black) in each station
waveform. Several events are clearly detected across the station network.

However, DeepPhasePick is not restricted for use in the northern Chilean subduction zone,
where the seismic samples used in training the models were originated. The algorithm is also
able to predict P and S phases from local earthquakes occurring in a different tectonic regime,
as we demonstrated for seismic data recorded by a 30-station network in a region in Albania
(e.g., Figure 4.21).

DeepPhasePick has been designed to internally share the knowledge learned from the opti-
mization of the phase detection model to the phase picking models, allowing the algorithm to

perform both tasks in a joint two-stage process. Consequently, DeepPhasePick can be applied
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Figure 4.22: Estimation of time onset and associated uncertainty for predicted P (left) and S (center: E
component, left: N component) phases of the event el in Figure 4.21. Results from applying MCD method to
each seismogram component are shown as in Figure 4.3. Pick statistics for this event are reported in Table S1.

directly on continuous seismic waveforms with minor preprocessing involved, so as to determine
accurate P and S time arrivals that can then feed a phase associator algorithm in the next stage

of an automatic earthquake location workflow.

Further improvement of DeepPhasePick can be addressed in future work, for instance by
retraining the CNN-based phase detection model with additional manually-picked samples from
a new region of interest. A simple way to achieve this upgrade would be to use the new data
for applying techniques such as feature extraction and fine tuning on the optimized model
here presented. Further, the RNN-based phase picking models can be retrained by using more
than one shifted version of each available seismic record (see e.g., Ross et al., 2018a). This
would provide a broader spectrum of learnable sequential data during the training, which
might improve the picking models performance, though with the caveat that the computing

time required to train the models would further increase.
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4.5 Conclusion

The fast development in deep learning algorithms has made it possible to reach super-human
performance levels in tasks involving huge amount of data, such as image classification and
natural language processing. In this work, we leveraged this computational progress to develop
DeepPhasePick, a novel two-stage algorithm for detection and picking of P and S seismic phases
originating from local earthquakes.

DeepPhasePick has been built based on highly optimized convolutional and recurrent deep
neural network architectures trained for such tasks. In a first stage, DeepPhasePick reports
probabilities of waveform samples belonging to three phase classes (P, S or Noise). Preliminary
phase onsets obtained from these probabilities are refined in a second step, in which final time
onsets and their associated uncertainty are obtained by applying the Monte Carlo Dropout
regularization technique, as an approximation of Bayesian variational inference.

DeepPhasePick has proven capable of recognizing both manually and automatically picked
P and S seismic phases with high accuracy. It can also predict phase time onsets, which are
comparable to those picked by analysts or derived from conventional, dedicated automatic phase
picking algorithms. The P- and S-phase time onsets, as well as their associated uncertainties,
predicted by DeepPhasePick from continuous seismic data can be directly used to feed a phase

associator algorithm as part of an automatic earthquake location workflow.
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Chapter 5

Conclusions and Outlook

5.1 Synthesis and Conclusions

Chapter 1 introduced the following research questions:

1.1 How do observed seismicity patterns of the Iquique mainshock sequence corre-
late with static stress changes induced by this earthquake, as well as with coseismic,

afterslip, and interseismic locking?

1.2 What does this relationship tell us about the frictional behavior of the north-

ern Chilean portion of the megathrust and possibly of other subduction regions?

2. What role may the forearc and incoming plate structures of the northern
Chile convergent margin play in producing the seismicity pattern observed in the

Iquique mainshock sequence?

3. Can we make the seismic phase detection and picking procedures involved in
an earthquake location workflow more precise and efficient using the huge amount

of seismic data collected in northern Chile?

4. Can a potentially alternative phase detection and picking method be general-

ized to other regions where a different tectonic regime is observed?

The subsequent sections summarise the main findings of my thesis regarding these research

questions.

5.1.1 Correlation between Seismicity and Other Data during The Iquique
Earthquake Sequence, and Insights about the Frictional Behavior

along the Plate Interface

A primarily along-dip segmentation of small-scale frictional heterogeneity on the plate inter-
face is illuminated from the ~19,000 events catalog, which was derived by applying an automatic

earthquake location workflow using data from >100 stations in northern Chile.
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An aseismic updip-most portion of the megathrust is followed by a transitional region fur-
ther downdip interpreted as being predominantly characterized by aseismic creeping (velocity-
strengthening) embedding small-scale conditionally stable and seismically unstable (velocity-
weakening) areas. Conditional stability is proposed for the region updip of the main coseismic
rupture, where coseismic slip is allowed to propagate, though it behaves intrinsically aseis-
mic. This is supported by the presence of afterslip, which is likely to occur at this depth level
and could explain the high aftershock activity as well as the numerous repeating earthquakes
found there. Afterslip in this region may be due to postseismic stress relaxation or occur in
velocity-strengthening areas under the stress shadow caused by the adjacent mainshock asperity.
Repeating earthquakes are also found further south, along several seemingly real ~EW striking
streaks, which are then interpreted as velocity-weakening patches, indicators of surrounding
aseismic creep on the plate interface.

Deeper downdip, the central portion of the plate interface is interpreted as the seismogenic
velocity-weakening segment where the main coseismic rupture of both the Iquique mainshock
and its largest M7.6 aftershock occurred. Aftershock seismicity forms a belt that flanks the
downdip edge of the mainshock asperity. This seismicity belt partially correlates with in-
creased Coulomb failure stress and anticorrelates with the two major geodetically-derived af-
terslip patches. This portion is interpreted as featuring a heterogeneous frictional behavior;
presumably conditionally stable where the belt of aftershock seismicity occurs and velocity-
strengthening correlating with the two afterslip patches.

The central segment of the plate interface is connected to the deepest interplate events
through a region of remarkably sparse aftershock seismicity. Similar event sparsities, observed
after the 2010 M8.8 Maule earthquake (Lange et al., 2012), and before and after the 2015 M8.3
[lapel earthquake (Lange et al., 2016), hint to a presumably generic depth segmentation of the
plate interface seismicity along at least a significant part of the Chilean subduction.

Two clusters formed by the deepest plate interface seismicity exhibit significantly different
dip and are accompanied by several repeater earthquakes. The vicinity of these clusters to
the imaged upper plate Moho, where a downdip transition to aseismic behavior has been hy-
pothesized to occur at least in cool old subduction zones (e.g., Oleskevich et al., 1999), may
indicate similar fault mechanics and slip properties at this depth level to those interpreted for

the streaks observed in the updip transition zone.

5.1.2 Role of the Forearc and Subducting Plate Structures in the

Observed Seismicity Pattern

The continental forearc in the study region is interpreted as being composed of two main
bodies: 1) An outer wedge, formed by a ~25-30 km wide aseismic frontal prism (FP) and a
transitional zone (TZ). Whereas the presumed highly fractured and deformed FP overlies the
updip-most aseismic portion of the plate interface, the TZ presumably features an upper plate

fracturing gradually reduced landward and is located approximately below the middle conti-
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nental slope and above the transitional frictional portion of the interface. 2) An inner wedge,
presumably formed by more consolidated framework rock and which approximately overlies the
seismogenic velocity-weakening segment of the plate interface, where the highest coseismic slip
occurs.

The hypothesis that the FP may have acted as a barrier for the updip propagation of the
mainshock rupture (Maksymowicz et al., 2018) is supported by the lack of foreshock and after-
shock seismicity observed in the updip-most portion of the plate interface and outer wedge, as
well as the gradual increase in coseismic slip landward.

Possible activation of offshore upper plate faults is evidenced by numerous ~NS oriented
thrust faulting aftershocks with dips steeper than the plate interface. These aftershocks, which
occur in the transitional region updip of the main coseismic rupture of both the Iquique main-
shock and its largest aftershock, could have been associated with the outer wedge deformation
resulting from its postseismic stress relaxation. Presumed preseismic upper plate deformation
in the same region (Hayes et al., 2014) is supported by a number of thrust foreshocks, which
feature fault planes significantly rotated relative to the plate interface.

The substantially rugged seafloor of the incoming oceanic plate may cause fracturing of the
plate interface, upper plate deformation, and reduction of the plate coupling, all of which can
favor afterslip on the plate interface (Wang and Bilek, 2014). This hypothesis is supported
by the existence of the Iquique Ridge offshore northern Chile, with its numerous seamounts,
and the horst-and-grabens and spreading fabrics which form the incoming plate relief. Besides,
underthrusting plate relief is suggested by large embayments and NW-SE trending antiforms
and synforms seen in the lower continental slope from the seafloor bathymetry (Figures 3.2a
and 3.6; Geersen et al., 2018a), and by presumed subducting seamounts (Figure 3.6; Geersen
et al., 2015). One of these subducting seamounts coincides with the location of the major ~NEW
striking streaks observed. Another seamount correlates with a large cluster of earthquakes with
significantly diverse faulting.

The plate interface offshore Iquique is interpreted to not only be deformed and fractured due
to the rugged subducting relief, but possibly also corrugated. Corrugations have been imaged in
an offshore portion of the Costa Rica subduction plate boundary (Edwards et al., 2018), where
seamounts and rigdes are also being subducted. Presumed plate interface corrugations may be
a structural explanation for the observed ~EW striking streaks, as they can serve as conduits for
the transportation of fluids, which eventually induce shear failure that triggers seismicity and
repeating earthquakes along the streaks. Possible indirect evidence for a corrugated megathrust
could be provided by several small thrust earthquakes featuring fault planes steeper or rotated
relative to the interplate fault surface orientation suggesting local upper plate deformation in

the area where the major streaks are observed.
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5.1.3 Using Deep Learning as an Efficient and Generalized Alternative

Method to Classical Phase Detection and Picking Procedures

Instead of exploiting presumed characteristics of seismic signals by conventional automatic
phase detection and picking methods, a deep learning-based approach is capable of extracting
meaningful features directly from a training set of seismic samples. The learned features can
then in turn be used to make generalized predictions on new seismic data.

Convolutional neural networks’ ability of learning spatial features from data, as well as the
adeptness of recurrent neural networks at learning contextual sequential data patterns, are com-
bined in DeepPhasePick; the automatic algorithm presented in this thesis trained for detecting
and picking P and S seismic phases originating from local earthquakes.

The systematic optimization of the hyperparameters defining DeepPhasePick network ar-
chitectures suggests that the accuracy of the method’s predictions improves by increasing the
number of both the convolutional layers used for detecting the seismic phases and the number of
LSTM recurrent layers used for P- and S-phase picking. Prediction performance also improves
when the algorithm is fed with relatively long, non-filtered seismic windows, where the fraction
of noise is larger than (for P phase) or similar to (for S phase) the subsequent signal. These
preferred choices are somewhat intuitive. Shortening and filtering signals might discard some
meaningful seismic features. Also, whereas analysts usually better identify P phases by using
a larger portion of noise before the phase onset, S phases may be better recognized by taking
into account features such as the S phase coda.

Even though the DeepPhasePick models were trained using a limited amount of seismic
records (~39,000 records for detection and ~36,000 records for picking), the models’ highly opti-
mized architectures and internal sharing of learned knowledge facilitate the presented method’s
effective performance, which has been demonstrated in both of the trained tasks. For the
phase detection task, DeepPhasePick reaches an accuracy of 99% in predicting the class (P,
S, or Noise) of manually-picked seismic records. This is comparable to the accuracy reached
when detecting the class of high-quality automatically-picked samples, although it decreases
by up to 15% and 19% respectively for lower-quality P and S samples. For the phase picking
task, DeepPhasePick has proven capable of predicting manually-picked onsets with very high
precision (for the most part within 0.2 seconds). The precision just slighty decreases when
predicting automatically-picked onsets obtained from conventional, dedicated automatic phase
picking algorithms such as MPX or Spicker (Aldersons, 2004; Diehl et al., 2009; Di Stefano
et al., 2006).

The fact that DeepPhasePick computes probabilistic derived asymmetric uncertainties ac-
companying the predicted phase time onsets, and that it does not require preliminary input
phase picks but rather uses internally predicted ones, makes the presented method a com-
pelling alternative to the above mentioned conventional automatic picking algorithms. Thus,
DeepPhasePick can be integrated in an automatic earthquake location procedure, by using its
predicted phase arrivals and uncertainties to feed a subsequent associator algorithm.

DeepPhasePick’s detection and picking abilities have proven to perform effectively on both
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lower- and higher-seismic noise data. The lower-seismic noise data used for this test was
recorded in northern Chile, hence presenting similar signal content to the data used to train
the algorithm. On the other hand, the higher-seismic noise data was registered in an urban
region in Albania, which features different tectonic characteristics from the training data set.
This demonstrates the method’s ability to effectively generalize.

DeepPhasePick is also efficient, in the sense that although many hours are required to opti-
mize and train the algorithm, this is only carried out one time. In production mode, predictions
performed on continuous seismic waveforms only take seconds to minutes, depending on the

length of the seismic traces and the number of stations on which the algorithm is applied.

5.2 QOutlook

My thesis demonstrates how a high-resolution automatically-derived earthquake catalog can
be used to illuminate the small-scale frictional heterogeneity observed along subduction plate
boundaries, where regions of stable aseismic, conditionally stable, or unstable seismic behavior
can be observed during megathrust earthquakes. Analysing this seismicity, in combination
with different datasets such as geodetically inferred afterslip and interseismic locking, and
coseismic slip solutions, can help to better understand the tectonic processes and better assess
the earthquake hazard potential in highly active seismic regions such as the Chilean subduction
zone.

However, in order to obtain a comprehensive understanding of the frictional and tectonic
variability, both seismological and geodetic observations registered at shallow depths in the
offshore region of subduction zone plate interfaces need to be included in the analysis. In
particular, future seismological studies should ideally integrate submarine ocean-bottom seis-
mometer (OBS) data with inland data, which would provide further constraints especially for
the hypocenter depths of shallow offshore earthquakes. This would allow for more reliable in-
terpretations regarding relevant features such as the activation of upper plate splay faults or
the existence of presumed corrugations on the plate interface.

Future studies in subduction zones aiming at investigating small-scale seismicity distributions
will most likely have to include additional data either from OBSs or from a higher number of
inland seismic stations. Other studies aiming to generate earthquake catalogs could cover longer
time periods. In both scenarios, the amount of waveform seismic records may easily increase
up to the point where it becomes unmanageable, since processing the entire earthquake catalog
generation workflow would become too computationally expensive. Hence, a more efficient
automated data processing approach, for instance based on deep learning, becomes critical.

DeepPhasePick accomplishes the first of the stages involved in an automatic earthquake
location workflow, where P and S phases are detected and picked. This method can be easily
upgraded by retraining its CNN and RNN constituent architectures, with the goal of enhancing
prediction generalizability. The CNN model performing the phase detection can be retrained by

applying feature extraction and fine tuning techniques on new manually-picked seismic records
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obtained from a different study region. These new labelled samples can also be used to retrain
the RNN model performing the phase picking. Optionally, the number of shifted copies of the
records can be increased compared to that used in this study, which would further broaden the
spectrum of possible learnable features, that in turn can improve the picking performance.

In the near future, I envisage that the phase arrivals together with their uncertainties gen-
erated by DeepPhasePick can be used to feed a phase associator algorithm which is also built
based on optimized neural networks (e.g., Ross et al., 2019b). Further, it is conceivable that the
phase arrivals already associated to events can then be provided to an additional deep learning-
based algorithm trained specifically for locating earthquakes. I am convinced that, ultimately,
having an automatic earthquake location workflow entirely built on optimized deep learning
methods would significantly facilitate and improve the efficiency in processing the fast-growing

available seismic datasets.
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This supplement contains seismic waveform data information, video captions, figures and

tables in support of Chapter 3 and Chapter 4.

S1 Data Availability

The catalog of relocated seismicity generated in Chapter 3 and analyzed in this study can
be accessed from Soto et al. (2019a). Seismic waveform data used in Chapter 3 were taken
from networks CX (GFZ German Research Centre for Geosciences, and Institut des Sciences
de I’Univers-Centre National de la Recherche CNRS-INSU, 2006), 1Q (Cesca et al., 2009), 3D
(Asch et al., 2014), and GE (GEOFON Data Centre, 2013) accessed via EIDA webservices
(e.g., hitps: // geofon.qgfz-potsdam.de/), as well as from Chilean Seismological Network (C, C1)
stations (Barrientos, 2018) accessed via IRIS webservices (http:// ds.iris.edu/ SeismiQuery/ ).
Additional waveform data were used from the MEJIPE temporary network deployed by FU
Berlin (Salazar et al., 2013) accessed via EIDA web services as well as from a temporary
network deployed by the Chilean ONEMI, DGF, and CSN institutions accessed from CSN
upon request.

For training DeepPhasePick models for phase detection and picking tasks presented in Chap-
ter 4, we used waveform earthquake data collected from networks ZB (Schurr et al., 1997), ZE
(Haberland et al., 1996), 8F (Wigger et al., 1996), Y9 (Sobiesiak and Schurr, 2007), CX, and
GE.

For the evaluation of the performance of DeepPhasePick in independent test sets built from
automatically-derived earthquake catalogs, we used waveform earthquake data taken from net-
works CX, 1Q, 3D, and GE, as well as from Chilean Seismological Network (C, C1) stations, the
MEJIPE temporary network, and a temporary network deployed by the Chilean ONEMI, DGF,
and CSN institutions accessed from CSN upon request. The performance of DeepPhasePick
predictions was further evaluated on continuous waveform data taken from networks CX and
9K (obtained from GEOFON data centre).

The optimized DeepPhasePick models trained for phase detection and phase picking tasks,
together with an example script that applies DeepPhasePick method for both tasks on contin-
uous waveforms, can be accessed via the GitHub repository: https:// github.com/hsotoparada/
DeepPhasePick.
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S2 Supplementary Information for Chapter 3

Text S1: Multistage Automatic Earthquake Localization.

I used seismic data consisting of three-component velocity seismograms registered by 104
seismic stations spread throughout the Northern Chile region (Figure 3.1). The raw seismic
data was processed in a multistage automatic procedure, which has been adapted from Sippl

et al. (2013) and is summarized in the following.

Estimation of preliminary P picks and phase association.

An in-house developed STA/LTA trigger algorithm was applied to all vertical component
waveform data. After some testing with a small data set, the parameters were set as follows:
the lengths of STA and LTA windows to 1.0 and 20.0 s; the STA/LTA trigger and detrigger
ratio to 8.0 and 1.5; the lower and upper corner frequencies of the bandpass filter to 2.0
and 8.0 Hz. These preliminary phase alerts were then associated to preliminary events using
Binder (Rietbrock and Heath, personal communication, 2010), requiring at least 8 picks to
form an event. As input for Binder, I used an existing 1D velocity model estimated for a region
somewhat south of the M8.1 Iquique earthquake epicenter (Husen et al., 1999). After this stage,
the resulting events were relocated using Geiger’s least squares inversion method implemented

in HYPO71 (Lee and Lahr, 1975).

Repicking of P phases.

Once the preliminary event locations and picks were determined, P onsets were repicked
using the MPX algorithm (Aldersons, 2004; Di Stefano et al., 2006). By following a similar
scheme previously applied to seismicity in the region of the Pamir in Central Asia (Sippl et al.,
2013), MPX was run on vertical waveform data, classifying the resulting phase onsets into four
quality classes. Waveform data from stations with no preliminary picks were also examined with
MPX, using in this case reference P onsets calculated from raytracing in NonLinLoc (NonLinLoc
package, Lomax et al., 2000) based on the preliminary event location and Husen’s 1D velocity

model. The refined picks were then used to once more relocate all the events in HYPO71.

Repicking of S phases.

Based on MPX P picks and subsequent event relocations, S onsets were automatically de-
termined by applying the software Spicker (Diehl et al., 2009) and using preliminary S picks
estimated by raytracing in NonLinLoc, in a similar way as in (Sippl et al., 2013). A new

relocation in HYPO71 was performed afterwards.

Calculation of ML.
Local magnitudes (ML) were calculated for all the events in the catalog based on the formula
recommended by the IASPEI (Bormann and Dewey, 2014).

Filtering and completion of event catalog.
As I am focused on the seismicity related to the Iquique 2014 earthquake, I removed from
the catalog events located outside of the study region indicated in Figure 3.1 (also see text).

In order to ensure the reliability of our catalog, I further remove possible double events and
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limit further analysis to events that achieve a high enough score in a weighted pick sum scheme
that was also used by Sippl et al. (2013), where P picks of quality classes 0, 1, 2, or 3 add
4, 3, 2 and 1 point(s) to this sum, respectively. And S picks of same classes add 8, 6, 4 and
2 point(s), respectively. I accept only events with a minimum total sum of 24 points and a
minimum sum of 12 points counting only S-picks in order to remove events that feature only
P-onsets and may thus have badly constrained depths. Furthermore, I compared the catalog
to the Chilean National Seismological Center (CSN) catalog and searched for possibly missed
events by comparing origin times. This led to the additional inclusion of a small number (324)
of previously not detected earthquakes that were then processed in the same way as outlined

above.

Estimation of a minimum 1D velocity model.

I performed the inversion for a 1D velocity model based on the procedure described in Kissling
et al. (1994). First I relocated the events in VELEST using three iterations during which I
removed picks with residuals that deviated by more than two standard deviations from the
event mean residual as well as had an absolute residual above 1.5 s. I then selected a subset of
2,000 events in the catalog by subdividing the study area into several cells and selecting only
the best located events in each cell based on pick quality classes and excluding events with
an azimuthal gap > 230°. The selected events were simultaneously inverted for a minimum
1D velocity model, hypocentral parameters and static station corrections, prescribing an 11-
layer structure in depth, with spacing of 10 km and 20 km above and below 70 km depth,
respectively, up to a maximum depth of 130 km. The minimum 1D velocity model (Figure Sla)
was found after trying several initial models (modified from Husen’s 1D velocity model) and
diverse combinations of the key parameters in an iterative approach. Finally, the entire set
of events was once more relocated in Velest using the newly calculated minimum 1D velocity

model.

Estimation of a 2D velocity model.

The determination of a 2D velocity model was accomplished with the software simulps
(Eberhart-Phillips, 1993; Evans et al., 1994; Thurber, 1983, 1993). I defined an inversion
grid according to the density of stations and earthquakes, with a horizontal node spacing of
15-20 km that increases from the center toward the edges of the study region and the same
layers in depth as used for the inversion in VELEST. 1 used the same subset of selected events
as before in VELEST (relocated in the minimum 1D velocity model) and the minimum 1D
model extended horizontally as the initial 2D velocity model for Vp inversion. I performed two
consecutive inversions for Vp and Vp/Vs. In the first stage, I searched for the best P velocity
model, keeping Vp/Vs fixed at the value 1.73, after which I inverted for Vp/Vs and kept Vp
at the best previously determined model. The S velocity model was determined from this last
inversion. The optimal roughness of the final velocity model, i.e. the balance between data
and model variance, is highly dependent on the choice of the damping parameter of the inver-
sion. Therefore, I calculated tradeoff (L-) curves between these variances in both inversions

and chose the damping parameter accordingly (Figure S1b). Lastly, the final 2D velocity model
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(Figure Slc) was used to once again relocate the entire event data set in simulps.

Double-differences relocation.

A further refinement of the hypocenter locations was accomplished using the program Hy-
poDD (Waldhauser and Ellsworth, 2000) that implements a double-difference (DD) relocation
scheme. Pairs of events registered at common stations and separated by small distances (clus-
ters) are relocated relative to each other, making use of only their travel time differences and
therefore avoiding path-dependent effects or model errors. I implemented an inversion based
on a weighting scheme using differential travel times from both catalog and cross correlation
(CC) phase pairs. CC travel times differences were calculated for event pairs separated by a
maximum distance of 8 km that already had phase picks, by using windows of 2/4 s for P/S
phases and retaining only measurements with correlation coefficient > 0.7. The inversion was
started with highly weighted catalog phase pairs, CC data weights were gradually increased in

consecutive steps whereas catalog data were down-weighted accordingly.

Relocation by focal mechanisms.

For some of the shallow events that are located far offshore, the event-station geometry was
highly unfavorable. In order to independently constrain hypocentral depths, I used centroid
depths of collected focal mechanisms as initial depths in a final HypoDD relocation run. After
this relocation, the events in this area became more clustered and better depicted the continuity

of the plate interface compared to the previous run without the additional constrain.

Event locations uncertainties.

I estimated absolute location uncertainties by relocating the entire catalog with a probabilistic
scheme (NonLinLoc), using the 2D velocity model calculated in this work. The distribution
of the obtained location errors, i.e. the extent of ellipses that contain 68% of the probability
density function, was averaged in x-, y- and z-direction for all the events within each of the
spatial 0.1° x 0.1° grid cell in which I subdivided the study region. The resulting errors are
shown in Figure S2 for the interval between 0-65 km depth.

Movie S1: Foreshock series, in time period from 15 March 2014 to the mainshock occur-
rence (2014-04-01T23:46:45.720). Time step (time window shown in each frame) = 6 hours.

Filename ms01.mp4

Movie S2: Aftershock series, in time period from the mainshock to the occurrence of
the largest M7.6 aftershock (2014-04-03T02:43:13.940). Time step = 30 minutes. Filename
ms02.mp4

Movie S3: Aftershock series, in time period from the occurrence of the largest M7.6 af-
tershock to day 16 (17 April 2014) since the mainshock. Time step = 2 hours. Filename
ms03.mp4
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Movie S4: Aftershock series, in time period from day 17 (18 April 2014) since the main-
shock to 30 April 2014. Time step = 4 hours. Here the two high afterslip patches are plotted

as in Figure 3.6. Filename ms04.mp4

Movie S5: Earthquakes in the region of major streaks S1 and S2 (same region shown in
Figure 3.6¢; main text) in time period between 15 March and 30 April 2014. Time step = 4

hours. Filename ms05.mp4
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Figure S1: (a) Minimum 1D model derived using VELEST. The range of input models is shown with red
dashed lines, the different output models with blue dashed lines. The final model is indicated with a thick black
line. (b) L-curves obtained from the inversions for Vp and Vp/Vs in the determination of a 2D velocity model.
The chosen damping parameters are indicated in red in each curve. (c¢) 2D velocity model calculated for the
study region using simulps. Black dots denote earthquake hypocenters of the events whose traveltimes were
used for deriving the model. Green plus signs mark inversion nodes.
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Figure S2: Average event location uncertainties (for events at 0-65 km depth) determined using a probabilistic
location scheme (NonLinLoc). All events were relocated with this scheme, and the projection of the error
ellipsoid (68%) on the x-, y- and z-direction was averaged for each spatial grid cell. Cells that contain less than
20 events were left blank. Location errors are smaller inland, where all the used stations (marked as in Figure 3.1)
are located, but increase offshore, farther from the footprint of the network. Everywhere, the uncertainties in
N-S direction (y) are smaller than those in E-W direction (x). In the offshore region, uncertainties in depth (z)
are considerably larger than both horizontal errors (x, y).
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Figure S3: Discrete (disc) and cumulative (cum) distribution of local magnitudes in the relocated earthquake
catalog (plotted in Figure 3.1). Red and blue histograms show the discrete distributions for earthquakes before
and after the Iquique mainshock, respectively. The magnitude of completeness (Mc) for both time periods is
shown as the highest frequency of events in each discrete magnitude distribution. The clearly lower Mc for the
postseismic period is due to changes in network geometry: most of the temporary stations were not in place
during the foreshock series, whereas most aftershocks were recorded with close to the maximum station density.
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Figure S4: Zoom into the study region (red box shown in Figure 3.1), showing only the relocated seismicity
as in Figure 3.2a, allowing a more detailed inspection.
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Figure S5: Detailed analysis of seismicity streak labeled S2 in Figure 3.2a. Subfigures (a-d) show similar plots
as in Figure 3.4 for streak S1.
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Figure S6: Plate interface aftershock seismicity since day 17 after the mainshock (18 April 2014, green circles)
plotted on top of the afterslip model of Hoffmann et al. (2018) for the period between day 17-334 after the
mainshock. White lines are interseismic locking contours (0.7, 0.8, 0.9, and 0.95) from the locking model of Li
et al. (2015). Small magenta stars represent repeating earthquake sequences (CC > 0.95) with at least 2 events
(as in Figure 3.6). Other features are plotted as in Figure 3.6.
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S3 Supplementary Information for Chapter 4

Text S2: Additional Optional Conditions for Improving Phase Detection.

In order to enhance the performance of DeepPhasePick in correctly detecting P and S
phases, some additional conditions to the procedure described in Section 4.2.5 of the manuscript
are included. These conditions apply criteria based on the P- and S-phase predicted probabili-
ties in order to resolve some special cases, where discriminating between P and S phases is not
trivial. The different conditions can be optionally activated by the user and depend on a few

user-defined parameters, as described below.

(1) Resolve between P and S phases predicted close in time.
(i) For each predicted P onset (tP), several threshold time intervals are defined as follows:
Aty, € [tP_th_pre,tP_th_pos],
Aty pre € [tP —dt_PS max,tP_th_ pre],
Aty pos € [tP_th _pos,tP +dt_ PS maz].
Here:
tP_th_pre=tP —t(pb_P_pre > 0.5),
tP_th_pos =tP +t(pb_P_pos > 0.5),
where t(pb_ P_pre > 0.5) and t(pb_ P_pos > 0.5) are the times at which the predicted prob-
abilities before (pb_ P_pre) and after (pb_P_pos) tP rise above 0.5, and dt__PS_max [s] is

an user-defined parameter.

(ii) If a predicted S onset (¢5) is found at t € Atyy,, we resolve between P and S as follows:

e tP is kept and ¢S is discarded, if

— pb_P(tP) > pb_S(tS),

— pb_S(tS) > pb_P(tP), but no P is found at ¢t € Aty, .., and at least one P or S is found
at t € At pos

e 1S is kept and tP is discarded, if

— pb_S(tS) > pb_ P(tP), at least one P is found at t € Aty, e, and at least one P or S is
found at t € Aty pos

— pb_S(tS) > pb_P(tP), at least one P is found at t € Aty, e, and no P or S are found at
t € Aty pos

e both tS and tP are discarded, if

— pb_S(tS) > pb_P(tP), but no P is found at ¢ € Aty pe, and no P or S are found at
t € Al pos

(2) Discard predicted S phases for which there is no earlier P or P-S phases pre-

dicted.

(i) For each predicted S onset (t5), the following threshold time intervals are defined:
Atd, e 1 € [tS —dt_PS_max x dt_PS_ frac,tS], where dt_PS_ frac is an user-defined

parameter.

Aty e o € [tP_pre,tS] , where tP_pre € Aty .. 4
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(ii) ¢S is discarded, if

S

—no tP_pre € Aty .

, is found.

— at least one tP_pre € Atj, . | is found, but more than one tS_pre € At} .. , are
found.

— at least one tP_pre € Aty pre_1 18 found, one tS_pre € At _pre_2 18 found, but ¢S >

tS_pre+ |[tP_pre —tS_pre|.

(3) Resolve between possible predicted duplicated S phases.
(i) For each predicted S onset ¢S5, the following threshold time intervals are defined:
tS_th_pos =tS + t(pb_S_pos > 0.5),
tS‘ithipre =15 — t(pbis'ipre > 0.5),
for each subsequent predicted S onset ¢S (tS’ > t5). Heret(pb_S_pos > 0.5) and t(pb_g_pre >
0.5) are the times at which the predicted probabilities after ¢S (pb_.S_pos) and before tS
(pbis'ipre) rise above 0.5, respectively.

(ii) If  |tS_th_pos — tS’_th_pre| < dt_Sdup mazx,
we only keep the S onset with the maximum predicted probability between pb_S(¢S) and
pb_S(tS). Here dt_Sdup_mazx [s is an user-defined parameter.

(4) Resolve between P and S phases predicted close in time, for special cases not
handled in (1).
(i) For each predicted P onset (¢P) and each subsequent predicted S onset (¢5), the following

threshold time intervals are defined:

tP_th_pre=1tP —t(pb_P_pre > 0.5),
tP_th_pos =tP + t(pb_P_pos > 0.5)
tS_th pre=1tS —t(pb_S_pre > 0.5),
tS_th_pos =tS +t(pb_S_pos > 0.5).

Y

Here t(pb__P_pre > 0.5) and t(pb__P__pos > 0.5) are the times at which the predicted probabil-
ities before (pb_ P_ pre) and after (pb_ P_ pos) tP rise above 0.5. Similarly, t(pb_ S pre > 0.5)
and t(pb_S_pos > 0.5) are the times at which the predicted probabilities before (pb_S_pre)
and after (pb_S_pos) tS rise above 0.5.
We also consider the threshold time differences between successive S-P or P-S predicted phases:
dt_SP_th=tS_th_pos—tP_th_pre|,
dt_PS_th=|tP_th_pos—tS_th_pre|

(ii) If dt_SP_th <dt SP_near or dt_ PS th <dt SP_ near, we only keep the onset with
the maximum predicted probability between pb_ P(tP) and pb_S(tS). Here dt_SP_near [s]

is an user-defined parameter.
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Figure S7: Examples of correctly predicted P- (a), S- (b) and N-class (c) samples in the test set of 4,320

samples. Subplots are plotted the same way as in Figure 4.8.
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Figure S8: One example of S phase in the test set of 4,320 samples, which was misclassified by the network as
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P phase. Subplots are plotted the same way as in Figure 4.8.
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Figure S9: Cumulative number of P (red curve) and S (blue curve) phases predicted by DeepPhasePick
(pb_P_thl = pb_S_thl = 0.98), and triggered detections by the STA/LTA algorithm (green curve) on con-
tinuous seismic data recorded by the stations with available data in northern Chile. Last subplot shows the
combined results for all the stations in the network. Cumulative curves are plotted for the time interval between
two months before and two months after the 2007 M7.7 Tocopilla mainshock (magenta dashed line). An orange
dashed line indicates the time of occurrence of a M7.1 aftershock (2007-12-16) ~50 km south of the mainshock

epicenter.
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Figure S10: Cumulative number of P (red curve) and S (blue curve) phases predicted by DeepPhasePick
(pb_P_thl = pb_S_thl = 0.98), and triggered detections by the STA/LTA algorithm (green curve) on con-
tinuous seismic data recorded by the stations with available data in northern Chile. Last subplot shows the
combined results for all the stations in the network. Cumulative curves are plotted for the time interval be-
tween two months before and two months after the 2014 M8.1 Iquique mainshock (magenta dashed line). Two
additional orange dashed lines indicate the time of occurrence of the M6.7 foreshock (2014-03-16) and the M7.6
aftershock (2014-04-03) in the Iquique sequence.
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Figure S11: Cumulative number of P (red curve) and S (blue curve) phases predicted by DeepPhasePick
(pb_P_thl = pb_S_thl = 0.98), and triggered detections by the STA/LTA algorithm (green curve) on con-
tinuous seismic data recorded by the stations with available data in Albania. Cumulative curves are plotted for
the time interval between 2019-12-19 and 2020-02-24, during the aftershock sequence of the 2019 M6.4 Albania
earthquake. First 15 stations in the network are shown here.
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Figure S12: Continuation to Figure S11, showing results from remaining stations in the Albanian network.
Last subplot shows the combined results for all the stations in the network.
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Figure S13: Similar to Figure 4.22, for detected event e7 in Figure 4.21. Pick statistics for this event are
reported in Table S2.
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Figure S14: Similar to Figure 4.22, for detected event e8 in Figure 4.21. Pick statistics for this event are
reported in Table S3.

106



S3  Supplementary Information for Chapter 4 107
Table S1: Statistics of predicted picks shown in Figure 4.22 for event el in Figure 4.21.
station phase tons_prelim [s] tons_pred [s] tons_err (—,+) [s] pick_class  pb  pb_std
AB04 P 3.36 3.41 (0.010, 0.010) 0 0.635  0.207
AB04 S 2.40 2.37 (0.010, 0.010) 0 0.523 0.114
AB29 P 3.36 3.39 (0.010, 0.010) 0 0.611  0.198
AB29 S 2.40 2.43 (0.030, 0.020) 0 0.503  0.111
ABO06 P 3.36 3.30 (0.010, 0.050) 0 0.625  0.249
ABO06 S 2.40 2.42 (0.040, 0.030) 0 0.536  0.175
AB25 P 3.36 3.38 (0.040, 0.040) 0 0.507  0.253
AB25 S 2.40 2.42 (0.030, 0.020) 0 0.539  0.140
ABIS8 P 3.36 3.38 (0.020, 0.020) 0 0.580  0.208
ABIS8 S 2.40 2.37 (0.060, 0.020) 0 0.500 0.117
ABI19 P 3.36 3.41 (0.030, 0.020) 0 0.511  0.215
ABI19 S 2.40 2.41 (0.030, 0.020) 0 0.513  0.128
Table S2: Statistics of predicted picks shown in Figure S13 for event e7 in Figure 4.21.
station phase tons_prelim [s] tons_pred [s] tons_err (—,+) [s] pick_class  pb  pb_std
AB04 P 3.36 3.27 (0.020, 0.010) 0 0.547  0.171
AB04 S 2.40 2.46 (0.010, 0.010) 0 0.564  0.109
AB29 P 3.36 3.41 (0.020, 0.010) 0 0.591  0.176
AB29 S 2.40 2.38 (0.040, 0.040) 0 0.527  0.175
ABO6 P 3.36 3.32 (0.010, 0.020) 0 0.551  0.229
ABO06 S 2.40 2.44 (0.020, 0.020) 0 0.529  0.139
AB25 P 3.36 3.38 (0.010, 0.010) 0 0.561  0.152
AB25 S 2.40 2.36 (0.030, 0.020) 0 0.519 0.117
ABIS8 P 3.36 3.30 (0.020, 0.020) 0 0.556  0.154
AB18 S 2.40 2.48 (0.020, 0.040) 0 0.544  0.148
ABI19 P 3.36 3.45 (0.020, 0.010) 0 0.592  0.218
ABI19 S 2.40 2.45 (0.020, 0.020) 0 0.539  0.109
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Table S3: Statistics of predicted picks shown in Figure S14 for event €8 in Figure 4.21.

station phase tons_prelim [s] tons_pred [s] tons_err (—,+) [s] pick_class  pb  pb_std
AB04 P 3.36 3.49 (0.020, 0.010) 0 0.562  0.150
AB04 S 2.40 2.45 (0.020, 0.020) 0 0.515  0.120
AB29 P 3.36 3.38 (0.010, 0.020) 0 0.604  0.127
AB29 S 2.40 2.44 (0.120, 0.030) 1 0.514  0.117
ABO06 P 3.36 3.35 (0.030, 0.020) 0 0.524  0.157
ABO06 S 2.40 2.38 (0.100, 0.020) 1 0.521  0.138
AB25 P 3.36 3.49 (0.020, 0.010) 0 0.518 0.172
AB25 S 2.40 2.40 (0.070, 0.080) 1 0.510  0.180
ABI19 P 3.36 3.42 (0.020, 0.010) 0 0.521  0.153
ABI19 S 2.40 2.57 (0.080, 0.040) 1 0.506  0.145
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