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Femtosecond laser pulses can induce ultrafast demagnetization as well as generate bursts of hot-electron spin
currents. In trilayer spin valves consisting of two metallic ferromagnetic layers separated by a nonmagnetic
one, hot-electron spin currents excited by an ultrashort laser pulse propagate from the first ferromagnetic layer
through the spacer, reaching the second magnetic layer. When the magnetizations of the two magnetic layers
are noncollinear, this spin current exerts a torque on magnetic moments in the second ferromagnet. Since this
torque is acting only within the subpicosecond timescale, it excites coherent high-frequency magnons, as recently
demonstrated in experiments. Here, we calculate the temporal shape of the hot-electron spin currents using the
superdiffusive transport model and simulate the response of the magnetic system to the resulting ultrashort spin-
transfer torque pulse by means of atomistic spin-dynamics simulations. Our results confirm that the acting spin-
current pulse is short enough to excite magnons with frequencies beyond 1 THz, a frequency range out of reach
for current-induced spin-transfer torques. We demonstrate the formation of thickness-dependent standing spin
waves during the first picoseconds after laser excitation. In addition, we vary the penetration depth of the spin-
transfer torque to reveal its influence on the excited magnons. Our simulations clearly show a suppression effect
of magnons with short wavelengths already for penetration depths in the range of 1 nm, confirming experimental

findings reporting penetration depths below 2 nm.

DOI: 10.1103/PhysRevB.101.174427

I. INTRODUCTION

The first experimental observation of ultrafast demagne-
tization due to femtosecond laser excitation in nickel was
reported more than 20 years ago [1]. Since then, a variety of
research activities have focused on studying the magnetization
dynamics induced by intense, ultrashort laser pulses [2-4].
For the purpose of possible technological applications, espe-
cially, all-optical magnetization switching has become a topic
of current research [5-9]. However, the relevant microscopic
scattering processes and their interplay leading to ultrafast
demagnetization are still under debate [10-17]. Laser-induced
ultrafast demagnetization can also lead to spin-polarized cur-
rents of hot electrons [13,18-21]. Moreover, experiments have
suggested that a single pulse of hot-electron spin currents
without any assistance from laser heating induces ultrafast
demagnetization of an adjacent magnetic layer [22-25]. Im-
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portantly, it has been demonstrated [26,27] that femtosecond
spin currents carried by hot electrons can exert spin-transfer
torque (STT) [28-30] on a ferromagnet, leading to the rotation
of magnetization or the excitation of high-frequency magnons
[31] in a confined ferromagnetic structure.

Spin- and energy-resolved transport of laser-excited hot
electrons can be described by the model of superdiffusive
transport introduced by Battiato et al. [13,32]. The model
is based on semiclassical equations of motion for electrons
having nonthermal energies above the Fermi level and moving
in two spin channels. A strong asymmetry of the electron
velocities and lifetimes for the different spin channels in
ferromagnetic metals leads to spin-polarized currents, fol-
lowing electron excitation, which can propagate across the
nonmagnetic layer within femtoseconds and enter another
magnetic layer. Alternatively, spin-dependent transport of hot
electrons can also be described by a model based on the
Boltzmann equation [33,34], which leads to similar results. If
the magnetizations of both magnetic layers are noncollinear,
the transverse part of the spin current (with respect to the local
magnetization direction) will be absorbed by the ferromagnet
and transformed into an STT, inducing magnetization dynam-
ics [35-37]. These femtosecond STTs due to hot-electron spin
currents can trigger the excitation of high-frequency magnons,
which form standing spin waves in ultrathin magnetic layers
[31,38].
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Here, we present a theoretical study combining the su-
perdiffusive spin-transport and atomistic spin-dynamics sim-
ulations [39-41] to describe the ultrafast magnon excitation
in a metallic spin valve. We start by calculating the laser-
excited spin current in the first ferromagnetic layer via the
superdiffusive spin-transport theory [42] extended to describe
the spin current propagating through the spacer and consider-
ing perpendicular alignment of the two ferromagnetic layers
[37]. The excited spin current exerts STT on the second ferro-
magnetic layer, leading to magnetization dynamics within this
layer. We describe this magnetization dynamics with atom-
istic spin-dynamics simulations. Particularly, we discuss the
thickness-dependent magnon frequency spectra considering
atomistic spin dynamics with exchange interactions beyond
the nearest-neighbor approach determined by ab initio meth-
ods. Furthermore, it has been shown experimentally that the
components of the spin current transverse to the layer’s mag-
netization are not absorbed directly at the interface between
the nonmagnetic and magnetic layers; rather, they penetrate
into the magnetic layer up to a distance of few nanometers
[31,43]. Therefore, we consider the STT that not only acts
on the first atomic layer of the magnetic material but affects
also subsequent magnetic moments, taking into account the
gradual decrease of STT. Consequently, we study the STT
effect on the magnon spectra dependent on the considered
penetration depth of the transverse spin current. Last, we an-
alyze the time evolution of the frequency spectra. Our results
reveal further insights in how to tailor the trilayer composition
so that the desired magnonic contribution is enhanced.

This paper is organized as follows. In Sec. II we introduce
the methods we have used. We outline both the basic approach
to spin-torque calculation and atomistic spin-dynamics simu-
lations. In Sec. III we present a description and discussion of
our results. Finally, we conclude in Sec. IV.

II. METHODS

A. Femtosecond spin-transfer torque terms due to laser
excitation in FM1|NM|FM2 trilayers

In our calculations, we assume a spin-valve-type magnetic
trilayer of a structure FM1(d; )|NM(d)|FM2(d,), where FM1
and FM2 are metallic ferromagnetic layers and NM is a
metallic nonmagnetic spacer. The setup is illustrated in Fig. 1.
The numbers in the parentheses correspond to the widths of
the layers. In our calculations we have used d; = 16 nm and
d = 4nm, and we have varied the thickness d,. For both
ferromagnetic layers we consider the same material, Fe, while
the nonmagnetic spacer is assumed to be made of Cu. This
trilayer system is excited by an ultrashort laser pulse acting
on the left side of FM1. The demagnetization of FM1 leads to
a time-delayed spin current arriving at FM2.

Two different models were proposed previously to explain
the spin current reaching FM2. In one proposal the laser
heats quickly the electrons in FM1, which transfer their en-
ergy to the spin system, causing magnon excitations. These
magnons cause electronic spin accumulation in the nonmag-
netic layer, which thermally diffuses through NM to reach
FM2 [27,44,45]. The second proposal assumes that the laser
pulse excites spin-polarized electrons in FM1. These hot,

FM2

FIG. 1. Studied trilayer structure FM1|NM|FM2 made of two
ferromagnetic layers (FM1 and FM2) separated by a nonmagnetic
one (NM). Magnetic moments are presented by the red arrows. Layer
FM1, which is assumed to have perpendicular magnetic anisotropy,
is excited by a femtosecond laser pulse from the back of the device.
A spin current of hot electrons (green balls) generated in FMI1
is transmitted through the NM layer into FM2, where it exerts a
spin-transfer torque on the magnetic moments, causing spin-wave
excitations.

nonequilibrium electrons form a spin current that will quickly
move through the NM spacer layer to reach FM2, as described
by the superdiffusive transport model [13,32]. A major dis-
tinction between these two models lies in the timescale at
which the spin angular momentum is transferred. The fastest
superdifffusive electrons move with ballistic velocities from
FM1 to FM2. This is consistent with experiments that detect
an ultrafast injection and transfer of a spin current in metallic
heterostructures [19,24,46]. For example, spin injection from
a Ni layer into a Au layer was found to occur within about
40 fs [46]. On the other hand, the timescale of the initial
energy transfer process from hot electrons to hot magnons
in FMI1 has not been definitely established [3]. Hot magnons
have been detected in laser-excited Co at 700 fs [47], and they
are likely present already at earlier times [48]. Thus, while
the angular momentum transfer starting with hot magnons in
FM1 and the subsequent diffusion through the NM layer are
possible, this process is expected to occur on a timescale that
is slower than superdiffusive spin currents.

In this work, we describe the resulting spin- and energy-
resolved transport of hot electrons from the first ferromag-
netic layer through the normal metal using the superdiffusive
transport model [13,32] and describe the ensuing magnetiza-
tion dynamics of the second ferromagnetic layer by means
of atomistic spin-dynamics simulations (as outlined further
below).

The main input parameters for the superdiffusive transport
model are energy- and spin-dependent electron velocities
and lifetimes, which are obtained from ab initio calculations
[49,50]. We consider laser excitation of only the first fer-
romagnet. Consequently, the electrons from the d band are
excited into the sp band above the Fermi level. In our calcula-
tions, we have assumed 12 uniformly distributed energy levels
above the Fermi level with energy spacing Ae = 0.125¢eV.
Thus, electrons up to 1.5 eV above the Fermi level are excited
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FIG. 2. Laser fluence of the laser pulse and calculated superdif-
fusive hot-electron spin current j; per atom entering the second FM
as a function of time ¢. Note that the maximum of the laser pulse is
atfy = 150fs.

by the laser pulse. We assume that the laser pulse populates
the same electron density on each energy level. Moreover, the
same number of electrons is populated in both spin channels.

The initial time dependence of the hot-electron distribu-
tion is given by the temporal shape of the laser pulse. We
consider a Gaussian-shaped laser pulse, which dictates the
time-dependent number of electrons on each energy level €
in spin channel o € {*, |} being evolved as

PRV
exp{(t 1) } )

N, (t,z,€) = Ny(€,2) YV

1
A2

where N, (¢, 7) is the average number of excited electrons at
energy level € with spin o at position z. Moreover, fy stands
for the time-zero position of the pulse peak, while A is the
pulse width. Here, we have assumed A = 40fs. In order to
assume a finite penetration width of the laser ¢, we assume
that the average number of excited electrons exponentially
decreases with the distance from the left interface of the FM1
layer located at z = 0,

N, (e, z) = Ny exp (—z/¢), )

where Ny = N (0, €) is the same for all energy levels, € = ¢;.
In our calculations we have used Ny = 0.1 electron per level,
corresponding to a laser fluence F = 27.5mJcm~2 for Fe.
The laser penetration depth is assumed to be ¢ = 15nm in
all layers. Moreover, the model assumes both gradual relax-
ation of high-energy electrons toward lower energy levels and
generation of higher-order electrons due to elastic scattering
of itinerant electrons on atoms.

Importantly, we consider the FM2 magnetization being
perpendicular to the one of FM1. Furthermore, we suppose
that the spin current generated and polarized by the FM1 layer
is entirely absorbed by the FM2 layer and thus completely
transformed into spin-transfer torque. This gives rise to a
dampinglike spin-torque term exerted on magnetic moments.
For more details on the spin-torque calculation methodology,
see Ref. [37]. The resulting spin current entering the second
ferromagnet has a duration of about 500 fs, and its calculated
time-dependent profile is shown in Fig. 2.

B. Atomistic spin-dynamics simulations

For our spin-dynamics simulations we consider a thin iron
layer with a bec lattice. To describe the resulting dynamics
we solve the Landau-Lifshitz-Gilbert (LLG) equation numer-
ically [39],

E)mi
at

om;(1)

=— lm,-(t) x H;(t) + am;(t) x
ks ot

+ 2 mi(r) x mie) x 2 3)
S

for the (normalized) magnetic moments m; of each atom in
the iron layer at lattice position i. The equation consists of a
precessional term of the normalized magnetic moment m; =
M;/us around its effective field H; and a phenomenlogical
relaxation term with damping constant « [51]. Moreover, we
consider an additional dissipative term due to the femtosecond
STT that acts like an antidamping torque term. y = 1.76 x
10" T/s denotes the gyromagnetic ratio, u, = 2.2ug is the
absolute value of the magnetic moment of each atom, and
up = 9.27 x 10724 J/T is the Bohr magneton. The effective
field H;(¢) is given by the derivative of the Hamiltonian with
respect to the magnetic moment m;. We consider exchange
interaction beyond the nearest-neighbor approach and an
anisotropy including crystalline anisotropy, as well as a shape
anisotropy given by the demagnetization field, and use the
following Hamiltonian:

W= Y dmem,— Y [l ()]

i<j i

The exchange interaction between the magnetic moments at
lattice nodes i and j in iron can alternate in sign depending on
the distance of the two magnetic moments from each other.
The values of the exchange interactions and details of their
calculation can be found in Appendix A. The exchange inter-
action in metals like iron is long range. Consequently, a large
number of neighboring shells are required to achieve con-
verged spin-wave stiffnesses and magnon dispersions [52,53].
In our numerical simulations, we include exchange interac-
tions up to the sixth neighboring shell, which corresponds to
the distance of 2a, where a is the lattice constant. This allows
us to study the magnon dispersion in a realistic model for
a bigger range of g than we could using effective nearest-
neighbor interaction, and we can also include possible effects
of the confinement of the system on the dispersion of the
magnons. Note that exchange interactions at higher than sixth
neighbors might still be relevant and affect the dispersion
relation and the effective spin-wave stiffness. However, this
will cause only a minor shift of the frequencies of the standing
waves, but it will not have any further effect on the results.
We present numerical simulations based on a comparable
nearest-neighbor model with an effective nearest-neighbor
exchange coupling in Appendix B. In addition to a different
magnon dispersion, we observe a smaller-amplitude response
of the excited magnons in the case of only nearest-neighbor
interaction compared to the model with six neighboring shells.
We mention furthermore that we study here the resulting
magnetization dynamics due to the hot-electron spin currents
without temperature effects. We expect only smaller quantita-
tive changes of the dispersion and of the magnon lifetimes at
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room temperature, as confirmed experimentally, for example,
by Qin et al. [54].

Due to the small thickness of the second ferromagnet,
the demagnetization field due to the dipolar interaction of the
magnetic moments causes a shape anisotropy which aligns the
magnetic moment perpendicular to the z direction and, there-
fore, perpendicular to the first magnetic layer. We consider
a uniaxial anisotropy with a hard axis in the z direction and
an anisotropy constant of k, = —0.267 meV. Furthermore,
we consider a magnetic anisotropy aligning the magnetic
moments in the x direction with an anisotropy constant of
ky = 0.00697 meV. Both values are taken from experiments
by Razdolski et al. [31]. We initialize the magnetic moments
parallel to the x direction, which is taken as the magnetic
ground state of the system.

The magnetic system is excited by femtosecond STT,
which has been determined as described in the previous sec-
tion. In the following, we use the same STT in all performed
simulations, but we couple the STT in two different ways to
the magnetic system. In our first calculations, we consider that
the spin current j per atom is completely absorbed by the first
magnetic plane,

Tr(, 2) = js8(2), (%)

where z = 0 corresponds to the interface with the normal
metal. In further calculations, we assume spin-current absorp-
tion within a characteristic penetration depth Agpr [55-57],
and therefore, the STT acts on more than one atomic layer,
and its spatial dependence is given by

js Z
_ - ). 6
ZZGXP(_ z ) exp( )LSTT> (6)

AsTT

TR(t,2) =

We perform atomistic spin-dynamics simulations by numeri-
cal integration of the LLG equation using the Heun method
[39] with a time step of 0.1fs. We study bcc Fe layers with
a lattice constant a = 0.287 nm and different thicknesses d»
ranging from 4.3 to 10 nm. In addition, we consider a cross
section of 4.3 x 4.3nm? and apply periodic boundary con-
ditions in the x and y directions. These boundary conditions
are relevant to avoid effects in the x and y directions on the
spin-wave dispersion relation.

II1. RESULTS

To start with, we consider a femtosecond STT which is
absorbed completely at the interface of the second ferromag-
netic layer, and we use a thickness of d, = 25a = 7.2 nm of
the second ferromagnet. Using the atomistic spin-dynamics
simulations we study the resulting magnetization dynamics
during the first 100 ps. The ultrafast STT excites magneti-
zation dynamics, leading to the creation of high-frequency
magnons which propagate through the second magnetic layer
and can be reflected multiple times before decaying.

In Fig. 3 we show the spatial profile of the magnetization
components (m,(z)) and (m.(z)), which are transverse to
the initial magnetization direction for different times. Here,
(-) denotes the average over the plane perpendicular to the
propagation direction of the spin waves. At 500 fs one can see
that the signal is characterized by magnons with short wave-
lengths, and at 1 and 10 ps, one can clearly see that magnons
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FIG. 3. Calculated spatial profile of the transverse magnetization
components at different times.

with larger wavelengths become more relevant. This shows
that a broad spectrum of frequencies is excited within the first
picoseconds, but mainly, magnons with longer wavelengths
remain at times beyond 10 ps.

A. Formation of standing waves dependent on the thickness

We find furthermore that standing waves are formed due
to the small thickness of the ferromagnet. Only magnons with
wavelengths fitting into the system dimensions remain after a
few picoseconds (see below). For a further analysis, we study
the time evolution of the averaged magnetization of the last
layer (m(z = d,)) and perform a Fourier transformation in
the time domain to determine the appearing frequencies. The
magnetization components as a function of time are shown
in the top panel of Fig. 4. The magnetization components
oscillate very fast in the first picoseconds and then slower due
to lower frequencies involved afterwards. The system remains
excited over more than 100 ps. Note that the y component of
the magnetization oscillates stronger than the z component.
This is a consequence of the hard axis of the anisotropy in
the z direction, which suppresses larger amplitudes in that
magnetization direction.

In the bottom panel of Fig. 4, the corresponding magnon
amplitudes are shown as a function of frequency. To obtain the
amplitudes we perform a discrete Fourier transformation of
the last layer (z = d) of m*(z,1) = (my(z, 1)) +i(m;(z,1)).
We calculate the amplitude of the spin waves by considering
the Fourier-transformed m™* (), which is given by

Niteps
Y mt(d, t)exp (—iot,), (D)

n=1

m*(w) =
steps
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FIG. 4. Frequency spectra of the excited magnetization dynam-
ics. Top: Calculated averaged magnetization components (m,) and
(m;) of the last layer in the system. Bottom: Amplitude of the
magnons as a function of frequencies obtained by Fourier transfor-
mation of the magnetization data.

where Ngeps is the number of time steps and f, = ndt. The
frequency spectrum reveals several peaks in the amplitude
|m*(w)| corresponding to the frequencies of standing spin
waves. For the Fourier transformation we integrate over a
time interval of 100 ps with a step size of 1fs. Note that
especially after 10 ps lower frequencies dominate. Therefore,
the amplitudes of low frequencies are larger than those of
higher frequencies.

Standing spin waves are formed if the thickness of the
system is a multiple of the wavelength and the wave vector
g is given by

wn g
== ®)

where d; is the thickness of the second ferromagnet as intro-
duced before and n = 0, 1, 2, ... denotes the mode.

To obtain the corresponding frequencies, we determine
the dispersion relation of the magnons analytically. For that
purpose we consider the linearized LLG equation without
damping and solve it analytically, as described in Ref. [58].
The solution of the resulting coupled set of equations is plane
waves, and we obtain the Kittel formula [59]:

hf =hw = /[2ke + Jete (@)1[2ke — 2k, + Jeie(@)],  (9)

where Jei(q) denotes the total contribution of the exchange
interaction and is given by

6
ROED I (Nk — > 2cos(q- 0k>), (10)
k=1 [
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FIG. 5. Frequency of magnons as a function of the wave vector
for one-dimensional spin-wave propagation. The red points show
data obtained by our numerical simulations, whereas the red and
blue lines show the analytical model based on Eqgs. (9) and (11). The
dotted red line shows a fit to the data points.

where J; is the exchange interaction with the kth neighbor, Ny
is the number of kth neighbors, and 6y, are the distance vectors
between the magnetic moment and the considered neighbor.
We consider only spin-wave propagation in the z direction
with q = ¢,Z and simplify the expression by approximating
cosx ~ 1 — (1/2)x> — (1/24)x*. We can then obtain a sim-
plified expression for the exchange interaction

Jeit = Jotr,1(aq:)* + Jerr 2(ag:)*, (1D
with
Jesig = J1 + o +4J5 + 1104 + 4Js + 4Js, (12)

Jetr2 = 35(J1 + 412 4 16J5 + 83J4 + 16J5 + 64J5).  (13)

Making this approximation, we obtain for the effective ex-
change constants Jegr,; = 5.60meV and Jegrp = 1.42meV.
Note that especially, the value Jeg; is much smaller than
the nearest-neighbor exchange interaction (16.6 meV), which
underlines the importance of properly taking the long-range
exchange interactions into account. In Fig. 5 we show the
analytical model in comparison to numerical data obtained by
simulating monochromatic spin waves. The analytical result
including a ¢* term of the exchange shows good agreement
with the numerical data, whereas the approximation with
only ¢° clearly deviates. A numerical fit of the data with a
¢* term gives a much higher effective exchange constant of

Jehtlt_ lqz = 7.90 meV. The fitting curve can describe overall the
numerical results, but clear deviations occur. The obtained
fitting parameter strongly deviates from the analytical model,
demonstrating the importance of the higher-order corrections.
A fit including the ¢* term shows small deviations at higher
frequencies above 5 THz. In order to describe the dispersion
relation with high precision, we also fit the dispersion relation
and obtain small corrections for Jeg; and Jeg . The fitted
values are Jit | = 5.72meV and Jfif , = 1.14meV.

With this analytical model, we predict the spin-wave peak
positions using the conditions for standing waves given by
Eq. (8). In Fig. 6, we show the frequency spectra of the
excited spin waves up to frequencies of 2 THz for different
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FIG. 6. Magnon frequency spectra for different thicknesses of
FM2. The red lines show the spin-wave amplitude as a function
of the frequency obtained by Fourier transformation in time of the
magnetization of the last layer. The vertical black lines illustrate the
predicted peak positions for standing waves with wave vectors given
by Eq. (8).

thicknesses obtained by Fourier transformation as before.
For a thickness of d =4.3nm one sees a strong peak at
g = 0 (peak with the lowest energy) corresponding to the
ferromagnetic resonance (FMR) mode and four further peaks.
The FMR peak appears in all shown cases at the same fre-
quency, but by increasing the thickness of the film, the number
of peaks within the 2-THz range increases, as shown for
thicknesses of 7.2 and 10 nm. The predicted peak positions,
which are illustrated as perpendicular lines, are in very good
agreement with the numerically observed peaks. Note that the
amplitudes of the single frequencies decrease for increasing
thickness. The results demonstrate that in the time regime
of 100ps, only standing spin waves fulfilling Eq. (8) are
relevant. Frequencies up to a few terahertz are excited through
the femtosecond STT with a pulse duration of the excited
hot-electron spin current of about 500 fs.

B. Magnon distributions for different STT penetration depths

To provide a more realistic description of the spin dynam-
ics, we now consider a finite penetration depth of the trans-

The resulting spin-wave amplitudes as a function of the
frequency for different penetration depths are shown in Fig. 7.
For comparison, we also include the obtained data from zero-
penetration depth, Ay = 0. The positions of the peaks are the
same in all cases, as shown in Fig. 7, but the amplitudes for
each peak strongly differ. The amplitude of the FMR mode,
corresponding to g, = 0, is almost the same for the different
penetration depths. On the other hand, already at the first
spin-wave mode, the amplitude decreases significantly for the
highest penetration depth. The amplitude is reduced by more
than a factor of 2 for the largest value of Ag, and here, the
penetration corresponds to 1/5 of the wavelength of the mode.
For the largest penetration depth modes with n > 4 are no
longer excited. The penetration depth in that case is larger
than half of the wavelength of the magnon modes. For smaller
values of the penetration depth, higher modes are still excited,
but the amplitudes of the modes are strongly suppressed. A
large penetration depth leads to an almost complete suppres-
sion of magnons with a wavelength A < 2Agrr, but it can also
cause a reduction of the amplitudes of the magnons with a
wavelength larger than 2Agpr. Although these results are in
general agreement with experimental observations, they show
that the determination of an upper limit for Agypr is rather
difficult due to a strong suppression for all modes with finite
wavelength.

C. Time evolution of the frequency spectra

As the next step, we investigate the temporal evolution of
the excited magnon spectra. Instead of calculating a Fourier
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amplitude

q (1/a)

FIG. 8. Calculated spin-wave amplitudes as a function of wave
vector g, obtained by space-domain Fourier transformation at dif-
ferent times. For better visualization of the occurring peaks in the
Fourier spectrum, the data at different times are shifted upwards with
increasing time.

transformation in the time domain, we perform a Fourier
transformation now in the space domain and obtain the ampli-
tudes as a function of the wave vector of the modes. To obtain
the amplitudes we perform a discrete Fourier transformation
of m*(z, t) at different times t. We calculate the amplitude of
the spin waves by considering |m™* (g, t)|, which is given by
the Fourier transformation

N
1 .
m (g ) = - > mt (. 1) exp (ig:2), (14)
Z

where the summation runs over all layers in FM2. The results
are shown in Fig. 8. At 500 fs, a broad spectrum of frequencies
with mainly positive wave vectors propagates through the
system. At this time the spin waves have not reached the end
of the system, and therefore, no reflection has occurred. The
data show that the maximum in the amplitudes occurs around
g ~ 0.4(1/a), which corresponds to a frequency of about
1 THz. But also higher modes are excited with wave vectors of
q ~ 0.8(1/a) and a frequency of about 4.5 THz. At 1 ps, the
maximum amplitude is already shifted to lower wave vectors,
and the highest frequencies are reflected, and contributions
with negative wave vectors are forming. At later times, beyond
5 ps, one can clearly see that modes with lower wave vectors
start to dominate. Spin waves with larger wave vectors and,
consequently, higher frequencies decay strongly within the
first 10 ps. At 20 ps the distribution is almost symmetric due
to a dephasing of the coherent magnon excitation.

As the last step, we want to compare our observation to the
lifetimes of the frequencies due to Gilbert damping. To de-
scribe the frequency-dependent lifetimes due to Gilbert damp-
ing in the magnetic layer, we consider again the linearized
LLG equations, but now we include also the damping con-
tributions. We solve the coupled set of equations considering
plane waves as a solution of the system. The imaginary part of
the eigenvalue corresponds to the frequency of the system, and
the real value is linked to the frequency-dependent lifetime of
the spin waves. Note that the damping term also modifies the
frequency of the magnons, which, however, becomes relevant
only for larger damping values. The corrected frequency o’ is

1400
1200

—_
o
o
o

800
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400 H
200 |

lifetime 7 (ps)

0 025 05 075 1 125 15 175 2
frequency f (THz)

FIG. 9. Lifetime of magnons as a function of the frequency given
by Eq. (16) and a damping constant of o« = 0.01.

then given by

2
fia = \/ (Tiw)? - (1 faz) (err(@) + 2k — ko). (15)

The lifetime t of the spin waves due to Gilbert damping
describes an exponential decay of the modes after excitation
and is strongly frequency dependent. We obtain for the wave-
vector-dependent lifetime

1
H?T[Jeff(q) + ka + kz] '

The resulting lifetime as a function of the frequency is shown

in Fig. 9. Since we use a very small damping value of o =
0.01, we neglect the frequency correction and use (1 + a?)
~ 1. The lifetime for larger frequencies is significantly re-
duced compared to the lifetime of magnons with low frequen-
cies. Magnons with frequencies above 1 THz decay within
100 ps, whereas magnons with lower frequencies can have
lifetimes above 1 ns.

The long lifetimes for the spin waves with low frequencies
are in good agreement with our numerical observations and
also with experimental findings. But although spin waves
with higher frequencies have a much lower lifetime than the
ones with lower frequencies, our numerical results indicate an
even faster decay of these high-frequency modes. This could
possibly be explained by nonlinear processes, which would
even be enhanced at elevated temperatures.

t(q) = (16)

IV. CONCLUSION

To summarize, we have studied theoretically the laser-
induced excitation of terahertz (THz) magnons in Fe|Cu|Fe
trilayer structures with two ferromagnetic materials with per-
pendicular magnetization orientations. We used a theoretical
model to describe superdiffusive hot-electron transport lead-
ing to ultrafast spin-current transfer. These spin-current bursts
excite THz magnons in the adjacent second ferromagnet
via an ultrafast spin-transfer torque. We combine our model
with atomistic spin-dynamics simulations including exchange
interactions beyond nearest-neighbor interactions to describe
the magnetization dynamics in the second ferromagnet on
the atomic scale. In this way, we demonstrate the excitation
of THz magnons and the formation of standing spin waves
within the first picoseconds, as well as the larger lifetimes of
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the lowest-frequency modes, in good agreement with exper-
imental observations. We analyze how the magnonic distri-
bution depends on the penetration depth of the spin-transfer
torque, and we find a complete suppression of magnons
with wavelength A < 2Agrr. The decrease in magnon mode
population with frequency (studied within the first 100 ps) is
apparently significantly faster for longer penetration depths.
We confirm that STT penetration depth has to be smaller than
1 nm in order to achieve a significant occupation of the fourth
magnon mode, as observed experimentally [31].

Our results demonstrate that laser-induced hot-electron
spin currents offer a new pathway to excite high-frequency
magnons in the THz regime, which allows for new design con-
cepts for ultrafast spintronics and high-frequency magnonics
applications. The developed theory can be used to tailor the
trilayer composition so that the desired magnonic contribution
is enhanced.
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APPENDIX A: EXCHANGE INTERACTIONS

Exchange interaction constants can be calculated using
infinitesimal spin rotations [60] or frozen spin-wave total
energy calculations [53]. Here, we use the expression of
Liechtenstein et al. [60], which reads

1
Jij=—Imf dE/ dr/ dr’
T —0c0 Q; Q;

x By (r)G' (r, ¥/, EY) By (r)G' (¥, r,E7), (Al
where G° is the spin-dependent Green’s function with spin
o € {1, |}, Bx is the magnetic field from the exchange-
correlation potential, €2; is the volume of a sphere with the
center in the ith atom position, and E == limy_oF tic,
with i = /—1. Figure 10 shows the obtained exchange inter-
actions for a bee Fe lattice.

In our atomistic spin-dynamics simulations, we include
exchange interaction up to the sixth neighboring shell, which
corresponds to a distance of the neighbors of up to 2a.

1.2+® 1
E 1.0 “ g
g 08 % 1
£ 06F ]
= o04r 1
=
5 02+ B N 1

0.0 po—— '1’*‘.‘-[1'-- e

02—

I 15 2 25 3 35 4 45
atomic distance [a]
FIG. 10. Exchange interactions for the six nearest neighbors

calculated for a bcc Fe lattice as a function of the distance between
the atoms. The distance is given in units of the Fe lattice constant a.

APPENDIX B: COMPARISON TO THE
NEAREST-NEIGHBOR APPROXIMATION

In the following, we will compare our results presented
in Sec. Il A with a simplified model considering only an
effective nearest-neighbor approximation with an exchange
coupling of Jegr; = 5.60 meV and the same anisotropy con-
stants. We study a bcc lattice with a thickness of d, = 7.2 nm
and apply a femtosecond STT acting on the first layer of FM2.

The resulting spin-wave spectrum obtained by a discrete
Fourier transformation in the time domain over 100 ps is
shown in Fig. 11. The FMR peak occurs at the same frequency
as before, but the peak positions of the other standing waves
is shifted to lower frequencies compared to the results ob-
tained with the long-range interaction model [see Fig. 4(b)].
The differences in the frequencies of the two models
for the standing waves increase with increasing frequency due
to the differences in the magnon dispersion relations of the
two models. The black lines show the predicted peak positions
for the standing waves in the nearest-neighbor model, and

5
=Y ’
x 3| ]
°
2 2] |
2
EIJ\/\,/ ]
0 UL/L_A_/ N !
0 0.5 1 15 2

frequency f (THz)

FIG. 11. Magnon frequency spectra computed for the nearest-
neighbor approximation to the exchange interactions. The red line
shows the spin-wave amplitude as a function of the frequency ob-
tained by a time-domain Fourier transformation of the magnetization
of the last layer. The vertical black lines illustrate the predicted peak
positions for standing waves with wave vectors given by Eq. (8).
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the obtained results show good agreement with the analytical
predictions, when assuming only nonzero Jeg ;.

Furthermore, the amplitudes of the standing spin waves
strongly deviate between the two models. We obtain smaller
amplitudes in the nearest-neighbor model, indicating a weaker

response of the magnetic system to the ultrafast spin-current
excitation. This is plausible since the exchange interaction
with more distant neighbors allows for a faster penetration
of the excitation into FM2 and, consequently, the spin-wave
amplitudes can be increased.
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