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We consider the disorder-induced correction to the minimal condu ctance of an anisotropic two-
dimensional Dirac node or a three-dimensional Weyl node. An analytical expression is derived for
the correction �G to the conductance of a �nite-size sample by an arbitrary potent ial, without taking
the disorder average, in second-order perturbation theory. Considering a generic model of a short-
range disorder potential, this result is used to compute the prob ability distribution P(�G ), which
is compared to the numerically exact distribution obtained usi ng the scattering matrix approach.
We show that P (�G ) is Gaussian when the sample has a large width-to-length ratio, and study how
the expectation value, the standard deviation, and the probab ility of �nding �G < 0 depend on the
anisotropy of the dispersion.

I. INTRODUCTION

Dirac materials, such as the two-dimensional
graphene1 and three-dimensional Weyl semimetals,2

have been a continued focus of research in contemporary
condensed matter physics. In these materials conduction
and valence bands touch and disperse linearly at discrete
\nodal" points in reciprocal space. In the absence
of parallel conduction channels, the conductivity of a
Dirac semimetal has a characteristic minimum if the
Fermi energy is at the nodal point, which re
ects the
vanishing density of states at this energy. In the absence
of disorder, the minimum conductivity of graphene
is theoretically predicted to take the universal value
� min = e2=�h per valley and per spin direction3,4 (the
condition of approaching universality is further ex-
plained below), whereas� min = 0 for a Weyl semimetal
at zero temperature.5,6 The presence of disorder that
is su�ciently smooth and does not induce inter-node
scattering increases� min .6{10

An experimental conductivity measurement, as well as
a theoretical calculation using the Landauer-B•uttiker ap-
proach, involves systems of �nite size and addresses the
conductanceG rather than the conductivity � . An ide-
alized geometry consists of a graphene sheet of widthW
and length L with the Fermi energy near the Dirac point
(or a Weyl semimetal of cross sectionW 2 and length
L), coupled to source and drain reservoirs, see Fig. 1 for
a schematic picture. The reservoirs consist of a highly
doped and hence highly conductive version of the same
material.3 Without disorder, neglecting interactions, and
with the Fermi energy precisely at the nodal point, for a
two-dimensional Dirac semimetal one then has the mini-
mal conductance3,4

Gmin ; 2d =
e2

h
W
�L

(1)

per node, which can be easily translated to a conductivity
using the relation G = �W=L . In three dimensions one

�
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FIG. 1. Schematic of the geometry considered in this work.
The graphene (or Weyl semimetal) sample of length L and
width W (or cross section W 2) is sandwiched between two
highly conductive leads. The Fermi energy is at the nodal
point inside the sample.

has5,6

Gmin ; 3d =
e2

h
W 2 ln 2
2�L 2 ; (2)

which corresponds to � min = 0 in the thermodynamic
limit W , L ! 1 . The derivation of Eqs. (1) and (2)
requires that W � L and assumes that the dispersion
at the nodal points is isotropic and has no tilt. In the
opposite limit W . L the conductanceG depends on the
transverse boundary conditions and no universal mini-
mum conductance can be obtained.3 If the Fermi energy
is not at the nodal point, G is proportional to ( kF W )d� 1

in the absence of disorder and interactions, withkF 6= 0
the Fermi wavevector measured from the nodal point,
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and d the system dimension, which is a hallmark of bal-
listic transport with a formally in�nite conductivity.

Numerical and analytical calculations for an isotropic
nodal point in two or three dimensions show that the
averagevalue of the conductance atkF = 0 increases in
the presence of disorder,11 whereas the conductivity be-
comes �nite for kF 6= 0. Here, the disorder is taken to
be smooth enough that it scatters carriers within a node
only, whereas inter-node scattering remains suppressed.
In two dimensions, the disorder-induced increase of the
conductance at the nodal point leads to an increase of the
minimum conductivity, consistent with scaling theory, 7{9

whereas in three dimensions the conductivity at the nodal
point is believed to remain zero up to a critical disorder
strength.6,10,12{18 (Rare disorder 
uctuations may, how-
ever, lead to a small residual conductivity even at weak
disorder strengths.19,20 )

In this article we address the full probability distribu-
tion of the nodal-point conductance in the geometry of
Fig. 1, focusing on the regime of weak disorder, in which
G is still numerically close to the quasi-ballistic limits
Eq. (1) or (2), without the assumption that the dispersion
is isotropic. (We do not consider tilted dispersions,21{25

however.) The standard diagrammatic theory of conduc-
tance 
uctuations, which predicts a universal value for
the second moment of the distribution depending only
on symmetry and dimensions,26,27 is not applicable at
the nodal point kF = 0, since it requires the limit of kF
large compared to the inverse mean-free path. Never-
theless, the same universal value has been reported in
numerical studies at the Dirac point in strongly disor-
dered graphene,28,29 and also near the nodal point in
the di�usive phase of the Weyl semimetal,30 until im-
purity scattering between the Weyl nodes causes them
to annihilate. In comparison, the quasi-ballistic regime
of weak disorder, which we consider here, has received
less attention. Analytical and numerical results exist
for the average conductance in the isotropic case,11 as
well as for the disorder-averaged full-counting statistics
in two dimensions,31 but it is not well understood how
the nodal-point conductance 
uctuates across di�erent
disorder realizations.

What motivated this study in particular is the ques-
tion whether the presence of isotropic short-range disor-
der may actually lead to a nodal-point conductance that
is less than the quasi-ballistic minimal conductance of
Eqs. (1) and (2). Based on numerical simulations for
an isotropic three-dimensional Weyl semimetal, two of
us, together with Bergholtz, had conjectured that this
does not happen.10 (The result of numerical simulations
similar to those of Ref. 10 is shown in Fig. 2 for a two-
dimensional Dirac node and for a three-dimensional Weyl
semimetal.) The perturbative analysis we present here
show that this conjecture was not correct, although, as
we show below, for an isotropic dispersion the probabil-
ity of such a rare disorder 
uctuation is so small that it
is not expected to show up in numerical simulations in
the parameter regimeW & L in which the conductance

no longer depends on the transverse boundary conditions.
When the dispersion itself becomes anisotropic, the prob-
ability of the nodal-point conductance being less than the
minimal conductance can increase signi�cantly.
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FIG. 2. Numerical calculation of the distribution of the con-
ductance G = ( e2=h)g of a two-dimensional Dirac node (a)
and a three-dimensional Weyl node (b) with an isotropic dis-
persion and isotropic short-range disorder. The dimensionless
disorder strength K and the number N of disorder realizations
are K = 1, N = 9696 (red) and K = 0 :5, N = 14827 (gray)
in (a) and K = 2, N = 3683 (red) and K = 0 :5, N = 3572
(gray) in (b). The aspect ratio and system size ratio are
W=L = 10, L=� = 20 in (a) and W=L = 5, L=� = 12 (b),
where � is the correlation length of the random potential, see
Eq. (32) for the de�nitions of K and � . The conductances
Gmin ;2d and Gmin ;3d of quasi-ballistic systems are represented
by dashed blue lines. Numerical calculations are performed
using the numerical scattering approach of Refs. 6 and 7. For
the data shown here, there is not a single disorder realization
with G < G min .

The remainder of this article is organized as follows:
In Sec. II we brie
y review the derivation of Eqs. (1) and
(2) using the Landauer-B•uttiker approach for the geom-
etry of Fig. 1 and their generalization to an anisotropic
dispersion. Section III extends the calculation of the con-
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ductance at the nodal point to the second order pertur-
bation theory in a scattering potential. Using a generic
model of short-range, isotropic disorder, Sec. IV then uses
the results of Sec. III to obtain the conductance distribu-
tion in perturbation theory, which we compare with the
numerically exact results obtained using the scattering
matrix approach of Refs. 6 and 7. In particular, we cal-
culate the probability that the presence of disorder leads
to a decrease of the nodal-point conductance below the
quasi-ballistic values of Eqs. (1) and (2). We conclude in
Sec. V.

II. CONDUCTANCE IN THE
QUASI-BALLISTIC LIMIT

Following Refs. 3 and 6, we consider a junction con-
sisting of a d-dimensional Dirac material, connected to
ideal leads. The junction has width W and length L , see
Fig. 1. We neglect inter-node scattering and allow for
an anisotropic dispersion at the nodal point, where we
assume that the current 
ow is along one of the principal
axes. With these assumptions, the junction is described
at low energies by the Dirac Hamiltonian

H =
�

vx px � x + vy py � y ; d = 2 ;
vx px � x + vy py � y + vzpz � z ; d = 3 ; (3)

for 0 < x < L , where vx;y;z are the Fermi velocities
along the three principal directions, � is the vector of
Pauli matrices, and we take periodic boundary conditions
in the transverse directions. To calculate the minimal
conductance of a quasi-ballistic junction, the junction is
connected to ideal leads forx < 0 and x > L , which are
described by the same Hamiltonian, but with vy = vz =
0.

Flux-normalized scattering states of the Hamiltonian
Eq. (3) that are incident from the left are of the form

 in
k ?

(r ) =
ei k ? � r ?

p
vx W d� 1

t (0)
k ?

e� ? (x � L ) j+ i ; (4)

for 0 � x � L , where

t (0)
k ?

=
1

cosh�k? L
; �k? =

s
k2

y v2
y + k2

z v2
z

v2
x

(5)

is the transmission amplitude of the quasi-ballistic junc-
tion. Further we abbreviated r ? = yey for d = 2 and
r ? = yey + zez for d = 3,

� ? =
�

vy ky � z=vx ; d = 2 ;
(vy ky � z � vzkz � y )=vx ; d = 3 ; (6)

and

j�i =
1

p
2

�
1

� 1

�
: (7)

The transverse wavevectork? = ky ey (k? = ky ey + kzez )
has componentsky;z = 2 �m y;z =W for d = 2 ( d = 3), with
my and mz integer.

From the Landauer formula, one then obtains the di-
mensionless minimal conductance

gmin �
h
e2 Gmin =

X

k ?

jtk ?
j2 (8)

per node. In general,gmin depends onL and W and on
the choice of the boundary conditions in the transverse
direction. The dependence on the boundary conditions
disappears and the dependence onL and W simpli�es
in the limit W � L , for which one �nds the minimal
conductance3,5,23

gmin ; 2d =
W vx

�Lv y
; (9)

gmin ; 3d =
W 2v2

x ln 2
2�L 2vy vz

; (10)

per node, which simpli�es to Eqs. (1) and (2) in the limit
of an isotropic dispersion,vx = vy = vz = v.

III. PERTURBATION THEORY

We now consider a potential U(r ) with support 0 <
x < L , and calculate its e�ect on the transmission matrix
using standard perturbation theory:

tk ? ;k 0
?

= t (0)
k ?

� k ? ;k 0
?

+ �t (1)
k ? ;k 0

?
+ �t (2)

k ? ;k 0
?

+ : : : (11)

where t (0)
k ?

is given by Eq. (5). The leading order correc-
tion reads

�t (1)
k ? ;k 0

?
= �

i
~

h out
k ?

jUj in
k 0

?
i ; (12)

where  in
k ?

is a 
ux-normalized scattering state with
incoming-wave boundary conditions, see Eq. (4), and
 out

k ?
is a 
ux-normalized scattering state with outgoing

wave boundary conditions,

 out
k ?

(r ) =
ei k ? � r ?

p
vx W d� 1

t (0)
k ?

e� ? x j+ i (13)

for 0 � x � L . The second-order correction is

�t (2)
k ? ;k 0

?
= �

i
~

h out
k ?

jUGUj in
k 0

?
i ; (14)

where Gk ?
(x; x 0) is the Green function of the quasi-

ballistic junction,

Gk ?
(x; x 0) = �

it (0)
k ?

~vx

�
e� ? x j�ih�j e� ? (x 0� L ) ; x < x 0;
e� ? (x � L ) j+ ih+ je� ? x 0

; x > x 0:
(15)

Explicitly, we thus �nd
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�t (1)
k ? ;k 0

?
= �

i
~vx

t (0)
k ?

t (0)
k 0

?

Z L

0
dxUk 0

? � k ?
(x)h+ je� ? x e� 0

? (x � L ) j+ i ; (16)

�t (2)
k ? ;k ?

=
1

~2v2
x

(t (0)
k ?

)2t (0)
k 0

?

Z L

0
dxdx0Uk 0

? � k ?
(x)Uk ? � k 0

?
(x0)

�
h
� (x � x0)h+ je� ? x e� 0

? (x � L ) j+ ih+ je� 0
? x 0

e� ? (x 0� L ) j+ i

� � (x0 � x)h+ je� ? x e� 0
? x j�ih�j e� 0

? (x 0� L ) e� ? (x 0� L ) j+ i
i

; (17)

where

Uq (x) =
1

W d� 1

Z
dr ? ei q �r ? U(r ): (18)

These equations can then be inserted into the Landauer
formula to obtain the conductance. In the following we
present the results ford = 2 and d = 3 separately.

A. Dirac node

In the Dirac node cased = 2, the second-order cor-
rection to the conductanceg(2) has a particularly simple
form in the large aspect ratio limit W=L � 1:

g(2) =
v2

x

2~2v4
y L 4

Z L

0
dxdx0

Z
dydy0U (r ) U (r 0)

�
X

�

� (y � y0)2

cosh �v x (y � y0)
vy L � cos � (x � x 0)

L

: (19)

An alternative expression, which does not require the
limit W=L � 1, can be obtained by expanding the im-
purity potential U(r ) as a sine series in the longitudinal
(x) direction,

U(r ) =
X

q

U(q)e� i q ? � r ? sinqx x; (20)

where qx = �m x =L, mx being a positive integer. The
Fourier components contribute independently to the con-

ductance at the second order,

g(2) =
1

4~2vx vy

W
L

X

q

� 2

q2
x

F
�

qx L
�

;
�v y qy

vx qx

�
jU (q)j2 ,

(21)
where the dimensionless Fourier coe�cients are

F =
vy q2

x L 2

vx � 2W

X

k y

X

�

(�ky + �k�
y ) sinh[(�ky + �k�

y )L ]

(�ky + �k�
y )2 + q2

x

�
1 + sinh( �ky L) sinh(�k�

y L) cosh[(�ky � �k�
y )L ]

cosh3(�ky L) cosh3(�k�
y L)

:

(22)

Here �ky was de�ned in Eq. (5) and we abbreviated

k�
y = ky � qy ; �k�

y =
k�

y vy

vx
: (23)

Note that the �rst argument of the Fourier coe�cient F
is the integer mx that labels qx . The Fourier component
F (mx ; t), with t = �v y qy =vx qx , has a well-de�ned limit
when W=L ! 1 and either mx ! 1 or t ! 1 ,

F (mx ; t)jW=L !1 ; m x or t !1 =
4
�

� 2 � t2

(� 2 + t2)2 . (24)

B. Weyl node

In three dimensions there is no closed-form expression
for g(2) using the real-space representation of the poten-
tial U. Instead, expanding the potential U(r ) as in Eq.
(20), we �nd

g(2) =
1

4~2vy vz

W 2

L 2

X

q

� 2

q2
x

jU (q)j2

� F
�

qx L
�

;
�v y qy

vx qx
;

�v zqz

vx qx

�
, (25)

where the dimensionless Fourier coe�cientsF read
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F =
q2

x L 2

8� 2

Lv y vz

W 2v2
x

X

k ?

X

�

(�k? � �k�
? ) sinh[(�k? � �k�

? )L ]

[q2
x + ( �k? � �k�

? )2] cosh3(�k? L) cosh3(�k�
? L)

 

1 �
v2

y ky k�
y + v2

z kzk�
z

v2
x
�k?

�k�
?

!

�
�

3 + cosh(2�k? L) + cosh(2�k�
? L) � cosh[2(�k? � �k�

? )L ]
	

: (26)

The rescaled transverse momentum�k? was de�ned in Eq.
(5). We further abbreviated k�

y;z = ky;z � qy;z and

�k�
? =

1
vx

q
v2

y (ky � qy )2 + v2
z (kz � qz )2: (27)

In the limit W=L � 1, the dependence on the transverse
momentum q? is through the rescaled magnitude

�q? =

s
v2

y q2
y + v2

z q2
z

v2
x

(28)

only. De�ning t = � �q? =qx , then if one also takes the
limit mx ! 1 or t ! 1 one �nds the simple limiting
value

F (mx ; t)jW=L !1 ; m x or t !1 =
2 ln 2

�
2� 2 � t2

(� 2 + t2)2 : (29)

It is worth mentioning that Eqs. (24) and (29) are
consistent with previous results for anisotropic Dirac or
Weyl nodes.23 In the case of an isotropic two-dimensional
Dirac node with vx = vy = v, the periodic potential
U = U0 sin(qx x) cos(qy y) couples the states labeled by
momentum p = px ex + py ey to those labeled by mo-
menta p + sx qx ex + sy qy ey , with sx;y = � 1. Using
polar coordinates, p = p(cos� ex + sin � ey ) and q =
q(cos� ex + sin � ey ), with q2 = q2

x + q2
y , for p � q there

is an anisotropic correction �v (� ) to the Fermi velocity
v, de�ned by the dispersion relation "(p) = [ v + �v (� )]p.
Up to second order inU, we �nd

�v (� ) = �
U2

0

2~2vq2 sin2(� � � ): (30)

Combining this velocity renormalization with the expres-
sion (9) for the conductivity for an anisotropic Dirac
node,23 one immediately reproduces Eq. (24),

g =
W
L

1
�

v + �v (0)
v + �v

�
�
2

�

�
W
L

1
�

 

1 +
q2

x � q2
y

q4

U2
0

2~2v2

!

: (31)

The expression in the case of a three-dimensional Weyl
node, Eq. (29), is similarly reproduced.

The perturbation-theory expressions Eqs. (19), (21)
and (25) constitute the central results of this work. We
emphasize that they are valid for an arbitrary weak po-
tential U and do not involve a disorder average.

In Fig. 3 we show the Fourier coe�cient F as a function
of t = � �q? =qx and for various values ofmx = qx L=� . The
�gure, as well as the asymptotic expressions Eqs. (24)
and (29) for the limit mx ! 1 , shows that F is posi-
tive for small t and becomes negative ift is su�ciently
large. It follows that, a priori , there is no de�nite sign
for the correction g(2) to the dimensionless conductance.
In particular, a well-chosen periodic \disorder potential"
U(r ) / sin(qx x) cos(qy y) in two dimensions results in a
negative correction g(2) if vy qy =vx qx is su�ciently large.
A similar conclusion applies tod = 3. Finding the magni-
tude and sign of the conductance correction for a generic
disorder potential requires a statistical analysis involving
the sum of a large number of Fourier components, which
is performed in the next Section.

�

�

� � � �
� � � �
� � � �
� � � ��
� � ��

� � � �
� � � �
� � � �
� � � ��
� � ��

�
��

�
��

��
�

�
�

�
��

�
��

��
�

�
�

FIG. 3. Fourier coe�cients Eqs. (22) and (26) for the second
order correction to conductance in the limit W=L � 1 in two
dimensions (a) and three dimensions (b), respectively. Solid
curves correspond to mx = 1, 2, 3, and 10; dashed curves
describe the thermodynamic limit mx ! 1 calculated from
Eqs. (24) and (29).
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IV. CONDUCTANCE FLUCTUATIONS

We now apply the general results of Sec. III to a ran-
dom potential U(r ). We take U(r ) to have a Gaussian
distribution with zero mean and with two-point correla-
tion function

hU(r )U(r 0)i =
~2K

� 2(2� )d=2
e�j r � r 0j2 =2� 2

�
�

vx vy ; d = 2 ;
vy vz ; d = 3 ; (32)

where K is the dimensionless disorder strength and�
is the correlation length32. Disorder potentials of this
form have frequently been used in numerical simulations
of the conductance of disordered Dirac and Weyl nodes,
see,e.g., Refs. 6 and 7.

Upon Fourier transforming the short-range Gaussian
disorder model Eq. (32) according to Eq. (20) we �nd

U(q) = r (q)e� q2 � 2 =4

r
K ~2

LW d� 1

� p vx vy ; d = 2 ;
p vy vz ; d = 3 ; (33)

where ther (qx ; q? ) = r (qx ; � q? ) � are (otherwise) mutu-
ally independent standard normal variates each obeying
a zero-mean normal distribution with variance

hjr (qx ; q? )j2i = 2
�

1 �
1
2

� q ? ;0

�
: (34)

We �rst check the range of validity of our perturba-
tion theory results by randomly generating a disorder
potential pro�le from Eq. (33) with K = 1 and sub-
sequently rescale the random potential with

p
K . A

comparison between the second-order result of Eqs. (21),
(22), (25), and (26) and a numerically exact calculation
using the method of Ref. 7 is shown in Fig. 4. For all
disorder realizations we have generated, the quadratic
scaling of g(2) with the strength of the disorder poten-
tial holds for K . 0:1 in a two-dimensional system with
L=� = 10, and K . 1 in a three-dimensional system with
L=� = 6. In two dimensions, we �nd that the range of
validity of our second-order perturbation theory shrinks
as L=� grows (data not shown); in other words, for a
given K , higher order corrections become progressively
more important for larger L=� . This is consistent with
the renormalization group analysis of the Gaussian disor-
der in graphene11,33 : the leading fourth-order or O(K 2)
correction depends logarithmically on the infrared cut-
o� (in this case the length L), and su�ciently large L=�
eventually drives the system away from the quasi-ballistic
regime into the di�usive regime. On the other hand, in
three dimensions, the disorder potential is an irrelevant
perturbation 34{38 and its strength scales as�=L ; thus it is
possible that our perturbation theory applies for K . 1
even in the thermodynamic limit.

We now turn to the cumulants of the probability dis-
tribution of g(2) . Inserting Eq. (33) into Eq. (21) or (25),

0

1

2

3

 (
g

ex
ac

t
g

0
)/

g
(2

)

10 1 10 0 10 1

K

0.0

2.5

5.0

7.5

 (
g

ex
ac

t
g

0
)/

g
(2

)

�	�B�


�	�C�


FIG. 4. Comparison of the numerically evaluated exact
disorder-induced correction gexact � g0 to the dimensionless
conductance and the same quantity g(2) in second-order per-
turbation theory. Each curve corresponds to a single real-
ization of the random potential U(r ) according to Eq. (33)
with K = 1, rescaled by a factor

p
K to reveal the depen-

dence on the disorder strength. Panel (a) is for an isotropic
two-dimensional Dirac node with L=� = 10 and W=L = 10;
panel (b) is for an isotropic three-dimensional Weyl node with
L=� = 6 and W=L = 5. Numerical calculations were per-
formed using the approach of Ref. 7; perturbation theory
results are given by Eqs. (21) and (22) for d = 2 (a) and
Eqs. (25) and (26) for d = 3 (b).

we have

g(2) =
1
2

X

q

V(q)jr (q)j2; (35)

where

V (q) =
K� d� 2

2L d

� 2

q2
x

e� q2 � 2 =2F
�

qx L
�

;
�v y qy

vx qx
;

�v zqz

vx qx

�
,

(36)

understanding that the (third) qz argument is absent in
two dimensions. It is now straightforward to �nd the �rst
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few cumulants of the probability distribution of g(2) ,

� 1 � h g(2) i

=
X

q

V(q)
�

1 �
1
2

� q ? ;0

�
; (37a)

� 2 � h (g(2) � h g(2) i )2i

= 2
X

q

V(q)2
�

1 �
1
2

� q ? ;0

�
; (37b)

� 3 � h (g(2) � h g(2) i )3i

= 8
X

q

V(q)3
�

1 �
1
2

� q ? ;0

�
; (37c)

� 4 � h (g(2) � h g(2) i )4i � 3h(g(2) � h g(2) i )2i 2

= 48
X

q

V(q)4
�

1 �
1
2

� q ? ;0

�
: (37d)

Below we evaluate these expressions in the limit� � L
that the correlation length of the disorder potential is
much smaller than the sample length. We also take the
limit of large aspect ratio, W=L � 1, which allows us to
replace the summations overqy and qz by integrals, while
keepingqx �nite.

A. Dirac node

In the case of the two-dimensional Dirac node, the
expectation value hg(2) i is most easily calculated start-
ing from the real-space expression Eq. (19). Due to the
short-range correlations, onlyjr � r 0j . � contributes sig-
ni�cantly, so we can Taylor-expand some of the cosines
and hyperbolic cosines in the integrand and neglect the
x + x0 term entirely:

hg(2) i �
W v2

x

� 2~2v4
y L 2

Z L

0
dxdx0

Z
d�y

K ~2vx vy

2�� 2

�
v2

y �y 2

v2
x �y 2 + v2

y (x � x0)2 e� [( x � x 0)2 + �y 2 ]=2� 2

�
W
L

K
� 2

v2
x

vx vy + v2
y

. (38)

In the second line we have switched to polar coordinates
and performed the radial and angular integrals sepa-
rately.

The same result can also be obtained using the Fourier
representation Eq. (21) of g(2) . We brie
y discuss this
calculation, too, as it requires some care and because
we will need the Fourier representation to calculate the
higher cumulants of g(2) and to calculate g(2) in the case
of the Weyl node. We �rst notice that it is possible to
replace the coe�cient F in Eq. (21) with its asymptotic
expression Eq. (24), so that in the thermodynamic limit

W; L ! 1 ,

hg(2) i �
2KW
�L 2

X

qx

Z 1

�1

dqy

2�

v2
x (v2

x q2
x � v2

y q2
y )

(v2
x q2

x + v2
y q2

y )2 e� q2 � 2 =2:

The di�erence betweenF and its asymptotic approxima-
tion Eq. (24) is signi�cant only when qx L=� � 1 and
�v y qy =vx qx � 1, but even in this case Eq. (24) correctly
estimates the order of magnitude ofF , as shown in Fig. 3.
Because the dominant contribution to hg(2) i comes from
qx . 1=� and qy . 1=� , we expect the error caused by
the replacement to beO(� 2=L2).

It might be tempting at this point to replace the sum-
mation over qx by an integral and perform the integrals
over qx and qy together in polar coordinates. However,
this ignores the fundamental anisotropy of the large-
aspect ratio limit W=L � 1, which requires taking the
limit W ! 1 �rst and then the limit L ! 1 ; thus
qy is e�ectively continuous, whereas qx is not, and one
need to calculate theqy integral under the assumption
of a nonzero qx . This is achieved by the substitution
� = vy qy =vx qx . Integrating by parts, we �nd

hg(2) i �
KW
� 2L 2

v3
x

v3
y

X

qx

qx � 2e� q2
x � 2 =2

�
Z 1

�1
d�

� 2

1 + � 2 e� v2
x � 2 q2

x � 2 =2v2
y : (39)

At this point we may replace the summation over qx by
an integral and perform the qx -integral, before the � -
integral. This reproduces Eq. (38).

For the isotropic dispersion vx = vy , one recovers the
result of Refs. 11 and 31 thathg(2) i = ( W=L)K=(2� 2).
Here the weak anti-localization correction to bulk con-
ductivity seen in the numerical study of Ref. 7 and re-
sponsible for the scaling 
ow to the di�usive regime31 in
the limit L=� ! 1 is absent, since we have limited our-
selves to the ballistic regime by considering no more than
two scattering events. Figure 5a shows (L=W ) hg(2) i =K
as a function of the dispersion anisotropyvy =vx . The av-
erage disorder correctionhg(2) i approaches the limiting
value for W=L � 1 and L=� � 1 from below asW=L or
L=� increases, respectively. For a �xed aspect ratioW=L,
the average correction deviates from the limiting value at
W=L � 1 more strongly for larger values ofvy =vx .

The cumulants � n with n � 2 behave quite di�erently
from the mean: The dominant contributions to these
cumulants comes from Fourier components with small
qx , i.e. with longitudinal wavelengths comparable to the
length L . To see this, we note that, after replacing the
summation over qy by an integral and performing the
integration, the summand in Eqs. (37b){(37d) diverges
for small qx and is proportional to W L � 2n q1� 2n

x vx =vy ,
so that � n / W vx =Lvy if n � 2. To verify this scaling,
in Fig. 5b we show the quantity (Lv y � 2=W vx )1=2 as a
function of the ratio vy =vx for two di�erent values of the
aspect ratio W=L and also in the limit W=L � 1. As ex-
pected (Lv y � 2=W vx )1=2 is almost independent ofvy =vx



8

FIG. 5. (a) and (b): Normalized expectation value
(L=W )hg(2) i =K (a) and normalized standard deviation
(Lv y � 2=W vx )1=2=K (b) of the second-order disorder-induced
conductance correction g(2) as functions of vy =vx for an
anisotropic Dirac node with an isotropic Gaussian random
potential of dimensionless strength K and correlation length
� . The data points correspond to W=L = 10 (red squares)
or 20 (blue circles) and L=� = 20; the solid lines represent
the limit W=L ! 1 at L=� = 20. The dashed black line in
panel (a) represents the simultaneous limit W=L, L=� ! 1 of
Eq. (38). (c): Probability that g(2) < 0 as a function of vy =vx

for L=� = 20, W=L = 10 (red squares) and W=L = 20 (blue
circles). (d): Probability distribution of g(2) for K = 0 :1,
L=� = 10, W=L = 10 and vy =vx = 1, 1 :8 and 2:4 (top to
bottom), calculated by Fourier transforming the characteris-
tic function from the perturbation theory. Also shown are
the normalized histograms of the disorder correction to con-
ductance obtained from the scattering matrix approach with
919, 3593 and 5480 disorder realizations respectively. For ref-
erence,g(2) = 0 is marked by vertical lines.

in the limit W=L � 1. In the limit L=� ! 1 , we �nd
(Lv y � 2=W vx )1=2=K � 0:0484. The increase withK for
K . 1 is consistent with numerical simulations of Ref.
28.

Deviations from a Gaussian form of the probability
distribution of g(2) are characterized by the skewness
� 3=� 3=2

2 and the excess kurtosis� 4=� 2
2, which scale pro-

portional to ( Lv y =W vx )1=2 and (Lv y =W vx ), respectively.
The fact that the skewness and the excess kurtosis are
suppressed by powers ofL=W suggests the distribution
of g(2) approaches a normal distribution in the limit
W=L � 1. This provides an estimate of the probability
to �nd a negative disorder-induced conductance correc-

tion,

P(g(2) < 0) �
1
2

erfc
�

� 1p
2� 2

�

�
1
2

erfc

"

c
�

L
�

� s
W
L

vx

vy

vx

vx + vy

#

; (40)

where erfc(x) is the complementary error function with
an asymptotic expansion erfc(x) � e� x 2

=
p

�x in the limit
x ! 1 and c(L=� ) is a function that depends weakly on
its argument, taking the value c � 1:48 for L=� ! 1 .
We conclude that the probability of disorder reducing the
conductance is exponentially suppressed as a function of
the aspect ratio W=L in the limit W=L ! 1 , although it
increases rapidly as a function ofvy =vx . Figure 5c shows
P

�
g(2) < 0

�
as a function of vy =vx for L=� = 20 and

di�erent aspect ratios W=L. While the probability for
g(2) < 0 is vanishingly small for an isotropic dispersion
| P(g(2) < 0) � 10� 5 when W=L = 10 | we also
see that it can become signi�cantly larger when vy =vx
increases, becoming of order of 0:1 when vy =vx & 3. In
other words, it becomes more likely for isotropic disorder
to reduce the conductance below the quasi-ballistic value
(9) as the Dirac cone is compressed in the transverse
direction.

This is further visualized in Fig. 5d, where we plot the
probability distribution of g for L=� = 10, W=L = 10,
K = 0 :1 and various values of the anisotropy param-
eter vy =vx , accompanied by the normalized histograms
of numerical data from the scattering matrix approach.
The probability density function is calculated by (numer-
ically) Fourier transforming the characteristic function
of g(2) , which can be found exactly because Eq. (35) is
quadratic in the normal variates r .

B. Weyl node

We now turn to the case of three dimensions. For
simplicity we assume that vy = vz � v? . As in the
two-dimensional case, in the limit L=� , W=L � 1 we
can approximate the Fourier coe�cient F by Eq. (29),
yielding

hg(2) i �
W 2K� ln 2

�L 3

X

qx

Z 1

�1

dq?

(2� )2

�
v2

x (2v2
x q2

x � v2
? q2

? )
(v2

x q2
x + v2

? q2
? )2 e� q2 � 2 =2; (41)

where q? = qy ey + qzez . Proceeding analogously to
the two-dimensional case, we make the substitution� =
v? q? =vx qx and switch to polar coordinates for the trans-
verse momentumq? . The sum overqx can then be writ-
ten as a Jacobi # function, which is subsequently ex-
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panded in an asymptotic series in�=L .39 This leads to

hg(2) i �
W 2K ln 2

�L 2

v2
x

v2
?

Z 1

0

d�
4�

2 � �

(1 + � )2

�

" s
v2

?

2� (v2
? + �v 2

x )
�

�
2L

+ O
�

� 2

L 2

� #

: (42)

The � integral is convergent for the �rst term in the
square brackets. For the second term, the integral should
be cut o� at � � v2

? L 2=v2
x � 2, which is where the asymp-

totic expansion fails. The result is

hg(2) i �
W 2K ln 2

8� 2L 2

�
2� [2 + cos(2� )] � 3 sin(2� )

(2� )1=2 sin3 � cos�

+
�
L

1
cos2 �

�
c0+ 2 ln

L cos�
�

��
; (43)

where cos� = v? =vx and c0 is a number of order unity
that cannot be determined from the approximation in
Eq. (42), but which weakly depends onL=� (c0 � 1:0 for
L=� = 6 � 102, c0 � 0:7 for L=� = 2 :4� 104). The second
line in Eq. (43) is a small correction to hg(2) i that goes
to zero in the limit L=� ! 1 .

The result Eq. (43) for the limit W=L, L=� � 1 is
shown in Fig. 6a, together with a numerical evaluation of
the disorder average of the exact result Eq. (25) forhg(2) i
for �nite W=L and L=� , as well as forW=L ! 1 while
keepingL=� �nite. For an isotropic dispersion, v? = vx ,
corresponding to � = 0 in Eq. (43), the disorder average
hg(2) i vanishes in the L=� ! 1 limit. This is consis-
tent with the fact that short-range disorder is an irrel-
evant perturbation for a Weyl semimetal with chemical
potential at the nodal point. 36,37 On the other hand, for
an anisotropic Weyl cone, isotropic disorder renormal-
izes the e�ective anisotropy v? =vx , which enters into the
expression for the quasi-ballistic conductance Eq. (10),
which explains why hg(2) i is negative for v? =vx > 1 and
positive for v? =vx < 1 in the limit L=� ! 1 , see Fig. 6a.
For �nite L=� , hg(2) i only becomes negative whenv? =vx
exceeds a threshold value larger than unity.

Analogous to the two-dimensional case, we �nd that
the cumulants � n with n � 2 are controlled by the aspect
ratio and the anisotropy: the summand in Eqs. (37b){
(37d) diverges for small qx and is proportional to
W 2� n L � 3n q2� 2n

x v2
x =v2

? , so that � n / W 2� n v2
x =L2n +2 v2

?
if n � 2. In contrast to the two-dimensional case, the
cumulants � n have an additional smallness/ (�=L )n

if L=� � 1. For the variance � 2, this scaling behav-
ior is con�rmed in Fig. 6b. In the limit W=L � 1 and
L=� ! 1 , we �nd that

�
L 2v? =�W vx

�
� 1=2

2 =K � 0:030,
independent of v? =vx . The suppression of conductance

uctuations for L=� � 1 is consistent with the expec-
tation that disorder is an irrelevant perturbation at the
Weyl point.

In the limit of W=L � 1, the skewness� 3=� 3=2
2 and the

excess kurtosis� 4=� 2
2 are proportional to (L=W )(v? =vx )

and (L=W )2(v? =vx )2, respectively, so the distribution of

FIG. 6. (a) and (b): Expectation value hg(2) i (a) and stan-
dard deviation � 1=2

2 (b) of the disorder-induced conductance
correction as functions of v? =vx for an anisotropic Weyl node
with isotropic short-range disorder. The data points cor-
respond to W=L = 5 (red squares) or 8 (blue circles) and
L=� = 12; the solid lines correspond to W=L � 1, L=� = 12
(black), 60 (green) and 600 (magenta). The dashed black line
in panel (a) represents the limit W=L, L=� � 1 of Eq. (43).
(c): Probability that g(2) < 0 as a function of v? =vx for
L=� = 12, W=L = 5 (red squares) and W=L = 8 (blue cir-
cles). (d): Probability density functions of g(2) for K = 0 :1,
L=� = 6, W=L = 5 and vy =vx = 1, 1 :8 and 2:4 (top to bot-
tom), overlaid with the normalized histograms of the disorder
correction to conductance obtained from the scattering ma-
trix approach with 3100, 521 and 458 disorder realizations
respectively. The reference point g(2) = 0 is marked by verti-
cal lines.

g(2) again approaches a normal distribution. In particu-
lar, when v? = vx , using Eq. (43) we can estimate the
probability to �nd a negative disorder-induced conduc-
tance correction as

P(g(2) < 0) �
1
2

erfc
�
0:207

W
L

�
c0+ 2 ln

L
�

��
: (44)

Thus for an isotropic Weyl cone, the probability of disor-
der reducing the conductance is exponentially suppressed
as a function of W 2=L2 in the limit W=L ! 1 .

Sincehg(2) i is nonzero if the dispersion is not isotropic,
the probability to �nd a negative disorder-induced con-
ductance correction strongly depends onv? =vx : It is sig-
ni�cantly smaller than the estimate (44) if v? =vx < 1,
whereasP(g(2) < 0) ! 1 in the limit W=L, L=� ! 1
if v? =vx > 1. Figure 6c showsP(g(2) < 0) versusv? =vx
for L=� = 12 and di�erent W=L, clearly con�rming the
strong dependence onv? =vx for large aspect ratiosW=L.
The increase ofP(g(2) < 0) with v? =vx is also illustrated
in Fig. 6d, where we plot the probability density func-
tions of g(2) for L=� = 6, W=L = 5 and various values of
v? =vx . As in the case of a two-dimensional Dirac node,
isotropic disorder has a larger probability to reduce the
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conductance relative to the quasi-ballistic value as the
Weyl cone is compressed in the transverse directions.

V. DISCUSSIONS AND CONCLUSIONS

In this work, we have addressed the mesoscopic trans-
port of an anisotropic Dirac node in a two-dimensional
electron gas or a Weyl node in a three-dimensional
semimetal. We calculated the conductance for Fermi en-
ergy at the nodal point to second order in a perturbing
potential and evaluated the statistics of the conductance
for a generic model of short-range disorder. Our theory
is controlled close to the quasi-ballistic regime in which
wavepackets scatter only a few times in the sample.

In two dimensions, the conductance is normally dis-
tributed if the aspect ratio W=L is large, with a variance
that scales asW vx =Lvy , wherevy =vx is a measure of the
anisotropy of the dispersion at the nodal point. Isotropic
short-range disorder always increases the conductance
on the average. Because conductance 
uctuations are
small for large W=L, disorder 
uctuations for which the
disorder-induced conductance correction is negative are
extremely rare (although they do occur). This explains
the empirical observation of the absence of such disorder
realizations even in large-scale numerical simulations.

In three dimensions, disorder is an irrelevant pertur-
bation in the renormalization-group sense.34{38 Our per-
turbative calculation of the conductance distribution is
consistent with this observation, but also further re-
�nes it. In particular, we �nd that isotropic short-
range disorder a�ects the mean conductance if the dis-
persion is anisotropic | a �nding that may be inter-
preted as a disorder-induced renormalization of the dis-
persion anisotropy. In particular, if v? =vx > 1 (Fermi
velocity in the direction of current 
ow is smaller than
the Fermi velocity transverse to the direction of current

ow) disorder decreases the conductance on the average,
whereas the average disorder-induced correction is pos-
itive if v? =vx < 1. The conductance 
uctuations, how-
ever, are proportional to (vx =v? )2(W=L)2(�=L )2, which
at large L=� has an additional suppression compared to
the naive generalization of the two-dimensional result.
It is the absence of disorder-induced conductance 
uc-
tuations in the limit L=� ! 1 that makes these �nd-
ings, again, consistent with the expectation from scaling

theory that disorder is an irrelevant perturbation in this
case.

Finally, we would like to make a few comments on the
experimental relevance of this work. Although our re-
sults were obtained in the context of graphene (in two
dimensions) or a Weyl semimetal (in three dimensions)
with short-range disorder, our perturbative calculation
of the conductance applies to a Dirac spectrum with an
arbitrary scattering potential. Hence, our results may
also prove useful in describing nodal-point transport in
engineered mesoscopic structures such as superlattices40

and electrostatic con�nement potentials,41 as long as the
potential strength is su�ciently small that the quasi-
ballistic assumption holds.

Although quite a large number of measurements of
mesoscopic conductance 
uctuations of graphene42{51

and Dirac/Weyl semimetal devices52 have been reported
in the literature, a direct comparison of these results
with our theoretical predictions is not possible. The
reason is that a measurement of the conductance 
uc-
tuations needs a means to generate an ensemble of (ef-
fectively) di�erent disorder realizations. Experimentally,
this is achieved by considering variations of gate voltage
or a magnetic �eld, relying on the ergodic hypothesis,
as in the case of conventional two- or three-dimensional
conductors.53 However, this is not a viable approach to
address the distribution of the mimimal conductance,
which requires tuning of the gate voltage to the nodal
point and zero magnetic �eld. (Indeed, the ergodic hy-
pothesis is seen to break down in graphene around the
Dirac point, 47,48,50 whereas the application of a magnetic
�eld in Dirac/Weyl semimetals can open up an excitation
gap at the nodal point.54) The motion of impurities asso-
ciated with thermal cycling 55 or low-frequency noise56,57

would provide an alternative method to obtain a disorder
ensemble that can be used to measure the conductance
distribution at the nodal point.
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