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2. APPENDIX 
 

2.1 List of abbreviations 
 

1D plot One-dimensional plot 

2D plot Two-dimensional plot 

AJCC American Joint Committee on Cancer 

ALK Anaplastic lymphoma receptor tyrosine kinase 

ARTN Artemin  

AuTf (Gold) Aurum-conjugated transferrin- receptor 

BHQ1 Black hole quencher® 

BSA Bovine serum albumin  

CDKN2A Cyclin-dependent kinase inhibitor 2A 

cDNA Complementary DNA 

cfDNA Circulating cell-free DNA 

CIMP CpG island methylator phenotype 

CML Chronic myelogenous leukemia 

CPM Copies per microliter 

CNS Central nervous system 

CRC Colorectal cancer 

CTC Circulating tumor cells 

ctDNA Circulating tumor DNA 

CTLA-4 Cytotoxic T lymphocyte-associated antigen 4 

Cq  Cycle quantification 

ddPCR Droplet digital PCRTM 

DEPC Diethyl pyrocarbonate 

DMEM Dulbecco’s Modified Eagle Medium 

DNA Deoxyribonucleic acid 

DSMZ German Collection of Microorganisms and Cell Cultures 

DTT Dithiothreitol 

dUTP Deoxyuridine triphosphate 

EDTA Ethylenediaminetetraacetic acid 

EGFR Epidermal growth factor receptor 

EMT Epithelial to mesenchymal transition 



iv  
 

EORTC European Organization for Research and Treatment of Cancer 

EpCAM Epithelial cell adhesion molecule 

ESCRT Endosomal sorting complex required for transport 

EV Extracellular vesicles 

Exo Exosomes  

FAP Familial adenomatous polypopsis 

FasL Fas-ligand 

FBS Fetal bovine serum 

FDA U.S.A Food and Drug Administration 

FFPE Formalin-fixed paraffin-embedded 

FPR False positive rate 

FWD Forward  

GD2 Disialoganglioside 

gDNA Genomic DNA 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

GTP Guanosintriphosphat 

HER2 Human epidermal growth factor receptor 2 

HNB1 Hereditary neuroblastoma predisposition gene 

HNPCC Hereditary nonpolyposis colorectal cancer 

IDRFs Imaged-defined risk factors 

ILV Intraluminal vesicles 

INFα Interferon-alpha 

INRGSS International Neuroblastoma Risk Group Staging System 

INSS International Neuroblastoma Staging System 

ISEV International Society of Extracellular Vesicles 

LDH Lactate dehydrogenase 

LNA Locked nucleic acid 

LOD Limit of detection 

MEK Mitogen-activated protein kinase kinase (alias:MAPKK) 

MIBG Metaiodobenzylguanidine  

MIR Melanocortin-1-receptor 

miRNA Micro RNA 

MITF Microphthalmia-associated transcription factor 

MM Melanoma  

MMR/MSI Mismatch repair genes/microsatellite instability 

mRNA Messenger RNA 

MUT Mutation  

MVB,MV Multivesicular bodies 
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NB Neuroblastoma  

NEAA Non-essential amino acid 

Neg Negative  

nm Nanometer  

NSE Neuron-specific enolase 

nSMase2 Neutral sphingomyelinase 2 

NRTN Neurturin  

qPCR Quantitative PCR 

PCR Polymerase chain reaction 

PD-L1 Programmed death ligand-1 

PI3K Phosphatidylinositol 3-kinase  

Pos Positive 

PMMA Polymethyl methacrylate 

PSN Persephin  

PTA Phosphotungstic acid 

PVDF Polyvinylidene difluoride membrane  

RAB RAS-related protein 

REV Reverse  

RNA Ribonucleic acid 

RPMI Roswell Park Memorial Institute  

RRID Resource Identification Initiative 

RT Room temperature 

SEC Size exclusion chromatography 

TBS Tris buffered saline 

TBST Tris buffered saline with Tween-20 

TEM Transmission electron microscope  

TERT Telomerase reverse transcriptase 

THP Tamm-Horsfall protein 

TME Total mesorectal excision 

TNF Tumor necrosis factor 

TRAIL TNF-related apoptosis-inducing ligand 

UV Ultraviolet  

VEGF Vascular endothelial growth factor 

WB Western blot 

WT Wildtype 

WTA Whole transcriptome amplification  

Z/IB ZenTM/Iowa BlackTM quencher 
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3. SUMMARY 
 
Extracellular vesicles (EV) are nanosized cup-shape vesicles, harboring a complex molecular rep-

ertoire of lipids, nucleic acids and protein. They exhibit the ability to carry molecular information 

from parental to target cells, along with playing vital roles in tumorigenesis, growth, progression, 

metastasis and drug resistance. Alongside circulating tumor cells and circulating cell-free DNA, 

EV are emerging as an important liquid biopsy component due to their ability to not only mirror 

information from cell of origin, but also the ability to protect their content in the circulation until 

arrival at the destination. 

This thesis describes the isolation method of EV from cell lines, plasma and urine via differential 

centrifugation. Proteomic characterization was carried out with western blot, in which exosomal 

proteins, namely tetraspanins CD9 and CD81, were found to be enriched in the vesicles. Trans-

mission electron microscope with anti-CD63 immunolabeling conjugated to 5 nm gold nanopar-

ticles was used for the visualization of EV. Based on the defined criteria CD63-positive EV, varying 

from cup-shaped to round, 10-100 nm, with an intact membrane and central depression were 

identified. 

KRAS, BRAF and ALK mutations from EV isolated from patients of colorectal cancer (CRC), mela-

noma (MM) and neuroblastoma (NB) were analyzed utilizing Droplet Digital PCR. EV-plasma sam-

ples collected post-therapy and tissue samples biopsied prior to treatment were compared, thus, 

allowing for the investigation of the vesicles’ potential to monitor treatment response and dis-

ease progression. Mutated cDNA species were identified in ten of thirty-five cases. Concordance 

rates with corresponding tissues were 54%, 44% and 25% in CRC, MM and NB cohorts, respec-

tively.  

Furthermore, two discordant cases were highlighted due to their  interesting medical back-

ground. In regards to both cases, a mutation switch after anti-EGFR or BRAF/MEK inhibitor ther-

apy was detected prior to disease progression validated via cancer staging or repeated tissue 

genotyping, providing a prognosis for a disease relapse.  
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In conclusion, we proved that extracellular vesicles are able to provide information on tumor 

heterogeneity and prognosticate progression. The oncology field is being revolutionizing and ad-

vancing in the direction of targeted therapy to provide patients with a more precise approach. 

Liquid biopsy is therefore a good accompaniment to tissue biopsy in assisting the future devel-

opment of targeted therapy, which requires the possibility of repetitive real-time monitoring to 

understand the dynamic changes within the disease. EV-derived nucleic acids may provide clini-

cally relevant diagnostic information and mirror the evolution of the disease. 
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4. ZUSAMMENFASSUNG 
 
Extrazelluläre Vesikel sind nanogroße, kelchförmige Vesikel mit komplexen molekularen Inhalten 

wie Lipiden, Nukleinsäuren und Proteinen. Sie können ihre molekularen Informationen von Mut-

terzellen an Zielzellen weitergeben und spielen daher eine wichtige Rolle bei Tumorentstehung, 

-wachstum und -progression, sowie beim Prozess der Metastasierung und dem Auftreten von 

Resistenzen gegen geläufige Therapiemethoden. Aufgrund ihres Vermögens nicht nur die Infor-

mationen von Mutterzellen widerzuspiegeln, sondern auch ihren molekularen Inhalt während 

des Transports durch die Blutzirkulation bis zur Ankunft am Zielort zu schützen, entwickeln sich 

EV neben zirkulierenden Tumorzellen und zell-freie DNA zu einer weiteren wichtigen Kompo-

nente der Liquid Biopsy. 

Diese Dissertation beschreibt Methoden zur Isolierung von EV aus Zelllinien, Plasmen und Urin 

durch differentielle Zentrifugation. Die Charakterisierung der Proteine erfolgte durch Western 

Blots und ergab eine Anreicherung exosomaler Proteine (Tetraspanin CD9 und CD81) in den Vesi-

keln. Zur Visualisierung der Vesikel wurde ein Transmissionselektronenmikroskop mit anti-CD63 

immunozytochemischer Markierung, konjugiert zu 5 nm Gold-Nanopartikeln, genutzt. Basierend 

auf definierten Kriterien wurden CD63 positive EV, mit variierender Form von rund bis kelchför-

mig, einer Größe von 10-100 nm, einer intakten Membran und zentraler Depression identifiziert.  

Die aus Proben von Patienten mit kolorektalem Karzinom, Melanom und Neuroblastom isolierten 

EV wurden mit Hilfe von Droplet Digital PCRs auf Mutationen in KRAS, BRAF und ALK untersucht. 

Vergleiche von posttherapeutischen EV-Plasmaproben mit prätherapeutischen Biopsieproben 

ermöglichten die Abschätzung des Potentials von EV als Faktor zur Überwachung des Therapie-

anschlagens und Krankheitsverlaufs. 

In 10 von 35 Fällen konnte eine Mutation in der cDNA festgestellt werden. Die Konkordanzrate 

mit dem dazugehörigen Tumorgewebe in den jeweiligen Kohorten waren 54% für kolorektale 

Karzinome, 44% für Melanome und 25% Neuroblastome. 

Außerdem lassen sich zwei Fälle aufgrund ihrer Abweichungen und ihrem interessanten medizi-

nischen Hintergrund hervorheben. In beide Fällen konnte eine Änderung der Mutation nach einer 

Therapie mit EGFR- oder BRAF/MEK-Inhibitoren vor der Progressionsbestätigung durch Krebs-

Staging oder wiederholtes Feststellen des Gewebe-Genotyps detektiert werden und ermöglichte 

somit ein Krankheitsrezidiv zu prognostizieren. Zusammenfassend gesagt, sind extrazelluläre 
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Vesikel in der Lage Informationen über die Tumorheterogenität zu liefern, sowie eine Prognose 

über das Voranschreiten des Tumorwachstums zu ermöglichen. 

Die onkologische Forschung bewegt sich in Richtung von personalisierten und patientenspezifi-

schen Therapien. Dies erfordert die Möglichkeit einer wiederholbaren Echtzeitüberwachung der 

Krebserkrankung. Liquid Biopsy stellt daher einen guten und wichtigen Zusatz zur herkömmlichen 

Gewebebiopsie dar, um die dynamischen Veränderungen zu verstehen. Die in extrazellulären 

Vesikeln enthaltenen Nukleinsäuren können dabei klinische sowie diagnostische Information an-

bieten und folglich die Entwicklung der Krankheit widerspiegeln. 
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5. INTRODUCTION 
 
Liquid biopsy is a minimally invasive diagnostic tool, providing information on miniscule nucleic 

acid in a single blood tube. It functions perfectly as an accompaniment to the gold standard tissue 

biopsy, and is efficient for the monitoring of disease progression and treatment response [1]. 

Extracellular vesicles (EV) are part of the liquid biopsy trio [1]. The vesicles are best known as a 

small delivery system, shuttling molecular information to designated cells [2]. This thesis high-

lights the value and importance of EV as a notable liquid biopsy component. 

The study included the optimization of EV isolation via differential centrifugation from condi-

tioned cell culture supernatant, plasma and urine samples. Proteomic content and morphological 

verification of EV were also studied. Primarily, mutational signatures in EV were analyzed with 

the novel platform droplet digital PCR, while comparing them to mutational analysis on tissue 

samples. EV could provide additional information on tissue samples, highlighting the heteroge-

neous nature of the disease. Tissue biopsy provides information originating from the location 

where tissue was probed, while liquid biopsy could capture a snapshot of the genomic landscape 

of the disease [3]. 

This thesis first introduces background information on EV (Section 4.1), a brief explanation of all 

three liquid biopsy components (Section 4.2) and the different tumor entities investigated in this 

study (Section 4.3 to 4.5). The main objectives of the study are further elaborated in Chapter 5. 

The materials used are listed in Chapter 6, Chapter 7 is concerned with the methodology applied 

for this study. Chapter 8 presents the findings of the research, focusing on the three key themes: 

proteomic, microscopic and PCR analysis, while especially highlighting discordant cases due to 

their interesting medical background. This thesis closes with a discussion of the findings in com-

parison to research literature (Chapter 9), future perspectives on EV studies (Chapter 10) and the 

conclusion (Chapter 11). 
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5.1 Extracellular vesicles 
 
Extracellular vesicles (EV) are membrane vesicles released into the extracellular space, distin-

guished by size, composition and cellular origin. The vesicles are classified into subgroups based 

on their cellular biogenesis: microvesicles, exosomes and apoptotic bodies. Microvesicles are 

shed from the outward protrusion of the cell membranes. Exosomes, on the other hand are 

formed by inward budding and fusion of the plasma membrane upon release at the end of the 

endosomal recycling pathway [1]. Apoptotic bodies are membrane-bound vesicles formed during 

programmed cell death [2].  

In the 1980s, two independent groups Pan and Johnstone [3] and Harding [4], with the assistance 

of a transmission electron microscope, witnessed an engulfment and the fusion of the vesicles 

with plasma membrane, a major discovery compared to previous findings, and mentioned exo-

somes as trash bags for molecular waste. Colloidal gold-conjugated transferrin-receptor (AuTf) 

particles were noticed to be taken up by reticulocyte transferrin receptors, specifically in small 

particles within the multivesicular bodies. The continuity of plasma membrane explained the fu-

sion of multivesicular endosomes containing AuTf-labeled vesicles with plasma membrane [Fig-

ure 1(left)]. Post-fusion of the multivesicular endosomes and plasma membrane, and externali-

zation of AuTf-labeled vesicles were observed [Figure 1(right)] [4].  

Furthermore, Beckler et al. demonstrated the transfer of EV derived from mutant KRAS colorectal 

cancer cells to KRAS wild type (WT) cells, altering the KRAS gene sequence from wild type to 

mutant or acceleration the three-dimensional growth of KRAS wild type cells [5]. This demon-

strates the ingestion of vesicles by cells and the vesicles’ ability to alter the nature of the cells, 

thereby promoting intercellular communication. Extracellular vesicles are defined today as being 

10 nm – 100 nm, and cup-shaped with a central indentation and bilayer phospholipid membrane. 

Proteins, nucleic acids and lipids make up the cargo sorted into EV, which depending on their fate 

are followed by either lysosomal degradation or fusion with plasma membrane of recipient cells 

[6]. Upon envelopment by recipient cells, the vesicular content of EV heavily influences the func-

tion of the recipient cells. Since their renewed discovery, there is a growing interest in multiple 

disciplines: cardiovascular [7], urology [8], endocrinology [9] and oncology [10,11].  
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Figure 1: Exocytosis of multivesicular endosome releasing exosomes 

Harding et al. visualized the internalization of the vesicles and the subsequent fusion of multivesicular endosomes 

and AuTf-labeled vesicles. Bar, 10 nm (left). This was followed by the externalization of vesicles. Bar, 200 nm (right). 

Adapted from Harding (1983) [4]. 

 

 

There has been a constant debate on utilizing the nomenclature extracellular vesicles or exo-

somes [12]. The Oxford Classical Greek Dictionary defines ‘exo’ as outside and ‘soma’ as from the 

body, forming the term exosomes [13]. In the scientific community, exosomes as described by 

multiple publications are vesicles formed in endosomal secretion and released upon fusion with 

plasma membrane [6,14,15]. To date, there is no isolation protocol that specifically separates the 

different vesicular subsets based on biogenesis or morphology. There is always a risk that sub-

populations of the vesicles remain amongst the mix. Furthermore, there are also no proposed 

lists of EV-specific markers to segregate the different EV subsets. Therefore, the International 

Society of Extracellular Vesicles (ISEV) recommended the more generic term ‘extracellular vesi-

cles’ for all particles released from cells with a bilayer lipid membrane [16]. 
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5.1.1  Biogenesis and uptake of extracellular vesicles  
 
Multivesicular bodies (MVBs) are endocytic structures formed by the budding of endosomal 

membrane into the lumen of compartments. After vesicular accumulation, MVBs are sorted ei-

ther for cargo degradation in lysosomes or the invagination of endosomal membrane. The invag-

ination of the endosomal membranes forms intraluminal vesicles (ILV) within MVBs. ILV then fuse 

with plasma membrane and are released into the extracellular space as EV [17] [Figure 2].  

Endosomal sorting complex required for transport (ESCRT) has been revealed to be vital for the 

formation and cargo sorting of the intraluminal vesicles. The ESCRT machinery consists of 4 com-

plexes associated with proteins Alix and VPS4, both enriched in EV [18]. ESCRT-0 is responsible 

mainly for EV secretion, ESCRT-I, and -II are involved in membrane formation by recognition and 

recruitment of proteins in endosomal membrane, and ESCRT-III mediates vesicle scission [19].  

Trajkovic et al. mentioned the ability of ceramide to induce inward budding of endosomal mem-

brane, due to the areas abundant with sphingolipids [20]. In another study, it was reported that 

EV are composed of lipid rafts, after investigating associated proteins such as flotillin-1 and sto-

matin. There, the direct involvement of lipids in vesicle structure, budding, ubiquitin-based sort-

ing platform and apoptosis regulation was proven [21].  

Additionally, tetraspanins are another vital player in EV biogenesis and have been thoroughly 

studied are tetraspanins. In the absence of ESCRT machinery, tetraspanins as proteins are funda-

mental for the biogenesis of lysosomal-related organelles [22]. Furthermore, the intricate for-

mation of the tetraspanins web contributes to the role of cargo sorting and protein trafficking 

into EV [23].  
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Figure 2: Biogenesis and release of EV from eukaryotic cells 

Early endosome formation later develops into late endosomes (multivesicular bodies). Multivesicular bodies are 

sorted for either lysosomal degradation or invagination of endosomal membrane. Thereafter, EV are formed when 

intraluminal vesicles fuse with plasma membrane, bud outwardly, and are released into the extracellular space. 

SNAREs play a role in the fusion of multivesicular bodies with plasma membrane. RAB proteins take part in the 

transportation of the vesicles. ESCRT machinery and tetraspanins are tasked for the formation and cargo sorting of 

intraluminal vesicles. Lipids are vital for the structure of the vesicles, the ubiquitin-based sorting platform and 

apoptosis regulation. Adapted from Bebelman (2014) [24]. 

 

 

Several publications habe highlighted the involvement of Rab GTPase proteins, which are majorly 

involved in intracellular vesicle transport and docking [25]. Rab11 is involved in the discharge of 

the vesicles [26]. EV secretion is regulated by Rab27 and Rab35 [27,28]. 

After secretion, the nanovesicles are internalized through several mechanisms: phagocytosis, 

macropinocytosis, vesicle-cell fusion, and lipid-raft dependent- and receptor-mediated-endocy-

tosis. Phagocytosis is an actin-, phosphatidylinositol 3-kinase (PI3K), - and dynamin-2 mediated 

engulfment of the vesicles by specialized cells (macrophages and monocytes). Through this pro-

cess, extracellular materials are internalized by a form of envelopment [29]. Macropinocytosis 

internalizes smaller particles upon activation of phosphatidylserine and is Na+ dependent, almost 

similarly to phagocytosis [30].  
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Cell-to-cell signaling has been demonstrated from tumor-derived EV, such as soluble signaling, 

which involves cleaving ligands from the surface of the vesicles, or via alternative splicing and 

juxtacrine signaling, which requires a close contact between ligands and receptors on the surface 

[25]. Transmembrane proteins such as Fas ligand (FasL), tumor necrosis factor (TNF) and TNF-

related apoptosis-inducing ligand (TRAIL) signal apoptosis via receptors, and their membrane-

bound form has been reported to have superior pro-apoptotic activity when compared to their 

soluble form [31].This mechanism was seen in EV isolated from plasma of ovarian cancer pa-

tients, which expressed Fas ligand. Fas ligand associated with cancer-derived vesicles induced T-

lymphocyte apoptosis. Moreover, the presence of the plasma-derived EV suppressed T-cell re-

ceptor/CD3-ζ expression in T-lymphocytes of patients and correlated with the induction of apop-

tosis and caspase-3 within the T-cells. [32].  

The direct merging of the plasma membrane of a cell and vesicle or vesicle-cell fusion also con-

tributes to the internalization of EV [25]. Other forms of vesicle uptake include endocytosis in-

volving either caveolin-dependent or lipid raft-dependent (caveolin-independent) endocytosis. 

Caveolar endocytosis is clathrin-independent endocytic process with plasma membrane invagi-

nations, known as caveolae and the membrane proteins cavins. Some caveolae bud off from the 

plasma membrane, while some fuse back with the plasma membrane [33]. The mechanisms of 

lipid raft-dependent and caveolae-dependent endocytosis are similar [21]. 

Multiple studies have demonstrated transcriptomic content in EV, including mRNAs and miRNAs 

[25,26,27]. Thakur et al. proved the existence of double-stranded DNA in the vesicles while con-

firming mutations in cancer cells [37]. Proteomic content has been identified in many studies 

[38–40], and lipid content in the vesicles contributes to both the structural integrity and functions 

of the vesicles [21]. EV content including proteins, mRNA and miRNA are documented in ExoCarta 

[41]. 
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5.1.2  Physiological function of extracellular vesicles 
 
EV were studied and identified from diverse body fluids such as blood [42], urine [43], cerebro-

spinal fluid [44] and saliva [45], exhibiting their secretion in vivo. As mentioned above, EV 

transport proteomic and nucleic acid contents to distant cells and therefore modulate the func-

tion of the target cells. Upon release, EV protect cargo from phagocytosis, thereby protecting 

their content from the host response of the recipient cell. This transportation mode can also 

function in favor of pathogenic components to attack the host response [46]. Furthermore, EV 

isolated from infected macrophages activate pro-inflammatory mediators, including tumor ne-

crosis factor–alpha (TNF-α) and RANTES (up-regulation of iNOS expression). These mediators in 

turn release cytokines, which are important for achieving immunity [47]. 

Formation of coagulation complexes and promotion of tissue factor activity could be facilitated 

by phosphatidylserine, found on membranes of platelet- and monocyte-derived EV [48]. Phos-

phatidylserine is a phospholipid and an important element in regulating blood coagulation and 

apoptosis. Platelet-derived vesicles encourage monocyte adhesion to endothelium and further 

stimulate prostacyclin synthesis and thromboxane A2 production, promoting platelet activation 

to aggregation [49–51]. 

 

5.1.3  Extracellular vesicles and cancer 
 
EV from tumor cells can induce malignant transformation in normal cells, as well as accelerating 

existing tumorigenesis. Cargo internalized by EV has been known to influence oncogenic trans-

formation, for example miR-125b, 130b, and 155 in prostate cancer [52], and pre-miRNA, RISC 

loading complex for breast cancer cells [53]. 

Several studies reported that the uptake of EV by cells encourages tumorigenesis. EV from 

chronic myelogenous leukemia (CML) promote growth of the tumor cells by stimulating the stro-

mal cells in bone marrow to produce interleukin-8 [54]. Colon cancer cell lines when incubated 

with ΔNp73-enchanced EV proliferate greatly [55]. Angiogenesis is vital for the tumor to be con-

tinuously supplemented. Pro-angiogenic influences have been detected in EV with miR-105 in 

breast cancer cells [56], miR-92a in leukemic cells [57] and miR-135b in multiple myeloma cells 

undergoing hypoxia [58].  
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EV-integrins upregulate proinflammatory protein S100 expression and prepare pre-metastatic 

niches for the ideal microenvironment for tumor cells to colonize and disseminate to distant or-

gan sites [59]. Chen et al. conducted experiments on mice and concluded that EV express pro-

grammed death ligand-1 (PD-L1) on their surface, promote tumor growth and reduce T-cell pro-

duction. When the EV enriched with PD-L1 arrives at the pre-metastatic sites, the immune system 

is then inhibited and pre-metastatic niches are developed [60]. 

EV have been studied for their ability to reduce the efficacy of cancer treatment regimen through 

the transfer of multidrug resistance-associated protein. Metabolites and drugs could be encap-

sulated, transported by EV and able to modulate their binding to tumor cells, thereby negating 

the effect of the antibody drugs [15]. Bone marrow stromal cell-derived EV were seen to be able 

to induce multiple myeloma cells to be resistant to drugs like bortezomib, lenalidomide and tha-

lidomide [61]. Furthermore, Wang et al. realized that bone marrow stromal cell-derived EV in-

hibit apoptosis, induced by bortezomib which instate the activation of caspase-3 and -9 [61]. In 

a breast cancer study, EV from HER2 overexpressing cancer cells were able to bind to 

trastuzumab (Her2 antibody) and inhibit its effect [62]. 

 

5.2 Liquid biopsy 
 
Precision medicine is an approach which provides the opportunity to design therapy frameworks 

for patients based on genetic screening. The foundation of precision medicine is the introduction 

of targeted therapy, such as immune checkpoint inhibitors, which are used to target and termi-

nate cancer cells while avoiding off-targets effects [63]. However, like the survival of the fittest, 

tumor cell populations evolve to survive under such conditions [64]. The initial promise of im-

proved patient survival and tumor regression were subsequently met with secondary resistance. 

Cancer cells aggressively develop and adapt over the course of the targeted therapy, for example 

by developing a mechanism of resistance to escape immune recognition or by completely dysreg-

ulating the immune system, thus, inevitably causing disease relapse and ineffectiveness of the 

targeted therapy [65]. 

The current gold standard for genetic testing is tissue biopsy, which is arduous and meager in 

terms of the information it provides. It is strenuous for the patients to have repetitive tissue 
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biopsy due to its invasiveness, especially for pediatric patients, or due to the inconvenient loca-

tion of the tumor. Furthermore, mutational analysis of tissue biopsy only provides information 

on the specific location where tissue was acquired. Cancer, as is known, can be heterogeneous 

and tissue biopsy is unable to adequately reflect this information [66]. 

The introduction of liquid biopsy could complement tissue biopsy in making up for insufficient 

mapping of the tumor heterogeneity. Due to its non-invasiveness, it is an advantageous in patient 

stratification, disease screening, treatment monitoring and prognostication of residual disease.  

 

5.2.1 Cancer biomarkers 
 
Three major players in liquid biopsy are circulating tumor cells (CTCs), cell free DNA (cfDNA) and 

extracellular vesicles (EV) [68] [Figure 3]. Circulating tumor cells (CTCs) are cells emanating from 

primary tumor or metastatic sites into the vasculature. The heterogeneity of CTCs could be due 

to the diverse location of the tumor they were released from. CTCs are described as viable cells 

with an intact nucleus, positively selected with cytokeratin and epithelial cell adhesion molecule 

(EpCAM) and negatively selected with CD45 (a leucocyte common antigen) [66]. They are detect-

able in cancer patients, rarely in healthy blood, and it has been reported that about one to ten 

CTCs were detected in one milliliter of blood [69]. Some CTCs undergo a special process known 

as epithelial to mesenchymal transition (EMT). This changes their characteristics and behavior. 

EMT has been known to increase tumor invasiveness, and overcome anoikis resistance (anoikis: 

programmed cell death that occurs in anchorage-dependent cells when cells detach from the sur-

rounding extracellular matrix) and cell survival [70–72]. Unfortunately, the frequency of detect-

able CTCs is also highly dependent on the different technologies used for isolation. Furthermore, 

it is vital to isolate CTCs from whole blood within 96 hours after blood is drawn [73]. Its rarity has 

been proven to be a technical challenge.  
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Figure 3: Liquid biopsy components 

Representation of cfDNA, CTCs and exosome (extracellular vesicles) in the blood stream. Exosomes are released from 

a variety of cell types. cfDNA are released when cells undergo apoptosis. CTCs could escape from tumor tissue due to 

tumor growth or mechanical interruption due to surgery. Additionally, platelets could facilitate CTC adhesion to dis-

tant organs. Adapted from Zhang (2017) [67]. 

CTCs: circulating tumor cells, cfDNA: circulating cell free-DNA. 
 
 
Circulating cell-free DNA (cfDNA) is released passively through apoptosis. In normal individuals 

or early cancer stages about 3 to 9 ng of cell-free DNA per milliliter of plasma were detected, 

whereas the amount increased by more than 10-fold in advanced cancer patients [74]. The chal-

lenge here is the rare detection of circulating tumor DNA (ctDNA) which carries mutant genes in 

the midst of normal cfDNA. Nevertheless, CancerSEEK , a recently established ctDNA blood-based 

diagnostic, achieved a sensitivity ranging from 69 to 98% across five cancer types, affirming 

ctDNA as worthwhile for cancer detection [75].  

Both CTCs and cfDNA have been used to study the mutational status of the disease via different 

platforms such as droplet digital PCR and next generation sequencing. In comparison, the use of 

EV as a blood-based biomarker is still in its infancy. They are gaining an improved reputation as 

feasible cancer biomarkers due to their ability to protect their biological cargo in the circulation 

[76]. EV are more abundant and can be analyzed from both fresh and frozen biobanked samples, 

unlike CTCs which required fresh samples (67,75). Both cfDNA and EV require at least one millili-

ter of plasma for analysis. However, EV are more efficient in searching for mutations, whereas 

cfDNA samples are populated with a high wild-type environment [68,78]. 
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Even though liquid biopsy could complement tissue biopsy well to provide information for a bet-

ter understanding of the disease and therapy stratification, isolation is tedious, and it is challeng-

ing to gather enough nucleic acid from the different liquid biopsy components. 

 

5.3 Colorectal cancer 
 
Colorectal cancer (CRC) originates in the colon or rectum. Its growth is frequently initiated with 

the development of polyps in the inner lining of the colon or rectum, which then turn malignant 

[79]. As most polyps are benign and only 1% are potentially precancerous, polyps correlate with 

the development of CRC. The following factors are taken into consideration as an increased risk 

of CRC development: if a polyp is larger than 1 cm, the occurrence of more than two polyps, and 

the appearance of dysplasia after removal of polyps (Dysplasia: a precancerous condition, in 

which cells appear morphologically abnormal) [79]. 

CRC is accountable as the third most common cancer for male population after prostate and 

lung cancer, and the second most common cancer for the female population after breast can-

cer, with 63,000 new cases every year [80]. When evaluating CRC patients, the location of the 

primary tumor has been given importance, on the grounds that it differs in clinical symptoms 

and prognosis, and could influence therapy outcome. Due to the different embryologic origins 

and with the splenic flexure as a border, the right colon (proximal) arises from the midgut and 

left colon (distal) arises from the hindgut [81] [Figure 4]. Right colon cancer is more common 

with older females and presents itself initially with iron deficiency anemia, while left colon can-

cer presents itself clinically with hematochezia and bowel habit changes, and has a better prog-

nosis [82]. Furthermore, right colon cancer frequently develops through MMR/MSI or CIMP 

pathways with a high frequency of PI3K, BRAF or RAS mutations when compared to left colon 

cancer [83]. On the other hand, TP53 mutation occurs more frequently in left colon cancer [84].   
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Figure 4: Right versus left colon cancer 

Clinicopathological characteristics of right and left colon cancer with the splenic flexure as a border.  

Adapted from Ghidini (2018)[85].  

 

 

5.3.1  Colorectal cancer staging 
 
Colorectal cancer is staged based on the TNM concept: primary tumor (T), regional lymph nodes 

(N) and distant metastasis (M). American Joint Committee on Cancer (AJCC) staging is more com-

monly used to define cancer stages from stage 0 (very early), stage 1 through stage 4 (late), based 

on the TNM concept [Figure 5]. AJCC staging uses the surgical or pathological stage by examining 

tissue extracted during surgery and is more accurate when compared to clinical staging (physical 

examinations, biopsies and imaging diagnostics prior to surgery) [86]. 

 

Dukes classification entails histopathological examination [87].  

Stage A : Tumor limited to mucosa 

Stage B1 : Tumor limited to submucosa, without lymph node invasion 

Stage B2 : Tumor confined to muscle layer, without lymph node invasion 

Stage C1 : Tumor did not exceed bowel wall, with lymph node metastasis 

Stage C2 : Tumor exceeded intestinal wall, with lymph node metastasis 

 

Splenic flexure 
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Figure 5: Colorectal cancer staging 

Colorectal cancer staging based on the TNM concept: primary tumor (T), regional lymph nodes (N) and distant me-

tastasis (M). American Joint Committee on Cancer (AJCC) classification is defined in stages. In stage I, cancer 

spreads from the mucosa of the colon wall to the submucosa of the muscle layer. Stage II cancer spreads through 

the muscle layer of the colon wall to the serosa. Stage III cancer spreads through all layers and infiltrates lymph 

nodes or tissues close to lymph nodes. In stage IV, the cancer metastasizes to distant locations, including the lung, 

liver, abdominal wall or ovary.  Adapted from DiPiro (2017) [88]. 

 

 

5.3.2 Genetic landscape 
 

Lynch syndrome or hereditary nonpolyposis colorectal cancer (HNPCC) is a common predisposi-

tion for colorectal cancer and autosomal dominant genetic syndrome with defective DNA mis-

match repair (MMR) - mutL homologue 1 (MLH1), mutS homologue 2 (MSH2), MSH6 or postmei-

otic segregation increased 2 (PMS2) [79,89].  

Commonly manifested, microsatellite instability (MSI) involves short tandem repeats with alter-

nate size repetitive DNA sequences, and it occurs because of the defective DNA mismatch repair 

system. This phenotype affiliates with disease staging and improved prognosis [90]. 

The second most common hereditary colorectal cancer is the autosomal dominant familial ade-

nomatous polyposis (FAP), caused by APC gene mutation. APC is a tumor suppressor protein in 

Wnt signaling, degrades ß-Catenin and associates with deletion in chromosome 5 [79].  
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MUYTH-associated polyposis is a less common autosomal recessive syndrome. Its clinical presen-

tation resembles FAP closely, except that this syndrome have typically has less than 100 polyps. 

The MUYTH gene encodes the protein, which is part of the DNA base excision repair system which 

answers to oxidative stress [79].  

Besides hereditary genetic disorders, which are also a predisposition for CRC, certain gene muta-

tions are given more attention than others as they affect therapeutic decisions. KRAS (32%) mu-

tations are most frequently found in CRC, followed by TP53 (43%), BRAF (12%) and PIK3CA (12%) 

[91]. Figure 6 depicts the top 20 genes found in CRC. 

 

 
Figure 6: Top 20 colorectal cancer genes 

Adapted from COSMIC [91]. 
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5.3.3  Treatment 
 

Total mesorectal excision (TME) is the standard operative procedure which removes rectal tumor 

and pararectal lymph node. TME reduces local recurrences by at least 10%. For a better overall 

survival rate and improvement of local recurrences, radiotherapy is combined with 5-Fluorouracil 

[79].  

Additionally, current standard chemotherapy schemes include FOLFOX 4 (folinic acid, 5-fluor-

ouracil, oxaliplatin), modified FOLFOX 6 (oxaliplatin, folinic acid, 5-fluorouracil) and Xelox (oxali-

platin, capecitabine) [92]. 

Alongside chemotherapy, a new generation of treatments including signaling inhibitors and mon-

oclonal antibodies were introduced to target specific mechanisms. Current approved monoclonal 

antibodies include cetuximab, bevacizumab and panitumumab [79]. Cetuximab and pani-

tumumab work against epidermal growth factor receptor (EGFR), which regulates tumor prolif-

eration. Bevacizumab, on the other hand ,targets vascular endothelial growth factor (VEGF), and 

therefore functions as an anti-angiogenesis agent [93,94]. 
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5.4 Melanoma 
 
Melanoma is a malignant tumor from melanocytes (cells that produce pigment) which undergo 

tumorigenesis and turn aggressive. The melanocytes arise from neural crest, and then migrate to 

the skin, meninges, mucous membrane, upper esophagus and eyes [79]. Malignant melanoma, 

although only liable for 5% of cutaneous malignancies, is accountable for being the most lethal, 

and the highest number of deaths caused by cutaneous malignancies [95]. Unlike the early stages 

of the disease which are easily treatable, when melanoma begins to metastasize and approach 

advanced stages, surgery is no longer sufficient, and the disease proves to be challenging to treat 

[79].  

In central European countries, the incidence rate of melanoma is reported as 15 to 18 cases per 

100,000 people per year. The highest worldwide disease incidence rate is reported to be in Aus-

tralia, with up to 60 cases in a population of 100,000 [96]. The incidence rate increment can be 

discussed across different ethnicities, geographical locations, ages and genders [79]. In compari-

son to other cancers, melanoma is known to be more common among fair-skinned Caucasian 

populations. This is attributed partly to a lower level of photo protection from the reduced mel-

anin presence in melanocytes. In a darker-pigmented individual, the melanin photo barrier ab-

sorbs large amounts of Ultraviolet (UV) A and B radiation, thus reducing its penetration through 

skin [97]. Geographical location also plays a major role in influencing the incidence rate. As pre-

viously mentioned, the highest melanoma incidence rate is in Australia as the country lies close 

to the equator, thus having a higher degree of sun exposure [97].  

The risk of contracting melanoma peaks when the patient is between 70 to 80 years old. The risk 

is much lower for patients younger than 40 years of age. However, adolescent and young adult 

women are more affected, and the increment of incidence in this patient group be could due to 

the popular tanning culture, which is associated with increased risk of cutaneous malignancy. 

After the age of 40, men are more susceptible to melanoma [79].  
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5.4.1 Melanoma staging  
 

Melanoma skin cancer staging is defined with the five different stages of the American Joint Com-

mittee on Cancer (AJCC) TNM classification, which is also able to define a 15-year relative survival 

rate. The disease stage is  defined after pathological analysis of biopsied tissue (T), ultrasound of 

regional lymphatic nodules (N) and radiological analysis of distant metastasis (M) [79] [Table 1].  

 

 

Table 1: Melanoma staging (a) T category, (b) N category and (c) M category 

(a) 
T Category Thickness Ulceration/ mitoses 

Tx Primary tumor thickness cannot be assessed Not applicable 

T0 No evidence of primary tumor Not applicable 

Tis  Melanoma in situ Not applicable 

T1 ≤ 1.00 mm a: without ulceration 

b: with ulceration 

T2 > 1.0-2.0 mm a: without ulceration 

b: with ulceration 

T3 > 2.0-4.0 mm a: without ulceration 

b: with ulceration 

T4 > 4.0 mm a: without ulceration 

b: with ulceration 
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(b) 

N Category Amount Nodal burden 

N0 0 Not applicable 

N1 1 a: micrometastases 

b: macrometastases 

N2 2-3 a: micrometastases 

b: macrometastases 

c: in-transit metastases or satellite 
lesions without metastatic nodes 

N3 > 4 

 

(c)  

M Category Anatomic site LDH level 

M0 No evidence of distant metastasis Not applicable  

M1 Evidence of distant metastasis  

M1a Distant metastasis to skin, soft tissue including muscle, and/or 
non-regional lymph node 

Unspecified 

M1a (0)  Not elevated 

M1a (1)  Elevated 

M1b Distant metastasis to lung with or without M1a sites of  

disease 

Unspecified 

M1b (0)  Not elevated 

M1b (1)  Elevated 

M1c Distant metastasis to non-CNS visceral sites with or without 
M1a or M1b sites of disease 

Unspecified 

M1c (0)  Not elevated 

M1c (1)  Elevated 

M1d Distant metastasis to CNS with or without M1a, M1b or M1c 
sites of disease 

Unspecified 

M1d (0)  Not elevated 

M1d (1)  Elevated 

CNS: central nervous system, LDH: lactate dehydrogenase.  

AJCC Cancer staging based on TNM categories. Adapted from Cutaneous melanoma: ESMO Clinical Practice Guide-

lines for diagnosis, treatment and follow up [100]. 
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5.4.2 Genetic landscape 
 

Family history of the disease is a significant risk factor for melanoma. About 20% – 40% of hered-

itary melanoma is due to germline mutations of Cyclin-dependent kinase inhibitor 2A (CDKN2A) 

locus. This locus is responsible for the encoding of two tumor suppressor proteins: p16 and 

p14ARF. P14ARF inhibits p53, while p16 inhibits the CD4/6-mediated phosphorylation. Although 

presumed to be rare, CDK4 is also a hereditary predisposition for melanoma contraction and is 

located on the chromosome 12q13 [79].  

Melanoma-lineage-specific oncogene microphthalmia-associated transcription factor (MITF) in-

crease the tendency for the development of sporadic and hereditary melanoma. Another gene 

which contributes to the hereditary factor of the disease is melanocortin-1-receptor (MIR), for  

which upregulation is induced by sunlight [79]. 

The RAS pathway in melanoma has been thoroughly studied as it could provide a glimmer of hope 

to patients with metastatic melanoma. RAS and BRAF are part of the MAP-kinase signaling path-

way and are drivers of melanoma proliferation [98]. The top mutated genes in melanoma consist 

of BRAF (41%), NRAS (15%), HRAS (11%) and TP53 (26%) and KIT (7%) [Figure 7] [99]. Mutational 

testing is highly recommendable for patients in late stages (stage 3 to stage 4).  

 
Figure 7: Top 20 genes in melanoma 

Adapted from COSMIC [91]. 
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5.4.3  Treatment 
 
Localized diseases are treated with the wide local excision of primary tumors, and lymph node 

dissection. For lentigo maligna, radiotherapy is the choice of treatment. On the other hand, non-

resectable tumors are addressed with systemic treatment which includes the administration of 

interferon-alpha (INFα) and tumor necrosis factor alpha (TNFα) [79]. 

Although interferon alpha (INFα) demonstrated significant improvement in disease-free survival 

in 14 randomized controlled trials with 8,122 patients demonstrated significant improvement in 

disease-free survival, its significant toxicity has confined its application to only in patients with 

ulcerated stage 2c or when other drugs are not accessible [100,101].  

Ipilimumab is a monoclonal antibody against cytotoxic T-lymphocyte-associated antigen 4 

(CTLA- 4). Based on a European Organization for Research and Treatment of Cancer (EORTC) 

18071 trial, ipilimumab in comparison to placebo proved to improve the recurrence-free survival 

rate (median of 26.1 months versus 17.1 months) and 3-year recurrence-free survival rate of 

46.5% versus 34.8% respectively [102]. However, ipilimumab presents itself with adverse reac-

tions, including endocrinopathies and colitis, thereby, shifting the focus to other treatments, in-

cluding PD-L1 inhibitors (anti-PD-L1) or dabrafenib/ trametinib [100].  

Nivolumab is an anti-PD-L1 agent which promises significant recurrence-free survival benefit for 

late melanoma stages and reduces toxic adverse events compared to toxic ipilimumab [100]. 

When comparing the recurrence-free survival of patients treated with high dose ipilimumab to 

nivolumab, 60% of the patients were relapse-free versus 70% at 12 months, 53% versus 66% at 

18 months, and 50% versus 63% at 24 months, respectively [103]. Another anti-PD-L1 agent is 

pembrolizumab, and both anti-PD-L1 treatments are approved in the adjuvant setting as of Au-

gust and December 2018, respectively [100]. 

Dabrafenib/trametinib (BRAF/MEK inhibitor) combination therapy is the only currently approved 

targeted therapy used for adjuvant treatment for melanoma patients [100]. The COMBI-AD study 

comparing dabrafenib/trametinib combination therapy versus two placebos in fully resected 

high-risk stage 3 melanoma demonstrated an improved recurrence-free survival rate of 58% ver-

sus 39% at 3 years and improved overall survival of 86% versus 77%,respectively [104].  
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5.5 Neuroblastoma 
 
Neuroblastoma (NB) is the most common malignant solid pediatric tumor arising from the neural 

crest with unpredictable clinical behaviors reflected by spontaneous regression, ganglioneuro-

blastoma or ganglioneuroma maturation and life-threatening progression [105]. Most infants ex-

perience complete regression with minimal therapy; however, older patients approach vigorous 

metastatic disease despite intensive multimodality therapy. Typically, the disease metastasizes 

to regional lymph nodes, bone and bone marrow. Uniquely with infants, the disease primarily 

spreads to the liver and skin [105]. 

NB is the most common extracranial childhood solid tumor, accountable for 7.2% of all cancers 

among children below the age of 15. The 5-year survival rate is variable and highly dependent on 

age and disease stage. It has been reported that survival is highest among infants and patients 

with local or regional disease. Older children and patients with distant metastasis have poorer 

survival rates. Table 2 defines the 5-year survival rate based on gender, age and stage.  

 

 
Table 2: Neuroblastoma 5-year survival rate based on characteristics 

5-year relative survival rate (%) 

Characteristics % 

Male 64 

Female 65 

< 1 year old at diagnosis 86 

1-4 years old at diagnosis 54 

5-9 years old at diagnosis 44 

10-14 years old at diagnosis 61 

Local and regional stages ( all ages) 85 

Local and regional stages (< 1 year old) 95 

Local and regional stages ( ≥ 1 year old) 80 

Distant metastatic stage (all ages) 48 

Distant metastatic stage (< 1 year old) 77 

Distant metastatic stage ( ≥ 1 year old) 34 

 

Based on Surveillance, Epidemiology and End Results Program (SEER) registry data 1985 to 2000. 
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5.5.1  Neuroblastoma staging 
 

Two systems are currently used for NB staging. The first is the International Neuroblastoma Risk 

Group Staging System (INRGSS). This classification utilizes results from imaging test prior to treat-

ment. The International Neuroblastoma Staging System (INSS) is based on the extent of surgical 

removal of the tumor [Table 3].  

 

The INRGSS uses image-defined risk factors and consists of 4 stages [114]: 

L1: Locoregional tumor without image-defined risk factors (IDRFs) 

L2: Locoregional tumor with one or more IDRFs 

M: Distant metastasis 

Ms: Metastasis in skin, liver, and /or bone marrow.  
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Table 3: The INSS classification consists of 4 stages 

Tumor stage Description 

1 Localized tumor with complete gross excision, with or without microscopic residual disease. 
Representative ipsilateral lymph nodes negative for tumor microscopically. Nodes attached to 
and removed with primary tumor may be positive. 

2A Localized tumor with incomplete gross excision; ipsilateral non-adherent lymph nodes nega-
tive for tumor microscopically. 

2B Localized tumor with or without complete gross excision, with ipsilateral non-adherent lymph 
nodes positive for tumor. Enlarged contralateral lymph nodes must be negative microscopi-
cally. 

3 Unresectable unilateral tumor infiltrating across midline, with or without regional lymph node 
involvement; or localized unilateral tumor with contralateral regional lymph node involve-
ment; or midline tumor with bilateral extension by infiltration or lymph node involvement. 
The midline is defined as vertebral column. Tumors originating on one side and crossing the 
midline must infiltrate to or beyond the opposite side of the vertebral column. 

4 Primary tumor with dissemination to distant lymph nodes, bone, bone marrow, liver, skin, 
and/or other organs. 

4S (special neuroblastoma) 

Localized primary tumor, as defined for stage 1, 2A or 2B with dissemination limited to skin, 
liver, and/or bone marrow. Age group is limited to infants younger than 12 months. Bone mar-
row involvement should be less than 10% of total nucleated cells identified as malignant by 
bone marrow biopsy or aspiration. MIBG scan should be negative for disease in bone marrow. 

MIBG: metaiodobenzylguanidine 

Adapted from American Cancer Society [115]. 
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Besides both classifications mentioned above, the risk group classification for NB patients com-

bined with the INRGSS stage of the disease is vital for the decision on treatment regimen [Table 

4] [116]. 

 

 
Table 4: Neuroblastoma risk group classification 

Risk groups Characteristics  

Low 

Risk 

- Stage 1 
- Stage 2A or 2B, < 1 year old 
- Stage 2A or 2B, ≥ 1 year old, without MYCN amplification 
- Stage 2A or 2B, ≥ 1 year old, favorable histology, MYCN amplification  
- Stage 4S, < 1 year old, favorable histology without MYCN amplification 

Intermediate 

Risk 

- Stage 3, < 1 year old, without MYCN amplification 
- Stage 3, ≥ 1 year old, favorable histology, without MYCN amplification 
- Stage 4, < 1 year old, without MYCN amplification 
- Stage 4S, < 1 year old, unfavorable histology, without MYCN amplification, normal DNA 

ploidy 

High 

Risk 

- Stage 2A or 2B, ≥ 1 year old, unfavorable histology, MYCN amplification 
- Stage 3, < 1 year old, MYCN amplification 
- Stage 3, ≥ 1 year old, MYCN amplification 
- Stage 3, ≥ 18 months old, unfavorable histology 
- Stage 4, any age group, MYCN amplification  
- Stage 4, ≥ 18 months old 
- Stage 4, between 12 and 18 months old, unfavorable histology, MYCN amplification, 

and/or normal DNA ploidy  
- Stage 4S, < 1 year old, MYCN amplification 

Favorable histology is defined by ganglioneuroma mature (stroma-dominant, ganglioneuroma maturing (stroma- 

dominant), ganglioneuroblastoma intermixed (stroma rich), neuroblastoma (stroma-poor), differentiating or 

poorly differentiated with low/intermediate mitosis-karyorrhexis index in patients < 1.5 years at diagnosis, and 

neuroblastoma (stroma-poor), differentiating with low mitosis-karyorrhexis index in patients 1.5 to 5 years at 

diagnosis. 

Unfavorable histology is defined by ganglioneuroblastoma, nodular (stroma-rich/ stroma-dominant and stroma-

poor) and neuroblastoma (stroma-poor)[116].  

Adapted from American Cancer Society [115]. 
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5.5.2 Genetic landscape 
 

Neuroblastoma has a heterogenous mutation spectrum with few recurrent mutated genes and 

a low mutation frequency [105], which explains the broad clinical presentation and treatment 

response. 

Hirschsprung disease-related genes (RET, EDNRB, EDN3, GDNF, ECE1 and ZHFX1B, RET, GDNF, 

BDNF and PHOX2B) have been linked to the occurrence of NB [106]. GDNF, neurturin (NRTN), 

artemin (ARTN) and persephin (PSN) are part of the receptor system of RET tyrosin kinase and 

glycosylphosphatidylinositol-anchored co-receptor (GFR alpha 1-4) [107]. Maris et al. reported 

the appearance of hereditary neuroblastoma predisposition gene (HNB1) on the distal short arm 

of chromosome 16 as an inherited disease when at least two putative familial neuroblastoma 

predisposition loci are reported [108].  

The most frequent genes with somatic mutation frequencies in NB include ALK (9.2%), PTPN11 

(2.9%), ATRX (2.5% and 7.1% with focal deletion), MYCN (1.7%) and NRAS (9.83%) [109] [Figure 

8], with ALK, MYCN and TERT as major NB oncogenic transformation drivers [99,110]. Telemerase 

reverse transcriptase (TERT) (31%) occur only in high risk NB and exist exclusively with MYCN 

amplification and ATRX mutation [111,112]. MYCN amplification is used as  a vital biomarker 

used, as well as an important prognostic factor for NB. Therefore, it has also been studied for 

inhibition and indirect targeting. Targeting MYCN can be challenging due to the lack of appropri-

ate drug-binding sites on its DNA binding domain [113].  
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Figure 8: Top 20 genes in neuroblastoma 

Adapted from COSMIC [91] 

 

5.5.3 Treatment 
 

Low risk NB is curable with no or minimal therapy and is associated with spontaneous regression, 

especially for infants. When treatment is necessary, surgical resection is a feasible option [117]. 

Symptomatic low-risk patients and patients classified in the intermediate risk group receive 

chemotherapy regimen consisting of carboplatin, cyclophosphamide, doxorubicin and etoposide 

[118]. 

High risk NB patients receive treatment in three phases: induction, consolidation and post con-

solidation. The induction phase includes dose-intensive cisplatin cycles and etoposide alternating 

with vincristine, cyclophosphamide and doxorubicin, followed by resection of the primary tumor 

when applicable [119]. 

The consolidation phase includes myeloablative chemotherapy and stem cell transplant [120]. 

The post consolidation phase aims to eradicate minimal residual disease after stem cell trans-



31  
 

plantation. In this phase, dinutuximab is combined with granulocyte-macrophage colony stimu-

lating factor (GM-CSF), interleukin-2 and isoretinoin and has demonstrated improved event-free 

survival [121].  

The current most extensively studied targeted therapy in NB is the ALK inhibitor crizotinib. Crizo-

tinib is FDA approved for adult ALK-translocated non-small cell lung cancer and is a competitive 

inhibitor of ALK and MET kinase activity. The usage of crizotinib was evaluated in patients with 

ALK aberrant NB and a resistance challenge appeared, which was resolved by combination with 

chemotherapy, topotecan and cyclophosphamide. The results of the trial demonstrated com-

plete response 24 weeks after the end of therapy [122].  
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6. STUDY AIM 
 

The work described in this thesis was concerned with the characterization of the proteomic con-

tent and morphology of the extracellular vesicles, as well as to analyze mutational signatures in 

the vesicles. Isolation of extracellular vesicles via differential centrifugation was first tested ac-

cording to a fundamental protocol from Thèry et al. [4] and further optimized. Initial extracellular 

vesicles isolation from cell lines was then expanded to the isolation of extracellular vesicles de-

rived from plasma and urine samples.  

Western blot analysis was used to characterize proteomic content in the extracellular vesicles 

isolated from cell lines and plasma samples. Furthermore, transmission electron microscopy us-

ing immunogold CD63 labelling was utilized to understand the morphological structure of the 

vesicles. 

As a significant player in liquid biopsy, mutational signatures (KRAS, BRAF and ALK) were detected 

with the novel platform Droplet Digital PCRTM (ddPCR). The ddPCR analysis of extracellular vesi-

cles derived from plasma samples was compared to corresponding tissue samples for concord-

ance rate. Discordant cases were evaluated to understand extracellular vesicles as potential ther-

apy monitoring platform for patients. Also included in the study are three samples which were 

simultaneously analyzed for mutational signatures in cfDNA. Furthermore, multiplex ddPCR as-

says as a screening platform with various point mutations for KRAS, BRAF and ALK were optimized 

and established. 
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7. MATERIALS 
 

This chapter lists various kits, chemicals and solutions, consumables, antibodies, devices, soft-

ware and cell lines used when conducting experiments related to this thesis. Section 6.5 compiles 

components of different buffers prepared in-house for western blot analysis. Primers and probe 

sequences, as well as PCR conditions are listed in Section 6.8. 

 

7.1 Commercially available kits 
 

Kits Producers 

Bolt Bis-Tris 4-12% gradient gel Thermo Fisher Scientific, Massachusetts, USA 

Centricon  Plus-70 Merck KGaA, Darmstadt, Germany 

ExoAB antibody sampler kit System Bioscience, California, USA 

ExoRNEASY midi kit Qiagen, Hilden, Germany 

ddPCRTM Supermix for Probes (No dUTP)  Bio-Rad Laboratories, California, USA 

miRNeasy Micro Kit Qiagen, Hilden, Germany 

miRCURY RNA isolation-cell & plant Exiqon, Denmark 

miRCURY RNA isolation- biofluids Exiqon, Denmark 

PierceTM BCA Protein Assay kit Thermo Fisher Scientific, Massachusetts, USA 

Promokine PCR Mycoplasma Test Kit I/C PromoCell GmbH, Heidelberg, Germany 

Repli-G WTA single cell Qiagen, Hilden, Germany 

RNA clean and concentrator Zymo Research, California, USA 

RNeasy mini kit Qiagen, Hilden, Germany 

QuantiTect Reverse Transcription Kit Qiagen, Hilden, Germany 
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7.2 Chemicals and solutions 
 

Chemicals and Solutions Producers 

Advanced DMEM  Thermo Fisher Scientific, Massachusetts, USA 

Advanced RPMI 1640 Thermo Fisher Scientific, Massachusetts, USA 

BoltTM 4-12% Bis-Tris Plus gels Thermo Fisher Scientific, Massachusetts, USA 

BSA (Bovine Serum albumin) Thermo Fisher Scientific, Massachusetts, USA 

Chloroform Carl Roth, Karlsruhe, Germany 

DDPCRTM Buffer control for Probes  Bio-Rad Laboratories, California, USA 

DMEM (Dulbecco’s Modified Eagle Medium) Thermo Fisher Scientific, Massachusetts, USA 

Dulbecco’s PBS Life Technologies, California, USA 

Ethanol Carl Roth, Karlsruhe, Germany 

Fetal bovine serum (FBS) Thermo Fisher Scientific, Massachusetts, USA 

Glycine Sigma-Aldrich, Munich, Germany 

HaltTM  Protease inhibitor cocktail  Thermo Fisher Scientific, Massachusetts, USA 

Isopropanol Carl Roth, Karlsruhe, Germany 

L-Alanyl-Glutamine 200 mM Biochrom, Berlin, Germany 

Lithium dodecyl sulfate (LDS) Thermo Fisher Scientific, Massachusetts, USA 

MEM Non-essential amino acid Thermo Fisher Scientific, Massachusetts, USA 

Methanol  Carl Roth, Karlsruhe, Germany 

MOPS Carl Roth, Karlsruhe, Germany 

NaCl Merck Group, Darmstadt, Germany 

Na Deoxycholate Sigma-Aldrich, Munich, Germany 

Nuclease-free water Thermo Fisher Scientific, Massachusetts, USA 

Non-essential amino acid (100x) Life Technologies, California, USA 

Non-fat dried milk powder Applichem, Darmstadt, Germany 

Page Ruler prestainedTM protein ladder Thermo Fisher Scientific, Massachusetts, USA 

Penicillin/Streptomycin Thermo Fisher Scientific, Massachusetts, USA 

PierceTM ECL Plus western blotting substrate Thermo Fisher Scientific, Massachusetts, USA 

Reduction Agent Thermo Fisher Scientific, Massachusetts, USA 

RPMI 1640 Thermo Fisher Scientific, Massachusetts, USA 

SDS page Promega, Wisconsin, USA 

Streptomycin/ penicillin (200 U/mL) Thermo Fisher Scientific, Massachusetts, USA 

Transfer membrane, PVDF Sigma-Aldrich, Munich, Germany 

Tris/HCL pH 7.2-7.4 Carl Roth, Karlsruhe, Germany 
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Chemicals and Solutions Producers 

Triton X-100 Sigma-Aldrich, Munich, Germany 

Trypsin 0.25% EDTA Sigma-Aldrich, Munich, Germany 

Tween-20 Carl Roth, Karlsruhe, Germany 

 

7.3 Consumables 
 

Consumables Producers 

10 ml Open-Top Thickwall Polycarbonate tube Beckman Coulter, California, USA 

 

7.4 Antibodies 
 

Antibodies Producers 

CD63 unconjugated Bio-Rad Laboratories, California, USA 

GM130/ Golga 2 ( 1:1000) System bioscience, California, USA 
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7.5 Devices 
 

Devices Producers 

CO2 cell culture incubator Binder, Tuttlingen, Germany 

Electric weighing scale Kern und Sohn GmbH, Balingen. Germany 

Li-Cor odyssey imaging system Li-Cor, Nebraska, USA 

Mini Gel Tank Thermo Scientific, Massachusetts, USA 

Mini Trans-Blot® Cell Bio-Rad Laboratories, California, USA 

pH meter Fisher Scientific, Massachusetts, USA 

PHO Mo microplate reader Autobio, Zhengzhou, China 

PowerPac Universal Power Supply Bio-Rad Laboratories, California, USA 

PowerPRO 300 Power Supply Cleaver scientific, Warwickshire, UK 

Proscan 2K, Slow-Scan CCD-Camera Zeiss, Oberkochen, Germany 

Sorvall Discovery 90 SE ultracentrifuge  Thermo Scientific, Massachusetts, USA 

T-100 Thermal cycler Bio-Rad Laboratories, California, USA 

T1270 ultracentrifuge rotor Thermo Scientific, Massachusetts, USA 

QX200 droplet generator Bio-Rad Laboratories, California, USA 

QX200 droplet reader Bio-Rad Laboratories, California, USA 

Zeiss transmission electron microscope Zeiss, Oberkochen, Germany 

  

 

 

7.6 Software 
 

Software Producers 

iTEM Olympus Olympus, Tokyo, Japan 

QuantaSoftTM version 1.7.4 Bio-Rad, California, USA 

Microsoft Excel Microsoft, Washington, USA 
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7.7 Buffers and solutions 
 

Transfer buffer Tris buffered saline (TBS) 

10x stock solution 10x stock solution 

288 g Glycine 60.6 g Tris 

60.56 g Tris 87.6 g NaCL 

20%  SDS 1 M HCI ( for pH adjustment) 

20%  Methanol 1L dH2O 

    

20x MOPS running buffer TBST 

209.2 g  MOPS 1x solution 

121 g Tris 100 mL 10x TBS 

100 ml 20% SDS 900 mL dH2O 

41 ml 0.5 M EDTA 1000 µl Tween 20 

    

RIPA buffer EDTA 0.5 M (pH 8.0) 

50 mM Tris/HCL pH 7.2- 7.4 186.1 g Disodium EDTA 2 H2O 

150 mM NaCl 800 ml dH2O 

0.1% SDS   

1% Na Deoxycholat   

1%  Triton X 100   
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7.8 Primers and probes  
 

Primers/ 

Probes 

Sequences (5’-3’) Annealing  

Temp. 

Conc. Amplicon 

length 

 DDPCR Duplex Assays    

KRAS (old) 

 FWD TTTCGGACTGGGAGCGA 61oC 900 nm 170 bp 

 REV CTGAATTAGCTGTATCGTCAA 900 nm 

KRAS  

 FWD CCAGGTGCGGGAGAGAG   900 nm  

 REV  TGCCTTGACGATACAGCTAA  900 nm  

 WT HEX-TGTGGTAGTTGGAGCTGGTGGC-BHQ-1  250 nm  

 G12A FAM-TGTGGTAGTTGGAGCTGCTGGC-BHQ-1 59 oC 250 nm 98 bp 

 G12C FAM-TGTGGTAGTTGGAGCTTGTGGC-BHQ-1 59 oC 250 nm  

 G12D FAM-TGTGGTAGTTGGAGCTGGTGGC-BHQ-1 59 oC 450 nm  

 G12V FAM-TGTGGTAGTTGGAGCTGTTGGC-BHQ-1 60 oC 450 nm  

 G13D FAM-TGTGGTAGTTGGAGCTGGTGAC-BHQ-1 60 oC 450 nm  

BRAF 
 FWD TTCATGAAGACCTCACAGTAAA  900 nm  

 REV TTTGTGGATGGCACCAG  900 nm  

 WT HEX-TTTGGTCTAGCTACAGTGAAATCTCG-BHQ-1  250 nm  

 V600E FAM-TTTGGTCTAGCTACAGAGAAATCTCG-BHQ-1 61oC 350 nm 98 bp 

 V600K FAM-TTTGGTCTAGCTACAAAGAAATCTCG-Z/IB 58oC 400 nm  

ALK F1174L  
 FWD GGACGAACTGGATTTCCTCAT  900 nm  

 REV GTGAGCCTGCAATCCCTG  900 nm 96 bp 

 WT HEX-CAGCAAATTCAACCACCAGAACAT-BHQ-1  400 nm  

 F1174L FAM-CAGCAAATTAAACCACCAGAACAT-BHQ-1 59oC 400 nm  

ALK R1275Q 
 FWD CTGGAAGAGTGGCCAAGAT  900 nm  

 REV ATAGAAAGGGAGGCTGTGC  900 nm 82 bp 

 WT HEX-CCGAGACATCTACAGGGCGAGCTA-Z/IB  350 nm  

 R1275Q FAM-CCAAGACATCTACAGGGCGAGCTA-Z/IB 61oC 350 nm  

              FWD: forward, REV: reverse, WT: wild-type, Temp.: Temperature, Conc.: concentration 
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Primers/ 

Probes 

Sequences (5’-3’) Annealing  

Temp. 

Conc. Amplicon 

length 

 DDPCR Multiplex Assays    

KRAS Multiplex 

 FWD CCAGGTGCGGGAGAGAG   
 
 
 
 

59oC 

900 nm  

 REV  TGCCTTGACGATACAGCTAA 900 nm  

 WT HEX-TGTGGTAGTTGGAGCTGGTGGC-BHQ-1 250 nm  

 G12A FAM-TGTGGTAGTTGGAGCTGCTGGC-BHQ-1 350 nm 98 bp 

 G12D FAM-TGTGGTAGTTGGAGCTGGTGGC-BHQ-1 450 nm  

 G12V FAM-TGTGGTAGTTGGAGCTGTTGGC-BHQ-1 250 nm  

BRAF Multiplex 
 FWD TTCATGAAGACCTCACAGTAAA  

 
 

60oC 

900 nm  
 
 

98 bp 

 REV TTTGTGGATGGCACCAG 900 nm 

 WT HEX-TTTGGTCTAGCTACAGTGAAATCTCG-BHQ-1 250 nm 

 V600E FAM-TTTGGTCTAGCTACAGAGAAATCTCG-BHQ-1 250 nm 

 V600K FAM-TTTGGTCTAGCTACAAAGAAATCTCG-Z/IB 500 nm 

ALK Multiplex 
 ALK F1174L   

 
 
 
 
 
 
 

60oC 

  
 
 
 
 
 
 
 

96 bp 

 FWD  GGACGAACTGGATTTCCTCAT 900 nm 

 REV GTGAGCCTGCAATCCCTG 900 nm 

 WT HEX-CAGCAAATTCAACCACCAGAACAT-BHQ-1 250 nm 

 F1174L FAM-CAGCAAATTAAACCACCAGAACAT-BHQ-1 250 nm 

 ALK R1275Q  

 FWD CTGGAAGAGTGGCCAAGAT 900 nm 

 REV ATAGAAAGGGAGGCTGTGC 900 nm 

 WT HEX-CCGAGACATCTACAGGGCGAGCTA-Z/IB 350 nm 

 R1275Q FAM-CCAAGACATCTACAGGGCGAGCTA-Z/IB 350 nm 

FWD: forward, REV: reverse, WT: wild-type, Temp.: temperature, Conc.: concentration 
 
 
 
 
 
 
 
 
 
 
 
 
 



40  
 

7.9 Human-derived cell lines 
 

RRID1 Cell line Disease1 Gene  
mutation 

Medium Source 

CVCL_9529 CLB-Ga Neuroblastoma ALK F1174L DMEM AG Deubzer 

CVCL_0291 HCT 116 Colon carcinoma KRAS G13D RPMI-1640 DSMZ 

CVCL_0030 HELA Endocervical 
adenocarcinoma 

Wild-type DMEM DSMZ 

CVCL_1303 IGR-1 Groin lymph node 

Melanoma 

BRAF V600K DMEM DSMZ 

CVCL_0346 IMR-32 Neuroblastoma Wild-type DMEM AG Deubzer 

CVCL_2092 Kelly Neuroblastoma ALK R1275Q RPMI-1640 AG Deubzer 

CVCL_1384 LS174T Colon adenocarcinoma KRAS G12D RPMI-1640 Sigma-Aldrich 

CVCL_0428 MIA PaCa-2 Pancreatic ductal  
adenocarcinoma 

KRAS G12C DMEM ATCC 

CVCL_0041 RPMI-8226 Plasma cell myeloma KRAS G12A RPMI-1640 DSMZ 

CVCL_0526 SK-MEL-28 Cutaneous  melanoma BRAF V600E RPMI-1640 ATCC 

All cell lines were authenticated by single nucleotide polymorphism profiling by Multiplexion GmbH (Frie-
drichshafen, Germany) and tested negative for mycoplasma. 

DMEM: Dulbecco’s Modified Eagle Medium, RPMI: Roswell Park Memorial Institute, DSMZ: German 
Collection of Microorganisms and Cell Cultures (Braunschweig, Germany), Sigma-Aldrich (Merck KGaA, Darm-
stadt, Germany), ATCC: American Type Culture Collection (Manassas, USA), RRID: Resource Identification Initia-
tive1. 

1 Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, 
Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, 
Xenarios I, and Stockinger H. ExPASy: SIB bioinformatic resource portal, Nucleic Acids Res, 40(W1):W597-W603, 
2012. 

 

 

      

 

 

 

 

 

 

 

 
 



41  
 

8. METHODS 
 

 

Most methods from section 7 have been published in: 

 

Analysis of cancer related mutations in extracellular vesicles RNA by Droplet Digital PCR. 

Yap S.A., Münster-Wandowski A., Nonnenmacher A., Keilholz U., Liebs S.  

BioTechniques Journal, 25 June 2020. 
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8.1 Patient materials 
 

8.1.1  Patient samples 
 

Four NB patients, thirteen advanced CRC and eighteen MM patients were enrolled in our study 

from the Department of Oncology and Hematology, the Skin Tumor Center and the Department 

of Pediatrics, Division of Oncology and Hematology of the Charité Medical University. Among the 

thirty-five samples, three patients originated from the OncoTrack project and were recruited 

from the Charité and the Medical University Graz [124]. All patients consented for blood dona-

tion. The study was approved by the ethics committee from of both Charité University Medicine 

(EA1/069/11, EA4/090/08, EA4/063/13, NB2004 and NB2016) and Medical University Graz (23-

015 ex 10/11). 

Peripheral blood from patients was collected in BD Vacutainer® EDTA tubes (BD, Franklin Lakes, 

USA). For urine analysis, 10 milliliters of urine from NB patients were collected in BD Vacutainer® 

Plus urinalysis tubes (BD, Franklin Lakes, USA). 

 

8.1.2  Patient demographics 
 
Thirteen advanced CRC patients, all of whom were characterized as American Joint Committee 

on Cancer (AJCC) stage 4, were recruited into our study. Among the patients, eleven were male 

and two were female, with a median age of 59. Five patients were diagnosed with right-sided 

colon cancer while five patients were diagnosed with left-sided colon cancer. Three patients were 

diagnosed with rectal cancer. Based on the patients’ database, seven patients were profiled with 

KRAS mutation and six with KRAS wild type. Furthermore, three patients underwent therapy with 

cetuximab, and three with FOLFOX. Combination therapy of FOLFOX and bevacizumab was pre-

scribed to six patients, whereas one patient received a combination of FOLFOX, bevacizumab and 

panitumumab. 

Eighteen MM patients were recruited into our study. Among the patients, twelve were male and 

six were female with the median age of 54. The patient cohort varied in stages. Tumor tissues 

from 13 patients were profiled to be BRAF positive and for 5 patients with BRAF wild type. More-

over, two patients received nivolumab and seven patients received a combination of nivolumab 
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and ipilimumab. Two patients were treated with MEK inhibitor and seven patients were treated 

with combination of BRAF/MEK inhibitor.  

NB patients ranged from ages 3 to 5 and belonged to the high-risk groups. Three patients were 

diagnosed with the primary tumor in the adrenal gland and one patient with the primary tumor 

located in retroperitoneal and intraabdominal cavity. All patients had an increment in tumor 

marker neuron-specific enolase (NSE), and in three patients there was also an increment in 

homovanillic acid and vanillylmandelic acid in urine. All patients received NB 5 (valenzen, 

vindesin, etoposid and cisplatin) and NB 6 (vincristin, dacarbazin, ifosfamid and doxorubicin) 

block therapies and anti-GD2 antibody (dinutuximub), while two patients underwent debulking 

surgery. One of four patients eventually received palliative anti-GD2 therapy and unfortunately 

passed away during the course of our study. Patient demographics are listed in Table 5.  

 

 
Table 5: Demographics, clinical characterization, and therapy information of participants for 
(a) colorectal cancer (b) melanoma and (c) neuroblastoma 

(a) 
 

  (b)  

Colorectal cancer (CRC)  Melanoma (MM) 
Total patients (n =13) Number  Total patients (n= 18) Number 
Gender   Gender  
     Male 11       Male 12 
     Female 2       Female 6 
Age 59 (median)  Age 54 (median) 
Localization   Stage  
     Right-sided colon cancer 5       1 2 
     Left-sided colon cancer 5       2 0 
     Rectum 3       3 3 
AJCC        4 13 
     1 0  BRAF MUT 13 
     2 0  BRAF WT 5 
     3 0  Therapy  
     4 13       nivolumab 2 
KRAS MUT 7       nivolumab/ipilimumab 7 
KRAS WT 6       MEK inhibitor 2 
Therapy        BRAF + MEK inhibitor 7 
     cetuximab 3    
     FOLFOX + cetuximab 3    
     FOLFOX + bevacizumab 6    
     FOLFOX + bevacizumab + 
     panitumumab 

 

1    
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INSS: international neuroblastoma staging system 
NSE: neuron-specific enolase 
NB 5: valenzen, vindesin, etoposid, cisplatin 
NB 6: vincristin, dacarbazin, ifosfamid, doxorubicin 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
 

 

Neuroblastoma (NB)  
Total patients (n = 4) Number 
Gender  
     Male 2 
     Female 2 
Age 4 (median) 
Localization  
     Adrenal gland  3 
     Retroperitoneal, 1 
     Abdominal cavity  
Risk groups  
     Low 0 
     Intermediate 0 
     High 
Stage (INSS) 

4 
 

     1 0 
     2 0 
     3 0 
     4 4 
Tumor markers  
     NSE 4 
     Homovanillic acid 3 
     Vanillylmandelic acid 3 
MYCN amplification 3 
ALK F1174L 2  
Therapy  
  
     NB 5 4 
     NB 6 4 
     Anti-GD 2 antibody 
 

4 
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8.2 Cell culture 
 

8.2.1  Human-derived cell line cultivation and extracellular vesicle pro-
duction 

 

The validation of cell lines was carried out with single nucleotide polymorphism profiling by Mul-

tiplexion GmbH (Friedrichshafen, Germany). Prior to culturing cells for EV harvesting, the cell 

lines were tested negative for mycoplasma using the Promokine PCR Mycoplasma Test KIT I/C 

based on the manufacturer’s instructions (PromoCell GmbH, Heidelberg, Germany). Cells were 

cultured in the respective medium listed in Section 5.8 and maintained at 37oC and 5% CO2. All 

cell lines were supplemented with 1% penicillin/streptomycin (Gibco®, Thermo Fisher Scientific, 

Massachusetts, USA) and 2% L-glutamine (Gibco®, Thermo Fisher Scientific, Massachusetts, USA). 

The NB cell line Kelly was additionally supplemented with 1% MEM non-essential amino acid 

(NEAA) (Thermo Fisher Scientific, Massachusetts, USA).  

Isolated EV were cultured from the corresponding cell lines: SK-MEL-28, IGR-1, RPMI 8226, 

MIA PaCa-2, LS174T, SW480, HCT 116, Kelly and CLB-Ga, which express mutations of BRAF V600E/K, 

KRAS G12A/C/D/V, KRAS G13D and ALK F1174L/R1275Q  , respectively (ref: Section 5.8). Cells were seeded 

in TC-treated cell culture dishes (Eppendorf, Hamburg, Germany) until 80% confluent, thn the 

primary fetal bovine serum (FBS) was then removed by rinsing adherent cells twice with PBS and 

recultured with Advanced DMEM or Advanced RPMI (Thermo Fischer Scientific, Massachusetts, 

USA) without FBS.  

 

8.2.2  Extracellular vesicles isolation from cell lines 
 

EV-rich supernatant was harvested after 48 hours of incubation at 37oC and 5% CO2. The remain-

ing cells were pelleted at 2,000 x g for 20 minutes at 4oC and the supernatant was filtered with a 

0.22 μM cellulose acetate filter (Merck, Darmstadt, Germany) to remove larger particles. The su-

pernatant was concentrated with the Centricon Plus-70 Filter (Merck, Darmstadt, Germany) fol-

lowing the supplier’s instructions. The concentrated samples were filtered again, followed by two 

cycles of ultracentrifugation at 100,000 x g the first round for 70 minutes and the second round 
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for 60 minutes at 4oC as shown in Figure 9(a) in thickwall polycarbonate tubes. This was con-

ducted with the Sorvall Discovery 90 SE ultracentrifuge and a T-1270 fixed angle titanium rotor 

(Thermo Scientific, Massachusetts, USA). 

 

8.2.3  Extracellular vesicles isolation from plasma samples 
 

Whole blood samples were centrifuged at 1,811 x g for 7 minutes and 3,060 x g for 10 minutes 

at room temperature. Plasma was stored in DNA low-binding 1.5 ml tubes (Eppendorf, Hamburg, 

Germany) at -80oC until further processing. One milliliter of plasma was thawed at room temper-

ature and resuspended with 1x PBS to isolate EV via serial centrifugation as shown in Figure 9(b). 

The resuspended plasma was centrifuged twice at 4oC and the pellet was discarded in both steps: 

3,000 x g for 5 minutes and 10,000 x g for 20 minutes. The supernatant was then subjected to 

two rounds of ultracentrifugation at 100,000 x g for 2 hours at 4oC in thickwall polycarbonate 

tubes, followed by filtration of the supernatant with a 0.22 µm cellulose acetate filter before 

proceeding with a second round of ultracentrifugation at 100,000 x g for 70 minutes. 

 

 
Figure 9: Extracellular vesicles isolation from human-derived cell lines and plasma samples 

(a) The cell line supernatant was centrifuged at 2,000 x g for 20 minutes before filtering with the 0.22 µm cellulose 

acetate filter. The filtered supernatant was concentrated with Centricon Plus-70 before undergoing two rounds of 

ultracentrifugation to pellet extracellular vesicles.  
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(b) One millimeter of plasma was diluted with 1x PBS and centrifuged twice at 3,000 x g for 5 minutes, followed by 

10,000 x g for 20 minutes to pellet dead cells and larger particles. The Resuspended pellet was filtered once with 

0.22 µm cellulose acetate filter in between the two ultracentrifugation cycles.  

 

8.2.4  Extracellular vesicles isolation from urine samples 
 

Ten milliliters of urine was collected in BD Vacutainer® Plus urinalysis tubes (BD, Franklin Lakes, 

USA) from NB patients. Prior to storing at -80oC, 1x HaltTM Protease Inhibitor Cocktail (Thermo 

Scientific, Massachusetts, USA) was added to the urine samples when intended for proteomic 

characterization. Urine samples used for other analyses were stored at -80oC without additives 

until further processing. The urine samples were thawed at room temperature followed by 

5 minutes of vortexing and subjected to serial centrifugation at 4oC: 2,000 x g for 10 minutes, 

17,000 x g for 45 minutes and 200,000 x g for 65 minutes in thickwall polycarbonate tubes. Dithi-

othreitol (DTT) (200 mg/ml) (Carl Roth, Karlsruhe, Germany) was used to resuspend the EV pellet 

to rid samples of Tamm-Horsfall protein (uromodulin). The suspended sample was then sub-

jected to a final round of ultracentrifugation at 200,000 x g for 65 minutes at 4oC [Figure 10].  

When used for transmission electron microscopic (TEM) analysis, the EV pellet was resuspended 

in 20 µl of PBS. EV used for western blot (WB) analysis were immediately lysed with RIPA buffer 

before storage at -80oC, and for mutational analysis, EV-RNA was immediately isolated prior to 

storage in -80oC. 
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Figure 10: Extracellular vesicles isolation from urine samples 

Extracellular vesicles derived from 10 millimeters of urine samples were isolated via differential centrifugation. Prior 

to the final ultracentrifugation step, 200 mg/ml of DTT were added to rid the sample of Tamm-Horsfall protein. 

 

 

8.3 RNA isolation and cDNA synthesis from cell lines 
 

Ribonucleic acid (RNA) was isolated from cell lines with the commercial kit RNeasy Mini Kit (Qi-

agen, Hilden, Germany) based on the manufacturer’s instructions. This was followed by cDNA 

synthesis and gDNA removal with a QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Ger-

many) following the manufacturer’s instructions. 

 

8.4 Extracellular vesicles-RNA isolation 
 

EV-RNA was isolated immediately after EV isolation using the miRCURY RNA Isolation Kit-Cell & 

Plants (Exiqon, Denmark) for cell line-derived EV and the miRCURY RNA Isolation Kit-Biofluids 

(Exiqon, Denmark) for EV derived from plasma. MiRneasy Micro Kit (Qiagen, Hilden, Germany) 

was used as a substitution for the remaininghalf of the samples, due to the discontinuation of 

both kits from Exiqon. EV-RNA was isolated according to slightly modified manufacturer’s instruc-

tions. DNase (1U/µl) (Thermo Scientific, Massachusetts, USA) was added to the RNA samples to 
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rid the sample of possible DNA contamination. The samples were cleaned and concentrated with 

the RNA clean & concentrator kit (Zymo Research, California, USA) and eluted in 10 µl nuclease-

free DEPC treated water (Carl Roth, Karlsruhe, Germany) based on the manufacturer’s instruc-

tions. EV-RNA was stored in -80oC until further usage.  

 

8.5  Whole transcriptome amplification 
 

Whole transcriptome amplification (WTA) was performed with REPLI-g WTA kit (Qiagen, Hilden, 

Germany) according to supplier’s instructions. EV-RNA were converted into cDNA and amplified, 

resulting in 19 µl amplified cDNA. Samples were purified, concentrated with the RNA Clean & 

ConcentratorTM-5 kit (Zymo Research, California, USA) and eluted in 30 µl nuclease-free DEPC 

treated water (Carl Roth, Karlsruhe, Germany) based on the manufacturer’s proposition. 

 

8.6 Whole mount immunoelectron microscopy 
 
EV pellets were fixed and deposited on Formvar carbon-coated (Plano, Wetzlar, Germany) glow-

discharged (MED020, Leica) nickel grids. The grids were washed in PBS and incubated in a block-

ing buffer containing 1% bovine serum albumin (BSA, Sigma-Aldrich, Darmstadt, Germany) in 

PBS. Subsequently, the grids were exposed to primary antibody CD63 produced in mouse (Bio-

Rad, California, USA) for one hour and secondary antibody goat anti-mouse IgG conjugated to 

5 nm gold particles (Plano, Wetzlar, Germany) for 30 minutes. The grids were stained with 2% 

phosphotungstic acid (PTA, Sigma-Aldrich, Darmstadt, Germany), pH = 7.0, for 10 minutes, be-

fore transferring to a mixture of 2% methyl-cellulose with 4% uranyl acetate (Merck, Darmstadt, 

Germany) for 10 minutes on ice. Stainless steel loops were used to remove grids. The excess fluid 

was gently blotted on Whatman Grade 1 qualitative cellulose filter paper (Merck, Darmstadt, 

Germany) and the grids were left to dry. The analysis was carried out with a Zeiss transmission 

electron microscope 912 equipped with a digital camera (Proscan 2K, Slow-Scan CCD-Camera, 

Zeiss, Oberkochen, Germany). Image analysis was carried out with iTEM Olympus software. For 

negative controls, the primary antibodies were omitted. Microscopic analyzation and data inter-

pretation was kindly performed by Dr. Münster-Wandowski and technical assistant Heike Heil-

mann (Institute of Integrative Neuroanatomy, Charité Universitätsmedizin Berlin). 
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8.7 Western blot 
 
When collecting cell culture supernatant for EV isolation,the  cells were harvested to be used as 

controls for all western blot analysis. EV pellets and cells were homogenized in RIPA lysis buffer 

(ref: Section 5.4), supplemented with Protease Inhibitor Cocktail (Thermo Scientific, Massachu-

setts, USA) and boiled for 95oC for 10 minutes. The PierceTM BCA Protein Assay Kit (Thermo Sci-

entific, Massachusetts, USA) was used for quantification of total protein following the manufac-

turer’s instructions and analyzed with a PHO Mo microplate reader (Autobio, Zhengzhou, China). 

Twenty micrograms of protein and 5 µl of PageRulerTM Prestained Protein Ladder (Thermo Fisher 

Scientific, Massachusetts, USA) were loaded in 4-15% gradient Mini Protean® TGXTM Precast Gels 

(Bio-Rad, California, USA). The western blot was performed with MOPS running buffer (ref: Sec-

tion 5.4) in the Mini Gel Tank (Thermo Scientific, Massachusetts, USA). The electrophoresis ran 

first at 75 V for 15 minutes to separate the bands and continued at 120 V for 60 minutes.  

The proteins were electrophoretically transferred to polyvinylidene difluoride membranes 

(PVDF) with the Trans-Blot® tank blot system (Bio-Rad, California, USA) at 300 mA for one hour. 

The membrane was blocked in 5% BSA in TBST (0.1% Tween-20) for one hour, before overnight 

incubation with exosomal antibodies against CD9 (1:1000 dilution) (Exiqon, Denmark), CD81 

(1:500 dilution) (Exiqon, Denmark) and non-exosomal antibody GM130 (1:1000 dilution) (System 

Bioscience, California, USA), followed by a one hour incubation with the secondary antibody. All 

antibodies were diluted with 5% BSA in TBST (ref: Section 5.4). Protein bands were detected by 

enhanced chemiluminescences using PierceTM ECL Plus Western Blotting Substrate (Thermo Sci-

entific, Massachusetts, USA) and visualized via Li-Cor Odyssey Imaging System (Li-Cor, Nebraska, 

USA). Western blot analysis was repeated once. 

 

8.8 Designing primers and probes  
 
Primers and probes for ddPCR assays were designed using Primer blast [125]. The important cri-

teria taken into consideration when designing primers were: including GC content of 50 to 60%, 

the primer melting temperature being between 50 and 65oC, avoidance of Gs and Cs repetitions 

longer than 3 bases, placement of Gs and Cs at the 3’-end of primers, and avoidance of secondary 
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structure or primer-dimers. All primers used in the ddPCR assays for EV analysis were smaller 

than 100 based-pairs [126].  

When the probes were designed, the following parameters were considered: the  sequence 

should lie in between the amplicons of both primers, the probes melting temperature ranged 

from 3 to 10oC above that of the primers, GC content of 30 to 80oC,  and avoidance of G nucleo-

tide at the 5’-end of the probes. All probes were labeled with Black Hole Quencher (BHQ1) at 3’-

end of the sequences, except for BRAF V600K and ALK R1275Q  wild-type and mutated probes, which 

were labeled with a ZenTM/Iowa BlackTM (Z/IB) quencher [126,127]. Furthermore, mutant probes 

were labeled with FAM reporter dyes, while wild-type probes were labeled with HEX reporter 

dyes at the 5’-end of the probes to enable analyzation in the two-color detection system.  

All primers and probes were resuspended in nuclease-free DEPC treated water (Carl Roth, Karls-

ruhe, Germany), allocated in Eppendorf 1.5 ml tubes (Eppendorf, Hamburg, Germany) to avoid 

repetitive freeze-thaw cycles and stored at -20oC until used. Primers and probes sequences are 

listed in Section 7.8. 

 

8.9  Droplet digital polymerase chain reaction (ddPCR) 
 

Two microliters of cDNA and twenty microliters of total reaction volume, consisting of primers, 

wild-type (WT) and mutation (MUT) probes and ddPCR Supermix for Probes (no dUTP) were pre-

pared in Eppendorf 1.5 ml tubes (Eppendorf, Hamburg, Germany). Twenty microliters of PCR re-

action was then transferred into the middle row of a DG 8TM Cartridges for QX200TM Droplet 

generator (Bio-Rad, California, USA), and 70 µl of droplet generation oil (Bio-Rad, California, USA) 

into the bottom wells of the DG8TM Cartridges (Bio-Rad, California, USA). Unused wells in the 

cartridges were filled with 1x ddPCR buffer control (Bio-Rad, California, USA). A gasket (Bio-Rad, 

California, USA) was then attached across the top of the DG8TM Cartridges (Bio-Rad, California, 

USA) before placing them into the QX200 droplet generator [Figure 11]. Droplet-partitioned sam-

ples were transferred to a 96-well plate using a Rainin Pipet-Lite multi pipette L8-200 XLS+ (Met-

tler Toledo, Ohio, USA) and VWR pipette tips (Avantor, Pennsylvania, USA) to ensure a smooth 

transfer of the droplets.  
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Figure 11: Bio-Rad DG8 cartridges 

(a) The bottom row of the cartridge is filled with droplet 

generation oil and samples are pipetted into the middle 

row. Top wells contained generated droplets.  

(b) Prior to placing the cartridge into the QX200 droplet 

generator, a gasket is placed over the plastic cartridge. 

Adapted from Bio-Rad Droplet DigitalTM PCR applications 

guide [126]. 

 

 

PCR was performed with a T-100 Thermal cycler (Bio-Rad, California, USA) with the following 

protocol: 95oc for 10 minutes, followed by 40 cycles of 94oC for 30 seconds, 61oC (annealing tem-

perature) for 1 minute and 98oC for 10 minutes. The annealing temperature varied in regards to 

different mutation assays. The primer and probe sequences and PCR conditions are listed in Sec-

tion 7.8. DDPCR samples were analyzed as duplicates in the FAM (MUT) and HEX (WT) channels 

using the QX200TM Droplet Reader (Bio-Rad, California, USA). For the optimization of the ddPCR 

assays, cDNA from cell lines were used. Each ddPCR run included non-template control: PCR wa-

ter (Carl Roth, Karlsruhe, Germany), cDNA from cell lines and the finalized mutation assays were 

repeated as triplicates. Prior to analysis on patient samples, EV derived from the cell lines were 

utilized to validate mutational detection. 

DDPCR assays were optimized first as a singleplex, using only one probe at the concentration of 

250 nm and a thermal gradient cycling program with an annealing temperature between 56oC to 

63oC for 1 minute. The thermal gradient ddPCR was repeated as duplex with both wild-type and 

mutant probes, followed by testing of various probe concentrations (250 nm, 350 nm, 450 nm) 

to secure the ideal annealing temperature and probe concentration of both wild-type and mu-

tant probes.  

The false positive rate (FPR) was validated for each assay. Prior to running FPR experiments, serial 

dilution of wild-type derived cDNA was carried out to estimate the concentration of sample input 
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accountable for 500 copies/µl and 100 copies/µl of wild-type derived cDNA. Once confirmed, as-

says consisting of eight wells of non-template control, four wells of 500 copies/µl of wild-type 

cDNA and four wells of 100 copies/µl of wild-type cDNA were cycled.  

Due to the intention to detect rare mutations, verifying limit of detection (LOD) was important 

to ensure the assay’s sensitivity. Similarly to the preparation for FPR experiments, serial dilution 

of mutant-derived cDNA was carried out to estimate sample input concentration accountable for 

100, 10, 1, 0.1 and 0.01 copies/µl. The assays were then analyzed with 10-fold serially diluted 

mutant-derived cDNA in a background of constant wild-type derived cDNA (100 copies/µl).This 

assay was also simultaneously used to estimate the WT/MUT ratio to identify the performance 

of the primers and probes. 

The assays were also tested for specificity to ensure that the probes did not bind to another 

mutation with the same nucleotide position. Cell lines from cDNA representing different point 

mutations were used for validation. For the validation of BRAF mutation assays, SK-MEL-28, IGR-

1, and WM115 representing BRAF V600E/K/D were used. On the other hand, for KRAS mutation as-

say validation, RPMI8226, SW480, LS174T, Mia Paca2 and HCT 116 representing KRAS G12A/V/D/C 

and KRAS G13D were used. The specificity test for ALK mutation assays included Kelly and CLB-GA 

representing ALK F1174L and ALK R1275Q.  

 

8.9.1 ddPCR multiplex 
 
Multiplex on the ddPCR platform includes the detection of more than two probes and analyzation 

of the different positive populations on the 2-D amplitude plot. BRAF multiplex assay has an an-

nealing temperature of 60oC and the concentrations of the different probes V600E, V600K and 

wild-type are 250 nm, 500 nm and 250 nm, respectively.  

KRAS multiplex assays consist of wild type and mutations G12D, G12A and G12V with an anneal-

ing temperature of 61oC and the concentrations of wild-type, G12D, G12A and G12V probes are 

250 nm, 450 nm, 350 nm and 250 nm, respectively.  

ALK multiplex assay includes two sets of primers and four probes with an annealing temperature 

of 60oC. The concentrations of both ALK R1275Q wild-type and mutant probes are 350 nm, and for 

both ALK F1174L wild-type and mutant probes are 250 nm. Multiplex assay conditions are listed in 

Section 7.8. 
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8.10  Data normalization and analysis 
 

Protein concentrations were normalized with Microsoft Excel.  

The rare mutation detection (RMD) function was used when analyzing the PCR products with 

QuantaSoftTM Software version 1.7.4 (Bio-Rad, California, USA). Droplet fluorescence data were 

viewed as 1-D and 2-D plot with QuantaSoftTM Software version 1.7.4 (Bio-Rad, California, USA) 

and were expressed as copies/µl. The results were then calculated as:  

𝐶𝑃𝑀 =	 &'()*+	',	-./0*-	1	-*2(3.-*	4'352*
4'352*	.6.378*9	',	-:*	95(3)&.-*+

 [126].  

 Microscopic analysis was carried with iTEM Olympus software. 
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9. RESULTS 
 

Most of the results from section 8 have been published in: 

 

Analysis of cancer related mutations in extracellular vesicles RNA by Droplet Digital PCR. 

Yap S.A., Münster-Wandowski A., Nonnenmacher A., Keilholz U., Liebs S.  

BioTechniques Journal, 25 June 2020 
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9.1 Culturing extracellular vesicles from cell lines 
 

Fetal bovine serum (FBS) is often used as a cell culture supplement to facilitate cell maintenance 

and proliferation [128]. However, EV can also be secreted from FBS. Therefore, it is vital to elim-

inate vesicles in FBS prior to culturing cell lines for the purpose of EV production. Initially, we 

produced EV-depleted FBS to be used as a supplement in our culture medium. FBS was centri-

fuged at 120,000 x g for 8 hours and filtered with a 0.22 µm cellulose acetate filter, based on a 

protocol proposed by Shelke et al. [129]. While the cells were growing well with the addition of 

EV-depleted FBS, FBS was disrupting EV purification and concentration by clogging the Centricon 

Plus-70 Filter (Millipore) (ref: Section 6.3.2). Therefore, it was decided to remove the addition of 

EV-depleted FBS in medium-producing EV altogether by rinsing primary FBS twice with PBS when 

the cells were 80% confluent, and the culture medium was replaced with fresh medium without 

the FBS supplement. Neuroblastoma cell lines were unfortunately unable to survive after 24 

hours without the addition of FBS. Depending on the cell lines, we then utilized Advanced DMEM 

or RPMI (Thermo Fischer Scientific, Massachusetts, USA) without FBS to replacethe  primary cul-

ture medium when cells reached a confluency of 80%. Advanced DMEM and RPMI are cell culture 

media which allow the culture of mammalian cells with reduced FBS and are commonly used 

when culturing stem cell-derived cell lines [130]. 

 

9.2 Extracellular vesicles isolation 
 

9.2.1  Optimization of extracellular vesicles isolation 
 

The fundamental protocol for EV isolation was adapted from Thèry et al. [123]. Supernatant from 

the cell culture was centrifuged at 300 x g, 200 x g and 10,000 x g for 10 minutes, 10 minutes and 

30 minutes to pellet cells, dead cells and cell debris respectively followed  by two cycles of ultra-

centrifugation at 100,000 x g for 70 minutes [123]. Based on this protocol, vesicles of different 

morphology and sizes, as well as cell debris were visible with the transmission electron micro-

scope [Figure 8]. The background of cellular debris and visibility of other vesicle populations com-

plicated the identification of the vesicles of interest. Therefore, the isolation protocol was opti-

mized by replacing the initial serial centrifugal strength with a filtration step through a 0.22 µm 

cellulose acetate filter and the sample concentration with the Centricon Plus-70 filter (Millipore) 



57  
 

(ref: Section 6.3.2). The Centricon Plus-70 filter (Millipore, Massachusetts, USA) is a centrifuga-

tion-based concentrating device with a 10 K nominal molecular weight limit used to concentrate 

70 milliliters of cell culture supernatant to 350 µl of concentrated medium [131]. EV isolated with 

the optimized protocol mproved the visualization of homogenously sized and shaped vesicles 

with less impurities in the background [Figure 12]. 

 

 

 
Figure 12: Electron microscope validation of extracellular vesicle isolation protocol 

(a) Extracellular vesicles from SW-620 (colorectal cancer cell line) were isolated based on Thèry’s protocol. Extracel-

lular vesicle fractions were heavily accompanied with larger vesicles and cellular debris. Bar, 250 nm. 

(b) The isolation protocol was optimized and EV-SW620 were isolated. Extracellular vesicle fractions appeared to be 

less contaminated with larger vesicles and cellular debris. Inset: zoomed-in CD63-positive extracellular vesicles. Bar, 

250 nm. 
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9.2.2  Purification of extracellular vesicles from urine 
 

As NB occurs in pediatric patients, the volume of blood drawn is limited. EV isolation from urine 

is a promising alternative to blood-based liquid biopsies due to its true invasiveness, and is abun-

dantly available unlike blood. Its function as a potential biomarker is promising,  as shown in 

patients with renal diseases [8], urothelial bladder carcinoma [132] and prostate cancer [133].  

The physiological existence of Tamm-Horsfall glycoprotein (THP) or uromodulin in the urine re-

duces EV yield due to fibrin matrices trapping the vesicles [Figure 10]. Therefore, to increase EV 

yield, it is important to reduce amount of THP in the urine sample [134]. The entrapment can be 

eliminated by chemical reduction of disulfide bonds with 200 mg/ml of 1.2 - dithiothreitol (DTT), 

thereby depolymerizing the THP. The isolation protocol was adapted from Cheng et al. [135]. 

When comparing with and without the addition of DTT, significant improvement was noticed 

when DTT was added [Figure 13]. Protocol verification was assisted by transmission electron mi-

croscopy. Based on the morphological appearance of the vesicles and existence of fibrins and 

cellular fragments in the sample, we concluded that the protocol with the DTT supplement is 

superior to the other one [Figure 14]. 

 

 

 

 

 

 

 

 

Fibrin matrices of the Tamm-Horsfall protein traps vesi-

cles and reduce the yield of the vesicles.  

Bar: 800 nm. Adapted from Llama et al. (2010) [134]. 

 

Figure 13: Tamm-Horsfall protein in urine samples 
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Figure 14: Extracellular vesicles derived from urine 

Whole mount immunoelectron microscope analysis of extracellular vesicles isolated from the urine of neuroblas-

toma patients. (a) Representation of Ttamm-Horsfall protein in isolated EV fraction from urine sample. Bar, 100 nm 

(b) With the addition of DTT,the  appearance of Tamm-Horsfall protein was reduced and more vesicles were seen. 

Inset: zoomed-in CD63-positive extracellular vesicles. Bar, 100 nm. 

 

 

9.3 Extracellular vesicles characterization 
 

9.3.1  Whole mount immunoelectron microscope analysis 
 
Various EV including exosomes and  microvesicles were examined using whole mount immuno-

electron microscopy and were studied based on their size, morphology and immunoreactivity for 

protein enriched in the vesicles [131,136,137]. Immunoelectron microscope samples were pre-

pared initially by fixing and dehydration and followed by embedment (ref: Section 6.7). The trans-

mission electron microscope (TEM) utilizes electric beams to irradiate through the samples and 

the electrons can either be diffracted or transmitted by the samples. The transmitted electrons 

for bright-field images are then be collected by a fluorescent screen or charge-couple device. 

Scattered electrons are gathered to generate dark-field images, uncovering higher-contrasted 

structures [138,139] [Figure 15]. 

 



60  
 

 
Figure 15: Transmission electron microscope 

(a) Layout of a transmission electron microscope. 

(b) Ray diagram describing the diffraction mechanism in a transmission electron microscope. 

The diagram describes electron beams in a transmission electron microscope. As electrons pass through the sam-

ple, they are scattered by the electrostatic potential set up by the constituent elements in the specimen as it passes 

through the sample. The electron then passes through the electromagnetic objective lens, which focuses scattered 

electrons from one point of the specimen to one point in the image plane. The dotted line illustrates the collection 

of scattered electrons in the same direction into a single point.  

Adapted from Williams and Carter (1996)[140]. 

 

 

Anti-CD63 conjugated to 5 nm gold nanoparticle immune labeling was performed to confirm a 

specific subset of vesicles with an endocytic origin based on a method described by Théry et al. 

[123]. Based on these criteria, CD63-positive vesicles, ranging from 10 nm – 100 nm, that were 

spherical with an intact membrane and a central depression were detected in EV. Examples of 
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EV are illustrated below: EV-IMR-32 (neuroblastoma cell line) [Figures 16 and 17], and EV isolated 

from plasma of a healthy donor [Figure 18] and a colorectal cancer patient [Figure 19]. 

In this study, 2% phosphotungstic acid and 4% uranyl acetate were included as controls to con-

firm the typical morphology of EV that was previously reported by György [141] and Théry, Os-

trowski, and Segura [142]. Phosphotungstic acid was used to negatively stain the sample. This 

assisted the understanding of the structural and morphological details in the specimens. The par-

ticles were surrounded with electron-dense material, thereby revealing the surface by con-

trasting the stain (dark) and specimen (light). Hence the nomenclature, negative staining 

[143,144]. For positive staining, the specimen was incubated with uranyl acetate. Uranyl acetate 

enhanced the contrast by interacting with proteins or glycogens [145].  

The expression level of tetraspanins varies greatly between different EV populations and was not 

homogenous within the EV fractions. Some EV were labeled more than others, while larger unla-

beled EV populations with a similar morphology were also detected (> 100 nm). [Figure 16]. The 

cup-shaped form of the vesicles has been reported to be due to the dehydration step required 

by the TEM [131]. When the vesicles were visualized by the scanning electron microscope, they 

were more round [146,147], while some reported them as more saucer-shaped [148]. 
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Figure 16: TEM image of cell-line derived extracellular vesicles 

The figure illustrates a sample fraction of isolated extracellular vesicles from theneuroblastoma cell line (IMR-32). 

 Bar, 500 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Enlarged TEM image of cell-line derived extracellular vesicles 

Figure 17 illustrate magnified image of extracellular vesicles (from Figure 16). Vesicles were labeled with anti-CD63 

gold nanoparticles and appeared to be cup-shaped with a central depression and a bilayer lipid membrane.  
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Figure 18: Extracellular vesicles isolated from plasma of a healthy donor 

Anti-CD63 vesicles were visible in EV plasma isolated from a healthy donor, although in comparison to patient sam-

ples the appearance of vesicles is much sparser. Inset: magnified image of CD63 vesicles.  

Bar, 500nm. 
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Figure 19: Extracellular vesicles derived from a colorectal cancer patient 

CD63 gold-labeled vesicles fitting the profile of a typical extracellular vesicle in an EV fraction isolated from a colo-

rectal cancer patient. Arrowheads indicate CD63-positive extracellular vesicles (5 nm immunogold particles).  

Bar, 100 nm. 

 

 

9.3.2  Proteomic characterization 
 

The EV proteins that are identified as found in the cytosol, endocytic compartments or plasma 

membranes and proteins of nuclear, mitochondrial, endoplasmic-reticulum or Golgi-apparatus 

are typically not seen in extracellular vesicles. This confirms the endosomal origin of the vesicles 

[18]. Based on proteomic profiling on ExoCarta [41], EV have been described to be enriched in 

tetraspanins, and therefore tetraspanins have been frequently identified as exosomal markers 

[18]. The tetraspanins CD9 and CD81 (Exiqon, Denmark) were chosen as antibodies to be included 

in the western blot analysis, along with CD63 (Bio-Rad Laboratories, California, USA) in the mi-

croscopic analysis. 

Based on the western blot results, both CD9 and CD81 were found to be positive in EV derived 

from cell lines and patients’ plasma. Depending on cell lines, the tetraspanins CD9 and CD81 were 

either present or absent. Due to the lack of a specific marker found ubiquitously in EV, GM130 

(System bioscience, California, USA), a cis-matrix Golgi marker, was included as a negative control 

to label cell line-derived proteins which are not present in the vesicles [Figure 20]. 
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Figure 20: Characterization of extracellular vesicles by western immunoblotting 

Extracellular vesicles derived from cell lines and plasma from three patients were analyzed by immunoblotting with 

antibodies against the exosomal proteins CD9 and CD81 and the  non-exosomal protein GM130. Whole cell lysates 

were included as positive control for GM130.  

K: Kelly, L: LS174T, S: SK-Mel-28 

 

 

9.4 Whole transcriptome amplification 
 

Working with cell lines promised optimal conditions which unfortunately do not represent real-

life situations when working with patient samples. Whole transcriptome amplification was in-

cluded into our workflow to allow us to remain true to our aim of using 6 to 10 milliliters (one 

tube) of peripheral blood. We used REPLI-g amplification kit (Qiagen, Hilden, Germany), which 

applies the multiple displacement amplification technology for cDNA amplification. 

The multiple displacement amplification reaction initiates when multiple primer hexamers 

anneal to the template. When DNA synthesis proceeds to the next starting site, the polymerase 

DNA strand continues its elongation. The strand displacement generates newly synthesized 

single-stranded DNA template for more primers to anneal. To separate the DNA branching 

network, S1 nuclease are used to cleave the fragments at displacement sites [149] [Figure 21]. 
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1. Random hexamers (blue line) bind to denatured DNA (green line). 

2. DNA polymerase (blue circle) elongates until it reaches the newly 

synthetized double – stranded DNA (orange line). 

3. Enzyme displaces strands and continues polymerization; mean-

while primers bind to newly synthesized DNA. 

4. Polymerization embarks on new strand.  

Adapted from Spits et al. (2006) [150]. 

 

 

Whole transcriptome amplification was tested with EV derived from the heterogeneous NB cell 

line CLB-Ga (EV-CLB-Ga), with 50% less starting material than was previously used. With a 

reduction of starting material, non-amplified EV-CLB-Ga, which expresses ALK R1275Q, was not 

detectable, whereas the amplified EV-sample demonstrated a saturation of positive droplets in 

both FAM (MUT) and HEX (WT) channels [Figure 22].  

 

 
Figure 22: Comparison of ddPCR prior to and after whole transcriptome amplification. 

Heterogeneous EV-CLB-Ga (neuroblastoma cell line) were isolated and underwent whole transcriptomic 

amplification. Amplified cDNA from EV-CLB-Ga was compared to non-amplified EV-CLB-Ga, demonstrating significant 

improvement after amplification. The PCR controls included were cDNA from cell line CLB-Ga as positive control and 

non-template control as negative control. 

WTA: whole transcriptome amplification, w/o: without, Pos: positive, NTC: non template control (PCR-grade water) 

 

 

Figure 21: Multiple displacement amplification 
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9.5 Mutational analysis 
 

9.5.1  Primers and probes for extracellular vesicles mutational analysis 
 

Primers designed for the KRAS assay initially have a PCR product size of 170 base pairs. The 

optimized ddPCR fitted the ideal expectations when analyzed with cDNA derived from cell lines. 

However, when analyzing EV derived from cell lines, no results were attainable from the ddPCR. 

New primers with a product size smaller than 100 base pairs were designed, with the assumption 

that vesicles occurred more commonly at a shorter fragment length. This became the new 

standard for primers designed for EV analysis. Figure 23 depicts the results of cDNA from EV and 

cell lines when analyzed with primer pairs with a product size of 170 base pairs [Figure 23(a,b)] 

and 98 base pairs [Figure 23(c,d)]. By using the primers with the smaller product size, EV cell lines 

were detectable with the ddPCR.  

 

 
Figure 23: Comparison of different primers 

KRAS G12D assays with a PCR product size of (a) and (b) 170 base pairs and (c) and (d) 98 base pairs were tested with 

heterogeneous EV-LS174T (colorectal cancer cell line). PCR controls included cDNA from mutant heterogeneous cell 

line LS174T (MUT), cDNA from wild-type cell line HeLa (WT) and non-template control (NTC) as negative control. 

Heterogeneous EV-LS174T were only detectable in KRAS G12D with a smaller product size (c) and (d). Mutant probes 

were labeled with FAM fluorophores (blue), while wild-type probes were labeled with HEX fluorophores (green).  
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9.5.2  Mutational analysis via ddpcr 
 

Droplet digitalTM PCR (ddPCR) is a novel emulsion-chemistry-based system which partitions 20 µl 

of TaqMan PCR reaction volume into approximately 20,000 oil-encapsulated nanodroplets, al-

lowing independent amplification of single template enclosed in a droplet. Eventually, single 

droplet are analyzed for being positive or negative for amplified target regions. Thus, the high 

precision makes ddPCR an optimal method for applications such as rare mutation detection and 

gene expression analysis with low starting material [126] [Figure 24]. 

 

 
Figure 24: Schematic of the droplet digital PCR 

PCR reaction mix is enveloped in oil and forms individual droplets which are amplified independently. DDPCR ena-

bles rare mutation detection and end-point analysis provides information if amplified targets were positive or nega-

tive. Partly adapted from Bio-Rad Droplet DigitalTM PCR applications guide [126]. 

 

 

The templates in ddPCR are randomly distributed, therefore droplets can contain one or more 

template copies, or none at all. The partitions are amplified with PCR and the positive fractions 

are distinguished by the droplet reader using the Poisson distribution. Named after the French 

mathematician Simeon Denis Poisson, the Poisson distribution models a series of  discrete prob-

ability distributions through the expression of the probability of a number of events within a fixed 

interval or time and space, provided that the events occur independently at a known constant 

rate since the last event [151].  
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The Poisson modeling formula is as follows [126]: 

Copies per droplet = 1n (1-p) 

Where p = fractions of positive droplets. 

A thermal gradient was used for the optimization of the primer/probe annealing temperature in 

singleplex and duplex assays. After the ideal annealing temperature was confirmed, different 

probe concentrations were tested. The optimal ddPCR conditions provide the largest fluores-

cence amplitude difference between positive and negative droplets in the 1D amplitude plot of 

FAM (MUT) and HEX (WT) channels. The 2D amplitude plot should demonstrate an orthogonal 

separation between WT and MUT single positive, WT/MUT double positive and negative droplets  

[Figure 25]. The finalized annealing temperature and primer and probe concentrations are listed 

in Section 7.8. 

 

 
Figure 25: Optimized duplex ddPCR 

ddPCR BRAF V600E assays were analyzed with QuantasoftTM software and demonstrated as 1-D plots in (a) FAM 

channel representing mutant probes and (b) HEX channel representing wild-type probes. It is also essential to ana-

lyze assays in the (c) 2-D amplitude plot to ensure that there is a clear orthogonal separation between the different 

populations. Each dot on the figure represents one droplet consisting of at least one DNA target copy of either mu-

tant (blue), wild type (green) or no DNA (black). Orange droplets contain targets of both mutant and wild type.  
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The false positive rate (FPR) was evaluated using the number of unspecific events in the mutation 

channel when analyzing non-template controls and the inclusion of high and low concentrations 

of wild-type cDNA (500 and 100 copies/µl, respectively). The cross-reactivity of probes was stud-

ied here, and since only non-template controls and wild-type cDNA were used, the FAM (MUT) 

channel should have remained eventless. The FPR for each assay ranged from zero to one event. 

Figure 26 describes an example of FPR ddPCR results. 

As the aim was to detect rare mutations, it was critical to understand the sensitivity of the system 

by determining the lower limit of detection. The limit of detection (LOD) was identified with mu-

tant cDNA diluted with a background of constant wild-type cDNA. Additionally, the performance 

efficiency of the primers/probes was simultaneously detected in this assay by calculating the 

WT/MUT ratio. In LOD and WT/MUT ratio experiments, mutant cDNA is diluted in 10-fold series 

from 100 to 0.01 copies/µl in a background of 100 copies/µl of wild-type cDNA. The LOD for all 

assays was 0.1% in a 20 µl reaction. Figure 27 describes an example of a LOD ddPCR result. The 

assays were also tested for specificity to ensure they were only specific for the mutation of inter-

est. Alongside rare mutation detection assays when analyzing EV from patients’ plasma, non-

template control and wild-type cDNA as negative control and mutant cDNA as positive control 

from the cell lines were always included.  

 
Figure 26: False positive rate for KRAS G12C assay 

Concentration graph of both Channel 1 (FAM) representing MUT probes and Channel 2 (HEX) representing WT 

probes demonstrating concentration levels of non-template control (H2O), a high concentration of WT-cDNA ( Hela 

500 copies) and a low concentration of WT-cDNA (Hela 100 copies). The concentration of non-template control and 

Channel 1 (FAM) remained, negative demonstrating no contamination or cross-channel or cross-reactivity leakage 

from probes.  
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Figure 27: Limit of detection and WT/MUT ratio for KRAS G12C assay 

The Concentration graph for both FAM (MUT) and HEX (WT) channels demonstrated a constant WT-cDNA concen-

tration and serially diluted MUT-cDNA concentration. Here, it is demonstrated that the limit of detection is 0.1%. 

Furthermore, this graph also describes the performance efficiency of the primers and probes.  

 

 

The probes for majority of the assays were labeled with the Black Hole Quencher® (BHQ1) at the 

3’ end of the probe (Sigma Aldrich, Missouri, USA). The positive and negative droplet populations 

for the BRAF V600K and ALK R1275Q assays were insufficiently separated, however, and there was 

also the presence of droplet rain (droplet occurrence between positive and negative droplet clus-

ters), which interfered with the interpretation of positive and negative droplet populations. 

Therefore, for both assays the ZenTM/Iowa BlackTM (Z/IB) quencher was used instead. The 

quencher reduces signal cross-talk and generates less background [127], enabling a strong sepa-

ration between both positive and negative droplets clusters. Figure 28 demonstrated a BRAF V600K 

assay with probes labeled with the BHQ1 and Z/IB quencher. The ZenTM /Iowa BlackTM (Z/IB) 

quencher provided a better separation between the different clusters.  
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Figure 28: Comparison of different quenchers for BRAF V600K assay 

ddPCR assays were compared using probes labeled with (a) Black Hole Quencher® (BHQ1) and (b) ZenTM/Iowa 

BlackTM (Z/IB). Probes with the Z/IB quencher allowed a more distinguishable separation between positive and neg-

ative population with reduced droplet rain. 

 

 

Even though QuantaSoftTM Software version 1.7.4 (Bio-Rad, California, USA) automatically sets a 

recommended threshold upon analyzation, the thresholds were often set manually following pa-

rameters set in our group. Firstly, due to the Poisson distribution formula utilized by the software, 

it was important to reach 10,000 events for every well to be included in the analysis, anything 

lower than two events were exempted to avoid false positives. Furthermore, non-template con-

trols should remain eventless in both FAM (MUT) and HEX (WT) channels and wild-type cDNA 

controls should remain eventless in the FAM (MUT) channel. The threshold for the same sample 

type in the same ddPCR run must lie in the same amplitude. The optimization workflow for ddPCR 

is described in Figure 29.  
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Figure 29: ddPCR optimization steps 

The ddPCR was optimized first with a singleplex thermal gradient, followed by a duplex thermal gradient to identify 

the ideal annealing temperatures. The probe concentration was verified with a duplex PCR. This was then followed 

by the testing of the false positive rate, limit of detection and specificity to ensure the ddPCR assay was of quality. 

 

 

9.5.3  ddPCR multiplex 
 

Multiplex ddPCR includes more than one target sequence using either one or two pairs of primers 

and multiple probes targeting different targets. This technology is beneficial as a cost-efficient 

and quick screening tool [152]. However, ddPCR is limited to the utilization of only two reporter 

dyes (HEX and FAM channels), therefore multiplexing more than two targets could be challeng-

ing. In the effort of materializing this procedure, the probe concentrations and annealing tem-

peratures were adjusted to ensure that the positive clusters representing the different targets 

appeared at different levels of fluorescence amplitude in the 2-D plot. Furthermore, non-speci-

ficity like cross-dimerization, competitiveness between each target and the accurate separation 

of fluorescent signals needs to be taken into consideration [153], and particularly in multiplex 

mutation assays which include targets that only differ by one nucleotide.  

At the time that multiplexing with ddPCR was initiated in the group, Bio-Rad’s ddPCR platform 

was not intended for multiplexing and therefore the software did not support this function. After 

ddPCR multiplexing was more popularized, QuantaSoftTM Analysis Pro Software Version 1.0 (Bio-

Rad,California, USA) was released. 
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The multiplex assays KRAS G12D, G12A, G12V, BRAF V600E/K and ALK F1174L/R1275Q were optimized. All 

three multiplex assays demonstrated clear orthogonal separation between the different clusters, 

enabling the definition of mutation of interest [Figure 30, 31, 32]. Multiplex assay conditions are 

listed in Section 7.8. 

 

 

 
 Figure 30: ALK multiplex assay 

2-D amplitude plot of optimized ALK multiplex assay. The blue arrow depicts populations of ALK F1174L and the black 

arrow shows populations of ALK R1275Q.  The blue population represents mutant DNA targets, while the green popu-

lation represents wild-type DNA targets. Droplets without a DNA target appear in black and double positive (con-

taining both wild-type and mutant targets) are represented by orange dots. 
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BRAF Multiplex assay illustrated in a 2-D plot with BRAF V600K (black arrow) and BRAF V600E (blue arrow). The blue 

population represents mutant DNA targets, while the green population represents wild-type DNA targets. Droplets 

without DNA targets appear in black. 

 

 

Figure 31: BRAF multiplex assay 
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Figure 32: KRAS multiplex assay 

Three KRAS targets were included in the multiplex assay: G12D (Black arrow), G12A (blue arrow) and G12V (green 

arrow). The blue droplets contain mutant targets and the green droplets represent wild-type targets. The black drop-

lets do not contain DNA targets.  

 

 

9.6 Sample collection and blood tube additives 
 

Plasma has been described to be the physiological medium of EV [154,155]. Thus, plasma sam-

ples were preferred over serum due to the abundance of vesicles in sera. Fifty percent of EV are 

found in serum derived from platelets and are released after blood collection due to clot for-

mation. According to ISEV reports, vesicles isolated from serum were used for studies regarding 

platelet-derived EV [156]. However, studies need to be undertaken to understand the differences 

in isolating the vesicles from each of these blood components.  

Anticoagulant in blood tubes varies in types and purpose, which was taken into consideration 

when choosing the suitable medium for blood collection, as it could have influenced the function 

and count of the EV. As reported by Philippe et al., even different produced of sodium citrate 

tubes could influence the quantity of the vesicles [157].  
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Heparin was not preferred as it is commonly linked to causing false negative PCR reads and com-

petes with primers [158]. As our study was PCR based, this anticoagulant was avoided. Further-

more, heparin binds to EV, blocks EV uptake and reduces EV-activated platelets [159].  

Sodium citrate and heparin blood increase vesicles count due to subpopulations. However, 

among the three most common anticoagulants (heparin, sodium citrate and EDTA), sodium cit-

rate demonstrated lowest EV count. EDTA samples demonstrated a stable MV count derived 

from platelets and erythrocytes. Sodium citrate is suitable for functional analysis, whereas in 

clinical studies, EDTA is more appropriate [160].  

When EV can be immediately analyzed after blood draw, it is ideal to utilize sodium citrate and 

heparin blood tubes. Logistically, immediate analysis unrealistic most of the time. Clinical routine 

has to be taken into consideration, including the transportation of blood sample, transport dura-

tion and in-house processing time. It has been reported that the stability of EV count could be 

preserved with EDTA even after 48 hours of room temperature (RT) storage [160]. 

For our study, we then resorted to using EDTA blood tubes for blood collection, due to their 

convenient accessibility in clinical settings. We wanted to remain true to the principle of intro-

ducing liquid biopsy in the clinic with the available resources. The blood samples were always 

centrifuged within the first hour after blood draw to separate plasma for subsequent -80oC stor-

age.  

 

9.7 Spiking 
 

Prior to applying the method on EV derived from patient plasma’ samples, a spiking experiment 

was simulated for a trial run. EV were isolated via differential centrifugation from Kelly, a heter-

ozygous neuroblastoma cell line expressing ALK F1174L (ref: Section 6.3.2). The isolated vesicles 

were then spiked into healthy blood, followed by plasma separation (ref: Section 6.3.3) and iso-

lation of EV derived from plasma (ref: Section 6.3.3). EV-RNA was subsequently isolated from the 

spiked EV-plasma sample followed by whole transcriptome amplification and ALK F1174L mutation 

detection with the ddPCR. As a control, the exact workflow was repeated simultaneously, and 

the spiked EV plasma was visualized with the TEM. Analysis of the ddPCR demonstrated positive 

droplets in both FAM (MUT) and HEX (WT) channels due to the heterozygosity of the primary cell 
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line [Figure 33] and TEM analysis visualized CD63-positive vesicles with the typical morphology 

of extracellular vesicles [Figure 34].  

 

 

 
Figure 33: DDPCR analysis of spiked samples 

EV-Kelly were spiked into EDTA blood (spiked EV), before EV isolation followed by analysis with the ddPCR for the 

mutation ALK F1174L. EV derived from Kelly (EV-Kelly) and cDNA from Kelly cell line (Pos control) were included as 

control. The results were depicted in 1D plot in: (a) FAM channel representing the mutation and (b) HEX channel 

representing WT. 
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Figure 34: Whole mount immunoelectron analysis of spiked plasma sample 

As an experimental control for the spiking experiment, spiked EV-Kelly in plasma samples were visualized with the 

transmission electron microscope. 
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9.8 Patients 
 

9.8.1  Sample preparation and workflow 
 
To optimize the maximum usage of the blood sample, efforts were applied to investigate the 

possibility of analyzing CTCs, cfDNA and EV from one blood tube. Therefore, plasma was sepa-

rated via centrifugation and equally divided (one milliliter) for cfDNA and EV analysis, whereas 

the blood phase of the sample would be used for CTC analysis. After plasma separation, EV were 

isolated via differential centrifugation and were used either for whole-mount immune electron 

microscope, western blot analysis or mutational analysis with ddPCR. Figure 35 illustrates the 

sample processing workflow. 

 

 

 
Figure 35: Liquid biopsy workflow 

Whole blood was centrifuged at 120 x g for 20 minutes at room temperature. The blood phase was used for CTC 

picking after CD45 depletion. The plasma phase continued to be centrifuged before splitting the plasma sample 

equally for cfDNA and EV analysis. EV analysis was then carried out with morphological analysis via the transmission 

electron microscope, proteomic analysis and lastly mutational analysis. 

RT: room temperature, CTC: Circulating tumor cells, cfDNA: circulating cell-free DNA 
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9.8.2  Analysis of extracellular vesicles derived from patients 
 

EV from MM patients were screened with BRAF V600E/K mutation assays, whereas EV from CRC 

patients were screened with five KRAS mutations including KRAS G12A/C/D/V and KRAS G13D. Further-

more, EV from NB patients were screened with ALK F1174L/R1275Q. In the MM cohort, BRAF wild 

type was detected in ten EV samples, mutations were present in six patients (V600E and V600K 

in two and four patients, respectively) and in two samples neither the wild type nor BRAF muta-

tion was detected. Additionally, in the CRC cohort, KRAS wild type was detected in seven EV sam-

ples, mutations were present in three patients (G12D and G12V in two and one patient, respec-

tively) and in three patients neither wild type nor KRAS mutation was detected. Moreover, one 

of the four NB patients was positive for ALK F1174L, and neither ALK mutation nor wild type was 

detected in the other three EV patient samples [Tables 6 and 7].  

EV-based ddPCR analyses of MM and advanced CRC patients were compared with tissues profiles 

during routine analyses [Tables 9 and 10]. Among the 18 melanoma patients, 44% (8/18) of 

ddPCR results were in concordance with tissue sequencing. Wild type was detected instead of 

the expected mutations in 28% (5/18) of the patients and 17% (3/18) were mutation mismatched 

(two V600K detected instead of expected V600E and one V600E instead of WT). Additionally, 

54% (7/13) of CRC patients were in concordance with tissue sequencing, with 15% (2/13) wild 

type detected instead of the expected mutations, and vice versa for one patient. Tissue mutation 

information was only available for two NB patients. One patient positive for ddPCR ALK F1174L as-

say was in concordance with the tissue sequencing results [Table 6(a)]. 

 

 

 

 

 

 

 

 

 

 



82  
 

Table 6: Concordance between gene status of extracellular vesicles and tumor tissue for 

(a) melanoma and (b) colorectal cancer cohort 

 

(a)  
ddPCR results Number of patients (%) 
Total amount of MM patients 18 
Concordance 8 (44.4 %) 

BRAF WT 5 (27.7 %) 
BRAF V600E 1 (5.5 %) 
BRAF V600K 2 (11.2%) 

Discordance  
BRAF WT instead of expected BRAF MUT 5 (27.7%) 
BRAF V600K instead of expected BRAF V600E 2 (11.2%) 
BRAF V600E instead of expected BRAF WT 1 (5.5%) 

Undetectable 2 (11.2%) 
 

(b)  
ddPCR results Number of patients (%) 
Total amount of CRC patients 13 
Concordance 7 (53.9%) 

KRAS WT 5 (38.5%) 
KRAS G12D 1 (7.7%) 
KRAS G12V 1 (7.7%) 

Discordance  
KRAS WT instead of expected KRAS MUT 2 (15.4%) 
KRAS MUT instead of expected KRAS WT 1 (7.7%) 

Undetectable 3 (23%) 
Undetectable: no positive droplets in both WT and MUT channels. 
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Table 7: Cancer stages, tissue profiling and extracellular vesicles ddPCR results for  

(a) neuroblastoma (b) colorectal cancer and (c) melanoma cohort 

 
(a) 
 
Patient Cancer stage 

(INSS) 
Tissue sequencing ddPCR CPM 

4 4 ALK F1174L No results No results 
5 4 Unknown No results No results 
6 4 ALK F1174L ALK F1174L 15.7 
8 4 Unknown No results No results 

 

(b) 
 
Patient Cancer Stage 

(AJCC) 
Tissue sequencing ddPCR CPM 

6 4 KRAS G12D KRAS WT 4.18 
10 4 KRAS G12D No results No results 
19 4 KRAS G13D No results No results 
21 4 KRAS G12D KRAS WT 33.3 
22 4 KRAS WT KRAS WT 1.87 
23 4 KRAS WT KRAS WT 3.63 
25 4 KRAS WT KRAS WT 8.58 
26 4 KRAS WT KRAS WT 39.6 
27 4 KRAS G13D No results No results 
30 4 KRAS WT KRAS WT 2508 

302 4 KRAS G12D KRAS G12D 5.2 
338 4 KRAS WT KRAS G12D 13.86 
356 4 KRAS G12V KRAS G12V 3.5 

 

(c)  
 
Patient Cancer Stage Tissue sequencing ddPCR CPM 

1 4 BRAF WT BRAF V600E 61.6 
6 3c BRAF WT BRAF WT 0.88 

10 4 BRAF V600E BRAF WT 3091 
11 4 BRAF V600E BRAF WT 1.6 
15 4 BRAF V600E BRAF WT 1.76 
16 4 BRAF V600K BRAF V600K 3.08 
19 4 BRAF WT BRAF WT 0.9 
20 4 BRAF V600E BRAF WT 2251 
22 3a BRAF V600K BRAF V600K 16.5 
25 4 BRAF V600E BRAF V600K 6.26 
28 4 BRAF V600E No results No results 
29 3c BRAF V600K BRAF WT  298.1 
30 4 BRAF V600E BRAF V600K 36.6 
33 1a BRAF V600E No results No results 
37 4 BRAF V600E BRAF V600E 16.5 
38 1 BRAF WT BRAF WT 0.44 
39 4 BRAF WT BRAF WT 7.48 
40 4 BRAF WT BRAF WT 0,55 

No results: No positive droplets in both WT and MUT channels. 
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9.8.3  Discordant cases due to treatments 
 
Among thirty-five patients, two cases stood out with discordant mutation status. Patient 16 was 

diagnosed with metastatic melanoma with a brain metastasis. Sequenced archival tissue demon-

strated a BRAF V600E mutation. Based on the positive BRAF V600E mutation status, the patient re-

ceived dabrafenib, followed by dabrafenib and trametinib (BRAF/MEK inhibitor) combination 

therapy. The patient was recruited prior to receiving combination immunotherapy with 

nivolumab and ipilimumab. EV analysis revealed BRAF V600K. One year after recruitment, staging 

analysis showed a subcutaneous, cerebral, intraabdominal, intradural and vertebral metastatic 

progress. Furthermore, tissue sequencing was repeated due to the advanced metastatic pro-

gress, verifying the mutation switch from BRAF V600E to BRAF V600K. 

Patient 338 was diagnosed with sigmoid colon cancer and synchronous hepatic metastasis. More-

over, routine pathology analysis revealed KRAS wild type in extracted tissue from the primary 

tumor. The patient received FOLFOX/cetuximab combination therapy for four months. One year 

after treatment, the patient presented with lung and hepatic metastasis. A blood sample was 

collected prior to liver metastasis resection surgery. EV-based ddPCR analysis detected resistant 

subclones to anti-EGFR therapy, harboring KRAS G12D mutation. With regard to both cases, a mu-

tation switch after anti-EGFR or BRAF/MEK inhibitor therapy was detected prior to disease pro-

gression, validated via cancer staging or repeated tissue genotyping, providing a prognosis for a 

disease relapse. 
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10. DISCUSSION 
 
This study confirmed successful mutational profiling in extracellular vesicles isolated from pa-

tient-derived plasma samples using droplet digital PCR. Thirty-four patients diagnosed with CRC, 

MM or NB were recruited for this study and with EV-based ddPCR analysis. DDPCR analyses were 

compared to tissue samples, indicating concordance rates of 54% and 44% in the CRC and MM 

cohort, respectively. Furthermore, EV-ddPCR analysis was detectable in only one of four NB pa-

tients, which also matched the tissue sequencing results. Two interesting cases in our patient 

cohort which imprinted on us that EV could demonstrate resistance as part of treatment moni-

toring are further discussed further in Section 9.5. 

The existence of EV in biological fluids motivated the expansion of the established EV isolation 

protocol to also isolate EV from urine. Microscopic analysis on urinary EV hinted at the successful 

isolation of the vesicles. Proteomic and morphological characterization further described the 

ideal profile of the EV. 

 

10.1  Isolation of extracellular vesicles 
 
EV have been defined to have a density of 1.08-1.22 g/ml [164]. This information provided the 

opportunity to isolate the vesicles based on sucrose density gradient centrifugation. The samples 

were deposited at the top of a 2.0–0.25 M sucrose gradient, which was built into an ultracentri-

fuge tube. With the ultracentrifugal force, the different sample components settle to their des-

ignated isodensity zone, separating the vesicles from other components [165,166]. While satis-

factory purity has been reported using this isolation method, there are other isolation techniques 

with shorter duration and higher end-product yield. 

Another popular technique is size-based isolation via ultrafiltration, which separates particles 

solely depending on size or molecular weight. When isolated with this technique, larger vesicles 

when isolated with this technique could be sheared or deformed and therefore potentially affect 

analysis. Furthermore, vesicles could be trapped in the membrane filter resulting in a low yield 

of end product [168,169]. Size-exclusion chromatography (SEC) is another more reliable and 

more reproducible size-based isolation method which relies on gravity, thereby protecting the 

integrity of the vesicular structure [170,171]. This method produces highly purified vesicles and 
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can preserve the integrity, structure, and biological activity of the vesicles. Unfortunately, a ded-

icated instrument would need to be acquired [172].  

Multiple commercially available kits are also commonly used for the isolation of extracellular 

vesicles, for instance ExoquickTM and Total Exosome Isolation Kit (Thermo Fischer Scientific, Mas-

sachusetts, USA), which enable quick and straight-forward isolation without the usage of specific 

devices. More sophisticated techniques including the ExoChip, a microfluidic device which has 

been utilized with different approaches for the capture of the vesicles [173]. Wang et al. utilized 

nanowires (ciliated micropillars) for vesicles segregation [174], while Davies et al. involved a 

PMMA-based (polymethyl methacrylate) membrane filter [175]. On the other hand, Chen et al. 

on the other hand approached the isolation with an immune-affinity-based capture using anti-

CD63 antibody [176].  

The classic approach for isolating EV is the differential centrifugation or ultracentrifugation tech-

nique. This comprises a serial centrifugation of different speeds to remove cells, cellular debris 

and larger vesicles [123]. This method is effective and also does not affect proteomic and nucleic 

acid components in the vesicles. Differential centrifugation, however, has technical drawbacks 

as it is labor intensive and entirely dependent on the availability of appropriate instruments in 

different research laboratories [177,178]. Furthermore, purification of the sample can be chal-

lenging as this method co-isolates other vesicles as well [179].  

The most common isolation approach consists of classic ultracentrifugation, density gradients 

and filtration, or a combination of methods [6,180,181]. Although there are multiple isolation 

methods, and novel techniques are always being introduced, the possibilities of obtaining pure 

EV with less contaminant or EV restricted to population of interest are still far from being real-

ized. Thus, more efficient isolation protocols are required.  

Differential centrifugation was applied for the isolation of EV derived from cell lines and plasma 

samples in our study. The fundamental Théry protocol [123] was optimized, and through visuali-

zation with the transmission electron microscope, we settled with the adapted protocol which 

we found to have a reduction of cellular debris and heterogeneous vesicle population in the back-

ground.  
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10.2  Extracellular vesicles from urine 
 
Proteomic characterization via western blot with tetraspanins CD9 and CD81 was successful for 

protein extracted from EV derived from cell lines and plasma samples. Furthermore, ddPCR 

analysis utilizing EV isolated from cell lines and plasma samples were also successful. However, 

both western blot and ddPCR analysis of EV urine samples were unexpectedly negative. EV 

were isolated from urine from neuroblastoma patients (10 milliliters per experiment), which 

was then analyzed with western blot, ddPCR and the whole-mount immunoelectron micros-

copy. EV from urine samples were microscopically visualized to be homogenously round, posi-

tively labeled with immunogold CD63 antibody, and smaller than 100 nm with a central depres-

sion. Western blot and ddPCR however was unsuccessful, with the assumption that a higher 

volume of urine was required for EV isolation to acquire a higher protein and nucleic acid con-

centration for subsequent analyzation.  

Possibly, it was too ambitious to use only 10 milliliters of urine for the analysis. Multiple publi-

cations reported a higher volume of urine for EV isolation, for instance Pisitkun et al. pooled 

400 milliliters of urine from six adult patients for proteomic analysis [182], Fernández-Llama et 

al. tested a urinary EV isolation protocol with 96 milliliters of urine [134], Zhou et al. reported 

the usage of 100 milliliters of urine for proteomic analysis [183] and lastly Cheng et al. success-

fully isolated EV from a minimum of 20 milliliters of urine [135], the lowest volume of urine in 

the list but still double the volume we were using. Furthermore, most groups used pooled urine 

samples, as the nucleic acid and proteomic content for EV urine is low and due to RNase activity 

in the urinary tract, a large proportion of degraded RNA was noticed in the urinary cell pellet 

[135].  

Our target patient group for EV urine analysis was the pediatric neuroblastoma cohort, which 

complicated the collection of more than 10 milliliters of urine. As urine analysis to identify the 

markers homovanilic and vanillylmandelic acid is vital for clinical diagnostics [105,112], it was 

challenging to collect more than the mentioned volume or the urine collected was severely di-

luted due to high amount of infusion the patients received. EV urine analysis was unable to be 

repeated due to the end of the collaboration project. 
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10.3  Real-time PCR versus ddPCR 
 
For many years, real-time PCR has assisted clinical settings with diagnostics especially in nucleic 

acid quantification and gene expression in the field of oncology, clinical microbiology, and gene 

therapy. Real-time PCR is a quantitative analysis based on the ratio of the cycle threshold (Cq 

values) to the enzymatic reaction curve [184]. Multiple factors like poorly optimized assays and 

sample quality could hinder the efficiency range of the standard curve, causing data misinterpre-

tation and poor reproducibility [184,185]. 

ddPCR also uses Taq polymerase and a standard PCR reaction. The difference is that ddPCR par-

titions PCR reaction into 20,000 individual reactions and acquires end point data with either pos-

itive or negative calls for a single droplet [126]. ddPCR is more reliable as it is easily reproducible, 

precise and more sensitive even for low target concentrations and samples with possible con-

taminants [185]. 

Real-time PCR requires a housekeeping gene to normalize unknown samples, whereas for ddPCR 

normalization is unnecessary, as data are precise and accurate. Poor sample quality and samples 

with low concentration do not affect the analysis. Taylor et al. tested the effects of contaminants 

in samples and samples with low concentration on both ddPCR and qPCR. They reported that 

when it comes to low or no background contaminants, both systems gave a similar performance. 

However, ddPCR was more stable in detecting samples with low target abundance and higher 

levels of impurities [185].  

Furthermore, ddPCR offers the opportunity to optimize multiplex assays for mutation screening. 

The in-house designed multiplex assays established in our group are not only cost efficient, but 

are also able to identify the mutation of interest based on the different clusters appearing at 

different amplitudes. In contrast to commercially available multiplex kits ,which are only able to 

provide a general screening of mutation availability and unable to identify specific mutations. 

Pender et al. investigated nine different KRAS mutations with a commercially purchased 

PrimePCRTM ddPCRTM Mutation Assays (Bio-Rad, California, USA) in non-small cell lung cancer 

patients [186]. They reported good separation in the multiplexed assays, but with the appearance 

of non-specific signals. Unlike the assays we designed, the commercial assays used by Pender et 

al. were not able to distinguish the different mutations based on clusters alone and only provided 

a yes or no answer to the availability of the different mutations in samples analyzed [186]. In-
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house multiplex assays were also designed by Rowlands et al. using ddPCR with locked nucleic 

acid (LNA) base-oligos, whereas Taly et al. utilized non-fluorescent blockers and a different digital 

PCR platform, namely the RainDance Technology. Both groups reported optimal population sep-

aration on the 2D plot [187,188]. Multiplexed ddPCR assays were only used in our case as a quick 

screening solution prior to duplex assays. This is because when compared to duplex assays, it was 

noticed that using the same input volume, concentration and sample type resulted in less cop-

ies/µl in the multiplexed assays (results not shown). This could be due to the lower efficiency of 

the multiplex assays or competitiveness of the additional probes reducing fluorescent signals 

[153]. 

 

10.4  EV-based ddPCR patient analysis 
 
The patient cohorts were comprised of 32 patients, with 2 patients in the early stages of the 

disease. MM and CRC patient cohorts underwent treatment during the sampling time; this was 

not necessary the case with the 4 NB patients recruited into the study. EV-based mutational anal-

ysis was compared to tissue samples regarding the oncogenes BRAF, KRAS and ALK. The study 

indicated a correlation between tumor tissues and EV of 44% and 55% for the MM and CRC co-

horts, respectively. Only one of four tumor samples from the NB patients were sequenced and 

matched EV-based ddPCR results. 

In data published previously byour group [189], CTCs were quantified and KRAS and BRAF onco-

genes in cfDNA from 65 patients were analyzed and compared to tissue samples via ddPCR. Cir-

culating cell-free DNA (cfDNA) was detectable in all patients, with 55% complementing those of 

the tissue samples. Concordance was mainly reported in stage IV and one patient from stage II 

with 2 of 10 patients with BRAF and 9 of 25 patients with KRAS mutation [189]. The overall con-

cordance rates demonstrated the comparable utility of cfDNA (55%) and EV (54%) analysis for 

mutation detection in plasma samples from patients with CRC. 

Three patients (patients 302, 338 and 356) from the study were included into the EV cohort, to 

directly compare both EV and cfDNA. In comparison to the cfDNA study, EV matched the gene 

status of the tumor more accurately, keeping in mind the humble number of patients. Patient 

302 with a tissue gene status of KRAS G12D matched the ddPCR results of both cfDNA and EV. Nev-

ertheless, patient 356 with a tissue gene status of KRAS G12V matched the EV ddPCR results, 
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whereas when analyzing cfDNA with ddPCR, only wild type was detected. Disease progression in 

patient 338 correlated with EV results, demonstrating a mutation switch, whereas only wild type 

was detected in cfDNA. 

This correlates with the comparison of exoDNA (exosomes-derived DNA) and cfDNA with tissue 

profiling in pancreatic ductal adenocarcinoma patients,where it was reported that exoDNA ex-

ceeded cfDNA in KRAS detection of metastatic pancreatic cancer patients with 85% for exoDNA 

and 57.9% for cfDNA [10]. Möhrmann et al. compared cfDNA from advanced cancer patients via 

ddPCR and BEAMing digital PCR analysis and EV via next generation sequencing, targeting the 

oncogenes BRAF V600 and KRAS G12/G13. In this study, the concordance rate for EV and cfDNA were 

comparable. When compared to sequenced FFPE archival tissues, 95% of exosomes samples 

were in correlation with tissue samples. The concordance rate for cfDNA was 90% for ddPCR and 

92% for BEAMing digital PCR [11]. 

 

10.5  Discordant results 
 
Discordance can be explained by several limitations and a lack of uniformity while conducting the 

study. The study group was not only smaller than many other studies [10,11,190], but also con-

sisted of various tumor entities with a variety of treatment options. Furthermore, the heteroge-

neous landscape of the tumor or the different time point of plasma sample and tissue collection 

could influence the inconsistent results. Blood samples were collected after patients received the 

allocated therapy with a median time of 6 months between pre-treatment tissue sampling and 

post-treatment blood collection. Thus, it was explored whether extracellular vesicles could pro-

vide information on how the treatment affects the disease. Discrepancies when analyzing gene 

status in exo-nucleic acid and archival tissue samples due to different time points of plasma sam-

ples and tissue collection were reported by Möhrman et al. [11]. A discordance rate of 5% be-

tween exo-nucleic acid and archival tissues was reported, and in comparison to our study the 

duration between blood and sample collection was much longer (median time difference: 20 

months) [11], whereas we have reported a median time difference of six months. 

Intratumor heterogeneity has been reported in all three tumor entities (CRC, MM and NB). The 

information transmitted is dependent on the cell of origin in which vesicles were released from, 

either from synchronous primary tumors within the same patient or between primary tumor and 
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metastasis [191,192]. Furthermore, the operative extraction of tumor tissues stems from only a 

single geographic location and does not represent the possible mutation variability actually ex-

pressed by the disease [193]. On the other hand, EV appear to capture events not represented 

in tumor tissue, suggesting the ability to capture heterogeneous events not profiled in a single 

tissue biopsy [78]. Intratumor heterogeneity is no longer an exception, but a characteristic fea-

ture in high grade tumor. Therefore, it is now of importance for it to be evaluated for biomarker 

or drug studies. 

 

10.6  Limitations in the pediatric neuroblastoma cohort 
 
Neuroblastoma (NB) is the hallmark for high cellular heterogeneity and entails a wide range of 

low-frequency mutations [194]. NB heterogeneous attributes which influence the broad clinical 

presentation ‘mark’ this disease as an interesting study subject. However, due to the low-fre-

quency mutations it was challenging to detect mutations of interest in the small cohort recruited 

(only four patients were successfully recruited). Therefore, of the four patients, only one patient 

was positive for the ALK F1174L mutation, complementing the corresponding tissue analysis. 

In comparison to adult cancer diseases, NB proved to be challenging in terms of sample collec-

tion, being a pediatric illness. Ten milliliters of blood was collected from patients of both CRC and 

MM cohorts, while only three to five milliliters of blood was collected from pediatric NB patients. 

Furthermore, the blood volume was not solely employed for the EV studies but shared for the 

diagnostics of CTCs. The low blood volume complicated the analyzation by the significant reduc-

tion of proteomic and nucleic acid concentration. Urine samples collected from NB patients were 

limited to ten milliliters, a much lower volume in comparison to volumes used by other EV re-

search groups  [134,135,182,183]. The initial low sample volume contributed to the non-detect-

ability of some samples during analysis of EV. 
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10.7  Clonal evolution 
 

Targeted therapy interrupts the signaling pathway or receptors, weakening cancer progression, 

seeking a balance between killing cancer cells and sparing off-target side effects [195]. The initial 

promise of improved patient survival and tumor regression was subsequently met with second-

ary resistance. Due to genetic variations, cancer cells can evolve and adapt to the treatment, 

thereby dysregulating the immune system or developing a different mechanism to evade im-

mune recognition, thus inevitably causing disease relapse and ineffectiveness of the targeted 

therapy[65]. 

Clinical trials demonstrated improved progression-free survival and overall survival in melanoma 

patients who received selective BRAF (dabrafenib, vemurafenib) and MEK (trametinib) inhibitors 

in comparison to systemic therapy, for instance dacarbazine, interferon or interleukin-2 [196]. 

The COMBI-AD study demonstrated an improved recurrence-free survival rate of 58% versus 39% 

at 3 years and an improved overall survival of 86% versus 77% when comparing dabrafenib/tra-

metinib combination therapy versus two placebos in fully resected high-risk stage 3 melanoma 

[104]. Unavoidably, subclonal activation occurred at a median rate of 4 to 7 months post treat-

ment [197]. This then caused a mutation shift, proliferation of the subclones and eventually their 

detection by mutational testing. Van Allen et al. sequenced tissue samples originating from BRAF 
V600 mutant advanced melanoma patients and reported genetic alterations in the MAPK(ERK) sig-

nal transduction pathway in 51% of the patient cohort [98,198]. This was noticed in Case 16,  who 

demonstrated significant progress ten months after treatment pause and the presence of a mu-

tation switch (BRAF V600E to BRAF V600K). Contrarily to the sequenced pre-BRAF/MEK inhibitor-

treatment tissue, EV-based analysis demonstrated BRAF V600K mutation. Interestingly, the EV-

ddPCR results were reconfirmed with the sequencing results of newly biopsied submammary 

metastatic skin tissue.  

Anti-epidermal growth factor receptor (anti-EGFR) inhibitor cetuximab was approved as a first 

line therapy to be used as a single agent or in combination with standard chemotherapy for met-

astatic CRC patients who are intolerant to chemotherapy, EGFR expressing or RAS wild type [199]. 

Clinical trials demonstrated that cetuximab in combination with FOLFOX versus FOLFOX alone 

improved patient’s overall survival ( 23.5 versus 20 months) and improved progression-free sur-

vival ( 9.9 versus 8.4 months) [200]. However, patients appeared to acquire secondary resistance 
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upon cetuximab withdrawal. Molecular alterations occurred in colorectal cancer that are RAS 

wild type at baseline, eventually shifting to a mutated status resulting in a secondary resistance 

to anti-EGFR therapy [201]. The acquired resistance was noticed in our study in Case 338 when 

we made comparison via EV-ddPCR analysis one year after cetuximab treatment and with pri-

mary tumor tissue biopsied prior to the administration of anti-EGFR monoclonal antibody. This 

disease progression was interestingly not detectable in our cfDNA study [189]. In both cases from 

MM and CRC patient cohort, EV-ddPCR indicated the mutation switch before known disease pro-

gression, detected either by disease staging or routine tissue sequencing analysis.  

 

10.8  Challenges in extracellular vesicle research 
 

Research on extracellular vesicles has grown rapidly in the past decade; substantial research and 

progress has been made despite frustrations occurring. There is a lack of uniformity when it 

comes to EV research. The appearance of different isolation methods and biofluid collection 

could result in different results and efficiency regarding the sample analysis. This induces interla-

boratory variability, regarding the accuracy and sensitivity of the EV diagnostics [202]. Further-

more, the protocol for EV isolation is time consuming and may not be convenient when it comes 

to clinical settings. Recently, EV have been targeted to be studied as a drug delivery system. How-

ever, trials will need to be conducted thorougly to validate the purity before implementation. 

A major problem in EV research is the low yield of nucleic acid and protein extracted from the 

vesicles. Concentrations of EV, whether nucleic acid or protein, are expected to be in a certain 

range, although this is not a standard.Typically, one µg of protein could be extracted from 

one milliliter of culture medium, and even less when it comes to patients’ biofluid [203,204]. 

Furthermore, detected EV are heterogeneous, and to date it is not possible to track the parent 

cell which EV are released from [205]. Studies have reported different subpopulations and vesic-

ular content could vary based on different anticoagulants in blood tubes [160] and different iso-

lation methods [167,206].  
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Our study depicts the value of extracellular vesicles as a notable liquid biopsy component and 

this was highlighted with the discordant cases. The mutation switch after anti-EGFR or 

BRAF/MEK inhibitor therapy mirrored in the extracellular vesicles isolated from patients’ 

plasma has important implications for the ability of EV to provide information on the hetero-

genous landscape of the disease, therefore providing necessary information for disease progno-

sis and therapy planning. 
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11. FUTURE PERSPECTIVES 
 

Extracellular vesicles, when compared to the intricate isolation and rarity of CTCs in the blood-

stream and the high wild-type DNA background when analyzing cfDNA, are an efficient partner 

for liquid biopsy diagnostics [66]. EV have the potential to be used alongside or independent from 

other liquid biopsy markers as a quick cancer screening or real-time disease and treatment mon-

itoring tool. Tissue biopsy will most probably remain as a gold standard for disease monitoring in 

the years to come. However, the inclusion of liquid biopsy markers could provide more thorough 

information on the heterogeneous characteristics of the disease missed by tissue genotyping. 

Furthermore, due to the minimal invasiveness with only a simple blood draw,  it would be less of 

a hassle to have repetitive tests in comparison to operative retrieval of the tumor tissue. Despite 

only being isolated from blood like CTCs and their abundance in other biofluids, EV allow for a 

wider range of diagnostic sources [24]. While CTCs and cfDNA diagnostics acquired U.S.A Food 

and Drug Administration (FDA) approval for certain tumor entities [207,208], EV being proven 

competent is still at its infancy in the field of liquid biopsy. Larger clinical trials are required to 

validate the different components of liquid biopsy for it to reach its full potential and assist dis-

ease management in clinical settings.  

The multiple functions featured in EV have allowed for the venture of appointing EV as a thera-

peutic platform. EV biogenesis pathways garnered interest and pathways were explored to re-

duce production, release and EV uptakes. For further elaboration, ceramide is vital in the ESCRT 

pathway and therefore plays an important role in EV biogenesis [209]. The synthesis of ceramide 

can be inhibited by the introduction of neutral sphingomyelinase 2 (nSMase2), which successfully 

decreases miR-10b transfer via EV in breast cancer and diminishes miR-10b cell proliferation in 

recipient cells [210]. 

EV are most praised for their role in intercellular communication, and have therefore has been 

studied regarding loading drugs into the nanostructures and transporting the drugs to their des-

ignated location. Kim et al. demonstrated the encapsulation of paclitaxel in macrophage-derived 

exosomes (exoPTX) via sonification. The exoPTX gathered in cancer cells and reduced metastasis 

when compared to counterparts like liposomes and polymer-based carriers [211]. Doxorubicin 

was successfully encapsulated into EV with electroporation and tested on breast cancer cell lines, 

leading to reduced toxicity, immunogenicity and tumor growth [212]. 
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The current EV purification technologies are limited, restricting the implementation of using EV 

as a possible oncology treatment. A reliable, reproducible, fast and cost-effective EV manufac-

turing platform needs to be set up for this hypothetical therapeutic option to be realized.  
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12.  CONCLUSION 
 

Liquid biopsy provides a comprehensive profiling of the oncogenic genes, and the mechanism of 

metastasis and therapy resistance [3,5,6]. It could further complement tissue biopsy, which only 

provides information from areas where tissue was extracted [3]. EV serve as an important liquid 

biopsy component due to their role as an intracellular information shuttle and stable carriers of 

cellular information in the circulation. These vesicles have been reported to play a role in therapy 

resistance and potentially provide organ-specific metastatic information depending on the cell 

of origin which the EV were released from [2,7].  

Extracellular vesicles were initially isolated from cell line supernatant via differential centrifuga-

tion, then eventually ventured to biofluids (plasma and urine). EV were studied as a feasible liquid 

biopsy component and the mutational status of EV in plasma was compared to tissue samples. 

Proteomic characterization demonstrated the enrichment of tetraspanins CD9 and CD81 in EV 

samples isolated from cell lines and plasma samples. Morphological characterization assisted 

with immunogold CD63 labeling described the vesicles of interest as CD63 positive, 10-100 nm, 

and ranging from spherical to round in shape.  

Urine-based EV were successfully isolated and visible with the whole mount immunoelectron 

microscope. Application of urinary EV was unsuccessful in protein and PCR-based analysis due to 

the inadequately  low volume of samples collected. This was unable to be tested again due to the 

end of the collaboration project. 

Multiplexing with ddPCR was introduced to maximize sample usage and to be used as a potential 

screening platform for patient samples. The multiplex assays were superior to commercial assays 

because the exact mutation could be defined. However, in comparison to duplex ddPCR assays, 

copy numbers fluctuate for identical sample. This could be due to the fluorescence competition 

of the different probes.  

EV were analyzed for their mutational load in plasma samples isolated from patients of the CRC, 

MM and NB cohorts. Here, the novel method of Droplet DigitalTM PCR was utilized, demonstrating 

a concordance of 44% and 55% with MM and CRC patient cohorts, respectively. Furthermore, 

one out of four NB patients was positive for ALK F1174L via ddPCR-EV analysis, which also matched 

the sequenced tumor tissue.  
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The discordance reported could be influenced by several factors, for example the limited number 

of patients recruited, the variety of tumor entities included in the study and the different treat-

ment received by patients. The intertumoral heterogeneity detected in blood-based biomarkers 

could have differed from the mutations found in biopsied tissues. Furthermore, the medical back-

grounds of patients 16 and 338 were highlighted to demonstrate that EV were able recognize 

clonal evolution in terms of mutational switch prior to clinical evidence after prescription of 

BRAF/MEK inhibitor and anti-EGFR therapy. 

Instead of looking at patients as a single entity, medicine has evolved to introduce personalized 

medicine based on different genetic subsets. Liquid biopsy,  being a part of personalized medi-

cine, could collaborate with standard clinical diagnostics for real-time monitoring of the disease 

and treatment monitoring. Extracellular vesicles, initially only a rubbish truck removing cellular 

waste out of the way, are now a vital member of the liquid biopsy team, and not only confined 

for disease surveillance but also as a nano-drug delivery system. 
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