Elektronenspektroskopische Untersuchungen zur Wechselwirkung von Atomen und einfachen Molekülen mit einer Ru(10-10)-Oberfläche

Dissertation zur Erlangung der Doktorwürde

Eingereicht am
Fachbereich Biologie, Chemie, Pharmazie
der
Freien Universität Berlin

von
Dipl.-Phys. Klaus Jürgen Schmidt
aus Tübingen
2002

1. Gutachter: Prof. Dr. K. Christmann

2. Gutachter: Prof. Dr. G. Ertl

Tag der Disputation: 30.08.2002

Während der Promotionszeit erschienene Veröffentlichungen:

- K. J. Schmidt and K. Christmann

 The Adsorption of Xenon on Ru (10-10): An Angle-Resolved UV Photoemission Study
 eingereicht bei Surf. Sci. (2002)
- J. M. Gottfried, K. J. Schmidt, S.L.M. Schroeder, K. Christmann Spontaneous and electron-induced adsorption of oxygen on Au(110)-(1x2) Surf. Sci. **511** (2002) 65
- K. J. Schmidt and K. Christmann

 The Adsorption of Xenon on a Ruthenium (10-10)-Surface

 Surf. Sci. 492 (2001) 167
- S. Schömann, K. J. Schmidt, H. Peisert, T. Chassé and K. Horn
 Electronic and surfactant effects of As interlayers at Ag/InP(110) interfaces
 Surf. Sci. 352-354 (1996) 855

Tagungsbeiträge

- J. M. Gottfried, K. J. Schmidt, S. L. M. Schroeder und K. Christmann Verhandl. DPG (VI) (2001)
- J. M. Gottfried, K. J. Schmidt, R. Cames, S. L. M. Schroeder und K. Christmann Verhandl. DPG (VI) 35 (2000) 685
- J. M. Gottfried, K. J. Schmidt, A. Heiland, S. L. M. Schroeder und K. Christmann Verhandl. DPG (VI) 35 (2000) 694
- K. J. Schmidt und K. Christmann Verhandlungen DPG 5 (1999) O - 28.5
- J. M. Gottfried, K. J. Schmidt, S. L. M. Schroeder und K. Christmann Verhandlungen DPG 4 (1999) 877
- J. M. Gottfried, K. J. Schmidt, S. L. M. Schroeder und K. Christmann XXXII. Jahrestreffen deutscher Katalytiker, 1999, Tagungsband, V7
- A. Vollmer, K. J. Schmidt, A. Mohr, R. Wagner und K. Christmann Verhandlungen DPG 5 (1999) 907
- K. J. Schmidt, A. Vollmer, S. L. M. Schroeder und K. Christmann Verhandlungen DPG 5 (1998) 888
- A. Heiland, A. Vollmer, K. J. Schmidt, S. Moldenhauer, S. L. M. Schroeder und K. Christmann

Verhandlungen DPG 5 (1998) 920

- K. J. Schmidt, A. Vollmer, A. Heiland, S. Moldenhauer und K. Christmann Verhandlungen DPG 5 (1997) 883
- P. Rech, K. J. Schmidt* und K. Christmann Verhandlungen DPG 5 (1996) O - 14.3
- U. Muschiol, K. J. Schmidt, E. Schwarz und K. Christmann Verhandlungen DPG 5 (1996) O - 9.1

Jahresberichte

- P.K. Schmidt, K.J. Schmidt, and K. Christmann
 Chemisorbed Molecular Hydrogen on a Pd(210) Surface
 BESSY-Jahresbericht 1999, p. 324
- J. M. Gottfried, K. J. Schmidt, R. Cames, K. Christmann and S.L.M. Schroeder Atomically chemisorbed oxygen on Au(110)-(1x2) BESSY-Jahresbericht 1999
- K. J. Schmidt, S. L. M. Schroeder, A. Vollmer, und K. Christmann Polarisation-Resolved-UPS of Molecular Oxygen on Ru(10-10) BESSY-Jahresbericht 1998
- J. M. Gottfried, K. J. Schmidt, S. L. M. Schroeder und K. Christmann Molecularly and Atomically Adsorbed Oxygen on Au(110)-(1x2) BESSY-Jahresbericht 1998
- K. J. Schmidt, A. Vollmer, S. L. M. Schroeder und K. Christmann

 Photoemission Studies with Xenon Adsorbed on a Ruthenium (10-10)-Surface

 BESSY-Jahresbericht 1997, p. 326
- A. Vollmer, K. J. Schmidt, S.L.M. Schroeder und K. Christmann
 Angle Resolved Ultraviolet Photoelectron Spectroscopy of Ag Films on Re(10-10)
 BESSY-Jahresbericht 1997, p. 379
- A.Heiland, A. Vollmer, K. J. Schmidt, S. L. M. Schroeder und K. Christmann A NEXAFS Study of the Adsorption of 1,4-Dioxane on Ag(110) BESSY-Jahresbericht 1997, p. 355
- K. J. Schmidt, A. Vollmer, P. Rech und K. Christmann

 Über die Wechselwirkung von molekularem Sauerstoff mit einer Ruthenium (10-10)Oberfläche

BESSY-Jahresbericht 1996, p. 340

• S. Schömann, K. J. Schmidt, H. Peisert, T. Chassé, and K. Horn

Passivation and Surfactant Effects by Arsenic Interlayers at Ag/InP(110) and Sn/InP(110)

Interfaces

BESSY-Jahresbericht 1995, p. 307

• P. Rech, A. Vollmer, K. J. Schmidt, U. Muschiol, E. Schwarz, F. Schneider und K. Christmann

Zur Wechselwirkung von Sauerstoff mit einer Rhodium(110)- und einer Ruthenium (10-10)- Oberfläche

BESSY-Jahresbericht 1995, p. 342

Posterpräsentationen

- J. M. Gottfried, K. J. Schmidt, S. L. M. Schroeder and K. Christmann Adsorption of Ethylene and Carbon Monoxide on Au(110)-(1x2) ECOSS 19, Madrid 2000
- J. M. Gottfried, K. J. Schmidt, S. L. M. Schroeder and K. Christmann Adsorption of Methanol and Water on Au(110)-(1x2): A Comparative Study ECOSS 19, Madrid 2000
- J. M. Gottfried, K. J. Schmidt, K. Christmann and S. L. M. Schroeder Interaction of CO and CO₂ with clean and oxygen-precovered Au(110)-(1x2) ECOSS 18, Wien 1999
- J. M. Gottfried, K. J. Schmidt, R. Cames, S. L. M. Schroeder and K. Christmann *Molecularly and atomically adsorbed oxygen on Au(110)-(1x2)* ECOSS 18, Wien 1999
- J. M. Gottfried, K. J. Schmidt, R. Cames, S.L.M. Schroeder and K. Christmann *Interaction of CO and CO₂ with clean and oxygen-precovered Au(110)-(1x2)*BESSY Nutzertreffen 1999
- K. J. Schmidt, S. L. M. Schroeder, A. Vollmer, und K. Christmann Adsorption von Xenon und Sauerstoff auf Ru(10-10) BESSY Nutzertreffen 1998
- K. J. Schmidt, A. Vollmer, S. L. M. Schroeder und K. Christmann Tieftemperaturadsorption von Atomen und Molekülen auf Ru(10-10) BESSY Nutzertreffen 1997
- K. J. Schmidt, P. Rech, U. Muschiol, A. Vollmer und K. Christmann
 Wechselwirkung von Sauerstoff und Wasserstoff mit 4d-Übergangsmetalloberflächeneine kombinierte LEED/TDS/ΔΦ/HREELS und ARUPS Studie
 BESSY Nutzertreffen 1996

Lebenslauf

Name Schmidt

Vorname Klaus Jürgen

Geburtsdatum 30. August 1965

Geburtsort 72070 Tübingen

Familienstand ledig Staatsangehörigkeit deutsch

Eltern Hermann Schmidt

Elfriede Schmidt geb. Karlinger

Geschwister vier

Schule

1971-1975 Grundschule Mössingen

1975-1985 Quenstedt-Gymnasium Mössingen

Mai 1985 Abitur

Zivildienst

10/1985-01/1987 Verwaltungs- und Betreuungsaufgaben in der

Körperbehindertenförderung Mössingen

Studium

SS 1987 – WS 1993 Physikstudium an der Freien Universität Berlin

10/1989 Vordiplom Physik 12/1993 Diplom Physik

04/1992-03/1994 Tutor, Betreuung des Praktikums "Physik für Mediziner,

Pharmazeuten und Geologen" an der FU Berlin

11/1994-07/1995 Wissenschaftlicher Mitarbeiter am Wilhelm-Ostwald-

Institut, Universität Leipzig

08/1995-08/2002 Promotionsstudium am Institut für Physikalische und

Theoretische Chemie, Freie Universität Berlin

Berlin, 30. August 2002

Inhaltsverzeichnis

1	E	Einleitung	4
2 S:		Eigenschaften des Ruthenium-Substrats, der Adsorbate Xenon und rstoff und die Physik der Adsorption	6
Ο.		•	
		Ruthenium 1.1 Die Ru(10-10)-Oberfläche	
	2.2		
	2.3	Sauerstoff	9
	2.4	Die Adsorption	11
3	N	Messmethoden und Experimentelles	14
	3.1	LEED	14
		Physikalische Grundlagen	
		Experimentelles	16
	3.2	Photoelektronenspektroskopie	17
		Physikalische Grundlagen	
		Experimentelles	20
	3.3	Austrittsarbeitsmessungen	22
		Physikalische Grundlagen	22
		Experimentelles	23
	3.4	Thermodesorptionsspektroskopie	26
		Physikalische Grundlagen	26
		.4.1 Temperaturmessung	
		.4.2 Temperaturregelung	
	3.5	Inverse Photoemission	
		Physikalische Grundlagen	
		Experimentelles	
	3.6	Vakuumerzeugung	34
	3.7	Probenpräparation	36
4	F	Resultate zur Xenon-Adsorption	38
	4.1	LEED-Ergebnisse	38
		.1.1 Voraussetzungen	
	4.	1.2 Beugungsbilder	39

Die	Die (3x1)-Phase			
Die	(2x5)-Phase	41		
Ent	wicklung der Monolage	43		
Übe	ergang zur zweiten Lage	45		
Mul	ltilagenwachstum	47		
4.1.3	Intensitätsmessungen	48		
4.2 The	ermodesorptionsmessungen	52		
4.2.1	Voraussetzungen	52		
4.2.2	Thermodesorptionsspektren	53		
4.2.3	Bedeckungseichung	56		
4.2.4	Haftkoeffizient	62		
4.2.5	Energetik der Desorption	63		
4.3 Aus	strittsarbeit	70		
4.4 UP	S-Messungen	75		
4.4.1	Reine Oberfläche	75		
4.4.2	Lagenweise Verschiebung der Xe4d- und 5p-Level	76		
4.4.3	Peaksplitting 5p _{3/2}	78		
4.4.4	Veränderungen im d-Band	80		
4.4.5	Bindungsenergie 5p _{1/2}	81		
4.4.6	Bandstruktur	83		
Ban	ndstruktur 0.95 ML	85		
Ban	ndstruktur 1 ML	88		
4.5 LE	ED- und TDS-Messungen nach Präadsorption von Wassersto	off91		
4.5.1	LEED	92		
4.5.2	Thermodesorption	93		
4.6 Dis	kussion	96		
4.6.1	Strukturmodelle zu den LEED-Phasen	96		
Kine	ematische LEED-Rechnung	97		
(3x)	1)-Phase	97		
(2x5)	5)-Phase	101		
Mor	nolage	102		
Zwe	eite Lage	104		
Mul	ltilage	106		
4.6.2	Energetische Betrachtungen	107		
Diff	fusionsbarriere	107		
Ads	orbat-Substrat-Wechselwirkung	107		
Ads	orbat-Adsorbat-Wechselwirkung	112		
	2			

	Res	ultierende Wechselwirkung	114
	4.6.3	Vergleich der Bandstrukturen der Xe-Monolage auf Ru(10-10), Cu(110), H/Ni(110) und	
	H/Pt(1	10)(1x2)	117
4	4.7 An	hang (Simulationsrechnungen)	121
	4.7.1	Simulation der TD-Spektren	121
	4.7.2	Monte Carlo Simulation	124
5	Resu	ıltate zur Sauerstoff-Adsorption	130
;	5.1 Bel	kannte Sauerstoffphasen: c(2x4)2O und (2x1)pg2O auf Ru(10-10)	131
	5.2 We	itere Beugungsbilder atomarer Sauerstoffspezies auf Ru(10-10)	133
	5.2.1	Adsorption von Sauerstoff bei 850 K	133
	5.2.2	Adsorption von Sauerstoff bei 30 K mit anschließendem Heizen auf 600 K	133
	5.3 Bei	agungsbild der molekularen Sauerstoffspezies	135
;	5.4 Th	ermodesorptionsmessungen	136
	5.4.1	Voraussetzungen	136
:	5.5 Au	strittsarbeitsmessungen	138
:	5.6 UP	S-Messungen	140
	5.6.1	Dosisserie mit He I-Strahlung	141
	5.6.2	Polarisationsaufgelöste Dosisserie mit Synchrotronlicht (TGM2)	142
	5.6.3	Temperaturserie mit He I	146
	5.7 IPI	E-Messungen	147
	5.7.1	Die reine Oberfläche und die (2x1)pg2O-Phase	
	5.7.2	IPE-Spektren des molekularen Sauerstoffs	151
	5.7.3	Polarisationsaufgelöste Messungen	152
	5.8 Dis	kussion	155
	5.8.1	Strukturmodell für den molekular physisorbierten Sauerstoff	157
5	Zusa	nmmenfassung	165
(6.1 Xe	non-Adsorption	165
		ıerstoff-Adsorption	
		mary	
	Xe	non adsorption	167
	Ox	ygen adsorption	168

Danksagung

Meinem Doktorvater Prof. Dr. Klaus Christmann danke ich für seinen außerordentlich motivierenden, steten Zuspruch nicht nur bei den Experimenten. Durch den Freiraum, den er mir zu selbständigem und eigenverantwortlichem Arbeiten ließ, konnte ich meine Fähigkeiten mit viel Freude entfalten.

Dr. Sven Schröder bin ich für seine Unterstützung bei der Literaturrecherche und seine Hilfe bei meinen ersten Gehversuchen mit VB3.0 zu Dank verpflichtet.

Für ihre wissenschaftliche Anteilnahme möchte ich mich besonders bei meinem ehemaligen Diplomanden Michael Gottfried sowie bei Dr. Peter Rech, Dr. Dirk Schlatterbeck, Regine Küster und Ronald Wagner bedanken. Ihr echtes, fachliches Interesse kam dieser Arbeit zugute.

Meinen Kolleginnen und Kollegen Dr. Pia K. Schmidt, Claus Schröter, Dr. Manfred Parschau, Dr. Olaf Kurtz, Dr. Claudia Luhmann, Astrid Heiland, Astrid Mohr und Dr. Uwe Muschiol danke ich für das gute Arbeitsklima und die vielen, auflockernden Gespräche. Norbert Weiher, Dirk Rosenthal, Christian Pauls und den anderen "Neuzugängen" wünsche ich gutes Gelingen, viel Geduld und noch mehr Erfolg bei ihren Experimenten.

Bei Rudolf Cames möchte ich mich für seine Unterstützung nicht nur bei BESSY-Meßzeiten bedanken.

Karin Schubert danke ich neben der hervorragenden Unterstützung in organisatorischen Dingen auch für den leckeren Kaffee, den ich oft morgens nach einer der zahlreichen Nachtschichten als erster probieren durfte.

Dr. Felix Stolze habe ich es zu verdanken, daß die UHV-Kammer mit der neuen Golddrahtdichtung in den letzten Jahren im tiefen 11er-Bereich geblieben ist und der Ru-Kristall nach elektrochemischer Behandlung wieder in neuem Glanz erstrahlte.

Mein besonderer Dank gilt auch der feinmechanischen Werkstatt im Institut. Hr. Hesse, Hr. Binkowski, Hr. Dede und nicht zuletzt Hr. Gilardoni haben viele Werkstücke mit großer Präzision und nach dem Zauberspruch "BESSY!" oft in Windeseile hergestellt.

Dr. Helmut Schürmann danke ich für die gute Zusammenarbeit am TGM2 und sein Angebot für die Nutzerbetreuung an der Beamline, das ich leider nicht wahrgenommen habe.

Herrn Dr. W. Braun danke ich für seine unbürokratische Unterstützung, auch bei meinem Anliegen, eine zusätzliche Meßzeit am zeitweise ungenutzten 1m-Seya durchzuführen.

Dr. O. Schwarzkopf, I. Packe, Dr. A. Gaupp, Dr. C. Jung, H. Pfau, M. Mast und allen anderen Mitarbeitern der ehemaligen BESSY I-Crew danke ich für die stets gewährte Hilfe bei technischen Problemen an den Beamlines TGM2, TGM3, TGM4, SX700/II und 1m-Seya.

Herrn Dr. H. Over (FHI) und Herrn Dr. W. Widdra (TU München) danke ich für ihre Diskussionsbereitschaft über manche Eigenschaften des Xe-Systems.

Dem Kristallabor am FHI in Berlin möchte ich danken, daß es meinem Kristall durch eine Oberflächenabtragung von $200~\mu m$ und die Berücksichtigung meiner Wünsche bezüglich der achteckigen Form wieder zu einem ansehnlichen LEED-Bild sowie einem sehr guten Temperaturverhalten verhalf.

Prof. Dr. K.-H. Rieder am Fachbereich Physik danke ich für sein Interesse am Fortgang meiner Arbeit und für die Möglichkeit, an der Aufdampfquelle Kontaktierungsgold auf NaCl-Kristalle zu bringen. Ganz herzlich möchte ich Dr. Reinhold Koch danken, der mir kurzfristig einen geprüften Ru-Kristall für eine BESSY-Meßzeit zur Verfügung stellte.

Meinen ehemaligen Vorgesetzten Prof. Dr. Szargan und Prof. Dr. Chassé möchte ich für die Zeit am Wilhelm-Ostwald-Institut in Leipzig danken, wo ich einiges über Halbleitergrenzflächen, UPS, XPS, SAM und russische Schaltpläne gelernt habe. Auch meinen ehemaligen Mitarbeitern dort, allen voran Dr. Stefan Schömann, Ronald Hesse und Dr. Heiko Peisert gebührt mein Dank für ihre wissenschaftliche und technische Hilfestellung.

Schließlich möchte ich mich bei meinen Eltern und Geschwistern sowie meinen Freundinnen und Freunden Karin Santen, Roland Parchem, Lucia Weitschies, Michael Dörner und Kerstin Kühnert herzlich bedanken, die mir neben meiner Arbeit individuell in vielen Fragen hilfreich zur Seite standen.