
 
 

STUDYING PROTEIN DYNAMICS WITH X-RAY FREE-ELECTRON LASERS: 

OPPORTUNITIES & LIMITATIONS 

 

 

Dissertation 

zur Erlangung des Grades eines 

Doktors der Naturwissenschaften (Dr. rer. nat.) 

 

am Fachbereich Physik der Freien Universität Berlin 

 

 

vorgelegt von 

Marie Luise Grünbein 

 

 

 

 

 

 

 

Berlin 2020



 
 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Erstgutachter:   Prof. Dr. Robert Bittl 

Zweitgutachter:   Dr. Ilme Schlichting 

 

Tag der Disputation:   19.02.2021



 
 

 



i 
 

Summary 
Protein structure and function are intimately connected. To deduce the mechanisms un-
derlying specific functions, it is therefore of high interest to investigate structural changes 
during a reaction. Recently, the development of serial femtosecond crystallography (SFX) 
at X-ray free-electron lasers (XFELs) has attracted a great deal of attention by enabling 
time-resolved (TR) experiments at atomic spatial and femtosecond temporal resolution, 
thereby allowing unprecedented insight into protein dynamics.  

The high intensity of the XFEL pulse destroys any sample that has been exposed to the 
focused beam. A new protein crystal thus needs to be supplied for each pulse. This is typi-
cally achieved using a continuously flowing jet. For light-triggered reactions, an optical 
pulse starts the reaction in crystals of photosensitive proteins and the X-ray pulse then 
interrogates the system after a given time interval. For such experiments there are two 
main issues: First, appropriate conditions have to be found for triggering the reaction of 
interest. This is particularly important given that to date all published ultrafast TR-SFX ex-
periments used excessive (beyond biological relevance) excitation. Second, the measure-
ment of weak signals is severely limited by the low data collection rate (≤ 120 Hz) at first-
generation XFELs. Moreover high sample consumption is an issue at these X-ray sources. 

The goals of this thesis were therefore twofold: In the first part, techniques were developed 
to enable studying the ultrafast isomerization following photon absorption by bacteriorho-
dopsin in a TR-SFX experiment. Extending these results, light-matter interactions changing 
the incident excitation intensity were quantified based on experiments and calculations. 
This allowed establishing guidelines how to generally determine appropriate excitation 
conditions in SFX employing light triggering. These findings are fundamental to avoid mul-
tiphoton artefacts arising from excessive excitation and are thus essential for studying bi-
ological reactions which take place almost exclusively in the single photon regime. 

In the second part of this thesis, opportunities and challenges of SFX experiments at next-
generation XFELs were explored. These new machines generate X-ray pulses at MHz peak 
repetition rate and promise significantly higher throughput and more efficient sample us-
age. However, the short spacing between pulses introduces new challenges: it needs to be 
ensured that fresh sample is supplied sufficiently fast for each X-ray pulse. Moreover, it has 
been shown that the XFEL pulse launches shock waves in the sample carrying jet. These 
may damage sample probed by subsequent pulses. Here, first experiments at MHz peak 
repetition rate were conducted to investigate both issues. It was demonstrated that data 
collection of undamaged sample is indeed possible at 1.1 MHz repetition rate. At shorter 
pulse intervals (corresponding to 4.5 and 9.2 MHz), shock wave induced damage may lead 
to a significant loss in diffraction resolution of the crystal and even to structural changes 
in the protein.  

Together, the results of this thesis delineate the limitations of (TR-) SFX due to XFEL in-
duced shock damage and pave the way towards exploiting the promising capabilities of 
MHz XFELs, in particular for studying biologically relevant light-triggered reactions in pro-
teins. 
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Zusammenfassung 
Proteinstruktur und –funktion sind eng miteinander verbunden. Um die zugrundeliegen-
den Mechanismen aufzuklären, ist es daher von hohem Interesse, strukturelle Änderungen 
während einer Reaktion zu verfolgen. Die Entwicklung serieller Femtosekunden-Kristallo-
graphie (SFX) an Freie-Elektronen-Lasern im Röntgenbereich (XFEL) hat folglich durch die 
einmalige Kombination von atomarer räumlicher und Femtosekunden zeitlicher Auflö-
sung viel Aufmerksamkeit erregt, da sie beispiellose Einblicke in die Struktur und Dynamik 
von Proteinen erlaubt. 

XFEL Pulse besitzen eine solch hohe Intensität, dass die Probe letztendlich zerstört und für 
jeden Puls ein neuer Proteinkristall benötigt wird. Ein Flüssigkeitsstrahl (Jet) liefert daher 
kontinuierlich frisches Material. Mit diesem Ansatz lassen sich auch lichtgesteuerte Reak-
tionen beobachten, indem ein optischer Puls die Reaktion in einem Kristall aus photosen-
sitiven Proteinen startet, und der Röntgenpuls nach einer festgelegten Zeit das System ab-
fragt. Bei dieser Herangehensweise gibt es zwei grundlegende Probleme: Erstens müssen 
geeignete Bedingungen zum Starten der Reaktion gefunden werden. Dies ist besonders 
wichtig, da bis heute alle publizierten ultraschnellen Experimente extreme Anregungsbe-
dingungen (außerhalb biologischer Relevanz) verwendet haben. Zweitens ist an XFELs der 
ersten Generation die Messung schwacher Signale durch die geringe Repetitionsrate 
(≤ 120 Hz) limitiert, die zudem zu einem hohen Probenverbrauch führt. 

Diese Arbeit hat daher zwei Ziele: Im ersten Teil wurden Methoden entwickelt, die die 
Grundlage für das Verfolgen der ultraschnellen lichtinduzierten Isomerisierung in Bacte-
riorhodopsin mittels SFX bildet. Anknüpfend daran wurden die Anregungsintensität än-
dernde Licht-Materie-Wechselwirkungen mithilfe von Experimenten und Berechnungen 
quantifiziert, sodass ein allgemeiner Leitfaden für die Bestimmung passender Anregungs-
bedingungen aufgestellt werden konnte. Dies ist ein entscheidender Schritt für das Ver-
meiden biologisch irrelevanter Multiphotonen-Effekte. 

Im zweiten Teil der Arbeit wurden die Chancen und Herausforderungen von SFX an neuen 
XFELs untersucht, die Röntgenpulse mit bis zu MHz Wiederholrate produzieren können 
und dadurch versprechen, Durchsatz und Probeneffizienz zu erhöhen. Durch die kurzen 
Pulsabstände entstehen jedoch neue Probleme: einerseits muss die Zufuhr neuer Kristalle 
in den Strahl schnell genug geschehen. Andererseits wurde gezeigt, dass der XFEL Puls im 
Jet Schockwellen auslöst, die die Probe schädigen und so die Messung mit schnell aufei-
nanderfolgenden Pulsen beeinträchtigen könnte. In dieser Arbeit wurden erste Experi-
mente bei MHz Wiederholrate durchgeführt und beide Problematiken untersucht. Messun-
gen bei 1.1 MHz konnten erfolgreich ohne Beeinträchtigung durchgeführt werden. Es 
wurde aber auch gezeigt, dass bei kürzeren Pulsintervallen (entsprechend 4.5 und 
9.2 MHz) die Schockwelle die Probe schädigen kann und dadurch zu einer reduzierten Auf-
lösung der Kristalle, sowie zu Strukturänderungen im Protein führen können. 

Die Ergebnisse dieser Arbeit sind wegweisend für das Ausschöpfen der vielversprechen-
den Möglichkeiten von MHz XFELs, insbesondere für das Beobachten biologisch relevan-
ter, ultraschneller, lichtinduzierter Reaktionen in Proteinen.  
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1 Introduction 
 

Three-dimensional structural knowledge plays a key role in understanding molecular 

functions, mechanisms and dynamics. This is important in a variety of fields ranging from 

fundamental research in all natural sciences to diverse applications such as improving the 

efficiency of catalysts, adapting material properties to a given task or studying drug targets 

for structure-based drug design. Of particular interest to all of these topics is the study of 

temporary structural configurations adopted along a reaction path which may help to elu-

cidate the underlying mechanisms. 

Light is an important trigger for many reactions. In biology proteins containing a photoac-

tive chromophore enable light to serve as an energy resource that can be converted into 

chemical energy (e.g. in photosynthesis) or to act as a carrier of information initiating in-

tra- or intercellular signalling (e.g. in vision). After absorption of a photon by the chromo-

phore, specific interactions of the excited chromophore with the surrounding protein ma-

trix lead to structural changes ultimately resulting in execution of the protein’s specific 

function. Atomic rearrangement along the reaction pathway typically covers a long time 

scale of up to seconds, with first movements starting within femtoseconds (fs) after reac-

tion initiation14.  

The possibility of triggering a light-driven reaction using femtosecond laser pulses enables 

performing ultrafast experiments to follow and understand the underlying mechanisms, 

allowing for example to learn how a reaction’s efficiency can be optimized for a particular 

application. Previously this was only accessible via femtosecond spectroscopy but, while 

delivering a range of invaluable information on the energetic states occupied during the 

reaction, direct 3D structural information cannot be obtained. Structural information at 

atomic resolution are predominantly obtained via means of X-ray crystallography and used 

to be limited to a temporal resolution of ~100 ps at synchrotrons15. To improve the tem-

poral resolution and allow observation of structural changes directly following bond 

breakage and bond formation, shorter X-ray pulses of sufficient intensity are required. 

With the advent of hard X-ray free-electron lasers (XFELs) the generation of ultra-short 

very intense X-ray pulses became possible, extending time resolution of structural meas-
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urements down to femtoseconds16, the time scale of molecular motion. However, the ex-

traordinarily intense XFEL pulse also deposits large amounts of energy in the sample, lead-

ing to a very high energy density that ultimately destroys the sample within a single 

pulse17. Fresh sample must therefore be transported into the scattering region prior to ar-

rival of each X-ray pulse, for example by means of a continuous sample stream or jet. Three-

dimensional structural information can then be obtained by measuring the diffraction pat-

tern of many identical crystals in different orientations, and merging these measurements 

to assemble a complete set of structure factors18. This serial approach to data collection 

combined with the femtosecond duration of the XFEL pulse is termed serial femtosecond 

crystallography (SFX)19. 

Given an electromagnetic trigger, time-resolved SFX experiments have thus opened up the 

possibility to observe the structure of transient states femtoseconds after reaction initia-

tion. A range of initial time-resolved studies at XFELs exploited these advantages and elu-

cidated ultrafast light-triggered reactions in a variety of proteins, including ligand dissoci-

ation16 and trans/cis isomerization20,21. However, a difficulty in these experiments is that 

X-ray crystallography measures the superimposed signal of all species simultaneously. 

This is in contrast to spectroscopy which can distinguish small concentration differences 

of multiple states if these have unique spectral bands.  

Any time-resolved crystallography experiment employing optical triggering therefore 

needs to ensure suitable means to excite the protein into the desired reaction pathway, 

and avoid forming other species via unwanted pathways. Additionally, for studying biolog-

ically relevant reactions optical excitation conditions need to be within the linear regime, 

in which one-photon processes are excited and the signal scales linearly with excitation 

intensity22. However, the attempt to maximise the fraction of excited molecules prompted 

previous experimenters16,20,21 to work with very high pump laser intensities (of several 

hundred GW/cm²). While these conditions may maximise light-induced differences in the 

deduced structures, it is unclear to what extent, if at all, these differences are due to bio-

logically relevant structural changes and how many parallel pathways have been opened 

up22. 

The occupancies of intermediate states in the biologically relevant single-photon regime 

are generally low, requiring a lot of data to be collected to achieve a meaningful signal-to-

noise ratio. While measurement time is extremely limited at first-generation XFELs due to 
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the limited number of facilities and a maximum pulse repetition rate of only 120 Hz23, next-

generation XFELs capable of running at MHz peak repetition rate promise to increase data 

collection rates significantly and thereby promise to facilitate observation of weak signals. 

However, data collection at MHz rate comes with new challenges: fresh sample needs to be 

supplied sufficiently fast for each X-ray pulse and it needs to be ensured that sample 

probed by subsequent pulses is not altered by the impact of previous pulses.  

For rigorous experiments on protein dynamics using XFELs, the desired dynamics must be 

triggered reliably, and it is pivotal to know how experimental artefacts can be avoided. In 

the course of this thesis techniques were therefore developed to allow time-resolved ex-

periments triggering the desired reaction, avoiding artificial XFEL-induced dynamics and 

thereby to explore the limitations of (time-resolved) SFX. 

Specifically, techniques were developed to enable a time-resolved experiment on bacteri-

orhodopsin (bR), allowing to analyse the structural changes induced by photon absorption. 

bR is a light-driven proton pump that belongs to the family of rhodopsins containing retinal 

as their light-absorbing chromophore24. Rhodopsins are involved in a wide range of bio-

logical light-sensitivity, starting from vision, the regulation of the circadian rhythm to light-

energy conversion in different microbial organisms24. The aim of the time-resolved SFX 

studies on bR was to understand the role of interaction between protein matrix and chro-

mophore in directing the reaction. A better understanding of these processes would be of 

help for elucidating mechanisms of similar light receptors, as well as for a potential appli-

cation as optogenetic tools.  

Extending from the experiment on bR, a general characterization of appropriate (biologi-

cally relevant) photo excitation conditions in pump-probe experiments on protein micro-

crystals was performed, delineating specifically how to avoid multiphoton artefacts. For 

this purpose, a protocol was designed and characterized that allows determining photo 

excitation conditions within the sample, taking intensity changes along the optical path 

into account. 

Finally, the possibilities and limitations of SFX measurements at MHz repetition rate were 

explored. To enable measurements at MHz repetition rate, fast jets capable of replenishing 

sample with sufficient speed need to be employed. Such jets require fast imaging methods 
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to characterize injection conditions. Suitable means to do so automatically were estab-

lished in this thesis. Moreover, possible effects of the X-ray pulse on crystalline protein 

samples in liquid jets were studied to elucidate if and under what conditions experiments 

at MHz repetition rate may be conducted that indeed probe the protein’s native state. 
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2 Structural biology at XFELs 
 

The first free-electron laser capable of producing hard X-ray radiation went into operation 

in 200923, opening up the possibility to perform protein crystallography at these new X-

ray sources generating pulses of unprecedented short pulse duration and intensity. How-

ever, given the profound differences in mode of operation and experimental parameters 

compared to synchrotrons, crystallography at XFELs in fact requires a completely different 

approach to experiment and analysis before new types of fundamental questions can be 

tackled.  

 

2.1 X-ray free-electron lasers 
At XFELs a bunch of free electrons is accelerated to nearly the speed of light in a long linear 

accelerator25. These relativistic electrons are passed into an undulator, where alternating 

dipole magnets generate a sinusoidal magnetic field due to which the moving electrons 

experience a Lorentz force perpendicular to the magnetic field direction and the direction 

of movement. In consequence, the electrons follow a sinusoidal trajectory, emitting elec-

tromagnetic radiation with a wavelength down to the hard X-ray regime depending on the 

electron energy, the undulator period and the magnetic field strength25. 

Initially, the radiation emitted by the electrons in the bunch has a random relative phase 

distribution. Key to achieving the ultrabright intensity characteristic for XFELs is the reso-

nant interaction between the electron beam and the emitted radiation as both propagate 

along the same axis, resulting in so-called “microbunching” of the electron density that 

leads to an exponential growth in the radiated intensity26. The interaction between elec-

tron beam and the emitted radiative field introduces a longitudinal force on the electrons, 

the strength of which depends on the electron energy25-27. Because of this energy-depend-

ent velocity modulation, the electrons are forced into smaller bunches separated by a dis-

tance equal to the emitted wavelength26-28. Electrons within a wavelength distance of each 

other emit radiation in phase (coherently), producing a higher intensity of the emitted ra-

diation due to constructive interference, which in turn enhances the microbunching by in-

creased interaction between the electron beam and the stronger radiative field25. In the 
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extreme limit of perfect microbunching, the emitted intensity is proportional to Ne², the 

number of electrons in the bunch squared27*. In this fashion the intensity of the emitted 

radiation grows exponentially along the undulator distance until saturation is reached 

when bunching is close to its maximum25. When these electron microbunches start spon-

taneously from noise, the process is called self-amplified spontaneous emission (SASE)29. 

X-ray free-electron laser radiation has unique properties: the pulses can be as short as a 

few femtoseconds and the beam is transversally coherent with a peak brightness (number 

of photons per time, unit surface area, 0.1 % band width and unit solid angle) that is up to 

nine orders of magnitude higher than at synchrotrons25. A few femtosecond long X-ray 

pulse thus contains as many photons as emitted by a synchrotron in the X-ray regime over 

a whole second30. XFELs thus enable unprecedented time resolution, coherent imaging ex-

periments as well as experiments on weakly scattering samples. 

 

2.2 Breakthrough results enabled by crystallography at XFELs 
The possibility to measure weakly scattering samples at XFELs not only holds promises for 

the future to measure diffraction from single particles31 but importantly also allows to 

measure diffraction from small crystals32. At synchrotrons this is limited by radiation dam-

age. For example, this possibility is of particular interest to the study of G-protein coupled 

receptors (GPCRs), a family of membrane proteins that is essential in many physiological 

signalling pathways33. Malfunction of GPCRs is associated with many pathophysiological 

conditions including some types of cancer, diabetes or cardiovascular diseases, making 

these proteins important drug targets33. Typically, it is extremely challenging if not impos-

sible to grow GPCR crystals large enough for the study at synchrotrons33. SFX thus  facili-

tated breakthrough advances in the study of GPCRs, allowing solving previously unknown 

or poorly understood structures of GPCR members34 and complexes35-37. 

Furthermore, the short pulse duration of XFELs allows the elastic scattering signal to be 

recorded before significant structural rearrangements induced by radiation damage occur, 

enabling not only room temperature measurements19 but also damage-free structure de-

termination of radiation-sensitive proteins containing metallocentres38,39. Metal centres 

                                                           
* This is the reason for the orders of magnitude increase in peak brilliance compared to synchrotrons, 
where intensity only scales with the number of electrons. 
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are likely to undergo X-ray induced photoreduction, changing the structure in the vicinity 

of the metal centre even under cryogenic conditions40-42. Data collection at XFELs in con-

trast enabled radiation-damage free data collection of metalloenzymes like photosys-

tem II39,42,43, allowing to capture light-induced reaction intermediates44,45, or coppernitrite 

reductase, the most important metalloenzyme in microbial denitrification46. 

The possibility to measure diffraction from small crystals, together with the short pulse 

duration, make XFELs moreover ideally suited for studying reactions in a time-resolved 

manner. The ability to measure diffraction from small crystals is key to this purpose, al-

lowing reactions to be triggered homogeneously throughout the molecules constituting the 

crystal. In case of optically triggering a reaction, the typically low penetration depth of a 

protein crystal limits the useful crystal size to a few micrometres only. Similarly, diffusion 

times of chemical compounds into protein crystals increase with increasing crystal size, 

again limiting the useful crystal size to a few micrometres47. 

With sufficiently short optical triggers, SFX allows light-induced reactions to be followed 

with femtosecond time resolution, at atomic spatial resolution. Pioneering experiments 

elucidated ultrafast changes upon photo excitation to follow ligand dissociation16 or the 

trans/cis isomerization in fluorescent20,48 or otherwise photoactive proteins21, paving the 

way towards a detailed understanding of the underlying mechanisms and potentially 

opening the door to design mutants of higher quantum yield that can be applied in fluores-

cent microscopy techniques20. 

Additionally, efforts have been made to establish means to chemically trigger a reaction by 

mixing ligands or buffers to induce pH changes with protein crystals prior to X-ray diffrac-

tion49-51. For example, such experiments captured multiple time points of binding of an ex-

pression regulating ligand to messenger RNA52 or an antibiotic being cleaved by a bacterial 

enzyme causing antibiotic resistance51,53. 

 

2.3 The complexity of serial femtosecond crystallography 
Since the pioneering work of Laue and Bragg more than 100  years ago, X-ray crystallog-

raphy has rapidly developed into a widely used method for investigating the structure of 

molecules. Today X-ray crystallography at synchrotrons is well-established, with all steps 
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of data collection from mounting and rotating the crystal in the X-ray beam over data re-

cording by highly developed detectors to subsequent data analysis being fully automated. 

As explained in the following, XFELs in contrast require a completely new experimental 

approach, rendering all established procedures at synchrotrons inapplicable. 

The intense XFEL pulse deposits large amounts of energy in the sample, leading to a very 

high energy density that ultimately destroys the sample within a single pulse17. X-ray ab-

sorption, typically via the photoelectric effect, initiates ionization cascades which increase 

the electrostatic energy such as to ultimately result in a Coulomb explosion of the sample54. 

Crystallography at XFELs is therefore conducted in a mode that has been named “diffrac-

tion before destruction”54, meaning that the femtosecond long XFEL pulse is short enough 

to collect a measurable diffraction signal before complete destruction of the material takes 

place17. 

Since the crystals are destroyed when exposed to the high intensity of a focused XFEL 

pulse, pristine sample must be transported into the scattering region prior to arrival of 

each X-ray pulse. Various techniques to transport fresh sample into the scattering region 

have been developed for SFX55-60. In the simplest approach, sample can be delivered with 

a fixed target, e.g. a chip, which is then translated through the interaction region synchro-

nous to the arrival of X-ray pulses59,61-63. Alternatively, sample can be delivered into the X-

ray interaction region by means of a continuously flowing jet that is oriented perpendicu-

larly to the X-ray optical axis64,65 (Figure 2.1). Due to several advantages, liquid jets60,64 are 

currently the dominant methodology for sample delivery: suspending the crystals in jets 

keep the fragile protein crystals in their native growth solution, preventing drying out of 

the sample, and the micron-sized diameter of jets ensures minimal background signal from 

the surrounding liquid. Moreover, given sufficient jet speed, the continuous replenishment 

ensures that sample interrogated by subsequent pulses has not been exposed to stray ra-

diation or other damaging effects of previous pulses. 

The generation of stable, thin-diameter liquid jets suitable to reliably transport crystals 

into the X-ray interaction region is highly challenging. A jet diameter as small as possible 

minimizes solution scattering contributing to the background of the protein crystal diffrac-

tion pattern. Given crystal sizes of typically 1 – 10 µm, jets of similar size are desired. To 
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generate these, however, it is impossible to employ equally small-diameter injection noz-

zles (Rayleigh nozzles) as these are easily clogged by either slightly larger crystals, families 

of crystals or simply contaminations in the liquid system64. To circumvent these issues as-

sociated with small-diameter sample lines, the so-called “gas-dynamic virtual nozzle” 

(GDVN) was developed60,64. GDVNs transport the crystal suspension in a larger diameter 

capillary, and, upon exit from the capillary, employ a coaxially flowing helium gas stream 

that focuses the liquid jet down to a diameter of typically 1 – 10 µm (Figure 2.1b). 

The difficulty of working with GDVNs is due to the fabrication process, as well as the oper-

ation procedure, both of which have to be adapted to the specific sample properties and 

Figure 2.1 Experimental setup of SFX experiments. a. Microcrystals are delivered into the X-
ray beam by means of a free-standing jet. The X-ray beam (black) intersects the jet, resulting 
in a diffraction pattern that is recorded by the detector. In case of pump-probe experiments, a 
pump laser (green) precedes the X-ray pulse and triggers a reaction in the crystallised mole-
cules. Figure reproduced with formatting changes from Grünbein et al4. b. Liquid jet produced 
by a GDVN. Liquid sample is transported through the inner capillary (brown) while gas is de-
livered through the outer glass sheath. The gas stream focuses the liquid stream into a few 
micron sized jet exiting the nozzle’s aperture. c. HVE injection producing a viscous jet. Viscous 
sample is pushed out of the sample capillary (brown) and forms a continuous stream that is 
stabilized by a coflowing gas stream. b, c. The scale bar is 100 µm. The arrow indicates the X-
ray interaction region. For pump-probe experiments, a section of the sample jet is optically 
triggered (green shading) before X-ray probing. Both images adapted from Grünbein & Nass 
Kovacs11 under the CC-BY 4.03. 



Experimental and Theoretical Background  

12 
 

experimental boundary conditions. A stable, continuous jet is the basal requirement to al-

low alignment of the jet with the X-ray beam, and thereby ensure that the fraction of X-ray 

pulses indeed interrogating the sample (the so-called “hit rate”) is maximised. If the jet is 

not stable enough, either wiggling or dripping because nozzle geometry, flow rates and 

sample type have not been balanced correctly, a significant fraction of X-ray pulses misses 

the jet, dramatically decreasing the efficiency of the experiment both in terms of sample 

usage and experimental throughput which is highly unfavourable given the tight allowance 

of beam time and the difficulty of sample production. Depending on crystal size, crystal 

shape, nature of the surrounding liquid and boundary constraints of the experimental pa-

rameters (e.g. ambient pressure, X-ray repetition rate), different nozzle geometries need 

to be employed to achieve given jet diameters and jet speeds. For example, to generate a 

stable liquid stream exiting the nozzle into the X-ray interaction region requires different 

nozzle geometries for different types of protein buffers, it requires different flow rates and 

liquid line configurations for different crystal shapes and concentrations, and it requires 

different balances between liquid and gas flow rates for different target jet properties. 

Moreover, the generation of stable liquid jets is only one of many possible modes of eject-

ing sample from the nozzle: very often, if the right balance of injection parameters is not 

found, the ejected sample either drips or sprays66,67. These changes in stability cannot be 

detected by eye, but require high resolution imaging optics of sufficient contrast and tem-

poral resolution.  

Using jets as the most convenient and compatible method to deliver sample into the X-ray 

interaction region, sample flows continuously despite the pulsed nature of the data collec-

tion, resulting in many (>99 %) crystals flowing past the interaction region without ever 

being probed by an XFEL pulse when performing the experiment at first-generation XFELs 

running at up to 120 Hz. Since sample cannot be recovered afterwards, it is purely flowing 

to waste. In view of the often extremely valuable and difficult to obtain biological sample 

this situation is less than ideal. To increase efficiency of sample usage, sample volume pass-

ing the interaction region in between two X-ray pulses has to be reduced. This can be 

achieved either by decreasing sample flow rate or by increasing the X-ray pulse repetition 

rate.  

Increasing efficiency of sample usage by decreasing sample flow rate in liquid jets can only 

be done in a marginal range, because a minimum flow rate is required for generating stable 
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jets from a low-viscosity liquid. In contrast, when extruding a viscous material, free-stand-

ing jets can be generated at much lower sample flow rates using similar nozzles65 (Figure 

2.1c). These jets have larger diameters (typically 50 – 100 µm), because the coflowing gas 

stream only stabilizes jet extrusion but cannot decrease the diameter of the extruded 

highly viscous stream. These types of jets are favourable for protein crystals that are grown 

in a viscous environment (e.g. crystals of membrane proteins65). Other protein systems re-

quire embedding the crystals in a viscous environment, which may work for some but not 

for all types of protein crystals without impairing crystal quality68. 

Increasing efficiency of sample usage by increasing the X-ray pulse repetition rate became 

possible with the advent of second generation XFELs capable of running at peak repetition 

rates of a few MHz. Compared to the previous maximum of 120 Hz at first generation 

XFELs23, the tremendous increase in pulse repetition rate is enabled by employing super-

conducting linear accelerators. The European XFEL (EuXFEL) is the first superconducting 

XFEL, and is designed to deliver X-ray pulses at a maximum pulse repetition rate of up to 

4.5 MHz, see69. 

Independent of the choice in sample delivery technology and X-ray repetition rate, crystal-

lography at XFELs requires an unprecedented number of protein crystals to collect a single 

data set. Since only one diffraction pattern in a fixed orientation can be collected for each 

crystal which is then destroyed by exposure to the X-ray beam, many identical crystals in 

various orientations are required to obtain the complete set of structure factors18. There-

fore, SFX experiments require often several tens of milligrams of protein or more. This in-

troduces completely new challenges not only in obtaining sufficient amounts of protein, 

but also in subsequently crystallising the purified protein at scale. While screening condi-

tions to achieve large protein crystals for structure determination at synchrotrons are well 

established, obtaining large quantities of micron-sized crystals proves extremely difficult 

and requires new approaches15,70. 

Moreover, the stochastic nature of the X-ray generation process at FELs leads to a large 

fluctuation in pulse properties from shot to shot: each X-ray pulse is characterized by a 

unique photon energy spectrum, pulse energy, fluence and pointing25. On top of that, a dif-

ferent crystal of different (unknown) orientation, different size and at a slightly different 

position in space covered with different amounts of surrounding liquid due to inherent 

changes in jet behaviour introduces additional fluctuations in diffraction intensities. All of 
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these properties need to be recorded and stored for each single X-ray pulse alongside the 

corresponding diffraction pattern. Some experiments even require the history of previous 

pulse parameters to be known additionally, because these may affect data collection of up-

coming pulses.  

As a consequence of the serial nature of data collection and the intrinsic shot-to-shot vari-

ations in experimental parameters, data analysis also reaches a new level of complexity. 

Not only does one need to figure out the a priori unknown orientation of each single dif-

fraction pattern, but moreover all single-shot changes have to be taken into account when 

merging the thousands of single diffraction patterns in order to obtain a meaningful three-

dimensional set of structure factors which can then be used for structural interpretation18. 

Alongside the mentioned challenges of crystallisation, sample delivery, single-shot param-

eter characterization and data analysis, it requires large efforts and manpower to run the 

accelerator in a stable mode, to ensure reliable X-ray detector operation and synchronisa-

tion of all single-shot recordings of pulse properties and beam line parameters, to  guaran-

tee error-free storage of the collected data in real time, to align the X-ray beam with the 

delivered sample jet or to steer and align additional optical lasers if these are required. 

Experiments at XFELs are therefore a highly complex enterprise that cannot be performed 

by a single person but in order to succeed require a team of experts working hand in hand. 

 

2.4 Collaborative effort 
All XFEL experiments described in this thesis were conducted in a team, with tasks subdi-

vided between the different experts. Samples were prepared and crystallised by Elisabeth 

Hartmann, Gabriela Nass Kovacas and Ilme Schlichting. Bruce Doak, Marco Kloos, Robert 

Shoeman and myself represented the team responsible for the general experimental setup 

and appropriate sample delivery. During and after data collection, data storage and syn-

chronisation was ensured by Lutz Foucar, Mario Hilpert and Chris Roome with the help of 

the beam line scientists on site who also operated and aligned the X-ray and optical pump 

laser beam. Crystallographic analyses and structural interpretation were performed by 

Thomas Barends, Alexander Gorel and Ilme Schlichting. 

In particular, my personal responsibilities included for all experiments the individual fab-

rication, testing and operation of sample delivery instrumentation appropriate for each 
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specific experiment. I designed and implemented a suitable method to perform light-adap-

tation of bacteriorhodopsin microcyrstals, as well as ensured sample delivery matching 

the photoexcitation goals of the experiment (chapter 6). I characterized photoexcitation 

conditions employed in the bacteriorhodopsin experiment and generalized these findings 

by designing and conducting appropriate experiments and theoretical calculations to es-

tablish a protocol how appropriate photo excitation conditions can be determined for op-

tical pump X-ray probe SFX experiments (chapter 7). To explore the possibilities and limi-

tations of SFX experiments at MHz repetition rate at second-generation XFEL facilities, I 

coordinated and conducted the experiments targeting the effects of XFEL-induced shock-

waves on protein crystals and analysed and interpreted its diffraction data (chapters 8 and 

9). 
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3 Materials and Methods 
 

3.1 Samples and sample preparation  
Samples were prepared by Elisabeth Hartmann, Gabriela Nass Kovacs and Ilme Schlichting 

unless otherwise stated. Parts of the descriptions of samples and methods of this section 

have been published in references1,2,4,5,7,9,71. 

 

3.1.1 Viscous media 

A variety of viscous media commonly employed in SFX experiments conducted in viscous 

jets were prepared as described in previous publications: 

Lipidic cubic phase (LCP) and LCP mixed 4:1 with 40 % (w/v) Pluronic F-127 (from Sigma-

Aldrich, P2443) were prepared as described in reference68. 

Sodium carboxymethylcellulose (NaCMC, obtained from Sigma-Aldrich, 21904) in lyso-

zyme crystal storage solution was prepared by mixing 8 % (w/v) NaCMC in ultra-pure wa-

ter with an equal volume of 2x concentrated lysozyme storage solution (20 % NaCl, 0.2 M 

Na acetate pH 4.0) as described in reference68. 

A 5.6 % (w/v) agarose gel (prepared from low gelling agarose obtained from Sigma-Al-

drich, A9414)68 in a 30 % aqueous glycerol solution was prepared as described in refer-

ence72. 

The synthetic grease Super Lube (# 21030, Synco Chemical)56 is a commercial product and 

was obtained from Amazon. 

 

3.1.2 Refractive-index matching reference media 

For characterizing the optical properties of the viscous media described above, the follow-

ing refractive-index matching reference media were prepared: Aqueous glycerol solutions 

(65 % w/w and 40 % w/w) were prepared by mixing glycerol with ultra-pure water in the 

appropriate weight per weight ratio. Ultra-pure water was taken from an ELGA-Purelab 

ultra system (ELGA LabWater, Celle, Germany). 

 



Experimental and Theoretical Background  

18 
 

3.1.3 Crystallisation 

Hen egg-white lysozyme (HEWL) crystals were prepared as described in references4,1,2,5. 

Purified bacteriorhodopsin (bR) was obtained from Ramona Schlesinger (FU Berlin) and 

crystallised in LCP as described in references7,68. 

Crystals of the three jack bean proteins concanavalin A, concanavalin B and urease were 

prepared by Elisabeth Hartmann as described in reference1. 

Myoglobin (Mb) crystals were prepared as described in reference16. 

Haemoglobin (Hb) crystals were prepared as described in reference9. 

 

3.1.4 Embedding of crystals into viscous media 

bR was crystallised in LCP, making embedding unnecessary. To adjust the crystal concen-

tration and improve injection properties, the crystal-loaded mesophase was mixed with an 

equal volume of monoolein (from Nu-Chek Prep) and diluted (4+1) with Pluronic F-127 

40 % (w/v) prior to all experiments as described in references4,7,68. 

As described in reference4 10 µl (1.25 µl) crystal pellet of 12 µm (1 µm) sized lysozyme 

microcrystals was mixed with 90 µl (98.75 µl) NaCMC equilibrated with lysozyme storage 

buffer using two coupled Hamilton syringes, obtaining a v/v concentration of 10 % 

(1.25 %). Care was taken to not introduce any air into the mixture. To obtain suspensions 

of half the v/v concentration, the suspension was mixed in equal ratios with additional 

NaCMC equilibrated with lysozyme storage buffer using two coupled Hamilton syringes. 

 

3.2 Methods for characterizing light propagation through dif-

ferent jet media 
This section contains descriptions of methods published in references4.  

 

3.2.1 Refractive index measurement 

Refractive indices were determined in the visible spectrum using an Abbe refractometer 

(Zeiss 133968) for various wavelength ranges λ within 440 nm ≤ λ ≤ 645 nm by using a 

white light lamp (Schott KL 2500 LED) in combination with coloured filters (Andover Cor-



3 - Materials and Methods 

19 
 

poration 440FS10-25 (440±5nm), Andover Corporation 460FS10-25 (460±5 nm), Ed-

mund Optics #65-700 (532±5 nm), Edmund Optics #65-703 (546±5 nm), Edmund Optics 

#65-711 (632±5 nm), Andover Corporation 645FG07-25 (long pass filter, 645 nm)). 

 

3.2.2 UV-vis transmission measurements 

A Jasco V-760 Spectrophotometer was used to measure the UV-vis transmission spectrum 

in a spectral range from 200 – 750 nm in steps of 2 nm with a bandwidth of 0.5 nm and a 

scan speed of 400 nm/min. The acceptance angle of the spectrophotometer was deter-

mined to be ≤ 12°. The baseline (no cuvette in either the measurement path or the refer-

ence path) was recorded before each set of measurements. All samples were measured 

against air (i.e. no cuvette in the reference beam path) such that referencing was done after 

data recording by subtracting the extinction spectrum of the corresponding reference me-

dium computationally using Python 3.7. Flat demountable rectangular cells with 100 µm 

path length (106-0.10-40, Hellma Analytics) were used as cuvettes for all optical measure-

ments. When loading the cuvette with 10-40 µl sample, care was taken to not introduce 

any air bubbles and to fill the whole volume illuminated during extinction measurements. 

A Hamilton syringe or a positive displacement pipette was used for loading highly viscous 

samples such as LCP. Two or more separate measurements per sample were made and 

averaged. 

 

3.3 XFEL data analysis 
This section partly contains descriptions of methods published in references 1,2,5,9. 

 

Detector calibration and image correction 

Data from the AGIPD detector at EuXFEL was calibrated using the calibration pipeline es-

tablished at the EuXFEL73,74 with constants provided by the facility and the AGIPD consor-

tium; data from the CSPAD at LCLS was calibrated and corrected in CASS75,76. The positions 

and orientations of individual detector modules were refined as described16. 
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Hit finding and indexing 

CASS75,76 was used for online data analysis, hit identification and data preprocessing.  A hit 

is defined as an image where more than ten peaks were identified by CASS. Indexing and 

integration were performed with CrystFEL77 version 0.6.3 for the first experiment at EuX-

FEL1,71 and version 0.8.0 for experiments at LCLS2,9 and the follow-up at EuXFEL5. 

 

Analysing data quality 

For all experiments the resolution of a diffraction image at a given signal-to-noise ratio 

(SNR) x is determined as the best resolution of a diffraction peak with SNR ≥ x. Here, the 

signal-to-noise ratio of each reflection in every indexed hit was calculated as I/σ(I) ex-

tracted from the stream file output from CrystFEL after indexing.   

 

Forming data subsets with equalized probe pulse energies 

For two existing data sets A and B having given distributions in probe pulse energy with 

mean μA and μB and standard deviation σA and σB the target probe pulse energy distribution 

was determined as a Gaussian distribution centred on μ=0.5⋅( μA + μB) with standard devi-

ation σ=0.5⋅( σA + σB). From this distribution N random probe pulse energies e were drawn, 

with N corresponding to ~57 % of the total number of data points in the smaller of the two 

original data sets.  

To form two subsets A* and B* with equal probe pulse energy distributions, all drawn 

probe pulse energies e were compared to the probe pulse energies in the original data sets 

in A and B, and the hit with the closest probe pulse energies in each of A and B was added 

to the subsets A* and B*, respectively.  

The effect of probe pulse energy equalization is exemplarily shown in Figure 3.1 for the 

Lysozyme data sets collected as part of the X-ray pump X-ray probe experiment with 

122.5 ns time delay at LCLS. 
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3.4 Imaging and velocimetry of fast microscopic jets 
This section contains descriptions of methods published in reference6. 

 

3.4.1 Imaging setup and optical components 

Different light sources were tested for imaging the microscopic, fast jets produced by 

GDVNS. For this purpose the setup shown in Figure 3.2 was employed. The light source 

(either a laser (Table 1) or a white-light LED (Schott KL 2500)) was positioned on the op-

tical axis of a high-speed camera (Photron Fastcam SA-Z type 2100) facing directly into the 

camera to backlight the liquid jet, which flowed vertically downward through the field of 

view of the camera. The camera was equipped with a motorized Navitar 12X zoom lens. 

Various optical elements (diffusers, lenses, collimators and multimode fibres) could be in-

serted into the laser beam between the laser and the jet, as indicated by the dashed box in 

Figure 3.2. The pulse energy, repetition rate and pulse width of the two fibre lasers were 

controlled via their computer interface from a laptop. Input from a function generator 

(Tektronix AFG3102) monitored by a fast oscilloscope (Teledyne LeCroy HDO6054) set 

Figure 3.1 Probe pulse energy equalization. Probe pulse energies were measured by X-ray sen-
sitive diodes. a. Histogram of probe pulse energies of the pump-probe (blue, average probe 
pulse energy 3.4 ± 1.3) and the single-pulse reference data set (orange, average probe pulse 
energy 2.6 ± 1.2). Due to fluctuations in the X-ray generation process, the probe pulse energy 
distribution differs slightly between the two data sets. b. Histogram of probe pulse energies of 
the subsets of the pump-probe (orange) and single-pulse (blue) data subsets sampled to rep-
resent the same probe pulse energy distribution centred on 3.0 ± 1.2. a,b. Lysozyme data from 
the X-ray pump X-ray probe experiment with 122.5 ns time delay at LCLS. 
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the repetition rate of the diode laser, with pulse energy and duration set by its dedicated 

electronic circuit to the values listed in Table 1.  

To scramble the angular and temporal coherence of the laser beam and thereby mitigate 

speckle if necessary, the following devices were used in varying combinations:  ∅ 1” 

ground glass diffusers with 120, 220, 600 and 1500 grit polishes (Thorlabs), multimode 

fibres (∅ 300 µm core, 49 m length, Thorlabs FT300UMT) with fibre collimators 

(F220SMA-532 and F810SMA-543, Thorlabs) for coupling in and out of the fibre, and 

standard lenses (∅ 1” N-BK7, Thorlabs) to expand/reduce beam size, to collimate the beam 

after the diffusers and to introduce intentional beam divergences. 

The degree of speckle formation in the image was characterized by the speckle contrast C 

defined as the intensity standard deviation σ relative to the average intensity value Iavg of 

the image: 

 C = σ/Iavg (1) 
 

 

 

 

  

Figure 3.2 Experimental setup for testing jet imaging and velocimetry. Back-illumination of the 
jet requires the least laser power and so is the preferred mode of operation. The optical ele-
ments within the dashed box were used in varying combinations (or removed completely).  D: 
Diffusers; L: Lens; C: Collimator; MM: Multimode fibre. Figure without changes from Grünbein 
et al6. 
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Type Fiber laser, 
VGEN-G-HE-
20 

AlGaInP Laser Diode, 
HL6545MG 

Tailored pulse 
fiber laser, Py-
roflex-25-GR 

Manufacturer 
Spectra-Phys-
ics, Newport 
Cooperation 

Ushio Opto Semicon-
ductors, Inc. 

Eolite Lasers, 
Electro Scien-
tific Industries, 
Inc. 

Wavelength 
[nm] 

532 652-664; 660 typ. 532.2 

Line width 
[nm] 

≤1 NA <1.5 

Pulse width 
[ns] 

3 – 20 3(c) 1 – 600 

Max. repetition 
rate [MHz] 

1 50 0.5 

Peak Power 
[kW] 

22(a) 0.0003(c) ≤10 

Max. Pulse En-
ergy [µJ] 

204(b) NA 45(e) 

Output Beam Dia. 
[mm] 

2.0 ± 0.3 0.3 (FWHM)(d) NA 

Full Beam Diver-
gence [mrad] 

0.4 ≤ 0.8(d) <2.5 

M2 <1.1 NA <1.3 
 
Table 1. Specifications of pulsed light sources tested for imaging fast GDVN jets and measuring 
their speed. Values taken from manufacturer manual, datasheet and test results. Table from 
Grünbein et al6. 
(a) Max. peak power with 7 ns pulse width and 150 kHz pulse rate 
(b) Max. pulse energy with 10 ns pulse width and 100 kHz pulse rate 
(c) Measured value 
(d) Measured value after collimation with an aspherical lens as used for the described experiments 
(e) With 10 ns pulse width and 200 kHz pulse rate 
 
 

 

3.4.2 Velocimetry of fast microscopic jets 

GDVN jets were imaged as described in section 3.4.1. Using a fast camera (Photron Fastcam 

SA-Z type 2100) capable of running at several hundred kilohertz repetition rate, single ex-

posure images of the jet were recorded. Alternatively, double-exposure single frame im-

ages were recorded which were obtained by illuminating the jet twice within the exposure 
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time of a single frame of the camera. For speed measurement, the distance travelled by 

droplets beyond the Rayleigh break-up point of the jet were tracked over time. For this 

purpose custom-written Python scripts (Python 3) were employed as described in chapter 

8.2. As a comparison to the automatic analysis of these scripts, speed was measured man-

ually by measuring the position of the emitted droplets manually over time. 
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4 XFEL data collection parameters and setup 
 

4.1 Bacteriorhodopsin 
Descriptions from this section are in part published in reference7. 

The experiment was performed at the Linac Coherent Light Source (LCLS) of the Stanford 

Accelerator Center (SLAC) in July 2017 (proposal LP55). Data was collected at the Coherent 

X-ray Imaging (CXI) instrument using a photon energy of 9.8 keV and ~30 fs long X-ray 

pulses of ~0.2 mJ at the sample position. X-rays were focused to a spot of ~1.3 µm diameter 

in the microfocus chamber at CXI. Reference data of the light-adapted bR ground state were 

collected at 120 Hz X-ray repetition rate, while time-resolved pump-probe data were col-

lected at 10 Hz X-ray repetition rate. Diffraction of the photoexcited bR crystals was rec-

orded for time delays of 0.5, 1, 3 and 10 ps as well as 33 ms time delay between the optical 

pump laser and the X-ray probe pulse. For the shortest time delay, the true time-delay be-

tween pump and probe was measured for each pulse pair using the timing tool78. X-ray 

diffraction was recorded with a CSPAD detector79 operated in dual-gain mode with a low 

and high gain in the low and high resolution region of the detector, respectively. 

 

Femtosecond pump laser excitation of bR crystals 

Circularly polarized laser pulses of ~5.9 μJ at 532 nm wavelength were produced by an 

optical parametric amplifier pumped by a Ti-Sapphire laser regenerative amplifier system 

and stretched to pulse durations of 145 ± 5 fs. The laser was focused to a spot of 99 μm 

1/e2 diameter having a Gaussian intensity profile, which was positioned 25 ± 5 μm offcen-

tre of the X-ray focus for all ps and sub-ps time points. For the 33 ms time delay, the laser 

was positioned slightly above the X-ray focus and data was collected at 30 Hz repetition 

rate. 
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Sample injection 

bR crystals embedded in a mixture of LCP and Pluronic F-127 as described in section 3.1.4 

were injected into the X-ray interaction region using a High Viscosity Extrusion (HVE) in-

jector55 equipped with a 100 µm inner diameter UV-vis transparent sample capillary at 

1.9 µl min-1 sample flow rate. 

 

Jet imaging 

The viscous jet was imaged by the off-axis camera installed at the CXI instrument. Movies 

of the jet were recorded at 120 Hz repetition rate. 

 

Retinal extraction and quantifying bR light adaptation 

Light adaptation of bR was analysed by determining the ratio of bRall-trans to bR13-cis. For this 

purpose, retinal was extracted chemically from the microcrystals and separated via high 

performance chromatography as described in reference7. 

 

4.2 MHz data collection at European XFEL 
Descriptions in this section are partly published in references1,5,71. 

Two experiments were performed at the European XFEL (EuXFEL): the first one in June 

2018 (proposal 2038) and a follow-up experiment in March 2019 (proposal 2156). Both 

experiments were performed at the Single Particles, Clusters and Biomolecules and Serial 

Femtosecond Crystallography (SPB/SFX) instrument80 of the EuXFEL and X-ray pulses 

were delivered in 10 pulse trains per second, with pulses within each train being delivered 

at a maximum repetition rate of 1.1 MHz. The pulse length was ~50 fs (FWHM) based on 

electron beam diagnostics. X-ray diffraction was recorded using a 1 megapixel Adaptive 

Gain Integrating Pixel Detector (AGIPD)81. For each individual X-ray pulse, the pulse energy 

was recorded by two X-ray gas monitors (XGM)82 upstream of the experimental hutch: one 

in the tunnel after the SASE1 undulator and one at the end of the tunnel upstream of the 

SPB/SFX instrument. For data presented in this thesis, the XGM closer to the SPB/SFX in-

strument was used. 
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June 2018 

Photon energies of 7.47 keV and 9.22 keV were used for collection of two control lysozyme 

data sets and a photon energy of 7.48 keV was used for collection of diffraction data on jack 

bean protein crystals. The X-ray focal size was ~15 µm diameter at 7.47 keV and 7.48 keV 

and ~28 µm diameter at 9.22 keV, and each pulse had ~0.9-1.5 mJ pulse energy. Each X-

ray pulse train consisted of 50 pulses separated by 889 ns (1.125 MHz). The maximum 

number of 60 pulses per train the machine was capable of at the time of the experiment 

was used. The first 10 pulses were used for electron orbit feedback and then sent to the 

pre-undulator dump, without lasing. This was done to preclude the possibility of the feed-

back loop potentially lowering the pulse intensity. 

 

March 2019 

A photon energy of 9.3 keV was employed, and X-rays were focused to a spot of ~3 μm 

diameter. At the time of the experiment, a maximum number of 176 X-ray pulses at 

1.1 MHz repetition rate could be delivered within each train, and a new bunch patterning 

capability83 was exploited to subdivide each X-ray pulse train into smaller subtrains (called 

“wagons”) consisting of 5-6 pulses each. 

 

Producing GDVNs capable of generating high-speed jets 

GDVN nozzles were produced as described60. To achieve high-speed jets, the geometry of 

the gas sheath is very important. High-speed jets can be obtained by flame polishing the 

gas sheath such as to have a small orifice, and increase the distance of the sample capillary 

tip relative to the orifice84. In this configuration, the focusing gas exerts larger forces onto 

the jet, leading to larger accelerations and thus higher jet speeds. For GDVNs with sample 

capillaries of 75 µm (100 µm) inner diameter, the distance of the sample capillary to the 

orifice was in the range of ~150 – 200 µm (200 – 300 µm), and gas apertures were smaller 

than ~100 µm (120 µm). 

 

Sample injection 

A suspension of microcrystals in their mother liquor was injected into the X-ray interaction 

region via a liquid microjet produced by a gas dynamic virtual nozzle (GDVN)60 with 75 
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and 100 µm inner diameter using helium as the focusing gas. The sample flow rate was 30-

40 µl min-1, and gas pressure 400-500 psi at the inlet of the GDVN’s gas supply line, corre-

sponding to a flow rate of 140-250 ml min-1. All samples were 20 µm filtered prior to injec-

tion, and the suspension was adjusted to contain 10-15 % (v/v) settled crystalline mate-

rial. During injection the sample was kept in a rotating temperature-controlled reservoir 

(20 °C for lysozyme microcrystals, 4 °C for jack bean protein microcrystals) to prevent 

crystal settling85. 

 

Jet imaging 

The liquid jet was imaged from an off-axis perspective (orthogonal to both X-rays and jet 

flow direction) using a 10× infinity-corrected objective in combination with a 200 mm tube 

lens and a camera (Basler pilot pIA2400-17gm, Basler AG, Germany). The optical resolu-

tion of the imaging system, determined with a resolution target (Edmund Optics), was 

1.6 µm. During data collection the camera pixels were 2×2-binned, resulting in recorded 

images with a scale of 0.68 µm pixel-1. For illumination the fs SASE1 optical pump laser86 

was employed for jet illumination as described in8. The fs laser pulse and the camera were 

triggered by the EuXFEL global trigger (10 Hz) that indicates the arrival of an X-ray pulse 

train, thus the images were recorded at a set delay relative to the arrival of the pulse train 

and one image per pulse train was recorded. Jet imaging was primarily set up by Claudiu 

Stan. 

 

Extracting a proxy for the solvent scattering intensity in MHz repetition rate exper-

iments 

The solvent scattering intensity on the detector indicates whether a given X-ray pulse in-

teracted with the sample jet. For fast and efficient analysis of the scattered intensity of the 

solvent ring, data from only one detector module (module 02) that overlapped well with 

the signal of the solvent ring was used (Figure 4.1). To quantify the solvent scattering in-

tensity, the standard deviation σ of all raw pixel intensities was used. It was found that σ 

was a more robust measure than other variables such as the median pixel intensity. The 

distribution of pixel intensities in the module becomes bimodal when solvent scattering is 

present. Thus, the higher the solvent scattering intensity the larger the standard deviation 
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in pixel intensities. σ was therefore used as a proxy for the measured intensity of the sol-

vent scattering. It was found empirically that solvent scattering is visible on the detector 

for σ ≳ 400, which was subsequently used as a threshold to identify whether the jet was 

hit. 

 

Extracting the number of previous shocks for a given pulse position in a MHz repeti-

tion rate pattern at EuXFEL 

To identify the number of shocks N launched by previous pulses, the solvent scattering 

strength σ was stored together with the trainID t and cellID c of each shot that uniquely 

identify it and its relative position to other shots. For each shot i hitting the jet (i.e. σi≥400) 

Figure 4.1 Quantifying solvent scattering intensity detected on the AGIP detector (AGIPD) at 
European XFEL. a. Image of the AGIPD geometry. Module 02 (red rectangle) overlaps partly 
with the solvent scattering ring. Panel adapted from Grünbein et al.1 under the CC-BY 4.03. b. If 
the jet is not hit, no solvent scattering is detected on the detector. The histogram of pixel inten-
sities of module 02 is approximately gaussian. c. If the jet is hit and solvent scattering detected, 
the histogram of pixel intensities of module 02 becomes bimodal. 
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with trainID ti and cellID ci, the standard deviation of pixel intensities σi-1 of the previous 

shot (trainID ti, cellID ci-1) was interrogated. If the jet was hit (σi-1≥400), the number of pre-

shocks Ni for shot i was increased by 1 and shot i-2 was analysed. If this again hit the jet, Ni 

was again increased by 1, and shot i-3 was analysed. This iterative procedure was termi-

nated either when the beginning of an X-ray wagon was reached or at the first occurrence 

of not hitting the jet. 

 

4.3 X-ray pump X-ray probe experiments at LCLS 
Descriptions in these sections are in part published in references2,9. 

Two X-ray pump X-ray probe experiments (proposal LM18, July 2016 and proposal LR76, 

February 2018) were performed at LCLS to investigate XFEL-induced shock wave effects 

on protein crystals. Both experiment were performed in the microfocus chamber of the CXI 

instrument. Two 30 fs X-ray pulses of were produced using the two-bunch mode87. The 

photon energies of the two pulses were separated by ~70 eV, centred on the iron K-edge 

at 7.11 keV. The temporal separation of the two pulses was either 8.4 ns (July 2016) or 

122.5 ns (February 2018) with negligible temporal jitter on the fs time scale. Additionally, 

the two pulses were vertically offset such that the interaction regions of the two pulses 

with the sample jet was separated by 5 µm. Tuning of the laser intensity on the gun cathode 

allowed some control over the relative pulse energies of the two pulses. Due to the unusual 

operation mode with a transverse offset, source size and divergence may have been larger 

than in standard single-pulse experiments. 

As reference to the X-ray pump X-ray probe data, single-pulse diffraction data was col-

lected in both experiments by suppressing the first of the two pulses. In this single-pulse 

mode beam feedbacks were turned off to prevent automatic adjustment of the single-pulse 

photon energy to the mean photon energy of the two pulses and to prevent shifting of the 

spatial location of the single pulse. The machine was run only for short time periods 

(<5 min) in this mode such that drifting of the energy was small. Because of the missing 

wakefields from the first bunch, the second bunch has a slightly different orbit, leading to 

a lower lasing intensity in the single pulse (probe-only) runs. 

X-ray diffraction was recorded with a CSPAD detector79. 
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Measuring pulse energies 

In both experiments, X-ray sensitive diodes were installed to measure X-ray scattering 

from materials placed downstream of the interaction chamber. This was setup by Claudiu 

Stan. Diode signals were recorded synchronously with the CSPAD data. Pulse energies were 

evaluated as the background-corrected integrated signal of each pulse. For LM18, a diode 

(AXUVHS11, Opto Diode Corp) measured X-rays backscattered off a silica lens placed in the 

optical path at the end of the experimental arrangement. For LR76, two X-ray sensitive 

diodes (G4176-03, Hamamatsu Photonics K. K.) measured X-rays scattered off a Kapton 

foil placed in the optical path at the end of the experimental arrangement. One of the diodes 

was covered with a 25 µm Fe foil like the CSPAD detector. The non-masked diode measured 

the relative pulse energy of both pump and probe pulse, while the masked diode only meas-

ured the fraction of both pulses having photon energies below the Fe K absorption edge. 

The masked diode was used to evaluated probe pulse energies, while the unmasked diode 

was used to evaluate pump pulse energies. 

 

Sample injection 

A suspension of lysozyme or haemoglobin microcrystals in their mother liquor was in-

jected into the X-ray interaction region via a liquid microjet produced by a GDVN60 with 75 

and 100 µm inner diameter using helium as the focusing gas. The sample flow rate was 30-

50 μl min−1, and gas pressure 300–600 psi at the inlet of the 2 m long GDVN gas supply line 

(with an inner diameter of 100 µm), producing ~50 m s-1 jets with 4-5 µm diameter. All 

samples were filtered prior to injection through a 20 µm filter, and the suspension was 

adjusted to contain 10–20 % (v/v) settled crystalline material. During injection the sample 

was kept in a rotating temperature-controlled reservoir at 20 °C to prevent crystal set-

tling85. 

 

Jet imaging 

The jet was imaged from the off-axis perspective (orthogonal to both X-rays and jet flow 

direction) a 50× infinity corrected objective (Plan Apo SL, Mitutoyo) in combination with 

a 200 mm tube lens and two different cameras camera (Opal 1000, Adimec and Vison Re-

search, Miro R341) that could be used interchangeably for different purposes during the 
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experiment. The Opal camera was used to image the overlap between jet and X-rays, and 

for each pump-probe-pulse pair a jet image was recorded synchronously with the corre-

sponding diffraction pattern. A fs laser was used for illumination as described in refer-

ence8. All of this was set up by Claudiu Stan. The fs laser pulse and the camera were trig-

gered by electronic signals synchronized with the X-ray pulses, such that the images were 

recorded at a set delay relative to the arrival of the X-ray pulses. In the 8.4 ns experiment 

the jet was imaged at the arrival time of the probe. In the 122.5 ns experiment the jet was 

imaged a few nanoseconds after the probe pulse, to observe the formation of two distinct 

gaps in the jet impact of both pulses on the jet. 
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5 Characterizing intensity losses for photo excitation in 

jets 
Descriptions of the methods in this section have been published in reference4. Sections 

have also been published in reference11,88. 

 

5.1 Characterizing transmission losses within jet media not contain-

ing crystals 
The extinction A (relating to the transmission T via T = 10-A) of various media typically used 

for viscous jet injection was recorded as described in section 3.2. Each medium was refer-

enced to a non-absorbing medium of the same refractive index n to compensate for trans-

mission losses due to reflection at the interfaces (Table 2). 

 

 

Medium Refractive index n Reference medium 

Synthetic grease Super Lube  1.47 100 % glycerol 

LCP 1.42 65 % aqueous glycerol (w/w) 

LCP + Pluronic F-127 1.43 65 % aqueous glycerol (w/w) 

NaCMC 1.33 Ultra-pure water 

Agarose gel 1.38 40 % aqueous glycerol (w/w) 

 
Table 2. Refractive indices of common media for viscous jet injection in SFX experiments and 
suitable reference media of appropriate refractive index. Refractive indices were measured in 
the visible range (440 – 645 nm) in which dispersion was found to be small (Δn < 0.02). LCP: 
Lipidic Cubic Phase. LCP + Pluronic F-127: LCP and Pluronic F-127 (40 % (w/v)) mixed 4+1. 
NaCMC: Sodium carboxymethylcellulose (4% w/v in water). Agarose gel: 5.6 % (w/v) in 30 % 
aqueous glycerol. The preparation of all media is described in section 3.1. Table from Grünbein 
et al4. 
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The measurements show that for all media dispersion is small (Δn < 0.02), demonstrating 

that referencing to a single reference medium is valid over the whole wavelength range. 

The measured extinction of the reference (where A>0 due to reflection at the interfaces to 

the cuvette and the medium) was subtracted from the measured extinction of the medium 

(where A>0 due to reflection at the interfaces, scattering and absorption within the me-

dium) to obtain the extinction of the medium solely due to absorption by and scattering 

within the medium. 

 

5.2 Orientation-averaged reflectance of a protein crystal 
Reflectance R at the crystal surface was calculated based on the Fresnel equations describ-

ing the transmitted and reflected fraction when light travels from a region of refractive 

index n=n1 to a region where n = n2 ≠ n1. R generally depends on the two refractive indices 

n1, n2, the angle of incidence θ onto the interface and the polarisation of light. The reflec-

tance at normal incidence for a given n1, n2 and polarisation of light was obtained by apply-

ing the Fresnel equations once for θ = 0°. To calculate the orientation-averaged (mean or 

median) reflectance R, the reflectance R(θ) for a given pair of n1 and n2 was calculated for 

a set of 1000 angles within 0° ≤ θ < 90°. R was obtained by averaging (applying the mean 

or median) on all R(θ) for each pair of n1 and n2. Separate calculations were performed for 

orthogonally (s) and parallel (p) polarised light; the behaviour of natural (unpolarised) 

light was obtained by averaging the results for s and p polarisation. The described opera-

tions were performed in Python 3.7. 

 

5.3 Raytracing calculations on light propagation through large di-

ameter jet 
Light propagation through viscous jets was approximated using ray tracing techniques 

based on geometrical optics since the diameter 2R of viscous jets is much larger than the 

employed pump wavelength λ. Reflectance and refraction at interfaces between media of 

different refractive indices was calculated using the vector form of the laws of reflection 

and refraction. Time-resolved optical pump X-ray probe SFX experiments are usually per-

formed with a focused Gaussian pump laser beam. In the focal region the wavefront can be 

approximated to be planar. For the ray tracing simulations, the incident beam is therefore 
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approximated by a parallel bundle of rays being incident on the jet with the optical axis 

perpendicular to the jet axis. The FEL probe pulse is typically a few µm in diameter, thus 

only a small slice of the incident pump beam is relevant for exciting sample inside the re-

gion where the FEL probes. This makes it sufficient to calculate the propagation for a fan 

of rays only inside this region instead for the whole beam. Geometrical ray tracing was 

performed for each ray in an iterative manner, calculating its propagation through free-

space as a linear equation until intersection with an interface, where the laws of reflection 

and refraction were applied. Changes in local intensity I can be estimated by the change of 

the cross-sectional area of the ray tube formed by closely lying rays assuming a flat inten-

sity profile of the incident beam89. Since light is only focused in the plane perpendicular to 

the jet axis the change in intensity scales linearly with the distance d to the neighbouring 

rays in the xy-plane: I ~ d-1. Intensity changes due to reflection at the jet interface were not 

taken into account. The mean increase in intensity was calculated as the average increase 

in intensity along the optical axis of the X-ray beam. 
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PART II: RESULTS 
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6 Time-resolved SFX to observe ultrafast dynamics in bac-

teriorhodopsin 
 

Parts of this chapter have been published in reference7,11,88. 

6.1 Introduction: bR, a light-driven proton pump 
Bacteriorhodopsin (bR) is a light-driven proton pump found in Archea which exploit the 

proton gradient generated by bR for ATP synthesis24. bR is the best characterized member 

of the family of rhodopsin membrane proteins which contain retinal as a light-absorbing 

chromophore. Rhodopsins are involved in many different light-activated processes such as 

vision or light-energy conversion24. Despite this wide range in functionality, the general 

structure of the members of the family is conserved, as is, one believes, the underlying 

mechanism of how the excited retinal interacts with the surrounding protein matrix24.  

At the core of all light-driven rhodopsin dynamics is the trans⟷cis isomerization of the 

retinal chromophore upon light absorption24 (Figure 6.1). In bR the all-trans to13-cis isom-

erization takes place within 3 ps after photon absorption when the K intermediate is 

formed7,12 (Figure 6.1). The rearrangement of the surrounding protein matrix then leads 

to the unique functionality, in case of bR to unidirectional proton pumping24. This ultrafast 

rearrangement was hitherto only accessible via ultrafast spectroscopy. While these exper-

iments were successful in determining time constants and energetic states, a 3D picture of 

the structural rearrangement, the interaction of the chromophore with the surrounding 

protein matrix guiding the reaction towards its functional path, was missing. It thus re-

mained unknown how photo-excitation of the chromophore induces functional motions of 

the protein. For this task optical pump X-ray probe experiments at XFELs are the method 

of choice: a short light pulse emitted by an optical laser initiates the reaction inside a pro-

tein microcrystal, the diffraction of which is interrogated after a set time delay by an X-ray 

pulse. This enables to follow bR’s structural rearrangement from the ultrafast timescale 

after photon absorption onwards. 

At the time when the experiment presented in this thesis was conducted, no ultrafast time-

resolved SFX experiment on membrane proteins had been performed. Time-resolved ex-
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periments in the ultrafast regime had been performed before on soluble proteins16,20,21 us-

ing liquid jets produced by GDVNs for sample delivery, ensuring rapid sample exchange 

and thus fresh sample for each pump-probe pair. The membrane protein bR, however, is 

crystallised in lipidic cubic phase (LCP), a viscous matrix68,90. Sample therefore needs to be 

delivered into the interaction region by means of viscous streams. This imposes a number 

of additional technical challenges, often including low stability of the jet. Moreover, jet ve-

locity is low and can show large variations over time68. As a result, excited sample may not 

have cleared the X-ray interaction zone in time before arrival of the next X-ray pulse such 

that the starting conditions of the subsequent pump-probe pair are ill-defined. Matching 

and controlling sample delivery speed, X-ray and excitation repetition rate thus become 

central issues to the experiment, as the interplay of those three parameters determines the 

state captured in the pump-probe experiment (see section 6.4)11. 

A further complication of the experiment is that the retinal in bR occurs in two isomeric 

forms, of which only one can undergo a functional photocycle91. These two forms coexist 

Figure 6.1. Light-induced dynamics in retinal-containing bacteriorhodopsin. a. Chemical struc-
ture of the light-absorbing chromophore, the retinal, in the active groundstate (all-trans) and 
the isomerized 13-cis retinal after light absorption. Figure adapted from Nass Kovacs et al.7 
under the CC-BY 4.03. b. Photocylce of bR showing the different intermediate states after light 
absorption of the ground state (bR570) and the time scale on which these intermediates may be 
observed. The superscript denotes the wavelength of the absorption maximum of all states. 
Absorption maxima and time constants taken from12,13. 
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in thermal equilibrium in a ratio depending on the light conditions. Therefore, to increase 

photoexcitation yield of the desired process, illumination conditions have to be found that 

increase the fraction of the functional isomeric form. 

To enable time-resolved experiments on bR crystals, techniques had to be developed to 

ensure that the sample delivery matches the pump-probe repetition rate and to ensure that 

the fraction of bR in the configuration capable of entering the functional photocyle is max-

imised. 

 

 

6.2 Experimental design 
To capture the ultrafast light-triggered dynamics in bR including isomerization of the 

bound retinal, a time-resolved SFX experiment on bR microcrystals was conducted, using 

a femtosecond optical pump laser for excitation and the XFEL pulse to probe the protein 

structure at given time delays after reaction initiation. To deliver a fresh bR crystal for each 

pump-probe pulse pair the crystals embedded in LCP were injected as a viscous stream 

into the interaction region using a high viscosity extrusion (HVE) injector55. Viscous jet 

flow is achieved by pushing the sample at constant flow rate out of a reservoir through a 

coned, 100 µm inner diameter (ID) capillary using a hydraulically driven piston and em-

ploying a co-flowing helium gas stream to improve homogeneous extrusion as a free jet as 

shown in Figure 6.311.  

To trigger the reaction, a 532 nm circularly polarized laser pulse of 145 fs duration was 

employed. The experimental arrangement of jet, X-ray and pump laser optical axes is de-

picted in Figure 2.1a. The axis of the optical pump laser was aligned to be nearly parallel 

to the X-ray beam axis to allow for accurate timing also for sub-picosecond time delays 

which cannot be achieved in case of perpendicular alignment.  

To minimize background scattering impairing the signal to noise ratio of the recorded dif-

fraction signal of the crystals, the experiment was conducted under vacuum conditions. 

Thus, all additions to the experimental setup that are described in the following sections 

needed to be compatible with vacuum operation conditions and moreover needed to fit the 

space constraints within the vacuum chamber.  
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6.3 Preillumination 
In the dark-adapted resting state bR’s retinal adopts one of two configurations, 13-cis,15-

syn and all-trans (bR13-cis or bRall-trans), with the equilibrium depending on the light condi-

tion91,92. In a fully light adapted ensemble of non-crystallised bR, 100 % of the chromo-

phores are found in the all-trans configuration, while dark-adapted bR consists of similar 

parts of bRall-trans and bR13-cis, respectively91. Importantly, only bRall-trans can enter the func-

tional photocycle including the functional retinal isomerization and subsequent proton 

transfer91. Photon absorption by the non-functional bR13-cis leads to a state with millisecond 

life time, that thermally decays to either the 13-cis or, to a lesser degree, the all-trans 

ground state91. Thus, for maximising the population of bRall-trans that may undergo the de-

sired photoreaction, light adaptation by continuous illumination needs to be performed. 

By repeatedly driving the bR13-cis photocycle the amount of bRall-trans can be enriched be-

cause the accumulated bRall-trans state is stable for several minutes. The half-life of light-

adaptation in bR microcrystals was measured to be 17 min using absorption spectroscopy 

(data not shown). 

Light adaptation of bR is typically achieved by continuous illumination with visible light91-

93. The measured half-life of light adaptation is very short compared to the time required 

for different steps of the SFX pump-probe experiment: after loading the HVE injector with 

LCP-containing microcrystals, mounting the injector inside the experimental vacuum 

chamber takes typically 15 - 30 min after which data collection of the loaded sample takes 

2 – 3 h. Therefore, light adaptation has to be performed in situ during the experiment by 

means of “online” preillumination, and not prior to injector loading as done by other 

groups for simplicity94,95. However, online preillumination is not straight forward and has 

to fulfil the following constraints: (i) it must allow continuous light-adaptation of sample 

prior to reaching the X-ray interaction point to maximise the fraction of light-adapted mol-

ecules while (ii) ensuring at the same time that all molecules have returned to the ground 

state when reaching the interaction point; (iii) it has to be compatible with vacuum condi-

tions and (iv) fit the spatial limitations inside the chamber  

Since bR crystals are optically very dense (1/e penetration depth of 3.5 µm), only thin sam-

ple layers of sufficiently low crystal concentration can be efficiently light-adapted, other-

wise the crystals shield each other. It was thus decided to preilluminate through the sam-

ple capillary, instead of preilluminating the much thicker sample reservoir inside the HVE 



6 - Time-resolved SFX to observe ultrafast dynamics in bacteriorhodopsin 

43 
 

injector. Since the standard sample capillary of an HVE injector has a brown polymer coat-

ing to increase mechanical stability, a UV-vis transparent capillary was used instead, allow-

ing sample preillumination through the side wall. To maximise transmission towards the 

bR sample, the orientation of the square gas sheath surrounding the sample capillary has 

to be aligned to be perpendicular to the incident light source (see Figure 2.1 for the geom-

etry of HVE nozzles). Tests were performed to establish light adaptation conditions that 

are compatible with the experiment, testing different light sources, the required preillumi-

nation time and intensity were tested. 

The light adaptation efficiency of a white light LED (Schott KL2500), a Xenon lamp, a green 

LED (the green channel of a SOLA 3-channel light engine, Lumencor), a 532 nm CW laser 

(RGBLaser 200 mW Fiber Coupled Raman Laser) and a 519 nm CW laser (Oxxius LBX-525-

800-HPE-PP) were assessed. The non-coherent sources (the white light and the green LED 

source) were tested first as these would be easier to implement into the experimental ar-

rangement at the beamline given the strict safety controls concerning application and im-

plementation of lasers. Due to the finite size of the experimental vacuum chamber and a 

lot of equipment already being in place, additional light sources need to be either vacuum 

compatible and small enough to fit inside the chamber, or be able to use the free viewing 

port at ~50 cm distance to the interaction point to guide light towards the interaction re-

gion. At this distance, intensity has decreased substantially even when focusing and/or col-

limating the tested incoherent sources, leading to insufficient light-adaptation of bR. It was 

thus tried to couple the light output into a large-diameter (1.5 mm core) multimode fibre 

to guide the light inside the chamber an allow placing the fibre’s end closer to the interac-

tion region. However, due to the low transfer efficiency this arrangement was inadequate 

for significant light adaptation. In contrast, light emitted by the coherent light sources can 

be well collimated an could thus be efficiently transferred through the optical fibre. Initial 

tests showed that both lasers, i.e. both light at 532 nm as well as light at 519 nm, can be 

used for light adaptation as both increased the amount of bRall-trans. Given the higher output 

power leading to more efficient light adaptation in bR, the Oxxius 519 nm CW laser was the 

preferred choice. The free viewing port is located on the side of the vacuum chamber that 

is regularly opened up during the experiment for checking and changing equipment inside. 

It was therefore decided to use multimode fibres to couple light into the chamber from a 

(non-viewing) side port, thus avoiding having to realign the optics each time the chamber 

is opened. 
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The laser’s output was therefore coupled into a multimode fibre of 1.5 mm core diameter. 

A custom-made flange was prepared to serve as an O-ring sealed feedthrough into the vac-

uum chamber, such that a continuous light fibre (FT1500UMT, TECS clad, 10 m long) could 

be used for transport into the vacuum chamber, increasing transmission to the interaction 

point compared to the standard setup using separate fibres outside and inside the vacuum 

chamber. Compression of the O-ring onto the fibre for sealing purposes did not lead to sig-

nificant changes in the transmitted intensity. Both of the fibre’s ends were polished after 

passing through the feedthrough. One end was equipped with an SMA connector fitting the 

laser head, the other polished end was used as the light source for preillumination of bR 

inside the vacuum chamber. 

The efficiency of light adaptation was measured by the increase in the fraction of bRall-trans 

upon extracting the retinal chemically and separating it via high performance liquid chro-

matography (HPLC)7,92,96. It was found to be optimal for few-second, medium-intense illu-

mination: for ~5 s long illumination light adaptation increased with light intensity up to 

~200 mW output of the multimode fibre contained in a 4 cm spot. At higher intensities, 

heating damaged the protein, evidenced by a change in colour and a change in the con-

sistency of the extruded sample, preventing smooth injection.  

To allow ~5 s long preillumination inside the sample capillary, the UV-vis capillary was 

extended from the usual 5 to 26 mm emerging from the HVE injector into free space. Like-

wise, also the length of the gas sheath was increased such that the co-flowing gas stream 

stabilizing injection could be guided to the point of extrusion. In order for all bR molecules 

to be back in the ground state before pumping and probing the system, sample should not 

be illuminated a short (~1 s) time prior to reaching the interaction point. This was 

achieved by sliding a metal mask onto the tip of the HVE injector: the custom-made metal 

mask contained a 22 mm long window through which light could illuminate the capillary. 

The last 4-5 mm of the mask were solid, shielding sample from further illumination to al-

low ground state recovery (Figure 6.2). The inside shape of the mask was concave, reflect-

ing any transmitted light back into the sample for increasing illumination from all direc-

tions. Due to the high viscosity of the embedding matrix, the velocity profile inside the sam-

ple capillary is constant (plug flow). Given the inner diameter of 100 µm of the sample ca-

pillary, sample flow rate was set to 1.9 µl such that sample translates at 4 mm/s, spending 

5.5 s in the preilluminated and 1 s in the masked region, respectively. 
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At the beam line, preillumination efficiency was tested in situ by injecting preilluminated 

sample into a light-tight dark Eppendorf tube, the content of which was subjected to HPLC 

analysis. The all-trans retinal content was 65-80 %, improving the originally dark-adapted 

state in bR microcrystals containing only 40-45 % bRall-trans by a factor of two. Moreover, 

successful measurement of a high-quality ground state structure of bR obtained without 

femtosecond pump laser excitation showed that the mask blocked the preillumination light 

efficiently and that the extent of the masked region provided sufficient time for all mole-

cules to return to the ground state. If either of these two constraints would not have been 

met, the measured ground state structure would have resembled the structurally very dis-

tinct M state which accumulates under continuous illumination and decays with a time 

constant of approximately 100 ms in crystals94 (Figure 6.1). Indeed, the measured dark 

state structure did not show any such light-induced changes demonstrating the successful 

preillumination and retinal in its all-trans configuration.  
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Figure 6.2 Preillumination geometry. a. Schematic drawing of the preillumination geometry 
inside the SFX chamber. The sample capillary extending from the injector body (not shown) is 
located in a differential pumping shroud to shield the vacuum chamber from the gas load of 
gas-focused injection60. A slit in the shroud’s side wall allows preillumination of sample flowing 
through the capillary. A custom-made metal mask allows illumination along the upper 22 mm 
of the sample capillary, but blocks light along the 4-5 mm above the interaction point, provid-
ing a dark zone in which all molecules have time to return to the ground state (inset 1). Its 
diagonal finish cut allows the XFEL probe pulse to interrogate the jet at a position shielded 
from the preillumination laser (inset 2). A second hole in the shroud allows illumination of the 
extruded jet right below the interaction point, allowing jet imaging and speed measurements 
using a camera on the opposite side of the experimental chamber. Drawing and shroud design 
by Bruce Doak, figure adapted from Nass Kovacs et al.7 under the CC-BY 4.03. b. Picture of the 
experimental arrangement inside the vacuum chamber, showing the mounting of the multi-
mode fibre guiding light towards the sample capillary behind the slit inside the shroud. c. Close 
up view of the metal mask on the sample capillary. 
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6.4 Matching jet speed, pump laser spot size and pump-probe repe-

tition rate 
When performing pump probe measurements on a moving target such as a free-flowing 

jet, jet speed, the spatial extent of the pump excitation region and the repetition rate of the 

experiment have to be matched. After initiating a reaction in a given segment of the jet, the 

very same segment must be located in the X-ray interaction region when the X-ray pulse 

arrives, otherwise the ground state is measured instead of the evolving reaction (Figure 

6.3). Moreover, the excited sample segment must have left the interaction region before 

the next pump-probe event such that each pump-probe event starts with the same, clean 

Figure 6.3 Pump-probe experiments on samples embedded in a moving jet. Left: HVE jet of 
vaseline. The purple arrow indicates the X-ray interaction. For pump-probe experiments, a sec-
tion of the sample jet is optically triggered (green shading) before X-ray probing. The black 
scale bar is 100 µm. Right: Constraints on time-delays for time-resolved experiments valid for 
any injection system. The reaction is triggered in crystals (orange) within the segment hit by 
the pump pulse (optical axis indicated in green) at time T0, after which the reaction proceeds 
in the excited crystals (yellow). After a time delay ΔT the X-ray pulse (purple arrow) probes 
one of the excited crystals (red) at time T1. Jet speed v must be sufficiently slow so that not all 
crystals excited within the region upstream of the X-ray optical axis have passed the interac-
tion region (dashed line), i.e. v<D/ΔT. All crystals triggered at T0 must clear the interaction 
region before arrival of the subsequent probe pulse at T=ΔT+τ, 1/τ being the X-ray repetition 
rate, requiring jet speed to be v>D/(τ+ΔT). Figure adapted from Grünbein & Nass Kovacs11 un-
der the CC-BY 4.03. 
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conditions in the ground state (Figure 6.3). This constrains jet velocity to a defined regime 

depending on the pump-probe time delay and the pump laser beam size. i) If the jet is too 

fast, the excited segment has already travelled beyond the interaction point before the X-

ray probe pulse arrives and ii) if the jet is too slow, the excited segment has not yet cleared 

the X-ray interaction region before the subsequent pump-probe exposure. Moreover, if the 

point of reaction initiation is fully upstream of the X-ray interaction, the excited segment 

has not yet arrived in the X-ray interaction region if the jet is too slow.  

For successful pump probe measurements, jet speed must therefore be known and 

matched to the repetition rate of the experiment and the extent of the sample segment 

illuminated by the pump laser (Figure 6.3). This is particularly important for pump-probe 

measurements on viscous jets, where jet speed is often not a constant value, but may vary 

significantly due to sample inhomogeneity affecting jet flow. Both unavoidable inhomoge-

neity after mixing different substances for the final matrix and the crystals themselves dis-

turb jet flow, leading to changes in jet shape due to changing surface tension and changing 

propensity to adhere to the sample capillary tip. Moreover, the pressure required to 

transport sample through the sample capillary depends on sample viscosity as well as crys-

tal size and density. Changes in these parameters that naturally occur in any sample of mi-

crocrystals embedded in a viscous matrix lead to variations in sample flow rate and thus 

variations in jet speed due to the lag time required for the hydraulic system driving sample 

flow to re-adjust the driving pressure. It is thus not sufficient to assume a constant jet ve-

locity derived from the inner diameter of the sample capillary as done by other groups95. 

In the described experiment, jet speed and the extent of the pump laser excitation zone 

were constrained by the preillumination requirements and properties of the optical sys-

tem at the beam line, respectively. The pump laser beam had a 99 µm 1/e² diameter at the 

interaction point and its centre was aligned to 25 ± 5 µm below the X-ray probe point. This 

reduced the jet extent above the interaction point in which sample is excited and which 

needs to be displaced for clearing the interaction region before the next pump-probe pair. 

Based on the Gaussian intensity distribution of the beam profile, the pump laser intensity 

decreased to 0.1 % of the peak intensity at 91 µm radial distance from the focus. Given the 

vertical offset between pump and probe laser centre, the jet thus has to translate by at least 

66 µm between shots to clear the excited region in time for the next pump-probe pair (as-

suming that illumination by less than 0.1 % of the peak intensity is insufficient for reaction 
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triggering). While faster jet speeds are favourable to ensure such clearing, efficient preil-

lumination puts an upper bound of 4 mm/s on jet speed. At higher speeds light adaptation 

of the microcrystals in the described preillumination setup would have been less efficient 

and bR molecules in the X-ray interaction region may not yet have returned to the ground 

state after light adaptation (see section 6.3). 

Given the natural variation in jet speed, jet speed was measured during the experiment and 

the repetition rate of pump and probe were adjusted to allow clearance of the excited sam-

ple segment. During the experiment jet velocity and its distribution were determined both 

periodically and after each change in flow conditions such as changing sample batch. Mov-

ies of the flowing jet were recorded using an off-axis camera positioned outside the exper-

imental chamber on the opposite side of the preillumination light source that was also used 

for jet illumination (Figure 6.2). The pixel size was calibrated by imaging a capillary of  

360 µm outer diameter, resulting in 0.54 µm/pix and thus a field of view of 553 x 553 µm² 

(1024 x 1024 pix²). To allow tracking features over multiple frames at this field of view, 

2 - 4 min long movies were recorded at the maximum repetition rate of the camera of 

120 Hz. For a given movie, jet speed was measured in regularly spaced time points (every 

250-1000 frames depending on the length of the recorded movie) for 11-40 time points 

per movie. Histograms of jet speed were continuously evaluated (Figure 6.4), monitoring 

average jet velocity and its distribution. To allow clearing the excited sample segment prior 

to each pump probe shot, pump probe data of the ultrafast time points was collected at 

10 Hz such that for > 90 % of pump-probe pairs all sample having been exposed to at least 

0.1 % of the peak pump intensity had cleared the interaction region.  
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Figure 6.4 Monitoring jet velocity during the experiment. a,b. Histogram of the jet velocity 
measured at regularly spaced time points, showing the number of occurrences a given jet ve-
locity range was measured. Perturbations in the LCP matrix, e.g. as represented by the micro-
crystals, change the flow behaviour of the extruded stream and lead to variations in jet velocity. 
These were monitored by periodic speed measurements of the jet by tracking features over 
multiple frames at evenly sampled time intervals. The figure shows histograms of jet velocity 
measured over a time period of ~4 min. a. Jet speed histogram of a well-behaved sample flow-
ing with the desired constant velocity. b. Jet speed histogram of a sample that cannot be in-
jected well. The jet velocity varies significantly, nearly coming to a halt at times and then run-
ning very fast at others. Data collected with low jet speed are problematic, as the probed jet 
segment may have been illuminated twice by the pump laser such that the time-delay probed 
by the X-ray pulse is ill-defined. Any data collected with sample jets showing such behaviour 
was therefore discarded. c,d. Pictures of jets in which the impact of the X-ray beam on the jet 
is visible as dark stripes. The spacing between two segments affected by X-ray pulses depends 
on jet speed, leading to “ladders” of larger or smaller spacing for faster (c) or slower (d) jets. 
Jet imaging can thus already be used as a quick online monitor to detect problematic behaviour. 
Pictures displayed here were obtained from a different beam time at SwissFEL, but are con-
ceptually similar to those taken during the bR beam time. 
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6.5 Ultrafast structural changes in bR upon photoexcitation 
bR diffraction data was collected at the CXI instrument at the LCLS. In addition to the light-

adapted unpumped ground state, time-resolved data was recorded for time delays of 0.5, 

1, 3 and 10 ps as well as 33 ms between the optical pump laser and the X-ray probe pulse. 

For the shortest time delay, the exact time-delay between pump and probe was measured 

for each pulse pair using a timing tool78. Based on the measured time delay, the sub-ps data 

was sorted into 12 distinct time points ranging from 240 fs to 740 fs.  Due to the high qual-

ity of the diffraction data with bR microcrystals diffracting to 1.8 Å resolution, small struc-

tural changes occurring on the sub-ps time scale could be resolved (Figure 6.5). Starting 

from the very first time point at 240 fs post triggering twisting of the retinal starts to be-

come apparent (Figure 6.5). Moreover, changes start occurring in the surrounding protein 

structure and water network at sub-ps time scale and an oscillatory behaviour in the reti-

nal and its surrounding residues and waters suggest a strong vibrational coupling between 

retinal and its environment7.  

Figure 6.5 Isomerization of the retinal C13-C14 bond on the fs time scale. Green: ground state 
(all-trans), light purple: after 10 ps (13-cis), rainbow: sub-ps time delays ranging from 240 fs 
to 740 fs. The detailed structural analysis was performed by Thomas Barends and Gabriela 
Nass Kovacs and is published in reference7. 
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7 Controlled photo-excitation in light-sensitive protein 

crystals 
 

The time-resolved experiment yielded detailed insight into the ultrafast reaction of bR, re-

solving retinal isomerization and a vibrational coupling between retinal and the surround-

ing protein matrix7. However, following a reviewer’s comment during the revision process 

of the manuscript describing these experiments and their findings, further analysis of the 

photoexcitation conditions was performed, including a spectroscopic power titration. 

Upon closer investigation it became clear that the excitation conditions used for the time-

resolved SFX experiment were far beyond the single photon regime: When focusing 5.9 µJ 

into a 99 µm 1/e² diameter spot of Gaussian intensity distribution, the power density for 

the 145 fs long pulse at the X-ray probe position (offset by 25 ± 5 µm) is ~630 GW/cm² 

assuming a flat temporal intensity profile. From spectroscopy it is known that the ultrafast 

response of bR changes at high excitation power97-100, with the onset of nonlinear behav-

iour - indicating multiphoton events - starting at ~30 GW/cm² (see reference7). While pho-

toproduct formation is observed in the determined structures of bR, it does not mean that 

the structural changes and dynamics leading there resemble the biologically relevant re-

action22.  

Extensive parts of this chapter have been published in reference4. Sections have also been 

published in references7,11,88. 

 

7.1 Problematic photo-excitation common practice in previous ex-

periments 
The in-depth analysis of the time-resolved SFX experiment on bR initiated also a re-analy-

sis of the excitation conditions of previously published time-resolved SFX experiments us-

ing light excitation for reaction triggering. To resemble naturally relevant processes, 

pump-probe experiments on light-triggered biological systems need to be carried out in 

the linear regime in which the observed signal scales linearly with excitation intensity, 

translating to one or less absorbed photons per absorbing molecule. All ultrafast pump-
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probe experiments16,20,21,95 have used power densities of 360 – 500 GW/cm² (Table 3), cor-

responding to nominally tens20,95 to hundreds101 of photons absorbed per molecule on av-

erage*.  Such multiphoton excitation of the chromophore is a radical departure from the 

biologically relevant single-photon processes studied by spectroscopy employing only tens 

of GW/cm² (see references22,99). 

A common justification for the high pump laser intensity is that a large fraction of the inci-

dent pump beam scatters off the jet employed to deliver the crystals and is therefore lost 

before reaching the interaction region95,101. However, the magnitude of these claimed 

losses was not characterised. 

 

 

 

Experiment Time delay Power density Fluence 

CO myoglobin16 500 fs – 150 ps 380 GW/cm² 566 µJ/mm² 

Photoactive yellow 
protein (PYP)21 

100 fs – 3 ps 320 GW/cm² 450 µJ/mm² 

rsEGFP20 1 ps – 3 ps 360 GW/cm² 830 µJ/mm² 

Bacteriorhodop-
sin95 (*) 

~100 fs – 10 ps 520 GW/cm² 520 µJ/mm² 

Bacterial phyto-
chrome102 

1 ps – 10 ps 6300 GW/cm² 4400 µJ/mm² 

Krokinobacterei-
kastus rhodopsin 2 

(KR2)103 
800 fs – 20 ms 800 GW/cm² 1200 µJ/mm² 

 
Table 3 Photo excitation conditions in previous ultrafast tr SFX experiments. 
(*) First time points included data in a range of time delays from 0 fs to 141 fs. 

                                                           
* assuming equal intensity reduction and penetration depths for single and multiphoton absorption 
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Therefore, to allow mechanistically meaningful data collection in the biologically relevant 

regime, the actual excitation intensity reaching the sample needs to be quantified. To 

determine the number of photons available for triggering a reaction several changes to the 

incident intensity have to be taken into account (Figure 7.1): (i) Reflection of the incident 

beam at the interfaces surrounding-to-jet and (ii) jet-to-crystal, as well as (iii) potential 

absorption by the jet medium decreases the incident intensity. Moreover, (iv) refraction at 

those interfaces changes the intensity distribution. Last but not least, (v) within the protein 

crystal absorption by the constituting molecules reduces intensity for deeper layers, 

potentially leading to different excitation regimes within the crystal. The analysis of these 

contributions is described separately in the following sections.  

 

 

Figure 7.1 Intensity change upon passage through the liquid jet to the protein crystal. Reflec-
tion of the incident beam at the interfaces surrounding-to-jet (i) and jet-to-crystal (ii) as well 
as potential absorption by the jet medium (iii) decreases the incident intensity. Moreover, re-
fraction at those interfaces changes the intensity distribution (iv). Last but not least, within the 
protein crystal absorption by the constituting molecules reduces intensity for deeper layers 
(v). All these processes change the intensity I  reaching a chromophore inside the jet at depth 
x. Figure based on a figure published in Grünbein et al4.  
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7.2 Excitation regimes within protein crystals 
The intensity I0 of a pump laser beam travelling through a crystal containing a concentra-

tion c of absorbing chromophores decreases with propagation length d. In general, as-

sessing the exact change in intensity is highly complex, since all possible molecular states 

and transitions would need to be taken into account, requiring knowledge of the corre-

sponding linear and non-linear absorption cross sections. Since these are unique to each 

system, generally unknown and difficult to obtain104, an easy-to-apply approach to judging 

the absorption regime in pump-probe experiments on protein crystals is required. As a 

strong oversimplification105 but nonetheless straight-forward model for analysing excita-

tion conditions, the Beer-Lambert law can be used†.  

 To assess whether excitation conditions target a biologically relevant or multophoton re-

gime, it is generally not sufficient to calculate the average number of photons absorbed per 

molecule. Molecules at different depths in the crystal are subjected to different intensities 

(Figure 7.2) and since the X-ray diffraction signal averages over all molecules in the X-

beam, the effects of different excitation regimes cannot be separated. Moreover, structural 

changes due to higher order processes may dominate over those due to the single photon 

absorption process. 

To obtain information on the different photon absorption regimes at different depths 

within a crystal, Beer-Lambert’s law has to be applied differentially. At depth x in a sample 

with particle density ρmol the number of photons absorbed per molecule Nabs(x) given an 

incident number of photons per area Nphot becomes4  

 𝑁𝑁abs(𝑥𝑥) =
𝑐𝑐 ⋅ ϵ
ρmol

⋅ ln(10) ⋅ 𝑁𝑁phot ⋅ 10−ϵ⋅𝑐𝑐⋅𝑥𝑥 
(2) 

Using equation (2), pump-probe experiments maximising the fraction of molecules in a de-

sired regime may be designed. However, for a clean experiment on light-sensitive proteins 

properly delineating the biological response, the possibility of higher-order processes 

                                                           
† For a crystal containing a concentration c of the absorbing molecule of molar absorption coefficient ϵ, 
the intensity at penetration depth d is I = I0⋅10-ϵ⋅c⋅d. 

It assumes that the chromophore concentration c remains essentially unchanged during absorption and 
that the extinction coefficient ϵ is independent of laser power. As such it is not a universally valid phys-
ical law (e.g., it breaks down when interfaces reflect a fraction of the intensity backwards, when fluores-
cence or stimulated emission occur or when the molar extinction coefficient depends on the concentra-
tion of the molecule), see reference105. However, assuming equal intensity reduction and penetration 
depths for single and multiphoton absorption as a strong oversimplification, Beer-Lambert’s law can be 
used to calculate the number of photons absorbed per molecule Navg in a straight-forward manner. 
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should be avoided at all cost by setting the incident intensity such that the linear regime 

applies to all molecules in the crystal.  

  

Figure 7.2 Depth-dependent photon absorption regimes inside bR crystals. The average num-
ber of absorbed photons per molecule was calculated at varying depth x inside the crystal using 
equation (2). n > 1 absorbed photons per molecule in the above plots imply increasing proba-
bilities of higher-order processes, and not necessarily a specific nth order process. a. Depth-
dependent photon absorption regimes in bR crystals (c = 27 mM, 
ϵ532nm = 45600 M-1⋅cm-1) with incident pump laser illumination (pulse energy E = 0.25 µJ, 
1/e² diameter 100 µm, wavelength 532 nm, fluence F = 64 J⋅m-2) resulting in Nabs,avg = 1 for 
10 µm thick crystals. b. Effect of crystal orientation on the relative contribution of different 
photon absorption regimes inside bR crystals for two photoexictation scenarios (wavelength 
532 nm, 1/e² diameter 100 µm in both cases). All molecules absorbing on average 
n-0.5 ≤ n < n+0.5 are counted towards the regime absorbing n photons. Blue (orange) lines de-
scribe the situation for crystals of 10 µm (5 µm) thickness. (i) Incident laser pulses (E = 0.25 µJ, 
F = 64 J⋅m-2) result in Nabs,avg = 1 for 10 µm thick crystals. For 10 µm (5 µm) thick crystals, 35 % 
(0 %) of molecules do not absorb photons, 40 % (50 %) absorb 1 photon and 25 % (50 %) are 
in higher-order regimes. (ii) Incident pump laser pulse (E = 0.715 µJ, F = 182 J⋅m-2) set such 
that Nabs≥1 everywhere in a 10 µm crystal. The situation shifts significantly towards higher-
order processes. For 10 µm (5 µm) thick crystals, 0 % (0 %) of molecules do not absorb pho-
tons, 40 % (0 %) absorb 1 photon and 60 % (100 %) are in higher-order absorption regimes. 
a, b with formatting changes taken from Grünbein et al4. 
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7.3 Intensity loss along the beam propagation path  
The intensity of the incident pump pulse available for triggering a reaction is reduced by 

reflection on the jet and the crystal surface, as well as by potential absorption by and scat-

tering within the jet medium (Figure 7.1).  

 

Intensity loss due to absorption by jet media 

While traversing the viscous medium constituting the jet, a fraction of the incident light is 

absorbed by the medium itself. If these losses are large, the number of photons impinging 

onto the protein crystal at a given depth in the carrier medium can be significantly reduced. 

To quantify the fraction of photons available for starting a reaction within a jet of a given 

thickness, the transmission of light through the jet must be characterized. Since absorption 

scales with path length, absorption by the jet medium is of relevance for large 

(50 – 100 µm) diameter viscous jets, but not for the micron-sized GDVN jets, which have 

diameters of typically only 1 – 10 µm. Refraction on the cylindrical jet surface leads to a 

large divergence of a beam after passage through the jet (see section 7.4), making trans-

mission measurements through the jet itself highly errorprone. Therefore, absorption by 

jet media was measured in spectroscopic cells of appropriate thickness (see chapter 3.2.2).   

Extinction after passage through a 100 µm thick layer was measured for typical high vis-

cosity jet matrices: synthetic grade Super Lube grease56, LCP55,65,68, LCP with the additive 

Pluronic F-12768, agarose in a water-glycerol mixture72 and sodium carboxymethylcellu-

lose (CMC)68. In summary, typical homogeneous jet carrier, including all tested water-

based viscous matrices (CMC, Agarose) as well as LCP show negligible absorption and scat-

tering losses (Table 4). The only exception is Super Lube which contains PTFE micro pow-

der that scatters light strongly.  
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Medium 
λ = 450 nm λ = 532 nm λ = 670 nm 

A T [%] A T [%] A T [%] 

Synthetic 
grease Super 

Lube# 
0.416±0.007 38 0.378±0.007 42 0.314±0.006 49 

LCP 0.009±0.001 98 0.007±0.001 98 0.006±0.001 99 

LCP + Pluronic 

F-127 
0.006±0.002 99 0.005±0.002 99 0.004±0.001 99 

NaCMC*§ 0.000±0.001 100 0.000±0.001 100 0.000±0.001 100 

Agarose*¶ 0.000±0.002 100 0.000±0.002 100 0.000±0.002 100 

Table 4. Transmission losses due to absorption by and scattering within jet media not contain-
ing crystals as measured by a downstream detector. A: measured fractional extinction after 
referencing to the reference medium. Corresponding transmission computed from the formula 
T = 10-A. 
# Super Lube contains PTFE micro powder that is visible under the microscope as densely 
packed particles in the medium. These scatter light strongly. 
* absorbance was 0 within the experimental error of the measurement. 
§ 4 % NaCMC ultra in water 
¶ Results at 60 °C with warm, liquid, homogenous medium. Cold medium has the same absorb-
ance if it is completely homogenous, i.e. if it is cooled down within the cuvette before the meas-
urement. If cooled down before filling the cuvette, the medium becomes very brittle and filling 
the cuvette without breaking the gel into many pieces / introducing many air bubbles is im-
possible. In that case, the absorbance is increased by ~0.01, giving a transmission of T ~ 98 %. 
Table from Grünbein et al4. 

 

 

Changes in intensity distribution due to scattering centres in the jet medium 

Excitation conditions need to be well-determined and thus reproducible. Irreproducible 

and numerous scattering centres in the jet, as for example intrinsically contained nanopar-

ticles in the commonly employed Grease56 matrix or inhomogeneities introduced by mix-

ing (e.g., gas or liquid bubbles), change the incident intensity in an undefined manner by 

redirecting light from the original beam path. These changes cannot be quantified by trans-

mission measurements as done previously102 since a downstream detector generally does 

not capture all scattering angles, such that the intensity loss measured by the detector is 
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much larger and not representative of the intensity change within the medium itself. In-

tensity redistribution within the scattering medium depends strongly on the number den-

sity and scattering properties (shape, size) of the scattering particles. For example, parti-

cles much smaller than the light wavelength scatter light at all angles, while forward scat-

tering dominates for larger particles106. Introduction of scattering centres in undefined 

quantities and size ranges therefore must be avoided. 

 

Intensity loss due to reflection on the jet surface 

The magnitude of reflection on the jet surface is described by the Fresnel equations and 

depends on the refractive indices of the jet medium and the surroundings (generally vac-

uum, helium or air with refractive index n = 1), the light polarisation and the angle of inci-

dence. The refractive indices of typical jet media are within a range of 1.33 ≤ n ≤ 1.47, im-

portant examples being water(-based substances) with n = 1.33, LCP with n = 1.42 and 

synthetic grease Super Lube with n = 1.47 (Table 2). 

Using the Fresnel equation on a set of parallel rays incident on the jet as described in sec-

tion 5.3 shows that ~2-9 % of the incident intensity is reflected on the surface of the jet, 

independent of jet diameter (Table 5). The same relative magnitude (2-9 %) is internally 

reflected on the rear surface of the jet, leading to some intensity modulation inside the jet. 

Internally reflected light may moreover intersect crystals embedded in the jet with a tem-

poral offset of ~100 fs relative to the primary pulse (see reference4 for details). The effect 

of both this “after-pulse” re-excitation and the intensity modulation is however small due 

to the low intensity of the internally back reflected light compared to the initial intensity. 

 

Intensity loss due to reflection on the crystal surface 

The magnitude of reflection on the crystal surface is again described by the Fresnel equa-

tions and depends on the refractive indices of the crystal and the surrounding medium, the 

light polarisation and the angle of incidence. In SFX experiments, a large number of similar 

microcrystals is probed at random orientations. Therefore, the exact fraction of pump light 

reflected from the crystal surface varies from shot to shot depending on the orientation of 

each individual crystal. To estimate the average reflectance over all shots one can either 
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Refrac-

tive index 

n 

Mean reflectance R [%] 

R at 0° in-

cidence 

[%] 

 s pol. p 

pol. 

Circ pol. / 

nat. light 
 

1.33 6.5 2.2 4.3 2.0 

1.42 8.4 2.7 5.6 3.0 

1.47 9.4 3.0 6.2 3.6 

Table 5. Reflectance of an incident beam on the jet surface. The environment of the jet is as-
sumed to have a refractive index of n = 1.0 (vacuum). The mean reflectance is obtained by av-
eraging the reflectance of a set of equally spaced rays perpendicularly incident onto the jet. If 
the X-ray probe arrives perpendicular to the pump, it will intersect at near-orthogonal angle 
essentially all of the internal light rays of the pump beam (see Figure 7.4), making the mean 
reflectance a meaningful and useful characterization of the loss due to surface reflection. If, on 
the other hand, the probe beam arrives parallel to the pump axis, it will intersect at near-zero 
angle only a very limited subset of the internal light rays of the pump beam. For a small diam-
eter probe beam passing directly through the centre of the jet, the polarization-independent 
reflectance of the central light ray having a 0º angle of incidence is then a more useful charac-
terization. 
n: refractive index of the jet. s (p) polarisation: Electric field vector of the incident electromag-
netic wave is perpendicular (parallel) to the plane-of-incidence. 
Table from Grünbein et al4. 

 

 

 

use the reflectance at normal incidence as a rough approximation, or calculate the average 

reflectance over all orientations. 

Determining the refractive index of protein crystals is far from trivial given the sensitivity 

and generally small size of macromolecular crystals. For large lysozyme crystals the refrac-

tive index was determined to be n ~1.55 ± 0.03 depending on crystal lattice, face and wave-

length107. The refractive index for other protein crystals will likely lie in the same range 

given generally similar density and composition. Assuming an absolute refractive index 

change of 0.2 ± 0.1 between a water-based medium (n = 1.33) and the crystal, typically 

≤ 10 % of the incoming intensity is reflected at the crystal surface when averaging over all 

possible orientations assuming equal probabilities for all angles of incidence 0° ≤ θ < 90° 
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(Figure 7.3). This number presents an upper limit on the orientation-averaged reflection 

since the assumption of equal distribution of all angles of incidence overestimates the con-

tribution of large angles of incidence. Moreover, reflectance is further reduced for common 

jet carrier media like LCP which have higher refractive indices than water. 

 

Figure 7.3 Reflectance at a protein crystal’s surface. Reflectance on the crystal surface was ob-
tained by calculating the orientation-averaged reflectance of an object of refractive index 
nxtal = 1.33 + Δn in water (n = 1.33) assuming a flat probability distribution for all angles of in-
cidence 0° ≤ θ < 90°. Δn corresponds to the difference in refractive index between water and 
the protein crystal. The plot shows the reflectance at normal incidence (black solid curve) as 
well as the mean (solid curves) and median (dashed curves) orientation-averaged reflectance 
for orthogonally (s, orange) and parallel (p, blue) polarised and natural (unpolarised, green) 
light. Figure with formatting changes from Grünbein et al4. 
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7.4 Changes in intensity distribution due to refraction at the jet in-

terface 
Due to its cylindrical shape, the jet acts like a cylindrical lens with effective focal length 

EFL = 𝑛𝑛 𝑅𝑅
2(𝑛𝑛−1)

, where n is the refractive index of the jet and R its radius108. Any light beam 

impinging orthogonally onto the jet will therefore be focused into a light sheet. 

 

Light propagation in large jets 

For large (50 – 100 µm) diameter viscous jets, propagation of the incident beam through 

the jet can be well approximated using optical ray tracing (Figure 7.4). Due to the short 

focal length (e.g., for a 2R = 100 µm LCP jet with n=1.42 the effective focal length is 85 µm) 

the rays diverge strongly beyond this focal line (Figure 7.4a) and focusing by the jet inter-

face significantly changes the light intensity within the jet.  

For pump-probe experiments in large-diameter jets, two extreme scenarios are relevant, 

namely orthogonal pump illumination and probing of the jet with the X-ray beam either 

perpendicular (pumping along the x-axis in Figure 7.4a) or parallel to the pump beam 

(pumping along the y-axis in Figure 7.4a). In the perpendicular case the power density in-

side the jet is on average calculated to be ~1.2-1.3 times higher than that of the incident 

beam (Figure 7.4b). The power density in the jet centre is relatively uniform but there are 

regions of very low or even zero power density near the jet edges (Figure 7.4b). In the 

parallel case, the average power density within the jet is calculated to be ~1.4-1.6 times 

higher than in the incident beam (Figure 7.4c). There are no regions of zero power density, 

but the power density gradually increases along the probe axis by as much as a factor of α 

≥ 2 (Figure 7.4c). For both calculations, no back reflections inside the jet were considered. 

To achieve a relatively uniform excitation intensity inside the jet a perpendicular pump-

probe geometry or two counter-propagating pump beams109 should be utilized. However, 

a perpendicular pump-probe geometry is more dependent on having a very stable jet po-

sition since jet movements affect the distance that the X-ray and pump light travel differ-

ently, and thereby affect the pump-probe time delay. For example, a 50 µm displacement 

along the probe axis induces a ~165 fs time difference in vacuum. Likewise, the temporal 

resolution in jets with a diameter of tens of microns is smeared on the femtosecond time-

scale. 
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Light propagation in micron-sized GDVN jets 

For micrometre-sized GDVN jets the assumptions of geometric optics do not apply because 

the wavelength approaches the size of the object. To complete the analysis planar electro-

magnetic wave propagation was therefore employed by our collaboration partner Sylvain 

Lecler to determine intensity changes in small diameter jets. Significant interference ef-

fects modulate light intensity inside the jet (Figure 7.5) with the power density inside the 

jet reaching almost 4 times the incident power density at certain “hot spot” locations. On 

average the power density increases to 1.1 ± 0.5 times the incident power density. ~4 % 

of the volume inside the jet is subject to power densities of at least twice the incident power 

density. Apart from such local maxima and minima, the intensity distribution otherwise 

agrees well in overall form with the predictions of geometrical optics (Figure 7.5). 

Figure 7.4 Propagation of light through a cylindrical jet of 2R = 100 µm diameter. a. Geomet-
rical ray tracing of a parallel beam of light impinging onto a 100 µm LCP jet (refractive index 
n = 1.42) shows that the pump beam is focused by the sample delivery jet. b,c. Increase in 
power density inside a 100 µm jet of refractive index 1.33 (blue line), 1.42 (orange line) and 
1.47 (green line) in case of perpendicular (b) and parallel (c) pump probe geometry. The inci-
dent beam has a uniform intensity profile, is collimated and intersects the jet in a plane orthog-
onal to the jet axis. The inset shows the axis along which the power density was evaluated: The 
black line shows the direction of the X-ray beam, the green fan corresponds to the geometrical 
ray tracing of the pump laser shown in a. Both reflectance at the jet interface and the increase 
in power density within the jet are independent of the jet diameter as long as the incident in-
tensity profile is uniform and geometrical optics are a valid approximation (2R ≫ λ). b. The 
average power density increase for sample located along the X-ray probe axis is 1.2±0.2 for 
n=1.33 (blue), 1.2±0.3 for n=1.42 (orange) and 1.3±0.3 for n=1.47 (green). c. The average 
power density increase for sample located along the X-ray probe axis is 1.4±0.3 for n=1.33 
(blue), 1.5±0.4 for n=1.42 (orange) and 1.6±0.5 for n=1.47 (green). All figure panels adapted 
with formatting changes from Grünbein et al4. 
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7.5 Guidelines for biologically relevant photo-excitation conditions 

in SFX 
Employing extraordinarily intense excitation conditions is a common approach used in all  

published ultra-fast time-resolved SFX experiments using femtosecond optical trigger 

pulses to start a reaction (Table 3). However, under such conditions it is questionable 

whether the biologically relevant processes are monitored, or whether structural rear-

rangements resemble those of biologically irrelevant multiphoton processes. Given the 

prevalence of such high excitation conditions, at times guided with wrong justifications 

why the biological importance of the experiment remains untouched95,101, the detailed 

analysis of appropriate conditions described in the previous sections was performed fol-

lowing the time-resolved experiments on bR. 

To set excitation conditions appropriately, it is mandatory to first know the excitation re-

gime in which the desired biological reaction can be observed. This includes the spectro-

scopic determination of an appropriate excitation wavelength, pulse duration and peak 

power. Wavelength and pulse duration have to be chosen such as to both optimize effi-

ciency in forming the excited states and photo products of interest (and concomitant low 

Figure 7.5 Propagation of an electromagnetic plane wave through a water jet. The following 
parameters were used: λ=532 nm, n=1.33, jet diameter 4 µm. a. Power density distribution. 
The maximum of the colour scale was set to 4 W/m, corresponding approximately to the max-
imum power density of 3.9 W/m within the liquid jet. b. Power density distribution along the 
y=0 line. c. Power density distribution along the x=0 line. a,b,c. Incident power density is 
1 W/m. The calculations were performed in two dimensions, resulting in a power density ex-
pressed in W/m compared to W/m² in three dimensions. All figure panels with formatting 
changes from Grünbein et al4. 
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excited state absorption) as well as to ensure a reasonable penetration depth in protein 

crystals and a temporal resolution sufficient to observe the desired process. By means of a 

power titration, the linear response regime can be determined. 

Once knowledge on a suitable excitation regime is obtained, this needs to be translated to 

the experimental conditions of the SFX experiment, taking the intensity changes along the 

beam propagation path through jet and crystal into account. As described in detail in the 

previous sections (7.3-7.4), reflection on jet and crystal surface, as well as intensity 

changes due to refraction effects have to be taken into account. Thus, knowledge on the jet 

medium’s refractive index n, pump laser polarization and pump laser alignment relative to 

jet and X-ray axis is required. 

In the course of this thesis, a detailed protocol describing the practical steps required for 

careful preparation of a meaningful pump-probe SFX experiment was prepared based on 

the presented results. This protocol has been published in reference4 and is repeated in the 

Appendix (chapter 11.1). 
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8 First MHz repetition rate experiments 
Extensive parts of this chapter have been published in references1,5,6,71. Sections are also 

published in references2,9,11. 

 

8.1 Requirements for SFX at MHz repetition rate 
Major drawbacks of SFX experiments at first-generation FELs are extraordinarily high 

sample consumption when using GDVN injection and limited availability of beam time at 

XFELs. XFELs capable of emitting X-ray pulses at MHz repetition rate have therefore been 

awaited eagerly. An increase in pulse rate is expected to decrease sample consumption and 

to speed up data collection, thereby accommodating more users and allowing the collec-

tion of enough data to study systems with very weak signals. However, increasing the peak 

repetition rate from first-generation XFELs23 running at up to 120 Hz to up to 4.5 MHz at 

the first superconducting XFEL, the European XFEL in Hamburg110, introduces new con-

straints.  

The basal requirement for making use of the high repetition rate is that sample delivery 

needs to be sufficiently rapid to present fresh material for each pulse. The only method 

developed so far that is capable of doing so is liquid jet injection by GDVN jets. However, 

the impact of the XFEL pulse on the liquid jet brings with it new challenges that have to be 

overcome for successfully conducting experiments at MHz repetition rate since a segment 

of the sample-containing liquid jet is destroyed by the XFEL beam8. X-ray photons are ab-

sorbed in the liquid via the photoelectric effect and the generated photo and Auger elec-

trons redistribute their kinetic energy via collisions with other electrons and surrounding 

molecules, thermalizing a small volume of liquid8. Within a few picoseconds, the inter-

sected filament is isochorically heated to a temperature and pressure far beyond the boil-

ing point8. The heated segment vaporizes, and the pressurised vapour expands radially 

outwards, pushing the jet ends apart into liquid films (Figure 8.1a)8. The explosion thus 

creates a growing gap in the jet. With the expansion of the vapour cloud, its pressure de-

creases, decreasing gap growth rate and enabling the gap to be flushed downstream such 

that a continuous jet is re-established in the interaction region after ~1 µs in case of typical 

GDVN jets of 3 – 7 µm diameter running at ~20 – 30 m/s8. Moreover, the high energy den-
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sity after X-ray absorption results in the generation of a cylindrical shock wave propagat-

ing supersonically outwards along the jet (Figure 8.1) and producing ns-duration pressure 

jumps on the order of 0.1-1 GPa (1-10 kbar) within the jet medium8. 

Accordingly, there are two critical issues for data collection at MHz XFELs using liquid jets 

for sample delivery: (i) The gap precludes subsequent XFEL measurements until a contin-

uous jet has been re-established at the interaction point, otherwise the X-ray beam does 

not intersect the jet. The minimum time required for native jet conditions to be regained is 

given by the time required for the gap to flush downstream, determining the minimum 

necessary time delay between two X-ray pulses indeed probing the sample jet. (ii) The 

shock wave propagates upstream along the jet and can damage the sample species carried 

by the jet. To truly exploit the increased efficiency of high-speed data collection, the exper-

iment shall ideally be conducted at the maximum X-ray repetition rate that still probes un-

perturbed sample condition. 

Figure 8.1 Effect of X-ray pulses on liquid jets. a. Physics of jet explosions after interaction of 
the XFEL pulse with the liquid jet. X-ray absorption leads to isochoric heating of the intersected 
jet fraction, leading to very high energy densities and pressures. The segment vaporizes, and 
the pressurized vapour expands, thereby applying pressure radially outwards, opening up a 
gap in the liquid jet8. b. The impact of the X-ray pulse launches a shock wave propagating along 
the liquid jet. During propagation shock waves split into multiple shock fronts8. a,b. Figures 
reprinted (adapted formatting in a) by permission from Springer Nature Customer Service 
Centre GmbH: Springer Nature, Nature Physics, Liquid explosions induced by X-ray laser 
pulses, Claudiu A. Stan et al., Copyright © 2016, Nature Publishing Group. This is reference8 in 
the reference list. 
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The first issue can then be addressed by using sufficiently fast jets, thereby increasing the 

speed with which the gap is flushed downstream, decreasing the time within which sample 

is replaced in the interaction region. Re-establishment of the jet and transport of damaged 

jet material are primarily a function of the jet speed, the recovery time decreasing with 

increasing jet speed8. However, whether the feasible jet speeds (a few tens of m/s) suffice 

for MHz data collection was an open question prior to first experiments.  

To ensure efficient use of the scarcely available beam time, jet conditions have to be tested 

beforehand to ensure knowing if and how a specific sample can be injected at high speed 

with a given type of GDVN nozzle. For this purpose, efficient techniques and methods have 

to be developed to allow imaging and speed determination of high-speed, micron-sized 

liquid jets. This is also highly relevant for time-resolved SFX experiments to ensure probing 

the prepared portion of the sample jet (see section 6.4). 

The issue of the potential effect of shockwaves is far less trivial as it is not a local effect but 

one capable of affecting samples far away from the actual exposure site. It is therefore crit-

ical to analyse that shock waves do not affect the sample under investigation at the short 

spacing between two X-ray pulses at MHz repetition rate (~1 µs and less). 

 

 

8.2 Jet imaging and velocimetry 
Imaging fast, microscopic jets requires an optical system fulfilling constraints both in terms 

of optical quality, enabling to visualize droplets and jets of few micrometre diameter, and 

in terms of temporal resolution, enabling to sharply visualize objects moving at ~100 m/s. 

To “freeze” the motion of a droplet, motion blurring must be reduced to a small fraction of 

the droplet diameter. This can be achieved with nanosecond exposure time: A 6 µm diam-

eter droplet traveling at 100 m/s requires an exposure time of 6 ns to reduce motion blur-

ring to 10 % of its diameter. 

Sharp images of microscopic jets have been obtained using femtosecond laser pulses for 

illuminating the jet8. While producing very clean images, laser speckle, a common issue 

when employing coherent illumination, had to be reduced via multiple decohering stages 
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to obtain images of sufficient optical quality. Extending this result, the aim of the work pre-

sented here was to find simpler solutions allowing jet imaging and speed measurements 

that can be easily set up both in the home laboratory for beam time preparation and at the 

experimental end station of an XFEL without requiring extensive alignment and expensive 

equipment. 

 

Pulsed illumination allowing jet imaging and velocimetry 

To obtain sharp images of fast jets, few nanosecond exposure from a light source of suffi-

cient intensity is required. To allow speed determination, the repetition rate of such expo-

sures must be higher than 200 kHz* for at least two subsequent pulses in a row. This is 

easiest achieved using pulsed laser illumination. Without complicating the optical setup, it 

however needs to be ensured that speckle patterns created from the interference of coher-

ent wave fronts do not compromise imaging.  

Techniques to decrease speckle contrast were therefore investigated to allow improving 

optical quality if a laser source exhibits pronounced speckle which prohibits jet imaging. 

Generally, speckle contrast can be decreased by the incoherent addition of many independ-

ent speckle patterns. Similar to other results8,111,112 it was found that only a combination of 

techniques is capable of efficiently improving optical quality: speckle contrast could be re-

duced from 68 % to 9 % (Figure 8.2a vs. b) by employing a stack of ground glass diffusers 

of different grain size, thereby increasing angular diversity of the beam, in combination 

with a 49 m long multimode fibre, thereby elongating the pulse by intermodal dispersion 

inside the fibre to a duration longer than its coherence time112. As such elements unneces-

sarily complicate the setup, pulsed light sources like laser diodes or fibre lasers with in-

herently large wavelength and or angular diversity are preferred.  

Three different light sources (Table 6) capable of achieving the required repetition rate 

and pulse durations were tested for jet illumination (Figure 3.2). Two of them, a fibre laser 

and a small laser diode, allowed minimizing optical complexity since their direct output 

allowed essentially speckle-free imaging (Table 6). While the usable illumination laser spot  

                                                           
* For speed determination, the repetition rate of the laser must allow illuminating features of the jet at 
least twice while these traverse the field of view of the camera, which extends typically a few hundred 
micrometre along the length of the jet. At 100 m/s, it takes the jet 5 µs to transport features over a dis-
tance of 500 µm. To capture a feature twice, a repetition rate exceeding 200 kHz is required.   
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Table 6 Pulsed light sources tested for their jet imaging capabilities. Optical properties are 
listed in Table 1. 
 

 
Fibre Laser VGEN-
G-HE-20 (Spectra 

Physics) 

AlGaInP Laser 
Diode HL6545MG 
(Ushio Opto Semi-
conductors, Inc.) 

Tailored Pulse 
Fibre Laser 

Pyroflex-25-GR 
(Eolite Lasers) 

Notable features & 
application target 

- Direct beam allows 
speckle-free imag-
ing 

- Up to 200 µJ pulse 
energy allowing il-
luminating large 
fields of view 

- Direct beam allows 
speckle-free imag-
ing 

- Cost-effective 
- Small & light-
weight, easy to 
transport to and 
implement in XFEL 
experiments 

- Pulse bursts can 
be created with 
tailored intensities 
for each pulse, in-
teresting for ad-
vanced fluid dy-
namic studies6 

Figure 8.2 Imaging microscopic jets produced by a GDVN. a. Pronounced laser speckle prohib-
its imaging of the jet. Speckle was generated by a single diffuser (220 grit polish) in the optical 
path. b. Addition of two diffusers (1500 and 600 grit polish), a refocusing lens (25.4 mm focal 
length), a 49 m long multimode fibre of 300 µm inner diameter and a biconvex lens (100 mm 
focal length) focusing to a point just beyond the jet reduce speckle and allows obtaining clean 
images of the jet. a,b. Both images use the VGEN fibre laser as illumination source and show a 
field of view of 812x1854 µm². c. Snapshot of a water jet at 40 m/s using constant LED illumi-
nation and a camera exposure time of 250 ns. The inset shows a comparison between these 
conditions (top) and imaging with pulsed laser illumination of 3 ns pulse duration (bottom), 
illustrating the necessity for short-pulse illumination when imaging fast microscopic liquid 
jets. Scale bar 100 µm. Figures adapted from Grünbein et al6. 
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size of the laser diode is limited to ~300 µm (FWHM) to achieve sufficient intensity, it is a 

viable, cost-effective solution that, given its compact size and simple design, is easily set up 

and aligned both in the home laboratory and when ported to the experimental chamber at 

the XFEL. 

 

Automating velocimetry 

To measure jet speed, features need to be tracked over at least two time points. A straight-

forward method to measure the speed of GDVN jets without requiring tracer particles is to 

measure the speed of the droplets formed after break-up of the continuous jet into droplets 

(Rayleigh breakup). Generally, the average speed of droplets shortly downstream of the 

break up region provides a good measure of jet speed. 

Two approaches are feasible for this when using both a triggered light source and a trig-

gered camera: the jet can be imaged using a high repetition-rate camera and a light source 

illuminating the jet once per frame (double-frame, single-exposure) or a camera of any 

repetition rate can be used when illuminating the jet twice per frame (single-frame, dou-

ble-exposure) such that two spatially offset images of the jet are captured within one 

frame113. In both cases the temporal separation of typically 0.1 - 5 µs between exposures 

must be adjusted to jet speed, jet diameter and field of view such that the translated image 

of each droplet can be clearly assigned.   

For both approaches scripts were written that allow automatic measurement of jet speed. 

To allow instantaneous feedback, a fast and efficient algorithm is required. Since analysis 

of a one-dimensional data set is much faster than evaluations of a two-dimensional data 

set such as an image, the ideal scenario is that of only having to evaluate a single line of 

pixels per image, namely those pixels in the jet centre. Since the jet’s mean position remains 

mostly stable, changing only when sample or flow rates are changed, jet position and ori-

entation only have to be determined once per recording. This is achieved by finding the 

line of minimum intensity (jet and droplets scatter light away from the camera sensor) 

inside the region of interest including only the free jet. To remove any non-uniform back-

ground from the intrinsic illumination profile, a third order polynomial function is fitted to 

the line as background and subtracted. 
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To extract jet speed, the distance travelled by the droplets between two exposures must 

be measured. In case of single-frame, double exposure images the dominant spatial fre-

quency in an intensity scan along the line of droplets must arise from the translation of the 

jet between the two exposures. Extracted either via a fast Fourier transform (FFT) or as 

the second maximum in the autocorrelation of the intensity scan, this together with the 

temporal separation of the two exposures delivers jet speed (Figure 8.3). Similarly, for dou-

ble-frame, single exposure images the correlation of the jet image of two subsequent 

frames is evaluated, which is maximal for the jet displacement between the two frames. 

For both image acquisition modes droplet speed can be determined separately along mul-

tiple sections of the field of view, thereby allowing not only to measure average droplet 

speed but also droplet acceleration and the initial velocity at droplet pinch-off. Even for the 

rare case of non-zero acceleration of the droplets which occurs only under very particular 

experimental conditions (as a function of nozzle geometry, liquid and gas flow rates as well 

as chamber pressure), the initial velocity at droplet pinch-off provides a good measure of 

jet speed. 

Figure 8.3 Extracting jet speed from double-exposure images. a. Double-exposure image taken 
at the SPB/SFX instrument of EuXFEL using the red laser diode described in Table 6 for illumi-
nation. The jet is imaged using two ns pulses separated by 250 ns. The dashed yellow line in-
dicates the line of pixels at the jet centre which was used for analysis. b. Intensity along the jet 
centre (blue), third-order polynomial fit to the background intensity (orange) and background-
corrected intensity (green) used to calculate the autocorrelation for each image. c. Average au-
tocorrelation of all images. Correlation of the intensities with a shifted signal of itself is maxi-
mal when the shift is either zero or when it corresponds to the average distance travelled by 
the droplets between two exposures (marked in orange). Given a pixel size of 0.215 µm/pix, 
droplets move ~15.7 µm between exposures, corresponding to a jet speed of ~63 m/s. 
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Jet velocimetry at MHz repetition rate XFELs in the presence of fs X-ray pulses 

To track features travelling with the jet, one can also track the movement of XFEL-induced 

gaps in the jet since these are flushed downstream by the subsequently injected sample at 

the speed of the jet itself8. At MHz XFELs two pulses separated by a time interval Δt induc-

ing two distinct X-ray explosions in the jet can therefore be exploited for speed measure-

ment by measuring the distance d between the two gap centres, from which jet speed v is 

obtained as v=d/Δt (Figure 8.5a). This procedure was applied during all beam times where 

MHz repetition rates were employed. 

 

 

8.3 MHz repetition rate experiments at European XFEL 
 

8.3.1 Feasibility of collecting SFX data at MHz repetition rate 

First experiments investigating the feasibility of MHz repetition rate experiments were 

conducted at European XFEL in June 2018, aiming to test whether (i) sample can be deliv-

ered sufficiently rapid into the interaction region and (ii) XFEL induced shockwaves have 

any effect on the collected data. The experiment was conducted on crystals of the well-

characterized model protein lysozyme, and investigations were performed at 7.47 and 

9.22 keV photon energy to check for differences due to different amounts of energy depos-

ited in the sample. In addition to testing the general feasibility of MHz repetition rate ex-

periments, the data quality obtainable at a brandnew facility operating the accelerator in 

an unprecedented mode of operation needs to be assessed. Therefore, a mixture of jack 

beam protein crystals was investigated to explore whether data quality is high enough to 

allow analysing uncharacterized samples. 

As preparation for the experiment, GDVN nozzles particularly tuned for generating high-

speed jets were fabricated and tested with the described velocimetry setup (chapter 8.2). 

For the experiment at European XFEL, the setup shown in Figure 2.1 was employed. Here, 

the more complicated femtosecond snapshot imaging as described in reference8 was em-

ployed such that the temporal resolution theoretically allows imaging of the shock waves 

travelling at supersonic speeds which would not be possible when employing nanosecond 

laser pulses. 



8 - First MHz repetition rate experiments 

75 
 

At European XFEL, X-ray pulses arrive in 10 pulse trains per second, with MHz repetition 

rate within each train. Our experiment was one of the first experiments after inauguration 

of the accelerator when the maximum repetition rate within each train was restricted to 

1.1 MHz instead of the 4.5 MHz target repetition rate. Within a single pulse train, 50 pulses 

separated by 886 ns were delivered (Figure 8.4). Between each train a pause of ~100 ms 

ensured that the first pulse of each train always probed sample not affected by shock 

waves. Thus, the burst structure of X-ray pulse delivery provides an intrinsic pattern for 

investigating potential shock wave damage by comparing data collected by the first pulse 

in each train to data collected by later pulses in the train. 

Utilizing the femtosecond snapshot imaging, jet speed was measured in situ by imaging the 

jet shortly after the arrival of the second X-ray pulse in a train. At jet speeds of 40-50 m/s 

and higher, two distinct gaps in the jet were clearly visible in the optical image of the jet 

(Figure 8.5a). The presence of two distinct gaps separated by a section of continuous jet 

indicates that the second pulse indeed intercepted a recovered jet. Moreover, consecutive 

X-ray pulses in the same train probed different crystals (Figure 8.5b,c), proving that suffi-

ciently fast sample delivery is possible for collecting data at 1.1 MHz repetition rate. 

Shock waves could not be detected optically in the jets in the femtosecond snapshot im-

ages. This can be explained by the small jet diameter since the visibility of shocks decreases 

rapidly with this parameter8. Nevertheless, despite not being visible, appreciable shock 

waves may be launched by the impact of X-ray pulses, thus a potential effect has to be in-

vestigated by comparing data of unshocked sample to data of sample that may have expe-

rienced a shock wave. To keep conditions comparable over the experiment, jet speed and 

Figure 8.4 Pulse pattern at European XFEL employed during the experiment in 2018. 10 bursts 
(so-called ‘trains’) of X-ray pulses are produced per second, with each train consisting of 
50 pulses at 1.1 MHz intra-train repetition rate. Within a train, pulses are thus separated by 
886 ns. The first pulse in each train (coloured in blue) arrives ~100 ms after the last pulse of 
the preceding train. 
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diameter were kept constant during the beam time. Jet diameter determines both how 

much energy is absorbed by the liquid jet and thus the magnitude of the launched shock 

wave as well as the amount of damping within a given distance along the jet8. Additionally, 

jet speed also determines the distance displaced by the jet between two consecutive X-ray 

pulses, and thus the distance over which a shock wave may damp. 

Figure 8.5 Data collection from two X-ray pulses separated by 886 ns (1.1 MHz). a. Femtosec-
ond snapshot image of the 4 µm diameter liquid jet carrying lysozyme crystals after being hit 
by the first two X-ray pulses in a train. Both X-ray pulses lead to distinct explosions in the jet 
opening a visible gap (black arrows). At 45 m/s the jet is sufficiently fast to displace the gap 
created by one pulse in time for the consecutive pulse to probe a recovered jet segment which 
is also illustrated by the continous jet segment visible between the two formed gaps. The scale 
bar is 20 µm. b, c. Diffraction patterns of lysozyme microcrystals recorded with the first (b) 
and second (c) X-ray pulse in one X-ray pulse train. The inset shows a close-up view on a subset 
of the detector area, clearly showing two different diffraction patterns originating from two 
different crystals probed in different orientations. Figure reproduced from Grünbein et al.1 un-
der the CC-BY 4.03. 
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To check for shock wave damage, statistical indicators of diffraction quality typically em-

ployed in (SFX) crystallography were analysed for each pulse in the X-ray train. Parameters 

potentially expected to change upon pressure-induced damage are for example parame-

ters that describe the quality of the ordered arrangement in the crystal. Such parameters 

include the resolution obtained in single diffraction hits, the signal-to-noise ratio (SNR) of 

the diffraction intensities or the fraction of diffraction patterns that can be indexed. Also, 

if crystalline order is strongly affected upon shock wave damage, the hit rate† may de-

crease. Moreover, the protein structure may change upon shock exposure. 

Carefully analysing all data collected, no change in diffraction resolution was observed be-

tween sequential pulses in the train. Neither a change in the distribution of resolutions 

obtained for each indexed hit was observed in diffraction patterns collected by the first 

and second pulse in the train, respectively, nor a change in the average resolutions ob-

tained with each pulse in the train (Figure 8.6a,b). Also Rwork, Rfree , CC* (Figure 8.6c) and 

the indexing rate (Figure 8.6d) remained constant over the pulse train‡. Other parameters, 

such has hit rate (Figure 8.6d), the signal-to-noise-ratio and the Wilson B factor indicate a 

change over the pulse train, which however can be explained by an equivalent drop in 

pulse energy over the pulse train. This analysis was performed for the data sets collected 

at 7.47 and 9.22 keV photon energy, both leading to the same conclusion1.  

                                                           
† The hit rate is the fraction of detector images in which at least 10 peaks are detected. Under constant 
experimental parameters (X-ray pulse energy, crystal concentration, jet diameter, etc.) this should re-
main constant. If however the crystalline order reduces, crystal diffraction extends only to lower reso-
lution, reducing the number of diffraction peaks which may ultimately reduce the hit rate. 
 
‡ Rwork and Rfree describe the agreement between the structure factor amplitudes derived from the meas-
ured reflection intensities and those derived from the refined model with Rfree being calculated on a sub-
set of the data that was not used for refinement (Brünger114). CC* describes data quality and is derived 
from CC1/2 which corresponds to the correlation of one half of the data set with the other half of the data 
set: CC* = ( 2CC1/2 / (1+ CC1/2) )0.5 (Karplus and Diederichs 115). 
The indexing rate is the ratio of the total number of hits that can be indexed and the total number of hits.  
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Megahertz data collection of an uncharacterized, complex system 

To explore whether the data collected at MHz repetition rate using a novel X-ray detector 

would be of sufficient quality to permit the analysis of a more complex, uncharacterized 

system, further experiments were performed at European XFEL after demonstrating the 

general feasibility of exploiting the MHz repetition rate. For this purpose data was collected 

on a mixture of jack bean protein crystals, containing at least three different crystalline 

species that could not be characterized prior to the beam time due to the small crystal size. 

Figure 8.6 Diffraction data quality of lysozyme crystals collected at 1.1 MHz. Data was collected 
at 7.47 keV photon energy. a. Histograms of resolutions obtained for all indexed diffraction 
patterns collected by the first (blue) and second (red) pulse in the pulse train. b. Diffraction 
resolution as a function of position in the pulse train, showing the median resolution and the 
0.25 and 0.75 quantiles. c. CC* of partial data sets (red) and pulse energy (blue) as a function 
of position in the pulse train. d. Hit and indexing rate (red and green, normalised by the number 
of images) as well as pulse energy (blue) as a function of position in the pulse train. All panels 
adapted from Grünbein et al.1 under the CC-BY 4.03. 
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Indeed, data collection at European XFEL at 1.1 MHz repetition enabled identification of 

crystals of the jack bean proteins urease, concanavalin A and concanavalin B. Of the latter 

two, sufficient amounts of high quality data could be collected to solve the structure of both 

proteins, showing no signs of damage when compared to previously published reference 

data1. 

 

Conclusion of first experiments 

Taken together, these results show that high quality SFX data collection is possible at 

1.1 MHz repetition rate, and that under the conditions used, neither protein structure nor 

crystal quality is affected by shockwaves launched by previous X-ray pulses. 

However, while these results are highly promising for MHz data collection, it must be noted 

that the conditions of the experiment were less severe in terms of X-ray exposure than 

targeted, and in particular less severe than typical for crystallography experiments. The X-

ray focus had a diameter of ~15 µm and was thus much larger than the target X-ray focus 

size of hundreds of nanometres (nanofocus) to a few micrometres (microfocus end sta-

tion). Thus, photon density, being proportional to the beam radius squared, was signifi-

cantly lower, resulting also in a lower magnitude of the XFEL-induced shock waves.  

 

 

8.3.2 Investigating shock damage effects at standard X-ray fluence using an opti-

mized pulse pattern for shock wave investigation 

Upon optimizing the X-ray focusing optics at the SPB/SFX instrument§, an increase in X-

ray fluence was achieved by decreasing the X-ray focus to ~3 µm diameter80. Follow-up 

experiments were therefore performed, investigating the effect of stronger shock waves 

under these realistic SFX conditions of higher X-ray fluence. As a comparison to the first 

experiments, data was again collected on microcrystals of the model system lysozyme. Ad-

ditionally, data was collected on myoglobin microcrystals to investigate effects on different 

protein systems with different properties. The results for the two systems led to the same 

                                                           
§ Kirkpatrick-Baez mirrors instead of Beryllium focusing lenses were installed, leading to better focus-
ing80. 
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conclusion, therefore figures and data presented in this thesis refer only to the data col-

lected on lysozyme.  

To augment data collection efficiency, a new experimental design was employed, exploiting 

a new bunch patterning capability that allows dropping any number of X-ray pulses from 

the pulse train to create different pulse patterns. In the experiment presented here, each 

X-ray train was subdivided into 9 smaller bursts, so-called ‘wagons’ with 1.1 MHz intra-

wagon repetition rate and a wagon separation of 13-14 µs (Figure 8.7). Each wagon con-

sisted of four consecutive pulses separated by 0.9 µs (~1.1 MHz repetition rate) followed 

by a fifth pulse after 1.8 µs (~0.55 MHz) (Figure 8.7). This allows the determination of 

whether or not the shock effect is additive (by comparing data accumulated from 2nd, 3rd, 

4th pulses), reversible (4th versus 5th pulse) and possibly its damping time (by comparing 

all pulses). The time interval between wagons is long enough to avoid shock wave damage 

in the jet segment probed by all first pulses in the wagons: the full length of the jet from 

the interaction point to the nozzle (~200 µm) replenishes within this time. At the nozzle 

tip the jet diameter increases from ~5 to 75 µm such that shock pressure is reduced rapidly 

due to energy conservation. Moreover, the pressure jump has already decreased signifi-

cantly even before the shock reaches the meniscus, given that the pressure jump damps 

exponentially with travel distance within the jet as shown by Blaj et al116. Thereby, the em-

ployed pulse patterning allowed increasing data collection of the undamaged reference 

data set collected by all first pulses in the wagon from 10 Hz (no subdivision of pulse trains) 

to 90 Hz (pulse trains subdivided into 9 separate wagons). 

As for the previous experiment, the first analysis step included merging all data collected 

by equivalent wagon positions. With increasing pulse position, i.e. increasing nominal ex-

posure to previous shock waves, the diffraction resolution did not change (indicating no 

damage, Figure 8.8a) but a decrease in indexing rate was observed (Figure 8.8b) which 

may suggest shock-wave-related damage.  
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Figure 8.7 Optimized pulse pattern for investigating shock wave induced damage. a. At Euro-
pean XFEL 10 X-ray pulse trains are delivered per second. At the time of the experiment, the 
maximum repetition rate within each train was 1.1 MHz. b. Each train was subdivided into 9 
smaller bursts (“wagons”). Each wagon consisted of five pulses: four pulses at 1.1 MHz were 
followed by a fifth pulse ~1.8 µs (~0.5 MHz) after the fourth pulse. Figure reproduced from 
Gorel & Grünbein et al.5 under the CC-BY 4.03. 

Figure 8.8 Resolution and indexing rate of shocked vs. unshocked data at 1.1 MHz repetition 
rate. a. Histogram of the resolution of all indexed diffraction patterns at wagon position 1 
(blue) and 2 (orange). b. Average indexing rate at each pulse position. a, b .Data of wagons 1-6 
at equivalent pulse positions was averaged. All panels adapted from Gorel & Grünbein et al.5 
under the CC-BY 4.03. 
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However, at the same time large systematic variations in experimental parameters (e.g., 

pulse energy, detector behaviour, X-ray alignment) were observed (Figure 8.9). While pulse 

energy and X-ray alignment directly impact the magnitude of the launched shock waves, 

all of these parameters also determine the quality of the detected diffraction pattern and 

might therefore lead to misleading conclusions in attributing apparent changes in data 

quality to shock wave damage. From the femtosecond snapshot imaging it became obvious 

that jet stability is an extremely important factor for the pulse-to-pulse alignment of jet 

and X-ray beam (Figure 8.9d-f). Since this alignment determines overlap of the X-ray beam 

profile with the jet, it impacts both the magnitude of the launched shock wave as well as 

the effective intensity with which scattering sample is probed and thus the obtainable data 

quality (Figure 8.9g, h).   

To correctly analyse potential shock effects and disentangle effects on data quality caused 

by changing experimental operation conditions from those caused by shock-waves, it is 

therefore obligatory to work within two constraints: (i) only data collected under similar 

experimental conditions (absolute pulse energy, focus size, relative alignment between X-

rays and jet) may be compared; and (ii) it needs to be ensured that the ‘shocked’ data was 

collected by X-ray pulses probing a section of the jet that has indeed experienced one or 

multiple shock waves launched by previous X-ray pulses in the same wagon. Due to insta-

bilities of the jet and due to possible variations of the lateral pointing of the X-ray beam, a 

significant fraction of shots missed the jet partially or entirely and thus did not launch 

shock waves (Figure 8.9e,f). For an analysis of potential shock effects on upstream sample 

quality it therefore must be established for each pulse whether the jet was hit and how 

many of the preceding pulses of that wagon have also hit the jet. 

To ensure that data in the later positions of a wagon actually have experienced a shock 

wave (i.e. to exclude shots in which previous X-ray pulses missed the jet), an algorithm was 

designed that uses the measured solvent scattering intensity to determine on a shot-per-

shot basis whether a given pulse had interacted with the jet (see chapter 4.2). Based on 

this information, it was reconstructed for each shot how many previous pulses of the same 

wagon had interacted with the jet and may have launched shock waves affecting the cur-

rent position. Furthermore, data was filtered such as to include only comparable experi-

mental conditions: First, data collected by different wagons had to be analysed separately 

given the variation in pulse energy (Figure 8.9a). Second, to maximise the potential damage 
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signal and to ensure that the exposed and probed jet had been well-aligned with the X-ray 

beam, only those hits were considered that had been exposed to the maximum number of 

shocks launched by previous pulses (e.g. three experienced shocks at pulse position four 

in a wagon). 

Figure 8.9 Systematic variation of experimental parameters with pulse train position and jet 
shape. a. The pulse energy decreases along the train by nearly a factor of 2, but increases within 
each wagon. b. Histogram of the number of peaks detected in diffraction patterns that can (or-
ange) and cannot (blue) be indexed. Images with >1140 peaks could not be indexed. c. Average 
number of peaks per hit (blue circles) and fraction of hits with >1140 peaks (red crosses) as a 
function of pulse position in the wagon, averaging over wagons. The number of hits containing 
a peculiarly large number of diffraction peaks increases, lowering the indexing rate. d-h. The 
jet shape varies significantly, impacting data collection parameters and shock wave propaga-
tion. d-f. Femtosecond snapshot image of the jet after passage of the first two X-ray pulses in a 
train. The scale bar is 50 µm. The yellow and red arrows point at the segment that interacted 
with the first and second X-ray pulse, respectively. Due to changing jet morphology, both (a), 
only one (b) or none (c) of the two X-ray pulses may have interacted with the jet, leading to 2 
(a), 1 (b) or 0 (c) shock waves affecting the sample segment to be probed by the subsequent X-
ray pulse at pulse position 3. g-h. The relative alignment between X-rays (profile shown in red) 
and jet (light blue) changes upon wiggling of the jet and affects the effective probing intensity 
of the X-ray pulse, impacting data quality. k. The probability of hitting the jet (blue) and pulse 
energy (red) as a function of pulse position averaged over all wagons. All panels adapted from 
Gorel & Grünbein et al.5 under the CC-BY 4.03. 
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These analyses revealed that the effect seen in the indexing rate when averaging over dif-

ferent wagons (Figure 8.8b) is caused by the increase in pulse energy with pulse position 

in the wagon, due to which the likelihood of detecting a hit increases (Figure 8.9k), while 

concomitantly increasing detector artefacts decrease the likelihood that a hit can be in-

dexed (Figure 8.9b,c). 

After incorporating the additional constraints, no indications of shock wave damage were 

found (Figure 8.10). The average diffraction resolution obtained for either tested crystal-

line system at a maximum repetition rate of 1.1 MHz depends neither on the number of 

previous pulses nor on the temporal delay to the last pulse (Figure 8.10), demonstrating 

that 1.1 MHz data collection is feasible also at higher X-ray fluence. While the advantages 

of the new pulse pattern could not be exploited in the current analysis due to instabilities 

in the accelerator operation (which are now solved), the presented experimental approach 

will be of great benefit to future experiments aiming at addressing the question of shock 

damage at the target X-ray repetition rate of EuXFEL of 4.5 MHz. It not only speeds up data 

collection, but it also allows to assess whether the shock effect is additive or reversible and 

possibly even extract shock damping times. 

 

 

 

Figure 8.10 Lysozyme diffraction quality under comparable conditions at 1.1 MHz repetition 
rate. a. Indexing rate of hits in wagon 1. b. Median resolution of indexed crystal diffraction pat-
terns as a function of pulse position, calculated using only data collected under comparable 
experimental conditions (comparable overlap between jet and X-rays, comparable pulse en-
ergy) exposed to the maximum number of possible shock waves. All panels adapted from Gorel 
& Grünbein et al.5 under the CC-BY 4.03. 
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9 Investigating shock effects at shorter time scales 
 

These first SFX experiments at EuXFEL employing two different X-ray fluences revealed 

that it is indeed possible to collect SFX data at 1.1 MHz repetition rate without any indica-

tion of shock wave damage1,5. The target in-train repetition rate at EuXFEL is, however, 4.5 

MHz, at which pulses are only spaced by 222 ns110. The temporal interval in which possibly 

perturbed sample needs to recover between pulses is therefore much shorter, as is the jet 

displacement between two consecutive shocks. Since the shock wave damps with travel 

distance along the jet116, the magnitude of the experienced pressure jump at the next jet 

segment to be probed is therefore much higher at higher repetition rate. Consequently, 

these more restrictive conditions have to be investigated in order to exploit the full repe-

tition rate of EuXFEL for meaningful data collection. 

To prepare for experiments at EuXFEL’s target repetition rate and estimate the extent of 

shock effects on high-repetition rate SFX experiments, the potential effects of shock waves 

were investigated by using two closely spaced pulses in X-ray pump X-ray probe experi-

ments using established techniques of pulse-pair generation at LCLS. In these experiments 

the first of the two pulses (the X-ray pump pulse) launches a shock wave in the liquid jet 

transporting the sample, the effect of which is probed by the second pulse (the X-ray probe 

pulse) after a set time delay. 

Extensive parts of this chapter are to be published in references2,9. Sections may also be 

published in references1,5,6,11,71. 

 

9.1 Experimental design 
Two X-ray pump X-ray probe experiments were performed in the microfocus chamber of 

CXI, LCLS to investigate shock wave effects at two different time delays (8.4 ns and 

122.5 ns) between the two X-ray pulses. Similar to the experiments at European XFEL de-

scribed in the previous section, GDVN injection was used to deliver protein microcrystals 

in a ~5 µm diameter liquid jet at ~50 m/s into the interaction region. To ensure that the 

probe pulse indeed interacted with a segment of the liquid jet instead of passing through 
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the gap created by the pump-pulse induced explosion, the two pulses were displaced ver-

tically by Δx = 5 µm, such that the interaction region of the probe pulse was upstream (to-

wards the injection nozzle) of the pump pulse (Figure 9.1). Since the detector installed at 

the beamline cannot separate diffraction patterns generated by two pulses separated by a 

nanosecond delay, the two pulses were tuned to different photon energies centred around 

the iron K absorption edge. An iron foil in front of the X-ray detector absorbed the pump 

but not the probe pulse10,13, thereby detecting only the diffraction pattern generated by the 

second X-ray pulse (Figure 9.1).    

 

 

 

 

Figure 9.1 Experimental setup to investigate X-ray induced shock wave effects on SFX data col-
lection in liquid jets. The first ~30 fs X-ray pulse, with photon energy ~40 eV above the iron K-
edge (7.112 keV) and a pulse energy of up to ~0.1 mJ (0.03 mJ on average) was used as a pump, 
inducing ionization dynamics in the system that results in isochoric heating of the jet and the 
launch of a supersonic shockwave. The scattered X-rays were absorbed by a thin iron filter and 
did not reach the detector. After a time delay Δt (8.4 ns or 122.5 ns) a second ~30 fs X-ray pulse, 
with a photon energy ~40 eV below the iron K-edge and a pulse energy of ~0.9 mJ, displaced 
by ~ 5µm towards the nozzle, was used as a probe to measure diffraction, hitting a sample 
segment upstream of the pump pulse. In this case, the scattered X-rays passed through the iron 
filter, reaching the detector. The setup differs from previous two-colour X-ray pump X-ray 
probe experiments10,13 by including a translation of the pump pulse interaction region. Figure 
adapted from Grünbein et al.9 under the CC-BY 4.03. 
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Due to the complicated accelerator setup requiring two gun lasers to generate two nano-

second-spaced X-ray pulses of different photon energies focused to different positions in 

the interaction region, larger-than usual fluctuations in pulse energy and photon energy 

were expected than for the standard single-pulse operation mode. Therefore, as additional 

diagnostics, X-ray sensitive diodes fast enough to resolve both pulses separately were in-

cluded in the setup, measuring the relative pulse energies of each pulse by detecting scat-

tering off materials downstream of the experimental chamber (see chapter 4.3). Moreover, 

femtosecond snapshot imaging of the jet was employed to capture an image of the jet 

shortly after interaction of the probe pulse with the jet.   

For both time delays the effect on lysozyme microcrystals was investigated, a well charac-

terized model system. Moreover, to investigate whether a different (crystalline) protein 

system behaves differently, haemoglobin microcrystals were also studied which exhibit a 

high degree of plasticity. 

To analyse effects of the shock wave launched by the first X-ray pulse on sample subse-

quently probed by the second X-ray pulse, diffraction data having experienced a shock 

wave (collected in the described X-ray pump X-ray probe) approach was compared to sin-

gle-pulse data. Therefore, additional data sets were collected while suppressing the pump 

pulse. This resulted in single-pulse data collection at the base repetition rate of LCLS of 

120 Hz. At this rate data collection cannot be impaired by shock wave damage (section 8.3).  

 

9.2 Effective repetition rate simulated by the pump-probe experi-

ments 
The experiments were performed at pump-probe time delays of 8.4 ns and 122.5 ns, math-

ematically corresponding to repetition rates of ~120 MHz and ~9 MHz. However, the mag-

nitude of the shock wave affecting the probed sample is determined by the effective spatial 

separation of the jet segments intersected by the two X-ray pulses since the propagation 

along the jet dampens the shock wave116. Due to the vertical offset of ~5 µm between the 

pump and probe pulse focus location (Figure 9.1), the segment intersected by the X-ray 

probe pulse would have been in the pump interaction region at a later time point than in-

dicated by the mere temporal delay between the two pulses. With a jet speed of ~50 m/s, 
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it takes the jet ~100 ns to traverse the distance of 5 µm between pump and probe interac-

tion region. Thus, the jet segment probed by the second X-ray pulse would have been in the 

pump interaction region after 8.4 ns + 100 ns = 108.4 ns and 122.5 ns + 100 ns = 222.5 ns 

for the two experiments, corresponding to repetition rates of ~9.2 MHz and ~4.5 MHz, re-

spectively, if the pulses had been focused to the same interaction point. 

 

9.3 Prerequisites for analysing shock wave effects 
 

Identifying successful shock wave propagation 

To analyse shock-wave effects in the pump-probe data set, it is a necessary prerequisite to 

ensure that a shock wave passed indeed through the segment probed by the second X-ray 

pulse. The femtosecond snapshot imaging of the jet revealed that fluctuations in jet shape 

are sufficiently large and fast that, at the larger time delay of 122.5 ns, one of the two pulses 

may interact with the jet while the other misses the jet (Figure 9.2). This behaviour was not 

observed at 8.4 ns time delay.  

Therefore, for the 122.5 ns data, the femtosecond snapshot images of the jet recorded 

shortly after interaction of the jet with the probe pulse were used to identify shots in which 

(i) the pump pulse hit the jet and (ii) the jet shape supports propagation of potential shock 

waves to the later probed sample segment. Both are equally important, since even if the 

pump pulse hit the jet, the shock wave may be hindered to propagate to the jet segment to 

be probed by a break-up of the jet. 

For this purpose a custom-written python script analysed jet shape, determining location 

and size of gaps in the jet as well as the size of the jet projected onto the horizontal plane. 

The latter indicates whether the angle of the jet to the X-ray beam axis has changed or 

whether the jet had a different diameter which impacts the magnitude and the decay of 

shock waves. The location and size of gaps in the jet may reveal if the pump pulse inter-

acted with the jet, and whether it launched a shock wave that could propagate to the jet 

region probed by the second X-ray pulse. The approach is detailed in Figure 9.3. 

The analysis discarded any hit in which more than two gaps were detected in the jet (jet 

had likely broken up, prohibiting shock wave propagation), in which no gaps were detected 
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(pump pulse had likely not hit the jet and thus did not launch a shock wave), in which iden-

tified gaps were less than ~4.5 µm upstream of the probe interaction region (probe pulse 

may have probed a singular droplet not affected by shock waves) or in which the projected 

jet size suggested extraordinary jet angles or diameters (Figure 9.2a-c). Thus, only those 

hits were used for shock analysis that do not show any abnormal jet shape, in which one 

or two gaps due to pump or pump and probe pulse are clearly visible (a gap due to the 

probe pulse does not need to exist since the recorded diffraction pattern reveals the pres-

ence of the probe pulse) and in which the jet is fully continuous upstream of the pumped 

segment, guaranteeing propagation of the shock wave upstream (Figure 9.2d-f). 

Figure 9.2 Femtosecond snapshot images of the jet in the pump-probe data of the 122.5 ns ex-
periment. a-c. Exemplary jet images of data not considered in the shock analysis because of 
ambiguous shock wave propagation. a. Temporary much larger diameter jet, e.g. due to reso-
lution of a temporary clog. Moreover, no clear pump-induced explosion is visible. b. Jet in the 
midst of breaking up. Propagation of the shock wave to the site of probing is ambiguous due to 
the break-up into droplets. c. Jet in the midst of breaking up, pump-induced explosion not vis-
ible. Most likely, no shock wave was launched. d-f. Exemplary images of data considered in the 
shock analysis. a-f. The magnification is 0.11 µm/pix. Figure adapted from Grünbein et al.9 un-
der the CC-BY 4.03. 
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Figure 9.3 Classifying hits based on femtosecond snapshot images. Hits of the jet were charac-
terized to identify pump-probe shots in which a well-defined shock wave has been launched 
by the pump pulse that affects the jet segment interrogated by the probe pulse. Such jets have 
neither abnormal morphology (e.g. very skewed), nor break up into droplets which prohibits 
shock wave propagation. The latter means that jet images must show 1 or 2 gaps in the jet 
(indicating being hit by the pump or pump and probe pulse) and the gaps must be located in 
the X-ray interaction region. a. Snapshot of the jet a few nanoseconds after interaction with the 
probe pulse. The gap due to the pump pulse interaction is clearly visible. The red rectangle 
marks the region of interest in which gaps within the jet are analysed, spanning a region from 
~10 µm downstream to ~22 µm upstream of the pump interaction region. The magnification 
is 0.11 µm/pix. b. Projection of the mean pixel intensity onto the x-axis. The jet (orange bound-
aries) was defined as the region in which the projected pixel intensity was smaller than the 
median projected pixel intensity minus half the difference between the median and minimum 
intensity of the projection. Adding 100 pixels left and right to the centre (red boundaries) de-
livers the region of interest in x in which the jet is analysed. Hits with jets in which the projected 
sizes deviates by more than one standard deviation from the median projected jet size are dis-
carded.  c, d. Line scan intensities of the 5x5 median filtered image at y = 700 pix and y = 
477 pix, indicated as dashed yellow lines in (a). By comparing the minimum intensity of the 
image in the background region (bg) to the minimum intensity inside the region of interest 
containing the jet (confined by the red boundaries), positions along the jet axis y can be iden-
tified in which a jet is present (c) or which represents a gap (d). The black horizontal line indi-
cates the threshold (corresponding to 90 % of the minimum pixel intensity of the background 
regions) that pixel intensities within the jet region have to cross in order to be identified as a 
jet segment. All pixel rows are identified as “gap” or “jet”. To decrease vulnerability to noise, 
gaps closer than 2 pixels are merged and only gaps of at least 2 pixels in size are considered. 
To identify number and location of gaps, connected gap regions are counted and located. Figure 
with formatting changes from Grünbein et al.9 under the CC-BY 4.03. 



9 - Investigating shock effects at shorter time scales 

91 
 

Ensuring that measurement of the pump diffraction signal is efficiently suppressed 

Unavoidable fluctuations of the photon energy of the two pulses may lead to changes in 

photon energy for some pump-probe pairs such that also the photon energy of the pump 

pulse shifts below the iron K absorption edge. In this case also the pump pulse is transmit-

ted through the iron foil in front of the detector, leading to the recorded scattering pattern 

being a superposition of the scattering signal originating from both pump and probe 

pulses. Since it is unclear to which extend the diffraction intensities of such hits originate 

from the first pulse, i.e. interrogating a sample segment that has not experienced a shock 

wave, these pump-probe pairs need to be excluded from the analysis. In the first experi-

ment collecting data at 8.4 ns time delay, the X-ray photon energy spectrum was measured 

for each pulse, indicating that for most pump pulses ~1 % of photons had energies below 

the iron K absorption edge. To exclude cases where this may lead to measurable diffraction 

on the detector, additional simpler photon energy diagnostics were implemented in the 

experiment collecting data at 122.5 ns time delay,  

For this purpose one of the two fast photodiodes used for measuring relative pulse ener-

gies was covered with a 25 µm iron foil. The second diode remained unmasked. Compari-

son of the signal of both diodes allowed checking whether the pump pulse photon energy 

was indeed above the iron K absorption edge, thus not erroneously contributing to the 

measured diffraction signal. For pump-probe data, the diode signals were therefore ana-

lysed to exclude hits where the pump pulse signal on the masked diode was high, poten-

tially indicating (partial) drift of the pump photon energy below the iron K absorption 

edge. To find this threshold, the full trace of the diode signal was plotted for different pump 

pulse signals. Hits in which the pump pulse signal was within ~1.5 standard deviations of 

the mean pump pulse signal of all shots centred around 0 did not exhibit any visible pump 

pulse signal and were used for analysis. 

 

Ensuring comparability between data sets 

In addition to the described possible fluctuations in photon energy, the measured total 

pulse energy of both pump and probe pulse were distributed over a wide range. Changes 

in probe pulse energy can lead to changes in the observed diffraction quality. To disentan-

gle whether a change in diffraction quality is thus due to a mere change in probe pulse 
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energy or indeed a change induced by shock waves, the distribution of probe pulse ener-

gies between pump-probe and single-pulse data sets needs to be comparable.  To this end 

subsets of each data set were created in which the distribution of probe pulse energies was 

equalized between a given pump-probe data set and its corresponding single-pulse refer-

ence as described in detail in section 3.3. Using this method, samples are drawn with re-

placement. The data subsets thus contain some data duplicates, which are required for 

shifting the distribution of a variable. All subsets contain at least 65 % unique indexed hits.  

 

9.4 Shock wave effect on crystalline order 
 

Effect on hit rate, indexing rate and unit cell constants 

For both lysozyme data sets at both time delays, as well as for the haemoglobin data set 

collected at 122.5 ns time delay, the average hit rate dropped significantly relative to the 

single-pulse reference data set (Table 7). To investigate whether this might be due to the 

pump-induced explosion of the jet, potentially leading to the probe pulse passing through 

the gap (indicating too low jet speed), the pump pulse energy was reduced until it was so 

low that no explosion was observed*. Even at this weak pump pulse energy the induced 

shock wave was strong enough to lead to a significant decrease in hit rate. While it cannot 

be excluded that changes in hit rate are due to a small difference (10 – 30 %) in probe pulse 

energy between pump-probe and single-pulse data collection (Table 7), such a dramatic 

drop most likely indicates that a corresponding fraction of crystals was damaged to such 

an extent that their diffraction patterns were degraded so much that they no longer quali-

fied as a hit, meaning that less than 10 Bragg peaks could be detected. In contrast, the like-

lihood that a given hit can be indexed does not differ significantly between pump-probe 

and single-pulse data. Also, no significant changes in the values of the unit cell constants 

are observed†.  

                                                           
* This approach was performed during the pump-probe experiment employing an 8.4 ns time delay. 
† A small shift (≤0.5 %) in unit cell constants is observed between the pump-probe and the single-pulse 
data set, with the unit cell apparently shrinking for the pump-probe data collection. This can be ex-
plained by a difference in the value of the X-ray wavelength used by the indexing program for the two 
data sets. 
The indexing program extracts for each diffraction image the X-ray wavelength that is estimated from 
the properties of the electron bunches in the accelerator. This measurement cannot resolve the two 
pulses, and thus returns the average value for all closely spaced pulses. For the single-pulse reference 
data, this yields accurate photon energy estimates. For the two-pulse data, the average photon energy is 



9 - Investigating shock effects at shorter time scales 

93 
 

 

 Pump-probe Single-pulse reference 

Lysozyme, Δt=8.4 ns 

# hits (hitrate) 98 650 (11 %) 3 049 (40 %) 

# indexed (indexing rate) 32 687 (33 %) 900 (30 %) 

Probe pulse energy [a.u.] 0.09 ± 0.04 0.10 ± 0.04 

Lysozyme, Δt=122.5 ns 

# hits$ (hitrate) 96 146 (17% ) 62 865 (37 %) 

# indexed€ (indexing rate) 12 793 (35 %) 20 097 (35 %) 

Probe pulse energy [a.u.] 3.0 ± 0.5 2.8 ± 0.4 

Haemoglobin, Δt=122.5 ns 

# hits$ (hitrate) 43 003 (13 %) 25 742 (19 %) 

# indexed€ (indexing rate) 3 531 (24 %) 5 541 (23 %) 

Probe pulse energy [a.u.] 3.3 ± 0.5 3.0 ± 0.5 
 
Table 7 Hit rate, indexing rate and probe pulse energies for pump-probe experiments investi-
gating shock wave effects on protein crystal diffraction. Probe pulse energies were measured 
by X-ray sensitive diodes. The values are comparable for data sets performed at the same time 
delay. 

$ Total number of detected hits (diffraction images with ≥ 10 peaks). Hitrate is the ratio of the 
toal number of detected hits to the total number of recorded X-ray probe pulses. 
€ Number of indexed hits that have passed the filtering conditions on jet shape and diode signal 
described in chapter 9.3. Indexing rate is the ratio of indexed images to number of hits, calcu-
lated only from indexed images and hits that have passed the filtering conditions. 

 

 

 

Effect on diffraction resolution 

Reduced crystalline order can be clearly detected as a loss in diffraction resolution if other 

data collection parameters, like probe pulse energy, remain constant. Analogously to the 

analysis of shock wave damage in the EuXFEL experiments (chapter 8.3), diffraction reso-

lution was determined for each diffraction pattern at a fixed signal-to-noise threshold and 

                                                           
~40 eV larger than the targeted photon energy of the probe pulse (7.07 keV), such that the photon en-
ergy estimate used for indexing is ~0.6 % too high, leading to the determination of correspondingly 
smaller unit cell constants. 
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resolution distributions were compared between pump-probe and single-pulse data of 

equal probe pulse energy distributions.  

 For all three data sets, i.e. both time delays and both samples, a significant drop in resolu-

tion was observed in the pump-probe data set. At 8.4 ns time delay the resolution of lyso-

zyme microcrystals decreased by ~0.6 Å (Figure 9.4a). Even at 122.5 ns time delay, prob-

ing a segment that experienced a far weaker shock wave, resolution had decreased by still 

0.2 Å for lysozyme and 0.3 Å for haemoglobin (Figure 9.4b,c). 

 

Pressure-dependent damage 

The initial magnitude of the launched shock wave scales with the pulse energy of the pump 

pulse. Since the pump pulse energy was measured for each pulse by the fast X-ray sensitive 

diodes, shock wave damage can be analysed as a function of shock wave pressure (Figure 

9.5). In the two-bunch mode tuning of the pulse energy of one pulse generally also affects 

the pulse energy of the other pulse, leading to possible (anti-)correlations in the behaviour 

of the two pulse energies (Figure 9.5). Due to the diffraction quality depending on probe 

pulse energy, only a limited range of the pump pulse energy bins is comparable to each 

other in the lysozyme data sets (Figure 9.5a,b). In case of haemoglobin, the positive corre-

lation between pump and probe pulse energy does not even allow a differentiation 

Figure 9.4 Crystals impacted by a shock wave diffract to lower resolution. The figure shows 
normalized histograms of the diffraction resolution at a signal-to-noise ratio of 4, comparing 
pump-probe data (blue) to the single-pulse reference (orange). For each pair, subsets of data 
with equal probe pulse energy distributions were used. The legend indicates the median reso-
lution of each data set. a. Lysozyme, Δt = 8.4 ns. b. Lysozyme, Δt = 122.5 ns. c. Haemoglobin, 
Δt = 122.5 ns, panel adapted from Grünbein et al.9 under the CC-BY 4.03. 
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whether the observed decrease in resolution as a function of pump pulse energy is caused 

by shock wave degradation or by the decrease in probe pulse energy (Figure 9.5c).  

To allow a better comparison between bins at different pump pulse energy, subsets of each 

bin were assembled such that probe pulse energy distributions were equalized across bins 

(Figure 9.6). For lysozyme, at both time delays diffraction resolution decreases with in-

creasing pulse energy of the pump pulse, resulting in larger damage (lower diffraction res-

olution) due to the stronger shock waves (Figure 9.6a,b). In line with the higher shock pres-

sures at shorter time delay (at which subsequently closed jet segments are more closely 

spaced, leading to less pressure decay between pulses), the extend of shock damage is in-

deed stronger at 8.4 ns time delay than at 122.5 ns time delay. For haemoglobin, (Figure 

9.6c) a statement on pressure-dependent behaviour cannot be made with confidence: Due 

to the generally low number of indexed hits in the data set and the strong correlation be-

tween pump and probe pulse energy, too few hits have comparable probe pulse energy 

conditions leading to a poor sampling of probe pulse energies especially at higher pump 

pulse energies (Figure 9.7). A similar analysis was performed on both lysozyme data sets. 

This showed that the last three (Figure 9.6b) as well as the first and last five bins (Figure 

9.6a) for the 8.4 and 122.5 ns data sets, respectively, are not representative samples of the 

target probe pulse energy distribution. 

Figure 9.5 Shock wave effect as a function of pump pulse energy. Diffraction resolution at a 
signal-to-noise ratio of 4 (blue, left axis) and probe pulse energy (red, right axis) as a function 
of pump pulse energy for a. Lysozyme at Δt = 8.4 ns b. Lysozyme at Δt = 122.5 ns and c. Hae-
moglobin at Δt = 122.5 ns. x and y error bars represent the standard error of the mean. Panel c  
adapted from Grünbein et al.9 under the CC-BY 4.03. Absolute pump pulse energy values are 
comparable between b and c, while a different set up was used for measuring pump pulse en-
ergy in a.  
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Figure 9.6 Pump-dependent shock wave effect after equalizing probe pulse energy distribu-
tions between bins. Diffraction resolution at a signal-to-noise ratio of 4 (blue, left axis) and 
probe pulse energy (red, right axis) as a function of pump pulse energy. N  samples were drawn 
from a Gaussian target probe pulse energy distribution centred on µ with a standard deviation 
σ. a. Lysozyme at Δt = 8.4 ns, (N=20000, µ=0.099, σ=0.04). b. Lysozyme at Δt = 122.5 ns 
(N=25000, µ=3.02, σ=1.22). c. Haemoglobin at Δt = 122.5 ns (N=7000, µ=2.15, σ=0.94). Panel 
adapted from Grünbein et al.9 under the CC-BY 4.03. a,b,c. x and y error bars represent the 
standard error of the mean. Absolute pump pulse energy values are comparable between b and 
c, while a different set up was used for measuring pump pulse energy in a. 

Figure 9.7 Probe pulse energy histograms for the data subsets analyzing the pressure-depend-
ence of shockwave effects in haemoglobin after equalization of probe pulse energy distribu-
tions. The 6 histograms show the probe pulse energy distribution for the 6 bins in Figure 9.6. 
The number in the upper right corner of each histogram indicates the number of unique hits 
within each data set. Figure adapted from Grünbein et al.9 under the CC-BY 4.03. 



9 - Investigating shock effects at shorter time scales 

97 
 

To extract the absolute magnitude of the launched shock wave as a function of pump pulse 

energy measured by the diodes, the diode signal was first calibrated to the pulse energy at 

the X-ray source point in mJ based on a series of single-pulse measurements. In a second 

step, this pulse energy was translated to a shock wave magnitude based on previous cali-

brations under similar experimental conditions published by Blaj et al.116. These calibra-

tions were performed by Claudiu Stan and are further described in reference2. After trans-

lating the measured diode signal to absolute shock wave pressures, the results of experi-

ments on lysozyme crystals at different time delays can be compared directly (Figure 9.8). 

Despite the different temporal delay between pump and probe pulse, the scaling of damage 

with shock pressure is similar in both experiments.  

In conclusion, all pump-probe data sets display a loss in resolution with respect to the sin-

gle-pulse reference data sets. The extent of damage depends on sample type but is similar 

for lysozyme and haemoglobin at comparable time delays (and shock wave pressures). 

Overall, the loss in resolution scales with the magnitude of the experienced shock wave.  

  

Figure 9.8 Shock wave effect on lysozyme crystals as a function of shock pressure. Indexed hits 
from both pump-probe experiments of lysozyme (Δt = 8.4 ns, blue and Δt = 122.5 ns, yellow) 
were binned by the experienced shock wave pressure and the average diffraction resolution 
(at a fixed signal-to-noise ratio of 5) evaluated. Errorbars represent the standard error of the 
mean. Figure by Claudiu Stan published in Grünbein et al.2 under the CC-BY 4.03. 
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9.5 Shock wave effect on protein structure 
For lysozyme microcrystals, no significant structural changes were observed neither for 

the 8.4 ns nor the 120 ns pump probe time delay. In contrast, small changes were observed 

in haemoglobin structures obtained from the pump-probe and single pulse data set respec-

tively. Due to the small number of diffraction images and the limited resolution (Table 7), 

the significance of the atomic rearrangement was validated using a bootstrapping proce-

dure (implemented by Thomas Barends and Alexander Gorel). 

When overlaying the structures derived from the single-pulse and pump-probe data, re-

spectively, small but significant differences in the peptide backbone are apparent (Figure 

9.9). Importantly, many of the changes are correlated along helices and connecting loops 

with several amino acid residues being displaced in a similar direction. These correlated 

structural displacements include for example movement of helices towards the haem as 

well as compressive movements. Overall a small but significant compaction of the molecule 

and a decrease in the radius of gyration is observed.  
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Figure 9.9 Shock-induced structural changes in haemoglobin. Haemoglobin consists of two α- 
and two β subunits, each containing a covalently bound haem cofactor, arranged as a dimer of 
α/β dimers. The alpha subunits are shown in red and magenta, beta subunits in blue and cyan; 
haem planes are depicted as filled planes. The figure compares structures obtained in the sin-
gle-pulse and pump-probe data collection. The displacement between respective Cα positions 
is indicated by black arrows. The magnitude of the displacement is illustrated by the length of 
arrows (multiplied by a factor of 10). The fact that clusters of arrows point in similar directions 
shows that the displacements are correlated both within and between secondary structure el-
ements. The inset shows a magnified view of the α1 subunit. Figure adapted from Grünbein et 
al.9 under the CC-BY 4.03. 
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10  Discussion 
 

In structural biology X-ray free-electron lasers offer unique experimental opportunities. 

The most transforming novelty introduced by XFELs is the possibility to perform time-re-

solved serial femtosecond crystallography (SFX) experiments observing molecular struc-

tural changes with atomic resolution at sub-picosecond time scales. In this thesis, such ex-

periments were prepared and conducted to study the ultrafast isomerization in the photo-

receptor bacteriorhodopsin. This required tackling numerous challenges encountered in 

this and similar experiments. Concomitantly, limitations arising when conducting experi-

ments at next-generation XFELs capable of generating pulses with much higher repetition 

rate were investigated.  

Parts of this discussion are published in references1,2,4-7,9,11,71,88. 

 

10.1  Time-resolved SFX experiment on ultrafast dynamics in bacte-

riorhodopsin 
The time-resolved SFX experiment on bacteriorhodopsin (bR) described in this thesis was 

conducted at a time when experiments on ultrafast dynamics in protein crystals requiring 

a viscous environment, such as many membrane proteins like bR, had not yet been per-

formed. From spectroscopy it was known that the light-induced isomerization reaction of 

the retinal cofactor in bR takes place on the femtosecond time scale24, and that the quan-

tum yield and dynamics of retinal in solution differ from those of retinal bound to rhodop-

sin117. The aim of the time-resolved SFX experiment on bR was therefore to investigate how 

the protein controls quantum yield, dynamics and specificity of the reaction and to eluci-

date the role of the coupling between the two in driving the isomerization reaction. Critical 

for the time-resolved SFX experiment and the interpretation of its results was the devel-

opment of techniques allowing both the preparation of the correct starting state before the 

reaction, as well as the characterization of the excitation conditions employed to trigger 

the reaction. These steps were performed as part of this thesis. 

The retinal in ground state bR naturally assumes one of two isomeric configurations (bR13-

cis or bRall-trans), and while only the all-trans retinal can undergo the functional photocycle, 
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the equilibrium between the two forms depends on the light conditions. Therefore, to max-

imise the fraction of molecules that can be triggered into the desired reaction and thereby 

maximise the measured signal, suitable illumination conditions have to be established in 

situ during the SFX experiment. For this purpose sample injection equipment was adapted 

such that continuous illumination of the sample stream upstream of the X-ray interaction 

region allowed increasing the all-trans fraction by a factor of 2 from 40-45 % to 65-80 %. 

Given that the half-life of light-adaptation in bR microcrystals is much shorter than the time 

required to install and measure a fresh sample batch, performing the light adaptation in 

situ greatly enhances signal and is the only way to ensure a constant high level of light-

adapted bR capable of undergoing the functional photocycle. Therefore, in situ light adap-

tation is highly preferable over simple offline light adaptation outside of the experimental 

chamber prior to injector loading as done in similar experiments by other groups94,95. This 

simpler but inferior approach has the additional disadvantage that sample composition 

changes during data collection due to the decay of the light adapted state. If collection of 

the reference dark state structure fails to capture exactly the same change in sample com-

position, undefined systematic errors are introduced that distort the light-induced differ-

ences between pump-probe and dark data sets. 

To achieve defined and reproducible starting states for each individual excitation, any illu-

minated sample needs to be removed from the interaction region in time before the sub-

sequent excitation pulse. Failure to do so either results in re-excitation and probing of an 

ill-defined state, or in probing a previously excited crystal instead of the dark ground state. 

Due to large variations in jet speed, sometimes even including complete halts of the jet, it 

is critical that jet speed is measured in situ during the experiment when working with crys-

tals embedded in a viscous material. Jet behaviour is highly dependent on sample con-

sistency which varies from batch to batch. In particular, the overly simplistic procedure 

applied in other experiments95 of measuring jet speed of similar samples offline before the 

beam time or calculating average jet speed based on sample flow rate and the expected 

diameter of the jet is not sufficient as shown in this thesis. Online jet speed measurements 

have to be performed. 

During the bR beam time measurements of jet speed were performed manually by tracking 

features carried in the jet over time. While this successfully allowed excluding data in 

which jet speed variation was too large for reliable pump excitation conditions, the method 
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can be improved by automating the procedure to allow faster feedback. First steps towards 

automation have been made during a later beam time at SwissFEL also employing viscous 

jets. Interaction of the jet with the X-ray pulse changes the consistency of the viscous ma-

trix in a localized region around the site of impact, appearing as a dark stripe on the jet if 

suitable jet imaging conditions are established. Consecutive X-ray pulses intersecting the 

moving jet thus leave behind multiple such stripes, appearing as a “ladder steps” in the 

brighter jet with the step size depending on both jet speed and X-ray repetition rate. The 

distance between these marks of impact is easily obtained from jet images and provides, 

together with the known X-ray pulse repetition rate, immediate feedback on jet speed. 

A significant issue for functional interpretation of the collected SFX data on bR is the high 

pump power density used for photoexcitation, likely leading to multiphoton excitation. The 

choice was guided by pump power densities employed in previous time-resolved experi-

ments on other proteins16, and the as always tightly allocated beam time did not allow for 

a power titration like it is typically performed in spectroscopic pump-probe experiments. 

With 630 GW/cm² the incident power density was much larger than the tens of GW/cm² 

typically employed in spectroscopic experiments investigating similar samples. In partic-

ular, follow-up spectroscopic investigations have shown that bR’s response starts to devi-

ate from a linear behaviour already at ~30 GW/cm², indicating multiphoton events7.  

Under the described experimental conditions the ultrafast retinal isomerization in bR 

could be followed at 1.8 Å spatial resolution, uncovering retinal twisting already at the ear-

liest measured time point of 240 fs7. Both protein structure and water network change on 

the sub-ps time scale, and an oscillatory behaviour in the retinal and surrounding residues 

was observed, suggesting vibrational coupling between those components7. However, 

given the high pump power excitation all results have to be interpreted in a multiphoton 

framework and it remains unclear whether the observed changes are triggered by biolog-

ically relevant single-photon or multiphoton events. 

 

10.2  Controlled photo-excitation in light-sensitive protein crystals 
Not only our experiments on bR, but in fact all published ultrafast time-resolved SFX ex-

periments have been carried out in a high intensity regime, using 360-500 GW/cm² or 

more16,20,21,95,102,103 and thus orders of magnitude higher than pump-probe experiments in 
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spectroscopy. While pump-probe-SFX and –spectroscopy are conceptually similar, the two 

methods differ significantly in their signal collection strategy: given unique spectral bands, 

spectroscopy is highly sensitive to small concentration differences (< 1 %) of particular 

species. It can therefore work at low excitations densities, exciting only a fraction of all 

molecules into another state. In contrast, SFX measures the superimposed signal of all spe-

cies, requiring maximisation of the occupancy of the desired intermediate to facilitate 

structural interpretation. Thus, the general experimental tendency is to maximise the nom-

inally excited volume fraction even when the thickness of crystals probed by the X-ray 

beam significantly exceeds the light penetration depth. This however requires very large 

intensities in order for a significant number of photons to reach the rear end of the crystal, 

thereby inevitably resulting in excessively high laser powers at the front of the crystal, 

likely inducing multiphoton absorption.  

Multiphoton excitation can amplify nuclear motion (see Supplement of Barends et al.16), 

lead to additional radical intermediates7,20 and open non-productive higher excited state 

relaxation channels, decreasing the single photon reaction yield7,99,104. For proof-of-princi-

ple experiments showing that time resolved SFX can successfully measure structural 

changes with femtosecond time resolution, signal maximisation under multiphoton condi-

tions may be a pragmatic approach. However, it likely does not probe the biologically rel-

evant reaction which is almost exclusively the response to a single-photon absorption 

event.  

In view of the omnipresence of multiphoton issues in time-resolved SFX experiments, the 

topic of appropriate light excitation in such experiments was investigated systematically 

in this thesis. In particular, previously published statements claiming that the power den-

sity available for photoexcitation is reduced by >80 % upon scattering on the crystal-car-

rying jet95 were inspected, and a detailed protocol for preparing time-resolved pump-

probe experiments was established based on all findings4. 

First, appropriate excitation conditions under which the signal scales linearly with incident 

laser power, indicating a single-photon absorption regime, have to be identified. Power 

titrations evaluating this are well-established in spectroscopy. Given the scarcity of XFEL 

beam time and the complexity of SFX data interpretation, the power titration is therefore 

most easily done spectroscopically. In a second step, this power density needs to be trans-
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lated into the required laser power in SFX experiments, in which the incident power den-

sity may change due to refraction and reflection at interfaces of the crystal-carrying jet and 

the crystal itself, as well as due to possible absorption by the jet medium.  

Therefore, interactions which may change the incident power density were quantified in-

dividually in this thesis using a combination of measurements and simulations where ap-

propriate. My investigations showed that absorption by common jet media is low (<2 %), 

as is reflection at jet and crystal interface (< 10 % at each interface). Reflection at the crys-

tal interface can be estimated only in an approximate fashion since it depends on crystal 

shape, orientation and refractive index, with crystal orientation even varying for each XFEL 

exposure. The numbers presented here were therefore obtained as an estimate for the up-

per limit on reflectance. A sample-specific alternative to this generic upper bound would 

seem to be the measurement of the total light scattering cross section of the crystals, which 

however is not useful because it cannot quantify the fraction of light penetrating the crystal 

(see Supplement of Grünbein et al.4). In contrast to the small power density changes due 

to absorption and reflection, refraction at the jet changes the incident power density sig-

nificantly, leading to inhomogeneous illumination inside the jet. The focusing effect of the 

cylindrically shaped jet surface in fact causes an increase in power density in large regions 

of the interior volume (on average a 10 – 60 % increase is observed depending on jet type 

(large diameter viscous jet vs. small diameter GDVN jet) and relative alignment of pump 

and probe optical axes).  

These results are in stark contrast to the previously published claims95 (which did not pro-

vide the underlying data) that scattering on the jet reduces the power density effectively 

available for triggering a reaction inside the jet by 80 %. However, the authors measured 

scattering on an LCP jet which only quantifies the sum of all scattering events that re-direct 

the incident beam (reflection, diffraction, refraction). While refraction at the cylindrical jet 

surface leads to strong focusing of the incident beam, it does not result in intensity losses 

in the jet interior. Solely the intensity measured at a downstream detector is reduced due 

to the large divergence of the beam after passage through the jet.  

The quantification of effective power densities in crystal-containing jets presented here is 

based on a number of idealised assumptions and simplifications. For example, in most cal-

culations changes in jet shape, interference effects and back reflection from rear jet and 
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crystal interface are neglected, while the incident beam is assumed to have a uniform in-

tensity profile. Therefore only the idealised average situation is quantified, not the true 

intensity change for all pump-probe shots. Introducing these simplifications however al-

lows approximating excitation regimes in SFX experiments in jets quantitatively. Based on 

these quantifications, a step by step protocol was established4, guiding others to identify 

suitable excitation regimes and translate these into the required experimental laser pa-

rameters for SFX measurements. This includes both general guidelines as well as scripts118 

in python and Excel that were made publicly available to help design experiments and 

avoid misconceptions like in previous experiments95. 

 

10.3  Towards MHz repetition rate measurements 
The occupancies of intermediate states populated in pump probe experiments are gener-

ally low. Even in the case of unity quantum yield maximally 50 % of the molecules will be 

in the excited state (saturation state, equilibrium of stimulated emission and absorbance) 

in a two-level system. In the linear regime one should not expect more than 30 % excited 

molecules. Given the generally small light-induced difference signal many diffraction im-

ages need to be collected for good data statistics and high signal-to-noise ratio. This data 

collection strategy, however, requires very long beam times which is currently a limiting 

factor because beam time is typically only granted for a few days per experiment. 

The possibility of performing experiments at MHz repetition rate would increase the rate 

of data collection by orders of magnitude and facilitate measurement of weak signals. 

Moreover, sample delivered in a continuous stream would be more efficiently used. 

The first XFEL capable of running at MHz repetition rate is the European XFEL that accom-

modated first user experiments in 2017. The EuXFEL is designed to generate X-ray pulses 

in pulse trains at a maximum peak repetition rate of 4.5 MHz, generating up to 27 000 

pulses per second which is a tremendous increase from the previously highest repetition 

rate of an XFEL of 120 Hz at LCLS23. In view of the XFEL beam-induced jet explosions and 

shock waves affecting sample delivering liquid jets8, such high repetition rates require two 

main questions to be answered in order for SFX experiments to become feasible: on the 

one hand, sample needs to be supplied for each pulse at sufficiently fast speed. On the other 
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hand, the X-ray-induced shock waves propagating along the liquid jet must not alter the 

sample’s state.  

First SFX experiments at EuXFEL employing two different fluences revealed that it is in-

deed possible to collect SFX data at 1.1 MHz repetition rate without any indication of dam-

age by the shock waves1,5. This holds true for both lysozyme and myoglobin microcrystals 

and agrees with later results obtained by other groups in similar experiments119,120. These 

experiments were conducted during the early stages of accelerator operation when the 

EuXFEL design specification of 4.5 MHz repetition rate69 was not yet available. With in-

creasing repetition rate the shock wave pressure to which sample is subjected becomes 

larger because subsequent X-ray pulses probe segments of the jet that are separated by a 

smaller distance, allowing less decay in shock wave pressure. 

Therefore, to investigate the effect of larger shock wave pressure under situations equiva-

lent to higher X-ray repetition rates, two X-ray pump X-ray probe experiments were con-

ducted at LCLS using two vertically offset pulses separated by 8.4 and 122.5 ns respec-

tively. Mathematically this temporal separation corresponds to repetition rates of 119 and 

8 MHz, respectively. However, it is the effective spatial separation of the jet segments 

probed by the two pulses that is relevant because the shock pressure and therefore the 

sample damage depends on this distance8. The additional vertical offset of the two pulses 

thus allows to simulate an experiment of effectively lower repetition rate than expressed 

by the pure temporal separation of the two pulses. In the described experiments at LCLS, 

the shock wave pressure experienced by sample probed by the second X-ray pulse is equiv-

alent to the pressure experienced in 9.2 and 4.5 MHz experiments in which the foci of both 

pulses overlap. 

Jet velocity is an important factor for the quantification of the actual shock wave pressure 

experienced by the probed sample since it determines the jet displacement between sub-

sequent X-ray pulses. Moreover, jet speed is relevant for transporting sample sufficiently 

fast into the X-ray region such that each X-ray pulse probes a fresh jet segment. Alongside 

with the investigation of shock wave effects, techniques were therefore developed to gen-

erate, image and automatically characterize the high-speed micrometre sized jets required 

for sample injection at MHz repetition rate facilities6. 
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In the 4.5 MHz and 9.2 MHz repetition rate surrogate experiments at LCLS, the shock wave 

launched by the pump pulse damaged microcrystals probed by the subsequent probe 

pulse. The extent of damage depended on time delay, pulse energy and sample. Damage 

was higher for shorter time delays and more intense X-ray pump pulses, which agrees with 

the larger shock wave pressure affecting the probed sample segment. At shorter time de-

lays but constant jet speed, the jet translates less between shocks, thereby shortening the 

distance along which the shock wave may decay. Shock wave damage was investigated on 

lysozyme microcrystals at both time delays, as well as haemoglobin microcrystals at the 

longer time delay. For both samples at the longer time delay a similar loss of resolution 

was observed in the diffraction patterns. Remarkably, for haemoglobin, the protein struc-

ture also changed upon exposure of the microcrystals to the shock wave.  

Given otherwise constant parameters, a loss in diffraction resolution is caused by a loss in 

crystalline order. This can either be due to random translations and/or rotations of the 

molecules constituting the crystal, or by random changes in molecular structure, or a com-

bination of the two. For lysozyme a loss in resolution is observed at both time delays, but 

no changes in molecular structure are detected. In contrast, for haemoglobin the loss in 

resolution is accompanied by coordinated structural changes in the protein. The absolute 

changes are small, but a bootstrapping procedure quantifying errors in the determination 

of atomic positions confirmed their significance. Importantly, many of the changes are cor-

related along helices and connecting loops with several amino acid residues being dis-

placed in a similar direction towards the haem cofactor, i.e. the active site of the protein. 

For investigative studies trying to elucidate binding pockets or molecular mechanisms, 

even such small changes may affect the interpretation and thus need to be avoided in clean 

experiments. 

The shock wave pressure to which crystals are subjected in the described pump-probe ex-

periments is on the order of a few tens of MPa. Importantly, the XFEL-induced pressure 

wave only transiently propagates through the microcrystals in the jet, which are then 

probed after the shock wave has passed and the pressure is released. This is different from 

experiments studying protein structure under static pressure. Static pressure experiments 

on Lysozyme121 show a monotonic compression of molecular and internal cavity volumes 

up to a pressure of 710 MPa, as well as structural changes at high pressure (several hun-

dred MPa) and a phase transition of the crystal symmetry at ~900 MPa. In contrast, no 
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similar behaviour, neither in the compression of the crystal nor in the structural changes, 

is observed in the diffraction data collected on lysozyme after shock wave pressure, which 

could either be due to the difference between transient and static pressurisation or due to 

the large difference in the absolute maximum pressure.     

The machine operation mode for experiments at LCLS to generate two pulses of different 

photon energy separated by up to 122.5 ns in time and imaged to two vertically offset in-

teraction regions is highly unusual and complicated to run. This not only led to a strongly 

reduced pulse energy compared to standard XFEL operation modes, but may also cause 

larger variations in photon energy and X-ray focus size, both of which may lead to apparent 

changes in diffraction resolution. In the two experiments, the photon energy was therefore 

monitored using different diagnostics and it was excluded that changes in photon energy 

are the cause of the changes in diffraction resolution. In contrast, a change in X-ray fluence 

by changing focus size cannot be detected as easily. The reference data sets were collected 

in single-pulse runs in which the pump pulse was suppressed. This changes the orbit of the 

electron bunch due to missing wakefields of the other bunch, leading to slightly different 

X-ray pulse properties. Based on the clear trend in increased damage with increasing pump 

pulse energy it is however unlikely that such potential pulse property changes are the 

cause for the observed difference between the pump-probe and single-pulse data sets. 

Despite the close approximation of the X-ray pump X-ray probe experiments performed at 

LCLS simulating 9.2 and 4.5 MHz repetition rate experiments by using vertically offset 

pulses separated by 8.4 and 122.5 ns, there are differences to experiments truly running 

at these repetition rates. Most obvious, while the shock wave pressure to which sample 

was exposed was comparable, the actual time delay was shorter, leaving less time for hy-

pothetical relaxation processes. However, since the sample was subjected to shocks for 

only a few nanoseconds, any changes detected at 122.5 ns delay are either irreversible or 

slowly decaying, and are therefore likely to be also detected at a 222 ns time delay. Due to 

the unusual machine set up at the LCLS, the pump pulse energy in the X-ray pump X-ray 

probe experiments was for the majority of data below 0.1 mJ, much lower than in standard 

SFX experiments. In a 4.5 MHz SFX experiment the single-pulse energies are typically 

~1 mJ, possibly leading to higher shock wave pressures and thus larger damage. However, 

the separation between consecutive hits along the jet would also be bigger since the jets 

need to be flown more rapidly to clear the larger gaps at 1 mJ. The additional decay of the 
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shock pressure over the larger separation may compensate the increase in the pulse en-

ergy, leading to a degree of damage similar to the one in our experiment. Theoretically, the 

pump-probe surrogate experiments investigating shock wave effects may even underesti-

mate damage because potential additive effect of shock waves launched by continuously 

successive pulses at MHz repetition rate cannot be investigated. 

 XFEL-induced shock waves may affect not only crystalline samples but also proteins or 

other molecules in solution. While SFX experiments are typically conducted in thin micro-

jets (diameter 3-5 µm), spectroscopy experiments122,123 as well as small and wide angle 

solution scattering experiments (SAXS, WAXS)122,124 typically use large diameter Rayleigh 

jets (~50-100 μm) for sample delivery. Since the decay rate of shock becomes smaller in 

larger diameter jets116, higher pressure is expected for experiments using Rayleigh jets at 

MHz data collection rates. During the X-ray pump X-ray probe beam time at LCLS, first at-

tempts to investigate the shock wave effects in a ~5 µm liquid jet on apo-Myoglobin solu-

tion at 8.4 ns time delay (again with vertical offset of the two pulses) were made. Only lim-

ited preliminary data could be collected due to shortage of beam time. While the results 

are therefore not fully conclusive, the SAXS scattering curves of the pump-probe data set 

are suggestive of potential protein unfolding upon exposure to the shock wave. 

As detrimental as shock waves may be for collecting structurally native data, this approach 

may well open up a novel experimental regime that allows ns time-resolved studies of, for 

example, pressure-induced phase transitions in liquids, protein unfolding, and generation 

of pressure-induced pH jumps to trigger chemical reactions on ns time-scales. For example, 

a sub-microsecond (0.7 µs) pressure jump instrument125 achieved pressure jumps of 

0.25 GPa (2.5 kbar), with first experiments showing refolding times of 2.1 µs in a genet-

ically engineered lambda repressor mutant. Molecular dynamics simulations supporting 

this result126 and similar results on other systems127 predict processes on the nanosecond 

time-scale. However, since no clean experimental method currently exists to explore this 

regime the ns time scale has remained largely unexplored, limiting our understanding of 

the fast initial steps in folding or unfolding. This experimental gap might be closed by X-

ray pump X-ray probe experiments as described here. 

It remains to be tested whether the changes in order and structure of protein microcrystals 

observed in the described two-pulse experiments truly extrapolate to full 4.5 MHz repeti-

tion rate at European XFEL. While this presents both novel opportunities and challenges, 
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the prospect of being able to measure SFX data already at 1.1 MHz repetition rate is prom-

ising, resulting in an over 50-fold increase in effective repetition rate at EuXFEL compared 

to LCLS. This, together with the techniques and procedures presented in this thesis, opens 

the door to time-resolved SFX experiments studying biologically meaningful reactions at 

atomic resolution in many systems. 
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11  Appendix 
 

11.1  Guidelines for time-resolved pump-probe SFX experiments 
These guidelines are originally published in reference4. 

11.1.1 Experimental protocol 

1. Spectroscopic characterization of the photoreaction of protein solution. This includes de-

termination of appropriate 

- Photoexcitation wavelength λ. The compromise is between a) a low molar absorp-

tion coefficient* (relevant for crystals, in order to increase penetration depth (see 

point 2 below)) and b) a high efficiency formation of the excited states and photo-

products of interest (and concomitant low excited state absorption, thereby max-

imizing population of those states leading towards the process of interest). For 

the chosen wavelength, determine the participating species, quantum yields, and 

time constants†.  

- Pulse duration τ (shorter than reaction time of process under study, peak power) 

- Peak power density P (see below): Perform a power titration to determine the 

linear regime for the chosen pulse duration and wavelength (abate competing 

multiphoton (de-)excitation, avoid formation of higher electronic excited states 

that can open new relaxation pathways and  minimize the formation of ionized 

species)128.   

• Identify the onset of nonlinear processes. The concentration of photoprod-

uct (change in absorbance) should vary linearly with P up to a maximum 

                                                           
* The molar absorption coefficient applies to the case of natural (non-polarised) light and iso-
tropically oriented molecules. In SFX experiments it thus does not describe the true penetra-
tion depth in each shot but rather an average assuming all crystal orientations to be equally 
probable (no flow alignment). The molar absorption coefficient corresponds to the molar ex-
tinction coefficient in case of negligible scattering. 
 
† If several wavelengths are favorable and if femtosecond excitation is desired, the lowest energy 
(red-shifted) excitation wavelength should be chosen to excite the lowest excited state and to 
reduce formation of ionized and higher electronic states.   
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peak power Pmax. For P ≥Pmax; the absorption saturates as nonlinear (mul-

tiphoton) processes ensue. Pmax must be determined for the chosen photo-

excitation wavelength λ and pulse duration τ.  

• For a Gaussian laser beam the peak power density [W m-2] is given by  

P = 2⋅E/(π⋅w²⋅ τ) where E is the total pulse energy [J],τ the pulse duration  

(FWHM) [s] and 2w the 1/e² beam diameter [m] at the interaction point. 

The 1/e² beam diameter 2w is related to the full width half maximum 

FWHM of the beam as  2w = 1.699⋅FWHM. 

• For a Gaussian beam profile, the peak power density is twice that of a 

flat-top beam. The effective beam area is therefore π⋅w²/2 and accord-

ingly only one-half the geometric beam area π⋅w².  

• As a rule of thumb, absorption saturates when the photon density per laser 

pulse equals the inverse of the absorption cross section σ (in cm2); see be-

low section “General remarks”. This gives a maximum energy density per 

pulse of  (P⋅τ)max = hν σ(λ) = hνNA
2303ϵ(λ)

 � . Here, (P⋅τ) is in [J cm-2] (i.e. P in [W 

cm-2] and τ in [s]), σ in [cm²] and ϵ in [l mol-1 cm-1]. For a large molar absorp-

tion coefficient ϵ = 5⋅104 l mol-1 cm-1 at λ = 500 nm (ν = 5.996⋅1014 Hz), this 

yields (P⋅τ)max ≈ 2.1 mJ cm-2, corresponding to only ~0.23 µJ focused to a 

spot with 100 µm (FWHM) diameter (1/e² diameter 2w = 170 µm). We 

stress that the above formula is only a guideline for the experiment and can-

not replace an experimental power titration. It is a simple estimation for the 

power density at which ground state absorption saturates and takes no 

other processes (e.g. excited state absorption) into account. 

• For a given 1/e² beam diameter 2w, the pulse energy Emax at 

which a given (P⋅τ)max is reached is obtained as Emax = 0.5⋅10-

8⋅(P⋅τ)⋅π⋅w². Here, Emax is in [mJ], (P⋅τ) in [mJ cm-2] and w in [µm]. 

• The absorption cross section σ (in [cm²]) and the molar absorp-

tion coefficient ϵ (in [l mol-1 cm-1]) are related via Avogadro’s 

number NA: σ  = 2303 ⋅ ϵ  / NA 

- Determine the longest laser pulse duration τ compatible with the desired time-

resolution of the TR-SFX experiment (taking into account lifetime of probed 
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states, resolution of timing tool, ability to address pump probe laser jitter, tem-

poral binning of diffraction data, feasibility of pulse length stretching). Repeat the 

previous three steps at this longer τ to test whether the fraction of the desired 

state and/or the formation of undesired states change. The power titration taken 

as a reference for the SFX experiments should ultimately be performed with a 

pulse duration similar to that of the SFX experiment itself. To reduce multiphoton 

effects, the pump pulse duration τ should be kept as long as possible, but shorter 

than the fastest reaction time constant and formation of re-absorbing photo-prod-

ucts. In any case, the pulses should be Fourier transform-limited in order to avoid 

complications due to chirped pulse excitation. More advanced experiments rely-

ing on pump pulse shaping techniques (e.g. coherent control) require separate 

characterization beyond the scope of the present work.  

 

2. Analysis and preparation of protein microcrystals: Calculate protein concentration c 

and penetration depth δ. Use molar absorption coefficient ϵ [l mol-1cm-1] at the pump 

wavelength λ determined in (1) to determine the penetration depth δ [µm] (the depth 

at which the incoming intensity has dropped to 1/e ≈ 37 % of its initial intensity). For a 

sample of concentration c [mol l-1] this is given by 

- δ[µm] = -106⋅ log10(1/e)/(ϵ[l mol-1 m-1]⋅c[mol l-1]) ≈ 4343/(ϵ[l mol-1 cm-1]⋅c[mol 

l-1]) 

Produce crystals of appropriate dimensions for efficient photoexcitation (not signifi-

cantly larger than penetration depth δ), either by growth or by fractionation/milling of 

overly large crystals. 

 

3. Carry out spectroscopic characterization of the crystalline protein suspension. Test 

whether the parameters listed in step 1 (wavelength, pulse duration, and power density 

range for linear regime) are also suitable for and applicable to the crystalline system. 

Determine kinetic rates and yields.  

- The absorption maxima of the crystalline protein may differ from those in solu-

tion. If this is the case, the ideal wavelength λ for an SFX-pump-probe experiment 
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might not be that of the λ determined in step (1) with protein solution. All spec-

troscopic characterizations (steps 1,2) on the crystalline system should then be 

repeated for the corrected λ. 

- Based on the spectroscopically determined rates, determine suitable time delays 

for the TR-SFX experiment. 

In protein crystals, as opposed to proteins in solution, chromophore molecules are not 

randomly oriented with respect to the electric field vector of the pump beam (see foot-

note concerning the molar absorption coefficient). Photoselection rules may then enter. 

In contrast to traditional rotation data collection, in SFX the largely random orientation 

of the microcrystals in 3D delivered in jets with respect to pump and probe laser beams 

helps mitigate this issue. Nevertheless, the use of circularly polarized pump laser light 

is advisable. 

 

4. Determine the effective pump intensity inside the jet as determined by 

- The medium’s refractive index n at the pump wavelength 

- The pump laser polarization 

- The pump laser geometry 

This comprises the following steps: 

I. Measure the refractive index of the embedding medium at the pump wavelength 

and employ this to determine the reflectance Rmed from the jet surface using Table 

5 for the pump laser polarization and geometry, 

II. Assume a reflectance Rxtal at the crystal/medium interface of Rxtal ⪝10 %, 

III. Determine the increase β in power density inside the jet based on Figure 7.4 and 

Figure 7.5 (chapter 7.4), making use of the refractive index of the medium and 

pump laser geometry; in case of liquid jet injection estimate β~1.1 for GDVN jets 

(Figure 7.5 and chapter 7.4), 

IV. For input intensity Pin the effective pump laser intensity P inside the jet is then 

P = Pin ⋅ (1-Rmed) ⋅ (1-Rxtal) ⋅ β,  

V. Set a pump laser intensity P ≤ Pmax 

where Pmax denotes the termination of the linear regime as defined above.  
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If measurement of the refractive index of the jet medium is not possible, use the following 

rules of thumb: 

I. Estimate reflectance at jet interface to be Rmed ⪝ 2%-10% 

II. Estimate reflectance Rxtal at crystal interface to be Rxtal ⪝ 10 % 

III. Estimate increase β in power density inside the jet to be β ~1.2 (~1.5) for 

perpendicular (parallel) pump probe geometry for large-diameter jets and 

β~1.1 for GDVN jets 

IV. As above, P = Pin ⋅ (1-Rmed) ⋅ (1-Rxtal) ⋅ β, with 

a)  P ~ Pin for a perpendicular pump probe geometry and a viscous jet 

experiment 

b)  P ~ 1.2⋅Pin to 1.3⋅Pin for a parallel pump probe geometry and a viscous 

jet experiment 

c)  P ~ 0.9⋅Pin to 1⋅Pin for a GDVN jet 

For a detailed description of spectroscopic experiments as outlined in our brief protocol 

above, see e.g. publications on the characterization of photoactive yellow protein104,128,129. 

 

11.1.2  Power titration during the SFX experiment 

Together with a preceding spectroscopic power titration, our data and approaches pre-

sented here permit to set the pump laser intensity properly for use in pump probe SFX 

experiment to study the light-sensitive crystalline system in the linear single photon exci-

tation regime. It is nonetheless conceivable that the light-induced changes in the electron 

density are so weak as to be unsuitable for refinement, even by increasing the number of 

diffraction images constituting the light data. This could be due to inherently low occupan-

cies of intermediate states and/or due to the (potentially perceived) need of using large 

crystals (e.g., to ensure high resolution diffraction) so that the penetration depth of the 

pump laser is exceeded, resulting in “experimentally-inflicted” low occupancies. In this case, 

an SFX power titration should be performed to establish the lowest required photoexcita-

tion power density that yields interpretable electron density maps. Which photophysical 

and photochemical processes are thereby induced and thus characterized by the time-re-

solved pump probe SFX experiment, must then be established by performing an additional 

(retrospective) spectroscopic power titration over a large and common range of pump 
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power densities. This, possibly together with quantum chemical analysis, may then reveal 

which processes were in fact observed in the SFX experiment at the used power density7.   

SFX power titrations performed within the optically established linear photoexcitation re-

gime are highly desirable. However, this not only requires additional beam time and sam-

ple but often does not allow for fast enough feedback during the beam time, given the time 

required to analyse the data, particularly in case of low occupancy intermediates.  
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