Supplementary Information

Cryo-EM structures reveal intricate Fe-S cluster arrangement and charging in Rhodobacter capsulatus formate dehydrogenase Christin Radon, Gerd Mittelstädt et al.

List of Content

Supplementary Figures 1-8
Supplementary Tables 1-6

Supplementary Figure $1 \mid$ Biochemical Characterization of RcFDH. a, Size exclusion chromatography of $90 \mu \mathrm{M}$ RcFDH performed on a Superdex 200 pg column in 75 mM potassium phosphate, $10 \mathrm{mM} \mathrm{NaN}_{3}, \mathrm{pH} 7.5$ at $4^{\circ} \mathrm{C}$. The purified fraction corresponding to the holoenzyme is represented by the main fraction that eluted at approximately 55.0 mL and is indicated by an arrow. Elution traces represent absorbance wavelengths at 280 nm (black trace), 440 nm (red trace), and 550 nm (blue trace). b, 15% SDS-polyacrylamide gel of the purified $R c \mathrm{FDH}$ holoenzyme. Gel depicts $46 \mu \mathrm{~g}$ of purified FDH. Subunits corresponding to FdsA, FdsB, FdsG, and FdsD are indicated. Reproducible gels could be obtained following at least 3 or more independent purifications. c, UV-visible absorption spectra of as-isolated $R c$ FDH (black trace) that was subjected to immediate reduction with 5 mM sodium formate (red trace), followed by treatment by 2 mM sodium dithionite (blue trace). Inset depicts a zoomed-in view of the features present at 250-800 nm. Spectra were recorded in 100 mM Tris- $\mathrm{HCl}, 10 \mathrm{mM} \mathrm{NaN} 3$, pH 9.0 buffer under anaerobic conditions in a Coy chamber ($<10 \mathrm{ppm} \mathrm{O}_{2}$).

Supplementary Figure $2 \mid$ Cryo-EM analysis of RcFDH. a, A representative cryo-EM micrograph of $R c \mathrm{FDH}$ data collection. Scale bar represents $500 \AA$. b, Data processing workflow showing the image processing procedure with the number of particles and the resolution of the reconstruction for every step. c, Representative 2D class averages of various views of $R c \mathrm{FDH}$. Scale bar represents $100 \AA$. d, Mesh representation of the map showing a representative α-helix and β-sheets superimposed on the atomic model. e, Local resolution estimate in Relion. Side views of the density map coloured according to the local resolution estimated by Relion. f, Fourier shell correlation (FSC) plots for the $R c$ FDH EM map with imposed C 2 symmetry. The
resolution at $\mathrm{FSC}=0.143$ and $\mathrm{FSC}=0.5$ are indicated. A comparison of the FSC corrected (red), masked (blue) and unmasked map (yellow) is shown. \mathbf{g}, Angular distribution of the final reconstruction.

Supplementary Figure $3 \mid$ Multiple sequence alignment of FdsB homologues from NAD+-

 dependent FDHs, Ferredoxins, NADH-quinone oxidoreductases and Hydrogenases

Rhodobacter capsulatus	106
Methylosinus trichosporium	101
Methylovorus glucosetrophus	99
Cupriavidus necator	101
Rhizobium radiobacter	101
Rhodopseudomonas palustris	101
Hyphomicrobium denitrificans	104
Rhodobacter capsulatus Complex I	95
Thermus thermophilus Complex I	104
Salmonella typhi Complex I	88
Escherichia coli Complex I	88
Pseudomonas aeruginosa Complex I	88
Hydrogenophilus thermoluteolus	90
Labrenzia aggregata	89
Cupriavidus necator	82

Supplementary Figure $4 \mid$ Channel and [4Fe-4S] cluster A4 of RcFDH. a, Multiple sequence alignment of FdsD homologues from NAD+-dependent FDHs. Stars indicate conserved phenylalanine residues. b, Superimposition of $R c \mathrm{FDH}$ (red) and oxidised FdhF (PDB-ID: 1fdo; white) structures at active site. Active site residue Arg 587 and residues Gly ${ }^{391}$ and Gly ${ }^{403}$ of RcFDH as well as Val ${ }^{141}$ and Met ${ }^{157}$ of FdhF are shown as sticks. The proposed hydrophobic channel is indicated in cyan. c, Multiple sequence alignment of FdsA homologues from organisms predicted to harbour FdsD (grey-shaded) or not (white-shaded). Stars indicate conserved glycine residues in NAD+ dependent FDHs which are replaced by valine and methionine, respectively, in other FDHs. d, Dimer interface between the two FdsA subunits. [$4 \mathrm{Fe}-4 \mathrm{~S}]$ cluster A4 and A4' are shown. Cluster coordinating residues and hydrophobic residues at the dimer interface are shown as stick representation. The distance between sulphur atoms of Cys121 is indicated in $\AA \AA$. e, Multiple sequence alignment of FdsA homologues of several FDH, complex I and NAD+-reducing [NiFe]-hydrogenase family members. Residues that coordinate cluster A4 are indicated with stars. The arrows indicate Leu ${ }^{119}$ and Leu ${ }^{122}$.

Supplementary Figure $5 \mid$ Spectroscopic characterization of $\boldsymbol{R c F D H}$. a, Constant wave Xband EPR spectra of $R c \mathrm{FDH}$ recorded at 80 K and $\mathbf{b}, 12 \mathrm{~K}$ at a microwave frequency of 9.38 GHz . Spectra represent as isolated $R c \mathrm{FDH}$ treated in the absence or presence of NADH or sodium dithionite. An iron-sulphur cluster signal present in the low- and high-field edges of the NADH-treated and the dithionite-treated signals is partially enlarged at a scale of $5 \mathrm{x} . \mathbf{c , d}, \mathrm{UV}$ visible spectra of FDH following treatment with NADH. a shows the Mo^{\vee} and slowly-relaxing Fe-S clusters (as [2Fe-2S] or [4Fe-4S]) visible upon respective treatments. bemphasizes the presence of fast-relaxing Fe-S clusters that are not visible at 80 K , however some spectral components (e.g. MoV and Fe-S clusters) are power-saturated. c shows as-isolated FDH (3.5 $\mu \mathrm{M})$ (black trace) that was subjected to reduction for 5 minutes at ambient temperature with 20 mM NADH (red trace), followed by treatment by 2 mM sodium dithionite (blue trace). d shows as-isolated FDH $(1.8 \mu \mathrm{M})$ (black trace) that was subjected to immediate reduction at ambient temperature with $40 \mu \mathrm{M} \mathrm{NADH}$ (red trace), followed by treatment by 2 mM sodium dithionite. Spectra were recorded in 100 mM Tris, $10 \mathrm{mM} \mathrm{NaN}_{3}, \mathrm{pH} 9.0$ buffer under anaerobic conditions in a Coy chamber ($<10 \mathrm{ppm} \mathrm{O}_{2}$). Insets depict a zoomed-in view of the features present at 280800 nm . The reduction spectra show that the enzyme is only partially reduced by NADH, independent of the NADH concentration used and the time of reduction. The absorbance of the red trace at 340 nm in d shows that NADH was not completely consumed during the reduction, also visible in \mathbf{d} at much higher concentrations of NADH.

Supplementary Figure $6 \mid$ Cryo-EM analysis of NADH incubated RcFDH. a, A representative cryo-EM micrograph of $R c \mathrm{FDH}$ data collection. Scale bar represents $500 \AA$. b, Data processing workflow showing the image processing procedure with the number of particles and the resolution of the reconstruction for every step. c. Representative 2D class averages of various views of $R c$ FDH calculated from selected particles. Scale bar represents $100 \AA . \mathbf{d}$, Mesh representation of the map showing a representative α-helix and β-sheets superimposed on the atomic model. e, Local resolution estimate in Relion. Sideview of the density map coloured according to the local resolution estimated by Relion. f, Fourier shell correlation (FSC) plots for the RcFDH EM map with imposed C2 symmetry. The resolution at
$\mathrm{FSC}=0.143$ and $\mathrm{FSC}=0.5$ are indicated. A comparison of the FSC corrected (red), masked (blue) and unmasked map (yellow) is shown. \mathbf{g}, Angular distribution of the final reconstruction.

Supplementary Figure 7 | Overlay of ribbon representation of as isolated RcFDH structure and NADH reduced $\boldsymbol{R c} \mathbf{c F D H}$ structure. As isolated $R c \mathrm{FDH}$ structure is shown in light grey, NADH reduced $R c$ FDH structure depicted in colour code: FdsA, red; FdsB, blue; FdsG, green; FdsD, yellow.

B-factor $0 \AA^{2}$ area: $153.6 \AA^{2}$ 18σ

B-factor -5 \AA^{2}
area: $152.5 \AA^{2}$
20σ

B-factor - $\mathbf{1 0 0} \mathbf{A}^{\mathbf{2}}$ area: $237.3 \AA^{2}$ 22σ

B-factor - $200 \AA^{2}$
area: $353.3 \AA^{2}$ 20 б

Supplementary Figure $8 \mid$ Influence of B-factor sharpening on difference maps between

 as isolated and NADH reduced cryo-EM maps of RcFDH. Surface representations of difference maps between as isolated and NADH reduced cryo-EM maps. Cryo-EM maps of as isolated and NADH reduced FDH were B-factor sharpened prior subtraction. For comparison all difference maps were scaled to the same enclosed volume ($58.8 \AA^{3}$). Applied B-factors, the total surface area and sigma values are given for each difference map. Cofactors are shown in stick representation.Supplementary Tables

Supplementary Table $1 \mid$ Similarity scores (RMSD) of FDH components to closely related

 structures| RcFDH-
 chain ${ }^{\text {a }}$ | pdb ID | Protein name | Homologous protein | r.m.s.d. in $\AA^{\text {b }}$ | identity ${ }^{\text {c }}$ | similarity ${ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FdsA | 5xf9_B | HoxU | NAD^{+}-reducing [NiFe]-hydrogenase | 1.159 (141) | 35\% | 50\% |
| FdsA | 1 fdo | FdhF | Formate dehydrogenase H | 1.132 (554) | 36\% | 53\% |
| FdsA | 3 mll | NapA | Periplasmatic nitrate reductase | 1.110 (463) | 23\% | 38\% |
| FdsA | 1h0h | FdhA | Tungsten containing formate dehydrogenase | 1.184 (398) | 21\% | 38\% |
| FdsA | 1kqf | FdnG | Formate dehydrogenase N | 1.080 (436) | 22\% | 36\% |
| FdsA | 3iam_3 | Nqo3 | Respiratory complex I | 1.195 (305) | 29\% | 44\% |
| FdsB | 1m2d | Fdx4 | Thioredoxin-like ferredoxin | 0.884 (31) | n.d. | n.d. |
| FdsB | 3iam_1 | Nqo1 | Respiratory complex I | 1.099 (311) | 35\% | 48\% |
| FdsG | 3iam_2 | Nqo2 | Respiratory complex I | 1.254 (88) | 31\% | 51\% |
| FdsABGD | | FdsABGD | Formate dehydrogenase NADH-reduced | 0.305 (1659) | 100\% | 100\% |

${ }^{\mathrm{a}}$ as isolated
${ }^{\mathrm{b}}$ number of pruned $\mathrm{C} \alpha$ atoms in brackets
${ }^{\text {c }}$ obtained using BLAST 2 sequences
n.d. - not detected

	RcFDH	1fdo
conserved residues	FdsA-Ser ${ }^{356}$	Ser ${ }^{109}$
	FdsA-Cys ${ }^{382}$	Cys ${ }^{136}$
	FdsA-Arg ${ }^{384}$	Arg ${ }^{138}$
	FdsA-His ${ }^{387}$	His ${ }^{141}$
	FdsA-Arg ${ }^{587}$	Arg ${ }^{333}$
	FdsA-Gln ${ }^{58}$	Gln ${ }^{335}$
	FdsA-Gln ${ }^{593}$	Gln^{339}
	FdsA-Cys ${ }^{596}$	Cys ${ }^{342}$
	FdsA-Tyr ${ }^{608}$	Tyr ${ }^{356}$
	FdsA-Arg ${ }^{635}$	Arg^{382}
	FdsA-Thr ${ }^{919}$	Thr ${ }^{673}$
	FdsA-Lys ${ }^{395}$	His ${ }^{149}$
	FdsA-His ${ }^{603}$	Asp^{349}
	FdsA-Glu ${ }^{604}$	Thr ${ }^{350}$
exclusive	FdsA-Ser ${ }^{388}$	
	FdsA-Ser ${ }^{401}$	
	FdsD-Asn ${ }^{33}$	
		Cys ${ }^{135}$
		Asp ${ }^{134}$
		Tyr^{586}

Supplementary Table $2 \mid$ Amino acid composition of hydrophilic tunnel in $R c \mathrm{FDH}$ and E. coli FdhF (PDB-ID: 1fdo)

	$\boldsymbol{R} \boldsymbol{c F D H}$	$\mathbf{1 f d o}$
identical	Ala^{383}	Ala^{137}
	Leu^{394}	Leu^{148}
	Val^{592}	Val^{338}
	Pro^{585}	Pro^{331}
Conserved hydrophobic	Gly^{391}	Val^{145}
	Gly^{403}	$\mathrm{Met}^{157 *}$
	Phe^{407}	Ile^{162}
	Val^{429}	Ile^{183}
	Phe^{430}	Val^{184}
Leu^{586}	Val^{332}	
Phe^{601}	Leu^{347}	

*extend into tunnel
Supplementary Table $3 \mid$ Amino acid composition of hydrophobic tunnel in $R c \mathrm{FDH}$ and E. coli FdhF

Supplementary Table $4 \mid R c$ FDH spin concentration from EPR spectra

Sample Preparation Condition	$[$ Spin $](\mu \mathbf{M})$	$[$ Spin $] /[\text { FDH }]_{\text {protomer }}$
as-isolated $(12 \mathrm{~K})$	3	0.03
$+\mathrm{NADH}(12 \mathrm{~K})$	38	0.38
$+\mathrm{NADH}(80 \mathrm{~K})$	51	0.51
$+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(12 \mathrm{~K})$	131	1.31
$+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(80 \mathrm{~K})$	112	1.12

Supplementary Table 5 |EM data collection, processing and refinement statistics

	FDH as isolated (EMDB-10496) (PDB 6TGA)	FDH NADH reduced (EMDB-10495) (PDB 6TG9)
Data collection and processing		
Magnification	31000	31000
Voltage (kV)	300	300
Electron exposure (e-/ \AA^{2})	64	40
Defocus range ($\mu \mathrm{m}$)	0.5-3.2	0.6-4.4
Pixel size (\AA)	0.628	1.07
Symmetry imposed	C2	C2
Initial particle images (no.)	799,023	669,976
Final particle images (no.)	366,573	199,229
Map resolution (\AA)	3.26	3.23
FSC threshold	0.143	0.143
Map resolution range (\AA)	3.0-4.0	3.0-4.6
Refinement		
Initial model used (PDB code)	de novo	de novo
Model resolution (\AA)	3.26	3.24
FSC threshold	0.143	0.143
Model resolution range (\AA)	3.0-4.0	3.0-4.6
Map sharpening B factor (\AA^{2})	167	130
Model composition		
Non-hydrogen atoms	25,324	25,412
Protein residues	3,318	3,318
Ligands	24	26
B factors (\AA^{2})		
Protein	11.78	19.72
Ligand	9.78	15.60
R.m.s. deviations		
Bond lengths (\AA)	0.0007	0.014
Bond angles (${ }^{\circ}$)	0.996	1.161
Validation		
MolProbity score	1.84	2.06
Clashscore	8.35	11.37
Poor rotamers (\%)	0.98	0.47
Ramachandran plot		
Favored (\%)	94.25	91.97
Allowed (\%)	5.45	7.78
Disallowed (\%)	0.30	0.24

Supplementary Table 6 | Primer sequences used in this study

Primers (5'-3')

Construct	His__Csp6I_fw	fdsDXho_rv
pTHfds36	CAGTACATGGGCAGCAGCCATC	GCTCGAGTGGAAACGATGAC

