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1. Introduction 
 

1.1 Head and Neck Squamous Cell Carcinoma 
 
Epidemiology Head and neck cancer is the seventh most common cancer type and the seventh 

most frequent cause of death from cancer with 890,000 new cases and 450,000 deaths 

worldwide in 2018 (1). This results in over 5.5 million affected people with 2.4 million of 

mouth, 1.7 million of the pharynx, and 1.4 million of the larynx in 2015 with an obvious 

ascending trend (2). In Germany, 18,246 new cases and 9,894 deaths have been reported in 

2018 (1). Head and neck cancer is localized at the lips, the oral cavity, the larynx, the naso-, 

oro-, and hypopharynx, the salivary glands, the paranasal sinuses, or the nasal cavity. Oral 

squamous cell carcinoma has the highest prevalence (38%) in head and neck squamous cell 

carcinoma (HNSCC), with the tongue (44%) and buccal mucosa (33%) as the most affected 

parts in the oral cavity (3). Men are more likely to be affected than women (2:1) and diagnosed 

mostly between the age of 55-65 years (4). The main risk factors are tobacco use and alcohol 

consumption, included in around 75% of all cases (5). The infection of the human 

papillomavirus is as well an increasingly important risk factor, especially regarding cancer of 

the oropharynx, while connected to better therapy responsiveness and prognosis. The infection 

of the Epstein-Barr virus, bad mouth hygiene, and UV-light exposure especially to the lips are 

also considered risk factors. In Asia chewing betel quid and the areca nut are high-risk factors 

too (6), leading to highest incidences and making head and neck cancer the most common 

cancer type in south Asia and the pacific islands (e.g. India and Papua New Guinea) (7). Parts 

of Europe, South America, and the Caribbean are also associated with high numbers of head 

and neck cancer patients (8). The average 5-year survival rate is about 34-66% with a high 

dependency on tumor stage and type (9).  

 

Pathophysiology More than 90% of head and neck cancers are squamous, often arising from 

leukoplakia and erythroplakia (Figure 1a). The location of the tumor is often connected to the 

location with the highest exposition of cancer-causing agents like tobacco and alcohol. For 

example, cigarette smoking more likely leads to SCC of the lips, whereas chewing of the betel 

quid is linked to SCC of the gingiva and inner cheeks (10). Alcohol consumption, on the 

contrary, is associated with higher SCC incidences of the oral cavity, hypopharynx, and larynx 

(11). Later states of the tumor frequently exhibit single lumps or ulcers with raised margins 

causing mandibular destruction (Figure 1b, c). In HNSCC, tumor cells often spread to regional 

lymph nodes (40% in oral cancer) and cause second cancer developments (12). These secondary 
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carcinomas are most likely to be formed in the head and neck, lungs, lymph nodes, liver, or 

bones (13).  

 
 

Figure 1 Clinical presentation of HNSCC a) leukoplakia of the floor of the mouth and ventral part of 

the tongue, b) squamous cell carcinoma of the tongue, c) tumor on the floor of the tongue. Images are 

reprinted from K. D. Hunter (14), R. J. Shaw (15), and J. Bagan (16), with permission granted by 

Springer Nature, John Wiley and Sons, and Elsevier. 

 

Diagnosis The most common precancerous HNSCC lesions are white and red patches, called 

leukoplakia and erythroplakia, respectively. Since they are non-itching lesions that don´t heal 

and can´t be rubbed off, they are often ignored or remain unrecognized, which is one of the 

reasons, why HNSCC is most often diagnosed in advanced stadiums (17). All abnormalities in 

the oral cavity, which remain for at least two weeks, are classified as potentially cancerous (18). 

Further characteristic symptoms of HNSCC belong to changes in voice, dry mouth with 

difficulties in swallowing, and consequentially worsened nutrition uptake. The loss of teeth, 

numbness in the mouth, bad breath, globus sensation, as well as speech impediment, are 

possible symptoms as well (19). When there is an assumption of HNSCC, the next steps for 

detection can be the palpation of the region, endoscopy, and medical imaging methods such as 

computer tomography (CT), magnetic resonance tomography (MRT), positron emission 

tomography (PET), X-ray, and sonography. Tissue biopsies and blood tests are as well 

important for the determination of the tumor grading and the diagnosis (18). The tumor itself 

will then be classified by the TNM staging system, taking into account the tumor size (T), the 

nodal status (N), and the existence of distant metastases (M).  

 

Therapy options Without any treatment, it is reported that 50% of the HNSCC patients die 

within the following 4 months after diagnosis (20). To face the battle against cancer, it is very 

important to choose the right therapy option, as early as possible. Since cancer is not one 

disease, but many, and due to the high heterogeneity of HNSCC, also the therapy has to be 

decided individually, which makes the best therapy finding challenging. The main therapy 

options for HNSCC nowadays are surgery, radiotherapy, chemotherapy, and targeted therapy, 

which are often combined. To find the best individual therapy option, primary tumor site, tumor 
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staging, resectability, but also patient factors as age, the desire for organ preservation, 

interfering illnesses, and if available empirical therapy responses from earlier treatment, are 

taken under consideration for suitable therapy management (21). Recurrences after treatment 

are frequent and the mentioned therapy options are associated with many side effects. Surgery 

can result in deficits in saliva production, mastication, deglutition, and speech since essential 

body parts may have to be removed, dependent on the tumor location and invasiveness. 

Additionally, a surgical margin of 5 mm from the cutting site to the tumor edge is indicated 

(22). All these impairments and the esthetic aspect can furthermore lead to depression and social 

isolation. Reconstruction is often a big topic after surgical resection. Radiotherapy often results 

in mucositis, osteoradionecrosis, inflammation, all associated with pain, salivary gland 

dysfunction, difficulties in swallowing, and speech, which intensifies the symptoms the patient 

already has to cope with (23). Most frequently used chemotherapeutics in the management of 

HNSCC therapy, are docetaxel, cis- or carboplatin, and 5-fluorouracil, which are often 

combined in the so-called TPF (taxane; platinum; fluorouracil) approach. The first and only 

approved targeted therapy option in the treatment of HNSCC is to date build-up by cetuximab, 

an epidermal growth factor receptor (EGFR) inhibitor (24, 25). Chemotherapeutic agents are 

all given intravenously and are commonly connected to reduced numbers of blood cells, 

diarrhea, fatigue, nausea, risk of infections, skin irritation, and loss of the hair (26).  

In this study, docetaxel, and cetuximab, as commonly anti-cancer therapeutics for HNSCC, 

were tested for the first time in 3D tissue-engineered normal oral mucosa (NOM) and tumor 

oral mucosa (TOM) models, to investigate the potential of these newly established models for 

preclinical drug testing, as well as the benefits of a topical therapy option in HNSCC therapy. 

Docetaxel (Taxotere®, Sanofi-Aventis), which belongs to the group of taxanes, is a microtubule 

inhibitor, binding reversible to the 𝛽-tubulin unit with high affinity. This prevents the 

microtubules to assemble and disassemble and leads to a stop in mitotic cell division and can 

result in apoptosis (27). Docetaxel is a semi-synthetic analog of the 3 times less effective 

paclitaxel (28), which is only found in the barks of the rare Pacific yew tree. It was first 

approved for medical use in 1995 and is also used in the therapy of breast, gastric, prostate, 

ovarian, and non-small cell lung cancer. The most frequent adverse effect of docetaxel is 

neutropenia. Other common side effects include anemia, gastrointestinal complications, skin 

erythema, acute respiratory distress, and eye disorders. In the induction chemotherapy, the 

recommended dose of docetaxel is 75 mg/m2, applied in a 1 h infusion, administered every 

3 weeks in 4 cycles, and combined with cisplatin and 5-fluorouracil (29). Its small size 

(807.89 g/mol) and its effectiveness make it an interesting drug for topical treatment studies.  
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Cetuximab (Erbitux®, Merck group) is a chimeric, monoclonal IgG antibody against the EGFR, 

and was initially induced for colon carcinoma (2004). Since 2006, cetuximab is also approved 

for advanced head and neck cancers in combination with radiotherapy, and since 2008, 

cetuximab is as well indicated for recurrent and metastatic head and neck cancer in combination 

with platinum-based chemotherapy (24, 30). Cetuximab binds competitively to the extracellular 

site of the EGFR with a 5-10 higher binding affinity than the physiological EGF ligand, and so 

prevents the receptor to become phosphorylated and activated. This results in the inhibition of 

several signaling pathways involved in cell proliferation, angiogenesis, and invasion, leading 

to apoptosis. Cetuximab is applied by infusion and can cause anaphylactic reactions, electrolyte 

disturbances, severe skin reactions, disorders of the eye, the nervous system, and the liver, as 

well as neutropenia, representing the main adverse effects. Cetuximab is applied once weekly, 

with an initial dosage of 400 mg/m2 and a later dosage of 250 mg/m2 (31). Due to frequent 

tumor resistance mechanisms, the treatment efficacy of cetuximab monotherapy is low with a 

single-agent response rate of 13% (32) and 36%, when combined with other chemotherapeutics 

(30). The resistance mechanisms are still not completely understood, and the problem is not 

overcome, which makes cetuximab as well an interesting drug to study.  

 
 

1.2 Preclinical Drug Evaluation 

 

After the discovery of potential drug candidates, by first target identification, hit discovery, 

high-throughput screenings, and hit to lead identification and optimization, the drugs reach the 

preclinical phase. In this preclinical stage, the desired drug effects have to be ensured by in 

vitro and in vivo (animal) studies, to validate the drug candidates to their potency. Furthermore, 

effectiveness, toxicity, and pharmacokinetics and -dynamics have to be elucidated, to optimize 

the drug’s formulation and to find the first-in-human dose before it goes into clinical trials. 

Consequently, a successful and efficient preclinical phase is strongly dependent on the models’ 

quality.  

 

Model systems In the field of preclinical drug testing, the drug candidate has to go through 

many different test setups and model systems. The most commonly used model systems for 

drug testing are nowadays monolayer cell culture and animals (Figure 2). From all possible 

anti-cancer drugs, passing the preclinical trials, only 3.4% are successful in the following 

clinical phases (33). To investigate the drug candidate’s efficacy and the potential toxicological 

effects in humans, a good model setup, reflecting closely the in vivo situation, is of substantial 
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importance. Monolayer cell culture models are easy to manipulate but fail to mimic the native 

microenvironment, missing the interaction of different cell types and the necessary architecture 

and polarity for an in vivo cell behavior. So, cell monolayers are unable to answer complex 

questions and generate doubtable results (34, 35).  

This is the reason, why animal models are frequently used since they have the advantage to 

build up a complete organism. But, as learned from the past, there is a relevant species gap, 

which sometimes leads to fatal consequences, as we know e.g. from the thalidomide’s history. 

Thalidomide was being used from 1957-61 against nausea and insomnia but proved later to be 

teratogenic in humans, non-human primates, rabbits, and many more (36, 37). But due to the 

fact, that mice have been the generally used model for drug testing in that time and turned out 

to be less sensitive to this drug, thalidomide made it on the market. The thalidomide disaster 

sensitized for the thinking of suitable drug testing models and changed the way we test new 

drugs. To combine the human aspect with a living organism, small pieces (3-4 mm) of human 

tumors have been transplanted subcutaneously into immunocompromised animals like mice, 

called patient-derived xenografts (PDX) (38). These PDX models turned out to be useful in 

drug screenings, biomarker development, and the evaluation of personalized medicine 

strategies (39). Although these PDX ought to maintain their molecular and genetic 

heterogeneity of the native tumor through serial passages (up to passage 6) (40), there are 

observations, that the copy number alteration landscape is shifted away from the original 

primary tumor by Æ12.3% within four passages, and associated to different drug responses 

(41). Further limitations are long engraftment times, an impaired ability of tumor progression 

to metastasis, and still the animal gap with e.g. essential differences in pharmacokinetics (42). 

Additionally, the constrained immune system and the replacement of human by murine stromal 

tissue (43) can lead to distorted tumor growth and patient drug response (44).  

In the course of enhanced animal welfare, the principles of 3Rs (Replacement, Reduction, 

Refinement), were first described by Russell and Burch in 1959 (45). Since this time, plenty of 

alternative models have been set up and tested for basic research, pharmacological, and 

toxicologic questions. So, in silico models gained more and more attention, being able to predict 

drug toxicities and effects, and offer the identification of drug interactions (46), in a high-

throughput, low cost, reproducible, and easily adoptable manner (47). Further promising 

alternative methods are 3D models, which are build up from human cells and can be of various 

sizes and shapes, accordingly to their application. Spheroids for example are round cell 

formations of > 500 µm in diameter, surrounded by a gelatinous protein mixture. These cell 

masses can be easily used in high-throughput assays and can be used as building blocks in tissue 
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engineering (48). But besides these spheroids, there are also organotypic tissue-engineered 

models, which not only enable the cells to grow in a 3D manner but also try to mimic the 

polarity and architectural composition of the specific organ, as close as possible. Miniaturized 

connected 3D models of different cell types furthermore can be integrated into so-called organ- 

and human-on-a-chips (49), which depict nowadays the closest and most complex human-based 

3D models (50, 51). Still, it remains clear, that even the most advanced in vitro models will 

never get along without in vivo testing before it goes into clinical trials. However, they can help 

to reduce animal testing immensely and identify the effects of a drug candidate more efficiently 

by giving closer prognoses to the human body reactions. 

 

 

Figure 2 Models for preclinical drug testing and their limitations Traditionally used preclinical 

models in drug development are 2D- and animal-models, although having many known limitations. 

Patient-derived xenografts and 3D-modeling, as well as the combined 3D-modeling resulting in Organ-

on-a-chip (49), are attempts to overcome these limitations. The advantages and disadvantages of each 

model system have to be weighed up for every preclinical drug testing experiment. This figure includes 

images of Servier Medical Art and ChemDraw Professional.  

 

Pharmacokinetic analysis In preclinical drug testing, it is of great importance to know as much 

as possible about the pharmacokinetic parameters of the drug since the best drug will be useless 

if it fails to reach the target site, is unstable, or accumulates at undesired tissue sites. As the 

dose makes the poison, pharmacokinetic analyses help in the dose-finding procedure, to 

investigate all the steps of the so-called ADME, standing for absorption, distribution, 

metabolism, and elimination. Dose finding can be very difficult since the best possible effect 
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low-cost, fast, high-throughput 
screening possibility 

2D-cell culture 

living organism 

Animals low complexity, 
missing architecture, 
polarity, cross-talk 

high-costs and efforts, 
species differences, 

-----1 o~ --eth-ics 
In vitro 

architecture, high­
throughput screening 
possibility, polarity, 
crosstalk, ethics, human, 
organ combinations 

3D-cell culture/ 
Organ-on-a-chip 

~~ 
Patient-derived 
xenografts ,.& 

/'"'" [d 

In vivo 

Human material 

Animal microenvironment, 
pharmacokinetic modelling, 

immune system, ethics No living organism j - ~ advanced 



Introduction 
___________________________________________________________________ 

 

7 

should be achieved with concurrently the least possible side effects. Especially for anti-cancer 

drugs which mostly have a narrow therapeutic window, showing steep dose-response 

relationships for efficacy and toxicity (52), it is important to ensure the most suitable amount 

of the drug inside the human body. Since higher concentrations of cytotoxic agents can result 

in more cell-kill, it was assumed that the highest possible concentration should be applied to 

reach the most efficient effect on the tumor cells. As these cytotoxic agents also affect normal 

cells, the balance between the desired effect and the severe side effects, so-called dose-limiting 

toxicities (DLT), has to be found (53). Here, the maximally tolerated dose (MTD) can be the 

optimal drug dosage for the patient.  

It is important to identify potential drug candidates with favorable pharmacokinetic profiles 

early, already in the preclinical phase, since these drugs are more likely to be effective and safe 

in humans. Here, 3D models could offer a good opportunity, to study the penetration and 

distribution of a drug in a human tumor tissue, and may give additional important information 

to the normally used 2D-cell culture and animal model experiments (54). In the development 

of new cancer therapeutics, the architecture and composition of the tumor have to be kept in 

mind, since both affect the intratumoral drug distribution and thus its uptake into the tumor cells 

(55). Here, the tumor vascularity, permeability, as well as tumor mechanisms to get the drug in 

and out of the tumor tissue and cells, by e.g. efflux-pumps as the P-glycoprotein 1 (56, 57), can 

influence the drug concentration in the tumor strongly. Furthermore, insufficient drug uptake 

caused by lysosomal sequestration can reduce the intracellular drug concentration in the tumor 

tissue (58). This can influence the drug concentration inside the tumor strongly.  

To detect the real drug concentration inside the tumor tissue and not only the free drug in the 

blood plasma, techniques like magnetic resonance imaging (MRI), PET, or microdialysis can 

be performed. In the microdialysis thin tubular dialysis membranes can be inserted into various 

tissues like skin or brain, and be perfused by a physiological solution, which then can collect 

endogenous and exogenous molecules of interest into small vials (59).  

Yet, these methods either show a single time point or the samples need elaborated sample 

preparation and cannot be analyzed automatically, which also limits the number of 

measurements. Here, small 3D tissue-engineered models, which are adaptable to automatic and 

highly sensible devices, as used for ultra-high-performance liquid chromatography-tandem 

mass spectrometry (UHPLC-MS/MS) measurements, could offer a good study design and are 

discussed in this thesis.  
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1.3 Drug detection in tissues 
 
Both, on- and off-target effects will only occur, if sufficient drug levels are reached in the target 

and non-target tissue. Hence, drug levels within these tissues should be quantified in the early 

phases of drug development. The binding site of the drug to its target has been previously 

identified in hit-to-lead analyses, but the real drug distribution in complex tissues has to be 

further elucidated to see if the drug will really reach its target site and to find out accumulation 

sites. For drug quantification in tissues, tissue homogenization with coupled liquid 

chromatography and mass spectrometry was the mainstay in the past (60). However, this 

method loses spatial information and can only roughly map the drug’s distribution within the 

tumor cells. To get more precise information about the drug’s distribution, new techniques 

nowadays focus on the mapping of the drug’s distribution inside tissues and single cells, by 

high-resolution. 

 

Fluorescence lifetime imaging microscopy Fluorescence lifetime imaging (FLIM) allows for 

analysis of drug distribution inside living tissues and even the localization in single cells (61). 

The FLIM setup is composed of a confocal laser scanning microscopy, combined with time-

correlated single photon-counting, which allows the detection of fluorescence lifetime curves 

per pixel (62). The FLIM technique already showed its potential in sensing the polarity, pH, 

molecular interactions, as well as nanoparticle degradation and cargo release in tissues as i.a. 

skin (63), which makes FLIM a powerful tool for tissue-drug-interaction studies.  

 

Atomic-force microscopy-based infrared spectroscopy If the resolution should be increased 

to get an even more precise picture of drug localization in a single cell, the atomic force 

microscopy, allowing for the highest spatial resolution, presents a useful tool (64). The atomic 

force microscopy-based infrared spectroscopy (AFM-IR) furthermore allows for chemical 

analysis and therefore enables the detection of drugs and molecules of interest topographically. 

In this approach, the tip of the AFM (cantilever) first scans the surface of the sample of interest. 

Then, an infrared laser beam hits the sample which leads to thermal expansion, resulting from 

molecular movements in the sample. This thermal expansion causes a bending of the cantilever 

which then can be detected by a deflection laser and allows for chemical mapping of the sample 

on a high-resolution base (down to 10 nm) (65).  

 

 

 



Introduction 
___________________________________________________________________ 

 

9 

1.4 Tissue-engineered Models for Drug Testing 
  
Tissue engineering The generation of 3D tissues by combining cell culture with a suitable 

engineered material, called tissue-engineering, has been and still is an exciting research field 

for the past four decades. Tissue-engineered models can be of use in regenerative medicine, as 

reconstructed human skin can be transplanted to severe burn wounds, and tissue-engineered 

cartilage can replace the damaged tissue in patients suffering from arthrosis (66, 67). It all 

started in the 1980s when biopsies were used to cultivate epithelial sheets of skin (68) and oral 

mucosa (69) for autologous graft transplantation. Advances in tissue-engineering with the 

integration of a supporting substructure significantly improved these fragile, contractile, uneasy 

handling epithelial sheets (70). Many tissues as e.g., from lung, blood vessels, cartilage, and 

intestine followed, and till now intensive studies are ongoing to improve these constructs for 

preclinical testing as well (71-74). To make these models more complete and combining 

different types of models, organ- and human-on-a-chip devices are topics of the current research 

focus (75). Most tissue-engineered models consist of three components, which are the tissue-

specific cells, a matrix where they grow on, and the supportive supplements included in the 

culture medium. The possibilities in different matrix constructs are unlimited, as they can be 

made out of liquid biological components like collagen, chitosan, gelatin, or solid synthetic 

components as e.g., 3D-printed or electrospun polymers (76, 77). Since tissue-engineered 

models always try as best as possible to emulate the in vivo situation, in-depth knowledge of 

the composition and important features of the respective tissue is of outermost importance.  

 

Oral mucosa and HNSCC in vivo In the oral cavity, the main oral mucosa functions are the 

protection of the underlying tissue from mechanical damage and the entry of microorganisms, 

as well as the sensation and digestion of nutrients. Here, we differentiate between keratinized 

and non-keratinized oral mucosa. The keratinized oral mucosa we find at the gingiva and hard 

palate called masticatory mucosa and on the surface of the tongue, called specialized mucosa. 

The non-keratinized oral mucosa covers the inner side of the cheeks, the soft palate, and the 

floor of the mouth and is called lining mucosa (78). All mucosa types have in common to consist 

of two major compartments, a lamina propria, and an epithelium. The epithelium consists of a 

basal and spinous layer, and an additional granular and keratinized layer, when it’s a keratinized 

mucosa type (Figure 3).  
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Figure 3 Oral mucosa morphology. The oral mucosa is composed of an epithelium, a lamina propria, 

and the underneath submucosa. Lining mucosa is non-keratinized and composed of a basal and a spinous 

layer on top of the lamina propria, while masticatory mucosa is keratinized and has an additional 

granular and keratinized layer. Images are reprinted from A. T. Cruchley and Y. Otsuka-Tanaka with 

permission granted by Springer Nature and SAGE Publications (78, 79).  

 
Within these layers, mainly keratinocytes, but also melanocytes, Langerhans cells, and Merkel 

cells are present. The basal keratinocytes serve as progenitor cells, undergoing differentiation, 

by concurrently migrating to the epithelial surface. Here, cytokeratins are the most fundamental 

markers for epithelial differentiation and cell type (80). 

Between the basal layer and the lamina propria, there is a connective tissue, the basal membrane 

consisting of laminin, collagen IV, and fibronectin. The lamina propria mainly consists of oral 

fibroblasts and collagen I, but vascular and lymphatic vessels, nerves, salivary glands, and 

occasionally macrophages, mast cells, and lymphocytes are found as well (81). Hereby, 

fibroblasts play a significant role in the extracellular matrix (ECM) production and the epithelial 

phenotype, as it was shown that keratinocytes are less able to proliferate and migrate without 

fibroblasts in the matrix (82) and dermal fibroblasts led to a more differentiated epithelium in 

contrast to oral keratinocytes co-cultured with mucosal fibroblasts (83). In the submucosa, 

small and big salivary glands are located and responsible for the saliva production, which is 

transported via small ducts to the mucosa surface. The saliva protects the mucosa and helps in 

nutrition uptake. Saliva is mainly composed of glycosylated proteins, antimicrobial peptides, 

and digestive enzymes, and divided into the mucosal pellicle (high Mw glycoproteins) and the 

free-flowing saliva (low Mw glycoproteins), building a complex network (84). 

In the transformation process from a normal oral keratinocyte to a malignant tumor cell, various 

possible mutations concerning the hallmarks of cancer, as permanent cell proliferation, 

resistance to growth suppressors and cell death mechanisms, unlimited replication, and the 

activation of angiogenesis and invasion, can take place (85). But there are some mutations, 

which are often present as mutations of the EGFR, which is overexpressed in over 90% HNSCC 
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◊ ◊ ◊ ◊ ......... c, ... 
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cases (86), as well as mutations in the p53 and phosphatase and tensin homolog genes. These 

neoplastic changes then start to get visible in histology by hyperplasia and dysplasia. Tumor 

cells often show enlarged nuclei with characteristic pleomorphism (Figure 4). Commonly, the 

atypic cells are first seen in the lower one-third of the epithelium (mild dysplasia), and then 

spreading into the upper layers (moderate dysplasia) and finally covering the complete 

epithelial layer (carcinoma in situ). By breaking through the basement membrane, the 

carcinoma in situ becomes a carcinoma, infiltrating the subepithelial tissue and forming nests 

and cords (87). With advanced tumor growth, the angiogenesis is increased, and the tumor cells 

can invade into i.e., skeletal muscles, cranial bones, and lymph nodes, and form secondary 

tumors.  

 

Figure 4 Head and neck squamous cell carcinoma histology. Hematoxylin and eosin staining of a) a 

T2N0M0, G2 squamous cell carcinoma of the tongue from a 65-year-old man, and b) a further tumor 

passage which was grown in a patient-derived xenograft. With preparation and permission of Dr. Konrad 

Klinghammer from Charité Berlin. 

 

Oral mucosa and HNSCC 3D models In recent years various oral mucosa models have been 

developed, characterized, and analyzed, always keeping the specific research question and 

purpose in mind. 3D NOM models found their use in various fields like host-pathogen 

interaction studies (88, 89), dental material toxicity (90), and mouth wash assessment studies 

(91, 92). There can be for example split-thickened models, only consisting of the epithelial 

layer and full-thickness models consisting of both, the epithelial layer and the lamina propria. 

These split-thickened models are also found on the market from Skinethic laboratories (Lyon, 

France) and MatTek Corp. (Ashland, MA, United States), representing oral and gingival oral 

mucosa, consisting of 3D multilayered keratinocyte cell lines. The building procedure is very 

similar to skin models, but the small sizes in donor oral tissues are limiting the available 

numbers of primary cells for oral mucosa models. Mostly cancer cell lines are used to build up 
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the epithelial layer, which makes it difficult to determine drug impacts on the normal oral 

mucosa.  

Besides the variability of cells, the scaffold selection is an important step for a good tissue-

engineered model since various scaffold materials are differing in porosity, mechanical 

properties, biostability, and biocompatibility, showing high impacts on the model’s 

morphology and longevity. Common scaffolds are based on for example collagen, gelatin, 

fibrin, or synthetic polymers. The major advantages of collagen-based models are high 

biocompatibility and a good keratinocyte multilayer formation providence (81).  

 

Tumor microenvironment and the Extracellular matrix  

Everything which surrounds a cell has an impact on its morphology and behavior. The tumor 

microenvironment is the most important key player in tumor progression and drug response 

(93). Due to its complexity, many factors have to be considered, when trying to reflect the in 

vivo tumor situation. The main components of the tumor microenvironment are stromal 

fibroblasts, keratinocytes, infiltrating immune cells, the blood and lymphatic network, as well 

as the ECM. The tumor cells can use these surrounding normal cells for facilitated progression 

and invasion, by manipulating their secretion of growth factors, chemokines, and ECM 

degradation enzymes. 

The ECM gives structural support to all the cells and facilitates a continuous cellular cross-talk, 

maintaining tissue homeostasis (93). Since the ECM is a highly dynamic and variable structure 

that is constantly remodeled, it is difficult to mimic it properly. The ECM is mainly composed 

of collagen, laminin, fibronectin, and heparan sulfate proteoglycans (94). A specialized ECM 

is depicted by the basement membrane (BM), which separates the epithelium from the stroma. 

For the tumor, the BM reflects a border that has to be overcome by BM/ECM remodeling. 

Thereby, matrix-degrading enzymes, like matrix metalloproteinases (MMPs) or heparanases 

(95) can help to enable angiogenesis and invasion. All these named components, but also 

biochemical concentration gradients and tissue polarity have to be considered in tissue-

engineered models and preclinical testing, having a high impact on tumor drug response and 

chemoresistance development (96). Also, the stiffness of the tumor matrix has a strong 

influence on tumor progression by more likable activation of oncogenic intracellular signaling 

and the transformation of surrounding fibroblasts to cancer-associated fibroblasts (CAFs) (97, 

98).  

Being part of the oral mucosa microenvironment, saliva plays a significant role in the 

maintenance of oral health by protecting the teeth from caries and the oral cavity from bacterial 
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infections. Since the saliva composition can be very diverse, the production of useful artificial 

saliva is challenging (99). Although saliva production is reduced in oral tumors, the saliva 

composition can be even changed in patients of HNSCC particularly after radiotherapy 

treatment (100), which makes it nearly impossible to mimic by artificial saliva. Due to its 

functions in tissue repair, buffering acid productions by controlling the plaque pH, and digestion 

by containing enzymes, saliva also has a high impact on drug release and its effects and has to 

be taken into account in preclinical studies. 

 
 

1.5 Thesis Aim and Outline 

 
Head and neck cancer is one of the most aggressive cancer types worldwide and associated with 

high mortality and increasing incidence rates. Current therapy options are associated with 

severe side effects, and high resistance and recurrence rates. Although intense research is done 

to improve the patients’ situations, the success is kept within a limit, highlighting an urgent 

need for more effective therapies. Among other reasons, the shortcomings of preclinical test 

platforms in mimicking the patients’ characteristics, currently limit the translational success 

from bench to bedside.  

The aim of this thesis was to develop a full-thickness 3D oral mucosa model with integrated 

tumor cells to mimic head and neck squamous cell carcinoma for improved preclinical drug 

testing, which was proofed by various aspects (Figure 5). Normal oral mucosa (NOM) models, 

serving as healthy control, and tumor oral mucosa (TOM) models, with different HNSCC cell 

types, have been morphologically characterized and tested for drug application studies. 

Therefore, two drugs of different sizes and classes, used as standard therapeutics in HNSCC 

therapy, were selected. Docetaxel, a microtubule inhibitory which belongs to the most effective 

chemotherapeutics against HNSCC, and cetuximab, an inhibitor of the EGFR and the only 

approved targeted therapy option in HNSCC treatment, were chosen to analyze the drug testing 

potential of the established models. Both drugs have been applied systemically and topically to 

the models, matching clinically used drug concentrations, as described in chapter 2.  

To elucidate tumor re-growth following initial treatment, long-term cultivation of tumor models 

is needed. As the tumor microenvironment is a leading factor in tumor cell behavior and protein 

expression, the ECM as the major component of the tumor microenvironment plays a 

fundamental role in cancer progression. To clarify the benefit of a fully human-based ECM 

approach on head and neck cancer models, respective 3D oral mucosa models were developed, 
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cultured for elongated culture periods, and morphologically analyzed, as described in 

chapter 3.  

Pharmacokinetic profiling is a very important parameter for the dosing and application periods 

of new drugs. Pharmacokinetic profiles can be very variable from animals to humans and as 

well from human to human. For preclinical testing, it would be useful to know the range of drug 

concentration at the target tissue site. To investigate the pharmacokinetics in preclinical models, 

testing on 3D oral mucosa models has been combined with online drug analysis by an ultra-

high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) 

device, as described in chapter 4. 

Finally, to take the results from chapter 2-4 together into a greater relation, the findings are 

related to the existing knowledge about head and neck cancer therapy and the actual preclinical 

testing opportunities, in chapter 5. 

 

 

Figure 5 3D Oral Mucosa Models for preclinical drug testing After drug discovery, drugs are usually 

tested in 2D-cell culture and animal models before it goes into clinical trials. This thesis aimed to 

investigate the potential of 3D oral mucosa models for preclinical drug testing. The outcomes of the 

different investigations are presented in chapters 2-4. This figure includes images of Servier Medical 

Art and ChemDraw Professional. 
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2.1 Contribution to Advanced Preclinical Drug Testing 
 
Head and neck cancer is often associated with high recurrence rates and drug resistance. Since 

only a few drugs are able to pass the clinical trials, we have to improve our pre-clinical test 

models. In this study, we generated 3D TOM models to improve preclinical drug testing in head 

and neck cancer therapy, with the attempt of topical treatment. The 3D models emulated closely 

the in vivo situation in morphology with also reflecting the original tumor grading. Docetaxel 

treatment reduced the tumor volume, decreased the numbers of proliferating cells, increased 

the numbers of apoptotic cells, and lactate dehydrogenase (LDH) and interleukin-6 (IL-6) 

values. These effects could be achieved with fewer drug amounts by a topical, compared to a 

systemic application. Since local application of drugs is generally considered to have less 

systemic side effects, the high efficacy of topical treatment appears promising for neoadjuvant 

or add-on therapy of early or non-resectable cancers. Neither systemic nor topical application 

of cetuximab reduced the tumor cell proliferation, in the 3D TOM models. This cetuximab 

resistance was inherent to the 3D TOM models, since the binding of cetuximab could be 

detected in the tumor tissue by FLIM-analysis. 

This study was conducted and designed by me under the supervision of Prof. Dr. Monika 

Schäfer-Korting and Dr. Christian Zoschke. The building and morphological analysis of the 

models, LDH detection, enzyme-linked immunosorbent assays (ELISA), as well as the TdT-

mediated dUTP-biotin nick end labeling (TUNEL) assays, were performed by me, with the 

support of Christopher Wolff. FLIM analysis of cetuximab detection has been implemented by 

Prof. Ulrike Alexiev and Johannes Stellmacher. Dr. Konrad Klinghammer provided primary 

tumor cells from patient-derived xenografts. The model’s morphology has been validated by 

the pathologist, Dr. Philipp Jurmeister. The data have been critically discussed with Prof. 

Ingeborg Tinhofer-Keilholz and Prof. Ulrich Keilholz. The original paper draft was created by 

me and Dr. Christian Zoschke and revised together with the co-authors.  
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1. lntroduction 
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worldwide in 2018 [1]. Treatment remains drnllenging since cunent 
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efficacy of ClllTent d 1emotherapeutics sud1 as cis- or carbopla t:in, 5-fluo­
rouracil, and taxanes. The introduction of cetuximab, 11.ivolrnnab, and 
pembrolizumab improved the outcome but clicl not overcome the prob­
lem of ptimruy or acquired treatment resis tru1ce in the majority of pa­
tients (3,4]. An improved ,mderstru1ding of the underlying med1nnisms 
is imperative to develop more effective trenm1ent regimens. 

Curren t preclinical models have low power to predict tream1e11t ef­
ficacy, especially in oncology. Only 3.4% o f investigational new anti­
cru,cer drngs, whid, have been effective ru1d safe in pre-clinical 
s tudies, successfully complete clinical trials [5]. While ru,imal models 
ru·e affected by differences ro the hwuru, pathophysiology [6], mono­
layers of human tumor cells lack the architecnu-e and the nlicroenvi­
rorunent of tumors. Tlu·ee-dimensional (3D) cultmes ,is rumor spheroids 
cru, pru-tly overcome these limitations [7] . However, tissue polruity 
whid, h3S ru, impo1tru11 in1pact on cell-cell ru1d cell-mattix interactions, 
3S weil as on tissue functions [8] is lacking in current 3D models. Thus, 
multi-layerecl mucosa models m.igh t bette,· inlitate the twnor m.icroen­
virorunent in head ru1d neck squrunous cell cru·cinoma (HNSCC) ru,d the 
biological processes involved i.11 rumor progression and tt·eam1ent 
resistance. 

In the present stucly, we ai.med at developing a novel multi-laye.i·ed 
HNSCC model containing in1p01tru,t oral mucosal components, 
thereby reflecting more closely rumor morphology ru1d nlicroenvi.ron­
ment. Afte.i· successful establislun e.111 and basal cl,aracte.iization of 
morphology and epithelial gene expression patte.111S, two drugs from 
cllilical routine tream1ent (docetaxel and cetuximab) with diffe.i·e.111 
phru1.uacological targets and physicocl,enlical properties we.,·e selected 
for drng testing. We assessed whether these models can be used for the 
developmen t of topic,iJ drug delive1y, ru1 appro,icl1 not yet intt·oducecl 
into clinical practice for HNSCC tt·enm1ent despite known close-linliting 
tox.icities of CLUTeJll einig regin1ens and general evidence of less systenlic 
s iele effects of topical ,idm.iJlistt·,ition [9, 1 O]. 

2 . Materials a nd me thods 

2. 1. Materials 

Collagen G, DMEM 1 Ox ancl HEPES buffer we.,·e pm-clrnsed from 
Biocluom (Dannstadt, Germany). The primruy ru1tibodies were pur­

cl13Sed from ,ibcrun (Cambiiclge, UK): Hypox.ia-i.nducible factor (HIF)-l a 
(1 :200, ab51608), interle uk.iJ1 OL)-6 (l :100, ,ib9324), keratin-1 3 (1 :200, 
AE8), Ki-67 (1 :100, ab16667), lami.nin-V (1 :500, P3H9-2), v3Sculru· 
enclothelial growth factor (VEGF, 1 :200, ab1316). A.nti-mouse (lllcl anti­
rabbit IgGs (H + L), with F (,ib')2 Frngment (Alex,i Fluo!® 488 ru1d 594 
Conjugate) we.,·e obta.iJ1ed from Cell Signaling Teclmology (Danve.i·s, 
MA, USA). 

Hum(lll oral ke.i·atinocytes from oral mucosa ancl human oral fibro­
blasts from tJ1e oral cavity we.,·e usecl from one s ingle clonor pe.,- batd 1. 
cells as weil as keratinocyte and fibroblast meclia were purcl,3Sed from 
Sciencell (Carlsbacl, CA, USA). The HNSCC cell li.ne SCC-25 (RRID: 
CVCL_ 1682 (1 1]) W3S a generous gift from Howard Green, Dru,a-Fru·ber 

Cancer IJJStitute (Boston, MA, USA) ru1cl UM-SCC-228 cells (RRID: 
CVCL_7732 [l 2]) were pm-cliased from Sigma-Alcliich (Munidl, Ge.i·­
Jll(llly). HNSCC cells we.,·e isolatecl from two patie.111-cle.i·ivecl xenog,·afts 
(PDX (1 3]). The expe.i·i.mental proceclures confonued to tJ1e principles of 
tJ1e Declaration of Helsinki ru1cl infonned writ te.11 co11SeJ1t was obta.iJ1ecl 
from all the clonors. 

The following medium components were obtainecl from Sigma 
Alclrich: Ade.iune HCJ monohyclrate, ruuphotericin B, cholern tox.in, 
DMEM nuttient mixtw·e F-12 Ham, DMEM/F-12 GlutaMAX, hyclrocor­
tisone, insu.lin, L-ascorbic acid, MEM millimum essential medium, 
trruJSfen-i.n, ru1d tt·üodo-L-thyronine. Bovine serUlll albunli.n solution, 
collagenase, ttypsin solution ancl tJ1e in situ cell cleatJ1 cletection kit were 
also purchased from Sigma Alcl1ich. I 2-well plates ancl 1 2-well iJJSe1t s 
(0.4 µm pore si.ze) were obtained from Greiner bio-one (Leipzig, Ge.,·­
many). EGF ancl non-essential an1ino acicls were purcl,asecl from 
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ThermoFisher Scientific (WaltJ1am, MA, USA). 

2.2. Patient-derived xenograft processuig 

Patient-derived xenograft tissue was cut into 3 mm thick pieces, 
incubated for 1 hat 37 °C in 0.1 % collagenase type IV / ttypsin solution, 

ru1cl agitatecl eve.iy l O nli.n. The reaction W3S stopped by mecliun1 con­
taining 9% fetal calf serum (lllcl tJ,e suspe.,JSion centrifuged (1000 g for 5 
nlin) ru1cl filtered tJuough a cell stra.iJ1er (pore si.ze: 0 .7 µm). The mouse 
cell clepletion kit (MiltenyiBiotec; Be.i·giscl1 Glaclbacl1, Germany) was 
used to remove the remaining mouse cells. 

2.3. Cell culture 

Human oral ke.i·,itinocytes ru1cl humru1 oral fibrobl3Sts were cultw·ed 
in oral keratinocyte ru1d fibrobl3St mecliwn, respectively. The SCC-25 
cell l.iJ1e ancl the PDX-clerived tumor cells we.i·e grown in DMEM/F-12 
Hrun medium, supplementecl with 9% fetal calf serum, 0.9% L-gluta­
nli.ne, ancl penicill.iJl/streptomyci.i1. The UM-SCC-228 cell line was 
grown in MEM, supplen1ented with 9% fetal calf serum ancl 0.9% non­
essential anli.no acids a t 37 •c in a hunliclified am,osphere with 5% 
C02. The cell lines we.,·e regulru·ly cl,eckecl by s i.i1gle nucleoticle poly­
morph ism autJ1entication (Multiplexion; Heiclelbe.i-g, Ge.i-mru1y). The 
mecli,un was cl1ru1ged tJm,e tin1es a week, ru1d cells we.i·e pass,iged after 
reach.iJ1g confluency of 80%. Cell cul ture W3S pe.,-fonued accorcli.i1g to 
st(llldru·cl ope.,·at:ing procedures =d refen-ed to good cell cul llffe practice. 

2.4. MIT assay 

The i.iulibit01y effect of cetux.iJuab in monolayer cultmes of HNSCC 
cell lines was cleternli.necl usi.i1g the MTI assay. Biiefly, cells we.re seeded 
i.,1 a 96-well plate at a density of 500 (SCC-25) or 1000 cells/ well (UM­
SCC-22B). T'wenty-fou,· hours after seecling, cetuxin1ab W3S aclded at tJ1e 
i.i1dicated concentt·ations (range: 0.1 - 100 µg/mL) . celI monolaye.i-s we.,·e 
tJ1en cultivatecl for 8 clays until renclili1g confluency of - 80% in un­
m,ated contt·ols. At tJ1e end ofthe expe.,iment 3-(4,5-din1etJ1yltJüazol-2-
yl)-2,5-cliphenyltetrazoli.U1U bronucle rengen t (MIT) w3S ,icldecl to the 
cells. After 1 h of incubation, fonuazan complexes we.,·e dissolved i.i1 
DMSO ancl absorbance W3S me3Sured a t 595 ruu witJ1 tJ1e AR2001 
nlicroplate reacler (A.ntJ1os Mikrosysten1e GmbH; Krefeld, Genu ru1y). 
Su1vival fractions after cetuxirnab treatment we.,·e calculated based 011 
tJ,e s LUv ival of untreated cells. Swvival fractions at encl, close level were 
cleternlined i.,1 sextuplets. At least tJu·ee i.i1clepenclent expe.,-iments we.i-e 
carried out. 

2.5. Buildu,g of multi-layered n,mor oral mucosa (TOM) models 

Nonual multi-laye.i·ecl oral mucosa consists of a lru1lina propria un­
cle.111eath an epitheliurn. To build a lamina propria i.i1 our ex vivo model, 
0.1 x 106 human oral fibroblasts per model were embecldecl in collagen 
G (Fig. 1 a). For nom,al oral mucOS3 (NOM) models, 1 x 106 of hun1ru1 

oral kerat:inocytes we.,·e seeclecl onto the lrunina propiia comprutment on 
clay 7. A Teflon ring (0 7.5 nm1) placed for 4 h on the model sur face kept 
the cell suspernion i.,1 place. For TOM models, we seecled 0.8 x 106 of 
hum= oral ke.i·atinocytes on clay 7 ru,cl aclclecl 0.2 x J 06 of SCC-25, UM­
SCC-228 or PDX-cle.i·ived twnor cells on clay 8 o nto the lanlina propria 
comprutment. The growth meclium for TOM and NOM models consisted 
of DMEM-Fl2 GlutaMAX, 9% fetal calf se.i·Ulll, 0.9% L-glutru1li.ne, 0.9% 
penicillin/ streptomycin 0. 9%, 40 µmol/1 ade.iline HCl monohycl.rate, 30 
µg/1 =iphoteric.in B, 0. l nmol/1 cl1olera tox.in, l O µg/J EGF, 3.5 mL/1 
hycli·ocort:isone, 4.4 mg/1 insulin, 0.5% non-essential ru1uno acids, 4.4 
mg/1 tt1l.11Sfe1Tin ru,d 2 nmol/1 trüoclotJ1y ro1line. The growth mediwu 
was rnru1ged tJ,ree tin1es a week ru1cl replaced by cliffe.i·entiation mediwu 
a t day I 4. The diffe.i·entiation meclimu c011Sis tecl of growtJ1 medium 
completecl witJ1 0.25 nunol/1 3Scorbic acicl. From clay 14 onwru·ds, the 
model sur foce was kept medium-free to expose tJ1e epithelium to tJ1e air. 
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Model freezing 
Further analysis 

Fig. 1. Procedure outline. (a) Por model buildine fibroblasts were embedded into collaeen o n day 0. On day 7 the oral kcratinocytes and on day 8 the tumor cells 
were seeded onto the mode.ls. Docetaxel (D) was applied three times and cetuximab (C) five times. Medium samples were coUected on each day of tre;1tment and on 
day 21. Models were subj«ted to morphological analysis on day 2 1. (b) Schematic cross-section ofTOM rnodels following topical and systemic drug administration 
(green). (Por interpret.ation of the references to color in this figure legend, tbe reader is referred to tJ1e Web version of th.is article.) 

On day 21, the moclels were frozen and stored at - 80 •c (Fig. l a). 

2. 6. Drug trcatment of TOM models 

Docetaxel (M = 808 Da; SJ J 48, Selleckchem, Houston, TX, USA) was 
clissolved in DMSO to a stock solution of 70 rng/rnL and diluted in dif­
ferentiation mediwn to final concentrntions of 0.007, 0.07, 0.7, 7 µg/ 

rnL. Differentiation medium containi.ng 0.01 % DMSO served as solvent 
control since this was the maxllnLun DMSO concent.ration an1ong all 
drug doses. Docetaxel was applied tlu-ee times per moclel (Fig. 1 a). 

Cetuximab (M = 146 kDa; A2000, Selleckchem) was solubilized in 
PBS to a stock solution of 5.2 mg/rnL and diluted to 10 and 100 µg/mL to 
a maximum concent:ration of 0.2% PBS in differentiation medium. 
Cetuximab was applied repeatedly five times per model (Fig. 1 a). 

We administerecl the drugs every 48 h, consideiing the doubling time 
of about 50 h for SCC-25 cells ancl 34 h for UM-SCC-228 cells (1 4]. Drug 
doses con-esponded to plasma levels in patients. The steady state con­
centrations wei·e calculated according to equation (1) with the following 
parrunetei·s: bioavailability F = 1, D = 75 mg/ m2 (docetaxel), 250 
mg/m2 (cetuximab), -r = 48 h, CL = 21 l;h/ m2 (docetaxe]), 0.022 l;h/ m2 

(cetuximab) [15, 16 ]. 

FD 
C: = -rCL (Eq. 1) 

The calculated steady-state concent:ration for docetaxel was 0.074 
µg/mL Taking into account the clinically obse1ved <mau of 3. 7 µg/mL 
and Cm1n of 0.007 µg/mL [17], we decided to rest the clocetaxel con­
cent:ration range from 0.007 to 7 µg/mL 

Pham1acokinetic data for cetuximab were more variable. The 
calculatecl steady-state concentrntion of 237 µg/mL was far above the 
trough value (cm1nl of 10 µg/mL [l ß]. Steacly-s ta te concentrations frorn 
the market authorization studies of cetuximab suggested a concentrn­
tion, vruying bet:ween 41 ru1d 156 µg/m.L [1 6]. Consequently, we 
applied 10 or 100 µg/mL cetux.imab to tl1e moclels. 

To test the systeinic ru1d topical drug application, both dr ugs were 
appliecl eithei· by adm.inistering tl1e drug solution o n tl1e moclel su,face 
or by supplen1enting the clifferentiation medium undemeath tl1e moclel 

(Fig. 1 b). The san,e concent.mtions of tl1e drug solutions were used in 
systeinic ru1d topical drng application. The topically appliecl volume was 
selected to cover the ent:ire smface of the TOM moclels. Due to the dif­
ferei1ce in tl1e applied volumes (Table 1, 4,500 µL systeniic vs. 40 µL 
topical), the final drug dose was l J 2.5-fold highei· at systei1iic compru·ed 
to topical admiu.ist:ration. 

2. 7. Histochemical and i11u11wrofiuorescence Ollalyses 

At tl1e ei1d of drng exposure, the TOM cultures were snap-frozen ancl 
cut into 7 µm slices using a cryotome (Leica CM 1510 S; Leica, Wetzlar, 
Gern1any). O.yosections were subjected to staining with hematoxylin­
eosin (H/E), fluorescei1ce-labeled antiboclies for epitl1elial cell 
markers, or pei·ioclic acid-Schiff (PAS). To detect the number of 
apoptotic cells in cryosections of the TOM moclels, tl1e in situ cell deatl1 
detection kit was used according to tl1e manufactw·ei·'s inst:ructions. 
Apoptosis detection is based on TdT-mediated dUTP-biotin 1iick ei1d 
labeling (TUNEL). Pictures wei·e taken witl1 a fluorescence microscope 
(BZ-8000, Keyence; Neu-Isenburg, Gei1uany) and ru1alyzed for epitl1elial 
thickness, prolife.mtion index, and apoptosis using the lmageJ softwru·e 
[19]. 

2.8. Conditioned medium analyses 

Aliquots from the conditionecl cult,u-e medium wei·e collected at tl,e 
indicatecl time points and stored at -80 •c until rumlysis. lntei·leukin-6 
(IL-6) secretion was quantified by tl1e humru1 IL-6 uncoated ELISA 

Table 1 
Correlation of drug concentrations (µg/mL) a nd drug doscs (µg). 4.5 mL 
systemic and 40 µL topicaJ trcatments resuJted in the doses indicated in the tabJe. 

Docet.1.xd Cetuxim3b 

C0ntg (µg:/m.L) 0.007 0.07 0.7 7 10 100 
topic3l 3 X 10- -4 3 X 10- :, 0.03 0.3 0.4 

dose [µg] 

syste mic 0.03 0.3 3.2 31.5 45.0 450 
dose [µg] 
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Normal SCC-25 UM-SCC-228 G1 PDX-G1 G2 PDX-G2 

Fiß. 2 . Morpho lo8}' of untre„ted NOM and HNSCC models. Models wcre cul tured with human oral keratinocytcs (normal), tumor cell lincs (SCC-25 and UM-SCC-
22B), primary tUDlors (GI, G2). For comparison, patient-derivcd xcnozrafts (PDX-Gl, PDX-G2) were ch.JJ""acterizcd bcfore integratioa into HNSCC modcls. (a) 
Hcmatoxylin/cosin (HIE) and (b) Pcriodic acid-Sch.iff (PAS) stain.ing. lmmunolocalization (ßrccn) of (c) laminin-V, (d ) cytokcratin-13 (KRTJ3), (c) l(j-67. JmaßCS 
wcre representative of one to four batches; scale bar = 250 µm. (Por interpretation of the refercnces to color in this figure legend, the reader is referred to the Web 
vcrsion of this article.) 

(Thenno Fisher Sdentific). The CytoTox-ONE hornogeneous membrnne 
integrity nssay (Promega; Mrumheim , Gerrnany) seivecl to quantify 
lactate dehydrogei1ase (LOH) secretion. Both analyses were performed 
using the Optima FluoStru· (BMG Labtech; Ortenbet·g, Geimany). 

2.9. Fluorescc,,ce lifecime unaging microscopy (FLIM) 

Ceruxunab fiuorescence labeling. Cetuxi.rnab was labelecl with fluo­
rescein isoth iocyanate (FITC) yielding cetuximab-FITC. lsothiocyanate 
reacts with :uuines to forma stable thiourea linkage [23]. As protei.ns 
contain pri.mruy amines such as the e-amino group of lysines, protein 
fluorescence labeling via isothiocyanates emergecl as common protein 
stain in m.icroscopic experi.n1et1ts [56] . Cetux.imab contains 23 lysi.nes 
from which about 75% are slUface exposed :u1cl thei·efore expected to be 
accessible to fluorescein isothiocyanate (FITC). For the labeling, J .7 mM 
FITC was addecl to 17 µM cetux.imab and allowecl to incubate for 60 min 
in 100 mM sodium bica.rbonate buffer pH 9.5. Excess clye was retnoved 
by gel chromatography wich Sephadex G25. Labeling stoichiometry was 
detet-ntined to 6 FITC/ cetux.imab with UV- Vis spectroscopy. For this, the 
absorbance spectrurn of the unlabeled cetuxi.n1ab Ai= nm)cenuimab i.s 
subtracrecl from the specb·um of the FITC-labelecl cetuxi.nrnb A(280 nm) 
ceruximab-Ptrc a t the maximum wavelength of fluorescein ( - 500 nm). The 
extinction coefficietlt ePITC = 73,000 M- 1cm- 1 of FITC at the respective 
wavelength is used for normalization. Division by the absorbru1ce of 
cetux.imab at 280 nm, nomrnlized to the corresponding exti.nction co­
effident eeeruxunab = 200,583 M""1cn,-1 of ceruxi.n1ab, yields the molar 
ratio FITC/ cetux.imab. Metnbrru1e binding of cetux.imab-FITC was vei·i­
fied in cell monolayei·s of SCC-25 ceUs . 

FLIM measurc,11ents. Ceruximab-FITC was applied to nu tlti-layered 
SCC-25 and UM-SCC-228 models for 48 h, either systetuically or topi­
cally. The models wet·e snap-frozen and cut into 7 µm slices by a ay­
otome (Leica CM 151 O S). C,yosections were subjected to FUM ru1d 

me..'lStu-ed with a home-built FLIM setup usi.ng time-correlatecl single­
photon counti.ng (TCSPC) [20,21 J. A super conti.nuwn white-light laser 
source (NKT Supei·K Extreine EXU-3, NKT Photonics; Bi.rkertid, 
Demna.rk) genei·ated ps pulses (65 ps FWHM) with a repetition rate of 
19.5 MHz. An acousto-optical tunable filter (AOTF, UV-VlS Select, NKT 
Photonics) selectecl a nrurnw (4.6 nm) specu·al bru1d a t 530 nm to excite 
the fluorophore FITC. The laser berun was scannecl (DCS-120, Beck­
er&Hickl; Bei·l.in, Gem1any) and focusecl onto the sample by a 20x or 60x 
objective (Plru1 N, Olympus; Tokio, Jupan) mounted into an i.nvertecl 
m.ia·oscope (Ix71, Olympus). A hybrid PMT detector (HPM-100-40, 
Beckei· & Hickl) detectecl th e filterecl eiuission (545 nm longpass, 
B1ightLine HC, Setmock; Rochester, NY, USA) of ayosections. The 
collectecl photons were so1ted i.nto 1024 time chrum els (width 1 9.5 ps) 
by TCSPC modules (SPC-160, Beckei· & Hickl). FLIM dara were analyzecl 
using a self-written C++ routine, which sorted pixel i.nto cluste.rs ac­
cording to their fluorescence decay based on a multivru-iate pattem 
recognition method. Clusters were usecl to genei·ute fluorescence life­
tirne signatw·es (FJ.5), and pi.xels were colored according to the respec­
tive fl.5 to yield false-color images [22,23]. 

2. 10. Staciscical a11alysis 

Data :u·e preset1ted as the mean ± standru·d cleviation (SD) obtainecl 
from at least tlu-ee inclependetlt expei-i.n1et1ts. Statistical analysis was 
pe,fonnecl using two-way AN OVA, a level of p :5 0.05 was considei·ecl to 
indicate statistical significance (explorative data a.nalysis). 

3 . Resu.lts 

3. 1. Model characterizacion 

Humru1 twu or cells from different sources reproclucibly prolifei·utecl 
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in tl1e multi-layerecl TOM models. The protocols for TOM and NOM 
models were optimized for a total cultivation time of 21 days (Fig. 1 a) 
since tl1e maxinuun epitl1elial tl1ickness was reached at tl1js time point 
(Figure S 1 ). The multi-layered TOM models preseived tl1e patiet1ts' 
tumor morphology according to the patl1ologist's evaluation (P.J.). 
NOM models reflectecl non-keratiJuzed, Lining oral mucosa, consistiJ1g of 
a bas.11 layer with rouncled cells and multiple layet-s of spinous cells as 
weil as abundant cytokei·atiJ1-13 (KRT13) expression (Fig. 2). 

Moreover, nonnal morphology was reflected by a thin line of 
lanlinin-V between the basal layer and the lrumna propria. In contrast, 
all TOM models depicted an ,mstrnctured, hyperprolifei·ative, and 
tltickened epithelial layei· witl1 reduced KR.Tl 3 and clustered lami.n.in-V 
expression. The SCC-25 models showed a heterogeneous glycogen djs­
aibution, whereas !arge glycogen clustei·s were observed in UM-SCC-
22B models (Fig. 2b). The G2 t,unor model appeared more aggressive 
tl1an the Gl -gradecl twnor model, as seen in epitl1elial tllickness, pleo­
morphism, prolife.ration rate, a.nd lruninin-V d.ist:tibutio~ reflecting the 
clj.n.ical g:racling of the patient's twuor. Since the TOM models lacked a 
distinct basal membrane, we did not classify tumor cell detachmet1t from 
tl1e epitl1eljal layer (Fig. 2b, G2) as an invasive phenotype. Nevertheless, 
single tumor cells also separated from the epitheHal layer in tl1e SCC-25 
model and evei1 more pronounced in the UM-SCC-22B model. 

Using the expression of hypoxfa-inducible factor (HIF)-1 a and 
vascular et1dotl1elial growd1 foctor (VEGF) as sunogate market-s of 
hypoxia, we demonstrated the presence of an oxyget1 g:radjent witllin tl1e 
TOM models (Fig,u-e S2). HIF-1 a expression peaked in the apical prut of 
tl1e rumor layei·, decreased in tl1e traJ1Sition zone and was undetectable 
in the lowei· parts of tl1e lru1una proptia, whei·eas the VEGF expression 
was most pronow1ced at the invasion front of the tumor. 
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3.2. Efficacy of topical docetaxel treatment in TOM models 

We next cleternlined tl1e effects of clocetaxel on tumor size, prolif­
ei·ation, and cell cleatl1 in TOM ru1d NOM models in a vehkle-controlled 
study. Tlu·ee doses of the drug wei·e applied, eithet· by aclmiilisteiing the 
cl.rug solution on tl1e tissue smface (topical) or by supplementing the 
culture meclium (systenlic). Four diffei·ent docetaxel concentrations in 
tl1e range of cliilically obse1ved plasma levels following systetnk expo­
sure were selected. In TOM models cle1ived from cell lines, both topical 
and systet1uc t.reaan ent witl1 docetaxel resulted in a close-depei1clei1t 
reduction in n,mor size, howevet·, lower doses of tl1e topically appHed 
drng wei·e required for the srune magrutucle of effects (Fig. 3, S3). 

Tre.1tment witl1 vellicle cona·ol did neitl1er a ffect the morphology of 
NOM nor TOM models. Fu.rthennore, docetaxel djd not cl1ange the 
morphology of NOM models (Fig. 4, S4). 

Docetaxel a·eatmet1t resulted in abundant epitl1elial cell death and 
reduced epithelial tluckness (Fig. 3). Moreovei·, the expression of the 
basal metnbrru1e mru·kei· lrunülin-V apperu-ed more clustered, while HIF-
1 a expression ru1d the proliferation index (deternlined by the nun1ber of 
Ki-67 positive cells) decreased (Fig. 5, S5). Lactate clel,ydrogenase (LDH) 
release ru1d the portion of apoptotic cells significru1tly increased wltich 
confinned induction of ceU deatl1 by docetaxel a·eaanent (Fig. 5). 
Moreover, intet-leukin-(IL)-6 release was eiu1ru1ced. LDH and lL-6 release 
peaked following two applications of docetaxel on day 18 (Figure S6). 
llrunw1ofluorescence staini.ng of tissue identified the tun1or stroma as a 
majo.r source of docetaxel-imluced IL-6 in the cultm·e medüun 
(Figure S7). 

Altl1ough tl1e maxinwm docetaxel effect was sinlilar in botl1 cell li.ne­
dei·ived TOM models, SCC-25 models showed effects at lowei· docetaxel 
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Fig. 3. Docetaxel effects o n tissue morpho logy and epitheljal th.ic.kness in SCC-25 and UM-SCC-22B models. Hematoxylin/eosin stainine of (a) mode.ls 
following vehicle control and (b) 0 .7 µg/mL doceta.xel treatment. Epithelial thickness posl-treatment in (c) SCC-25 and (d) UM-SCC-228 models. Im ages and data 
werc representative of at least threc batches; scaJe bar= 250 µm.; mean + SO; ++ p S: 0.01, n. s.p > 0.05 compared to 10-fold lowec dose; *p $. 0.05, **p $. 0 .0 1, ***p S: 
0.001 compa.red to ve.hicle control. (Por interpretation of the rcferences to color in this fieure legend, the reader is referred to the Web ve.rsion o f this article.) 
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Fig. 4. Docetaxe l effects o n NOM models. (a) n ,e epithelial thickness and (b) fraction of Ki-67 positive cells at the end of the culturc. (c) Lactate dehydrogenase 
(LDH) release on day 18 normalized to untre~lted NOM modds beforc treatment. Data are represcntative of at least tbree batches and presented as mean + SD. 

<loses than UM·SCC·22B models concerning epithelial thidmess, 
laminin-V c.luste.ring, HIF-la expression, proliferation, and LDH .release. 
Due to the Jower IL-6 baseline levels, responses in the UM-SCC-22B 
models were more pronounced than in SCC-25 models, with an up to 
36-fold increase following docetaxel t:reatment. 

The topical treaanent achieved the sam e effects as the systemic 
a·eatment but m ostly required a 10-times lower drug <lose. For exan1ple, 
a similar reduction in proliferation was observed when applying 0.03 µg 
(0.7 µg/mL) docetaxel topically or 0.3 µg (0 .07 µg/mL) docetaxel sys­
temically (Table 1, Fig. Sa and b). 

3.3. Cetuximab resistmrce in TOM models 

We tl1en evalua ted the effects of cetuxiniab, representing a c.lmllenge 
for topical clrug adntinisa·ation due to its ltigh molecular size. First 
analysis in monolayer cultures revealed UM-SCC-22B ce!Js to be more 
sensitive than SCC-25 cells (Fig. 6a). 

In the TOM models, even five systentic applications of 100 µg/mL 
cetuxin,ab resu!tecl in only ntinor changes of epitl1elial thickness in UM­
SCC-22B models (- 31 %), but no reduction occ111Ted in SCC-25 models 
(Fig. 6b). A high proliferation index (Fig. 6c) at the end of the culture 
period togetl1er with high numbers of lantinin-V c.lusters (Figure S8) 
indicated the selection of cetuximab-resistant tumor cells. 

To understand the mechrutism of decreasecl cetuxin1ab efficacy in 
TOM moclels compai·ed to tl1e respective monolayer cultures, we next 
stuclied the pene trntion of cetuxin1ab i.nto SCC-25 mode ls by Cluste.r­

FUM, allowing to quantify drug penea·ation (Fig. 7) and discrintina­
tion from backgrow1d fluorescence [23,24]. The first inspection of tl1e 
penea·ation profiles at a rnagnification of 20x (Fig. 7a-e) revealed ho­
mogeneous but low drug penetration at a dose of 10 µg/ mL. At ] 00 
µg/mL, however, a clear clifference in the availability of tl1e drug was 
seen berween topical ru1d systentic trentment (Fig. 7b,e). According to 
tl1e c01Tesponding penea·a tion profiles (grny ru·ea as tl1e sum of total 
fluorescence counts), a factor of about rwo-fold ltigher penetrntion was 
found for the epithelial layer ru1cl a factor of - 7-fold in the lruuina 
propria at systentic application. Sin ce Cluster-FLIM allows discrintina­
tion berween different environments of the labeled clrug a t a dose of 100 
µg/mL in the tissue [25], we ru1alyzed tl1e FLIM c.luste.rs at a magnifi­
cation of 60x (Fig. 7g and h). Among tl1e three FLIM duster (colored red, 
cyru1, ru1d yellow) we identified a fluorescence lifetime signature (yel­
low-colored curve in Fig. 7f) tl1at was wtique at 48 h exposui-e times in 
tl1e epitl1elial layer and dicl not overlap with autofluorescence contri­
bution to the cyan and red FLIM duster (Fig. 7b,g). Tlrns, based on the 
sp..~tial Jocalization of the yellow FLIM duster, we assign this duster to 
cetuximab cell interactions. The yellow fluorescence lifetime signature 
resen1bled dosely the cetuximab-m c fluorescence lifetime signature in 
SCC-25 cell monolayers (Fig. 7i). We notecl that tl1e an1ow11 of these 
cellular interactions, i.e. yellow cluster, did not vru1' much between 

topical and systentic internctions in tl,e upper epithelial layer (Fig. 7b,e). 
To further investigate cellulru· effects in UM-SCC-22B models, we 
compai·ed tl1e close-dependency at systentic application (Fig. 7j ru1cl k). 
Similar to SCC-25 we found an inc,·ease at a ltigher dose for both 
peneantion (cyan duster) ai1d cell internction (yellow duster, Fig. 7j-l). 
Taken together, cetuximab was only effective in cell monolayers despite 
readting t tunor cells in tl1e TOM models at topical or systemic 
adntinisa·ation. 

4 . Discussion 

We here present a novel multi-layered HNSCC model, showing !arge 
similarities in morphology, grnding, and protein expression profiles to 
patients' tumors. We could demonstrate tl1at tl1ese models will not only 
be useful for comprehensive molecular and functional analysis of t,unor 
ceU resistance to small pham,acological agents like docetaxel but also 
ai1tibodies of Ja,·ge molecular weight, a dass of tl1ernpeutics for which 
lintitations in drug penetration ru1d target cell bincling have previously 
been reported for twnor xenografts ru1d 3D models [26,27]. 

Mu]ti-layered mucosa models comprise several advrultages over 
currently existing preclinical test systenlS. Beside matching tl1e 
morphology of human mucosa tl1ey clisplay tissue polarity, a fenture 
found to sigrtificantly impact on clrug efficacy due to more physiological 
grnclients of nutrients and oxygen [8]. The analysis of glycogen 
confinned tissue polru·ity in tl,e TOM models, whic.11 was however lost in 
models from less differentiated tumors. The altered glucose metabolism 
in TOM compai·ed to NOM models is in accordru1ce witl1 !arge quantities 
of glycogen in breast, kidney, uterus, bladder, ovruy, ski.n ai1d brnin 
cancer cells [28]. Among other factors, HlF-la can media te glycogen 
accumulation [29], pointing to a potential c.~usal relationsltip berween 
the obseived oxygen graclient and the glycogei1 disa"ibution pattei·ns in 
the TOM models. 

Multi-layei·ed mucosa moclels have also been shown to outperfonn 
monolayer cultures as models for studying the complex processes 
involved in carcinogei1esis [30-32]. We could demonsa·a te tliat 
multi-layei·ed mucosa moclels of oral cancer show in1portant featw·es of 
patients' tumors, inclucling increasecl epitl1elial tltickness, abw1dru11 
pleomorpltism, elevated prolifei·ation rate, ru,cl abnonnal expression of 
lantini.n-V (33-35]. We also showed tl1at these featm es can be used as 
su1Togate efficacy measw·es for i11 vitro evaluation of drugs. An addi­
tional advantage of the model is tl1e possibility of studying twnor sa·oma 
interact io11S, under steady-s tate and a·eatmeill conditions. We obsetved 
relatively high basal ll.r6 levels, whic.11 have also been previously re­
ported for co-cult,u-es of fibroblasts ru1d tumor cells [36]. The increase in 
IL-6 production after docetaxel a·eatment was mainly d1iven by tl1e 
stromal comparanent and the fold-chru1ge in ll.r6 expression was com­
pai·able to c.linical obseivations [37]. Elevatecl IL-6 levels ru·e known to 
cont:ribute to cell n:Ugration, inva.sion, and tumor cell swviva.1 via the 
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Pl3K/Akt pathway and thus to dnog resistance [37,38). Moreover, high 
levels of lL-6 impair activation of antigen-specific T cells (39). 

To date, cwrent topical applications in the oral cavity include 
mucoadhesive hydro-/oleagels, patches, aclhesive tablets, orodispersible 
films, and e lectrospinning of ultrathin fibers to treat canker sores and 
oral tlu-ush [9,10) . Furthermore, nanoparticles or mucolytic enzyme 
decorated canier systems have been developed to improve the mucus 
permeation [40]. However, despite its expecteclly favorable toxicity 
profile, topical cancer treatment rema.ins the exception. lt is cune..ntly 
used in skin cancer where it removes tl1e widespread atypical kerati­
nocytes in field-cance1i zation [ 41]. Altl10ugh HNSCC patients also suffer 
from field-cance1ization [ 42,43) and might also profit from a topical 
t:reatrnent, it has not yet been int:roduced in HNSCC tl1erapy [ 44]. The 
obse1ved effects of low-dose docetaxel in TOM models following topical 
treatment indicate effectiveness of tlus administmtion route in HNSCC. 
Moreover, tl1e lack of local adverse reactions in NOM models suggests a 
safe use. Equal efficacy at lower clrug <loses would significantly climinish 
systemic siele effects of current dn,g t:reatment in HNSCC. Dose-li.nuting 
neutropenia and fwther hematologic adverse events causi.ng discontin­
uation of systemic treatment regin1ens with taxanes [ 45] could be 
avoided by tl1eir topical application. While tl1e saliva wash-out nught 
depict one major cl1allenge for this admiiustrntion route, the generalJy 
weakened mucus production in HNSCC patients should guarnntee suf­
ficient drug penetrntion into tl1e tumor lesion. Radiotl1erapy further 
decreases salivation [46] which shoulcl additionally reduce ehe natw·al 
ban·ier function of saliva for clrug uptake ii1to tl1e oral mucosa. Based on 
ow· findii1gs of sinular extent of cetuxin1ab binding to rumor cells 
following topical and systenuc drug adnu,ustration, topical tl1ernpy 
could also be interesting for high-molecular-weight drugs sucl1 as 
monoclonal antibodies. 

In Jine with the dinical obseivation of modest anti-tumor effects of 
cetuxim ab monotl1erapy in advanced HNSCC patients [ 47], small 
inlu bitory effects of cetuximab treatmeilt was obseived in tl1e cell-line 
dei·ived TOM models wlille it significantly iiuubited cell prolifei·ation 
in monolayer cultw·es. Although sii1illar obseivations have previously 
been reported from comparntive analyses of 2D and 3D models [ 48,49], 
tl1e underlying mecl1:uusms are not yet fully w1dei·stood. Altered 
expression of genes related to apoptotic and proteostasis [50) =d 
reorg:uuzation of tl1e extracellul:u· matJix [51 ] nught be possible ex­
pl:umtions for dnog resistance in 3D comparnd to 2D cultures [52]. 
lncreased HER3/IGFJ R and heregulin signaling [53] as weil as altered 
trnuor-specific processing of lanunin-V :u1d subsequei1t activation of 
EGFR (54] ought also interfere with drug efficacy in TOM models 
recnpitulnting tmnor·microenvironment intern.ctions. Ce.rtainly, future 
studies in TOM models will be requii·ed to address these um·esolved 
questions. 

In tlus pilot study, we only included cell-line derived TOM models in 
our drng scree1ung assays since l:u·ge numbei·s of cells wei·e necessa1y for 
optinuzation of the experimental settii1gs. The drng screeiili1g approach 
can also be extended to models deiived from prim:uy patient mateiial. 
Howevei·, tlüs will requii·e a further nililiaturization of tl1e ex vivo cul­
tmes, in ordei· to reduce the number of ttuUor cells needed for each in­
dividual test weil. Even small-scale cl.rug screening tests would requii·e at 
least J O model replicas for diffei·e11t cl.rug concentJ·ations, velü cle contJ·ol 
and untreated control. This equals to at least two nullion cells per pa­
tient in tl1e cl.esc1ibed setting. Strategies of model optimization ancl. 
nililiaturization will be evaluated in future studies, in ordei· to genei·ate 
TOM models from fresh surgical tumor matedal of patients witl1 non­
resectable tumors where only small rumor biopsies will be available . 
Since TOM models can be gei1ernted "~tlili1 a few weeks, they couJd 
seive as individual test system for drug screening as basis for individu­
alized thei·apy recommendations. Future incorporntion of othei· impor­
tant nucroenviromnent components sucl1 as caJ1cer-associated 
fibroblasts :uid inuu une cells nught fwther improve the informative 
value of tl1e TOM model. Moreover, the use of advaJ1ced extJ·acellular 
matJices coulcl. allow extended culture pei·iocls of TOM moclels with the 

Biomaterials 2S8 (2020) 120277 

possibili ty to study tl1e long-tei·m effects of drugs [55]. 
In conclusion, we established a novel HNSCC model for stucl.ying 

uptake, clisoibution :u1d :u1ti-tumor efficacy of cl.rngs as weil as tl1e 
biological processes involved in drng resist:u1ce. We presei1t füst evi­
dence that topical docetaxel application nught represent a promising 
option for improving efficiency :u1d recl.ucing sicl.e effects in HNSCC 
thei·apy. Future stuclies in !arger ntuUbei-s of patieI1t-derived oral mucosa 
as weil as orthotopic xei10graft models :u·e warranted to confüm these 
i.ntei·esting findings. 
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Normal SCC-25 UM-SCC-22B 

Supplementary Figure 1. Morphology of untreated NOM and TOM models over time. 

Morphology of models (a) one week (day 14) and (b) two weeks (day 21) after cell seeding. 

Images were representative of at least three batches; scale bar= 250 µm. 
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Supplementary Figure 2. Profile of hypoxia-inducible factor (HIF)-1a and vascular 

endothelial growth factor (VEGF) expression at day 21 . Images were representative of 

three batches; scale bar= 250 µm. 



                                                Development and Characterization of Oral Mucosa Models 
___________________________________________________________________ 

 

 

32 

 
 
 
 
 
 
 
 
 

Vehicle ][ Docetaxel 

0.007 µg/ml 0.07 µg/ml 0.7 µg/ml 7 µg/ml 

n ~ ·a. 
0 
t-

IO a N 

ü 
ü 
Cf) (.) .E 

.l!l 

lJ 
(J) 

>-
Cf) 

b 

n 
~ 

. 
·a. 

(D 0 
N t-
N 

1 

ü 
ü 
Cf) 

~ (.) .E ::, 
Q) 

ui 
>-

LJ Cf) 

d 

Supplementary Figure 3. Effects of different docetaxel concentrations on HNSCC 

models and cell monolayers. Morphology of (a, b) SCC-25 models and (c, d) UM-SCC-

22B models following (a, c) topical and (b, d) systemic treatment. Images were 

representative of at least three batches; scale bar = 250 µm; for applied drug amounts refer 

to Table 1. 



Development and Characterization of Oral Mucosa Models 
__________________________________________________________________

  

 

33 

 
 
 
 
 
 

w --I 

> 1 
C 
·c 
E 
ro 

_J 

~ ,..... 
1 

LL 

I 

l Vehicle 7~1 _____ D_o_c_e_ta_x_e_l ____ ~ 
0.7 µg/ml 7 µg/ml 

ü .E , 
Q) ..... 
Cl) 
>, 

Cl) 

ro 
.!:2 
C. 
0 
1-

.!:2 
E 
Q) ..... 
Cl) 
>, 

Cl) 

ro 
ü 
·5. 
0 
1-

.!:2 
E 
Q) ..... 
Cl) 
>, 

Cl) 

Supplementary Figure 4. Morphology of systemic and topical docetaxel treated NOM 

models. (a, b) Hematoxylin/eosin (H/E) staining. (c, d) lmmunolocalization (green) of 

laminin-V and (e, f) HIF-1a following three times of 0.7 or 7 µg/ml docetaxel or vehicle 

control treatment. Images were representative of at least three batches; scale bar = 250 µm; 

for applied drug amounts refer to Table 1. 
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Supplementary Figure 5. Docetaxel effects on the protein expression involved in 

invasion and hypoxia in SCC-25 and UM-SCC-22B models. lmmunolocalization (green) of 

(a-d) laminin-V and (e-h) HIF-1a following three times of 0.007 - 7 µg/ml docetaxel or 

vehicle control treatment. Images were representative of at least three batches; scale 

bar= 250 µm; for applied drug amounts refer to Table 1. 
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Supplementary Figure 6. Docetaxel effects over time of lactate dehydrogenase (LOH) 

and interleukin (IL)-6 release of normal (gray) and SCC-25 (blue) models. LOH release 

following (a) topical and (b) systemic docetaxel treatment. IL-6 release following (c) topical 

and (d) systemic docetaxel treatment. Data were representative of three batches and 

presented as mean ± SO; for applied drug amounts refer to Table 1. 
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Supplementary Figure 7. Profile of interleukin (IL)-6 production following docetaxel 

treatment of SCC-25 models. lmmunolocalization (green) of IL-6 following three times of 

0.7 or 7 µg/ml docetaxel or vehicle control treatment. Images were representative of three 

batches; scale bar= 250 µm; for applied drug amounts refer to Table 1. 
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Supplementary Figure 8. Cetuximab effects on laminin-V expression in SCC-25 and 
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topical and (b, d) systemic cetuximab treatment. Images were representative of one to three 

batches; scale bar= 250 µm; for applied drug amounts refer to Table 1. 
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3.1 Contribution to Advanced Preclinical Drug Testing 
 
The cells’ microenvironment is one of the most important driving forces in cell behavior, as 

well as in disease progression, especially in cancer (101). Consequently, models for preclinical 

drug testing should try to mimic the original microenvironment as close as possible. The 

approach of this study was to improve the models’ ECM by the integration of a human-based 

matrix composed of hyaluronic acid fibers and a mixture of thrombin and fibrinogen, called 

hyalograft. This approach showed its potential already in skin models, with increased stability 

and longevity of the models. To discover the benefits of this approach for 3D NOM and TOM 

models, hyalograft-based models have been built for different cultivation times and compared 

to collagen-based models. All models have been morphologically characterized and analyzed 

by detected protein levels and the ratios of proliferating and apoptotic cells. Hyalograft-based 

models also here showed its potential with an in vivo like morphology in the tumor models, and 

by greater model longevity with the exhibition of proliferating cells at up to 7-weeks of culture.  

This study was conducted and designed by me under the supervision of Prof. Dr. Monika 

Schäfer-Korting and Dr. Christian Zoschke. The building and morphological analysis of the 

models, TUNEL assays, as well as the detection of protein levels and count of proliferating and 

apoptotic cells, were performed by me. The model’s morphology has been validated by the 

pathologist, Dr. Philipp Jurmeister. The paper was originally drafted by me and revised together 

with all the co-authors.  
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3D tumor models clearly outperforrn 2D cell cullures in recapitulaling t issue archilecture 

and drug response. However, their potential in understanding treatment efficacy and 
resistance development should be better exploited if also long-term effects of treatment 

could be assessed in vitro. The main disadvantages of the matrices commonly used for 
in vitro cullure are lheir limiled cullivation time and lhe low comparabilily wilh patient­

specific matrix properties. Extended cultivation periods are feasible when primary human 

cells produce the extracellular matrix in situ. Herein, we adapted the hyalogralt-3D 
approach from reconstructed human skin to normal and tumor oral mucosa models and 

compared the results to bovine collagen-based models. The hyalogralt models showed 

similar morphology and cell proliferation alter 7 weeks compared to collagen-based 

models alter 2 weeks of cullivalion. Tumor thickness and VEGF expression increased 

in hyalogralt-based tumor models, whereas expression of laminin-332, tenascin C, and 
hypoxia-inducible factor 1cl was lower than in collagen-based models. Taken together, 

the in situ produced extracellular matrix better confined tumor invasion in the first part 

of the cultivation period, with continuous tumor proliferalion and increasing invasion 

later on. This proof-of-concept study showed the successful transfer of the hyalogralt 
approach to tumor oral mucosa models and lays the foundation for the assessment of 

long-terrn drug treatment effects. Moreover, the use of an animal-derived extracellular 
matrix is avoided. 

Keywords: eictracellular matrix, head and neck cancer, oral mueosa, personalized medicine, tissue eogineering, 
tumor microenvironment, long-term cultivation, Hyalograft 30 

INTRODUCTION 

Stroma!, endothelial, and immune cells create a unique environment for each individual tumor 
with altere<! paracrine signaling compared to the normal tissue (Zheng and Gao, 2019). Th is 
cellular tumor microenvironment can promote tumor growth, invasion, and dissemination (Varol, 
2019) as weil as treatment resistance (Jo et al., 2018). The impact of the extracellular matrix 
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(ECM) as the major component ofthe tu.mor microenvi.ronment 
in these biological processes remains contradictory or unexplored 
(Pickup et al., 2014; Saggioro et al., 2020). Commonly, tumors 
dysregulate the composition and structure of the surrounding 
normal tissue toward an inflamed, hypoxic, and desmoplastic 
tumor microenvi.ronment (Zheng and Gao, 2019). The effect of 
the tumor environment on the biology of tumors of the oral cavity 
remains to be investigated. 

Patient-specific tumor ECMs are rarely recapitulated ex vivo. 
Tumor cells are either cultivated in scaffold-free ultra-low 
attachment plates or embedded in collagen of animal origin, e.g., 
Matrigel (Langhans, 2018). Furthermore, non-human matrices 
like cellulose are used as scaffolds for ex vivo tumor models (Nath 
and Devi, 2016). Major drawbacks of these approaches include 
poor stability, limited lifespan, and underrepresentation of 
patient-specific tumor microenvi.ronment components. lnitially 
designed to better reconstruct human skin, the hyalograft-3D is 
a biodegradable, non-immunogenic scaffold, which consists of 
esterified hyaluronic acid fibers. lt is certified for medical use and 
allows the fibroblasts to produce and assemble their own ECM 
(Campoccia et al., 1998). Thereby, hyalograft-based skin models 
extended the life by six tim es, com pared to collagen-based skin 
models {Stark et al., 2006). 

Recently, we developed normal and tumor oral mucosa 
models emulating head and neck cancer, with a collagen scaffold 
(Gronbach et al., 2020) to improve non-clinical drug evaluation. 
The 3D model showed !arge similarities in morphology, grading, 
and protein expression profiles to patient's tumors. Moreover, 
the tumor models recapitulated docetaxel and cetuximab effects 
in li.ne with cli.nical observations of head and neck-cancer. 
However, the cultivation ofthe collagen-based hunor models for 
a maxirnum of 2 weeks enabled only the investigation of short­
term drug effects. This represents a major li.mitation for studies 
investigating the impact of genetic heterogeneity and therapy­
driven donal evolution in acquired drug resistance in the tumor 
(Magdeldin et al., 2014; Braig et al., 2017). 

Herein, we assessed whether by using the hyalograft-3D 
approach human tumor oral mucosa models could be maintained 
in ex vivo cuJtures for up to 7 weeks, without major changes 
in tumor cell viability and proliferative activity. 1n addition, the 
i.rnpact of the ECM on tumor growth and invasion in hyalograft­
based tumor oral mucosa models was compared with their 
collagen-based counterparts. 

MATERIALS AND METHODS 

Materials 
Collagen G, DMEM 10 x and HEPES buffer were purchased from 
Merck (Darmstadt, Germany). Hyalograft-3D was purchased 
from Anika Therapeutics (Bedford, MA, United States). The 
thrombin-fibrinogen-solution tisseel® was purchased from 
Baxter (Deerfield, [l, United States). 

Human oral keratinocytes and human oral fibroblasts, as 
weil as the respective cell culture media were purchased from 
ScienCell (Carlsbad, CA, United States). The tumor-cell line 
SCC-25 from the tongue (RRID: CVCL_ l682, Rheinwald and 

Beckett, 1981) was a generous gift from Howard Green, Dana­
Farber Cancer Institute (Boston, MA, United States). The detailed 
composition and origin of the construct growth and construct 
differentiation media were described elsewhere (Gronbacb 
et al., 2020). Here, these media were supplemented with the 
transforming growth factor (TGF)-ßl and aprotinin, obtained 
from ThermoFisher Scientific (Waltham, MA, United States) and 
Merck. 12-well plates and 12-well inserts (0.4 µm pore size) were 
obtained from Greiner bio-one (Leipzig, Germany). 

Hematoxylin, eosin, rotihistol, and rotihistokit were 
purchased from Carl Roth (Karlsruhe, Germany). Periodic 
acid was from Sigma-Aldrich and Schiff's reagent was obtained 
from Merck. Primary antibodies were purchased from abcam 
(Cambridge, United Kingdom): hypoxia-inducible factor lo 
(1:200; RRID: AB_880418), Ki-67 (1 :100; RRID: AB_302459), 
laminin-332 (1:500; RRID: AB_l566368), Tenascin C (1:1000; 
RRID: AB_2043021), vascular endothelial growth factor (1:200; 
RRID: AB_299738). Cytokeratin Pan Plus KLl antibody 
(1:100; RRID: AB_2864507) was from Zytomed (Berlin, 
Germany). Anti-mouse and anti-rabbit IgGs (H + L), witb 
F(ab')2 Fragment (Alexa Fluor® 488 and 594 Conjugate; 
RRIDs: AB_1904025, AB_2714182) were obtained from Cell 
Signali.ng Technology (Danvers, MA, United States). DAPI (4',6-
Diamidin-2-phenylindol) mounting medium was purchased 
from dianova (Hamburg, Germany). The in situ cell deatb 
detection kit (TUNEL assay) was purchased from Sigma-Aldrich 
(Munich, Germany). 

Cell Culture 
Hwnan oral keratinocytes and human oral fibroblasts (ScienCell) 
were cultured in oral keratinocyte and fibroblast medium, 
respectively, at 37°C with 5% C02. The SCC-25 tumor-cell line 
was grown in DMEM/F-12 Harn medium, supplemented with 9% 
fetal calf serum, 0.9% L-glutamine, and penicilli.n/streptmnycin. 
The medium was changed three ti.rnes a week and the cells 
were passaged after reaching confluency of 80%. The cell 
li.ne was tested for mycoplasm and regularly checked by 
single nucleotide polymorphism authentication (Multiplexion; 
Heidelberg, Germany). Cell culture was performed according 
to standard operating procedures and referred to good cell 
culture practice. 

Multilayered Oral Mucosa Model Building 
Tue multi-layered oral mucosa models (Figure IA) were 
constructed as a lamina propria growing undemeath an 
epithelium. All cultures were kept at 37°C and 5% C02 in 
a humidified at:mosphere. The building of collagen-based oral 
mucosa models was described previously (Gronbach et al., 
2020). Briefly, 1 x 105 human oral fibroblasts per model were 
mixed with a buffered solution and added to collagen. After 
solidification of the matrix, construct growth medium was added 
to the model and changed three times until day 7. Tbereafter, 
either 1 x 106 human oral keratinocytes or 1 x 106 SCC-25 cells 
were seeded onto tbe lamina propria compartment for normal 
or tumor oral mucosa models, respectively. From day 14, the 
construct surface was kept medium-free to expose the epithelium 
to the air and the construct growtb medi1un was supplemented 
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with 0.25 mmol/1 ascorbic acid acting as construct differentiation 
medium. On day 21, the models were snap frozen and stored at 
- 80°C. 

The generation of hyalograft-3D was described previously 
(Stark et al., 2006). In brief, the hyalograft-3D is a fleece-like 
matrix, composed of recombinant human hyaluronic acid fibers, 
esterified with benzylic alcohol to retard its degradation. Here, 
hyalograft-3D was cut into disks of 10 mm in diameter to fit the 
size of 12-well cell culture inserts. Next, 1 x 105 human oral 
fibroblasts per model were resuspended in a thrombin solution 
(10 international units/ml), mixed with a fibrinogen solution 
(8 mg/ml) and subsequently added to the pre-cut hyalograft-3D 
pieces. During the following 7 days, the fibroblasts were allowed 
to replace the fibrin by in situ produced ECM components (Stark 
et al., 2006). Thereafter, either human oral keratinocytes or SCC-
25 cells were seeded onto the lamina propria compartment as 
described above for the collagen model. The construct growth 
medium was supplemented with 1 ng/ml transforming growth 
factor-fll and 500 international units/ml aprotinin. TGF-fll 
reduces keratinocyte differentiation and growth (Dahler et al., 
2001). Aprotinin, a serin-protease inhibitor was used to lirnit 
fibrinolysis and thus premature model degradation. Medium 
was changed three times per week. From day 14, the construct 
surface was kept medium-free and aprotinin was reduced to 200 
international wl.its/ml in the construct differentiation medium. 
At the end of the cultivation period, the models were snap frozen 
and stored at - 80°C. 

Morphology and Protein Expression 
The models were cut into 7 µ.m thick slices using a cryotome 
(Leica CM 1510S; Leica, Wetzlar, Germany) and fixed with 
4% paraformaldehyde. The cryosections were subjected to 
either hematoxylin and eosin (H&E), periodic acid-Schiff (PAS), 
immunofluorescence staining or immunohistochemistry (IHC). 
For the H&E staining, slides were successively submerged into 
hematoxylin (5 min), water (5 min), eosin (30 s), 70 and 
99.9% ethanol (2 min) and rotihistol (2 min). Finally, the 
slides were fixed with the rotihistokit and a cover slide. PAS 
staining was performed on a Tissue-Tek Prisma Plus Automated 
Slide Stainer (Sakura Finetech, Staufen, Germany). Slides were 
incubated with periodic acid for 10 min, followed by staining 
with Schiff's reagent for 10 min and hematoxylin for 7 min. For 
immunofluorescence staining, the samples were permeabilized 
for S min hy a 0.5% triton solution, hlocked for 30 min with S% 
goat serum and incubated over night with the primary antibody 
at 4°C. Afterward the slides were incubated for 1 h with the 
secondary antibody. In the end, DAPI mounting medium was 
added to stain cell nuclei and fixed the samples. IHC staining was 
clone on a BOND MAX Automated Slide Stainer (Leica) using the 
HPl program and the BOND polymer Refine Detection System 
(Leica). Images were taken with a fluorescence microscope (BZ-
8000; Keyence, Neu-Isenburg, Germany) and aaalyzed using the 
ImageJ software (Schneider et al., 2012). 

Apoptosis Quantification 
For apoptosis measurements, the in situ cell death detection kit 
was used according to the manufacturer's instructions. The kit 

detects DNA fragrnents in apoptotic cells based on TdT-mediated 
dUTP-biotin nick end labeling (TUNEL). 

Data Analysis 
Data are presented as the mean + standard deviation (SD) 
obtained from up to three independent experiments. Due to 
the explorative data analysis, a level of p ~ 0.05, calculated 
using non-parametric Kruskal- Wallis tests and subsequent 
Dunn's Post hoc-tests, was considered to indicate a statistically 
significant difference. 

RESULTS 

Morphological Analysis 
We extended the culture period from 2 weeks of collagen-based 
normal oral mucosa models (c-NOM) and tumor oral mucosa 
models (c-TOM) to 7 weeks in hyalograft-based h-NOM and 
h-TOM models. To evaluate the impact of the scaffold, we 
cultured also h-NOM and h-TOM for 2 weeks (Figure IA). 

The epithelium of c-NOM models consisted of a basal layer 
with rounded cells and multiple layers of spinous cells, as found 
in non-keratinized oral mucosa (Fignre I B). All TOM models 
depicted an unstructured, hyperproliferative, and tll.ickened 
epithelial layer with atypical, enlarged, irregular tumor cells 
and hyperchromatic nuclei. The tumor morphology appeared 
desmoplastic in particular in h-TOM models after 7 weeks of 
culture (Figure lB, inserts). 

The glycogen distribution was confined to the upper epithelial 
layers of the h-NOM model, while glycogen was found in 
all epithelial layers of c-NOM models (Figure l C). A similar 
pattern was observed in TOM models after 2 weeks of 
culture (Figure 1 C, i.nserts). Only after 7 weeks of culture the 
glycogen distribution became also patchy in h-TOM models. 
Concurrently, cytokeratin-positive tumor cells penetrated the 
hyalograft-3D matrix only slightly as tumor nests, but massively 
invaded the lamina propria compartment as single cells 
(Figure 2A). The final tumor thickness in h-TOM models 
exceeded tumor tll.ickness of c-TOM models, but the difference 
was not statistically signi.ficant (Figure 2B). 

The !arge structures in the larnina propria of hyalograft-based 
models were hyaluronic ester fibers, which were unspecifically 
stai.ned by hematoxyli.n and eosin, periodic acid-Schiff as weil 
as DAPI. The u.nspecific staining might be explained by the 
!arge three-dimensional structure of the fibers and their negative 
charge, which prevented the washout of stains as weil as 
monoclonal antibodies, and led to the intercalation of DAPI 
into the fibers. 

Protein Expression 
The basement membrane protein laminin-332 was expressed in 
particular between the epithelial layer and the lamina propria 
in both h-NOM and c-NOM models (Figure 28). In contrast, 
the expression of laminin-332 was more heterogeneous in TOM 
models with the highest levels in h-TOM models after 2 weeks 
of culture, in particular observed in the subepithelial zone ia 
h-TOM models. 
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FIGURE 1 1 Procedure outline and morphology of NOM and TOM models. (A) Human oral fibroblasts were suspended in a fibrinogen/thrombin solution and poured 
into a patch with esterffied hyaluronic acid fibers (Hyalograft-3D). Flbroblasts replaced the fibrin g<> by their own extracellular matrix (day 1- 7). Normal oral 
keratinocytes or tumor cells were seeded on day 7 onto the matrix and grew until day 21 or 56 (2 or 7 weeks with tumor ools). (B) Hematoxylin and eosin and 
(C) Periodic Acid-Schiff staining. Dark purple structures in both stainings of the lamina propria were hyaluronic acid fibers of the scaffold (black arrows). The inserts 
show the difference between normal and tumor cell morphology by higher magnification. Representative images from the analysis of up to three batches are 
presented. Scala bars = 250 and 50 µm in the inserts. 

The extracellular matrix protein tenascin C was most 
abundant in collagen-based models with no difference 
between NOM and TOM models (Figure 3A). Tenascin 
C expression markedly decreased in hyalograft-based 
models already after 2 weeks of cultivation and further 

declined to 33% (p > 0.05) after 7 weeks. Again, no 
relevant difference between NOM and TOM models was 
observed (Figure 3B). 

The hypoxia-inducible factor (HIF)-la was detected in the 
entire tumor mass of c-TOM models, and particularly in 
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FIGURE 2 1 Expression of cytokeratin and laminin-332 in NOM and TOM models. (Al Cytokeratin staining (brown) showed the absence of invasive growth in NOM 
and c-TOM models. In contrast, nests of cytokeratin positive cells started to infiltrate the lamina propria „ h-TOM models alter 2 weeks and markedly separated into 
single cells alter 7 weeks. (B) Epithelial thickness in TOM models exceeded those in NOM models. The highest value occurred in h-TOM models alter 7 weeks. 
(C) Laminin-332 (green) expression was restricted to a small layer in NOM models and diffusely clustered in TOM models. OAPI stained nuclei and fibers in blue, 
which could however be dislinguished by their size and shape. The inserts show the bcrder between epithelial cells and the matrix, with highest infiltration of the 
tumor cells in the 7 weeks cultured hyalograft-models, by higher magnification. White arrows highlight fibers and dashed lines indicate the bcrder between epthelium 
and lamina propria. Representative images from up to three independent cultures are presented. Scale bars ; 250 and 50 µm in the Inserts. Bar graphs show the 
mean + SO from the quantitative analysis of up to six regions of interest. 

central twnor areas in h-TOM models (Figure JC). Very low 
levels of HIF-la were detected in botb c-NOM and h-NOM 
models (Figure 3D). 

Overall, vascular endotbelial growtb factor (VEGF) was 
expressed at similar levels in the c-TOM and h-TOM models; 
however, the type of matrix interfered witb its localization. 
While VEGF was detected in tbe entire tumor areas of c-TOM 
models, it was restricted to tbe border between the tumor layer 
and tbe lamina propria in h-TOM models (Figures 4A,B). 
VEGF expression further increased after 7 weeks botb in 

NOM and TOM models (p > 0.05). lncreased VEGF levels 
were particularly observed close to hyaluronic acid fibers in 
h-NOM models. 

Proliferation and Apoptosis 
Proliferation was higher in tumor compared to normal models, 
irrespective of tbe used matrix (Figures 4C,D). lmportantly, 
tumor ceUs continued to proliferate excessively in h-TOM 
models until the end of the 7-week culture within aU 
regions of the culture. 
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In c-NOM and the 7 weeks cultured b-NOM models, only few 
apoptotic cells could be detected (mean = 2.5%), while in tbe 
2 weeks h-NOM models apoptotic cells made up to 20% of the 
epithelial cells (Supplementary Figure 1). 

In TOM models, both 2 weeks cultured c-TOM and h-TOM 
models depicted less than 5% apoptotic cells, but the 7 weeks 
cultured h-TOM models sbowed up to 30% apoptotic cells. 

DISCUSSION 

We here showed that normal and tumor oral mucosa models can 
be successfully cultured in a hyalograft-based scaffold, allowing 

extended ex vivo cultivation. Our data corroborate previous 
findings showing that byaluronic acid and its derivatives provide 
a well-defined and tunable scaffold for ex vivo tumor models 
(Fong et al., 2014). Moreover, byalograft-based models are not 
affected by the poor adbesion of epithelial layers and the tendency 
to shrink of collagen-based models (Stark et al., 2004). In contrast, 
nylon-meshes and collagen-cbitosan-sponges, whicb bave been 
tested for elongated cultivation periods bave the d isadvantage 
of requiring long pre-cultivation and displaying considerable 
stiffness, thus complicating tissue sectioning and analysis (Michel 
et al., 1999; Stark et al., 2006). 

Hyalograft-based tumor models contained high numbers of 
proliferative cells and recapitulated hallmarks of oral cancer 
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even after a cultivation period of 7 weeks. In particular, 
increased epithelial thickness, abundant cellular pleomorphism, 
and the altered laminin-332 expression, very weil reflected the 
histopathological characteristics of patient tumors (Miyazaki, 
2006; Bernstein et al., 2013; Jerjes et al., 2019) . Thus, 
h-TOM models should be suitable to monitor long-term tumor 
progression as weil as the effects of anti-proliferative drugs and 
the potential tumor re-growth after an initial treatment cycle. 
An improved understanding of the re-growth kinetics after drug 
treatment would help to overcome drug resistance, which is 
currently the major cause of treatment failure (Vasan et al., 2019). 

Beside !arge similarities in protein expression patterns of 
hyalograft-and collagen-based models, there was a significant 

difference in tenascin C expression. The increased expression 
of tenasci.11 C in collagen-based models might explain the faster 
growth in the epithelial layers of both c-NOM and c-TOM 
models, since tenascin C is known as a provisional matrix 
for keratinocyte growth (Pellegrini et al., 1999). Moreover, the 
expression of the extracellular matrix proteins tenascin c and 
fibronecti.11 discrimi.J1ates low- and high-risk tongue cancers 
(Sundquist et al., 2017). Low tenascin C expression in the h-TOM 
model established from SCC-25 cells is in line with the previously 
described poorly invasive phenotype of this cell line model 
(Ramos et al., 1997). 

Normal oral fibroblasts better confined hunor invasion 
in hyalograft- than in collagen-based models after 2 weeks. 
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This difference might be related to paracrine signaling between 
fibroblasts and tumor cells which has been shown to depend on 
the composition of the ECM (Barcellos-Hoff and Bissell, 1989; 
Boudreau and Bissell, 1998). Laminin-332 appears to play a key 
part in the invasion process, in line with its higher expression 
in h-TOM compared to c-TOM models. While a well-defined 
laminin-332 expression is typical for normal tissues, clustered 
larninin-332 expression is known to promote cell survival 
and twnorigenesis, especially in squamous cell carcinoma 
(Marinkovich, 2007). In addition, the occurrence of desmoplasia 
in h-TOM models might contribute to delayed invasive growth 
and reduced hypoxia compared to c-TOM models. These 
differences in the ECM of collagen- and hyalograft-based models 
need to be considered in evaluating drug effects since hypoxia 
reduces the clinical efficacy of anticancer drugs (Brennan et al., 
2005; Johnstone and Logan, 2006). 

Although this proof-of-concept study shows the suitability of 
the hyalograft scaffold for the ex vivo cultivation ofTOM models, 
future studies need to elucidate the scaffold effects on patient­
derived tumor cells and compare these results to in vivo twnors. 
One limitation ofthe current h-TOM model is the relative high 
percentage of apoptotic twnor cells in long-term cultures. Further 
approaches for model improvement in the future might thus 
include also testing of additional supplements to the construct 
growth mediwn. Moreover, future studies will show whether 
the hyalograft approach better recapitulates the interaction of 
immune and turnor cells in an immunocompetent model of oral 
mucusa twnur, which seems very likdy since the scaffulu is nun­
immunogenic (Galassi et al., 2000). Given their close correlation 
to the individual twnor, long-term cultivation of human TOM 
models offer the opportw1ity to study tumor re-growth and 
alterations in the twnor stroma after initial treatment and thus 
will help to better understand drug resistance mechanisms. 

CONCLUSION 

The hyalograft-3D approach recapitulated key features ofhunrnn 
oral squamous cell carcinoma in multi-layered ex vivo twnor 
models for up to 7 weeks. The long-term cultivation provides 
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Supplementary Figure 1. Apoptosis in NOM and TOM models. a) Localization of apoptotic cells (red) by 

TUNEL assay and b) thei.r quanti:fication. The percentage of apoptotic cells peaked in h-NOM models after 

two weeks cultivation period and in h-TOM models after seven weeks of cultme. DAPI stained nuclei and 

fibers in blue, which could however be distinguished by their size and shape. The inse1ts highlight detected 

apoptotic cells in the epithelial layers by higher magni:fication. White anows highlight fibers and dashed lines 

indicate the border between epithelium and lamina propria. Representative images from up to three 

independent cultures are presented. Scale bar = 250 µm and 50 µm in the inse1t. Bar graphs show the mean + 

SD from the quantitative analysis of up to six regions of interest. 
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4.1 Contribution to Advanced Preclinical Drug Testing 
 
Pharmacokinetic profiling and the determination of the drug concentration at the target site are 

important factors in the drug dosage finding procedure. Automated pharmacokinetic sampling 

with minimal efforts, would facilitate the ability of high-throughput drug screenings and so 

make preclinical drug testing more efficient.  

To aim this goal, 3D TOM models have been built inside a UHPLC-MS/MS device, with an 

integrated sampling-port. After model treatment with four different docetaxel doses, this 

construction offered automatic drug concentration measurements, without additional sample 

preparation, for a period of 96 h. Although the resulted concentration-time curves show 

variabilities in their profiles, this study represents a first proof-of-concept for automated 

pharmacokinetic drug profiling of 3D TOM models by UHPLC-MS/MS. 

This study was conducted and designed by Prof. Maria Kristina Parr, Dr. Christian Zoschke, 

Dr. Jan Joseph, and me. The model adaptation with the integration of the sample-port into the 

model, as well as the building and morphological analysis of the models, were conducted by 

me, with the support of Leticia da Silva Cruz, and Jill Garcia Miller. The UHPLC-MS/MS 

measurements were performed by Dr. Jan Joseph. The data were analyzed, and the original 

paper was drafted by Dr. Jan Joseph, Dr. Christian Zoschke, and me. The critical discussion of 

the data and the revision of the manuscript were done together with the co-authors. 
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Abstract: Cancer treahnent often Jacks individual dose adaptation, contributing to insufficient efficacy 
and severe sideeffects. Thus, personaUzed approaches are highly desired. Although various analytical 
techniques are established to determine drug levels in preclinical models, they are limited in the 
autornated real-time acquisition of pharrnacokinetic profiles. Therefore, an online UHPLC-MS/MS 
systern for quan titation of drug concentrations within 3D tumor oral rnucosa models was generated. 
Tue integration of sam pUng ports into the 3D tumor rnodels and their culture inside the autosarnpler 
allowed for real-time pharmacokinetic profüing without additional sarnple preparation. Docetaxel 
quantitation was validated according to EMA guidelines. The tumor rnodels recapitulated the 
morphology of head-and-neck cancer and the dose-dependent tumor reduction following docetaxel 
treatment. Tue administration of four different docetaxel concentrations resulted in cornparable 
courses of concentration versus time curves for 96 h. In conclusion, this proof-of-concept study 
demonstrated the feasibility of real-time rnonitoring of drug levels in 3D tumor rnodels w ithout 
any sarnple preparation. The inclusion of patient-derived tumor cells into our models rnay further 
optirnize the pharrnacotherapy of cancer patients by efficiently delivering personalized data of the 
target tissue. 

Keywords: autornatization; drug absorption; drug dosing; head-and-neck cancer; pharrnacokinetics; 
real-time measurernents; taxanes; tissue engineering; UHPLC-MS/MS 

1. Introduction 

Selecting clinically relevant <loses for the evaluation of anticancer drugs rem ains challenging in 
preclinical d rug developrnent and contributes to the low tran slatability of effects in vitro to efficacy in 
patients. While the understanding of cancer biology advan ces as the cornplexity of turnor models and 
analytical techniques increases, the success rate of drug developrnent in oncology rernains the lowest 
arnong a ll therape utic areas. 

Phamzaceutics 2020, 12, 413; doi:10.339<Vpharmaceutics12050413 www.mdpi.co m/journa1/pharmaceutics 
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Historically, anticancer d rug doses for clinical trials have been determined by extrapolating the 
maximum tolerated dose (MfD) in animals to the human patient. Taking the MTD as the starting 
point, the effective and safe dose for humans was anticipated in the range of -3 to +3, with three 

concentrations below and three concentrations above. The revision of this concept is urgently needed, 
since many nonoptimal doses were taken into late stages of drug development. Especially the testing 
of high-risk drugs requires a more conservative approach, using the minimum anticipated biological 
effect level (MABEL) in first-in-human trials [1,2]. 

Up to now, new concepts focused on the improved extrapolation from animaJ s tudies to clinical 
trials, e.g., by introducing drug metabolism and pharmacokinetic studies in early drug development (3]. 
1n particular, model-based, adaptive/Bayesian approaches already helped to better find effective and 
safe dosage [4]. Nevertheless, animal models are affected by differences in the human pathophysiology 
and even xenograft models do not fully recapitulate the barriers of drug uptake into human solid 
tumors [5]. 

1n fact, drug exposure of tumor cells depends on the architecture of solid tumors with cell density, 
the spatial arrangement of cells and extracellular matrix proteins, interstitia1 fluid pressure, and 
vascular supply (6--8]. While 2D monolayer cell culture cannot provide meaningful insights into 
the pharmacokinetic profiles of solid tumors, sophisticated 3D tumor models such as spheroids or 
multilayered tumor models could do this, eventuaUy even in a patient-specific manner (9,10]. 

The introduction of in vitro tumor models into the dose selection for a particular patient requires 
adapting the protocols to high-content, high-throughput approaches to handle high numbers of tests, 
e.g., with different drugs and several combinations. However, analytical approaches to quantify drug 
amounts in tissues comprise imaging- and microdialysis-based methods. While imaging techniques 
and microdialysis closely map the drug distribution within (tumor) tissues, all methods share the high 
effort needed in sample preparation (11,12], restricting their use for personalized medicine. 

Herein, the development of an in vitro approach for real-time pharmacokinetic investigations 
in human celi-based models of head-and-neck squamous cell carcinoma is reported. lt aims for an 
automated measurement of docetaxel concentrations within the tumor tissue to quantify the drug 
absorption. Therefore, an UHPLC-MS/MS method was adapted from clinical practice and optirnized 
for a maximum n umber of online measurements per time. 

2. Materialsand Methods 

2.1. Materials 

Oral fibroblasts and oral fibroblast medium were purchased from ScienCeLI (Carlsbad, CA, USA). 
Tongue cancer celis from the SCC-25 celi line (RRID:CVCL_1682) were a generous gift from Howard 
Green (Dana-Farber Cancer Institute; Boston, MA, USA) (13]. Collagen G was purchased from Biochrom 
(Berlin, Germany) and consumables for tumor oral mucosa model culture from Greiner bio-one 
(Leipzig, Germany). Docetaxel was purchased from Selleckchem (Houston, TX, USA). Acetonitrile, 
formic acid, methanol, and isopropanol, all LC-MS grade, were purchased from Sigma-Aldrich 
(München, Germany). 

2.2. Cel/ Culture 

Oral fibroblasts were precultured in oral fibroblast medium and SCC-25 cells in DMEM/F-12 Harn 
medium, supplemented with 9% fetal calf serum, 0.9% L-glutamine and 0.9% penicillin/streptomycin 
at 37 °C and 5% C02. The cancer cells were regularly checked by single nucleotide polymorphism 
authentication (Multiplexion; Heidelberg, Germany). The medium was changed three times a week 
and the ceUs were subcultivated after reaching a confluence of 80%. CeU culture was performed 
according to standard operating procedures and referred to good cell culture p ractice. 
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2.3. Sample Port Integration into Tumor Oral M11cos11 (TOM) Models 

Tumor oral mucosa (fOM) m ode ls were prepared as d escribed elsewhere [14) but adopted to 
a 6-well-plate design to handle the integration of the sample p ort (Figure l a). In brief, 0.3 x 106 

ora l fibroblasts were em bedded in collagen G and 1 x 106 SCC-25 cells were seed ed on top of these 
lamina propria equivalents one week afte r. The mode l growth medium w as changed three times 
a week and replaced by model differentiation medium one w eek after seeding the tumor cells [14). 

The sampling port w as created by placing a 24-well insert (400 nm pore size) into the TOM model before 
the collagen s tarted to solidify. The tumor cells proliferate d and migrated into the collagen m atrix 
around the sampling port for seven d ays, before d ocetaxel w as a pplied . The 24-we ll insert was fixed 
by a custom-made m etal support and filled with 600 µL serum-free growth medium. The top of the 
6-we ll plate was sealed w ith aluminum foil (VWR, Darmstadt, Germany) instead of us ing the standard 
plastic lid. TOM models were incubated at 37 °C inside the autosam pler of the UHPLC-MS/MS device 
(Agilent Technologies GmbH, Waldbronn, Germany) for the 96 h observation period in the fina l week 
of TOM mode l culture. 

a b
. :_. . ; .. . . C 

Figure 1. Experimen tal design and morphology of tumor oral mucosa (TOM) models. (a) Schematic 
cross-section of (1) sampling port with the needle of the autosampler, (2) TOM model with tumor ceUs 
(brown) and fibroblasts (magenta) within lamina propria, (3) Reservoir with differentiation medium, 
supplemented with docetaxel. Tue arrows indicate drug diffusion equilibria. Hematoxylin and eosin 
(H&E) staining ofTOM models following two applications of (b) the vehicle control and (c) 7000 nwmL 
docetaxel. Images were representative of four batches; scale bar = 250 µm. 

2.4. Docetaxel Treatment of TOM Models 

Docetaxel w as d issolved in DMSO to a 70 m&'mL stock solution and diluted w ith construct 
d ifferentia tion medium to 7; 70; 700; 7000 n&'mL. DMSO, 0.01 % in model differentiation medium, served 
as vehicle contro l since this w as the m aximum DMSO concentration among aU samples (0.00001 %; 
0.0001 %; 0.001 %; and 0.01 % DMSO for 7; 70; 700; 7000 n&'mL docetaxel). Docetaxel solutions were 
applied two times per construct wi th an application interval of 48 h. 

2.5. Morphological Analysis 

TOM models were snap frozen at the end of the 96 h observation period and cut into 7 µm thick 
s lices using a cryotome (Leica CM 1510 S; Leica, Wetzlar, Germany). Cryosections were analyzed by 
hematoxylin and eosin (H&E) staining and pictures were taken with a microscope (BZ-8000; Keyence, 
Neu-Isenburg, Germany). 

2.6. UHPLC-MS/MS Analyses 

Method A: For automated real-time quantitation of docetaxel, an Agilent 1290 UHPLC coupled to 

an Agilent 6495 triple quadrupole tandem mass spectrometer equipped with a Jet Stream electrospray 
ionization (ESI) source was used (Agilent Technologies GmbH, Wa ldbronn, Ge rman y). Separa tion 
of docetaxel w as achieved on an Agilent Poroshell Phe nyl Hexyl column (50 mm x 21 mm, 1.9 µm 

particle s ize) equippe d with a corresponding gu ard column (5 mm x 2.1 mm, 1.9 µm particle size) 
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using water (solvent A) and acetonitrile (solvent B) each containing 0.1 % formk acid (v/v) as mobile 
phase. At a flow rate of 0.350 ml/min, the following gradient was applied: 5% B for 0.5 min, to 100% B 
at 4 min, 1 min hold, 5% Bat 5.1 min, stop time 6.50 min. The column compartment was kept at 40 °C. 
The injection volume was 5 µLand the autosampler temperature was set to 37 °C. A needle wash 
(acetonitrile/methanol/ isopropanoVwater, 25% each, v/v/v/v) was applied for 20 s while an additional 
needle seat backflush using an Agilent Flex Cube was used to minimize carry over (15 s at 2 ml/min 
with needle wash solvent, pure isopropanol, and a mixture of water/acetonitrile (95/5, v/v) containing 
0.1 % forrnic acid). The total run time was 9.75 min. 

The mass spectrometer was operated in multiple reaction monitoring (MRM) acquisition mode. 
Positive electrospray ionization mode (ESI+) yielded the sodium adduct of docetaxel [M + Na]+ 
and was detected at m/z. 830.3. Source and MRM parameters were optimlzed using Mass Hunter 
Source Optimizer software (version 1.1, Agilent Technologies lnc., Santa Clara, CA, USA). Final source 
parameters were as follows: drying gas temperature: 230 °C, drying gas flow: 20 l./min (nitrogen), 
nebulizer pressure: 40 psi (nitrogen), sheath gas temperature: 390 °C, sheath gas flow: 12 l/min 
(nitrogen), capillary voltage: +4,500 V, nozzle voltage: +300 V, high pressure radio frequency (HPRF): 
210 V, low pressure radio frequency (LPRF): 160 V. MRM details are listed in Table 1. MassHunter 
(Quant) software (version B08, Agilent Technologies lnc., Santa Clara, CA, USA) was used for data 

acquisition and processing. 

Table 1. Multiple reaction mon.itoring (MRM) transitions of docetaxel sodium adduct, used in method A. 

Precursor Ion (111/z ) Producl Ion (111/z ) Coll ision Energy Cell Accelerator Voltage Polarity 

830.3 549.l 25 4 Positive 

830.3 304.l 20 2 Positive 

Method B: For identification of degradation products, an Agilent 1290 II HPLC connected to 
an Agilent 6550 iFunnel QTOF w ith Agilent Jet Stream source was used (Agilent Technologies lnc., 
Santa Clara, CA, USA). Separation of docetaxel and its me tabolites was achieved on an Agilent 
PorosheU Phenyl Hexyl column (50 mm x 21 mm, 1.9 µm particle size) equipped with a corresponding 
guard column (5 mm x 2.1 mm, 1.9 µm particle size) using water (solvent A) and acetonitrile (solvent 
B) each containing 0.1% forrnic acid (v/v) as mobile phase. At a flow rate of 0.350 ml/min, a longer 
gradient was applied: 5% B for 0.5 min, to 37% Bat 5 min, 50% Bat 10 min, to 98% Bat 15 min, 

2 min hold, back to 5% Bat 17. l min, stop time 19 min. The column compartment was kept at 40 °C. 
The injection volume was 5 µL. A needle wash (acetonitrile, methanol, isopropanol, water) was applied 
for 20 s. The mass spectrometric parameters were as follows: drying gas temperature: 230 °C, drying 
gas flow 14 l./min (nitrogen), nebul izer pressure 40 psi (nitrogen), sheath gas temperature: 375 °C, 
sheath gas flow: 12 L/min (nitrogen), capillary voltage +4,500 V, nozzle voltage +300 V, high pressure 
radio frequency 200 V, low pressure radio frequency 100 V, fragmentor 365 V. Data acquisition was 
performed in auto MS/MS mode using a mass range of m/z. 100--1000 at a scan rate of 1 spectrum/s for 
MSl and m/z. 50--1000 for MS2 experiments at 3 spectra/s. The collision energy was adjusted depending 
on the target m/z value (offset 4 eV, slope 3 eV/m/z 100). 

2.7. Validation. 

Method A was used for automated real-time quantitation of docetaxel and validated in terms of 
selectivity, carry-over, lower limit of quantitation (LLOQ), calibration function, accuracy, and precision 
following the recommendations of the European Medicines Agency's (EMA) guideline on bioanalytical 
method validation [15]. All calibration (CAL) and quality control (QC) samples were freshly prepared 
in serum-free model differentiation medium as sample diluents. 

Selectivity and carry-over: The guidelines require the analysis of matrix from four different lots. 
Since the matrix was artificial, no remarkable differences had tobe considered. Thus, only one batch 
was used for assessing selectivity. Blank samples (serum-free model differentiation medium) were 
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analyzed and compared with samples spiked with docetaxel at the LLOQ. Less than 20% detector 
response of the LLOQ is required for the b lank samples. Carry-over was determined by analyzing 
blank samples after the injection of a high concentration QC (HQC) sample (7,500 nglmL). Aga.in, 
less than 20% detector response of the LLOQ is required to comply with the EMA guidelines. 

Lower limit of quantitation and calibration: The LLOQ needs to be determined with sufficient 
accuracy and precision and with at least 5 times higher detector response than a blank sample. 
For evaluation, matrix-matched samples of0.1, 0.25, 0.5, 1.0, 5.0 nglmL were investigated. Additionally, 
the limit of detection (LOD) was determined based on calculations according to ICH guidelines [16]. 
Calibration samples in medium ranged from the LLOQ of 0.001 µglml to the upper limit of quantitation 
(ULOQ) of 10 µglml. In addition to an analyte free matrix sample, eight levels of calibration samples 
were prepared in triplicate and analyzed on two consecutive days. 

Accuracy and precision: Accuracy and precision were assessed on serum-free medium samples 
spiked with docetaxel at 4 different QC levels with 5 replicates per level in a concentration range from 
the LLOQ to the ULOQ covering the calibration range. Sarnples were analyzed on two different days. 
Mean concentrations and the coefficient of variation (CV) of QC samples were required tobe within 
±15% in general, or ±20% at the LLOQ of the nominal concentrations, respectively. Within-run and 
between-run accuracy and precision were determined. 

2.8. Sample Preparation for the Identification of Degradation Products 

Tue degradation products of docetaxel were analyzed in the differentiation medium cu ltivated 
with the models (fable 2). To handle these samples, a protein precipitation procedure was performed. 
Aliquots of 100 µL of the sarnples were added to 400 µL of cold acetonitrile and centrifuged at 3328x g 

for 10 min. The serum-free supernatant was then transferred into LC-MS/MS vials for further analysis, 
according to method B. 

Table 2 LC-MS data of docetaxel (highlighted gray) and postulated degradation products, acquired 
using method B. 

RT Exact 
Mass 

Degradation Product Formula (min) 111/z Mass 
Adduct Accuracy 

(ppm) 

Carbamate C35I--4sNO12 4.30 708.3010 708.3015 [M + H]+ 0.65 

lODABIII C29H36O10 4.55 545.2378 545.2381 [M + H]+ 0.60 

Epi-carbamale C:l8H45NO12 4.72 708.3004 708.3015 [M + H]+ 1.47 

Epi-l0DABIII C29H36O10 5.31 567.2196 567.2201 [M + Na]+ 0.76 

Oxo-lODABIII C29H34O10 5.40 565.2041 565.2044 [M +Na]+ 0.56 

Epi-oxo-lODABIII C29H34O10 5.84 565.2040 565.2044 [M + Na]+ 0.67 

1-7 Docetaxel C43H53NO14 7.95 830.3374 830.3358 [M +Na]+ -1.9 
Epi-Docetaxel C43H53NO14 9.08 830.3377 830.3358 [M +Nai+ - 226 

Oxo-Docetaxel C43Hs1NO14 9.94 828.3200 828.3202 [M +Na]+ 0.19 

Epi-oxo-Docetaxel C43H51NO14 11.07 828.3192 828.3202 [M + Na]+ 1.16 

2.9. Phannacokinetic Analysis 

Pharrnacokinetic analyses were conducted in R [17]. First, a non-compartmental analysis was 
performed. Assumptions were: (i) dose was calculated by concentration in the reservoir x volume 
(Figure l a(3)); (ü) area under the concentration curve (AUC) 0-48 h lasted until 48 h and AUC 
48-96 h until the end of the experirnent; (üi) for the concentration between 48-96 h the unmeasured 
concentrations were not considered. Afterwards, interval AUCs were calculated. For 0-48 h, the AUC 
was calculated from 0.0001 h (start of the experiment) to the end of the 1st cycle; for 48-96 h, the AUC 
was calculated from the time "end of the 1st cycle" to "end of the 2nd cycle". However, the end 
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of the 2nd cycle varied, since in some experiments, the last concentrations could not be measured . 
Tue max:imum concentration (Cmax) w as determined based on the measured concentra tions; time to 
max:imum concentration (tmax) was the corresponding time to Cmax-

3. Results 

3.1. TOM Models with Sampling Port 

Tue TOM models reproducibly showed an unstructured and hyperproliferative epithelial layer 
with pleomorphic tumor cells, also separating from the epithelial layer into the lamina propria. Neither 
the sampling port nor the cultivation within the autosampler of the UHPLC-MS/MS device influenced 
the tumor growth. Tue effects of d ocetaxel on the tumor size in TOM models by supplementing the 
d ifferentiation medium with either two drug <loses or the vehicle control were determined. Whereas the 
vehjcle control did not change the tumor morphology (Figure 16), docetaxel caused a dose-dependent 
reduction of tumor size with abundant epithelial cell death (Figure 1c). Tue average tumor size declined 
from 347 ± 72 µm (untreated ) to 100 ± 45 µm (max docetaxel concentration, n = 4 each). 

3.2. Docetaxel Epimerization and Degradation Products 

Duringelectrospray ionization, docetaxel mainly forms a sodiumadduct ([M + Na]+ theor=830.3358), 
whk h is used as p recursor ion for aU MS/MS experiments. As shown in Figure 2 (top), the product ion 
spectrum of d ocetaxel shows three major fragments at m/z. 549.2095 (taxane nucleus (10-deacetylbaccatin 
III, lODABIII), [C29H34O9 + Na]+, exact mass m/z 549.2095, mass error /::,.m/z = 0 ppm), m/z 304.1159 
(phenylpropionic acid side chain, [C14H19N O+Na]+, exact mass m/z 304.1155, l::,.m/z. = - 1.17 ppm), 
and m/z 248.0537 (side cham w ith loss of the tert-butyl moiety, [C10H11N O5 + Na]+, exact mass 111/z 
248.0529, 6 111/z = -3.05 ppm). Tue two mam fragments m/z 549. 1 and m/z. 304.1 were later chosen for 
MRM transitions in real-time quantita tion (method A). 
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Figure 2. Docetaxel s tructure fragmentation. (a) Chemica1 structureof docetaxel and main fragmentation 

p roducts. (b) Product ion spectra of docetaxel (top) and its potentia l 7-epimer (bottom), precursor [M + 
Nai+ theor = 830.3358 indicated with b lack rho mbus. 
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Analyses o f docetaxel reference substance as weU as ceU culture media w ithout ceUs, and TOM 
models, revealed a second peak with almost identical MRM transitions (method A, chromatogram 
showing transitions in Figure Sl ) and product ions (method B, Figure 2 (bottom)). lt already appeared 
only minutes after preparing the samples for analysis with serum-free medium as sample diluent. 
This degradation product is postulated tobe the 7--epimer of docetaxel (epi-docetaxel), which is 
known to occur in basic and acidic conditions [18,19]. Since the epimerization could not be avoided in 
calibration or quality control samples as weU, the combined peak areas of docetaxel and the 7--epimer 
were considered for all further quantitation experiments of docetaxel. 

Based on accurate mass data, we postulated further degradation products beside the main 
degradant epi-docetaxel. Oxidized species of docetaxel and several hydrolysis products (ester and 
carbamate hydrolysis), as weil as oxidation of the products of ester hydrolysis and their respective 
epimers (Table 2, Figures S3 and S4) are assigned. Two oxidized species of docetaxel show abundant 
sodium add ucts in MSl of m/z 828.3200 (oxo-docetaxel, RT: 9.94 min, [C43H51 NO14 + Na+j+, exact 
mass m/z 828.3202, l::i.m/z = 0.19 ppm) and m/z 828.3192 (epi-oxo-docetaxel, RT: 11.07 min, [C43Hs1NO14 
+ Na+]+, exact mass 111/z 828.3192, l::i.m/z = 1.16 ppm). Their MS/MS spectra show abundant fragrnents at 
m/zoxo--docetaxel 772.2534 and m/Zepi-oxo-docetaxel 772.2584 ([C39H.nNO14 + Na]+, exact mass m/z. 772.2576, 
l::i.m/z.0 xo-docetaxel =-1.07 ppm and l::i.m/Zepi-oxo--docetaxel =5.41 ppm), which may originate from the loss 
of the tert-butyl residue. They both show a fragment corresponding to an oxidation at the taxane 

nucleus at m/Zoxo--docetaxel 547.1927 and m/z.epi-oxo-docetaxel 547.1955 ([C29H32O9 + Na]+, exact mass m/z 
547.1939, l::i.1,vz0 xo--docetaxel = 2.11 ppm and l::i.111/zepi-oxo-docetaxel = -3.01 ppm). Analogously to docetaxel, 
the fragment 117/z 304.1173 originated from the intact phenylpropionic acid side chain ([C14H19NOs + 
Na]+, exact mass m/z. 304.1155, l::i.m/z.0 xo--docetaxel = -5.77 ppm). 

Further degradation products of docetaxel resulted from the ester hydrolysis of the taxane nucleus 
and the phenylpropionic acid s ide chain and are postulated here as lODABill (m/z 545.2378, RT: 
4.55 min, [C29H36O10 + H]+, exact mass m/z 545.2381, l::i.m/z = 0.60 ppm) and epi-lODABIII (1,vz 567.2196, 
RT: 5.31 min, [C29H36O10 + Na]+, exact mass m/z 567.2201, l::i.117/z = 0.83 ppm). A loss of benzoic acid, 
acetic acid and two losses of water from lODABIII resulted in the fragrnent 117/z 327.1587 ([C20H 22O4 

+ H]+, exact mass m/z 327.1591, l::i.117/z = 1.18 ppm). Epi-lODABill showed a fragrnent at mjz. 445.1791 
([C22H30Os + Na]+, exact mass 117/z 445.1833, l::i.m/z = 9.41 ppm) which may correspond to the loss of the 
benzoic acid moiety and m/z 385.1615 ([C20H26O6 + Na]+, exact mass 1,vz 385.1622, l::i.117/z = 1.71 ppm), 
which indicates a subsequent loss of acetic acid. 

These two hydrolyzed esters most likely exist in an oxidized form as weU, which are proposed 
as oxo-l ODABill (111/z 565.2041, RT: 5.40 min, [C29H34O10 + Na]+, exact mass 111/z 565.2044, l::i.117/z = 
0.56 ppm) and epi-oxo-lODABIII (111/z 565.2040, RT: 5.84 min, [C29H34O10 + Na]+, exact mass 111/z 
565.2044, l::i.m/z. = 0.74 ppm) based on their accurate mass data. They both show a distinct fragrnent 
at 111/zoxo- lODABlll 443.1661 and m/zepi-oxo-l ODABID 443.1680 ([C22H2sOs + Na]+, exact mass 1,vz 443.1676, 
l::i.1,vz0 xo-lODABIII = 3.47 ppm and l::i.m/Zepi-oxo-lODABUI = -0.81 ppm), most likely originaling from the loss 
of the benzoic acid moiety. 

Furthermore, the hydrolysis of the carbamate function of docetaxel revealed two more products: 
'Carbamate' showed an m/z 708.3010 in MSl ([C38~NO12 + Hj+, exact mass 111/z 708.3015, l::i.m/z = 
0.64 ppm), and an abundant fragrnent of m/z 182.0818 in MS/MS which may originale from the cleavage 
of the remaining phenylpropionic acid side chain and the taxane nucleus ([C9H11NO3 + H]+, exact 
mass m/z 1820812, l::i.m/z = -3.46 ppm). 'Epi-carbamate' showed a si.milar product ion spectrum with 
the same base peak of 117/z 1820820 ([C9H11NO3 + HJ+, exact mass 111/z 182.0812, l::i.m/z = -4.56 ppm) 
and mjz. 708.3004 ([C38~ 5NO12 + H]+, exact mass mjz. 708.3015, l::,.111/z. = 1.47 ppm) in MSl. 

An exemplary chromatogram of the degradation products foUowing two applications of 70 µ.glmL 
docetaxel for 48 h each is shown in Figure S2. We found only trace amounts of docetaxel degradation 
products in the TOM model media foUowing the two applications of 7 µ.glmL docetaxel for 48 h each. 
Therefore, we did not consider the degradation products in the real-time pharmacokinetic analyses. 
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3.3. Validation 

As method A is used for quantitation in the online hyphenation of the tumor model with UHPLC 
based analysis, it was validated according to the guideline of the EMA [15]. 

Selectivity and carry-over: The me thod fulfilled the criteria for selectivity ( <20% response in 
blank artificial matrix compared to response obtained at LLOQ) w ith a maximum of 7.45% detector 
response. Carry-over was a more critical parameter since the concentration range was ve ry broad. 
Even after the opti.mization of the injector wash procedures, the detector response of analyte-free 
matrix samples exceeded the allowed 20% LLOQ detector response with a maxirnum of 29.42% after 
injection of HQC samples. Therefore, additional blank sample injections were included after samples 
of high concentrations resulted in successful prevention of carry-over. 

Lower limit of quantitation and calibration: The concentration of 0.001 µ.glmL showed acceptable 
accuracy (92.42- 114.17%) and precision (6.58%CV) and was therefore chosen as the lowest point 
of the calibration. Based on the EMA guideline, the calculated LLOQ was 0.16 nglmL and LOD 
0.05 nglmL, respectively. 

For the calibration function, a quadratic fit after log-log transformation of the data provided the 
best results in terms of a combination of low residuals and best overall accuracy. All CAL samples met 
the requirements by EMA. 

Accuracy and precision: The method (A) fulfilled the reguirements given by EMA. Calculated 
concentrations of QC and CAL samples were within ±15% of the nominal values (Table 3), only 8.33% 
(within-day) and 15% (between-day) with only individual values outside. 

Table 3. Accuracy and precision c: docetaxel concentration, CV: coefficient ofvariation, RE: Relative 

e rror as measure of accuracy, LLOQ: lower lim.it of quantitation, LQC: lower qua)jty control, MQC: 

m.iddle quility control, HQC: higher quality control. 

QC Within-Day (11 = 5) Between-Day (11 = 5) 

Expected c 
Mean 

CV RE Mean 
CV RE 

Calculated c Cakulated c (nglmL) 
(nglmL) 

(%) (%) 
(ng/mL) 

(%) (%) 

LLOQ 1.00 1.06 7.26 5.71 1.01 11.40 1.62 

LQC 3.00 2.76 2.27 - 7.87 267 3.37 - 10.94 

MQC 3000 3027 7.83 0.89 3254 9.48 8.48 

HQC 7500 6982 7.79 -6.91 7676 9.57 235 

3.4. Docetaxel Pharmacokinetics in TOM Models 

The area under the concentration curves (AUC), the maxirnum concentration (Cmax), and the time 
to maxirnum concentration (tmax) as main pharmacokine tic parameters for the concentration versus 
time profiles of docetaxel within the sampling port are summarized in Table 4. 

The course of the concentration versus time curves was comparable between the applied drug 
doses (Figure 3). Following the administration of docetaxel by supplementing the differentiation 
medium of TOM models in the reservoir at Oh, the drug concentration increased until a plateau phase. 
The time to maximum concentration tmax, 39 ± 7.9 h was almost independent of the administered 
docetaxel dose, while the Cmax depended on the administered docetaxel dose. Following the exchange 
of the differentiation medium, again supplemented with the same docetaxel doses, we detected 2.4-
to 9.1-fold increased maximum concentrations and 2.4- to 8.8-fold increased AUCs in the sampling 
port compared to the respective values following the fust docetaxel administration. Furthermore, 
we detected about 4- to 7-fold higher docetaxel concentrations in the sampling port compared to 
the applied docetaxel concentration (Figure 3b,c). This effect was not observed when applying 7 or 
7000 nglmL docetaxel (Figu re 3a,d). Again, the tmax values were close to the end of the treatment cycle 
with values ranging between 82 and 89 h. 
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Table 4. Main pharmacokinetic parameters following 1st docetaxel application (0--48 h) and 2nd 

d ocetaxel application (48-96 h). c docetaxel concentration, AUC: area under the curve. 

C AUC (0--48 h) Cmax (0--48 h) tmax (0--48 h) 

(ng/mL) 
Mean CV Mean CV lmu CV 

(h X nglmL) (% ) (ng/mL) (% ) (h) (%) 

7 66.3 44.6 1.9 194.5 43.9 14.5 
70 444.4 12.5 14.4 25.3 39.5 20.7 
700 13,324 26.0 461 29.0 41 9.9 
7000 85,658 8.3 2492 10.4 32 21.4 

C A UC (48-96 h) Cm;uc (48-96 h) lm;uc (48-96 h) 

(ng/mL) 
Mean CV Mean CV lmu CV 

(h x ng/mL) (%) (ng/mL) (%) (h) (% ) 

7 151.4 84.4 6.0 65.1 82.8 16.2 
70 3915.1 75.0 131.4 78.5 82.7 15.5 
700 78,890 75.1 2850 66.3 83 16.6 
7000 211,171 12.2 5920 7.3 90 13.7 
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Figure 3. Concentration- time curves of docetaxel. Docetaxel concenlrations in the sampling port of 

TOM models following the application of (a) 7, (b) 70, (c) 700 or (d ) 7000 ng/mL docetaxel. Docetaxel 

was supplemented to the differentiation al O and 48 h (arrows), n = 4 for each concentration. 

Moreover, the concentration versus time curves showed a different shape in two experiments 
(blue and black curve vs. red and green curve in Figure 3a-c). The slope of the blue and black curves 
markedly differed from the slope of the red and green curves after the second docetaxel administration. 
The relatively constant docetaxel concentrations within the sampling port could result from evaporation 
of medium from the reservoir (Figure l a(3)), causing in loss of contact of the model with the reservoir. 
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Evaporation also affected the accessibility of the sarnple fluid for the autosampler needle, since we d id 
not measure docetaxel from certain time points on (e.g., black curve in Figure 3c). 

4. Discussion 

An automated UHPLC-MS,'MS method with online samp ling in TOM models is presented here. 
This proof-of-concept study demonstrated the feasibility of real-time monitoring of drug levels in TOM 
models without any sample preparation. To achieve this, both the analytical method for docetaxel 
quantitation in human blood samples [20] and the culture ofTOM models [14] needed tobe adapted 
only slightly. Our approach was validated according to EMA guidelines [15] and is easily transferrable 
to other in vitro disease models. 

In vitro studies frequently use drug doses far higher than the maximum tolerated dose in 
patients [21]. This overdosing causes effects in vitro that are not reproducible in vivo, contributing to 
the high attrition rate of investigational new drugs in clinical trials. Even if the patients tolerate such 
high <loses, they w ill be prone to off-target effects. Aside from the bench-to-bedside extrapolation of 
drug doses, clinical data can be useful to conduct more relevant studies for investigation of personalized 
adaptations. Considering the maximum plasma concentration at the highest single dose recommended 
in the drug product of marketed drugs provides an upper limit for in vitro studies [22]. This concept 
is particularly useful to test potential new indications for approved drugs. We used docetaxel as a 
model drug to develop our analytical approach since both the efficacy and the pharmacokinetics of 
docetaxel are weU-known [22]. After calculating a steady-state concentration of 74 ng/mL docetaxel 
in patients foUowing an intravenous application of 75 mglm2 (for details, see [14]), we selected 7; 70; 
700; and 7000 ng/mL as test concentrations in TOM models. The AUC within the TOM models ranged 
between 66.32 and 85,658.15 h x nglmL foUowing the first, and between 151 and 211,171 hxng/mL 
following the second docetaxel application. Together with Cmax values below 2492 and 5920 nglmL, 
these in vitro results were in range of the clinical application of 100 mg/m2, which results in an AUC of 
4600 h X ng/mL and Cmax of 3700 ng/mL [23]. 

Focusing on the nominal concentration of 70 ng/mL, we detected less docetaxel in the sampling 
port than has been found in human blood sarnples. This discrepancy supports the hypothesis of the 
poor uptake of anticancer drugs into solid tumors [6]. Likewise, paclitaxel penetrates only to the 
periphery of spheroids [5]. Nevertheless, docetaxel uptake into the TOM models increased following 
the second drug application. Since apoptosis results in enhanced drug uptake into inner cell layers 
of solid tumors [8], tumor ceUs dying after the first application should favor docetaxel u ptake into 
TOMmodels. 

Moreover, our method provides an in-depth insight into the formation of docetaxel degradation 
products. Since docetaxel epimerization is associated with a loss of potency and tumor resistance 
development in vivo [24], the considerable epimer formation will affect the efficacy of docetaxel. 
In contrast, the trace amounts of oxidation products and carbamates should not lintit docetaxel 
effects in TOM models, although they are 10- to 40-fold less active [25]. The degradation products 
were identified by QTOF-MS and related to degradation products known from the literature [26]. 
Nevertheless, our approach aUows for only limited insights into clinically relevant clearance due to the 
absence of hepatic metabolism and biliary excretion. lf tumor ceUs metabolize the applied drugs, the 
quantitation of local metabolites w ill be feasible as weU, but in the case at hand, we observed docetaxel 
epimerization and formation of degradation products as artifacts also in ceU-free medium. 

Differences between docetaxel concentrations in human patients and TOM models also arise 
from differences in protein binding. Whereas plasma protein binding of docetaxel is 97% in the 
patients [22], protein binding in medium containing fetal bovine serum is saturable. Paclitaxel, close 
in chernical structure to docetaxel, shows a protein binding between 79% at 500 ng/mL and 20% at 
15,000 ng/mL [27]. Thus, we expect higher amounts of free drug available compared to the patients, 
especially following the application of 7000 ng/mL docetaxel. Nevertheless, we were not able to 
discriminate free against total docetaxel concentration, since the membrane of the sampling port has a 
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pore size of 400 nm. Most protein sizes range between 1 and 100 run, making protein diffusion into 
the sampling port likely. This might also expla in higher Cmax values in th e sampling port than the 
administered concentration in the reservoir, s ince we quantified all docetaxel within the sampling port. 
The first docetaxel administration saturated the prote in binding and intracellular fluids, the second 
application d irectly increased the concentration in the interstitial fluid of TOM models and the sampling 
port. However, we assume complete equilibration between the interstitial fluid of the TOM model and 
the sampling fluid w ithin two hours, equal to the time interval we selected betwecn two measurements. 
Thus, signals of the concentration over time curve earlier between zero and two hours might not 
recapitulate the concentration within the interstitial fluid of the TOM model, but p rovide an insight 
into the lag-time between docetaxel application and first appearance w ithin the sampling port. As 
to be expected, the lag-time decreases with increasing docetaxel concentrations: 11.1 ± 3 h (7 nglmL 
docetaxel application) compared to 1.82 ± 0.6 h (7000 nglmL docetaxel application). 

Since classical microdialysis already allowed insights into tissue-specific drug [28) and cytokine 
levels [29), the automated dete rmina tion o f pharmacokine tic profiles will enable patien t-specific 
analyses in higher throughput. PK-PD modelling already irnproved <lose selection and characterization 
of drug effects on tumor growth, overall survival and safety [30), but requires relevant data for the 
patient and his/her tumor. Nonclinical testing together w ith pharmacometrics may p rovide a more 
detailed insight by testing drugs in patient-specific models and extrapola ting drug concentrations in 
tumors to adapt <lose regimen for patients. 

UHPLC-MS/MS again proved as the method of choice as it was already useful for a w ide range 
of applications in pharmacology, toxicology, and forensics [31- 33). Despite first dilute and inject 
attempts to reduce the time-consuming sample p reparation [34-39), UHPLC-MS/MS analyses still 
often utilizes extensive sample preparation to separate the molecule of interest from interfering 
proteins and potential enzymatic degradation processes [40). Our method (A) used for quan titation 

of docetaxel w as successfully validated in terms of selectiv ity, carry-over, lower lirnit of quantitation 
(LLOQ), calibra tion function, accuracy, and p recision according to EMA guidelines for bioanalytical 
method validation. A very broad concentration range of 1- 10,000 nglmL was covered compared to 
alread y published methods [20,41), allowing the analysis of docetaxel administered ranging from 7 
to 7000 nglmL. The method proved to be accurate and precise, showed accep tab le carry-over after 
includ ing blank injections between high and low concentration samples, as well as fi tness-for purpose 
in LLOQ. Furthermore, the method was fast, being able to separate docetaxel and 7-epi-docetaxel in 
less than 3.7 min (total run-time including cleaning of injector 9.75 min). 

Future studies will compare differences be tween the patien ts' d rug responses and drug delivery 
systems to optimize the <lose regirnen and application form. For increased efficacy, model size and 
sarnpling volume may be further optirnized in the direction of high- throughput, and therefore, enhance 
personalized medicine. 

5. Conclusions 

We developed and evaluated a real-time approach to automatically measure docetaxel 
concentrations in TOM models. Partial epirnerization and neglectab le amounts of degrada tion 
p roducts were detected instantaneously upon application of docetaxel to the medium. The courses 
of concentration versus time curves for 96 h were comparable among four different docetaxel 
concentrations. The firs t drug application resulted in an increase of docetaxel concentration, followed 
by a plateau phase, and exceeded after the second drug application. This proof-of-concep t study paves 
the way for rea l-time pharmacokinetic and further online investigations in 30 tumor models and 
beyond, and thus, he lps to irnprove p reclinical drug development and personalized medicine. 

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/12/5/413/sl, 
Figure 51: Multiple reaction moni toring (MRM) chromatogram, Figure 52: Overlay of extracted ion chromatograms 
of docetaxel and degradation products, Figure 53: Product ion spectra of degradation p roducts, Figure 54: 
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Suggested chemical structure of docetaxel and degradation products, structural differences in comparison to 
doce taxel are displayed in red color. 
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Figure S3. (continued). Product ion spectra of degradation products acquired using method B. (e) 10-

oxo-10-deacetyl baccatin III (RT: 5.40 min, precursor [M+Na]-=565.2041), (f) 7-epi-10-oxo-10-deacetyl 
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5. Discussion  
 

5.1 General Discussion 
 
Head and neck squamous cell carcinomas represent a highly aggressive, heterogeneous group 

of cancers, which makes them difficult to treat. The current therapy options are associated with 

high toxicity, resistance, and low efficiency. Due to the current status, the overall aim of this 

thesis was to establish and assess tissue-engineered 3D NOM and TOM models, for advanced 

drug predictions in preclinical drug testing, for improved HNSCC therapy.  

In the field of tissue engineering, the aim is always to build up a tissue, that mimics the in vivo 

situation as close as possible. But, a complete recapitulation of the in vivo situation will 

probably never be achieved, as the famous aphorism from statistician George Cox “all models 

are wrong, but some are useful” (102), also can be transferred to tissue-engineered models. This 

implies, that we should concentrate on the question “is the model good enough for each 

respective application?”, rather than on “is the model true?”, because it never will. Therefore, 

it is important to identify the essential characteristics the model has to have, to answer specific 

research questions. Additionally, it is of equal importance, to know as well about the limitations 

of the model. And we also have to keep in mind that, as Paul Valéry said, “What is simple is 

always wrong. What is not is unusable” (103), meaning the best model will be useless if it is 

too difficult to build it. In the following, the previously presented results, which are discussed 

in detail in chapters 2-4, are taken into the perspective of advanced preclinical drug testing by 

revealing the models’ opportunities and limitations.  

 

3D NOM and TOM models closely reflect the in vivo morphology The search for good 

models, recapitulating the main characteristics of human oral mucosa and HNSCC, to improve 

drug testing, was part of this thesis. Hereby, the cell source is of big importance, since the cells 

are the main actors in the model. Available NOM models are sometimes built with squamous 

cell carcinoma cell lines as the SkinEthicTM HOE/Human Oral Epithelium model from 

SkinEthic, due to the limited number of available normal oral keratinocytes. But, to build a 

healthy NOM model out of tumor cells, which should later be compared to TOM models, to 

elucidate tumor-associated effects, would be highly misleading. Or a NOM model, only 

composed of an epithelial layer, would fail to answer essential questions about the cellular 

crosstalk.  
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The here presented NOM models are by morphology and composition similar to other published 

full-thickness models (92, 104), and count, due to their composition of human, primary, oral 

fibroblasts, and keratinocytes, to more advanced NOM models. The models nicely presented 

the characteristic cell layers and protein patterns of lining oral mucosa, as seen by the laminin-

332 and cytokeratin-13 markers. The epithelial thickness however was thinner compared to the 

in vivo situation and might be accelerated by improvements of the scaffold, as the integration 

of elastin-like recombinant polymers (105). Furthermore, high reproducibility, robustness, and 

good handling characteristics give evidence, that these models might be a good opportunity for 

preclinical drug testing.  

HNSCC in vitro models have been built at various stages of carcinogenesis, ranging from mild 

dysplasia to invasively growing cancer cells (106, 107). Thereby, diverse cancer cell lines have 

predominantly been used (107), as cancer cell counts from surgical procedures remain low. In 

this study, I used both, two cell lines from the tongue and hypopharynx and two primary cancer 

cell types from the tongue and oral cavity, derived in xenografts with various tumor gradings.  

All tumor models are highly distinguished from the NOM models in their physiological 

composition and protein pattern, as diffuse cell stratification and characteristically higher 

proliferation (Ki-67), resulting in increased epithelial layer thickness. This underlines the 

usability of the NOM models as a healthy control in preclinical drug testing. Additionally, it 

came out, that differences in the tumor grading of various tumor cell types could be reflected 

in the established TOM models as well. So, tumor types of higher grade depicted increased 

heterogeneity and tumor thickness. Due to the fact, that the tumor cells aren´t changed in their 

morphology and protein expression, which is very important for the model’s validity, these 

models set the basis for a more complex test platform with the aim of personalized medicine. 

Concerning the good reproducibility and unlimited availability, the tumor cell line models 

could serve as a model for advanced preclinical drug testing.  

 

Changes in the microenvironment and ECM influence morphology and longevity The 

immense influence of the microenvironment on the cells’ behavior, as their morphology and 

protein expression, was recognized decades ago (108). The age and origin of the fibroblasts for 

example can change the morphology and protein expression of the keratinocytes in 3D skin 

models considerably (109). Especially in the tumor tissue, the ECM has a high impact on cancer 

progression, invasion, and drug response (110). This is the reason, why it is of big importance 

to also integrate normal cells into the 3D-tumor model and to choose the matrix components 

wisely. In 3D skin models, the replacement of collagen with the hyalograft 3D® technology in 
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the scaffold, improved the tissue stability, differentiation, and homeostasis, leading to increased 

model longevity (111). The longevity sets the time frame for the drug application, model 

reactions, and the detection of possible tumor cell re-growth in drug testing experiments. But, 

most used models, as 2D-cell culture, only have a lifespan of maximal one to two weeks (112), 

and many preclinical drug evaluation studies only consider a time frame of a few hours or days 

(113). Here, important information on tumor recurrence and resistance can get lost. There are 

only a few long-term cultured models published and these are often associated with long pre-

cultivation times (4-5 weeks) and difficult sample analysis due to the hardness (nylon mesh) or 

fragility of the matrix material (114, 115).  

In this thesis, the hyalograft 3D approach could be implemented to the NOM and TOM models 

with similar morphology and protein pattern. Interestingly, the wound marker tenascin C could 

be reduced in both hyalograft models, which is an advantage since model- and not tumor- 

dependent tenascin c might distort drug responses. The constant proliferation of the tumor cells 

in the 7 weeks cultured hyalograft-TOM models gives evidence for an elongated lifetime and 

the hyalograft models were more stable compared to the collagen models, which tend to shrink 

over time (116). Nevertheless, the tumor cells as well as the normal oral keratinocytes needed 

more time to grow, which could be seen by their thinner epithelial layer after two weeks of 

culture. To conclude, the hyalograft-based models offer the opportunity, to grow NOM and 

TOM models without the influences of bovine collagen. Moreover, hyalograft-based models 

allow long-term cultivation of tumors which will be interesting to study pharmacodynamics 

and tumor re-growth following initial drug treatment. However, the collagen-based models tend 

to be the better option for short-termed experiments, since the models faster reflect the in vivo 

morphology.  

Future studies should investigate the replacement of fetal calf serum to generate a fully human 

tumor model. Besides the ethical aspect, the composition of fetal calf serum varies from batch 

to batch and thus reduces the reproducibility of the experiments (117). Furthermore, the 

cultivation time limit of these models has to be determined and the model’s potential, as a drug 

testing platform, validated. 

 

Docetaxel effects are reflected in 3D NOM and TOM models with higher topical effects 

The most important characteristic of a drug testing model is a very close recapitulation of the 

patients’ drug response. Docetaxel, as one of the gold standard chemotherapeutics in HNSCC 

therapy, belongs to the most effective drugs against HNSCC by today. To prove the here 

established models towards their ability to closely reflect patients’ drug responses, docetaxel 
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was chosen as a first test drug. For the first time, the cytotoxic effect of docetaxel was tested 

on 3D NOM and TOM models by various application forms and doses. In breast and prostate 

cancer spheroids, it could already be demonstrated, that docetaxel, like many other drugs, cause 

lower drug effects compared to 2D-cell culture (118-120), due to the common hypersensitivity 

to chemotherapeutics and poor resistance prevalence in 2D-cell culture. Docetaxel could also 

show its intense cytotoxic effects in the TOM models with the SCC-25 and UM-SCC-22B cell 

line, as it was shown for various xenografts before (40). Hereby, the drug effects could be 

detected from many sides of the model, like the thickness, morphology, and protein pattern 

from the model itself, but as well released proteins from the cells into the medium served as 

response markers. The cytotoxic effects of docetaxel were reflected in TOM models by 

decreased tumor thickness, Kiel-67 (Ki-67), and hypoxia-inducible factor 1𝛼 (HIF-1𝛼) levels, 

increased LDH, and IL-6 levels in the media, as well as induced apoptosis and modified patterns 

in laminin-332. Due to the good response rate of TOM models to docetaxel and the possibility 

to detect a variety of meaningful markers, as well as tumor-stroma interactions, TOM models 

presented their potential to predict patient drug responses. Interestingly, the NOM models did 

not show significant drug responses, which indicates weak side effects of the tumor's normal 

tissue surrounding.  

The layered architecture of the TOM models furthermore enabled different application sites as 

systemic (underneath the model) and topical (on top of the model) application, which is 

impossible in other 3D models, as spheroids. Remarkably, the topical treatment showed 

tendential earlier effects with lower dosing in tumor thickness, LDH, and IL-6, compared to 

systemic treatment, offering a new potential therapeutic strategy. To date, there is no topical 

treatment option in HNSCC therapy, although systemic side effects already could be reduced 

by topical treatment in the therapy of actinic keratosis, compared to previous therapy options 

(121). A topical treatment option in HNSCC therapy could as well reduce systemic toxicities 

and spare important anatomical structures, like the liver, blood, and nervous system, by acting 

directly at the tumor site with less necessary doses. Since the oral cavity offers accessibility, a 

great blood supply, normally rapid repair, and a good permeability profile, a topical treatment 

option could also be a great opportunity in the head and neck cancer therapy management, with 

higher drug efficiency (122). A topical treatment further could be used as a neoadjuvant 

chemotherapy option to reduce the size of non-resectable tumors, or in palliative care to 

increase the time and quality of life.  

Patients with HNSCC of the oral cavity would profit most from a topical application since this 

is the best accessible region, in the head and neck and the carcinoma incidence is the highest 
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among HNSCC. The salivary washout and local high enzyme activity pose the major challenges 

for the development of a drug delivery system for local tumor treatment. 

Several topical drug delivery systems have already been developed, as mucoadhesive gels, 

patches, or electrospinning (123, 124), which in future studies would have to be adopted to 

guarantee a safe and efficient application form in topical anti-cancer treatment. 

 

3D oral mucosa models enable automated real-time drug concentration measuring To find 

out a safe and efficient drug dose of a new anti-cancer drug, pharmacodynamic values as the 

maximally tolerated dose, are traditionally first determined in animals and then transferred to 

humans (125). These preclinical animal toxicity experiments are effortful, and the results are 

often difficult to transfer to humans correctly. To save money and time, an efficient preclinical 

drug testing platform, which elucidates precisely the drug concentrations inside the target tissue 

and depicts the caused drug effects on a human tissue, would be of great advantage. In this 

thesis, a completely new approach was designed, to measure drug concentrations in real-time, 

in an automated and effortless way in 3D TOM models, as a first proof-of-concept.  

The enablement of fully automated drug detection without sample pretreatment for urine, 

plasma, and saliva was published in 1981, by integrating a pre-column into HPLC 

measurements (126). But still, there is no available system that allows for drug quantifications 

inside a human tissue in real-time. The here presented approach has the advantage to be made 

of human cells and the possibility to measure drug concentrations inside the tumor tissue 

automated, and in real-time, without additional sample handling. Furthermore, the drug 

amounts are measured directly in the extracellular liquid of the tumor tissue, as it is done in 

microdialysis approaches and not in the blood plasma or urine, which allows for improved 

evidence of the drug concentration at the target site.  

The here presented approach was able to measure docetaxel’s access in the 3D TOM models, 

by sensitively detecting docetaxel concentrations in real-time. Also, metabolites and isomers of 

docetaxel could be detected in the model medium. But, noticeable differences in the 

concentration-time curves of different model-batches could be seen, especially in the lower 

docetaxel concentrations, which might arise from differences in model contraction and a 

starting contact loss from the sample port to the model. A constant contact between the model 

and the sample port has to be guaranteed for correct drug concentration detection since the drug 

concentrations will be falsified if the drug can´t reach the sample port anymore. In future 

studies, matrices that don´t contract, as the presented hyalograft approach, could enable more 

stable replication, and an adopted elimination constant should be considered for trough value 
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and area under the curve (AUC) predictions. This possibly could be achieved by the integration 

of a flow system of the media. Since a wider range of docetaxel metabolites was found in human 

liver microsomes, than in TOM models (unpublished own observations in cooperation with 

Prof. Parr), the connection of TOM models with liver tissue, would further allow for drug 

metabolism studies. Therefore, the size of TOM models should be decreased, from a 12-well 

to a 24-well approach, which enables the integration of TOM models into organ-on-a-chip 

approaches. In the process of downsizing the models, the resulting possibility to integrate 

patient-derived tumor cells might be also a helpful tool for personalized medicine studies.  

 

Cetuximab can be localized in the tumor stroma Cetuximab, the first targeted therapeutic 

against HNSCC, and the second used drug in this work did in contrast to docetaxel not lead to 

any changes in the used markers, predicting no cytostatic, nor cytotoxic effects in our models. 

These findings correspond to the low response rates in clinical trials with a time-to-treatment 

failure range of only 5 months (30, 127). In PDXs, however, cetuximab showed promising 

response rates of 79% (40), which appear misleading considering the patients’ responses. 

Although several findings on resistance mechanisms were made, e.g. the expression of the 

EGFR-K521 polymorphism which is expressed in >40% of HNSCC patients and results in a 

lower cetuximab affinity (128), or compensation of the inhibitory effect of cetuximab by 

increased activity of the human epidermal growth factor receptor 3 and insulin-like growth 

factor 1 receptor (129), the resistance mechanisms are still not fully understood.  

As mentioned before, cetuximab did not lead to tumor reduction, nor a reduced tumor 

proliferation in the presented TOM models, whereby cetuximab in contrast led to a remarkable 

reduction in living cells in monolayer experiments. To elucidate the reason for the 

ineffectiveness of a drug, first of all, it has to be guaranteed, that the drug reaches its target site. 

Therefore, quantitative information on the drug distribution within the tumor and its 

environment would be of big interest. There are numerous established methods for drug 

detection. When labeled with a fluorescent dye, cetuximab was found to be localized in EGFR- 

and oxygen-rich regions, while absent in well-differentiated tumors (130, 131). Our 

fluorescence lifetime imaging technique (FLIM) measurements showed that cetuximab 

specifically binds to the cell membrane in monolayer cell culture. And also, in the TOM models, 

the FLIM results nicely proved the penetration of the fluorescence tagged cetuximab, into the 

entire tumor tissue, both after systemic and topical administration. Thus, the low efficacy of 

cetuximab in 3D TOM models is not related to insufficient drug accumulation in the tumor but 

results from the drug resistance of the tumor cells.  
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The localization and quantification of drugs and other molecules of interest like metabolites 

often require the bindings to a label, as in autoradiography, positron emission tomography, or 

the cluster-based FLIM (62). The impact of this chemical modification on the physicochemical 

and pharmacokinetic properties of the drug depends on the drug itself. For example, the 

modification of small molecules like docetaxel would exceed the change of monoclonal 

antibodies like cetuximab. However, the labeling always goes along with the risk of unknown 

labeling-stoichiometry and stability. To overcome these limitations, label-free approaches 

should be considered.  

Mass spectrometry imaging (MSI) (132, 133), scanning transmission X-ray microscopy (134) 

or optical coherence tomography (OCT) (135) are label-free techniques. Nevertheless, these 

methods have limitations like low reproducibility, intense sample preparation, invasive 

irritations to the sample, and limited chemical contrast (134-137). Here, the atomic force 

microscopy-based infrared spectroscopy (AFM-IR) belongs to the techniques with the highest 

resolution, and the higher affinity to the EGFR of cetuximab compared to EGF was already 

shown by AFM in lung cells (138).  

In cooperation with the workgroup of Prof. Eckart Rühl, cetuximab could as well be detected 

by label-free AFM-IR measurements in the 3D TOM models. These measurements have been 

performed and analyzed by Gregor Germer as part of his doctoral thesis. For the atomic force 

microscopy-based photothermal expansion spectroscopy analysis, measurements of the single 

components of a model slice, used as references, had to be performed. This included PBS, 

cetuximab in PBS, cryomedium, silicon substrate, and lastly the untreated tumor model sample 

(Figure 6a). Then, topography and a hyperspectral imaging recording of the full spectral 

information in each pixel of a selected tumor cell of a control model and a cetuximab treated 

model have been measured (Figure 6c). Already by subtracting the spectra of the single 

reference components from the spectra of the treated tumor cells distinct differences could be 

observed (black line in Figure 6b). This biological variance might be the result of molecular 

changes in the cell caused by cetuximab. For a more detailed analysis, the singular value 

decomposition (SVD) evaluation method was applied to the experimental data (139). Hereby, 

a pre-factor calculation allowed us to find a weight factor of cetuximab’s specific spectrum, 

corresponding to the local drug concentration, to fit it to the full spectral information of the 

treated tumor cell. The hyperspectral imaging together with the SVD yielded the detection of 

cetuximab inside a single tumor cell, with a spatial resolution of 100 and 300 nm, respectively. 

Here, the 300 nm resolution turned out to be sufficient to identify cetuximab concentration 

distributions in a single cell and will be used for the next measurements.  
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Figure 6 First results on probing of cetuximab within TOM models by atomic force microscopy 

infrared spectroscopy (AFM-IR) a) photothermal expansion spectra of the single components of the 

model substrates: PBS (red), silicon substrate (black), cryomedium (pink), cetuximab (blue), and tumor 

model (light blue) in the range of 900 cm-1 to 1316 cm-1; b) AFM-IR spectra of a single cell position in 

the control model (blue) and in the cetuximab treated model (red), and the biological variance (black) 

when subtracting single component spectra from the treated model spectra; c) bright-field images of the 

control model and cetuximab treated model, with marked single tumor cell areas (left), and (right) 

corresponding AFM topography (grey image), and the calculated local cetuximab concentration as 

derived from hyperspectral imaging and singular value decomposition within a single cell with a spatial 

resolution of 100 nm for the control model and 300 nm for the treated model (rainbow scale image). In 

collaboration with the workgroup of Prof. Dr. E. Rühl and Dr. C. Zoschke (both from Freie Universität 

Berlin). 
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In the following, the same hyperspectral imaging measurements together with SVD calculations 

have been performed on a reference sample, which included the untreated tumor cell model 

matrix. The calculated pre-factor for proving the local presence of the cetuximab drug resulted 

in most of the matrix points in values equal to zero (Figure 6c control, rainbow scale image). 

Interestingly, in the cetuximab treated model, cetuximab could be located at the cells’ cytosol, 

when comparing the AFM topography with hyperspectral imaging of TOM models’ local 

cetuximab concentration, calculated by the SVD method (Figure 6c cetuximab, rainbow scale 

image). This goes in hand with previous findings, that cetuximab in the first line leads to EGFR 

inhibition by binding on its extracellular site but further initiates endocytosis of the cetuximab-

EGFR complex and intracellular trafficking to the endoplasmatic reticulum (140, 141). Hereby, 

we proved the use of the established 3D TOM models for high-resolution label-free drug 

detection techniques. This technique allows for probing drug accumulations and ultimately 

binding site identifications at a spatial resolution scale reaching possibly down to 10 nm of a 

single cell in these tissues. Since this method only needs few model slices, the same model can 

be additionally subjected to further analysis techniques, as histological staining procedures. 

Future studies have to clarify, whether the distribution of cetuximab is similar in cells of 

different locations in the tumor model.  

 

 

5.2 Prospects 
 

In preclinical drug testing 2D- and animal-based experiments are still the main proceedings, 

while the use of tissue-engineered models remains minimal. Tissue-engineered models have 

the advantage to be made up of human material by concurrently creating an in vivo like 

surrounding for the cells by their 3D-architecture. Many studies showed the high potential of 

these models, and this thesis presents the generation and applicability of 3D NOM and TOM 

models for advanced preclinical drug testing. These models appear highly adaptable to each 

direction of interest. In the course of bringing more 3D models on the market and to qualify 

them for the general, standardized preclinical drug testing procedure, the models and the 

respective test procedure need to be validated in detail. 

One essential step to optimize the models, is the integration of immune cells like T-cells and 

macrophages, to study the effects of promising immune modulators and to investigate immune 

system reactions caused by drugs. Furthermore, the integration of endothelial cells could allow 

detailed studies on tumor-induced angiogenesis and invasion. Due to the high heterogeneity of 

HNSCCs, the trend nowadays goes more and more to personalized medicine. In particular, after 
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model miniaturization, drug responses could be investigated by TOM models with patient-

derived tumor cells. If tumor stroma cells are not available in sufficient amounts from patient-

derived mucosa, induced pluripotent stem cells (iPSC) might help to generate personalized 

stroma in TOM models (142). The isolation and enlargement of patient-derived tumor stem 

cells could furthermore help to overcome the shortage in patients’ tumor material for model 

building procedures (143). 

To elucidate the drug’s distribution also in other organs and the here caused adverse drug 

reactions, as well as the tendency of the tumor cells to spread into other body parts, the 

integration of the here presented models into a multi-organ test-platform as Organ-on-a-chip, 

could offer further important insights. These test-platforms could additionally investigate the 

likeability of circulating tumor cells (CTCs) to spread and settle into different organs. Hereby, 

different organ characteristics like cell type- and matrix-composition, or the influence of 

medium components and drugs, could be studied in this context. A study about CTC cultivation 

in a microfluidic co-culture model derived from lung cancer, already proofed potential in the 

identification of mutations and their associated likeability for systemic metastasis, by next-

generation sequencing (144).  

Since this thesis gave first evidence about the potency of topical application, intense studies 

concerning saliva reconstruction and drug administration forms should be undertaken. 

Furthermore, the impact of the microbiome in the development of oral cancer could be as well 

examined, and microbiome-based diagnostics and therapeutics further identified, with the help 

of these models. It is already known that the microbiome is changed in oral cancer by its 

bacterial composition, with increased genes, favoring inflammation, proliferation, and invasion 

(145, 146).  

To investigate long-term drug responses, the lifetime limit of the hyalograft-based models 

should be further evaluated. Including only human cells, the NOM and TOM models could 

reduce many animal-based studies. But still, to make the models completely animal-free, and 

so excluding the species gap as a source of error and generate models which are more ethical 

sound, medium components as the fetal calf serum, have to be replaced. The established 3D 

NOM and TOM models on hand represented their advantages and variable usage in preclinical 

testing. The models are ethically sound and might save money and time in contrast to the 

dominantly used animal models, by reducing toxic or ineffective numbers of drugs reaching the 

clinical phase.  

For the integration of tissue-engineered models into standardized preclinical drug testing, the 

models have to undergo intense validation studies to guarantee the models’ quality and 
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reproducibility. Hereby, the introduction of the quality function development (QFD) into the 

preclinical model procedures might help to early prioritize the model’s abilities and 

requirements, with for example the house of quality (HOQ), as a helpful tool (147). The models 

need to be matured and costly affordable, that they can qualify for the industry. Thus, 

downscaling the model size could reduce costs and offer high-throughput screenings. To 

increase the models’ reproducibility and efficiency, automatization technics and compatible 

read-out techniques should be furthermore integrated into the model building and drug 

application setups.  

 

 

5.3 Conclusion 
 
In this thesis, organotypic NOM and TOM models have been developed and characterized, 

emulating closely normal oral mucosa and HNSCC morphology and protein expression. 

Additionally, it was possible to integrate primary tumor cells from patient-derived xenografts 

into the models, by concurrently reflecting different tumor phenotypes, matching to the original 

tumor characterization. The models offered different drug application routes, while topical 

administration turned out as promising, by achieving the same effects with less needed dose 

compared to systemic administration. However, the drug delivery system for local anti-cancer 

drug administration needs to be developed.  

Hereby, docetaxel led to known cytostatic effects as tumor cell reduction and decreased cell 

proliferation. Furthermore, drug concentration measurements could be performed in automated 

and in real-time by integrating the model culture into a UHPLC-MS/MS device. Cetuximab, in 

contrast, neither helped to stop tumor cell growth nor caused tumor reduction. FLIM and AFM-

IR measurements identified cetuximab’s localization in the tumor epithelia, excluding the 

inaccessibility of the drug to the target as the reason for resistance, which rather has to be based 

on a cellular resistance mechanism. To elongate the models’ cultivation time for improved 

analysis of resistance mechanisms, different matrices have been evaluated, by reaching a 

cultivation time of up to 7 weeks. All in all, the established models reflect closely the in vivo 

situation and allowed the examination of drug effects in various ways and could consequently 

allow improved preclinical drug testing. In the future, these models could help to identify 

promising drugs more efficiently by concurrently reducing animal testing on the basis of the 

3Rs principle.  
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6. Summaries 
 

6.1 Summary 

 
Head and neck squamous cell carcinoma (HNSCC) reflect a highly heterogeneous and 

aggressive group of cancers for which concurrently many therapy options are associated with 

adverse side effects and resistance mechanisms. Although intense research is performed, the 

five-year survival rate is stagnating and remains low, with 50% on average. Preclinical drug 

testing is mainly based on animal testing, even though the gap between the species is known 

and the results are often misleading. The result thereof is in oncology, a success rate of only 

3.4% of the drugs which have been evaluated positively in preclinical studies, in the following 

clinical phase. Tissue-engineered human-based models get more and more attention, due to 

their promising results in reflecting the human in vivo situation closely. 

In my thesis, I developed models of normal oral mucosa (NOM) and tumor oral mucosa (TOM) 

and studied their suitability for the use in preclinical testing. The NOM models reflect lining 

mucosa, with a defined basal membrane, the stratum basale, and stratum spinosum. Primary 

tumor cells from patient-derived xenografts (PDX) and tumor cell lines could be integrated into 

the models and reflect their original tumor grading-status. The TOM models emulated a tumor 

characteristic heterogeneous cell mass with increased epithelial layer thickness and 

proliferating cells.  

Besides the precise mimicking of the in vivo situation, the longevity of the models is of major 

significance to elucidate drug responses and tumor recurrences. To elongate the cultivation 

time, collagen was replaced by a tight-knit web of esterified hyaluronic acid fibers, called 

Hyalograft 3D®. The development of the epithelium occurred slower but offered a continuous 

proliferation of up to 7 weeks in culture, in contrast to the 2 weeks limited functionality in the 

collagen-based models. This shows the high influence and importance of a well-defined 

extracellular matrix (ECM) for improved 3D-modeling.  

Drug effects have been investigated based on docetaxel and cetuximab, which are frequently 

used against head and neck squamous cell carcinoma, by comparing systemic and topical 

application routes. Docetaxel presented its potency by tumor mass reduction, with increased 

cell damage and inflammation as detected by lactate dehydrogenase and interleukin-6 release 

into the medium. Furthermore, a reduced proliferation (Ki-67), angiogenesis (HIF-1𝛼), and 

increased apoptosis (TUNEL) could be determined. Interestingly, the topical application often 
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needed less docetaxel dosage to achieve the same cytostatic effects, compared to systemic 

application. 

For the effectiveness and safety of a drug, the absorbance, distribution, metabolization, and 

elimination (ADME) of the drug have to be clarified in detail, in preclinical studies. To allow 

pharmacokinetic measurements in the TOM models, automated sampling for UHPLC-MS/MS 

analysis was integrated into the models, and docetaxel-concentrations inside the tumor tissue 

could be measured over 5 days. Since sample preparations are dropped, this approach seems 

promising for future pharmacokinetic investigations.  

In contrast to docetaxel, cetuximab did not inhibit the proliferation of the tumor cells. Since 

cetuximab frequently triggers tumor resistances, it first had to be guaranteed, that the drug 

reaches its target site. Therefore, in cooperation with the physical institute of Freie Universität 

Berlin, the fluorescence-lifetime imaging microscopy and the atomic force microscopy-based 

infrared spectroscopy served for analysis. 

In summary, the established models could improve preclinical drug testing since the models 

closely reflect the human in vivo situation, are easily adaptable, and offer various drug-testings, 

be it based on morphology, pharmacokinetics, or drug detection. Future minimization of the 

models might allow high-throughput analysis and approaches for personalized medicine. 

Moreover, the integration of immune and blood cells could enable the study of a wider drug 

range and reflect the in vivo situation even more detailed. My developed and analyzed NOM 

and TOM models promise improved preclinical drug testing and promote the principles of 3R 

as the reduction, replacement, and refinement of animal testing.  
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6.2 Zusammenfassung 

 

Plattenepithelkarzinome im Kopf- und Halsbereich stellen eine sehr heterogene und aggressive 

Krebsart dar, bei der derzeitige Therapieoptionen mit starken Nebenwirkungen und 

Resistenzmechanismen assoziiert sind. Obwohl intensiv Forschung betrieben wird, stagniert 

die 5-Jahresüberlebensrate und verbleibt niedrig, mit 50% im Durchschnitt. Die präklinische 

Wirkstofftestung basiert hauptsächlich auf Tierversuchen, obwohl die Kluft zwischen den 

Spezies bekannt ist und die Ergebnisse meistens irreführend sind. Das Resultat davon ist in der 

Onkologie eine Erfolgsquote von nur 3,4% der präklinisch positiv bewerteten Wirkstoffe, in 

der darauffolgenden klinischen Phase. Die Züchtung von humanen Gewebsmodellen erhält 

immer mehr Aufmerksamkeit, auf Grund ihrer vielversprechenden Ergebnisse, die humane in 

vivo Situation nahe widerzuspiegeln. 

In meiner Promotion habe ich Modelle der normalen Mundschleimhaut und von 

Tumormundschleimhaut entwickelt und ihre Eignung für die präklinische Forschung 

untersucht. Die normalen Modelle bilden die auskleidende Mundschleimhaut mit einer 

definierten Basalmembran, dem Stratum basale und dem Stratum spinosum, ab. Primäre 

Tumorzellen aus Patienten-generierten Xenotransplantaten und Tumorzelllinien konnten in die 

Modelle integriert werden und deren ursprüngliche Tumor-klassifizierung wiederspiegeln. Die 

Tumormodelle zeigten eine tumorcharakteristische heterogene Zellmasse mit einer 

vergrößerten epithelialen Schicht und vermehrt proliferierenden Zellen.  

Neben der präzisen Wiedergabe der in vivo Situation ist die Langlebigkeit der Modelle von 

großer Bedeutung, um Wirkstoffeffekte und Tumorresistenzen aufzudecken. Zur Verlängerung 

der Kultivierungszeit wurde Kollagen durch ein engmaschiges Gewebe aus veresterten 

Hyaluronsäurefasern, Hyalograft 3D® genannt, ersetzt. Die Ausbildung des Epithels erfolgte 

langsamer, gewährte aber eine kontinuierliche Proliferation über bis zu 7 Wochen in Kultur, im 

Gegensatz zu der auf 2 Wochen beschränkten Funktionalität von Kollagen-basierten Modellen. 

Dies zeigt den großen Einfluss und die Wichtigkeit einer gut definierten extrazellulären Matrix 

für verbesserte 3D-Modellierung.  

Wirkstoffeffekte wurden anhand von Docetaxel und Cetuximab untersucht, die häufig gegen 

Kopf- und Halskarzinomen eingesetzt werden, indem systemische und topische Applikationen 

miteinander verglichen wurden. Docetaxel zeigte seine Wirksamkeit durch eine reduzierte 

Tumormasse, mit erhöhtem Zelluntergang und Entzündungsreaktionen, die durch freigesetzte 

Laktat Dehydrogenase und Interleukin-6 im Medium detektiert wurden. Weiter konnte eine 

reduzierte Proliferation (Ki-67) und Angiogenese (HIF-1𝛼) und erhöhte Apoptose (TUNEL) 
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Rate festgestellt werden. Interessanterweise wurde bei topischer Applikation oft eine geringere 

Dosis an Docetaxel benötigt, um dieselben zytostatischen Effekte zu erzielen wie bei 

systemischer Gabe.  

Für die Wirksamkeit und Sicherheit des Arzneistoffes müssen in präklinischen Studien 

Absorption, Verteilung, Metabolisierung und Elimination der Substanz detailliert geklärt 

werden. Um pharmakokinetische Untersuchungen an den Tumormundschleimhautmodellen zu 

ermöglichen, wurde ein automatischer Probenzug für die UHPLC-MS/MS Analyse in die 

Modelle integriert und Docetaxel-Konzentrationen im Tumorgewebe über 5 Tage gemessen. 

Da Probenaufbereitungen entfielen, erscheint dieser Ansatz erfolgversprechend für zukünftige 

pharmakokinetische Untersuchungen.  

Anders als Docetaxel wirkte Cetuximab nicht proliferationsinhibierend auf die Tumorzellen. 

Da unter Cetuximab häufig Tumorresistenzen auftreten, musste zunächst gewährleistet werden, 

dass der Arzneistoff im Testmodell zur Zielstruktur gelangt. Hierfür dienten, in Kooperation 

mit dem physikalischen Institut der Freien Universität Berlin, die Fluoreszenzlebensdauer-

Mikroskopie und Rasterkraftmikroskopie-gekoppelte Infrarotspektroskopie.  

Zusammenfassend könnten die etablierten Modelle die präklinische Wirkstofftestung 

verbessern, da sie die humane in vivo Situation nahe widerspiegeln, sie leicht adaptiert werden 

können und für unterschiedlichste Wirkstofftestungen verwendet werden können, sei es im 

Zuge der Morphologie, Pharmakokinetik oder Wirkstoffdetektion. Zukünftige Minimierung 

der Modelle könnte weiterhin Hochdurchsatzanalysen und Ansätze für personalisierte Medizin 

ermöglichen. Weiter könnte die Integrierung von Immun- und Blutzellen Untersuchungen von 

weiteren Wirkstoffklassen und eine noch detailliertere in vivo Situation Abbildung 

bewerkstelligen. Meine hier entwickelten normalen Mundschleimhaut und Tumor-

Mundschleimhaut Modelle stellen vielversprechende präklinische Testmodelle dar, welche die 

3R Prinzipien begünstigt, welche die Vermeidung, Verringerung und Verbesserung von 

Tierversuchen beinhaltet.  
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