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Theoretically, a pair of Majorana bound states in a topological superconductor forms a single
fermionic level even at large separations, implying that the parity information is stored nonlocally.
The nonlocality leads to a long-distance coherence for electrons tunneling through a Coulomb block-
aded Majorana wire [Fu, Phys. Rev. Lett. 104, 056402 (2010)], an effect that can be observed, e.g.,
in an interferometer. Here, we examine theoretically the coherent electron transfer, taking into ac-
count that tunneling implies the long-distance transfer of charge, which is carried by one-dimensional
plasmons. We show that the charge dynamics does not affect the coherence of the electron tunnel-
ing process in a topological superconductor consisting of a semiconductor wire proximitized by a
single bulk superconductor. The coherence may be strongly suppressed, however, if the topological
superconductivity derives from a semiconductor wire proximitized by a granular superconductor.

Introduction.— One-dimensional topological supercon-
ductors have Majorana bound states (MBSs) localized at
their boundaries. The MBSs at both ends together form
a single, highly nonlocal fermionic level, carrying infor-
mation about the total fermion parity of the macroscopic
superconductor. This property is part of the basis for the
ideas to use MBSs for topologically protected quantum
computation [1–9].

The nonlocality leads to a striking long-distance co-
herence when Coulomb interactions are included. This
was pointed out by Fu [10], who argued that, at energies
smaller than the superconducting gap and the charging
energy, a Coulomb blockaded topological superconductor
wire is equivalent to a fermionic level with support at the
two ends of the wire. Consequently, single electron co-
herence should be observable at distances far beyond the
coherence length of the superconductor, for instance in an
Aharonov-Bohm interferometer [10]. This long-distance
coherence has been suggested as a way to test whether ex-
perimentally observed zero-bias peaks [11] originate from
isolated MBSs or localized Andreev bound states [12–14].
The first experiments in this direction have already been
done, and seem consistent with the long-distance coher-
ence picture [15].

In Fu’s original derivation [10], it is assumed that the
electron and its charge is instantaneously distributed in
the wire. This is usually justified by noting that the
charge rearrangement in metals happens on the short
timescale of the inverse plasma frequency. However,
this need not a priori apply to a wire geometry, where
the charge modes are one-dimensional (surface) plasmons
with a linear dispersion.

In this paper, we present a theory of the long-distance
coherent transport through a topological superconductor
that includes charge redistribution effects. Specifically,
we consider a system consisting of two Majorana wires

in an interference loop setup. The wires are assumed to
have a bulk excitation gap and to be much longer than
the superconducting coherence length, so that no subgap
Andreev states extend from one end to the other. Hence,
the only mechanism for (subgap) coherent transfer of
single electrons is via the end MBSs. Our theoretical
description of this effect takes into account the fraction-
alization of the electron into fermionic (Majorana) and
charge components [16]. The electron charge is trans-
ported through the interferometer via virtual excitations
of the charge degrees of freedom.

For topological superconductors that consist of a semi-
conductor nanowire proximitized by a bulk superconduc-
tor, the time of flight of charge excitations (plasmons)
is typically much shorter than the inverse charging en-
ergy, and we find that neglecting the effect of charge
dynamics on electron tunneling is a good approxima-
tion. On the other hand, if the propagation of charge
is slowed down, e.g., when the superconductor proximi-
tizing the nanowire is (effectively) granular [17–20], the
typical plasmon energy may be less than the charging
energy and the coherent electron transfer processes are
strongly suppressed. We refer to the superconductor as
granular regardless of whether the granularity is intrin-
sic or the result of intentional engineering. We note that
similar tunneling physics is discussed in Refs. 21 and 22;
there the topological superconductivity stems from ex-
plicitly number-conserving interactions in the quasi-one-
dimensional system. By contrast, in our theory we con-
sider topological superconductivity induced by proximity
to a three-dimensional superconductor.

The specific system we consider is an interferometer
consisting of source and drain reservoirs connected via
two interferometer arms, which are modeled as an array
of Josephson junctions connecting islands with topologi-
cal superconductivity. This is a natural description if the
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FIG. 1. Interferometer setup used to measure the coherent
tunneling through a Coulomb-blockaded topological super-
conductor. Each interferometer arm j = 1, 2 is modeled as
an array of topological superconductor islands, connected via
Josephson junctions. Majorana bound states exist at the ends
of every island, but only the Majorana bound states γj,1 and
γj,2N at the far left and right of the array enter into the low-
energy theory. The figure also schematically shows the capac-
itive coupling between islands and between each island and
ground, as well as the flux Φ through the interference loop.

interferometer arm consists of a semiconductor nanowire
covered by a granular superconductor. The case of a
nanowire with a continuous superconducting cover can
be easily obtained as a limiting case of this model. The
fermionic low-energy degrees of freedom of each island
are Majorana bound states at the two ends of the is-
land, see Fig. 1. Majorana bound states on the two sides
of a Josephson junction acquire a finite energy. We as-
sume that the temperature and the applied bias are low
enough, that only the Majorana bound states at the far
ends of each array of superconducting islands need to
be accounted for. Hence, for each interferometer arm
j = 1, 2, the relevant degrees of freedom are Majorana
operators γj,1 and γj,2N at the left and right ends of
the interferometer arm, see Fig. 1, as well as the charge
nj,α of a superconducting island (measured in units of
the electron charge e) and the conjugate phase variable
ξj,α, [njα, ξj′α′ ] = δjj′δαα′ , where the index α = 1, . . . , N
labels the superconducting island.
Tunneling between the leads and the interferometer

arms is described by the Hamiltonian

Ht =

2
∑

j=1

∑

q

(

tj,Lcq,Lγj,1e
iξj,1

+ tj,Rcq,Rγj,2Neiξj,N + h.c.
)

, (1)

where the operator eiξj,α increases nj,α by one and cq,R
and cq,L are the annihilation operators for an electron in
the right and left reservoirs at energy εq, respectively. To
leading order in the tunneling amplitudes, the interfer-
ence contribution δG to the conductance of the interfer-
ometer is [23]

δG =
4πe2

~
p1p2νLνRRe t

∗
1,LG

(N)
1 t1,R t2,LG(N)∗

2 t∗2,R eiϕ,

(2)

where pj = iγj,1γj,2N is the ground-state fermion parity
of the jth interferometer arm, νL and νR are the densities
of states in the left and right reservoirs, ϕ/2π measures
the flux through the interferometer in units of h/e, and

G(N)
j = −i

∫ ∞

0

dt〈[e−iξj,1(t), eiξj,N (0)]〉. (3)

is the zero-frequency retarded propagator for charge ex-
citations in an array of N superconducting islands. This
correlation function also arises in the number-conserving
approach of Ref. 22.
In the case N = 1 where each arm is modeled as a sin-

gle island with instantaneous charge redistribution, one
has

G(1)
j = −

(

1

E+
j

+
1

E−
j

)

, (4)

where E±
j is the energy cost for adding or removing a

charge e to the jth interferometer arm. In this limit,
Eqs. (2) and (3) reproduce the result of Ref. 10.
For arbitrary N , the charge degrees of freedom of the

array are described by the Hamiltonian

Hc,j =
1

2
e2

N
∑

α,α′=1

nj,αC
−1
α,α′nj,α′ − eVg,j

Nj
∑

α=1

nj,α

− E
(2π)
J

N−1
∑

α=1

cos[2(ξj,α − ξj,α+1)]

− E
(4π)
J

N−1
∑

α=1

cos(ξj,α − ξj,α+1), (5)

where, as before, the index j = 1, 2 labels the interfer-

ometer arm. Further, E
(2π)
J and E

(4π)
J are 2π- and 4π-

periodic Josephson couplings between adjacent islands,
Vg,j is a gate voltage, and Cα,α′ the capacitance matrix,

Cαα′ = Cgδα,α′ + C (2δα,α′ − δα,α′+1 − δα,α′−1) , (6)

where Cg is the capacitance between each island and the
ground and C is the capacitance between adjacent is-
lands. Note that this model assumes that charge dis-
tribution is instantaneous within each island, and that
the MBSs within each island do not couple directly.
The full phase diagram of this Josephson junction ar-
ray model in the C = 0 case is studied in Ref. 24. For
simplicity, the number of superconducting islands, the
capacitances, and the Josephson energies are taken to
be identical in the two interferometer arms. Generically
one has Cg ≪ C. We consider arrays in the “trans-
mon regime”, for which the effective Josephson coupling

EJ = E
(2π)
J +(1/4)E

(4π)
J is much larger than the charging

energy e2/2C associated with the mutual capacitance of
neighboring islands. The phase differences ξj,α − ξj,α+1

are then pinned to the bottom of the cosine potentials,
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FIG. 2. Plasmon spectrum of a long (N = 104) Josephson
junction array in the harmonic approximation, overlaid with
the linear (acoustic) approximation at small momenta (solid
blue line) and the plasmon energy at k = N (dashed blue
line). The parameters chosen are EJC/e2 = 10 and Cg/C =
10−4. Inset: Plasmon spectrum of a much shorter (N =
100) Josephson junction array for the same values of EJ, C,
and Cg. The acoustic plasmon branch at small k has almost
disappeared.

which allows one to disregard the phase slips [25] and re-
place the cosine potentials in Eq. (5) by a quadratic one.
Bringing the Hamiltonian to diagonal form then gives

Hc,j ≈E(Nj) +

N−1
∑

k=1

ωk

(

b†j,kbj,k +
1

2

)

, (7)

where Nj =
∑N

α=1 nj,α is the total charge, E(Nj) =
(Nje)

2/2NCg − eNjVg,j is the charging energy for a uni-
formly charged array,

ωk = 2e

√

4EJ sin
2(kπ/2N)

4C sin2(kπ/2N) + Cg

(8)

are the plasmon frequencies [25], and bj,k are plasmon
creation and annihilation operators, which are related to
the phase variables as

ξj,α =Ξj − i
N−1
∑

k=1

ϕα,k

√

1

2ωkCk
(bj,k − b†j,k), (9)

where Ξj is the phase variable conjugate to Nj , Ck =
Cg + 4C sin2(kπ/2N), and

ϕα,k =

√

2

N
cos

kπ(α− 1/2)

N
. (10)

Having brought the Hamitonian Hj to diagonal form,
the calculation of the factor Gj of Eq. (3) is in princi-
ple straightforward. In the cotunneling regime and for
temperature kBT ≪ min(E±

j ), one finds

G(N)
j = −

∫ ∞

0

dτ
[

e−E+
j
τ−δj(τ) + e−E−

j
τ−δ∗j (τ)

]

, (11)

with

δj(τ) =

N−1
∑

k=1

e2(|ϕ1,k|2 + |ϕN,k|2 − 2ϕ1,kϕ
∗
N,ke

−ωkτ )

4ωkCk
.

(12)

Equations (2), (11), and (12) contain the central results
of this work. To evaluate the interference contribution
δG explicitly for the Hamiltonian (5), we substitute the
explicit expressions for Ck and ϕj,α and find

δj(τ) =

N−1
∑

k=1

ωk

16NEJ
[1− (−1)ke−ωkτ ] cot2

kπ

2N
. (13)

Typically the mutual capacitance C is much larger
than the capacitance Cg to the ground plane [17]. The
plasmon dispersion Eq. (8) then interpolates between an
acoustic regime ωk ≈ vkπ/N for k . kc, with

v = 2e

√

EJ

Cg
, kc =

2N

π

√

Cg

4C + Cg
, (14)

and the constant value ωk ≈ ωN = 2e
√

4EJ/(4C + Cg)

when k & kc, see Fig. 2. For short arrays N ≪
√

C/Cg,
there are no acoustic plasmons and the plasmon frequen-
cies ωk are well approximated by ωN for all k, see Fig. 2,
inset. This gives

δj(τ) =
ωN

16EJ

[

N

3

(

2 + e−ωNτ
)

+ 1− 4

π2

]

, (15)

where in addition to taking the limit N ≪
√

C/Cg we ex-
panded in 1/N , omitting contributions of order 1/N and
smaller. If both charging energies E±

j ≫ ωN , one may
approximate δj(τ) by δj(0) and one finds an exponential
suppression of the interference term in the cotunneling
current with N ,

G(N)
j ≈ G(1,eff)

j e−(ωN/16EJ)(N+1−4/π2), (16)

where the factor G(1,eff)
j = −(1/E+

j + 1/E−
j ) describes

an interferometer arm with a single superconducting is-
land and capacitance Ceff

g = NCg to the ground plane

[10], see Eq. (4). (If the condition E±
j ≫ ωN is not

met, there is still an exponential suppression with N ,
but with a numerically different exponent.) To under-
stand the exponential dependence on N , notice that the
phase differences between adjacent islands ξj,α − ξj,α+1

(α = 1, . . . , N − 1) are independent variables in the limit

Cg → 0, as follows from Eq. (9); G(N)
j thus factorizes into

identical contributions from individual Josephson junc-
tions.

For long arrays, N ≫
√

C/Cg, the summation (13)
is dominated by the acoustic branch ωk ≈ vkπ/N for
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k ≪ kc, see Eq. (14). In this regime, it is instructive to
express δj(τ) in terms of the parameters v and kc,

δj(τ) =
v

4πEJ

{

ln
[

2kc(1 + e−πvτ/N )
]

− f(Cg/4C)
}

,

(17)
where f(x) =

√
x arccot

√
x − cγ and cγ ≈ 0.577 is the

Euler-Mascheroni constant. As before, we may approx-
imate δj(τ) by δj(0) if both charging energies E±

j ≫
πv/N . This gives a power-law suppression with N (re-
call kc ∝ N),

G(N)
j ≈ G(1,eff)

j (4kc)
−βeβf(Cg/4C), β =

v

4πEJ
. (18)

Note that the exponent β is independent of the capac-
itance C between adjacent islands, because C does not
enter into the low-energy degrees of freedom. (Again, if
the condition E±

j ≫ πv/N is not met, there is still a
power-law suppression with N but with a different nu-
merical prefactor.) In Fig. 3 we show Gj as a function

of N for both sides of the crossover at N ∼
√

C/Cg and
compare with the predictions of the asymptotic expres-
sions (15) and (17).
The power law of Eq. (18) can also be obtained from a

continuum model in which the charge degrees of freedom
are described as a transmission line with capacitance c
and inductance ℓ per unit length [26]. This requires one
to identify v = 1/

√
ℓc and EJ = 1/4e2ℓ [25], so that the

exponent β = e2/π
√

ℓ/c. In this continuum description,
kc is the ultraviolet cutoff of the theory, which signals the
breakdown of the one-dimensional linear plasmon disper-
sion.
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FIG. 3. Normalized coherent amplitude G
(N)
j /G

(1,eff)
j as a

function of the number of superconducting islands N . The
insets focus on the exponential N dependence in short sys-

tems. The data points show the amplitude ratio G
(N)
j /G

(1,eff)
j

for EJC/e2 = 5, 10, and 15 and Cg/C = 10−4 (bottom to top
data sets, left), for EJC/e2 = 5, 10, and 15 and EJCg/e

2 =
1 × 10−3 (bottom to top, center) and C/Cg = 5 × 103, 104,
1.5×104 and EJC/e2 = 10 (top to bottom, right). The dotted
curves follow from the asymptotic expressions (15) and (17).

If the topological superconductor consists of a semi-
conducting nanowire covered by well-separated super-
conducting grains, the Josephson coupling EJ ∼ gc∆,
where ∆ is the magnitude of the superconducting gap
and gc & 1 is the dimensionless conductance of a wire

segment connecting two superconducting islands. Tak-
ing a typical charging energy e2/2C ∼ EJ/10 [25], we
find that the suppression of the interference contribution
to the conductance can be appreciable even for moder-
ate values of N , as shown in Fig. 3. On the other hand,
if the topological superconductor consists of a semicon-
ductor nanowire covered by a single superconductor, a
continuum description in terms of a capacitance c and in-
ductance ℓ per unit length is more applicable. Typically,
e−2
√

ℓ/c is between 50 and 300 Ohms, which places the
exponent β between 10−3 and 10−2. Hence, for a cover-
ing with a continuous superconductor the suppression of
the interference term is usually weak, independent of the
value of the ultraviolet cutoff kc, and to a very good ap-
proximation, the coherent cotunneling process is given by
the result Eq. (4) for a single superconducting island. A
posteriori, this justifies the assumption of instantaneous
charge redistribution within each island which is implicit
in the model of Eq. (5).

The physics of the absence of suppression for the con-
tinuum description is analogous to that of the environ-
mental Coulomb blockade [27–29]: the Coulomb block-
ade is suppressed by the discharging of the tunnel junc-
tion when the RC time for charge displacements is much
smaller than the Heisenberg uncertainty time ~C/e2.
Similarly, for a system of length L, the typical time scale
for charge redistribution L/v is much shorter than ~C/e2,
or in other words, the plasmon quantization energy is
much larger than the charging energy. Up to a factor,
the resulting exponent β is the same as the exponent
found for the power law suppression of the differential
conductance in the environmental Coulomb blockade.

We close by remarking that our results can be easily
generalized to the case where one or more tunnel junc-
tions (weak links) exist in the arms, as occurs in various
Majorana network models and stabilizer measurements
in corresponding implementations of topological quan-
tum error correction codes [3, 4, 8]. To calculate the
lowest-order interference contribution to the cotunneling
current, one takes all weakly coupled segments in the
interference loop, and multiplies their tunneling ampli-
tudes, fermion parities, and suppression factors Gj .

In summary, we have studied the coherence of cotun-
neling of single electrons through Majorana wires. In
contrast to previous studies we have included the charge
degrees of freedom in addition to the fermion component.
For semiconductor nanowires proximitized by bulk su-
perconductors, the typical plasmon energy is large com-
pared to the charging energy, and we show the cotun-
neling transmission amplitude is to a very good approx-
imation given by the fermion-only expression in Ref. 10.
On the other hand, for nanowires proximitized by super-
conducting islands which form Josephson junction arrays
operating in the transmon regime, the typical plasmon
energy is usually much smaller than the charging energy,
and as a result we find the coherent cotunneling to be
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Derivation of Eq. (2) in the main text

In this Appendix, we derive the interference contribution to the conductance, Eq. (2) in the main text. Following
the closing remarks of the main text, we analyze the slightly more general model with Nj − 1 weak links in arm j
(j = 1, 2). The tunneling Hamiltonian takes the form

Ht =

2
∑

j=1





∑

q

(

tj,Lcq,Lγj,1e
iξj,1,L + tj,Rcq,Rγj,2Nj

eiξj,Nj,R

)

−
Nj−1
∑

l=1

itj,lγj,2l+1e
−iξj,l+1,Lγj,2le

iξj,l,R



+ h.c. (19)

where the lth weak link in arm j has a hopping amplitude of tj,l. We have relabeled the Majorana zero modes (MZMs)
so that γj,2l−1 and γj,2l now represent the MZMs at the left and right ends of the lth weakly coupled segment in arm
j, and eiξj,l,L/R are the corresponding charge creation operators. The remaining unlabeled MZMs do not appear in
the low-energy theory. We also absorb the phase factor eiϕ due to the flux through the interferometer in the hopping
amplitudes.
The current operator for the current in the right lead has the form

IR = i
e

~

[

Ht,
∑

q

c†q,Rcq,R

]

=i
e

~

2
∑

j=1

∑

q

(

tj,Rcq,Rγj,2Nj
eiξj,Nj,R − t∗j,Rγj,2Nj

e−iξj,Nj,Rc†q,R

)

, (20)

so it is natural to consider the contour-ordered Green function

GIR (t, t′) = i
e

~

〈

Tc

2
∑

j=1

∑

q

[

tj,Rcq,R (t) γj,2Nj
(t′) eiξj,Nj,R

(t′) − t∗j,Rγj,2Nj
(t′) e−iξj,Nj,R

(t′)c†q,R (t)
]

〉

H

. (21)

Here Tc is the time-ordering operator on the Keldysh contour. The lowest-order contributions to the interference term
in the cotunneling current correspond to the following terms in the Dyson series of GIR ,

δGIR =
e

~

∑

qq′

{

t1,Rt
∗
2,Rt

∗
1,Lt2,Lt1,tott

∗
2,tot

[

Gq,RG2,RLGq′,LG1,LR − (G2,RLGq′,LG1,LRGq,R)
T
]

+t∗1,Rt2,Rt1,Lt
∗
2,Lt

∗
1,tott2,tot

[

Gq,RG1,RLGq′,LG2,LR − (G1,RLGq′,LG2,LRGq,R)
T
]}

. (22)

We have defined tj,tot ≡ ∏Nj−1
l=1 (itj,l), understanding that tj,tot = 1 if Nj = 1. All Green functions have an

implicit matrix structure in their time arguments (on which the transposition operates), and the matrix multiplication
operation is identified as the Keldysh contour time convolution, [G1G2] (t, t

′) ≡
∫

c
dt′′G1 (t, t

′′)G2 (t
′′, t′). The lead

Green functions are given by

Gq,α (t, t′) = −i
〈

Tccq,α (t) c†q,α (t′)
〉

, α = L, R, (23)

and the charge sector Green functions

Gj,RL ≡ Gj,Nj ,RLGj,Nj−1,RL · · ·Gj,1,RL, (24)

Gj,LR ≡ Gj,1,LRGj,2,LR · · ·Gj,Nj ,LR, (25)

where
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Gj,l,LR (t, t′) = −i
〈

Tcγj,2l−1 (t) e
−iξj,l,L(t)γj,2l (t

′) eiξj,l,R(t′)
〉

, (26)

Gj,l,RL (t, t
′) = −i

〈

Tcγj,2l (t) e
−iξj,l,R(t)γj,2l−1 (t

′) eiξj,l,L(t
′)
〉

. (27)

The expectation value of the current is the lesser Green function IR (t) = G<
IR

(t, t). Analytic continuation yields in
the frequency domain

δIR =
e

~

∫

dω

2π

∑

qq′

[

t1,Rt
∗
2,Rt

∗
1,Lt2,Lt1,tott

∗
2,tot

(

GR
q,RG

R
2,RLG

<
q′,LG

A
1,LR

+G<
q,RG

A
2,RLG

A
q′,LG

A
1,LR −GR

2,RLG
R
q′,LG

R
1,LRG

>
q,R −GR

2,RLG
>
q′,LG

A
1,LRG

A
q,R

)

+ c.c.
]

, (28)

where we have suppressed the frequency argument ω (identical for all Green functions), and discarded the charge sector
lesser and greater Green functions on the grounds that all charge excitations are virtual in the cotunneling regime. If
the bias voltage V and the temperature T satisfies |eV |, T ≪ E±

j , it is permissible to ignore the ω dependence of the
charge sector retarded and advanced Green functions and approximate

GR
j,l,LR (ω) ≈ −ipj,lGj,l, G

R
j,l,RL (ω) ≈ ipj,lG∗

j,l, (29)

where pj,l ≡ iγj,2l−1γj,2l is the ground-state fermion parity of the lth weakly coupled segment in arm j, and

Gj,l ≡ −i

∫ ∞

0

dt
〈[

e−iξj,l,L(t), eiξj,l,R(0)
]〉

(30)

generalizes the definition Eq. (3) in the main text. The remaining integral and summations are straightforward, and
we eventually find the interference contribution to the cotunneling current

δIR = V
4πe2

~
νLνR Re

[

t1,Rt
∗
2,Rt

∗
1,Lt2,L

N1−1
∏

l=1

t1,l

N2−1
∏

l=1

t∗2,l

N1
∏

l=1

(p1,lG1,l)

N2
∏

l=1

(

p2,lG∗
2,l

)

]

. (31)

In the special case N1 = N2 = 1, this immediately reproduces Eq. (2) in the main text.
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