


Projective symmetry group classifications of quantum spin liquids on the simple cubic, body

centered cubic, and face centered cubic lattices

Jonas Sonnenschein,1, 2, ∗ Aishwarya Chauhan,3, † Yasir Iqbal,3, ‡ and Johannes Reuther1, 2, §

1Dahlem Center for Complex Quantum Systems and Institut für Theoretische Physik,

Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
2Helmholtz-Zentrum für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany

3Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India

(Dated: July 7, 2020)

We perform extensive classifications of Z2 quantum spin liquids on the simple cubic, body centered cubic,

and face centered cubic lattices using a spin-rotation invariant fermionic projective symmetry group approach.

Taking into account that all three lattices share the same point group Oh, we apply an efficient gauge where

the classification for the simple cubic lattice can be partially carried over to the other two lattices. We identify

hundreds of projective representations for each of the three lattices, however, when constructing short-range

mean-field models for the fermionic partons (spinons) these phases collapse to only very few relevant cases. We

self-consistently calculate the corresponding mean-field parameters for frustrated Heisenberg models on all three

lattices with up to third neighbor spin interactions and discuss the spinon dispersions, ground state energies and

dynamical spin structure factors. Our results indicate that phases with non-uniform spinon hopping or pairing

amplitudes are energetically favored. An unusual situation is identified for the fcc lattice where the spinon

dispersion minimizing the mean-field energy features a network of symmetry protected line-like zero modes in

reciprocal space. We further discuss characteristic fingerprints of these phases in the dynamical spin structure

factor which may help to identify and distinguish them in future numerical or experimental studies.

I. INTRODUCTION

In recent years, quantum spin liquids have become one

of the most vibrant research fields in condensed matter

physics [1, 2]. Besides the absence of magnetic order,

these phases realize the fascinating scenario where long-

range entanglement, topological order and fractional quasipar-

ticle excitations combine to form novel quantum many-body

states [3, 4]. Two main strategies of theoretical investigations

are currently pursued: In a direct numerical treatment, a given

spin Hamiltonian is investigated with respect to its magnetic

correlations or excitations aiming to identify quantum spin

liquid behavior. While this approach has led to invaluable in-

sights into quantum spin liquids and possible Hamiltonians

realizing them, powerful numerical methods are scarce and

often limited by the general difficulty of probing topological

order and fractional quasiparticles. The second strategy of ap-

proaching quantum spin liquids amounts to proposing effec-

tive low-energy theories for the system’s fractional excitations

which are then further theoretically studied. While within this

strategy it is often difficult (if not impossible) to relate the con-

sidered theories to an actual spin Hamiltonian it allows for an

investigation of quantum spin liquids on a fundamental level

and in a systematic manner.

One approach related to this second strategy is the so-called

projective symmetry group (PSG) method [5] which consti-

tutes the central theme of this work. By reformulating the

original spin degrees of freedom in terms of parton operators
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(which, here, are chosen to be fermionic) [6–8] the PSG ap-

proach allows one to classify possible free parton theories for

quantum spin liquids based on the symmetries of the system.

The partons may be identified with spinons (which are the

fundamental spinful and fractional quasiparticle excitations

of a quantum spin liquid) and via an additional coupling to

an emergent gauge field the system may be conveniently de-

scribed by a lattice gauge theory which is widely believed to

capture the essential low-energy physics of a quantum spin

liquid. Even though incapable of directly probing a given

spin Hamiltonian with respect to a spin liquid ground state, a

PSG classification may serve as a guide for further theoretical

and experimental investigations. For example, the fermionic

states obtained within a PSG analysis can be used as trial

wave functions in a variational Monte Carlo study of specific

quantum spin models [9–11]. Furthermore, one may calculate

dynamical spin structure factors for the classified spin liquid

phases based on the two-parton excitation spectrum. Compar-

ing these predictions with results from other numerical studies

or neutron scattering experiments might allow one to identify

and characterize spin liquid behavior for concrete spin Hamil-

tonians or even for real materials [12].

As the field of quantum spin liquids progresses and new

systems beyond standard 2D spin models on triangular, hon-

eycomb or kagome lattices are explored, the focus shifts

more towards spin liquids in three dimensions (3D) [13–15].

While quantum fluctuations generally decrease in higher di-

mensions, there is consensus that magnetic frustration can still

be strong enough to melt magnetic long-range order. Since

the numerical challenges of treating quantum spin systems in-

crease further when going to 3D, analytical approaches such

as the PSG become more important. However, there are so

far only very few PSG studies classifying quantum spin liq-

uids on 3D lattices [16–19]. Indeed, for the simple cubic (sc),

body-centered cubic (bcc) and face-centered cubic (fcc) lat-
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tices representing classic textbook examples of 3D lattices, a

PSG classification has not been achieved so far, even though

the corresponding Heisenberg models are known for their rich

quantum phase diagrams potentially hosting quantum param-

agnetic states. For example, the antiferromagnetic J1-J2-J3
Heisenberg model on the sc lattice, besides various commen-

surate magnetically ordered phases, has been proposed to host

an extended non-magnetic regime in the vicinity of a classical

triple point (possibly realizing a quantum spin liquid) [20–23].

Similarly, the antiferromagnetic J1-J2-J3 Heisenberg model

on the bcc lattice shows an interplay of five different mag-

netically ordered phases, including incommensurate spirals,

where there is evidence that quantum fluctuations can melt the

magnetic long-range order in certain parameter regimes [24].

For the fcc lattice, already a nearest neighbor antiferromag-

netic Heisenberg coupling frustrates the system and leads to

a subextensive manifold of degenerate classical ground states

forming lines in momentum space [25, 26]. By adding a sec-

ond neighbor coupling J2 = J1/2 the classical ground state

degeneracy is enhanced even more and manifests as surfaces

in momentum space [27]. In both cases, the classical degen-

eracies are expected to amplify quantum fluctuations promis-

ing a rich physical behavior when the spin magnitude is low-

ered towards the quantum limit S = 1/2.

Also from a material perspective these lattices open up new

directions of investigations. Mott insulating materials featur-

ing S = 1/2 magnetic moments and realizing cubic crys-

tal systems have recently shown potential as candidates host-

ing the quantum spin liquid state or being proximate to one.

In particular, the garnet compound Ca3Cu2GeV2O12 features

S = 1/2 Cu2+ ions occupying the B-sites which realize a

bcc lattice [28]. Neutron diffraction experiments find an ab-

sence of magnetic ordering down to 70 mK and indicate a

large frustration ratio of at least f = 13.29. This behav-

ior has been argued to originate from the likely proximity

of this system to the quantum phase transition point in the

S = 1/2 J1–J2 antiferromagnetic model, which is known

to be at J2/J1 ∼ 0.7 [24, 29–33]. Recently, a double per-

ovskite compound Ba2CeIrO6 has been argued to be an ex-

cellent realization of a pseudospin j = 1/2 spin-orbit coupled

Mott insulator on the fcc lattice with a high degree of frus-

tration f ∼ 13 [34]. Although the system undergoes mag-

netic ordering argued to be driven by Kitaev interactions, an

estimate of the exchange parameters places it in proximity to

a putative quantum spin liquid phase of the J1–J2 Heisen-

berg model. Another interesting S = 1/2 fcc antiferromagnet

that is the molecular antiferromagnet Cs3C60, wherein spe-

cific heat measurements have revealed the occurrence of both

long-range antiferromagnetic order and a quantum paramag-

netic state below 2.2 K [35].

The results of our extensive PSG classifications can be sum-

marized as follows: The fact that all three lattices share the

same point group Oh simplifies the calculation significantly.

Particularly, we present a scheme that allows us to reuse the

PSGs from the sc case when treating the other two lattices.

Due to the large number of point group elements (Oh maxi-

mizes their number in 3D) we obtain a plethora of PSGs with

a Z2 gauge structure, reaching several hundreds or even more

than a thousand phases. However, when constructing actual

parton mean-field theories for these PSGs, consisting of short-

range hopping and pairing terms, the symmetries act as con-

straints and thus only very few relevant cases remain. Besides

the most simple mean-field phases where hopping and pair-

ing amplitudes are uniform on bonds of the same type, we

identify cases where these terms show non-trivial sign struc-

tures or a special symmetry-induced locking between hopping

and pairing. We further compare the mean-field energies for

all relevant phases. While on a mean-field level, the ground

state energies are certainly not accurate in terms of absolute

numbers and would be significantly lowered when perform-

ing a more elaborate Gutzwiller projection, they still allow for

a relative comparison between different phases. A rather gen-

eral observation is that non-uniform mean-field models tend

to have lower energies compared to the uniform ones. An in-

teresting situation occurs for the fcc lattice where the energeti-

cally preferred parton state exhibits an unusual symmetry pro-

tected network of line-like zero modes in momentum space.

Finally, we compare the dynamical spin structure factors of

several mean-field phases and discuss characteristic patterns

of response which in the future may serve as a guide to iden-

tify these phases in numerical or experimental studies.

The rest of the paper is organized as follows: We start with

a general introduction into the PSG method in Sec. II. In the

following Sec. III, we outline the PSG classification for the sc,

bcc, and fcc lattices more specifically. Afterwards, in Sec. IV,

we demonstrate, as an example, the derivation of short-range

mean-field models for the bcc lattice. The main results of our

work are presented in Sec. V where we discuss in detail the

relevant short-range mean-field states including their spinon

dispersions, ground state energies and dynamical spin struc-

ture factors for all three lattices. The paper ends in Sec. VI

with a discussion and conclusion. More explicit calculations

and tables presenting details on the PSG classifications are

contained in several appendices.

II. GENERAL PROJECTIVE SYMMETRY GROUP

APPROACH

In this section we provide a general introduction into the

projective symmetry group (PSG) approach which allows us

to classify effective low-energy theories for quantum spin liq-

uids based on their behavior under symmetry transformations.

Our starting point is a general Heisenberg Hamiltonian on an

arbitrary lattice,

H =
∑

rr′

Jrr′Sr · Sr′ . (1)

The fermionic version of the PSG approach which we apply

in the following first amounts to rewriting the spin operators

in terms of fermionic parton operators frα on each lattice site

r [36],

Sµ
r
=

1

2

∑

αβ

f†
rατ

µ
αβfrβ (2)
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where α =↑, ↓ and τµ (µ = x, y, z) are the Pauli matrices.

The parton operators may be naturally identified as the spin-

full and fractional quasiparticle degrees of freedom of quan-

tum spin liquids, called spinons. In Eq. (2) their fractional

nature is directly expressed by the fact that one spin operator

is decomposed into two partons.

The key property of the mapping onto a fermionic system

via Eq. (2) is that it enlarges the Hilbert space. While the

original spin model only corresponds to single fermionic oc-

cupancies on each site, the Hilbert space of the full fermion

model also includes doubly occupied and vacant sites. This

property might first appear as an obstacle since the physical

content of any fermionic wave function is only obtained af-

ter Gutzwiller projection onto the singly occupied subspace.

On the other hand, the parton representation has the advan-

tage that it is directly associated with a local SU(2) gauge

freedom [7, 8, 37, 38] (see below) and, hence, allows us to

describe the system by an effective gauge theory, which is

known to be central for the understanding of quantum spin

liquids. In a zeroth order approximation, the gauge fields may

be treated as (static) numbers which is equivalent to a standard

mean-field decoupling of the quartic terms in the fermionic

version of Eq. (1). Neglecting magnetic contributions of the

form ∼ 〈Sr〉 · Sr′ (which are irrelevant for our description of

quantum spin liquids) and performing the decoupling in the

fermionic hopping and pairing channels,

χrr′δαβ = 2
〈

f†
rαfr′β

〉

, ∆rr′ǫαβ = −2 〈frαfr′β〉 (3)

the fermionic Hamiltonian becomes

Hmf =
∑

〈rr′〉

−3

8
Jrr′

(

ψ†
r
urr′ψr′ + h.c.− 1

2
Tr
[

u†
rr′
urr′

]

)

+
∑

r

ψ†
r
aµ(r)τ

µψr . (4)

Here, we have introduced the spinor fields ψ†
r
= (f†

r↑, fr↓)

and the Lagrange multipliers aµ(r) that enforce the single oc-

cupancy constraint on the mean-field level (i.e., on average),

〈

∑

α

f†
rαfrα

〉

= 1 ,
〈

f†
rαf

†
rβ

〉

= 〈frαfrβ〉 = 0 ∀ r .

(5)

Note that the second condition is a consequence of the first

one. The 2 × 2 matrix urr′ contains the hopping (χrr′ ) and

pairing (∆rr′ ) mean-field amplitudes and is often refered to as

ansatz,

urr′ =





χ†
rr′

∆rr′

∆†
rr′

−χrr′



 = iα0
rr′
τ0 + αµ

rr′
τµ . (6)

In this equation we have also expressed urr′ in terms of Pauli

matrices and the identity matrix τ0 where α0
rr′

and αµ
rr′

are

real coefficients. This representation will later become very

useful.

The mean-field Hamiltonian only contains free fermion

terms and can be readily solved, but the assumption of static

fields urr′ is uncontrolled and the resulting mean-field solu-

tion does not even describe a physical spin system. However,

a proper low energy theory beyond mean-field can be obtained

by reintroducing fluctuations around a self-consistently ob-

tained saddle-point solution for urr′ , restoring an effective lat-

tice gauge theory [39]. Depending on whether these fluctua-

tions act as variations of the overall sign of urr′ or of the over-

all complex phase of urr′ , the resulting gauge theories are of

Z2 or U(1) type which fundamentally characterizes the quan-

tum spin liquids they describe. By construction, these effec-

tive gauge theories are strongly interacting where fermionic

spinons (partons) couple to an emergent gauge field (whose

excitations are referred to as visons) and, therefore, cannot be

easily solved. The purpose of this work is not to study the

actual gauge theories but to classify all possible mean-field

Hamiltonians of the form of Eq. (4). Still, on a pure mean-

field level, the invariant gauge group (IGG) which will be in-

troduced below allows one to infer the type of gauge fluctua-

tions (SU(2), U(1), or Z2) [5, 40, 41] that would arise, given

an ansatz urr′ . We will initially assume a Z2 gauge group

since these simplest and most restricted types of gauge fluctu-

ations yield gapped vison excitations which ensures stability

of the theory beyond mean-field. However, when investigat-

ing short-range ansätze urr′ we will still encounter situations

where the gauge group is lifted to U(1) or SU(2).
We now describe the PSG procedure of classifying Z2

mean-field ansätze by exploiting the system’s lattice symme-

tries. As mentioned before, the fermionic representation in

Eq. (2) has a local SU(2) gauge invariance which manifests

in the freedom to perform gauge transformations ψr →Wrψr

where Wr is an arbitrary site-dependent 2× 2 SU(2) matrix.

In terms of the local fermionic basis states, this transformation

acts as a rotation in the unphysical subspace of doubly occu-

pied and vacant sites but keeps the physical spin states in the

singly occupied subspace unchanged. Alternatively, one can

implement a gauge transformation as an operation acting on

the ansatz and not on the spinor,

urr′ →W †
r
urr′Wr′ . (7)

A generic mean-field Hamiltonian breaks the local SU(2)
gauge freedom of the original fermionic system. However,

there still exists a subgroup G ⊆ SU(2) (which is at least Z2)

such that the ansatz remains invariant for all sites,

urr′ =W †
r
urr′Wr′ , Wr ∈ G . (8)

The basic idea behind the PSG is that due to the system’s

gauge invariance any symmetry operation may be combined

with a gauge transformation,

urr′ →W †
S(r)uS(r)S(r′)WS(r′) , (9)

which is referred to as a projective implementation of symme-

tries. Here, S is an element of the system’s symmetry group

acting on the lattice sites. The condition that an ansatz urr′
satisfies the projective implementation of S is then given by

G†
S(S(r))uS(r)S(r′)GS(S(r′)) = urr′ . (10)
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Here, and in the following the specific site dependent gauge

transformation which fulfills this equation is denoted by

GS(r). In other words, even though an ansatz urr′ seems to

naively break the system’s lattice symmetries there may still

exist a suitable gauge transformation such that the generalized

symmetry condition in Eq. (10) is fulfilled. Different projec-

tive implementations GS(r) satisfying Eq. (10), hence, allow

one to distinguish between different spin liquid phases with

the same physical symmetries [5]. The above may be summa-

rized by noting that the PSG is an extension of the symmetry

group (SG) by the IGG

PSG = SG ⋉ IGG . (11)

The first purpose of this work is to classify all PSGs for sys-

tems with an octahedral point group using Eq. (10). In a sec-

ond step, we construct the corresponding ansätze urr′ as self-

consistent saddle-point solutions and discuss their properties

such as spinon band structures and physically observable spin

structure factors.

III. PSG REPRESENTATIONS FOR CUBIC LATTICES

We now apply the concepts outlined in the last section to

derive the projective representations of symmetries for lattices

with an octahedral point group. In the first Subsection III A we

start with the sc lattice, followed investigations of the bcc and

fcc lattices in Subsections III B and III C, respectively. Partic-

ularly, we will demonstrate how the PSG classification of the

sc lattice may be reused to treat the latter two systems.

A. Simple cubic lattice

The point group of the sc lattice is the octahedral group

Oh. One possible choice of defining its generators (which we

apply throughout this work) is given by

Πz(x, y, z) = (−x,−y, z) ,
Πy(x, y, z) = (−x, y,−z) ,
Πxy(x, y, z) = (y, x,−z) ,
I(x, y, z) = (−x,−y,−z) ,
P (x, y, z) = (z, x, y) . (12)

The full space group includes the translations

Tx(x, y, z) = (x+ 1, y, z) ,

Ty(x, y, z) = (x, y + 1, z) ,

Tz(x, y, z) = (x, y, z + 1) , (13)

where the components of r = (x, y, z) take integer values.

For the bcc and fcc lattices considered below we will keep

the convention that the lattice constant of the cubic unit cell is

always set to unity.

Besides these lattice symmetries we assume that time-

reversal symmetry is satisfied. While time reversal T does

not change the lattice coordinates and commutes with all

other symmetry operations it has a non-trivial action on the

parton operators, T (fr↑, fr↓) = (fr↓,−fr↑). It then fol-

lows that time reversal acts on the spinor fields as T (ψr) =
[

(iτ2ψr)
†
]T

. It is convenient to perform a global gauge

transformation ψr → −iτ2ψr which yields a simplified ac-

tion of time reversal: T (ψr) =
[

(ψr)
†
]T

. If we now im-

plement T as an operation acting on the ansatz one finds

T (urr′) = −urr′ and likewise for the Lagrange multiplier

fields T (aµ(r)) = −aµ(r).

A valid projective representation needs to obey the same

algebraic relations as the system’s space group itself. This

yields a set of constraints on the representation. For exam-

ple, all generators of the point group in Eq. (12), except for P
[which performs a rotation by 2π/3 around the (1, 1, 1)-axis]

map back onto the identity when applied twice. Thus they

need to be represented by a cyclic group of order 2 while P
forms a cyclic group of order 3. Most importantly, the gauge

transformation associated with the identity operation is the

IGG, which in our case is Z2. This means that in a projective

construction the identity is only defined up to a sign factor.

As demonstrated below, different choices of these signs lead

to different PSGs.

To ensure that different representations are gauge inequiv-

alent one has to fix the gauge. It is convenient to choose a

gauge in which the gauge transformations GTµ
(r) related to

translations are represented by the identity matrix modulated

with a spatial sign structure. As explained in Appendix A one

can find a gauge in which

GTx
(r) = ηzzxη

y
yx
τ0 ,

GTy
(r) = ηzzyτ

0 ,

GTz
(r) = τ0 , (14)

where the signs ηzx = ±1, ηyx
= ±1, and ηzy = ±1 can

be chosen independently (at least if no other symmetries are

considered). Hence, for a system with only translation sym-

metries Tx, Ty , Tz one would find 23 PSGs. Note that fixing

the GTµ(r) matrices does not yet fix the entire gauge freedom

but leaves the possibility to perform a global gauge transfor-

mation. The projective representations of the remaining point

group generators and time-reversal are determined by consid-

ering successive applications of group transformations such

that the combined operation is given by the identity. Using

the fixed representation for GTµ(r) in Eq. (14) one can show

that the gauge transformations associated with the point group

generators may be brought into the form GS(r) = η
fS(r)
S gS

where ηS = ±1, fS(r) is a function yielding inter values

for all sites r, and gS is a 2 × 2 SU(2) matrix. An exam-

ple of this procedure is given in Appendix B where it is also

demonstrated that as a result of the symmetry P one finds

ηzx = ηyx
= ηzy ≡ ηX = ±1. All PSGs for the sc lattice are
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then given by

GTz
(r) = τ0, GTy

(r) = ηzXτ
0, GTx

(r) = ηz+y
X τ0,

GT (r) = ηx+y+z
T gT , g2T = ±τ0,

GI(r) = ηx+y+z
I gI , g2I = ±τ0,

GΠz
(r) = ηx+y

Π gΠz
, g2Πz

= ±τ0,
GΠy

(r) = ηx+z
Π gΠy

, g2Πy
= ±τ0,

GΠxy
(r) = ηxyX ηzΠxy

gΠxy
, g2Πxy

= ±τ0,

GP (r) = η
x(y+z)
X ηx+y

P gP , g3P = ±τ0,
[gT , gO]± = 0, [gI , gO6=I ]± = 0,

[

gΠz
, gΠy

]

±
= 0,

gΠz
gΠxy

g−1
Πy
g−1
Πxy

gΠy
= ±τ0, gΠz

gP g
−1
Πy
g−1
P = ±τ0,

gP gΠxy
gP gΠxy

g−1
Πy

= ±τ0, ηΠηΠxy
ηP = 1. (15)

where the generators of the point group are denoted by O. All

parameters ηX , ηT , ηI , ηΠ, ηΠxy
, and ηP take the values ±1

and [. . .]± stands for the commutator or anti-commutator.

It is worth emphasizing that Eq. (15) has been obtained af-

ter performing a gauge transformation of the form W (r) =
ηxwx

ηywy
ηzwz

τ0 where ηwx
= ±1, ηwy

= ±1, ηwz
= ±1.

This gauge transformation acts on the projective represen-

tations of translations as GTµ
(r) → ηwµ

GTµ
(r), yielding

a global sign which can be absorbed by a redefinition of

GTµ
(r). Furthermore, the projective representations of the

point group elements remain unaffected, except for P and

Πxy . For these latter two symmetry operations the gauge

transformation acts as GΠxy
(r) → ηx+y

wx
ηx+y
wy

GΠxy
(r) and

GP (r) → ηx+z
wx

ηx+y
wy

ηy+z
wz

GP (r). Thus, by properly choos-

ing ηwµ
one obtains the simplified sign structure of GΠxy

(r)
and GP (r) as presented in Eq. (15).

One finds that Eq. (15) can be solved by 21 gauge inequiva-

lent sets of gS -matrices which are listed in Appendix C. Note

that in all these solutions one has gΠz
= gΠy

= τ0. The

total number of combinatorially distinct PSGs is two to the

power of the number of independent ηS parameters times the

number of gauge inequivalent sets of gS matrices. The con-

dition ηΠηΠxy
ηP = 1 connects three different sign factors

such that only two can be counted as independent. This yields

21 · 25 = 672 PSGs for the sc lattice. However, due to the

property T (urr′) = −urr′ it is clear that no finite mean-field

ansatz can be constructed if projective time reversal acts triv-

ially (i.e., ηT = 1 and gT = τ0). Hence, when investigating

actual ansätze, only 21 · 25 − 9 · 24 = 528 cases need to be

considered.

B. Body centered cubic lattice

We now extend the previous discussion to the bcc lattice.

While the space group Oh remains unaffected, a new gener-

ator for translations needs to be incorporated, which corre-

sponds to a translation along the space diagonal by half the

lattice constant of the cubic unit cell,

t(x, y, z) = (x+ 1/2, y + 1/2, z + 1/2) . (16)

By viewing the bcc lattice as two interpenetrating sc lat-

tices with sublattice A = {r = (x, y, z)|x, y, z ∈ Z} and

B = {r = (x+ 1/2, y + 1/2, z + 1/2)|x, y, z ∈ Z} we

may reuse our results form the previous section. Here, we

only sketch the procedure and refer to Appendix D for details.

Before including t, we assume that each of the two sublattices

independently realizes one of the PSGs already classified. We

may symbolically write this as GS(r ∈ A) = GA
S (r) and

GS(r ∈ B) = GB
S (r) where G

A/B
S (r) fulfills Eq. (15). Ini-

tially, this construction requires that the point group symme-

tries acting on sublattice B need to leave one site rB0 invariant

in the same way as the point group symmetries leave the ori-

gin rA0 = (0, 0, 0) on sublattice A unchanged. We choose

this site as rB0 = (1/2, 1/2, 1/2). As an example, site inver-

sion IB acting on sublatticeB does not obey IB(x+1/2, y+
1/2, z+1/2) = (−x−1/2,−y−1/2,−z−1/2), as one would

naively expect, but operates as IB(x+1/2, y+1/2, z+1/2) =
(−x+ 1/2,−y + 1/2,−z + 1/2).

The extension by t, which connects the two sublattices,

adds further algebraic conditions which are obtained from

successive applications of symmetry operations yielding iden-

tity, similarly to the approach in the previous section. It can

be shown that the representation matrices gAS = gBS and the

sign parameter ηAS = ηBS of the two sublattices have to be

identical for all symmetries. An important consequence is

that the sign factor corresponding to translations can only be

positive ηAX = ηBX = +1. This also simplifies the handling

of point group symmetries: Since inversion on sublattice B
obeys IB(r ∈ B) = TxTyTzI(r ∈ B), where I is the con-

ventional inversion satisfying I(r) = −r on both sublattices

and Tµ is associated with a trivial gauge transformation, one

finds that GI(r ∈ B) = GIB (r ∈ B). The same also holds

for the other point group symmetries, such that one can im-

plement them in the usual way where their action only leaves

one point r0 = (0, 0, 0) invariant. In total, the gauge trans-

formations associated with the symmetry operations are given

by the same equations as for the sc lattice [Eq. (15)] but addi-

tional conditions for the projective representation of t have to

be included:

Gt(r) = ηx+y+z
t gt, g2t = ±τ0 ,

[

gt, gS6=Πy,Πz

]

±
= 0, gΠxy

gP gtgΠxy
gP = ±gt . (17)

Note that the last three identities hold because all translations

Tµ are now represented by the identity and gΠz
= gΠy

=

τ0. It is important to emphasize that the components x, y,

z in Eq. (17) label the cubic unit cell of a site at position r,

i.e., for a site on sublattice B they obey r = (x + 1/2, y +
1/2, z + 1/2) with x, y, z ∈ Z, see Fig. 1. The projective

representations defined by the possible sets of gS matrices are

listed in Table V. Combined with the possible choices for the

sign parameters, one obtains a total of 59 · 25 = 1888 distinct

PSGs for the body centered cubic. Subtracting again the cases

where time reversal acts trivially such that no finite mean-field

ansatz can be constructed, yields 59 · 25 − 23 · 24 = 1520.
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C. Face centered cubic lattice

We finally discuss the fcc lattice where we proceed in anal-

ogy to the bcc lattice. Compared to the sc case, one now has

to add two more translations given by

t1(x, y, z) = (x, y + 1/2, z + 1/2) ,

t2(x, y, z) = (x+ 1/2, y + 1/2, z) . (18)

The fcc lattice can be constructed by four sc sub-

lattices defined by A = {(x, y, z)|x, y, z ∈ Z},

B = {(x+ 1/2, y + 1/2, z)|x, y, z ∈ Z}, C =
{(x+ 1/2, y, z + 1/2)|x, y, z ∈ Z} and D =
{(x, y + 1/2, z + 1/2)|x, y, z ∈ Z} which are connected

by t1 and t2. Using the same line of arguments as for the

bcc lattice we find that the gauge transformations again

have to be represented equally on all sublattices, i.e.,

GA
S = GB

S = GC
S = GD

S . Furthermore, like for the bcc case,

the sign factor corresponding to translations must be positive,

ηX = +1 (which again simplifies the handling of point group

symmetries due to the same reason already discussed for

the bcc lattice). The gauge transformations associated with

the new generators t1 and t2 and the additional algebraic

relations for the gt1 and gt2 matrices have the form

Gt1(r) = ηx+y+z
t gt1 g2t1 = ±τ0,

Gt2(r) = ηx+y+z
t gt2 g2t2 = ±τ0,

(gt1gt2)
2
= ±τ0, [gT , gt1 ]± = 0, [gT , gt2 ]± = 0,

[gI , gt1 ]± = 0, [gI , gt2 ]± = 0,
[

gΠxy
, gt2

]

±
= 0,

gt2gt1gΠxy
gt1gΠxy

= ±τ0, gP gt2g
−1
P gt1 = ±τ0,

gΠxy
gP gt1gΠxy

gP gt1 = ±τ0. (19)

We again emphasize that x, y, z ∈ Z are the coordinates of

the cubic unit cell in which the site r lies. Note that there is

only one sign factor ηt for both transformations t1 and t2. Fur-

thermore, in contrast to the bcc lattice one finds that Eq. (19)

only allows for solutions where the matrix representations for

the translations t1 and t2 are trivial, Gt1(r) = Gt2(r) =

ηx+y+z
t τ0. As a consequence, one obtains the same gauge

inequivalent sets of gS matrices as for the sc lattice, see Ta-

ble IV. This means, the total number of PSGs is 21 · 25 = 672
and after subtracting the ones where the gauge transformation

of time reversal is trivial one finds 21 · 25 − 9 · 24 = 528.

IV. CONSTRUCTING SHORT-RANG MEAN-FIELD

ANSÄTZE

With the PSG representations at hand we are now able to

construct mean-field ansätze which satisfy the projective sym-

metries. In this section, as an example, we explicitly construct

such ansätze for the bcc lattice with nearest neighbor mean-

field amplitudes. Afterwards, we will discuss ansätze for all

three lattices with mean-field amplitudes up to third neighbors

focussing more on their physical properties rather than their

construction. Therefore, this section can be considered as a

Figure 1. Illustration of the bcc lattice where blue (red) points denote

sublattice A (B). The bold black lines in the upper right part of the

figure highlight a cubic unit cell where the dark blue and dark red

points are considered to lie inside this unit cell. The eight red points

are the first neighbors of the dark blue site in the center.

guide of how to use the PSG classification for constructing

ansätze and readers only interested in the results may proceed

to the next section.

The entire construction is based on Eq. (10) where

the symmetry operators of the bcc lattice are given by

S = {Tx, Ty, Tz, t, T , I,Πz,Πy,Πxy, P}. Since the gauge

transformations of translations are all represented by the iden-

tity GTµ
(r) = τ0, it immediately follows that

ur+êµr′+êµ = urr′ ≡ uδr , (20)

where δr = r′ − r. Note that this does not hold for the sc

lattice where a negative sign factor ηX = −1 is possible.

There are eight first neighbors on the bcc lattice described by

the vectors δr = {±1/2,±1/2,±1/2} where all combina-

tions of signs are possible, as shown in Fig. 1. Even though

the mean-field matrices only depend on δr = r′ − r and

not on r and r′ separately, we fix r = (0, 0, 0) as a refer-

ence point to simplify the discussion below. Thus, the near-

est neighbor mean-field matrices considered here are urr′ =
u(0,0,0),(±1/2,±1/2,±1/2) ≡ u(±1/2,±1/2,±1/2). Among these

matrices we can choose one, for instance u(1/2,1/2,1/2) ≡
uδr1 , and all others follow by applying the point group

operations. Before formulating relations between different

u(±1/2,±1/2,±1/2), we first specify the general form of uδr1 .

Time reversal dictates a property which has to be fulfilled by

all uδr,

−G†
T (r)urr′GT (r

′) = urr′

⇐⇒ − ηx
′+y′+z′

T g−1
T uδrgT = uδr . (21)

This means that for δr = δr1 where r and r′ lie in the same

cubic unit cell the sign factor ηT cancels out. Therefore, uδr1
has to anti-commute with the representation matrix gT which

is either given by τ0 or by iτ2 (see Table V). Since a fi-

nite matrix cannot anti-commute with the identity one finds
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gT = iτ2. This requires that in the expansion of the mean-

field matrix two coefficients vanish, α0
δr1

= α2
δr1

= 0, [see

Eq. (6)] and consequently (uδr1)
†
= uδr1 . Generally, the ef-

fect of hermitian conjugation is given by (uδr)
†
= u−δr such

that uδr1 = u−δr1 = u(−1/2,−1/2,−1/2). The vector −δr1
points from the origin to the cubic unit cell with the coordi-

nates (x, y, z) = (−1,−1,−1) such that the sign factor ηT
does not cancel out in Eq. (21). It is then obvious that only

ηT = +1 leads to a finite ansatz.

Combining hermitian conjugation and inversion leads to

another condition that holds for all mean-field matrices,

G†
I(I(r))uI(r)I(r′)GI(I(r

′)) = urr′

⇐⇒ η
I(x′)+I(y′)+I(z′)
I g−1

I u−δrgI = uδr

⇐⇒ η
I(x′)+I(y′)+I(z′)
I g−1

I (uδr)
†
gI = uδr . (22)

In the case δr = δr1 this condition demands that uδr1 has to

commute with the representation matrix gI . Thus, gI can be

represented by the identity or by iτ3. Since this equally holds

for u−δr1 one finds that the corresponding sign factor has to

be positive, ηI = +1.

Next, we consider a requirement dictated by permutation:

G†
P (P (r))uP (r)P (r′)GP (P (r

′)) = urr′

⇐⇒ η
P (x′)+P (y′)
P g−1

P uP (δr)gP = uδr . (23)

Using P (δr1) = δr1 and observing that the sign factor can-

cels out it follows that uδr1 has to commute with gP which

can only be accomplished by a trivial representation gP = τ0

(see Table V). In contrast to the considerations for time rever-

sal T and inversion I , the case δr = −δr1 does not lead to

the condition ηP = 1 in Eq. (23).

The other point group operations can be used to relate dif-

ferent u(±1/2,±1/2,±1/2) with each other:

η
Πz(x

′)+Πz(y
′)

Π uΠz(δr) = uδr , (24)

η
Πy(x

′)+Πy(z
′)

Π uΠy(δr) = uδr , (25)

η
Πxy(z

′)
Πxy

g−1
Πxy

uΠxy(δr)gΠxy
= uδr. (26)

Combining Πz , Πy , or Πxy with inversion leads to further

conditions. For instance, one finds that Πxy(1/2, 1/2, 1/2) =
(1/2, 1/2,−1/2) = Πz(I(1/2, 1/2, 1/2)) which yields

gIg
−1
Πxy

uδr1gΠxy
g−1
I = uδr1 , i.e., gΠxy

g−1
I has to commute

with uδr1 and consequently gΠxy
= τ0 or gΠxy

= iτ3.

Furthermore, from the relation Πxy(1/2,−1/2,−1/2) =
I(1/2,−1/2,−1/2) = (−1/2, 1/2, 1/2) it follows that the

sign factor for Πxy has to be positive, ηΠxy
= +1. The con-

straint ηΠxy
ηΠηP = 1 determines the remaining sign factor

ηP = ηΠ.

It remains to be shown how t transforms the mean-field ma-

trices. Using

G†
t(t(r))ut(r)t(r′)Gt(t(r

′)) = urr′ (27)

for the case r′ − r = δr1 yields ηtg
−1
t uδr1gt = uδr1 where

the invariance of the mean-field matrices under lattice transla-

tions Tx, Ty , and Tz was used. Repeating the same for u−δr1

ηT gT ηP gP ηIgI ηΠxygΠxy ηtgt

+iτ2
±τ0 +τ0 +τ0 +τ0

+iτ2
±τ0 +τ0/+ iτ3 +τ0/+ iτ3 +τ0/+ iτ3

Table I. Possible PSG representations for first neighbor ansätze on

the bcc lattice. Note that in the second line at least one of the matrices

gI , gΠxy or gt must be given by iτ3.

one finds g−1
t uδr1gt = uδr1 . Thus, we conclude that ηt = +1

and uδr1 has to commute with gt which leads to the two pos-

sibilities gt = τ0 or gt = iτ3.

Putting everything together we have identified all PSG rep-

resentations on the nearest neighbor level which are distin-

guished by ηP (which is either +1 or −1) and gI , gΠxy
, gt

can all be independently given by τ0 or iτ3. One can sub-

divide these 16 PSGs into 2 groups (see Table I): In the first

case gI = gΠxy
= gt = τ0 and in the second case at least

one of the matrices gI , gΠxy
, gt is given by iτ3. The latter

representations (second line in Table I) require that an ansatz

as given in Eq. (6) has only finite α3
δr coefficients such that

uδr = α3
δrτ

3 for all δr (i.e, not only for nearest neighbor dis-

tances). In the first case where gI = gΠxy
= gt = τ0 the pro-

jective symmetries are less restrictive and an ansatz can have

the general form uδr = α1
δrτ

1 + α3
δrτ

3. Particularly, the ‘di-

rection’ of an ansatz uδr in the τ1-τ3-plane as defined by the

coefficients (α1
δr1
, α3

δr1
) is the same for all nearest neighbor

δr. Since all projective symmetries except for time-reversal

are represented by the identity one can apply a global gauge

transformation W = e−iθτ2

, with θ = θ(α1
δr1
, α3

δr1
) denot-

ing the polar angle in the plane spanned by τ1 and τ3, without

altering the PSG representation. This gauge transformation

rotates the nearest neighbor mean-field matrices along the τ3

axis and thus α1
δr = 0. After this rotation, there are only two

distinct mean-field ansätze on the bcc lattice for nearest neigh-

bor amplitudes which are distinguished by the sign parameter

ηP . The precise form of these two ansätze and their physical

properties are discussed in Sec. V.

Some comments about the Lagrange multiplier fields are in

order. In analogy to the relations for the mean-field matrices

in Eq. (10), they have to satisfy conditions ensuring the invari-

ance under projective symmetries:

G†
S(S(r))aµ(S(r))τµGS(S(r)) = aµ(r)τ

µ . (28)

One immediately finds that aµ(r + êν) = aµ(r) ≡ aµ for

ν = {x, y, z} by taking advantage of translational invariance.

Since the two gauge transformations in Eq. (28) act on the

same site, the η factors square and, hence, become irrelevant.

For the other symmetry operations the term aµτ
µ transforms

according to

−g−1
T aµτ

µgT = aµτ
µ ,

g−1
O aµτ

µgO = aµτ
µ , (29)

where O is a point group generator. In other words, aµτ
µ has

to commute (anti-commute) with the representation matrix gO
(gT ).
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The above discussion shows that the matrix structure of

urr′ and the type of allowed Lagrange multipliers aµ, which

both determine the mean-field Hamiltonian, are fixed by the

PSG. However, symmetry properties alone do not determine

the actual values of the nearest neighbor hopping amplitude

α3
δr1

≡ χ1 and the chemical potential a3. They may, however,

be obtained self-consistently by calculating the expectation

values in Eqs. (3) and (5) for the ground state of the mean-

field Hamiltonian. These self-consistent mean-field theories

form the basis for the discussions in the next section.

V. SHORT-RANGE MEAN-FIELD STATES

In Sec. III we have shown that there exist hundreds of

fermionic PSG representations for the sc, bcc, and fcc lat-

tices. These large numbers follow from the fact that the oc-

tahedral group Oh is the largest point group in three dimen-

sions, containing a total of 48 elements. In simple terms, the

larger the numbers of symmetries, the more algebraic rela-

tions between them exist, which increases the possibilities for

constructing PSG representations. However, as demonstrated

in the last section, when trying to determine actual mean-field

ansätze with short range amplitudes only, the symmetries act

as constraints which drastically reduce their number. Hence,

the considered systems are characterized by a pronounced dis-

crepancy between a large variety of PSGs but very limited

numbers of mean-field theories, such that in this section only

a few cases have to be discussed for each of the three lat-

tices. This also implies that if quantum spin liquids exist in

these systems their low energy effective theories and excita-

tion spectra (e.g. spin structure factor) are already predeter-

mined to some extent. This property possibly simplifies their

identification in experiments.

For each of the three lattices, we start with the nearest

neighbor case and then add terms up to third neighbors. We

emphasize that it is actually unlikely that a mean-field model

with only nearest neighbor terms can describe a quantum spin

ηX ηT gT ηP gP ηIgI ηΠxygΠxy

+ +iτ2 +τ0 +τ0 +τ0

+ +iτ2 +τ0 +τ0/+ iτ3 +τ0/+ iτ3

+ −iτ3 +τ0 +τ0/− iτ2 +τ0

+ −iτ3
−τ0 +τ0/− iτ2

−iτ2

− +iτ2
−τ0 +τ0/+ iτ3

−iτ2

− −iτ3 +τ0 +τ0/− iτ2 +iτ3

Table II. Possible PSG representations on the sc lattice which yield

ansätze with symmetry-allowed first and second neighbor ampli-

tudes. Note that some of the listed cases have been gauge trans-

formed compared to Table IV to ensure that the nearest neighbor

ansätze all consist of hopping terms. Note that in the second line

either gI or gΠxy must be given by iτ3.

liquid on the sc and bcc lattices [42–44]. This is because

on a mean-field level, the range of spinon hopping/pairing

amplitudes is directly tied to the range of spin interactions

J1, J2, . . . and beyond mean-field one may assume that such a

constraint exists at least approximately. Therefore, one would

expect that a nearest neighbor mean-field model only de-

scribes quantum spin liquids in systems with dominant near-

est neighbor spin interactions J1 in the presence of additional

frustrated longer range interactions. However, without being

frustrated, the sc system has been rigorously shown to or-

der into a simple Néel state for J1 > 0 [45] (where the two

sublattices have opposite spin orientations) and, the same has

been numerically demonstrated for the bcc lattice [29] hence,

a quantum spin liquid would not occur in these systems with

nearest neighbor interactions only. We will still briefly con-

sider this case, as it forms the basis for our investigations of

longer-range models.

In the following, we discuss all the relevant cases for the

three lattices.

A. Simple cubic lattice

On the sc lattice, two different types of mean-field ansätze

can be constructed, and they are classified according to the

sign value of ηX . The case of ηX = +1 corresponds to

translationally invariant ansätze and ηX = −1 yields ansätze

which double the unit cell in two of the three cubic lattice vec-

tor directions. We shall only consider mean-field ansätze with

non-vanishing nearest neighbor amplitudes, and these corre-

spond to PSG representations with gP = τ0 in Table IV.

SC 1: ηX = +1 state

This case is realized for the projective representations in the

first four lines of Table II. At the nearest neighbor level only a

single ansatz with uniform hopping and a chemical potential

can be constructed,

SC 11 : uδr = χ1τ
3, ∀ δr first neighbors ,

a3 6= 0 , (30)

which realizes a gapless SU(2) spin liquid. Here, and in the

following the notation “SC Xy” indicates the ansatz enumer-

ated by “X” with “y” being the range of the mean-field ampli-

tudes. Possible sub-cases for longer-range terms are labelled

“SC Xya”, “SC Xyb”, etc. The self-consistently calculated

hopping amplitude χ1, on-site term a3 and mean-field energy

per site ǫ for J1 = 1 are given by

χ1 = 0.167 , a3 = 0.0 , ǫ = −0.188 . (31)

The spinon dispersion of this ansatz for both bands is shown

in Fig. 2(a). (Note that even though the dispersion of a uni-

form hopping term on a Bravais lattice can be presented with

one band only, here and in the following, we prefer to use

the two-component spinor basis to be consistent with cases

where pairings are finite.) In Fig. 2(b), we see the presence
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Figure 2. Nearest neighbor model “SC 11”. (a) Spinon dispersion of Eq. (30) along the high-symmetry path through the Brillouin zone where

Γ = (0, 0, 0), X = (π, 0, 0), M = (π, π, 0), and R = (π, π, π) (and symmetry related wave vectors). The Fermi surface is depicted in (b).

(c) Dynamical spin structure factor plotted along the high-symmetry path in reciprocal space.

of a Fermi-surface which can be topologically characterized

as a triply periodic Schwarz-P surface with an Euler charac-

teristic χ = −4 [27, 46]. The dynamical structure factor (see

Appendix E for a brief explanation of how the structure fac-

tor is calculated) shown in Fig. 2(c) displays two principal

variations in intensity, the first one is dispersive arising out

of the Γ point with strong and localized distribution of spec-

tral weight at progressively higher ω as one traverses the ΓX
segment. This feature is a direct consequence of the system’s

Fermi surface. The second noticeable characteristic is the ap-

pearance of a relatively weaker cone like signal around the R

point.

There exist three distinct ways of incorporating further

neighbor amplitudes on top of the nearest neighbor ansatz of

Eq. (30). The first and most general scenario corresponds to

the PSG in the first line of Table II which allows for the si-

multaneous occurrence of hopping and pairing amplitudes on

Figure 3. Quantum phase diagram of the S = 1/2 antiferromagnetic

J1-J2-J3 Heisenberg model on the sc lattice. Gray regions denote

the classical phases with the corresponding ordering wave vectors

indicated. Spin configurations are illustrated for all classical orders.

Thick black lines are the classical phase boundaries. The red area is

the regime where Ref. [21] identifies a quantum paramagnetic phase.

Red points mark the sets of Heisenberg couplings considered here.

second and third nearest neighbor bonds,

SC 12a : uδr = χ2τ
3 +∆2τ

1, ∀ δr second neighbors ,

SC 13a : uδr = χ3τ
3 +∆3τ

1, ∀ δr third neighbors .
(32)

Here, second (third) neighbor bonds are of the form

δr = (±1,±1, 0) and permutations of coordinates (δr =
(±1,±1,±1)). Note that the second neighbor terms in

Eq. (32) lower the IGG down to U(1), in particular, the ∆2

term opens a gap in the spinon spectrum except of nodal Dirac

points along ΓR at (π/2, π/2,±π/2). The inclusion of third

neighbor terms further reduces the IGG down to Z2.

The second way of including further neighbor amplitudes

(“SC 12b” and “SC 13b”) is given by the second line of Ta-

ble II. Compared to Eq. (32) the projective implementation of

symmetries forbid spinon pairing terms, i.e., ∆2 = ∆3 = 0.

Our self-consistent calculations indicate that for a generic set

of interaction parameters in the Hamiltonian, the ∆2 and ∆3

terms are finite and lower the mean-field energies ǫ such that

the PSG in the first line turns out to be energetically favor-

able, in general. Therefore, we will not further discuss the

case ∆2 = ∆3 = 0, but instead focus on the more general

type of ansatz in Eq. (32).

The third way corresponds to the different cases in the third

and fourth lines in Table II. In this ansatz class, the projec-

tive symmetries dictate a uniform second neighbor imaginary

pairing term and a third neighbor real hopping term,

SC 12c : uδr =∆2τ
2, ∀ δr second neighbors ,

SC 13c : uδr =χ3τ
3, ∀ δr third neighbors . (33)

This case may, likewise, be obtained from the general ansatz

in Eq. (32) by setting χ2 = ∆3 = 0 and performing a global

gauge transformation around the τ3 axis (which, however,

changes the g-matrices in the third and fourth lines in Ta-

ble II). Since the exclusion of χ2 and ∆3 terms again increases

the energy this case also does not need to be considered sepa-

rately.
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Figure 4. “SC 13a” model with mean-field amplitudes up to third

neighbors. (a) Self-consistent spinon dispersion for the first neigh-

bor terms in Eq. (30), second and third neighbor terms in Eqs. (32)

(fixed to their self-consistently determined values given in Eq. (34))

along the high symmetry path through the first Brillouin zone. (b)

Corresponding dynamical spin structure factor along the same path

in reciprocal space.

We consider the extension in Eq. (32) for two special

coupling scenarios for J2 and J3 where enhanced quan-

tum fluctuations are expected, thereby increasing the propen-

sity for spin liquid behavior. The first scenario is given by

(J2/J1, J3/J1) = (0.25, 0) where the corresponding clas-

sical model undergoes a phase transition between the q =
(π, π, π) Néel and q = (π, π, 0) stripe ordered phases [see

Fig. 3], and some studies have hinted at the possible existence

of a nonmagnetic phase in the vicinity of this point for the

S = 1/2 model [33, 47, 48]. In the second scenario, we con-

sider (J2/J1, J3/J1) = (0.5, 0.25) which is a triple point of

the q = (π, π, π), q = (π, π, 0) and q = (π, 0, 0) phases in

the corresponding classical model [see Fig. 3]. Recent stud-

ies [20–22] have identified a nonmagnetic phase [marked by

the red area in Fig. 3] in the vicinity of this point for the

S = 1/2 model.

For the first set of couplings (J2/J1, J3/J1) = (0.25, 0)
the ansatz in Eqs. (32) yields self-consistently calculated am-

plitudes given by

χ1 = 0.167 , χ2 = 0.0 , ∆2 = 1.97 · 10−3 ,

a3 = 0.0 , ǫ = −0.188 ,

which does not lead to any noticeable changes compared

to the J1 only case. In the second coupling scenario, at

(J2/J1, J3/J1) = (0.5, 0.25), we find a small additional χ3

term and a comparatively smaller ∆2 term:

χ1 = 0.167 , χ2 = 0.0 , ∆2 = 0.0127 , χ3 = −0.0598 ,

∆3 = 0.0 , a3 = 0.0 , ǫ = −0.197 . (34)

As expected, the presence of a finite ∆2 in the self-consistent

parameters of the SC 13a ansatz [Eq. (34)], gaps out the

Fermi surface leaving behind nodal Dirac points along ΓR at

(π/2, π/2,±π/2) [see Fig. 4(a)]. Due to the smallness of ∆2

term, its manifestation in the dynamical spin structure factor

is not visible, while, we notice that the effect of a finite χ3 is

to suppress the intensity and broaden the relatively sharp sig-

nal [see Fig. 4(b)] of the χ1 only case [Eq. (30) and Fig. 2(c)]

along the ΓX segment.

Γ X M R Γ M
-1.5
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ǫ
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Figure 5. Nearest neighbor model “SC 21”. (a) Spinon dispersion of

Eq. (35) along the high-symmetry path through the Brillouin zone.

(b) Dynamical spin structure factor plotted along the high-symmetry

path in reciprocal space.

SC 2: ηX = −1 state

The mean-field ansätze in this case corresponding to the last

two lines of Table II require doubling the unit cell in both x-

and y-directions. At the nearest neighbor level one obtains the

following sign structure of real hopping terms

SC 21 : u(±1,0,0) = χ1τ
3 ,

u(0,±1,0) = ηxXχ1τ
3 ,

u(0,0,±1) = η
(x+y)
X χ1τ

3, (35)

and a uniform onsite chemical potential term a3. This ansatz

realizes a SU(2) spin liquid which is gapless at two iso-

lated points (π/2, π/2,±π/2) in the reduced Brillouin zone

kx ∈ (0, π), ky ∈ (0, π), kz ∈ (−π, π). The self-consistently

calculated hopping amplitude χ1, on-site term a3 and mean-

field energy per site ǫ for J1 = 1 are given by

χ1 = 0.199 , a3 = 0.0 , ǫ = −0.267 . (36)

This energy is considerably lower compared to that of

Eq. (30). The spinon dispersion of this state is shown in

Fig. 5(a). The dynamical spin structure factor in Fig. 5(b) dis-

plays an entirely different distribution of signal compared to

the SC 1 case with weakly dispersing features at low energies

around the X, M and R points, while at intermediate energies

one observes a high intensity concentration of diffuse spectral

weight.

The inclusion of second neighbor amplitudes in the ansatz

of Eq. (35) follows a similar scheme as in the SC 1 case. The

most general second neighbor extension is given by the fifth

line of Table II when ηIgI = +τ0, allowing for a simultane-

ous existence of hopping and pairing terms:

SC 22a : u(±1,±1,0) = ηxX(χ2τ
3 +∆2τ

1) ,

u(±1,0,±1) = −η(x+y)
X (χ2τ

3 +∆2τ
1) ,

u(0,±1,±1) = ηyX(χ2τ
3 +∆2τ

1) ,

a3 = 0 . (37)

Here, (±1,±1, 0) denotes the four bonds (1, 1, 0), (1,−1, 0),
(−1, 1, 0), (−1,−1, 0) and equivalently for the other terms.

This ansatz lowers the IGG from SU(2) to U(1), and splits
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the degeneracy of the bands but keeps the gapless point along

ΓR intact. Other ways of including second neighbor terms

such as for the case ηIgI = +iτ3 in the fifth line or the var-

ious cases in the last line of Table II are more restrictive and

forbid parts of the terms in Eq. (37). In either case, how-

ever, self-consistently calculated second neighbor terms are

vanishingly small at moderate J2. Similarly, third neighbor

terms are either forbidden by symmetry or numerically evalu-

ate to very small values. Thus, this spin liquid phase is rather

insensitive with respect to J2 and J3 couplings such that the

self-consistent mean-field amplitudes, spinon dispersion and

dynamical spin structure factor for both sets of spin interac-

tions are again given by Eqs. (35), (36) and Fig. 5.

Since the mean-field energies of the SC 2 case are signifi-

cantly lower compared to the SC 1 ansatz, we conclude that

Fig. 5(b) represents a typical intensity distribution of the dy-

namical spin structure factor for possible quantum spin liquids

on the sc lattice. Our analysis also shows that third neighbor

amplitudes are required in the ansätze to realize a Z2 quan-

tum spin liquid on the sc lattice. A summary of the short-

range mean field models and the corresponding projective im-

plementations of symmetries is given in Table VI.

B. Body centered cubic lattice

We have already found in Sec. IV that on the nearest neigh-

bor level, the bcc lattice only allows for two different ansätze

which are distinguished by their sign factor ηP . While in the

case ηP = +1 (referred to as BCC 1) only uniform hopping

and pairing amplitudes are possible, the representations with

ηP = −1 (called BCC 2) are characterized by mean-field am-

plitudes which are modulated by certain sign patterns. In the

following two subsections we discuss these cases in more de-

tail and demonstrate how they can be physically distinguished

by their spin structure factor.

BCC 1: ηP = +1 state

The BCC 1 mean-field Hamiltonian on the nearest neigh-

bor level only contains a simple uniform hopping term und a

chemical potential

BCC 11 : uδr = χ1τ
3, ∀ δr first neighbors ,

a3 6= 0 , (38)

for which the IGG is SU(2). The self-consistently calculated

hopping amplitude χ1, on-site term a3 and mean-field energy

per site ǫ for J1 = 1 are given by

χ1 = 0.129 , a3 = 0.0025 , ǫ = −0.149 . (39)

The spinon dispersion of this ansatz for both bands is shown

in Fig. 6(a). The system exhibits a Fermi surface, illustrated in

Fig. 6(b), which consists of (almost) parallel planes forming

a cube in momentum space. Due to the presence of a small

a3 term, the Fermi surface is slightly distorted compared to

a perfect cube. The dynamical structure factor illustrated in

Fig. 6(c) shows strong intensities around the H point (i.e.,

q = (2π, 0, 0) and symmetry related wave vectors). This

spectral distribution can be understood from the form of the

Fermi surface in which two opposite planes are connected by

a nesting vector q = (2π, 0, 0). A second characteristic is the

cone-like signal around the Γ point. The opening angle of the

cone can be linked to the spinon Fermi velocity vF. Compar-

ing this angle for different directions emanating from the Γ
point, one finds that it is smaller on the line ΓP than on the

line ΓH indicating a momentum dependent Fermi velocity.

We now investigate longer-range mean-field terms in the

BCC 1 case. As explained in Sec. IV, one can apply a cer-

tain gauge transformation such that on the nearest neighbor

level the two groups of projective representations in Table I

become indistinguishable. However, this is no longer pos-

sible for longer-range terms, i.e., when allowing for second

and third neighbor amplitudes on top of the nearest neighbor

model in Eq. (38) one needs to distinguish between these two

cases. Particularly, for the PSGs in the first line, hopping and

pairing amplitudes of second and third neighbor type may oc-

cur simultaneously:

BCC 12: uδr = χ2τ
3 +∆2τ

1, ∀ δr second neighbors ,

BCC 13: uδr = χ3τ
3 +∆3τ

1, ∀ δr third neighbors .
(40)

Here, second (third) neighbor bonds are of the form δr =
(±1, 0, 0) (δr = (±1,±1, 0)), and permutations of coordi-

nates. For the PSGs in the second line of Table I, the projective

implementations of symmetries forbid spinon pairing terms,

i.e., ∆2 = ∆3 = 0. However, all our self-consistent calcula-

tions indicate that finite ∆2 and ∆3 terms significantly lower

the mean-field energies ǫ such that the PSGs in the second line

are energetically unfavorable. Therefore, we will not further

discuss the case ∆2 = ∆3 = 0 but focus on the more gen-

eral type of ansatz in Eq. (40). Note that the second neighbor

terms in Eq. (40) break the IGG down to U(1) while the in-

clusion of third neighbor terms further reduces the IGG down

to Z2.

The terms in Eq. (40) are self-consistently generated for

spin models with frustrating antiferromagnetic second and

third neighbor spin interactions J2 and J3. Here, we consider

two special coupling scenarios for J2 and J3 where enhanced

quantum fluctuations are expected, increasing the propensity

for spin liquid behavior. The first case is given by J2/J1 =
2/3, J3 = 0 where the corresponding classical spin sys-

tem undergoes a phase transition between the aforementioned

q = (2π, 0, 0) Néel state and a stripe ordered q = (π, π, π)
phase [29, 33, 49, 50], see the phase diagram in Fig. 7. In

the second case, we consider (J2/J1, J3/J1) = (2/3, 1/4)
where recent studies have identified a magnetically disordered

phase [24] (red area in Fig. 7).

The self-consistently calculated amplitudes for

(J2/J1, J3/J1) = (2/3, 0) are given by

χ1 = 0.116 , χ2 = −4.7 · 10−4 , ∆2 = 0.106 ,

a3 = −9.1 · 10−4 , ǫ = −0.178 . (41)

The pairing term opens a gap in the spectrum as illustrated

in Fig. 8(a). As a result, the cone like-signal around the Γ
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Figure 6. Nearest neighbor model “BCC 11”. (a) Spinon dispersion of Eq. (38) along a path through the first Brillouin zone where H =
(0, 0, 2π), N = (0, π, π), and P = (π, π, π) (and symmetry related wave vectors). The Fermi surface is depicted in (b) where the green

region indicates the first Brillouin zone. (c) Dynamical spin structure factor along a path in reciprocal space.

point and the high intensities at the H point disappear in the

dynamical spin structure factor [see 8(b)]. Instead a charac-

teristic pattern of three arcs appears which are located along

the lines ΓH , HP , and PΓ.

In the second case where (J2/J1, J3/J1) = (2/3, 1/4) we

find small additional χ3 and ∆3 terms while the other ampli-

tudes remain nearly unchanged:

χ1 = 0.116 , χ2 = −2.8 · 10−4 , ∆2 = 0.105 ,

χ3 = −8.7 · 10−5 , ∆3 = −0.014 , a3 = −9.1 · 10−4 ,

ǫ = −0.178 . (42)

As compared to Fig. 8 these modifications only marginally

modify the spinon spectrum and the spin structure factor, in-

dicating that this spin liquid phase is rather insensitive with

Figure 7. Phase diagram of the classical antiferromagnetic J1-J2-J3

Heisenberg model on the bcc lattice. Gray regions denote the clas-

sical phases with the corresponding ordering wave vector indicated.

Thick black lines are the classical phase boundaries. The red area

is the regime where Ref. [24] identifies a non-magnetic phase. Red

points mark the sets of Heisenberg couplings considered here. On

the left and right sides of the phase diagram we depict the states with

ordering wave vectors q = (2π, 0, 0) and q = (π, π, π). Note that

in the q = (2π, 0, 0) state the two sublattices have opposite spin

orientations. For the q = (π, π, π) order, the B sublattice has the

same spin configuration as the A sublattice, but globally rotated by

an angle π/2.

respect to J3 interactions. Hence, the spin structure factor in

Fig. 8(b) represents the characteristic magnetic response in the

BCC 1 case.

BCC 2: ηP = −1 state

In the case ηP = −1, the nearest neighbor hopping ampli-

tudes have a direction-dependent sign structure induced by a

non-trivial action of the transformations Πz , Πy and P :

BCC 21: u(1/2,1/2,1/2) = χ1τ
3 = u(−1/2,−1/2,−1/2)

= u(1/2,−1/2,1/2) = u(−1/2,1/2,−1/2)

= u(1/2,1/2,−1/2) = u(−1/2,−1/2,1/2)

= −u(−1/2,1/2,1/2) = −u(1/2,−1/2,−1/2) ,

a3 6= 0 . (43)

As can be seen, one of the four nearest neighbor directions

carries hopping amplitudes with opposite signs. The IGG of

this ansatz remains SU(2). The self-consistent mean-field pa-

rameters and energy per site for a nearest neighbor coupling

J1 = 1 are given by

χ1 = 0.152 , a3 = −0.0045 , ǫ = −0.208 . (44)

(a) (b)

Figure 8. “BCC 12” model with mean-field amplitudes up to second

neighbors. (a) Self-consistent spinon dispersion for the first neighbor

terms in Eq. (38) and second neighbor terms in Eq. (40) along a path

through the first Brillouin zone. (b) Corresponding dynamical spin

structure factor along the same path in reciprocal space.
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Figure 9. Nearest neighbor model “BCC 21”. (a) Spinon dispersion of Eq. (43) along a path through the first Brillouin zone. The Fermi surface

is depicted in (b) where the green region indicates the first Brillouin zone. (c) Dynamical spin structure factor along a path in reciprocal space.

Most importantly, already on the nearest neighbor level, the

energy of this state is significantly lower than for the BCC 1

case. The corresponding spinon dispersion shown in Fig. 9(a)

features a Fermi surface which has an entirely different shape

compared to the nearest neighbor BCC 1 ansatz. This also re-

flects in the dynamical spin structure factor which, in absence

of any nesting vectors, exhibits a more evenly distributed in-

tensity with a characteristic arc emanating from the Γ-point

and reaching its maximum at the H-point [Fig. 9(c)]. In con-

trast to the BCC 1 case much of the total weight appears be-

tween Γ and H while the region between Γ and P shows a

relatively small signal.

The projective implementation of symmetries in this PSG,

characterized by the sign factors ηΠ = ηP = −1, dictates

that no second neighbor mean-field terms are allowed. This

also implies that when adding second neighbor J2 interac-

tions, the results from the J1-only case remain unchanged.

Third neighbor terms can exist and similarly to the BCC 1

case one needs to distinguish between the two representations

in Table I. For the PSG in the first line, the third neighbor

terms include spinon hopping and pairing of the form

BCC 23: u(1,1,0) = χ3τ
3 +∆3τ

1 = u(−1,−1,0)

= u(0,1,1) = u(0,−1,−1) = u(1,0,−1) = u(−1,0,1)

= −u(1,0,1) = −u(−1,0,−1) = −u(1,−1,0)

= −u(−1,1,0) = −u(0,1,−1) = −u(0,−1,1) ,

(45)

while for the PSG in the second line the pairing terms are for-

bidden, ∆3 = 0. Since we again find that a finite ∆3 lowers

the energy compared to ∆3 = 0 we only treat the more gen-

eral case where spinon hoppings and pairings are both present.

Note that similar to the first neighbor amplitudes in Eq. (43)

the third neighbor terms show a direction dependent sign pat-

tern.

The self-consistent mean-field amplitudes for

(J2/J1, J3/J1) = (2/3, 1/4) given by

χ1 = 0.151 , χ3 = −5.8 · 10−4 , ∆3 = 0.0283 ,

a3 = −0.0037 , ǫ = −0.209 (46)

(a) (b)

Figure 10. “BCC 23” model with mean-field amplitudes up to third

neighbors. (a) Self-consistent spinon dispersion for the first neighbor

terms in Eq. (43) and third neighbor terms in Eq. (45) along a path

through the first Brillouin zone. (b) Corresponding dynamical spin

structure factor along the same path in reciprocal space.

differ only slightly from the J1-only case, however, the finite

∆3 term breaks the IGG down to Z2. The pairing term gaps

out parts of the Fermi surface but leaves behind a nodal Dirac

point at P = (π, π, π) [Fig. 10(a)]. Due to the smallness of

∆3, the dynamical spin structure factor, shown in Fig. 10(b),

deviates from the one in Fig. 9(c) only at low energies where

the signal is suppressed. Since the mean-field energies are sig-

nificantly smaller compared to the BCC 1 case, this analysis

suggests that Figs. 9(c) and 10(b) represent typical intensity

distributions of the spin structure factor for possible quantum

spin liquids on the bcc lattice.

An overview of the short-range mean field models and the

corresponding projective implementations of symmetries can

be found in Table VII.

C. Face centered cubic lattice

We finally treat the fcc lattice where a classification of

PSGs on the nearest neighbor level leads to four different

cases listed in Table III. Similar to the bcc lattice in the pre-

vious section one can perform a gauge transformation gener-

ated by τ2 such that the nearest neighbor ansätze in the first

two lines become identical (this, however, does not work for
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(c)(b)(a)

Figure 11. Nearest neighbor model “FCC 11”. (a) Spinon dispersion of Eq. (47) along a path through the first Brillouin zone where X =
(0, 2π, 0), W = (π, 2π, 0), L = (π, π, π), and K = ( 3

2
π, 3

2
π, 0) (and symmetry related wave vectors). The Fermi surface is depicted in (b)

where the green region indicates the first Brillouin zone. (c) Dynamical spin structure factor along a path in reciprocal space.

longer-range amplitudes). Furthermore, the third and fourth

lines yield ansätze which can be transformed into each other

by a simple permutation of the cartesian axes. Consequently,

only two nearest neighbor cases need to be considered, where

the projective action of P is implemented as gP = τ0 or as

gP = ei
π
3
τ2

.

ηT gT ηP gP ηIgI ηΠxygΠxy

+iτ2 +τ0 +τ0 +τ0

+iτ2 +τ0 +τ0/+ iτ3 +τ0/+ iτ3

+iτ2 +ei
π
3
τ2

+τ0 +iτ3

+iτ2 +ei
2π
3

τ2

+τ0 +iτ3

Table III. Possible PSG representations for first neighbor ansätze on

the fcc lattice. Note that in the second line at least one of the matrices

gI , gΠxy must be given by iτ3.

FCC 1: gP = τ0 state

We again start our discussion with first neighbor ansätze

and then add terms up to third neighbors. A Heisenberg model

on the fcc lattice with only nearest neighbor spin interactions

J1 is already frustrated and there are, indeed, numerical stud-

ies predicting a magnetically disordered state [34, 51]. The

enhanced quantum fluctuations in this model stem from the

fact that the corresponding classical spin system exhibits lines

in reciprocal space along which the ground state energies are

degenerate [26].

The ansatz class with gP = τ0, represented by the first and

second lines of Table III, consists of a uniform hopping on

nearest neighbor bonds,

FCC 11 : uδr = χ1τ
3, ∀ δr first neighbors ,

a3 6= 0 , (47)

where δr = (±1/2,±1/2, 0) (and permutations of coordi-

nates) and the IGG is U(1). We find the following self-

consistent mean-field amplitudes and ground state energy for

J1 = 1:

χ1 = 0.109 , a3 = 0.204 , ǫ = −0.156 . (48)

This ansatz has a spinon dispersion and Fermi surface shown

in Figs. 11(a) and 11(b). The dynamical spin structure fac-

tor in Fig. 11(c) exhibits a rather homogeneous distribution of

magnetic response where the flanks of a cone around the Γ
point form a region of larger signal.

When adding second and third neighbor mean-field ampli-

tudes one needs to distinguish between the first two lines of

Table III. Similar to the BCC 1 case, the first line allows for a

Figure 12. Relevant magnetic orders of an antiferromagnetic classi-

cal J1-J2 Heisenberg model on the fcc lattice: At J2/J1 = 0.5 the

q = (2π, π, 0) magnetic order (top) shows a phase transition into

q = (π, π, π) magnetic order (bottom).
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more general ansatz with spinon hopping and pairing

FCC 12 : uδr = χ2τ
3 +∆2τ

1, ∀ δr second neighbors ,

FCC 13 : uδr = χ3τ
3 +∆3τ

1, ∀ δr third neighbors ,
(49)

while for the second line one finds ∆2 = ∆3 = 0. Here,

second (third) neighbor bonds are of the form δr = (±1, 0, 0)
(δr = (±1/2,±1/2,±1)), and permutations of coordinates.

Due to the same reason as for the bcc lattice, we treat ∆2 and

∆3 as being finite, in which case the IGG is broken down to

Z2.

We consider two sets of longer-range spin interac-

tions: A first interesting physical scenario appears when

(J2/J1, J3/J1) = (0.5, 0). As a function of J2/J1 this

point marks the phase transition in the corresponding clas-

sical model between magnetic phases with ordering vectors

W = (2π, π, 0) and L = (π, π, π), see Fig. 12 for an illustra-

tion of these orders. Interestingly, the manifold of degenerate

ground states for these couplings is even enlarged compared to

the J1-only case, forming surfaces in momentum space [27]

The second set of couplings is given by (J2/J1, J3/J1) =
(0.5, 0.25) where the classical model exhibits a triple point

between magnetic phases with commensurate ordering vec-

tors X = (2π, 0, 0) and L = (π, π, π) as well as an incom-

mensurate spiral with q = (q, 0, 0) [52]. Hence, both sets

of couplings promote quantum fluctuations and appear very

promising for finding quantum spin liquid phases [34, 53].

Solving the self-consistent equations for (J2/J1, J3/J1) =
(0.5, 0) yields the amplitudes and energy

χ1 = 0.106 , χ2 = −0.075 , ∆2 = 0.059 ,

a3 = 0.09 , ǫ = −0.185 . (50)

The additional ∆2 term gaps out the spinon dispersion, see

Fig. 13(a). Since χ2 and ∆2 are both non-negligible they also

have a significant effect on the spinon dispersion away from

the points of gap opening. As a result of the spinon gap, the

V-shaped signal in the dynamical spin structure factor at the

Γ point becomes less pronounced but still represents the most

salient feature [see Fig. 13(b)]. The second set of Heisenberg

interactions (J2/J1, J3/J1) = (0.5, 0.25) yields somewhat

modified mean-field amplitudes with a slightly lower energy

χ1 = 0.106 , χ2 = −0.066 , ∆2 = 0.067 ,

χ3 = −0.028 , ∆3 = −0.0132 , a3 = 0.093 ,

ǫ = −0.192 . (51)

The corresponding spinon dispersion and dynamical spin

structure factor, however, are qualitatively similar to the pre-

vious model.

FCC 2: gP = ei
π
3
τ2

state

The second type of ansätze on the fcc lattice has a richer

structure, characterized by the nearest neighbor terms

FCC 21 : u(±1/2,±1/2,0) = χ1τ
3 ,

u(±1/2,0,±1/2) = χ1

(√
3

2
τ1 − 1

2
τ3

)

,

u(0,±1/2,±1/2) = χ1

(

−
√
3

2
τ1 − 1

2
τ3

)

, (52)

where (±1/2,±1/2, 0) denotes the four bonds (1/2, 1/2, 0),
(1/2,−1/2, 0), (−1/2, 1/2, 0), (−1/2,−1/2, 0) and equiv-

alently for the other terms. The non-trivial matrix structure

of gP induces an interesting connection between real space

and spinor space transformations: While the nearest neigh-

bor bonds in the three lines of Eq. (52) are related by 2π/3-

rotations around the (1, 1, 1) axis, the terms on the right hand

sides transform into each other under 2π/3-rotations around

the τ2 axis in the space of mean-field matrices. Here, we

have chosen a gauge in which the (±1/2,±1/2, 0) bonds only

carry hopping amplitudes. Due to the special projective action

of P , the other bonds then carry a combination of hopping and

pairing such that even on the nearest neighbor level the gauge

structure is Z2.

The projective action of P has consequences on the

spinon dispersion, independent of the range of mean-field

amplitudes. For momenta k∗ ≡ (k∗, k∗, k∗) = P (k∗)
which map back onto itself under permutation, the mean-

field Bloch Hamiltonian Hmf(k) needs to fulfill the relation

g−1
P Hmf(k

∗)gP = H(k∗). On the other hand, the combina-

tion of time reversal T and inversion I leads to an additional

condition (gIgT )
−1H∗

mf(k)gIgT = −Hmf(k) where it has

been used that IT leaves any momentum k invariant. This

means that for momenta k∗ = (k∗, k∗, k∗) and real Bloch

Hamiltonians (as considered here), Hmf(k
∗) has to commute

with gP = ei
π
3
τ2

but anti-commute with gIgT = iτ2. Since

this can only be fulfilled for Hmf(k
∗) = 0 the system fea-

tures zero-energy modes along the line ΓL running through

the entire Brillouin zone. Similar arguments can be formu-

lated for all momenta k = (±k,±k,±k) such that the spinon

(a) (b)

Figure 13. “FCC 12” model with mean-field amplitudes up to second

neighbors. (a) Self-consistent spinon dispersion for the first neighbor

terms in Eq. (47) and second neighbor terms in Eq. (49) along a path

through the first Brillouin zone. (b) Corresponding dynamical spin

structure factor along the same path in reciprocal space.
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(a) (c)(b)

Figure 14. Nearest neighbor model “FCC 21”. (a) Spinon dispersion of Eq. (52) along a path through the first Brillouin zone. Note the

symmetry protected zero energy modes along the line ΓL. (b) Fermi lines emanating from the Γ-point and forming a cube-like pattern. The

green region indicates the first Brillouin zone. (c) Dynamical spin structure factor along a path in reciprocal space.

dispersion shows a symmetry protected star-like pattern of

zero energy lines emanating from the Γ point. Additionally,

by analyzing the actions of the sublattice translations t1 and

t2 one obtains a condition according to which another net-

work of line-like zero modes forming a cube structure with

corners at the L-points exists. This is illustrated in Figs. 14(a)

and 14(b) where a nearest neighbor Heisenberg model with

J1 = 1 is considered leading to the self-consistent mean-field

amplitude χ1 = 0.121. Particularly, Fig. 14(b) shows the star

and cube-like pattern of modes at the Fermi level. Note that

no symmetry allowed Lagrange multipliers are possible. We

find a mean-field energy per site of ǫ = −0.198 which is sig-

nificantly lower compared to the FCC 1 case.

The cube-like network of zero-modes can be mapped onto

itself by nesting vectors of the type X = (2π, 0, 0). As a

consequence, the dynamical spin structure factor in Fig. 14(c)

shows a faint signal of low energy response at the X-point.

The weakness of this feature compared to the strong nesting

signal of the BCC 11 ansatz in Fig. 6 can be explained by the

fact that here, the nesting occurs along lines and not along

planes. As an additional characteristic feature of the FCC 2

case, the dynamical spin structure factor shows a spot of high

intensity at the L-point, marking the upper edge of the excita-

tion spectrum.

No second neighbor terms can be included without violat-

ing the projective symmetries.

Finally, the third neighbor terms follow a similar scheme as

the nearest neighbor ones:

FCC 23 : u(±1/2,±1/2,±1) = χ3τ
3 ,

u(±1/2,±1,±1/2) = χ3

(√
3

2
τ1 − 1

2
τ3

)

,

u(±1,±1/2,±1/2) = χ3

(

−
√
3

2
τ1 − 1

2
τ3

)

.

(53)

Considering again the spin interactions (J2/J1, J3/J1) =
(0.5, 0.25) we find the following mean-field parameters and

energy per site:

χ1 = 0.121 , χ3 = −0.035 , ǫ = −0.208 . (54)

While the spinon dispersion and dynamical spin structure fac-

tor are similar to the nearest neighbor ansatz (with the zero

modes preserved) it is worth highlighting that the energy is

again smaller than in the FCC 1 case, indicating that at least

on the mean-field level this spin liquid phase appears energet-

ically preferred.

An overview of the short-range mean field models and the

corresponding projective implementations of symmetries for

the fcc lattice can be found in Table VIII.

VI. DISCUSSION AND CONCLUSION

The three lattices considered in this work are character-

ized by large numbers of elements of their symmetry groups.

Therefore, it is not surprising that our PSG classifications of

spin liquid phases yield a plethora of possible projective rep-

resentations which even exceeds a thousand for the bcc lat-

tice. However, the large numbers of symmetries also im-

ply that short-range mean-field ansätze are subject to many

constraints and, as a consequence, only two possible nearest

neighbor models remain for each of the three lattices. Even

though the exact amount of PSGs depends on the precise

group algebra, we conclude that the systems considered here

feature a particularly marked discrepancy between the num-

ber of algebraic PSGs and the number of short range mean-

field ansätze. As an example, one may compare this with the

2D kagome lattice where the symmetry group has only four

generators (two translations and two point group operations).

There, one finds 20 PSGs which reduce to four nearest neigh-

bor ansätze [54, 55].

The two nearest neighbor models which we identify for

each of the three lattices share the common property that one

of them exhibits simple uniform spinon hopping while the

other features hopping amplitudes with special sign patterns

or a particular locking between spinon hopping and pairing

(see the FCC 2 state). These spatial modulations are caused
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by non-trivial projective actions of translations Tµ or permu-

tation P . Interestingly, already on the nearest neighbor level

these non-trivial ansätze are the ones with the lowest mean-

field ground state energy and the addition of longer-range am-

plitudes does not qualitatively change this behavior. We fur-

ther discuss characteristic features in the spin structure factor

which allow one to distinguish these states.

One overall assumption of our study is that the mean-field

amplitudes are always time reversal and spin-rotation invari-

ant. When starting from a Heisenberg Hamiltonian as in

Eq. (1) this seems justified, however, it can generally not

be excluded that these symmetries are broken spontaneously

even in quantum spin liquids, which leads to so-called chi-

ral [56] or nematic [57] spin liquids, respectively. The sce-

nario of chiral spin liquids appears unusual in our systems

as they preferably form when quantum fluctuations melt non-

coplanar classical spin orders [58, 59]. For Heisenberg mod-

els on Bravais lattices as considered here, however, all clas-

sical ground states are coplanar or even collinear. Similarly,

while nematic spin liquid ground states are unusual in spin-

1/2 systems with only antiferromagnetic Heisenberg interac-

tions [60], recent studies in 2D indicate that frustrating anti-

ferromagnetic and ferromagnetic couplings may induce such

a scenario [21, 61, 62]. Additionally, a multitude of further

spin liquid phases may be constructed when assuming that

spin-rotation invariance is already broken on the level of the

spin Hamiltonian, e.g. through Dzyaloshinskii-Moriya inter-

actions (due to the systems’ inversion symmetries such terms

would, however, not be allowed on nearest neighbor bonds).

We leave such extensions for future studies.

Also from a methodological perspective it is clear that our

work rather represents a first step towards more refined stud-

ies. For example, our ground state energies and dynamical

spin structure factors are certainly subject to a mean-field

bias and the gauge fluctuations which we neglect may lead

to a smearing of otherwise sharp features in the magnetic

response [63]. (We note, however, that for the Z2 gauge

structures considered here, the mean-field biases are expected

to be smaller compared to U(1) or SU(2) scenarios). The

limitations of mean-field can be overcome when using our

PSGs as an input for variational Monte Carlo. By Gutzwiller-

projecting fermionic parton wave functions this technique al-

lows one to faithfully calculate ground state energies well be-

yond mean-field [64, 65]. Likewise, the Gutzwiller projec-

tions enable the calculation of more accurate dynamical spin

structure factors [66–70] which amounts to taking into ac-

count time-like fluctuations in the gauge fields. An alternative

extension of our work is the combination with a functional

renormalization group treatment as has recently been demon-

strated in Ref. [55]. In this scheme the spinon hopping and

pairing amplitudes are subject to a renormalization group flow

which takes into account dressed vertex functions instead of

the bare interactions Jrr′ considered here. Each of these ex-

tensions promise a more accurate and detailed investigation of

quantum spin liquids in three dimensions.
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Appendix A: Projective implementation of lattice translations

Here, we derive the gauge transformations associated with

translations Tx, Ty , Tz . To realize the special gauge used in

this work whereGTµ
[see Eq. (10)] is proportional to the iden-

tity matrix, we start with a local gauge transformation which

acts on an ansatz according to urr′ → ũrr′ = W †
r
urr′Wr′

(the new gauge is indicated by a tilde). Using Eq. (10) and

inserting the identity WS(r)W
†
S(r) twice one sees that a gauge

transformation Wr also changes the projective implementa-

tions GS of symmetry operations S:

GS(r) → G̃S(r) =W †
r
GS(r)WS−1(r) .

Starting at a given reference site r0 = (x0, y0, z0) one can use

this local gauge freedom to enforce G̃Tx
(rx) = τ0 along the

line rx = (x, y0, z0). In the first step one finds

G̃Tx
(r0) =W †

r0
GTx

(r0)Wr0−êx
!
= τ0 ,

where êx denotes the unit vector in x-direction. This fixes

Wr0−êx = G−1
Tx

(r0)Wr0
and by successive applications of

gauge transformations one finds Wr0−nêx = G−1
Tx

(r0 − (n−
1)êx) . . . G

−1
Tx

(r0)Wr0
for the entire line. The same procedure

can be performed for gauge transformations associated with

Ty for lines along the y-direction starting from any point on

the line rx. This fixes the gauge G̃Ty
(rxy) = τ0 in the plane

rxy = (x, y, z0). Finally, one can enforce G̃Tz
(r) = τ0 on

the entire lattice by starting at any point of the plane rxy . The

local gauge freedom has thus been reduced to a global one

given by the freedom to choose Wr0
.
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We continue in this gauge and determine all projec-

tive representations GTµ
which are not yet fixed. To

simplify the notation we omit the tilde in the following.

Consider the sequence of translations TyTzT
−1
y T−1

z =
id which requires a projective representation such that

GTy
TyGTz

TzT
−1
y G−1

Ty
T−1
z G−1

Tz
∈ IGG. Choosing the IGG

as Z2 one obtains

GTy
(r)GTz

(r− êy)G
−1
Ty

(r− êz)G
−1
Tz

(r) = ±τ0 = ηzyτ
0

=⇒ GTy
(r) = ηzyGTy

(r− êz) , (A1)

where ηzy = ±1 and it was used that GTz
(r) = τ0 for all

r. This equation is solved by GTy
(r) = ηzzygTy

where gTy

is a site-independent SU(2) matrix. On the other hand, we

know that GTy
(rxy) = τ0 and thus GTy

(r) = ηz−z0
zy τ0. In

complete analogy one finds the projective representation for

translations in x direction GTx
(r) = ηz−z0

zx ηy−y0

yx
τ0. Since r0

is arbitrary we can choose it as the origin r0 = (0, 0, 0).

Appendix B: Projective implementation of permutation P

To demonstrate how the defining equations for the PSGs

on the sc lattice listed in Eq. (15) are obtained, we deter-

mine, as an example, the projective action of P and its con-

sequences for the implementation of translations Tµ. In the

gauge derived in Appendix A the projective implementation

of the point group elements can be determined by inspection

of group actions which map onto the identity. Since the rep-

resentations of the translations are already fixed it is conve-

nient to start with the mutual relations between point group

elements and translations. For permutation P this yields

GPPGTx
TxP

−1G−1
P T−1

y G−1
Ty

∈ IGG .

Similar expressions can be obtained under cyclic permutation

x→ y → z → x. For an IGG given by Z2 one obtains

GP (x, y, z)GTx
(y, z, x)G−1

P (x, y − 1, z)G−1
Ty

(x, y, z)

= ηyP
τ0 =⇒ GP (x, y, z) = ηzyx

ηxzxη
z
zyηyP

GP (x, y − 1, z) ,

and similarly

GP (x, y, z) = ηzzxη
y
yx
ηxP

GP (x− 1, y, z) ,

GP (x, y, z) = ηxzyηzPGP (x, y, z − 1) .

To find a solution to these equations one constructs relations

between GP (r) along elementary loops including the origin

using the known action of the translations. These loop oper-

ations serve as consistency conditions as they are equal to an

identity operation. As an example, we consider GP (x, y, z)
along a loop in the x-y plane:

GP (0, 0, 0) = ηxP
GP (1, 0, 0) ,

GP (1, 0, 0) = ηzxηyP
GP (1, 1, 0) = ηxP

GP (0, 0, 0) ,

GP (1, 1, 0) = ηyx
ηxP

GP (0, 1, 0) = ηzxηyP
ηxP

GP (0, 0, 0) ,

GP (0, 1, 0) = ηyP
GP (0, 0, 0) = ηyx

ηzxηyP
GP (0, 0, 0) .

The last equation shows that the symmetry P requires ηyx
=

ηzx . Repeating this process in the other planes reveals that

there is only one sign parameter for translations, ηyx
= ηzx =

ηzy ≡ ηX . Relations of this type also allow one to determine

the spatial dependence of GP (r). Fixing the projective rep-

resentation at the origin, GP (0, 0, 0) ≡ gP , yields the unique

solution

GP (r) = η
x(y+z)
X ηxxP

ηyyP
ηzzP gP .

The projective representations of the other point group gen-

erators can be similarly decomposed into site-dependent sign

factors η and site-independent SU(2) matrices g. These ma-

trices are further specified by exploiting the mutual relations

between different point group generators. This leads to the full

set of algebraic conditions listed in Eq. (15). The correspond-

ing gauge-inequivalent solutions are presented in Appendix C.

Appendix C: Gauge-inequivalent PSG representations for the

sc, bcc, and fcc lattices

In Table IV we list all sets of gauge-inequivalent represen-

tation matrices gO for the point group generators O of the sc

lattice. The matrices corresponding to Πz and Πy can only

be represented trivially, gΠz
= gΠy

= τ0. There are 21 dif-

ferent solutions for the remaining matrices gT , gP , gI , gΠxy
.

For each solution the sign factors ηO = ±1 complete the PSG

representation. Note, however, that the case gT = τ0 and

ηT = 1 does not lead to finite mean-field ansätze. For the

fcc lattice the additional translations t1 and t2 can only have

a trivial matrix structure, gt1 = gt2 = τ0. The representation

matrices are, therefore, the same as for the sc lattice (see Ta-

ble IV). For the bcc lattice all 59 gauge inequivalent solutions

are shown in Table V where, in addition to gT , gP , gI , gΠxy

the possible solutions for gt are specified.

Appendix D: Algebraic PSGs of the bcc lattice

Here, we present further details about our procedure to de-

termine the algebraic PSGs for the bcc lattice. The fcc case

may be treated similarly. As explained in the main text, we use

two distinct sc lattices and merge them into a bcc lattice. The

two cubic sublattices are denoted A = {(x, y, z)|x, y, z ∈ Z}
and B = {(x+ 1/2, y + 1/2, z + 1/2)|x, y, z ∈ Z}. On

each sublattice we have a complete description of the symme-

try representations given by Eq. (15). To distinguish between

the two sublattices we add an extra label in the projective rep-

resentations GA
S (r ∈ A) and GB

S (r ∈ B). The implemen-

tations of symmetries on sublattice A are done in complete

analogy to the sc lattice while on sublattice B one needs to

define a reference site rB0 = (1/2, 1/2, 1/2) which remains

invariant under point group operations. The symmetry opera-

tion t connects both sublattices.
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PSG gT gP gI gΠxy

1 τ0 τ0 τ0 τ0

2 τ0 τ0 iτ2 τ0

3 τ0 τ0 τ0 iτ2

4 τ0 τ0 iτ2 iτ2

5 τ0 τ0 iτ2 iτ3

6 τ0 ei
π
3
τ2

τ0 iτ3

7 τ0 ei
π
3
τ2

iτ2 iτ3

PSG gT gP gI gΠxy

8 τ0 ei
2π
3

τ2

τ0 iτ3

9 τ0 ei
2π
3

τ2

iτ2 iτ3

10 iτ2 τ0 τ0 τ0

11 iτ2 τ0 iτ2 τ0

12 iτ2 τ0 iτ3 τ0

13 iτ2 τ0 τ0 iτ2

14 iτ2 τ0 τ0 iτ3

PSG gT gP gI gΠxy

15 iτ2 τ0 iτ2 iτ2

16 iτ2 τ0 iτ3 iτ2

17 iτ2 τ0 iτ3 iτ3

18 iτ2 ei
π
3
τ2

τ0 iτ3

19 iτ2 ei
π
3
τ2

iτ2 iτ3

20 iτ2 ei
2π
3

τ2

τ0 iτ3

21 iτ2 ei
2π
3

τ2

iτ2 iτ3

Table IV. Projective representation matrices gT , gP , gI , gΠxy for the sc and fcc lattices.

PSG gT gP gI gΠxy gt

1 τ0/iτ2 τ0 τ0 τ0 τ0

2 τ0/iτ2 τ0 iτ2 τ0 τ0

3 τ0/iτ2 τ0 τ0 iτ2 τ0

4 τ0/iτ2 τ0 τ0 τ0 iτ2

5 τ0/iτ2 τ0 τ0 iτ2 iτ2

6 τ0/iτ2 τ0 iτ2 iτ2 τ0

7 τ0/iτ2 τ0 iτ2 τ0 iτ2

8 τ0/iτ2 τ0 iτ2 iτ2 iτ2

9 τ0/iτ2 τ0 iτ2 iτ3 τ0

10 τ0/iτ2 τ0 iτ2 τ0 iτ3

11 τ0/iτ2 τ0 τ0 iτ2 iτ3

12 τ0/iτ2 τ0 iτ2 iτ3 iτ3

PSG gT gP gI gΠxy gt

13 τ0/iτ2 τ0 iτ2 iτ2 iτ3

14 τ0/iτ2 τ0 iτ2 iτ3 iτ2

15 τ0/iτ2 τ0 iτ2 iτ3 iτ1

16 iτ2 τ0 iτ3 τ0 τ0

17 iτ2 τ0 τ0 iτ3 τ0

18 iτ2 τ0 τ0 τ0 iτ3

19 iτ2 τ0 τ0 iτ3 iτ3

20 iτ2 τ0 τ0 iτ3 iτ1

21 iτ2 τ0 iτ3 iτ2 τ0

22 iτ2 τ0 iτ3 τ0 iτ2

23 iτ2 τ0 iτ3 iτ2 iτ2

24 iτ2 τ0 iτ3 iτ3 τ0

PSG gT gP gI gΠxy gt

25 iτ2 τ0 iτ3 τ0 iτ3

26 iτ2 τ0 iτ3 iτ3 iτ3

27 iτ2 τ0 iτ3 iτ3 iτ1

28 iτ2 τ0 iτ3 iτ1 iτ1

29 τ0/iτ2 ei
π
3
τ2

τ0 iτ3 τ0

30 τ0/iτ2 ei
π
3
τ2

τ0 iτ3 iτ2

31 τ0/iτ2 ei
π
3
τ2

iτ2 iτ3 τ0

32 τ0/iτ2 ei
π
3
τ2

iτ2 iτ3 iτ2

33 τ0/iτ2 ei
2π
3

τ2

τ0 iτ3 τ0

34 τ0/iτ2 ei
2π
3

τ2

τ0 iτ3 iτ2

35 τ0/iτ2 ei
2π
3

τ2

iτ2 iτ3 τ0

36 τ0/iτ2 ei
2π
3

τ2

iτ2 iτ3 iτ2

Table V. Projective representation matrices gT , gP , gI , gΠxy , gt for the bcc lattice. The notation τ0/iτ2 indicates that gT can either be

represented by τ0 or iτ2.
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To determine the projective action of t we consider the op-

eration T−1
x tTxt

−1 = id which moves a given site r along a

closed path. Including the associated gauge transformations

this relation reads T−1
x (GTx

)−1Gtt(GTx
)Txt

−1(Gt)
−1 ∈

IGG which results in a condition for the projective represen-

tation of t on sublattice A:

(GA
Tx
)−1(x+ 1, y, z)GA

t (x+ 1, y, z)×
×GB

Tx
(x+ 1/2, y − 1/2, z − 1/2)(GA

t )
−1(x, y, z) = ηAtxτ

0

=⇒ GA
t (x, y, z) = (ηAXη

B
X)y+zηAtxG

A
t (x+ 1, y, z) .

Note that with the above definition of sublattices x, y, z ∈ Z

the exponents of the η parameters always take integer values.

Similarly, one finds conditions involving translations Tµ along

the other cartesian directions,

GA
t (x, y, z) = (ηAXη

B
X)zηAtyG

A
t (x, y + 1, z) ,

GA
t (x, y, z) = ηAtzG

A
t (x, y, z + 1) .

Equivalently, on sublattice B one finds

GB
t (x+ 1/2, y + 1/2, z + 1/2) =

(ηAXη
B
X)y+zηBtxG

B
t (x+ 3/2, y + 1/2, z + 1/2) ,

GB
t (x+ 1/2, y + 1/2, z + 1/2) =

(ηAXη
B
X)zηBtyG

B
t (x+ 1/2, y + 3/2, z + 1/2) ,

GB
t (x+ 1/2, y + 1/2, z + 1/2) =

ηBtzG
B
t (x+ 1/2, y + 1/2, z + 3/2) .

Following the line of arguments of Appendix B, closed loops

of symmetry operations provide consistency conditions which

reveal that a solution can only exist for ηAX = ηBX ≡ ηX . It

further follows

GA
t (r) = (ηAtx)

x(ηAty )
y(ηAtz )

zgAt ,

GB
t (r) = (ηBtx)

x(ηBty )
y(ηBtz )

zgBt .

Relations between the two sublattices can be found using t2 =
TzTyTx which yields ηAtx = ηBtx ≡ ηtx , ηAty = ηXη

B
ty ≡

ηty and ηAtz = ηBtz ≡ ηtz . Furthermore, the site-independent

matrices gAt , gBt need to fulfill gAt g
B
t = gBt g

A
t = ±τ0 such

that we can define gAt = ±gBt ≡ gt with g2t = ±τ0.

In the next step we include lattice inversion I . We again

note that in the initial implementation of point group symme-

tries, inversion on sublattice B, referred to as IB , leaves the

reference site rB0 = (1/2, 1/2, 1/2) invariant:

IB(x+ 1/2, y + 1/2, z + 1/2)

= (−x+ 1/2,−y + 1/2,−z + 1/2) .

It is still convenient to define an inversion I for the entire bcc

lattice in the usual way where one site r0 = (0, 0, 0) is glob-

ally left invariant. This can be achieved via the relation be-

tween I and IB on sublattice B,

IB(r ∈ B) = TxTyTzI(r ∈ B) ,

which implies

GIBIB(r ∈ B) = GTx
TxGTy

TyGTz
TzGII(r ∈ B) .

(Note that similar distinctions between the action on sublat-

tice B and the global action also have to be made for the

generators Πz,Πy and Πxy .) Exploiting the algebraic rela-

tion I−1t−1IBt(r ∈ A) = I−1t−1TxTyTzIt(r ∈ A) = id
between inversion I and translations Tµ, t leads to ηAI = ηBI
and ηAtyη

B
tyη

A
I η

B
I = 1. In combination with the previous result

ηAty = ηXη
B
ty one obtains the important finding ηX = 1. This

means that all gauge transformations associated with trans-

lations Tµ are now trivially represented by τ0 such that all

GTµ
in the relations between GIB and GI drop out. Fur-

thermore, the conditions Pt = tP and ΠxyTzt
−1Πxyt = id

connect the sign factors corresponding to different directions

ηtx = ηty = ηtz ≡ ηt.

Having derived the sign structure of the gauge transforma-

tions associated with translations, we now turn to the matrix

structure. Exploiting the fact that translations Tµ have a trivial

projective implementation one finds

g−1
t gAI gt = ±gBI ,

g−1
t gAT gt = ±gBT ,

g−1
t gAΠxy

gt = ±gBΠxy
,

g−1
t gAP gt = ±gBP , (D1)

where, initially, one would assume that each of the two sets gAS
and gBS can be independently given by one line of Table IV.

It is, however, easy to see that the representations need to be

identical, gAS = ±gBS on the two sublattices (up to an irrel-

evant sign). Otherwise, Eq. (D1) would imply that gt trans-

forms between two different PSGs on the sc lattice. Since,

by construction, different PSGs are gauge-inequivalent, this

is not possible. Thus, we conclude that the classification of

PSGs for the sc lattice can be reused for both sublattices of

the bcc lattice where one finds ηX = 1 and an additional gen-

erator Gt(r) = ηx+y+z
t gt needs to be considered.

Appendix E: Dynamical spin structure factor

The dynamical spin structure factor investigated in the main

text,

Sµν(q, ω) =

∫ ∞

−∞

dt

2π
eiωt 1

N

∑

rr′

eiq(r−r
′) 〈Sµ

r
(t)Sν

r′
(0)〉 ,

(E1)

is a measure of the system’s magnetic excitation spectrum as

a function of momentum q and frequency ω and is directly

accessible via inelastic neutron scattering. Since in our sys-

tems we always assume spin-rotation invariance it suffices to

consider the longitudinal components µ = ν = z only. In

the fermionic representation applied here, the dynamical spin
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structure factor can be expressed as

Szz(q, ω) =
π

4

∑

a,b

∫

BZ

d3k

(2π)3
f(k,q, a, b)

× [na(k)− nb(k+ q)]δ(ǫb(k+ q)− ǫa(k)− ω) . (E2)

Here, ǫa is an eigenenergy of Eq. (4) with na the occupa-

tion number of the energy band labeled by an index a and the

function f(k,q, a, b) describes the overlap between different

eigenstates ψa(k) defined by

f(k,q, a, b) = |ψ∗
a(k)ψb(k+ q)|2 . (E3)

Appendix F: Compendium of short-ranged mean-field ansätze

In the following Tables VI, VII, and VIII we list all possible

short-range mean-field ansätze (including mean-field terms up

to third neighbors) for the sc, bcc and fcc lattices and also

provide the projective implementations of symmetries.
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Table VI. Possible short-range PSG representations on the sc lattice and their corresponding mean-field ansätze. The color code (red/blue)

indicates which term is responsible for breaking the IGG down to U(1)/Z2. Note that in the second line at least one of the matrices gI ,gΠxy

must be given by iτ3.
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Table VII. Possible short-range PSG representations on the bcc lattice and their corresponding mean-field ansätze. The color code (red/blue)

indicates which term is responsible for breaking the IGG down to U(1)/Z2. Note that in the lines with entries +τ0/ + iτ3 both +τ0 and

+iτ3 are possible, but at least one of these matrices must be given by +iτ3.
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Table VIII. Possible short-range PSG representations on the fcc lattice and their corresponding mean-field ansätze. The color code (red/blue)

indicates which term is responsible for breaking the IGG down to U(1)/Z2. The mean-field Hamiltonian in the FCC 2 case has a non-trivial

matrix structure denoted by f(δr1, τ
1, τ3) for nearest neighbor amplitudes [see Eq. (52)] and f(δr3, τ

1, τ3) for third neighbor amplitudes

[see Eq. (53)]. The functions g are similar but the axes are permuted according to (x, y, z) → P (x, y, z). Note that in the line with entries

+τ0/+ iτ3 both +τ0 and +iτ3 are possible, but at least one of these matrices must be given by +iτ3.
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Petar M. Mali, “Phase diagram of quantum Heisenberg antifer-

romagnet on the body-centered-cubic lattice in random phase

approximation,” Solid State Commun. 182, 55 (2014).

[33] D. J. J. Farnell, O. Götze, and J. Richter, “Ground-state order-

ing of the J1−J2 model on the simple cubic and body-centered

cubic lattices,” Phys. Rev. B 93, 235123 (2016).

[34] A. Revelli, C. C. Loo, D. Kiese, P. Becker, T. Fröhlich,
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[50] E. Jurčišinová and M. Jurčišin, “Prediction of the exis-

tence of a spin-liquid-like phase in the antiferromagnetic

J1−J2 spin- 1
2

system on the body-centered cubic lattice,” Phys.

Rev. B 101, 214443 (2020).

[51] E. V. Kuz’min, “Quantum spin liquid in the FCC lattice,” J. Exp.

Theor. Phys 96, 129 (2003).
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