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S1 Compiled Experimental Data

We compiled experimental spectral data for water at room temperature from existing literature for comparison
with our simulated spectra. The compiled experimental dataset consists of data from five different sources for
liquid water at or near 300 K, covering different frequency ranges to overlap:
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Figure S1: Experimental spectra
for water at 300±2 K, compared,
with ε′(ν) = χ′(ν) + 1 in the
top panel, χ′′(ν) in the bottom.
The data shown as colored circles
were found in Refs.1,2,3,4,5 and
are the data that comprise the
compiled dataset that we use for
comparison to simulated spectra.
The black curve shows another
dataset shown only in this figure
for comparison.6 Error bars are
shown for each of the compiled
datasets except for the Downing
dataset.

• Ref.1 (Schwan 1976), at a reported temperature of 25◦C, covers 0.1–3 GHz. It consists of datasets from
two separate laboratories, spanning the ranges 0.1–0.7 GHz and 0.8–3 GHz. The highest- and lowest-
frequency points of the first and second datasets respectively (at 0.7 and 0.8 GHz) are omitted, as they
appear to represent outliers.

• Ref.2 (Barthel 1991), at a reported temperature of 25◦C, covers 1.7–89 GHz.
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• Ref.3 (Kaatze 1989), at a reported temperature of 25◦C, covers 1.8–58 GHz. The first ten datapoints,
covering 1.8–3.75 GHz are noisy, and as this range is also covered by Ref.2, they are omitted.

• Ref.4 (Czumaj 1990), at a reported temperature of 25◦C, covers 57–315 GHz. The first five datapoints,
covering 57-90 GHz are noisy, and as this range is also covered by Ref.2, they are omitted.

• Ref.5 (Downing 1975), at a reported temperature of 27◦C, covers 0.3–150 THz. The quantities given are
the indices of refraction and absorption, n(ν) and k(ν), from which we calculated the susceptibility via
χ′(ν) + 1 = n(ν)2 − k(ν)2, and χ′′(ν) = 2n(ν)k(ν).

Thus, the compiled experimental dataset covers a frequency range of 100 MHz to 150 THz. Figure S1 shows
the compiled data as colored circles compared with a dataset digitized from a figure in Ref.6 (Neumann 1986)
spanning from ∼0.2 GHz to ∼110 THz. In figures comparing experimental and simulated spectra in the main
work, the data are plotted directly as a heavy black curve without errorbars. Note that Refs.1,2,4 were found
via a compilation in Ref.7.

S2 Complex Electric Susceptibility from Fluctuation Dissipation The-
orem

Assuming an isotropic medium perturbed by an applied electric field E, whose Hamiltonian takes the form
H = H0 − P · E, the linear response of the total system dipole moment P (not to be confused with the
polarization density) is described by the time-dependent electric susceptibility χ(t) via

P (t) =

∫ t

−∞
dt′ V ε0χ(t− t′)E(t′) . (S1)

where V is the system volume. Fourier transforming Eq. (S1) gives

P̃ (ν) = V ε0χ(ν)Ẽ(ν) , (S2)

where χ(ν) is the positive-domain Fourier transform of χ(t), and is known as the complex electric susceptibil-
ity, generalized electric susceptibility, or frequency-dependent electric susceptibility. χ(ν) is a dimensionless,
complex quantity, denoted here as χ(ν) = χ′(ν)−iχ′′(ν), in order that χ′′(ν) be positive for positive ν. The fluc-
tuation dissipation relation expresses the linear response function V ε0χ(ν) in terms of an equilibrium ensemble
average

V ε0χ(ν) =
−1

3kBT

∫ ∞
0

dt e−2πiνt
d

dt
〈P (0) · P (t)〉 , (S3)

where the arithmetic mean has been taken over the three spatial dimensions. Here we have taken the Fourier
transform of the function f(t) to be defined as

f̃(ν) =

∫ ∞
−∞

dt e−2πiνtf(t) , (S4)

whose inverse Fourier-transform is
f(t) =

∫ ∞
−∞

dν e2πiνtf̃(ν) . (S5)

S3 The Dissipative Part of the Susceptibility

Starting from Eq. (S3) and using that 〈P (0) ·P (t)〉 is real, the imaginary (dissipative) part of χ(ν) is found to
be

χ′′(ν) =
−1

3V kBTε0

∫ ∞
0

dt sin(2πνt)
d

dt
〈P (0) · P (t)〉 . (S6)
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Because the autocorrelaton function is symmetric, the integrand is symmetric, thus

χ′′(ν) =
−1

3V kBTε0

1

2

∫ ∞
−∞

dt sin(2πνt)
d

dt
〈P (0) · P (t)〉

=
1

3V kBTε0

1

2
Im

∫ ∞
−∞

dt e−2πiνt
d

dt
〈P (0) · P (t)〉

=
π

3V kBTε0
ν Re

∫ ∞
−∞

dt e−2πiνt 〈P (0) · P (t)〉 . (S7)

Using that the Fourier transform of a symmetric function is always real-valued gives for the dissipative part,

χ′′(ν) =
π

3V ε0kBT
ν

∫ ∞
−∞

dt e−2πiνt 〈P (0) · P (t)〉 . (S8)

Application of the Wiener-Khinchin theorem (Eq. (S14) below) gives

χ′′(ν) =
π

3LtV ε0kBT
ν
∣∣∣P̃ (ν)

∣∣∣2 , (S9)

where Lt is the length in time of P (t). Eq. (S9) is the Equation implemented in this work as it involves only a
single Fourier transform of each Cartesian component of P (t) and otherwise simple array operations.

S4 Spectrum of Flexible Classical Water Model TIP4P/2005f

We also calculated spectra using other classical water models, including of a 5 ns trajectory with a 0.5 fs writeout
frequency of TIP4P/2005f, a flexible 4-point water model.8 The resulting spectrum, along with self and collective
components, is shown in Figure S2. Here, smoothing of segment spectra was carried out by convolution with
a Gaussian of σ = 0.1 THz and the resulting thinned spectrum was again smoothed by convolution with a
Gaussian of σ = 0.5 THz. Below ∼40 THz, the spectrum is very similar to that for SPC/E, but shows peaks
for both intramolecular modes at ∼50 and ∼100 THz. The OH-stretch mode at ∼100 THz lacks the collectivity
of the DFT MD spectrum, which is mostly due to the interactions of lone-pair Wannier centers with donor
hydrogens across HBs.
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Figure S2: The TIP4P/2005f spectrum along with its self and collective components.

S5 Error Estimates

Spectra for all figures in this and the main work are calculated as the mean of ten smoothed spectra, from
which the standard deviation is obtained. Error estimates are omitted from figures for clarity, excepting one
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Figure S3: The DFT MD spectrum along with its self and collective components, shifted down by factors of 10
and 100 respectively, shown with their estimated standard deviations (shaded areas).

prototypical example, Figure S3, where they are shown for the DFT MD spectrum and its self and collective
components along with their respective standard deviations, shown as shaded zones above and below the curves.
Generally, as in Figure S3, standard deviations are small for self spectral components, and large for collective
ones.

S6 Wiener-Khinchin Theorem

Assuming the available data of a signal f(t) is limited to a finite time interval [0, Lt], we formally define f(t)
as being zero outside this interval. We define the autocorrelation function of f(t) as the mean over the interval
I (of length Lt − |t|) where there is available data

C(t) =
1

Lt − |t|

∫
I

dt′ f∗(t′) f(t′ + t) , (S10)

where f∗(t) is the complex conjugate of f(t). If f(t) is an observable in an equilibrium system, then by
the ergodic theorem, C(t) is the best estimate of the equilibrium ensemble average 〈f∗(0)f(t)〉. For t ≥ 0,
I = [0, Lt − t] , and for t ≤ 0, I = [|t|, Lt]. The integrand f∗(t′) f(t′ + t) is always zero for t′ outside of I, so in
both cases, the integration bounds can be extended arbitrarily to give a generally applicable expression,

C(t) =
1

Lt − |t|

∫ ∞
−∞

dt′ f∗(t′) f(t′ + t) . (S11)

This step in the proof demands that in practice, the signal f(t) be zero padded: that is, zeros of length Lt
should be appended to the end of f(t) before Fourier transforming. Substituting Eq. (S5) for f∗(t′) and f(t′+ t)
gives

C(t) =
1

Lt − |t|

∫ ∞
−∞

dt′
∫ ∞
−∞

dν e−2πiνt
′
f̃∗(ν)

∫ ∞
−∞

dµ e2πiµ(t
′+t)f̃(µ) ,

=
1

Lt − |t|

∫ ∞
−∞

dν f̃∗(ν)

∫ ∞
−∞

dµ e2πiµtf̃(µ)

∫ ∞
−∞

dt′ e2πit
′(µ−ν) ,

=
1

Lt − |t|

∫ ∞
−∞

dν f̃∗(ν)

∫ ∞
−∞

dµ e2πiµtf̃(µ) δ(µ− ν) ,

=
1

Lt − |t|

∫ ∞
−∞

dν e2πiνt f̃∗(ν) f̃(ν) . (S12)
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Rearranging and Fourier transforming both sides gives

f̃∗(ν) f̃(ν) =

∫ ∞
−∞

dt e−2πiνt (Lt − |t|)C(t) . (S13)

We assume correlations are large for small t and decay over time, so both terms of Eq. (S13) should be dominated
by the small-|t| regime. In this regime, in the limit of large Lt, |t|/Lt → 0, so we may neglect the |t| term.
Additionally, for large Lt, C(t) → 〈f∗(0)f(t)〉. Thus Eq. (S13) may be rewritten as the Wiener-Khinchin
theorem ∫ ∞

−∞
dt e−2πiνt 〈f∗(0)f(t)〉 =

1

Lt

∣∣∣f̃(ν)
∣∣∣2 . (S14)

S7 Acceptor Lone Pair and Donor Hydrogen Interactions
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Figure S4: Positional dependence of acceptor Wannier centers on donor hydrogens. (a) Schematic illustrating
vector and angle definitions. Wannier centers are represented as small blue spheres. Vectors rOAHD

and rOAWA

are the displacement vectors from acceptor oxygen (OA) to donor hydrogen (HD) and the acceptor Wannier
center nearest to HD (WA). Angles θHD

and θWA
are between the acceptor’s orientational axis (−m̂A

1 ) and the
component of rOAHD

or rOAWA
in the m̂A

1 -m̂A
3 plane. Thus θHD

and θWA
are independent of position along m̂A

2 .
(b) Bivariate histogram over distances rOAHD

and rOAWA
, which reveals a pronounced negative dependence

(yellow represents a high count, navy blue a low count). (c) Bivariate histogram over θHD
and θWA

, which
reveals a pronounced positive linear dependence.

To aid in understanding the following, refer to the schematic Figure S4a, which shows a snapshot of a
hydrogen-bonded dimer from our DFT MD simulation (small blue spheres indicate Wannier centers). We
define two water molecules at a simulation timestep as hydrogen-bonded when they fulfill the geometrical Luzar
criterion,9 and denote the donor hydrogen as HD and the acceptor oxygen as OA. For our DFT MD trajectory,
calculation of Wannier centers and assignment of each to the nearest oxygen consistently results in exactly four
Wannier centers per water molecule, arranged around the oxygen in a roughly tetrahedral configuration, with
two lying along the OH-bonds, and two on the back side of the oxygen where the lone pair electron density is
high. For each hydrogen-bonded dimer in the DFT MD trajectory, we define the lone pair Wannier center of
the acceptor molecule that is nearest the donor hydrogen as the “acceptor Wannier center”, denoting it WA.

We find that an acceptor Wannier center’s position with respect to the acceptor oxygen rOAWA
tends to

depend strongly on relative donor hydrogen position rOAHD
, which we interpret as resulting from the Coulomb

attraction between donor hydrogens and lone pair electrons. In this picture, lone pair electrons might be
expected to stretch away from the parent oxygen as a donor hydrogen approaches. Indeed, Figure S4b agrees
with this picture; it shows a bivariate joint histogram over the distances rOAHD

and rOAWA
, which show a clear

negative correlation. As rOAHD
can be expected to fluctuate under molecular translations (HB stretching) and

OH-stretching, this relationship has significant implications for the peaks at ∼5 and ∼100 THz.
We define the angle between the acceptor’s orientational axis (−m̂A

1 ) and the components of rOAHD
or

rOAWA
in the m̂A

1 -m̂A
3 plane as θHD

and θWA
respectively. Figure S4c shows a bivariate histogram of θHD

and
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θWA
, where there is a positive linear correlation. This indicates that lone pair electrons, attracted by donor

hydrogens, track their movement about the acceptor oxygen. The angle θHD
can be expected to fluctuate under

librations of the acceptor and/or donor molecules, and under bending of ∠HOH of the donor molecule, so this
relationship has significant implications for the peaks at ∼20 and ∼50 THz.

S8 Further Studies of Librational Spectra
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Figure S5: Components of the susceptibility and other power spectra in the libration regime. The schematic
below each plot pertains to that plot. Small blue spheres in the schematics are Wannier center positions. (a)
The orientational self component, along with the subcomponents due to librations about m̂2 and m̂3. (b) The
orientational spectrum and two of its subcomponents: the collective component and the part of the collective
component due only to cross correlations within hydrogen-bonded dimers, which is apparently the source of
the in- and out-of-phase modes. (c) The spectral components due to cross correlations in the change in the
orientational component ∆pori over one simulation time step (see schematic) between hydrogen-bonded donors
and acceptors. ∆pori is decomposed into its m̂i

2 and m̂i
3 components for both the donor and the acceptor:

the cross spectral components among these are shown in the plot. E.g. 2D×3A denotes the cross component
due to (m̂D

2 · ∆pDori)m̂
D
2 · (m̂A

3 · ∆pAori)m̂
A
3 . These correspond to librations about different molecular axes. It

is clear from the plot that there are out-of-phase and in-phase modes at lower and higher frequencies for all
combinations of libration axes. (d) Subcomponents of the self component: namely its orientational, induced,
and orientational×induced cross components. The negative cross component implies that molecular dipole
moments are induced opposite to librations, the mechanism shown in the schematic.

In a 1964 study of Raman spectra of water, normal mode analysis of intermolecular motions in a C2v-
symmetric tetrahedral water cluster predicted modes at roughly 13, 17 and 22 THz, due to librations about
m̂1, m̂3, and m̂2 respectively.10,11,12 These differences in frequency have been attributed to differences in the
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moment of inertia of a water molecule about these three principle axes.12 As the libration about the C2-axis
doesn’t change the system dipole for the C2v-symmetric system, only the 17 and 22 THz modes were predicted
to be IR active. A 1995 study fit experimental IR absorption spectra in the libration regime with Gaussians,
finding two modes at roughly 11.5 and 20 THz.13 Figure S5a shows the spectral contributions due to librations
about m̂2 and m̂3 from our DFT MD simulation. The librations about m̂3 peak sharply at ∼15 THz, and those
about m̂2 peak at ∼18 THz with a shoulder at ∼25 THz. This is in relatively good agreement with the normal
mode analysis in Ref.10.

A 2008 study of IR spectra extracted from Carr-Parrinello simulations of water revealed features at roughly
11.5 and 18 THz in components of a self/collective decomposition, where the collective component was negative
at 11.5 THz and positive at 18 THz.14 These negative and positive modes appear in the collective components
of DFT and forcefield MD as well at ∼15 and ∼25 THz respectively (see main text). Figure S5b plots the
orientational component, its collective component, and finally a further subcomponent of this collective com-
ponent: that due only to cross correlations between hydrogen-bonded molecules, which apparently accounts
almost entirely for the collective behavior of the orientation there. Thus, we can rule out correlations among
non-hydrogen-bonded molecules and conclude that it is in- and out-of-phase dimer modes that underlie these
positive and negative collective features, as illustrated in the schematic below Figure S5b.

As the frequencies of these in- and out-of-phase dimer modes correspond roughly to those of the differ-
ent libration directions, a naive explanation is that librations about m̂2 tend to correlate positively between
hydrogen-bonded molecules, and those about m̂3, negatively. Figure S5c shows the power spectra (as defined
in Eq. (3) of the main text) in lin-log, due to cross correlations between hydrogen-bonded molecules of ∆pori,
the change in the orientational component. Further, ∆pori is decomposed in each molecule into m̂2 and m̂3,
(which correspond closely to librations about m̂3 and m̂2 respectively), among which cross power spectra are
calculated and plotted. For example, the configuration shown in the schematic below Figure S5b is from cor-
relations between (m̂D

2 · ∆pDori)m̂
D
2 and (m̂A

3 · ∆pAori)m̂
A
3 , which is labeled 2D×3A in Figure S5c. It is clear

from Figure S5c that for any combination of librational axes, there are negative and positive modes at lower
and higher frequencies respectively, which rules out libration axes as an explanation of the frequency difference
between the in-phase and out-of-phase libration modes. Our explanation is simply that the shared hydrogen
bond is stretched more for in-phase librations, and therefore exerts a stronger restoring force, resulting in a
higher frequency, as illustrated in Figures 4a and b in the main text.

S8.1 Lone-Pair Induced Molecular Dipole Moments Under Libration

Finally, Figure S5d shows all three components of the orientational/induced decomposition of the self component
in the libration regime. The line shapes are broadly similar, though the cross component is negative, which
indicates that in a librating molecule, a dipole moment is induced opposite to the libration. Figure S4c in
Section S7 provides the explanation: under librations of an acceptor molecule, its lone-pair electrons track the
relative motion of an attractive donor hydrogen, inducing a dipole moment, which is illustrated in the schematic
below Figure S5d.
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