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Abstract

Structured light are custom light elds where the phase, polarization, and intensity
vary with position. It has been used for nanotweezers, nanoscale imaging, dmuan-
tum information technology, but its role in exciting optical transition s in materials has
been little examined so far. Here we use group theory to derive the optal selection
rules for nanosystems that get excited by structured light. If the dze of the nanostruc-
ture is comparable to the light wavelength, it will sample the full beam pro le during
excitation with profound consequences on optical excitations. Using namoligomers as
model nanosystems, we show that structured light excites optical tansitions that are
forbidden for linearly polarized or unpolarized light. Such dipole forddden modes have
longer lifetimes and narrower resonances than dipole allowed transitns. We derive
symmetry-adapted eigenmodes for hanooligomers containing up to six mamers. Our
study includes tables with selection rules for cylindrical vecbr beams, for beams with
orbital angular momentum, and for eld retardation along the propagation direct ion.
We discuss multi-photon processes of nonlinear optics in addition tane-photon ab-
sorption. Structured light will unlock a broad range of excitations in nanooligomers

and other nanostructures that are currently inaccessible to optical tudies.
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Introduction

Exciting materials by light is one of the most fundamental wgs to study their physical prop-
erties. With light we can prepare distinct excited electronistates and follow their evolution
over time. An electromagnetic transition occurs if the supgosition between the charge
distribution of the initial and nal state matches the structure of the exciting eld.>? The
transitions are characterized by the multipole structure bthe electromagnetic eld: Dipole
transitions are induced by the oscillating eld, quadrupa transitions by the oscillating eld
gradients, and so or?. The rates of dipole transitions are by orders of magnitude lger than
of the higher-order multipoles and generally dominate theesponse of material$.The scope
of our work is, therefore, to examine transitions that get iduced by the eld amplitude.
The states that are accessible to dipole excitations are tested to a set of \optically
active", \dipole-allowed", or \bright" transitions that r eadily interact with unpolarized ra-
diation of moderate intensity® The subset of dipole-allowed excitations is identi ed by
optical selection rules. They are derived from the symmetrgf the material and the dipole
moment of the photon as its external perturbatiorf>’ The standard optical selection rules
are based on the fundamental assumption that the electromagtic eld is constant over the
characteristic length scale of the material. Since the sizd molecules and crystal unit cells
is. 1nm this is an excellent assumption for visible and infraredhptons with a vacuum
wavelength > 400nm. To increase the number and the type of available exaitons, we
need to construct situations where the electric eld amplitde varies over the characteristic
length scale of the material. One recent proposal was to shkithe wavelength of light so

that the eld varies more rapidly in space along its propagaon direction.®> We will explore



another possibility and study selection rules when changirthe in-plane spatial distribution
of the electric eld.

Structured light describes light beams where the phase andlarization pro le vary
across the beam pro 1e3° Cylindrical vector beams, for example, are laser beams whehe
polarization has cylindrical symmetry?® In radial polarization the electric eld points towards
the beam center; in azimuthal polarization the electric dl is oriented tangentially to the
beam8® Another form of structured light are beams with a helical phas structure, which
means that the beams carry orbital angular momenturf!* Despite its varying polarization
and phase, structured light excites the same dipole transitis in traditional materials as
linearly polarized light. Because the photon eld is huge copared to the material system, it
only samples the local linear polarization and not the entrpolarization pro le. Interestingly,
this is di erent for quadrupole transitions that are inducedby the more rapidly varying eld
gradients. lonic quadrupole transitions experimentally sfwed a strong dependence on the
helical phase structure of the exciting bean!?

Nanotechnology introduced arti cial systems with dimensios 1 100 nm into physics,
materials science, and many other elds. The optical exciteons of such nanoscale structures
are of particular interest due to their well-de ned mode cheacter and the con nement of the
electromagnetic eld .53 With hundreds of nanometers, the size of the structures becem
comparable to the photon wavelength and the quasi-static gpoximation of constant eld
no longer applies. Structured light indeed excites optidgl forbidden or dark modes of
nanoscale systems that are inaccessible to unpolarized direearly polarized light.'4??> So
far, these excitations have been studied in a case-by-casammer using numerical simulations
and experiments. Universal, symmetry-derived selectionlas beyond the quasi-static dipole
approximation remain missing.

In this paper, we present the symmetry-imposed selectionles for optical absorption
including retardation and spatial variation in the eld. We study nanostructures that get

excited by cylindrical vector beams, light with orbital angilar momentum, and eld retarda-



tion. To do so, we rst construct the symmetry-derived eigemodes of nanoscale oligomers.
We consider modes that are induced by the dipole and the quagbrole of the monomer and
discuss the general extension to higher-order electric miplbles. We then derive the selec-
tion rules for dipole-induced absorption and scattering bytaictured light. We calculate
exemplary excitation spectra in nanoplasmonic systems ogi nite-di erence time-domain
(FDTD) techniques and discuss the properties of nominally byht and dark modes in the
spectra. In addition to linear optics we present the selecin rules for non-linear multi-
photon processes. We predict second-harmonic generationdentrosymmetric structures
when nanooligomers are excited by two photons ofl di erence in total angular momen-
tum. Our ndings apply to any system as long as the spatial ex@nsion of the excited state is
a considerable fraction of the photon wavelength and beamcigs. To make the paper more
accessible, we focus on plasmonic excitations in nanoscaleatiietoligomers. Our formalism
may be extended to other excitations of interest like plasnmeenhanced optical processes and
dielectric nanophotonics.

Metal nanostructures have been studied for their intriguingptical properties as much as
their potential photonic application in elds ranging from analytic chemistry and sensing to
quantum information technology*®2324 Light excites localized surface plasmon resonances in
metal nanostructures, which are collective oscillationsf the metal free electrong:*®* These
excitations strongly absorb and scatter photons. They alsmduce electromagnetic near
elds in close vicinity to the metal surface & 50 nm for visible light). Many applications
of plasmonics implicitly or explicitly exploit the near- eld excitation. Among the most
prominent examples is surface- (or plasmon-) enhanced Ramscattering (SERS), where
the plasmonic near eld enhances the Raman process by up toterders of magnitude?>°

Plasmonic oligomers are regular arrangements of plasmonialding blocks like particles,
triangles, and discst*3° They are extremely helpful to understand light-matter inteaction in
nanosystems, because they allow to construct plasmon eigetes in a rational way and are

straightforward to fabricate.3®®2 In an oligomer the electromagnetic near elds of close-by



monomers interact and collective electromagnetic states enge3%3¢ The formation of these
states resembles the construction of molecular electromitbitals from the valence wave func-
tions of the atoms: The oligomer eigenmodes are symmetric anmatiaymmetric combinations
of the optical excitation in the monomers®”-3 The bonding con gurations have eigenergies
below the energy of the monomer excitation; the antibondingon gurations are higher in
energy. Oligomers are fabricated through the assembly ofltion-processed nanoparticles
(spheres, cubes, rods, stars etc.) or through the nanofatation of assemblies of discs,
squares, and bars using electron-beam lithograph33394° They typically extend over sev-
eral 100 nm and sample the distribution of phase and polaritan for visible light. 15172041
Structured light excites dipole-forbidden plasmons as shavor cylindrical vector beamg®:18
and light with orbital angular momentum.?%?! Recent work on the absorption of light by
self-organized nanoparticle layers considered retardati@ects and the change of optical

selection rules due to the nite wavelength of light'42

Methods

We combine the symmetry analysis of plasmonic oligomersysttured beam pro les, eld-

retardation, and multi-photon processes with simulation®f plasmon eigenmodes, optical
absorption, and light scattering. Our symmetry analysis regjres straightforward manipula-

tions of group theory: Reducing representations, nding th representations of higher-order
multipoles, nding induced representations for a symmetd arrangement of building blocks,
and projecting eigenstates. These tools are described in maextbooks on group theory.

We recommend Refs. 4,43. For projecting symmetry-adaptetyenstates, we use graphical
projection operators, as explained by Reicket al.” Two online resources facilitate group
theory manipulations like reducing representations, obtaing higher-order moments and so
forth: The Bilbao Crystallographic Servef44 and the tables for point groups compiled by

Gernot Katzer.*® For the Dy, point group we usez as the basis function forB ., y for By,



and x for By, which is the convention most commonly found in the group-#ory literature.
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Figure 1: Plasmonic oligomers constructed from nanodiscs.) @imer belonging to theD
point group, (b) trimer (Dgy), (c) tetramer (Dg4h), (d) pentamer (Dsy), and (e) hexamer
(Dgn). The geometry of the discs d = 100nm, h = 40nm) and their separation @ =
20nm) is identical for all oligomers. The arrows indicate th€x;y) coordinate system used
throughout the paper except in the section on eld retardaon.

In addition to the molecular Schen ies notation for point groups of nite systems, we used
the formalism that has been developed in connection with kngroups of one-dimensional
systems?47#° We brie y introduce the notation for the D, point groups that are in the focos
of our work, see Ref. 47 for an extended introduction. The educible representations db
may be speci ed by combinig the quantum numbem and the parities under horizontal |
and vertical , mirror operation. m can be identi ed with the z component of the angular
momentum along the principle axis of rotation”4”#¢ Irreducible representations that are
denoted byA in the Schen ies notation havem =0 and B m = n=2; only D, groups with
evenn have B representations. Representations that are denoted dy; have m = i; the
subscript gets dropped foDs, (D4,) where E? (E) has m = 1. The parity of the mirror
operations are either +1 or 1 for the non-degeneraté and B representations. For theE
representations the parity may also be unde ned with a charder of zero. There is a one-
to-one correspondence between the setrafand the two parities and the Schen ies notation
that we present in Suppl. Table S1 for the relevant point grqas. We give all selection
rules and nal results in the paper in the Schen ies notation. The line group notation is

particularly powerful to analyse optical excitations by bams with orbital angular momentum



(OAM). The m quantum number for such a beam corresponds to the combinedgatar

momentum of orbit (i.e., OAM) and spin (polarization). The line group formalism, therefore,
greatly facilitates nding the selection rules for OAMs compred to a direct evaluation of
the polarization patterns.

We simulated the optical properties for a set of plasmonicigbmers that were constructed
from gold nanodiscs, see Fig. 1. The gold discs had a diamete= 100 nm and height
h = 40nm. We arranged them in highly symmetric oligomers as showin Figs. 1(a)-(e)
using g = 20nm gaps between adjacent discs. The background dielactconstant” = 1:65
mimicks a dielectric like SiQ as the oligomer substrate. The simulations use the dieleittr
function of gold measured by Johnson and Chrisf We numerically calculated absorption
and light scattering by plasmonic oligomers using the nitedi erence time-domain (FDTD)
method as implemented in Lumerical. We used a mesh-overridegion with 2 nm cells to
discretize the space around the plasmonic oligomers. Forcéation with linearly polarized

light, we used a total- eld scattered- eld plane wave sourceFor excitation with structured

light, i.e. cylindrical vector beams with radial and azimubal polarization, we used a cus
tomized total- eld scattered- eld source based on a k-spacmethod>! The method is suited
to calculate the eld distribution near the focus of high numeical-aperture objectives. We
implemented cylindrical vector beams with a doughnut radisiof 700 nm at the position of
the oligomer. The optical cross sections were recorded wipower monitors. The scattering
and absorption coe cients were calculated by dividing the mss sections by the area of the
oligomer discsA = nd 2=4, wheren is the number of discs andd their diameter. Plas-
mon eigenmodes, including their surface charge-density tdilsution, were obtained with the
boundary-elements method, using the eigenmode solver of the MBIPM Matlab package >2
To t plasmon eigenenergies in the absorption spectra we stacted a background due to
the interband transitions of gold. We obtained the backgroud functional form by calculat-
ing a slab of gold using identical parameters as for the oligxer simulation.>® The absorption

spectra were t by one (azimuthal, radial polarization) andthree (linear) Lorentzian peaks.



The scattering spectra were t with the analytic model by Pirchuk et al.,>* which we ex-
tended to the case of several plasmon resonances, with ampl#s and frequencies as tting

parameters, see Suppl. Information.

Plasmonic eigenmodes

In this section we show how to obtain the symmetry-adapted egmodes of a nanooligomer
from the excitations of the monomer®3234 We project the dipole and quadrupole excita-
tions of the discs onto representations of the oligomer usjigraphical projection operators.
The approach can be applied to all other multipoles as well. He construction of oligomer
eigenmodes within the hybridization model is often restried to combinations of dipole ex-
citations in the monomers3237° This assumes that only optically active eigenmodes of the
monomer will induce optically active modes of the oligomefut this is actually not the
case. Dipole-inactive monomer modes like a quadrupole conin an oligomer into a mode
with a nite dipole moment. The collective mode will interact with far- eld radiation even

if the monomer excitation was dark. The symmetry-adapted esmvectors are compared to

simulated modes obtained by the boundary elements method.

Irreducible representations of plasmons in nanooligomers

The optical excitations of nanooligomers can be described anbasis of electric multipoles.
The multipoles in the monomer give rise to a set of collectiveigenmodes in the oligomer
that we will nd with the help of the oligomer symmetry. We corsider an oligomer that
is composed oh monomers (nanopatrticles, discs, rods) arranged in a symmetfashion as
shown in Fig. 1. Each monomer has many electric multipole exattons that combined will
yield the excitations of the oligomer. In the language of gup theory, the representations
of the electric multipoles of the monomer induce the symmetradapted eigenmodes of the

oligomer. Table 1 lists the point groups for the oligomers ikig. 1 and other nanoplasmonic



Table 1: Selected point groups of nanooligomers, plasmorips, and colloidal crystals;

example structures are given for each point group. The irredible representations of the

dipole and quadrupole moments within each point group are oessary to construct the

symmetry-adapted plasmonic or dielectric eigenvectors.in-plane” (positive parity under
) and \out-of-plane” (negative parity under ) refer to the (x;y) plane.

point example structures dipole quadrupole

group representations representations
in-plane  out-of- in-plane out-of-

plane plane
Dop disc dimer, bowtie Bow Bay By 2Ay By By Bag
disc chain, dagger

Day  trimer E° AP A} E° E 00

D n tetramer, cross, square Eu Aoy Ay Big By =

Ds,  pentamer E? AP A? E? E

Den hexamer, hexagon, colloidal Eq Aoy Ay  Egyg Eig

hcp layer, bilayer, crystal
Din sphere dimer, tip and image E= v A= [ A= g E2= g Eig= g
C,y asymmetric disc dimer B, B> A 2A; A, B:; B>
Ciyv tip Ei= A= " A= " Ep= Ei=

structures. The table also gives the representation of thepble and quadrupole moment in
each group, which we need to nd the representations of the oliger eigenmodes. To nd
the eigenmodes, we rst set up and reduce the atomic represation ., see Table 245743 |t
describes the permutation of the monomers under the symmgtoperations of the oligomef
The characters of the atomic representation are found by coting the monomers that are
left unchanged (= they remain in their original position) byeach symmetry operation of the
point group. The atomic representation has to be combined thithe multipole representation
muit Of the monomer. We restrict the multipoles to the dipole and qadrupole excitations
of the disc, but distinguish between the in-plane and out-gflane components, see Table 1.

i=0
mul

The oligomer representation induced by a multipole compone . is then given by

a(mult;i=o) = 1° ar (1)

mult



wherei=o0 speci es in-plane and out-of-plane, respectively. Reduain  yields the irreducible
representations of the plasmonic eigenmodes. We performéuistanalysis for the oligomers
in Fig. 1, a linear disc trimer, and a nanosphere dimer. The symetry of the eigenstates
that are induced in the oligomers by the dipole and quadrupelexcitation of the disc or
sphere are given in Table 2.

Group theory predicts a set of symmetry-adapted eigenmodésat get induced by the
monomer multipoles**3 We project them using graphical projection operators. In this
method one starts from a graphical representation of the nmtigole in the monomer. We show
the surface charge distribution += as red/blue. When applying the symmetry operations
of the point group, the starting monomer with its charge digtbution is transformed into
the other monomers. To project onto a given non-degeneratepresentation, the charge
distribution pattern is multiplied by the character of the representation. A character of +1
leaves the pattern unchanged, whereas a character ol transforms red into blue and vice
versa. Summing over all patterns yields an eigenvector ofdhrreducible representation. The

formal treatment and the projection to degenerate represttions are discussed in Ref. 7.

Dipole- and quadrupole-induced eigenmodes

AL B Ba() Ba()
dipoe @@ OO OO OO

A(2) By(2) Bu(2) Bu(2)

ud. @@ OO OO O

Figure 2: Symmetry-adapted eigenmodes of a dimer that are imced by the in-plane
monomer dipole (top) and quadrupole (bottom) excitation. Tle colors represent the sign
of the surface charge distribution: red for positive and bkifor negative charges. The real
charge distribution will di er, because eigenmodes of idénal symmetry are allowed to mix.

To demonstrate the eigenmode analysis and the use of projectoperators for nanooligomers

we consider a disc dimer and hexamer, Fig. 1. The dimer belongsthe D,, point group
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Table 2: Irreducible representation of plasmonic or diele@ eigenmodes that are induced
by the dipole and quadrupole representation of the monomerhe table includes the atomic
representation . of selected oligomers; it di erentiates between in-planend out-of-plane

moments, see Table 1.

disc dimer D,

ar Ag B3u
dipole, in-plane Ay Big Bz Bay
dipole, out-of-plane Bag Bay
quad., in-plane Ay By By 2By
guad., out-of-plane Bag Bay Au Buy
linear trimer Dy
ar 2Ag B3u
dipole, in-plane Ag Big 2By 2By
dipole, out-of-plane By 2B1y
quad., in-plane Ay 2Big B 2By,
quad., out-of-plane B,y; 2Bzy A, By
trimer Dgy,
ar Ay E°
dipole, in-plane A} AY 2E°
dipole, out-of-plane AP E®
quad., in-plane 29 AY 3E°
quad., out-of-plane A A 2E00
tetramer Dyp
ar Alg BZg Eu
dipole, in-plane A Ay Big By 2E,
dipole, out-of-plane Ey Ax Bu
quad., in-plane Dy Ay By 2By 3Ey
quad., out-of-plane Ay, Ax By Ba  2Eg
pentamerDsgy,
o AT EV EQ
dipole, in-plane A? AY 2E? 2E?
dipole, out-of-plane AP EQP E
quad., in-plane 2% A 3EY 3ES
quad., out-of-plane A A% 290 2E20
hexamerDgy,
ar Alg EZQ BZu Elu
dipole, in-plane Ay Ay 2By Bi, B 2Ey,
dipole, out-of-plane Big Eiy Aa Egz
quad., in-plane Dy Ay 3Eyy B 2By 3Eq
quad., out-of-plane  Biy Byy 2Eiq3 A1y Ax 2By,
nanosphere dimer, gap modP
ar Alu Alg
dipole, in-plane Eig Euwn
dipole, out-of-plane A Ay
quad., in-plane A Ezy Aw Egy
guad., out-of-plane 11 Eiy Euw




0% 00 6% o' o
.Elu(a) . . lu(3). .Elu(4). .Elu(4).
¢ [

Figure 3. Symmetry-adapted eigenvectors of a hexamer that ameduced by the in-plane
component of the (a) dipole and (b) quadrupole moment in a nandésc. The multipoles
are represented through positive (red) and negative (bluejurface charges. The area of
the pattern indicates the relative amplitude of the multipde in each monomer. The yellow
circles represent the disc monomer; a full yellow circle memthat the eigenmode has zero
amplitude at this point and no visible yellow represents mamum amplitude.
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and has an atomic representation, see Table 2,

ar = Ay Bau:

The in-plane dipole transforms according t8,, B3, within D,,, Table 1. We obtain a total
of four in-plane dipole-induced oligomer representations, (dip;i) = Ay Big By Bay.
When projecting the monomer dipole onto these irreducible peesentations, we nd the well-
known set of four non-degenerate dipolar eigenmodes, see. Rigx-polarized anti-bonding
Ay(1), y-polarized bondingB14(1), y-polarized anti-bondingB,,(1), and x-polarized bonding
Bsu(1). Modes with index g have even (gerade) parity under inversion; modes with index
u have odd (ungerade) parity. The representation of the in-phe quadrupole moment is
Ay By Although it diers from the dipole representation, the quadupole induces the
same set of irreducible representations in the dimer, seebla 2. The projected eigenmodes
are shown in Fig. 2. Modes within one column belong to the samepresentation and have
identical selection rules in response to any perturbationWe will discuss the signatures of
the dipole- and quadrupole-derived modes in the optical sptea further below.

The hexamer belongs to thé g, point group. This point group is also found in hexago-
nally packed colloidal layers and crystalé! The atomic representation of the disc hexamer
IS a = Ay Ezy Bz Eg. The in-plane disc dipole belongs to thés,, represen-
tation of Dgy, See Table 1. The in-plane dipole moment of the disc inducesethiollowing

representations in the hexamer

pl(dip; |) Elu (Alg E2g BZu Elu)

(2)

Ay Ay 2By By Ba 2By

We project the dipole-induced, in-plane eigenmodes as showvifrig. 3(a). The non-degenerate
A and B eigenmodes have constant amplitude around the hexagon. Inhet degenerateE

modes the amplitude varies around the circumferenc&; eigenmodes have two anH, eigen-
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modes have four nodes around the hexagdf? The quadrupole mode of the disc induces a
second set of hexamer eigenmodes with identical symmetrytte disc dipole. We show the
A, B, and E; modes that were induced by the quadrupole in Fig. 3(b).

The symmetry-adapted eigenmodes allow comparative pretians on the strength of
optical absorption. For example, theE;, eigenmodes will contribute to the absorption of
linearly polarized light as we will discuss in detail belowThe absorption intensity depends on
the number and amplitude of the electromagnetic hotspots. Hgpots are places of very high
electric eld amplitude that form through near- eld coupling from two adjacent discs®%34
A strong hotspot requires that two adjacent discs face eachther with areas of opposite
accumulated charge. An inspection of th&,, eigenmodes in Fig. 3 shows that the number
and strength of the hotspots di ers from one mode to the otherThe E;,(1) mode has four
hotspots close to the amplitude maximum in the left eigenvemr and two strong hotspots
in the right eigenvector. Such a mode will e ciently absorb ad emit far- eld radiation;
it will also contribute strongly to plasmon-enhanced optial processes such as SER%?’
The E1,(2) eigenmode, in contrast, has only two hotspots close to éhpoint of vanishing
amplitude in one eigenvector and no hotspot between the dsm the other eigenvector. We
expect less radiative interaction with far- eld photons. The E;,(3) mode forms interparticle
hotspots comparable tdE,(1), and we expect strong light absorption by this mode althagh
it was derived from an optically forbidden excitation of the nanomer.

Eigenmodes that belong to the same irreducible represeritat of the oligomer are al-
lowed to mix. The real eigenvectors will be a superpositiorf warious monomer excitations®®
The mixing will increase with decreasing gap between the pgales, because Coulomb inter-
action between the monomers alters the charge distributiorFormally, this is described as a
contribution by higher-order multipoles of the monomer® Although the mixing a ects the
eigenvectors, the selection rules remain strictly applicé since the mode symmetry has to
be identical. For typical nanooligomers, the calculated genmodes remain predominantly

dipole-like, quadrupole-like and so forth. To demonstratéhis we show the calculatedA,,

14



modes and theEq,(1) mode of the hexamer in Fig. 4. TheA,4(1) eigenstate is energetically
well separated from the otherA,y modes of the hexamer. The calculated eigenvector is es-
sentially identical to the symmetry-adapted mode. Thé (1) eigenmode, in contrast, has a

contribution from a quadrupole-induced excitation as is i visible in the left eigenvector.

Figure 4: Ayy(1); Ax(2), and Eq,(1) eigenmodes calculated for the hexamer within the
boundary elements method.

We also projected the eigenmodes for a regular trimer, a tamner, and a pentamer;
the symmetry-adapted eigenmodes are shown in Supplementdfigs. S1-S3. The modes
show similar features as discussed for the dimer and hexanadrove. In particular, there
are always dipole- and quadrupole-induced eigenmodes thmlong to the same irreducible

representation of the oligomer.

Optical selection rules: Linear polarization and cylin-
drical vector beams

Optical selection rules predict whether a given transitioms allowed by considering the sym-
metry of the system and the incoming photon. If the system siaze much smaller than the
wavelength of the light, transitions that transform like the vector representation are allowed
by symmetry to interact with the dipole moment of the electronagnetic eld.*>43 Plasmonic
and dielectric oligomers, however, are comparable in size the focus of an incoming light
beam. This activates a new set of optical transitions if stretured light is used for excitation.
In this section we will consider linear polarization and cyhdrical vector beams.

Optical absorption from the ground state excites eigenmosdethat transform like the

incoming photon#43 The incoming light acts as a perturbation with symmetry , on an
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initial plasmonic state ipl with symmetry ;. The nal state is denoted by |

, and symmetry

¢ . This transition will be allowed if the direct product*

f H [ 1) €))

where ; is the totally symmetric representation of the point group. We assume that the
initial state is the oligomer ground state belonging to ;. Then Eq. (3) is equivalent to
requiring ¢ H. That means that the representation of the light needs to conta the
irreducible representation of the oligomer eigenstate.

The representation of the optical dipole interaction Hamiltaian is given by the vector
representation in case of linearly polarized light. The patization patterns of radial and az-
imuthal polarization are shown in Fig. 5(a) further below. Wend their representations by
inspecting the transformation of the polarization patteris under the symmetry operations of
the oligomer point groups*® Table 3 lists the selection rules we obtained. Linearly paiaed
light excites dipole-type eigenmodes of the oligomé?>6:57 Cylindrical vector beams excite
modes with vanishing dipole moment that are normally consated dark!*” Radially po-
larized beams interact with excitations that belong to the étally symmetric representation.
Light with azimuthal polarization will be absorbed by stateshat transform like the rotation
around the z axis within the point group of the oligomer. We expect the optal absorption

spectra to change drastically when varying polarization.

Light scattering and Fano resonances

Elastic or Rayleigh scattering of light is a prime charactézation tool for nanoplasmonic and

nanophotonic oligomers. Resonant Rayleigh scattering alknown as dark eld spectroscopy
detects excitations with very high sensitivity>®®! The symmetry-imposed selection rules of
Rayleigh scattering allow any eigenstate as intermediatecatering state, but resonances

occur only if the energy and the symmetry of the excited statmatch the incoming photon.
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Table 3: Optical selection rules for linear, radial, and aziuthal polarization. The light
propagation direction is alongz. !'1 implies the quasi-static approximation where the
electric eld is considered to be translationally invariahalong the propagation direction.

linear radial azimuthal
1
Don Bau(X);Bau(y) Agg B1g
D3 EAxy) A? A
D4h Eu(X; y) Alg AZQ
Dsn EXx;y) A? A3
Dén Ew(Xy) Axg Aoy
Cay B1(x); B2(y) A1 A
Din Ew(X;y) Axg Az
Civ E1(X;y) Al Az

In Rayleigh scattering, an incoming photon with symmetry , excites the system into
the intermediate state ,. The light is immediately re-emitted into the scattered phton
with  symmetry. Since the square of any representation containee totally symmetric

representation, Rayleigh scattering is allowed for any ietmediate state, i.e.,

f H H i 1 (4)

is true irrespective of the intermediate state ( = ; is the ground state). Resonant Rayleigh
scattering, in addition, requires the intermediate excitedtate to coincide with an eigenstate
of the plasmonic system. This will occur if the symmetry of thentermediate state
is contained in y and the photon energy matches the eigenenergy of. Resonances
increase the cross section for light scattering by severablers of magnitude making resonant
scattering dominant in the Rayleigh spectra?{6°

Dark eld spectra of plasmonic oligomers often show Fano r@sances that arise from the
superposition of scattering channel$*%265 Fano resonances may result in anti-resonances in
the spectra, i.e., a broad scattering peak with a strong diptdhe energy of a second excita-
tion. ®® Fano resonances occur if identical initial and nal state a connected by more than

one scattering pathway. For resonant Rayleigh scattering th means that two plasmonic
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excitations of symmetry , contribute to the resonance, because they overlap in exditan
energy. A typical case is one superradiant plasmonic mode wia large full width at half
maximum (FWHM) that overlaps with a narrow mode with smaller osdlator strength and
line width. 33346567 We will show that Fano resonances occur for linear polarizan in all
plasmonic oligomers with three-fold or higher principle aziof rotation.®*% An understand-
ing of the symmetry properties of plasmonic eigenmodes allowo tailor Fano resonances by

manipulating the oligomer geometry.

Spectra of plasmonic oligomers

In this section we exemplary present optical absorption anelastic light scattering for plas-
monic oligomers. We simulated spectra for linear polarizan and cylindrical vector beams,
see Fig. 5(a). We will relate the peaks to the projected eigemaes of the oligomers. Cylindri-
cal vector beams excite dark, non-degenerate plasmon modeatthave narrower line width
than bright eigenmodes. For the higher-order oligomers thezimmuthal mode is the plas-
mon of lowest energy. Since all irreducible representatirontain more than one plasmon
eigenstate, Fano resonances are predicted in the scattgrispectra. They are particularly
pronounced in linear excitation, because of the large FWHM of éhbright plasmon modes.
We rst consider a nanodimer with D,, symmetry. The x and y polarized absorption
spectra, Fig. 5(b), each show a dominant peak that arises frothe dipole-inducedB,(1)
and B3, (1) modes. The spectra contain additional weaker peaks; magstonounced is the
guadrupole-inducedB3,(2) mode inx polarization. The quadrupole is optically forbidden in
the monomer, but gets activated in the dimer by combining two wadrupoles out of phase,
which leads to a hotspot in the dimer void. E ectively, the hospot provides a way to
interact with far- eld radiation. With decreasing gap size §tronger hotspot) the B3, (2)
peak becomes more and more pronounced in the absorption gpen, see Suppl. Fig. S5.
The B3,(1) mode continues to have the highest integrated intensityput the peak height is

small because of the large FWHM due to the radiative decay of thisgerradiant mode. The
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Figure 5: (a) Direction of the electric eld across the beam foaufor linear, radial, and
azimuthal polarization. Radial and azimuthal polarization contain a vortex at the beam
center. (b)-(e) Optical spectra of a disc dimerd=2100nm, h=40nm, g=20nm, and" =

1:65). (b) Absorption and (c) scattering cross section for linely polarized light. Black line:
X polarization, red line: y polarization. (d) Absorption and (e) scattering cross seatn for
excitation by cylindrical vector beams. Cyan line: radial plarization, magenta: azimuthal
polarization. The labels indicate the eigenmode assignmesee Fig. 2.
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two B3, modes overlap in excitation energy. They will interfere inight scattering creating
the characteristic Fano dip close to 2eV in Suppl. Fig. S4.

When exciting the dimer with radially and azimuthally polarized light, the optical spectra
change drastically in the energies of the peaks, their FWHM, artteir intensity. Cylindrical
vector beams excite gerade representations that are opfigainactive in the quasi-static
dipole approximation. The activation occurs because the mer is quite large (220 nm)
compared to the wavelength of light (900-450 nm in Fig. 5). Thaght and left disc interact
with electromagnetic elds of antiparallel polarization. Interestingly, the absorption cross
section of theA14(1) and B14(1) plasmons in Fig. 5(d) is by a factor of two to ve higher
than for linearly polarized light in Fig. 5(b). Although cylindrical vector beams get absorbed
by the A4 and B4 plasmons, these states do not radiate e ciently into the fareld. Light
scattering represents a combined excitation and radiatioevent. The scattering cross section
of the vector beams, Fig. 5(e), is much weaker than the absoiph cross section, Fig. 5(d),
and scattering by linearly polarized light, Fig. 5(c). Stroig absorption combined with weak
scattering (or radiation) is interesting for several reasws. The small probability for radiation
into the far eld increases the radiative lifetime of the plamon eigenmode and reduces its
broadening as we discuss in the next section. Also, low scaitg and strong absorption
e ectively cloaks strong scatterers like plasmonic nanasictures.%8

A trimer belongs to the D3, point group, Fig. 1. Figure 6 shows the calculated absorp-
tion and scattering spectra under linear, radial, and aziminal polarization. In Dz, and all
groups with a higher order of principle axis of rotation, thex and y direction are degenerate.
Therefore, in-plane linearly polarized light E°representation) will yield the absorption spec-
trum in Fig. 6(a) and the scattering spectrum in Fig. 6(b) irrepective of the polarization
direction within the plane. Table 2 lists two dipole-inducd eigenmodes belonging to th&°
representation. Indeed, the absorption spectrum shows tpeaksE (1) and EY2) that result
in a Fano feature in light scattering [arrow in Fig. 6(b)]. In catrast to the dimer where the

Fano feature arose from interference between a dipole- and@adrupole-derived eigenmode,
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Figure 6: Optical spectra of a disc trimerd = 100nm, h =40nm, g =20nm, and" = 1:65).
(a) Absorption and (b) scattering for linearly polarized ligit. The arrow indicates a dip in
the scattering cross section that comes from the interferea of theEY1) and E42) modes.
(c) Absorption and (d) scattering for excitation by cylindrical vector beams. Cyan line:
radial polarization, magenta: azimuthal polarization. Tt labels indicate the eigenmode
assignment, see Suppl. Fig. S1.
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the two peaks in the trimer are induced by monomer dipoles. Abgption and scattering
by the quadrupole-inducedE {3) mode, Suppl. Fig. S1, is too weak to be identi ed in the
spectra. A similar mode will appear more prominently in the igher-order oligomers.

Cylindrical vector beams yield much narrower plasmon resances than linearly polarized
light. Especially, the azimuthal spectrum is remarkable foits small FWHM = 107 meV,
Fig. 6(c). Bulk damping at the A9(1) plasmon energy (1.75eV) is 70 meV 2 so that the
contribution from radiative damping appears to be very smél For comparison, theE Y1)
mode at almost the same energy (1.74 eV) has= 380 meV. The simulation highlights the
advantage of the dipole-forbidden plasmon modes that canndecay easily by coupling to
the photonic far eld.

The optical properties of higher-order oligomers { tetranme pentamer, and hexamer {
evolve incrementally, see Fig. 7. All have degenerate in-plapelarized (x; y) representations.
The disc dipole and quadrupole induce a total of four linearlpolarized in-plane oligomer
eigenstates. The linearly polarized absorption spectra m@in one pronounced peak (2)
and two weaker features at lowet. (1) and higher L(3) energy as shown in Fig. 7. They
arise from the two dipole-induced and the lowest-energy agdiupole-induced eigenmodes.
Quite remarkably, the broadening of some of the peaks is so®tg that the most prominent
dipole modes are hardly visible in the absorption spectra.oFexample,L (1) = E1,(1) in the
hexamer, Fig. 3. This mode had the strongest hotspots of th&,, states resulting in strong
far- eld coupling and a smeared-out peak with = 570 meV. The Ey,(1) mode dominates,
however, the scattering spectrum in Fig. 7(b) where the othdéwo E;, modes appear as kinks
and dips. The scattering spectra of the higher-order oligomseare remarkably asymmetric,
which is a result of interferences between the resonantlyastering modes. The energy of
the maximum intensity is higher than the eigenenergy of the Ll state as shown for the
hexamer by the vertical line in Fig. 7(b). This shift needs to b kept in mind when extracting
plasmon energies from dark- eld spectra.

The higher-order oligomers absorb radially and azimuthagllpolarized light, Fig. 7(c)-
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Figure 7. Absorption and scattering coe cient for higher-orcer oligomers: tetramer (red,
square), pentamer (blue, dots), and hexamer (black, lineja) Absorption and (b) scattering
coe cient for linear in-plane polarization. The labels stand for the following modes: tetramer
{ L(1) = Eu(1), L(2) = Eu(2); and L(3) = Eu(3), pentamer { L(1) = EZ(1), L(2) = EZ(2),
and L(3) = E{@3), and hexamer {L(1) = E1,(1), L(2) = E1,(2), and L(3) = E1,(3). (c)
Absorption and (d) scattering coe cient for radial in-plane polarization. Labels: tetramer
and hexamer {R(1) = A14(1) and pentamerR(1) = A9(1). (e) Absorption and (f) scattering
coe cient for azimuthal in-plane polarization. Labels: tdramer and hexamer {A(1) =
Ax(1) and A(2) = Axy(2), pentamer { A(1) = AY(1) and A(2) = A%(2). Except for panel
(e), the spectra were shifted vertically for clarity.
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(f). The absorption cross section is very high; it exceedsélr geometrical cross section by
up to a factor of four. Azimuthally polarized light is also stongly scattered. The peak
scattering intensity of A(1) is higher than the linearly polarizedL (1) peak. The A(1) peak
position shifts to smaller energies with increasing oligomerder making it the state with the
smallest energy fom 3. At the same time, its scattering intensity and FWHM increase.
This behavior re ects the increase in the number of hotspots #t simultaneously reduces
the plasmon energy in the bonding con guration and increasethe coupling to far eld
radiation. The radially polarized R(1) mode has almost constant eigenenergy and a much
smaller increase in the ratio between light scattering andogorption. The totally symmetric
R(1) eigenmodes produce no strong hotspots and the number obmomers in the oligomer

is less important.

Radiative and non-radiative decay

Figure 8: (a) FWHM , (b) non-radiative |, and (c) radiative , damping for oligomers
of ordern = 2 6. Blue dots are for the lowest-energy dipole allowed trangin [dimer
Bsu(1), trimer EY1), tetramer E, (1), pentamerE{(1), and hexamerE,,(1)] and red squares
for the lowest-energy transition for azimuthally polarizd light [dimer B14(1), trimer A9(1),
tetramer Ay (1), pentamer A3(1), and hexamerA,4(1)]. The gray area in (b) marks the
range of non-radiative damping in bulk gold for all simulaté plasmon energies. The lines in
panel (c) are a guide to the eye. The error is within the size tiie symbols except for panel
(b) where error bars are shown.

Many applications of plasmonic and nanophotonic systemsqeire engineering the ra-
diative and non-radiative decay. Plasmon-enhanced speascopy, for example, relies on

increasing the radiative damping of a nearby dipole via radiing plasmons?°27:6° For hot-
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electron generation, on the other hand, the non-radiativeetaxation should be maximized at
the expense of radiative deca$* %! We will now analyse the radiative , and non-radiative
o decay in the plasmonic oligomers using the simulated speatr
The ratio of the scattering ., and absorption ., Cross section is related to the two
relaxation channels, as,;= ,y = <= abs- > Using the fact that the total decay (FWHM) is

= .+ ., Wwe obtain

nr = (1+ sca— abs) L (5)

As examples we analysed the linearly (1) and azimuthally A(1) polarized modes with the
lowest energy, see caption of Fig. 8. For both plasmons the FWHM meases strongly with
increasing order of the oligomer, Fig. 8. This increase inis entirely caused by the rising
radiative decay. The non-radiative decay ,, drops from 80 meV close to the bulk value in
the dimer [see gray area in Fig. 8(b)] to 20 30meV in the higher-order oligomers. This
corresponds to 30 40% of the bulk damping rate at the energies of the plasmon mad€&
For the hexamer only 5 10% of the FWHM is caused by non-radiative decay channels.
The reason is that a large fraction of the plasmon mode energy stored in the oligomer
hotspots .88 This reduces the overlap with the metal electrons and thus neradiative decay,
but increases the radiative damping. We found that 90% of the A(1) mode volume
is outside the metal in the hexamer, see Suppl. Sect. S3, incelent agreement with its
contribution to . The small contribution of ,, is quite remarkable; it implies that a higher
quality of the plasmonic material { e.g. single crystals of anetal { will hardly a ect losses
in oligomers withn > 3. The radiative decay , increases linearly with oligomer order, see
lines in Fig. 8(c). This is equally true for the linearly polaized (bright) and the azimuthal
(dark) mode, although radiative damping of the azimuthal mdes remains smaller than for
the linearly polarized excitations. Nevertheless, the notioaf a \dark" or \forbidden" mode

is clearly no longer justi ed for reasonably large plasmoaioligomers.
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Light with orbital angular momentum
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1u(1) E EZg(l) E3u(l)

Eu(2)
Eg(2) Eu(2) Ey(2)

Figure 9: (a) Nanoscale ring or torus. (b) Plasmon eigenmodektbe ring. Blue (red) areas
stand for positive (negative) surface charge density.

Another class of structured light are beams that carry orbitangular momentum (OAM).%1?
Since angular momentum is a preserved quantity, we expectvab selection rules for OAM
beams. This was elegantly con rmed in recent experiments thaxamined quadrupole ex-
citations in ions, i.e., transitions that get induced by thequadrupole moment of the elec-
tromagnetic eld.>*? Di erent transitions were excited by OAM beams when varying e
magnitude and sign of the orbital angular momentum. For the rbital momentum to have
an e ect on dipole excitations, however, the size of the abhdong structure needs to be
comparable to the focused beam. Then, the angular momentum ignserved for the entire
structure during light absorption and scattering?®??7# which excites plasmon eigenmodes
with an angular momentum that matches the momentum of the inaaing beam.

To study the optical selection rules for OAMs within group thery, we rst consider a
ring with nanoscale dimensions, Fig. 9a. The structure belosgo the D; , point group. The
eigenstates of the ring are standing waves around the circerence, Fig. 97° The wavelength
of these excitations inside the material is given byd, = m , whered, is the diameter of
the ring. The integerm can be identi ed with the z component of the angular momentum
with respect to the principle axis; it is a conserved quanyt*’484° To specify an eigenstate
of the ring we need a set of three quantum numbers, see Methdd$4° The z component
of the angular momentumm as introduced above, the parity of the horizontal mirror plae

h, and the parity of the mirror planes , that contain the z axis. To obtain the m quantum
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Table 4: Selection rules for OAM beams within th®, ;, and D, point groups. The selection
rules forl, < 0 are obtained by ipping the sign ofl, and m, simultaneously.

I, radial azimu. left circ. right circ. linear
ring, D1

0 Alg AZg Elu Elu E1u

1 Elu Elu E29 Alg A29 Alg AZg EZQ

2 EZQ EZg E3u Elu Elu E3u

3 E3u E3u E4g EZg EZg E4g

even, 2 Eq =T Eq,+1)u Eo, yu E@+npu  Eq, 1
odd, 3 E, Eiu Eu, g Ea. n9 Ew+ng Eq, 19
hexamer,Dg,

0 Alg AZQ Elu Elu Elu
1 Elu Elu EZg Alg AZg Alg A29 EZg
2 EZg EZg B1u BZu Elu Blu BZu Elu
3 B 1u BZu EZg E2g EZg
4 E29 EZg B1u BZu Elu B1u BZu Elu

number for the state excited by an OAM, we have to add the orbitaangular momentuml, of
the beam and the spin angular momentunm,, related to polarization,m = |, + m,. Radial
polarization hasm, =0, , =+1, and , = +1; azimuthal polarization m, =0; = +1,
and , = 1. For left (right) handed circular polarizationm, = +1 (1), , = +1, and
v = 1lis not de ned. This means that both the representation for, =+1and ,= 1
will contribute for circular polarization. Finally, linear polarization is the superposition of
left- and right-handed circularly polarized light. Taken t@ether, we nd the selection rules
listed in Table 4 for the ring. They apply to nanostructures \th full rotational symmetry
around the propagation direction of the OAM ¢ axis). Ordinary, linearly polarized light
(I; = 0) excites the E;, modes in Fig. 9b; a beam witH, = +3 will excite the Ez, mode if
it is radially or azimuthally polarized, the E4q mode for left-handed, and theE,y modes for
right-handed circular polarization, andE,q and E4y modes for linear polarization.
We now proceed from the ring structure to nanoscale oligongerThe rotational symmetry
of the oligomer is described by the principle axis of rotatio®, with order n. Because only
rotations by certain angles preserve the symmetry of the gbmer, m can only take on

integer values withjmj  n=2.74"%° Higher absolute values ofm are brought back into
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the allowed range with an Umklapp rule, wherem is replaced bym® = n m.4"* We
apply the Umklapp rule and combine it with the parity selectim rules of the polarization
patterns into the OAM selection rules of a hexamer, Table 4. Wad that through the right
combination of OAM and polarization, all eigenmodes of the kamer become accessible
to optical spectroscopy. The selection rules excellentik@ain the simulated scattering of
an OAM beam by a hexamer (and other oligomers¥. For examples, the modes excited for
I, =2 and 4 in Ref. 20 are identical as expected from the seledtioules. The breathing-like
Ay eigenmode appears fan = |, + my = 1+1=0. The parallel and antiparallel spectra
for jl,j = 3 are identical and so forth. The calculated eigenmodes ineR 20 likewise agree
with the projected eigenstates in Fig. 3 when replacing the stis by rod monomers. The
conservation of them quantum number during excitation also explains the orbitaangular
momentum dichroism proposed in Ref. 21. Singe and not |, is the conserved quantity, the
excited states change when changing the signlgf if the light also carries spin momentum.
Beams with angular momentum will allow addressing a wide rge of optical excitations
in nanophotonic systems, see Suppl. Tables S2 and S3. The w@wag momentum provides
an additional degree of freedom to tailor the properties antight-matter interaction for
plasmonic and dielectric modes. Such excitations will prode near- elds with well-de ned
angular momentum. In this way, angular momentum may be transfeed to much smaller

nanostructures via plasmon-mediated excitations.

Retardation of the incoming light

In discussing novel selection rules from variations in the ekeic eld, we have focused so far
on the spatial extension of the oligomers compared to the fazof the light beam. Since light
is an electromagnetic wave, the electric eld also varies alg its propagation direction at a
given time. The eld retardation will excite dipole-forbidden modes of the oligomer, if the

extension along the propagation direction becomes a sizalftaction of the light wavelength?
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For example, in oligomers with discs consisting of a verticanetal-insulator-metal stack,
antiparallel plasmonic dipoles are excited in the upper andwer metal disc’5® Similarly,
light propagating normal to a gold nanoparticle bilayer extes plasmons with antiparallel
dipole moments in the two layerg'4?

To understand the selection rules introduced by eld retardtion, we consider a dimer
of two spherical nanoparticles (point groupD; ) and light propagating along its z axis
(that is the C; axis of the dimer). The in-plane dipole moment induces ak, and an
Eiy dimer eigenmode, Table. 2. ThéE,, mode is optically active within the quasi-static
approximation.**2 To introduce eld retardation we assume that half the wavelegth matches
the center-to-center distance of the two spheres= (d+ g)=2. In this situation the electric
eld points in opposite direction at the two spheres. Field redrdation will a ect selection
rules if the point group contains the inversion and/or horipntal mirror plane. The parity
for these operations changes to 1.4 This replaces a given gerade representation by its
ungerade counterpart and vice versa. Instead of the;, mode, theE 4 eigenstate is allowed
for the retarded eld and linearly polarized light. This mode has the two dipoles pointing
in opposite direction?°3 In a real experiment, the wavelength will neither be in nitenor
match the dimer size and both modes will contribute to the optal spectra. Indeed, optical
experiments on hexagonal layers of nanoparticles obsenadzsorption by a plasmon mode in
the bilayer that was absent from the spectrum of a monolayét:*?> The mode had parallel
dipoles within a layer, but antiparallel dipoles from one Iger to the next, which corresponds
to the E;q mode of the nanosphere dimet The excitation of the plasmon under normal
incidence was due to eld retardation and the comparativelyarge nanoparticle diameters
(30-50nm) used in the experiment.

The selection rules for structured light within the quasi-&tic limit were given by Tables 3
and 4, which we now extend to the retarded cases. For cylindal vector beams with =
(d+ g)=2, radially polarized light excites theA;, mode of the dimer and azimuthally polarized

light the A,, eigenmodes. Observing modi ed selection rules due to eldetardation for
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structured light requires nanostructures that are a sizabl fraction of the focus in the X;y)
plane as well as the wavelength along. Such systems need a careful design to realize the

predicted non-standard excitations.

Multi-photon processes

Multi-photon processes occur in nonlinear optics: A matetigets excited by absorbing two
photons, three incoming photons convert into one photon witthree times the frequency, or
light gets scattered inelastically in Raman or hyper-Ramaiprocesses:’%8° In this section
we discuss selection rules of exemplary multi-photon prases when using structured light
for excitation.8182 We will show how OAMs may be used to induce second-harmonic gene
ation in centrosymmetric oligomers. Such an experiment willerify the transfer of angular
momentum between the photons and the oligomer.

Table 5: Selection rules for two- and three-photon absorptiofor linear polarization and
cylindrical vector beams.

point group linear radial azimuthal
2-photon absorption

Dyp Ag Ag Ag
(DE A} AY E° A A9
D4h Alg AZg Blg BZg Alg Alg
Dsn A} A} ES AL AL
D6h Alg A2g EZQ Alg Alg
Din A Ay Egg A Aqg
3-photon absorption

D2h BZu B3u Ag Blg
(DE A? Ay E° A? A9
D4h Eu Alg AZg
Dsh EY E2 AS A9
D6h Blu BZu Elu Alg AZg
Dl h Elu E3u Alg Alg

In two-photon absorption two incoming photons excite an eanstate of the system. The
group theory treatment is identical to linear absorption egept that we consider two pertur-

bations (=photons) with symmetry . For simplicity, we assume the two photons to have
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identical symmetry. Equation (3) is rewritten as

f H H [ 1; (6)

which is equivalent to H n. Equation (6) appears at rst to be identical to
the conditions for Rayleigh scattering in Eq. (4), but in twephoton absorption the initial

i = 1 and nal state ; dier. Table 5 lists the selection rules of theD, point groups
considered here. Cylindrical vector beams always excitegttotally symmetric representation
of the oligomers in two-photon absorption. Two linearly palrized photons allow exciting
states that are forbidden for a single photon as is standara ithis technique. Particularly
interesting is the trimer (D) where the E? representation is active in one- and two-photon
excitation. This means that the trimer will produce a secondharmonic signal (SHG, second-
harmonic generation). In none of the other oligomers the dybe-active states contribute to
two-photon absorption, which is the standard requirement foSHG activity. However, the
absorption of two photons from a cylindrical vector beam shud leads to the emission of
radially polarized light, which would be extremely intereshg to observe.

When OAM is added as an additional degree of freedom, SHG underission of linearly
polarized photons may be activated in all oligomers as we stanow. For this we have to
allow for photons with di erent OAM. First, we consider two phaons pl andp2 with |, =0,
linear polarization, and an oligomer belonging t®g,. The two photons may combine into
a state with m = 2 (Eyy eigenstates) orm = 0 (Aig; Ayg). We now change the OAM of
p2 to 1?2 = +1. The total angular momentum may add up tom = 3 (Ez,)) orm = 1
(Ew). The Ey, excitation may decay by emitting a single linearly polarizg¢ photon. We nd
that exciting a hexamer with two photons that havel?* = 0 and 192 = +1 will give rise to
a second-harmonic signal. SHG will be at maximum if the sum ohé¢ two photon energies
matches the one-photon transition of the oligomers. This periment would be particularly

interesting to perform, because it proves the transfer of gnlar momentum from the photon
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to the oligomer.

Selection rules for other higher-order processes may beided in a similar manner by
reducing the product of the one-photon representations. lIiiable 5 we list the selection
rules for three-photon absorption in oligomers. The represtations that are allowed for
the emission/absorption by one photon are also reached thrghu three-photon absorption.
This means that all oligomers will produce third-harmonic ginal. The selection rules for
Raman scattering are identical to two-photon absorption; yper-Raman scattering obeys the
selection rules of three-photon absorption, and so forth. domprehensive group theoretical

treatment of surface-enhanced Raman scattering was pulblesi by some of us recently’

Conclusion

We derived the optical selection rules in nanoscale systemsiged by linearly polarized and
structured light. The nanosystems have extensions that armparable to the wavelength
of light and the focus of a light beam. When excited by structuredight, the oligomers
experience the varying phase and polarization patterns. We dezd the selection rules for
absorption and scattering of cylindrical vector beams andight with orbital angular momen-
tum considering the dipole moment of the elctromagnetic el. Structured light allows the
excitation of oligomer eigenmodes that are dark/opticallydrbidden under linear polariza-
tion. We discussed the changes in the optical spectra for exelay nanostructures using
FDTD simulations of highly symmetric disc oligomers witlm =2 6 monomers. The radia-
tive and non-radiative decay rate depends systematically ohé mode under study as well as
the number of monomers. The non-radiative damping rate fallbelow the lower bound pre-
dicted from the quasi-static approximation!® which needs to be considered when engineering
plasmonic structures for plasmon-enhanced spectroscopydahot-electron applications. Us-
ing structured light modi es the selection rules in multi-ghoton processes. Speci cally we

showed that SHG gets activated when using two linearly polaed photons that di er in their

32



OAM by one. Structured light will unlock a rich world of optica excitations in nhanoscale
oligomers. Such structures may excite molecules and nanderals via their optical near
elds. We envision near- eld absorption as a way to channel sictured light to materials
excitations. This would unlock novel excitations and speatscopic techniques in a wide

range of physical systems.
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