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ABSTRACT
Gradient-domain machine learning (GDML) is an accurate and efficient approach to learn a molecular potential and associated force field
based on the kernel ridge regression algorithm. Here, we demonstrate its application to learn an effective coarse-grained (CG) model from
all-atom simulation data in a sample efficient manner. The CG force field is learned by following the thermodynamic consistency principle,
here by minimizing the error between the predicted CG force and the all-atom mean force in the CG coordinates. Solving this problem by
GDML directly is impossible because coarse-graining requires averaging over many training data points, resulting in impractical memory
requirements for storing the kernel matrices. In this work, we propose a data-efficient and memory-saving alternative. Using ensemble learn-
ing and stratified sampling, we propose a 2-layer training scheme that enables GDML to learn an effective CG model. We illustrate our method
on a simple biomolecular system, alanine dipeptide, by reconstructing the free energy landscape of a CG variant of this molecule. Our novel
GDML training scheme yields a smaller free energy error than neural networks when the training set is small, and a comparably high accuracy
when the training set is sufficiently large.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0007276., s

I. INTRODUCTION

Molecular dynamics (MD) simulations have become an impor-
tant tool to characterize the microscopic behavior of chemical sys-
tems. Recent advances in hardware and software allow significant
extensions of the simulation timescales to study biologically rele-
vant processes.1–3 For example, we can now characterize the con-
figurational changes and folding and binding behavior of small to
intermediate-sized proteins through MD on the timescale of mil-
liseconds to seconds.4–9 However, the computational complexity of

evaluating the potential energy prohibits this approach to scale up
to significantly larger systems and/or longer timescales. Therefore,
multiple ways have been proposed to speed up atomistic simu-
lations, such as advanced sampling methods (e.g., umbrella sam-
pling10–12 and parallel tempering13,14) or adaptive sampling.15–17 An
alternative approach is to reduce the dimensionality of the system
by coarse-graining (CG).18–23 The fact that macromolecules usu-
ally exhibit robust collective behavior suggests that not every single
degree of freedom is per se essential in determining the important
macromolecular processes over long timescales. Furthermore, a CG
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representation of the system simplifies the model and allows for a
more straightforward physico-chemical interpretation of large-scale
conformational changes, such as protein folding or protein–protein
binding.18

Once the mapping from the atomistic to the CG representation
is defined, a fundamental challenge is the definition of an effec-
tive potential in reduced coordinates such that the essential physi-
cal properties of the system under consideration are retained. The
choice of the relevant properties crucially dictates the definition of
the CG model.

Following a top-down approach, the CG procedure is driven
by the objective to reproduce macroscopic properties, such as struc-
tural information or experimentally measured observables.19,21,24–27

In a bottom-up approach, on the other hand, an effective potential
is designed to reproduce a selection of properties of an atomistic
model, for instance, the probability distribution in a suitable space
and the corresponding metastable states.20,22,28–31

In the past several years, machine learning (ML) techniques
have been increasingly applied in molecular simulation.9,32–34

Bottom-up CG methods have also started to leverage the advances in
ML, to define classical atomistic potentials or force fields from quan-
tum chemical calculations,35–51 to learn kinetic models,52–56 or to
design effective CG potential from atomistic simulations.57–59 In this
context, we have recently shown that a deep neural network (NN)
can be used in combination with the well established “force match-
ing” approach60 to define a coarse-grained implicit water poten-
tial that is able to reproduce the correct folding/unfolding process
of a small protein from atomistic simulations in explicit water.59

In the force matching approach, the effective energy function of
the CG model is optimized variationally by finding the CG force
field that minimizes the difference with the instantaneous atom-
istic forces projected on the CG coordinates. As there are multiple
atomistic configurations consistent with a CG configuration, this
estimator is very noisy and this approach requires a large amount
of training data. It is thus restricted to parametric models such
as NNs, as the computational complexity of non-parametric mod-
els is directly linked to the training set size. Here, we propose a
method to overcome this limitation in the dataset via bootstrap
aggregation in combination with a non-parametric, kernel-based
regressor.

In particular, we use the Gradient-Domain Machine Learning
(GDML) approach.50,61 In the application to quantum data, GDML
is able to use a small number (usually less than a few thousand)
of example points to build an accurate force field for a specific
molecule. Because of the degeneracy of the mapping, the training
data required to reconstruct a coarse-grained force field are much
larger, and the fact that memory requirements scale quadratically
with dataset size prevents a direct application of GDML to the
definition of CG models.

To solve this problem, we pursue a hierarchical ensemble learn-
ing approach in which the full training set is first divided into smaller
batches that are trained independently. A second GDML layer is
then applied to the mean prediction of this ensemble, providing the
second model with a consistent set of inputs and outputs. We show
that GDML with ensemble learning can be efficiently used for the
coarse-graining of molecular systems.

The structure of the paper is as follows: In Sec. II, we briefly
review the principle of force matching that we use for coarse

graining, as well as mathematical underpinnings of the kernel ridge
regression used in the GDML method. Then, we describe the idea of
ensemble learning and explain how it solves the problem associated
with the large number of training points required by force match-
ing. In the “Results” section, we demonstrate that a GDML approach
trained with ensemble learning performs well on the coarse-graining
of a small molecular system, alanine dipeptide simulated in water
solvent, as it produces the same free energy surface as obtained in the
all-atom simulations. As was already demonstrated in the case of a
NN approach,59 the key to success of a GDML-based coarse graining
is that it is able to naturally capture nonlinearities and multi-body
effects arising from the renormalization of degrees of freedom at the
base of coarse-graining.

II. THEORY AND METHODS
A. Coarse-graining with thermodynamic consistency

Although the definition of a coarse-graining mapping scheme
is per se an interesting problem,23,62–64 here, we start by assuming
that a mapping is given. The all-atom system we want to coarse-
grain consists of N atoms, and its configurations are represented
by a 3N dimensional vector r ∈ R3N . The lower dimensional CG
representation of the system is given by the mapping

x = ξ(r) ∈ R3n, (1)

where n < N is the number of CG beads. The CG mapping function
ξ is assumed to be linear, i.e., there exists a coarse-graining matrix
Ξ ∈ R3n×3N that maps the all atom space to the CG space: x = Ξr.

The definition of a CG model requires an effective potential
U(x; θ) in the CG space, where θ are the optimization parameters.
The potential U(x; θ) can then be used to generate an MD tra-
jectory with a dynamical model. Parameterizations are available in
varying degrees of sophistication, ranging from classical force fields
with fixed functional forms to ML approaches with strong physical
basis.

One popular bottom-up method for building a CG model is to
require thermodynamic consistency, that is, to design a CG potential
such that its equilibrium distribution matches the one of the all-
atom model. In practice, this means that an optimum CG potential
satisfies the condition

U(x; θ) ≡ −kBT ln pCG
(x) + const, (2)

where kB is the Boltzmann constant, T is the temperature, and the
probability density distribution in the CG space is given by the
equilibrium distribution of the all-atom model mapped to the CG
coordinates,

pCG
(x) = ∫

μ(r)δ(x − ξ(r))dr
∫ μ(r)dr

, (3)

where μ(r) = exp(−V(r)/kBT) is the Boltzmann weight associated
with the atomistic energy V(r).

Different methods have been proposed to construct a CG
potential U(x, θ) that satisfy Eq. (3), notably the relative entropy
method,31 and the force-matching method.20,60 In this work, we will
demonstrate how we could learn the molecular CG potential using
the idea of force-matching and the GDML kernel method.

J. Chem. Phys. 152, 194106 (2020); doi: 10.1063/5.0007276 152, 194106-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

B. Force matching
It can be shown that the potential U(x; θ) satisfies thermody-

namic consistency if the associated CG forces −∇U(x; θ) minimize
the mean square error (MSE),20,60

χ2
(θ) = ⟨∥ξ(F(r)) +∇U(ξ(r); θ)∥2

⟩r, (4)

where ξ(F(r)) denotes the instantaneous all-atom forces projected
onto the CG space and ⟨⋅⟩r is the weighted average over the equilib-
rium distribution of the atomistic model, i.e., r ∼ μ(r).

The effective CG force field −∇U(x; θ) that minimizes χ2(θ)
corresponds to the mean force,60

f(x) = ⟨ξ(F(r))⟩r∣x, (5)

where r∣x indicates the equilibrium distribution of r constrained to
the CG coordinates x, i.e., the ensemble of all atomistic configura-
tions that map to the same CG configuration. For this reason, an
optimized CG potential U(x, θ) is also called the potential of mean
force (PMF).

By following statistical estimator theory,65 it can also be
shown59 that the error χ2(θ) [Eq. (4)] can be decomposed into two
terms,

χ2
(θ) = PMF error(θ) + Noise, (6)

where

PMF error(θ) = ⟨∥f(ξ(r)) +∇U(ξ(r); θ)∥2
⟩r

Noise = ⟨∥ξ(F(r)) − f(ξ(r))∥2
⟩r.

(7)

While the PMF error term depends on the definition of the CG
potential and can be, in principle, reduced to zero, the noise term
does not depend on the CG potential and it is solely associated
with the decrease in the number of degrees of freedom in the CG
mapping, and it is, in general, larger than zero. The force matching
estimator of Eq. (4) is thus intrinsically very noisy.

C. GDML
In previous work,59 we have introduced CGnet to minimize

the error in Eq. (4) using a neural network to parametrize the CG
forces. We have demonstrated that the CGnet approach success-
fully recovers optimal CG potentials. A large training dataset enables
CGnet to resolve the ambiguity in the coarse-grained force labels
by converging to the respective mean forces. Here, we explore the
Gradient-domain Machine Learning approach (GDML)50,51 as an
alternative.

GDML has been used to obtain an accurate reconstruction of
flexible molecular force fields from small reference datasets of high-
level ab initio calculations.50,51,61 Unlike traditional classical force
fields, this approach imposes no hypothesized interaction pattern
for the nuclei and is thus unhindered in modeling any complex
physical phenomena. Instead, GDML imposes energy conservation
as inductive bias, a fundamental property of closed classical and
quantum mechanical systems that does not limit generalization.
This makes highly data efficient reconstruction possible without
sacrificing generality.

The key idea is to use a Gaussian process (GP) to model the
force field f as a transformation of an unknown potential energy
surface U such that

f = −∇U ∼ GP [−∇μU(x),∇xkU(x, x′)∇⊺x′]. (8)

Here, μU and kU are the mean and covariance functions of the
corresponding energy predictor, respectively.

To help disambiguate physically equivalent inputs, the Carte-
sian geometries x are represented by a descriptor D with entries

Dij =

⎧⎪⎪
⎨
⎪⎪⎩

∥xi − xj∥
−1 for i > j

0 for i ≤ j
(9)

that introduces roto-translational invariance. Accordingly, the pos-
terior mean of the GDML model takes the form

f̂(x) =
M

∑
i
JD(x)(∇xkU(D(x),D(xi))∇

⊺

x )J
⊺

D(x), (10)

where JD(x) is the Jacobian of the descriptor (see the supplementary
material for details). Due to linearity, the corresponding expres-
sion for the energy predictor can be simply obtained via (analytic)
integration. GDML uses a Matérn kernel kU (x, x′) with restricted
differentiability to construct the force field kernel function,

kf(x, x′) = ∇xkU(x, x′)∇⊺x′

= (5(x − x′)(x − x′)⊺ − Iσ(σ +
√

5d)) ⋅
5

3σ4 exp(−
√

5d
σ
),

(11)

where d = ∥x − x′∥ is the Euclidean distance between the two inputs
and σ is an hyperparameter.

We use this kernel because empirical evidence indicates that
kernels with limited smoothness yield better predictors, even if the
prediction target is infinitely differentiable. It is generally assumed
that overly smooth priors are detrimental to data efficiency, as the
associated hypothesis space is harder to constrain with a finite num-
ber of (potentially noisy) training examples.66 The differentiability
of functions is directly linked to the rate of decay of their spectral
density at high frequencies, which has been shown to play a critical
role in spatial interpolation.67

D. Ensemble learning
Ensemble learning is a general and widely used machine learn-

ing trick to increase the predictive performance of a trained model
by combining multiple sub-models.68–76 In this work, we use the
idea at the basis of a particular ensemble learning method, called
bootstrap-aggregation in the machine learning literature,71 summa-
rized in the following paragraphs and Algorithm 1. This method
enables us to train a GDML approach over millions of data points, a
task that would be otherwise impossible.

In general, we generate a finite set of alternative GDML recon-
structions from randomly drawn subsets of the full MD trajectory
and average them to generate an estimate for the “expected” force
prediction at each point. The variability in the individual training
sets promotes flexibility in the structure across all models in the
ensemble and enables us to capture the variability in the dataset. We
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ALGORITHM 1. 2-layer training scheme.

2Layer-GDML(D, N, n, n′)
1. Sample N data batches from the original bulk dataset D: {D1, D2, . . ., DN }, each data batch

Di contains n randomly sampled points, each data point d = (r, f ) includes a molecular
configuration part r and a force part f

2. Sample one additional data batch D̃m from the original bulk dataset D that contains n′ points,
di = (ri, f i)|i=1,2, . . . , n′ , each point di also includes a molecular configuration part ri and a force
part f i, and j indicates the point index in data batch D̃m

3. For i = 1, . . ., N: # Loop over N batches:
(a) Train GDML model Pi using data batch Di
(b) Predict forces for all n′ configurations rj|j=1,2, . . . , n′ in data batch D̃m using model Pi, which

is denoted as f i
j ∣j=1,2,...,n′

4. Construct the mean force set Dm, which also includes n′ points, the configuration part rj for
each point is the same as D̃m, but the force part f j is the averaged force computed using the N
GDML models: fj =

1
N ∑

N
i=1 f i

j
5. Train the 2nd-layer model P using the constructed mean force set Dm

are then able to compute the expected value for each input by simply
taking the mean of the ensemble.

Suppose that we have a large dataset D: (x, y) for training that
contains N samples of pairs of points x, y. We would like to train
a predictive model f such that y = f (x), using the data D. Instead
of training a single model f using the whole N data points from D,
we first randomly sample n batches: {D1, D2, . . ., Dn}, where each
batch Di contains N′ points. Usually, N is too large to efficiently
train a single model, but it is possible to train sub-models on the
different batches {f 1, f 2, . . ., f n} if N′ ≪ N. After training all the
batches, the final predictive model f is obtained as the average of all
the sub-models,

f (x) =
1
n

n

∑
i=1

fi(x). (12)

This enables us to generate consistent labels for a held-out subset
of the trajectory, which then serves as the basis for another GDML
reconstruction.

We demonstrate how bootstrapping aggregation is used on a
simple example, where we learn an effective curve to fit a one dimen-
sional dataset. As shown in Fig. 1(a), 600 raw points are uniformly
sampled from x ∈ [0, 6], and the y value of each point is assigned
according to yi = sin(xi) + 0.2ξ, where ξ ∼ N(0, 1) is a random noise.
These 600 points serve as the noisy training set. Instead of learn-
ing the curve using all 600 points at once, we bootstrap sample 100
batches from the full dataset, where each batch contains only 20
points. We use a six-order polynomial function to fit 20 points in
each batch, and the 100 fitted curves are shown in blue in Fig. 1(a).
While each of these 100 blue curves oscillates around the mean and
overfit the data, the mean of the 100 predictors (red curve) is smooth
and agrees with the ground truth y = sin(x) (green curve) quite well.
We use the idea of ensemble learning to apply GDML to CG prob-
lems as a 2-layer procedure. Instead of training one single GDML
model using all data, which usually exceed the upper memory limit
of GDML, we train N models Pi∣

N
i=1 using N data batches, where each

batch contains only n points. In this work, N = n = 1000. Since 1000

FIG. 1. Schematic diagram illustrating the principle of ensemble learning. (a) One
dimensional toy system. (b) 2-layer training scheme for learning CG force field
using a GDML model.
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ALGORITHM 2. 2-layer training scheme with cross-validation.

2Layer-GDML-CV(D, N, n, n′, K)
1. Sample N data batches from the original bulk dataset D: {D1, D2, . . ., DN }, each data batch Di

contains n randomly sampled points, each points d = (r, f ) includes the molecular configuration
part r and the force part f

2. Sample one additional data batch D̃m from the original bulk dataset D that contains n′ points,
di = (ri, f i)|i=1,2, . . . , n′ , each points di also includes the molecular configuration part ri and the
force part f i, and j indicates the point index in data batch D̃m

3. For i = 1, . . ., N: # Loop over N batches:
(a) Train GDML model Pi using data batch Di
(b) Predict forces for all n′ configurations rj|j=1,2, . . . , n′ in data batch D̃m using model Pi, which

is denoted as f i
j ∣j=1,2,...,n′

4. Divide N data batches into K subsets of batches: SD = {SD1, SD2, . . ., SDK }, where each subset
SDi contains N/K batches.

5. For the jth point in D̃m, divide N of its predicted forces f i
j ∣i=1,...,N into subsets SFj = {SFj ,1, SFj ,2,

. . ., SFj ,K }, where each subset contains N/K force tags that are consistent with the division in
step 4, and j = 1, 2, . . ., n′

6. For l = 1, . . ., K: Loop over K cross-validation folds:
(a) For the jth point in D̃m, compute the mean forces using all forces from SFj/SFj , l

(excluding SFj , l), where j = 1, 2, . . ., n′, after obtaining the mean forces for all n′

configurations in D̃m, construct the lth mean force set Dm , l
(b) Train the lth second layer model P2l using Dm , l
(c) Compute the validation error of model P2l using all data points from the excluded set

SDl, and denote the error as El
7. Return cross-validation score 1

K ∑
K
k=1 Ek

FIG. 2. Stratified sampling of the training set for alanine-
dipeptide in the dihedral angles (ψ, ϕ) space. (a) Regular
(Boltzmann distributed) sampling of 1000 points for the first-
layer. (b) Regular sampling of 3000 points for the second-
layer. (c) Uniformly stratified sampling of 1000 points in the
(ψ, ϕ) space for the first layer. (d) Uniformly stratified sam-
pling of 3000 points in the (ψ, ϕ) space for the second
layer.
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points is far below the GDML limit, each GDML model Pi is easy
to train. After obtaining all N GDML models Pi∣

N
i=1, we use them to

predict the forces f i corresponding to the ith model for any given
CG configuration x as f i = Pi(x). The mean force (CG force) for a
configuration x is then the average of the forces for all the models:
f = 1

N ∑
N
i=1 fi. This average force prediction could be directly used

in the CG molecular simulation, but the resulting model would be
of low efficiency, since for each single configuration x, the forces f i
need to be evaluated for all N models Pi∣

N
i=1 to obtain an average CG

force f.
This low evaluation efficiency motivates us to propose a 2-layer

procedure to speed up the evaluation of the mean force predic-
tion. We generate a new batch of data D̃m, which contains n′ points
(n′ = 3000 in this work). For all CG configurations in D̃m, we use N
predictors to evaluate their forces and compute the mean forces. This
produces a new dataset Dm where the n′ configurations are associ-
ated with the corresponding mean forces. Constructing Dm can be
fast because the mean forces are computed only for n′ points, usually
a few thousands.

Once the mean force set Dm is obtained, we can train a sin-
gle final model P using the entire Dm. Since Dm contains the mean

forces, the final model P also predicts the mean forces for the CG
configurations. P is easy to train due to the small size of Dm (n′

is far below the GDML limit) and the force evaluation for the
final model P is much more efficient than by evaluating N models
Pi∣

N
i=1. The general procedure of the 2-layer scheme is illustrated in

Algorithm 1.
The hyperparameters that control the performance of the final

model are the two kernel sizes σ1, σ2 for each layer [see Eq. (11)].
Another hyperparameter is the regularization coefficient of the ridge
term and is set to the standard value (λ = 1 × 10−15) as in the orig-
inal GDML paper.50 We conduct a 2D cross-validation search to
determine σ1 and σ2. The algorithm for the cross-validation of the
ensemble learning GDML is shown in Algorithm 2. The parameters
N, n, n′, K are selected as N = n = 1000, n′ = 3000, K = 5, K is the
number of folds for the cross-validation, and the total number of
points in D is 1 000 000.

E. Stratified sampling
Another crucial factor that impacts the overall performance

of our machine learning model is the distribution of the training

FIG. 3. Pipeline of learning the CG forcefield with the GDML model. (a) All atom simulation of alanine dipeptide in water. (b) We compute the two dihedral angles ϕ and ψ
and project the simulation data on to the (ϕ, ψ) space. (c) All-atom free energy surface in (ϕ, ψ) space. (d) The coarse graining model contains only six heavy atoms from
the original molecule. (e) We could sample enough points for training a CG model, and the dataset is usually big. (f) Training the GDML model with one big dataset requires
large memory, which hinders the application of GDML to coarse grain a molecule. (g) Instead of sampling one big training set, we sample many smaller training sets. (h) We
train GDML models with each small training set. (i) We use Langevin dynamics to simulate a CG MD trajectory with each trained GDML model. (j) Similar to (b) and (c), we
compute the free energy surface in (ϕ, ψ) space for each trajectory, and we find that these single models poorly recovered the correct free energy surface. (k) We can obtain
an extra model, which is the average of all models we trained in step (h). The averaging procedure indicated by the red dashed box and arrow corresponds to the red box
and arrow in Fig. 1(b). (l) We can simulate the averaged model using Langevin dynamics. (m) The average CG model can correctly reconstruct the free energy surface of the
molecule. The final result is highlighted in a light gray box.
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data. As our training data are obtained from extensive MD simu-
lations, they are distributed according to the Boltzmann distribution
in the molecule configuration space. If a small batch of data is ran-
domly sampled from the whole dataset, the large majority of the
data will reside in low free energy regions, while data in high free
energy regions, such as transition barriers, are underrepresented.
Figure 2(a) shows that, in the case of alanine dipeptide, most of
the data in a small batch of randomly selected points are located in
the free energy minima on the left side of the (ϕ, ψ) dihedral angle
space. If batches from this biased distribution are used in the ensem-
ble learning, the errors for predicting the PMF in high free energy
regions would be very large because the models will not be trained
efficiently in these sparse data regions.

In order to solve this issue, we sample the data for the batches
uniformly in the (ϕ, ψ) dihedral angles space of alanine dipeptide,
as shown in Fig. 2(b). In this way, all relevant regions in the config-
urational space are equally represented in the training set, includ-
ing transition states. The advantage of this strategic sampling is
illustrated in more details in Sec. III.

F. Simulating the CG-GDML model
After training the 2-layer GDML model, we use an over-

damped Langevin dynamics to generate a trajectory and sample the

CG potential U(x; θ),

xt+τ = xt − τ
D

kBT
∇U(xt) +

√
2τDξ, (13)

where xt (xt + τ) is the CG configuration at time t (t + τ), τ is the time
step, D is the diffusion constant, and ξ is a vector of independent
Gaussian random variables with zero-mean and identity covariance
matrix (Wiener process). To sample the trained potential more effi-
ciently, we generate 100 independent trajectories in parallel, with
initial configurations randomly sampled from the original dataset.

G. Including physical constraints
When an over-damped Langevin dynamics [Eq. (13)] is used to

generate a trajectory with a CG potential trained on a finite dataset,
one undesired situation may happen: since the dynamics is stochas-
tic, there is a chance that the simulated CG trajectory may diffuse
away from the domain of the data used in the training, generat-
ing unphysical configurations. For example, the stretching of a bond
too far away from the equilibrium distance is associated with a very
high energy cost and is never observed in the simulation with a force
field at finite temperature. In simulation with a machine-learned CG
potential, there is no mechanism for preventing such an unphysical
bond-stretching. Similar to what we proposed in our recent work,59

FIG. 4. Free energy surface in (ψ, ϕ) space for the trained GDML models. (a) reference (all-atom) free energy landscape and all representative configurations of the molecule
in the six minima sampled from the all-atom trajectory [space-filling model (CPK) representation] and from a CG simulation with the 2-layer GDML model (thick bonds).
(b) Free energy landscape from the 2-layer GDML model. (c) Free energy from a 2-layer GDML model with no stratified sampling. (d) Free energy from a traditional
single-layer GDML model trained with 2000 points. (e) Free energy from a traditional single-layer GDML model trained with 5000 points.
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TABLE I. Free energy mean square error (MSE) comparison for different CG models trained with different num-
ber of points, which is in the unit of thousand (k). The error is computed as the mean square error of the free
energy of alanine-dipeptide in (ψ, ϕ) space, relative to the atomistic free energy.59 The MSE values are in units
of (kBT)2. Boldface values indicate best performing models for different data sets.

Model 100 k 1000 k 2 k 5 k

CGnet 1.982 ± 0.181 0.475 ± 0.103 . . . . . .
2-Layer GDML 0.781 ± 0.154 0.363 ± 0.112 . . . . . .
Boltz. Samp. 2-Layer GDML . . . 0.861 ± 0.167 . . . . . .
1-Layer GDML . . . . . . 2.947 ± 0.264 1.641 ± 0.243

this problem can be solved by including a prior potential energy
Uprior(x) incorporating physical prior knowledge on the system,

U(x; θ) = Udiff (x; θ) + Uprior(x),

where Uprior(x) has harmonic terms modeling bond and angle
stretching, with parameters extracted from the training data by
Boltzmann inversion. Udiff (x; θ) is the difference between the total
CG potential and Uprior(x). The forces obey a similar relation,

−∇U(x; θ) = −∇Udiff (x; θ) − ∇Uprior(x),

so the loss function of the model becomes

χ2
(θ) = ⟨∥ξ(F(r)) − ∇Uprior(x) +∇Udiff (ξ(r); θ)∥

2
⟩

r
. (14)

Different from what was done in a neural network model,59 the
prior potential is not added directly to the trained model: the prior
forces are first evaluated and subtracted from the all-atom forces
and the GDML is trained over this force difference. Once the model
is trained, the total energy (and forces) is obtained by adding back
the prior energy (and forces) to the one obtained from the trained
model.

III. RESULTS
We illustrate the results of the approach discussed above on a

simple molecular system, namely, the coarse-graining of the alanine-
dipeptide molecule from the atomistic model in explicit water into a
6-bead CG model. The all-atom model of alanine dipeptide consists
of 22 atoms and 651 water molecules for a total of a few thousand
degrees of freedom. As illustrated in Fig. 3, for the CG representa-
tion, we select the five central backbone atoms of the molecule, with
additionally a sixth atom to break the symmetry and differentiate
right- or left-handed representations. The overall pipeline for the
coarse graining and the training procedure that is discussed below
are also summarized in Fig. 3.

We compute the free energy of the alanine dipeptide as a func-
tion of the two dihedral angles ϕ, ψ, where ϕ is defined by atoms 1,
2, 3, 5, and ψ by atoms 2, 3, 5, 6 (see Fig. 3). As shown in Fig. 4(a),
there are six metastable states in the free energy landscape of the
all-atom model of alanine dipeptide. Figure 4(b) shows that the

FIG. 5. Cross-validation error (a) and free energy mean square error (MSE) (b) as a
function of the number of batches. For CGnet, the training set size is equal to 1000
× number of batches. The units for the cross-validation error are kcal/(mol2/Å2),
while the units for the free energy MSE are (kBT)2.
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final 2-layer GDML CG model correctly reproduces the free energy
landscape of alanine dipeptide: the free energy obtained from the
trajectories [generated by numerical integration of Eq. (13)] of
the CG model also exhibits six minima, with depths close to the
ones of the corresponding minima in the all-atom model. Repre-
sentative configurations from the six metastable states are shown
in Fig. 4(a) for the all-atom (CPK representation) and the CG
model (thick bond representation). Moreover, as shown in the
supplementary material, Fig. S1, the bond and angle distribution
from the CG simulation are also consistent with the all atom
simulation.

The GDML model shown in Fig. 4(b) is optimized based on
the minimum cross-validation error over a two-dimensional grid,
spanned by the parameters σ1 and σ2, which are the kernel widths
for the first and the second layer models. We find that the values
(σ1, σ2) = (100, 10) give the smallest cross-validation error. Details
on the cross-validation search can be found in the supplementary
material, Fig. S4.

Figure 4(c) reports the free energy landscape corresponding to
a CG model obtained with a 2-layer GDML but where the selec-
tion of the data for the sub-model is performed according to the
Boltzmann distribution (that is, uniform sampling along the MD
trajectory) instead of the stratified sampling scheme discussed above
(uniform sampling in the ϕ, ψ space). While the free energy around

the region of the deepest free energy minima in the ϕ, ψ space is quite
accurate, the lowly populated metastable state [indicated as state 3 in
Fig. 4(a)] is completely missing in Fig. 4(c), because of the scarcity
of training points in this region.

As a comparison, Fig. 4(d) shows the results when a single-
layer GDML model is trained on only 2000 points. Although this
model identifies the general location of the metastable states, the
free energy landscape is significantly distorted with respect to the
all-atom one. This poor reconstruction performance is due to the
limited size of the training set, which is not extensive enough to
enable a stable estimate of the expected forces for the reduced repre-
sentation of the input. We also trained a single-layer GDML model
on 5000 points. As shown in Fig. 4(e), the free energy of this model
presents a slight improvement with respect to Fig. 4(d) because of
the increased number of training points. However, the overall qual-
ity is still low compared to the atomistic model. We expect the
reconstructed free energy to improve further if we trained a model
using much more data, but this is hindered by the memory require-
ment: it requires about 160 GB memory to train a model with 5000
points, which is almost at the upper limit of our computational
ability.

To quantify the performance of the different approaches, we
compute the mean square error (MSE) of the free energy differ-
ence of the different CG models compared to the atomistic model

FIG. 6. Free energy as a function of the
alanine dipeptide dihedral angles for a
2-layer GDML CG model with number
of batches NBatch = 100 (a) and NBatch
= 1000 (c) and for CGnet with NBatch
= 100 (b) and NBatch = 1000 (d).
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[Fig. 4(a), Table I, see Ref. 59 for details]. As expected, the 2-
layer GDML model has the smallest free energy MSE, which is
about 0.363 ± 0.112 (kBT)2, when it is trained with all 1000 batches.
The single layer GDML gives the largest free energy difference
[2.947 (kBT)2 if trained with 2000 points and 1.641 (kBT)2 if trained
with 5000 points]. If no stratified sampling is used, the free energy
difference is 0.861 (kBT)2, and most of this value is due to the
discrepancies in the free energy ϕ > 0 region.

As a baseline, we also compute the free energy difference
obtained by a CG model designed by means of a neural network,
CGnet.59 Previously, we have applied CGnet to alanine-dipeptide,
but it was a model based on a five atom CG scheme, and we included
two dihedral angles as input features to break the symmetry. To
make the CGnet model consistent with the CG scheme used in this
work, we modified it to contain six atoms (as in the GDML model),
and no dihedral angles features were included (only distances are
used as input). This CGnet model is trained with the same number of
points as the GDML model (i.e., 1 000 000 points from 1000 batches).
The resulting CGnet free energy MSE is 0.475 ± 0.103 (kBT)2, a
value slightly larger than the 2-layer GDML model. This result shows
that the accuracy of a kernel approach can indeed be compara-
ble to or even better than a neural network approach on the same
system.

We have also investigated the effect of the batch number (or
the training set size). We computed the cross-validation error with
different training set sizes, from 10 to 1000 batches for the GDML
model, or equivalently from 10 000 to 1 000 000 points for CGnet.
Figure 5(a) shows that as the batch number increases from 10 to
1000, the cross-validation error for the GDML model drops quickly
and reaches convergence with a batch number >600. The cross-
validation error for CGnet is significantly larger than that for the
GDML model when the number of batches (or, equivalently, the
training set size) is small. When the batch number is larger than
200, the cross-validation error for CGnet becomes smaller than
that for GDML. Similarly, if we compare the free energy MSEs,
as shown in Fig. 5(b), the free energy constructed by GDML with
a small training set is significantly better than the corresponding
free energy constructed by CGnet. On the other hand, with a large
training set, the MSEs are comparable to each other. Typical free
energy profiles are shown in Figs. 6(a)–6(d), and their correspond-
ing MSE values are shown Table I. These results show that with
enough data, the 2-layer GDML model and CGnet perform sim-
ilarly well. However, the 2-layer GDML model is more data effi-
cient and has a better ability to extrapolate the force prediction
to unsampled configurations, thus outperforming CGnet for small
training sets.

IV. CONCLUSIONS
In this work, we combine the idea of ensemble learning with

GDML to apply it to the coarse graining problem. GDML is a kernel
method to learn molecular force fields from data and allows us to
model nonlinearity and multi-body effects without the need of pro-
viding a functional form for the potential. The GMDL approach was
originally proposed to learn molecular forces from quantum simu-
lation data. When quantum calculations are used, the error on the
force matching loss could, in principle, be zero, and a few thousand

points are enough to construct and build an accurate, smooth, and
conserved force field. However, when applied to coarse-graining, the
force matching loss contains a nonzero term due to the dimension-
ality reduction and the learning problem becomes very noisy. For
this reason, a lot more data points are needed from atomistic simu-
lations to learn a CG potential of mean force. The large amount of
input data would presently hinder the application of GDML to the
CG problem. In order to circumvent this problem, we use ensem-
ble learning. The basic idea consists in breaking down the learning
problem into small batches, which can be more easily solved, and
combining the resulting different models into a final solution. Fol-
lowing this approach, we do not train one single GDML model
using all the data but propose a 2-layer training scheme: in the
first layer, we generate N data batches, each containing a num-
ber of points far below the GDML limit. N models are trained on
the different batches and are combined into a final model by tak-
ing the average. We show that the prediction of the CG 2-layer
model accurately reproduces the thermodynamics of the atomistic
model.

Consistent with previous work,59 we show that, when apply-
ing machine learning methods to design force fields for molecular
systems, the addition of physical constraints enforces proper asymp-
totic of the model. In the design of CG potentials, physical con-
straints can be introduced by means of a prior potential energy
term that prevent the appearance of spurious effects in non-physical
regions of the configurational landscape.

A good GDML model should be able to construct a smooth
and globally connected conserved force field. However, when the 2-
layer approach is used, some of the molecular configurations with
high free energy are poorly sampled in the training set, introduc-
ing large errors in the resulting model. In order to solve this prob-
lem, we sample the data uniformly in the low dimensional space
defined by two collective coordinates rather than uniformly from
the simulation time series. In the example of alanine dipeptide
discussed here, the dihedral angles ϕ, ψ are chosen as collective
coordinates.

In our previous work, we proposed CGnet,59 a neural network
approach to design CG models. The overall free energy reconstruc-
tion obtained with the GDML model is comparably accurate as what
was obtained with CGnet when the training set size is sufficiently
large. However, the GDML model is significantly more accurate
when the training set size is small, indicating that a kernel approach
is data-efficient and could, in principle, provide more accurate CG
models especially with small training sets.

However, there are still several challenges in order to apply
GDML for the coarse-graining of macromolecular systems. In larger
systems, a more general definition is needed for the collective coor-
dinates defining the low dimensional space for the uniform sampling
of the training batches. These collective coordinates could, in princi-
ple, be extracted from the trajectory data,77,78 for instance, by means
of time-lagged Independent Component Analysis (tICA),79–83 kernel
PCA,84–86 or diffusion maps.87

The decomposition of the large input dataset into an ensemble
of small batches has been used here to solve memory issues when
training a GDML model. However, the computation is still expen-
sive and we expect it to become even more expensive as the size of
the molecular system increases. As the number of data batches and
batch size grow, the Nyström approximation of the kernel or other
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numerical approaches may be a promising solution to increase the
computational efficiency.

As for the neural network model, the GDML model trained by
force matching can capture the thermodynamics of the system, but
there is no guarantee that the dynamics is also preserved. Alternative
approaches need to be defined to solve this problem.88

Finally, the GDML model presented here is trained on a spe-
cific molecule, and it is not directly transferable to different systems.
Ultimately, a transferable CG model would be needed for the general
application to large systems that cannot be simulated by atomistic
simulations. The trade-off between accuracy and transferability in
CG models is an open research question that we will investigate in
future work.

SUPPLEMENTARY MATERIAL

See the supplementary material for more details about the
hyperparameter search, a discussion on the prior energy, and more
information on the descriptors used in the GDML.
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