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Abstract: Metandienone and methyltestosterone are orally active anabolic-androgenic steroids with a
17α-methyl structure that are prohibited in sports but are frequently detected in anti-doping analysis.
Following the previously reported detection of long-term metabolites with a 17ξ-hydroxymethyl-
17ξ-methyl-18-nor-5ξ-androst-13-en-3ξ-ol structure in the chlorinated metandienone analog de-
hydrochloromethyltestosterone (“oral turinabol”), in this study we investigated the formation of
similar metabolites of metandienone and 17α-methyltestosterone with a rearranged D-ring and a
fully reduced A-ring. Using a semi-targeted approach including the synthesis of reference com-
pounds, two diastereomeric substances, viz. 17α-hydroxymethyl-17β-methyl-18-nor-5β-androst-
13-en-3α-ol and its 5α-analog, were identified following an administration of methyltestosterone.
In post-administration urines of metandienone, only the 5β-metabolite was detected. Additionally,
3α,5β-tetrahydro-epi-methyltestosterone was identified in the urines of both administrations besides
the classical metabolites included in the screening procedures. Besides their applicability for anti-
doping analysis, the results provide new insights into the metabolism of 17α-methyl steroids with
respect to the order of reductions in the A-ring, the participation of different enzymes, and alterations
to the D-ring.

Keywords: 17α-methyl steroids; long-term metabolites; gas chromatography-mass spectrometry;
17-hydroxymethyl-17-methyl-18-nor; D-ring alteration; doping control; metabolism

1. Introduction

Metandienone (17β-hydroxy-17α-methyl-androsta-1,4-dien-3-one, MD, 12; list of steroids
available in supplement S1) and methyltestosterone (17β-hydroxy-17α-methylandrost-4-en-
3-one, MT, 18) are anabolic-androgenic steroids. They were introduced to the market in
1960 (MD) [1] and 1939 (MT) [2] as orally active anabolic androgenic steroids. Although
there is no approved drug available anymore, they are still widely marketed and misused
as performance-enhancing drugs in sports, even though they are prohibited in and outside
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of competition by the World Anti-Doping Agency [3]. Many so-called “adverse analytical
findings” (AAFs) in doping control have been reported, and their numbers in the last 17 years
are displayed in Figure 1 Over the last few years, metandienone and methyltestosterone
represent 10% and 1% of all AAFs in the class of anabolic agents. In 2018, only five other
substances out of all prohibited compound classes were identified more frequently than
metandienone (n = 131), with clenbuterol giving the highest number (n = 320).
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and reduced the activity of A-ring-reducing enzymes [5–7]. 

Many metabolites related to the intake of metandienone are reported in the literature, 
and a number of these have been known for decades. These are generated by both phase 
I and phase II drug metabolizing enzymes. Phase I reactions include the introduction of a 
double bond at position 6, the reduction of double bonds in the A-ring, the reduction of 
the 3-oxo group, hydroxylations in positions 6, 11, 12, 16, or 18, epimerization in position 
17, and rearrangement of the D-ring [8–15]. With respect to phase II reactions, both glu-
curonidation and sulfonation have been reported [16,17]. In recent years, new investiga-
tions on long-term metabolites of MD (12) identified further metabolites with 17β-hy-
droxymethyl-17α-methyl-13-ene structure [18–21]. The known metabolites are shown in 
Figure 2. Anti-doping laboratories mostly target the parent compound (12), 6-OH-
metandienone (13), epi-metandienone (14), epi-metendiol (15), nor-epi-metendiol (16), 
and 20βOH-nor-metandienone (17) [18,22,23]. 

The intake of methyltestosterone leads to several metabolites, which derive from hy-
droxylations in positions 2, 4, 6, 11, or 20, reduction of the 4,5-double bond, reduction of 
the 3-oxo group, oxidation yielding a 1,2- or a 6,7-double bond, epimerization in position 
17, and rearrangement of the D-ring [24–28]. Subsequent phase II reactions are also lead-
ing to both glucuronides and sulfates [26,29]. The structures of metabolites of MT (18) are 
shown in Figure 3. Laboratories mainly screen for the parent compound itself (18) and 
two reduced derivatives (3α5α-THMT, 19; 3α5β-THMT, 20). The metabolites of both sub-
stances are frequently monitored by gas chromatography-mass spectrometry after hydrol-
ysis of the glycosidic bond of glucuronides as aglycons [22,23]. 

Figure 1. Adverse analytical findings of methyltestosterone and metandienone between 2003 and
2018, according to [4].

Due to the 17α-methyl group, the steroids become orally active, because it prevents
the first-pass metabolism by hindering the oxidation of the 17β-hydroxy group sterically,
while the introduction of a double bond in position 1 was intended to avoid aromatization
and reduced the activity of A-ring-reducing enzymes [5–7].

Many metabolites related to the intake of metandienone are reported in the literature,
and a number of these have been known for decades. These are generated by both phase
I and phase II drug metabolizing enzymes. Phase I reactions include the introduction of
a double bond at position 6, the reduction of double bonds in the A-ring, the reduction
of the 3-oxo group, hydroxylations in positions 6, 11, 12, 16, or 18, epimerization in
position 17, and rearrangement of the D-ring [8–15]. With respect to phase II reactions,
both glucuronidation and sulfonation have been reported [16,17]. In recent years, new
investigations on long-term metabolites of MD (12) identified further metabolites with 17β-
hydroxymethyl-17α-methyl-13-ene structure [18–21]. The known metabolites are shown
in Figure 2. Anti-doping laboratories mostly target the parent compound (12), 6-OH-
metandienone (13), epi-metandienone (14), epi-metendiol (15), nor-epi-metendiol (16), and
20βOH-nor-metandienone (17) [18,22,23].

The intake of methyltestosterone leads to several metabolites, which derive from
hydroxylations in positions 2, 4, 6, 11, or 20, reduction of the 4,5-double bond, reduction of
the 3-oxo group, oxidation yielding a 1,2- or a 6,7-double bond, epimerization in position
17, and rearrangement of the D-ring [24–28]. Subsequent phase II reactions are also leading
to both glucuronides and sulfates [26,29]. The structures of metabolites of MT (18) are
shown in Figure 3. Laboratories mainly screen for the parent compound itself (18) and two
reduced derivatives (3α5α-THMT, 19; 3α5β-THMT, 20). The metabolites of both substances
are frequently monitored by gas chromatography-mass spectrometry after hydrolysis of
the glycosidic bond of glucuronides as aglycons [22,23].

For other steroids with a similar structure, such as dehydrochloromethyltestosterone,
there is a metabolite described with a fully reduced A-ring and a rearranged D-ring [30],
which was synthesized in 2018 [31,32]. This metabolite led to an extended detection time
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of the intake for this substance and thereby increased the number of adverse analytical
findings.

As the chemical structures of metandienone (12) and methyltestosterone (18) are
similar to dehydrochloromethyltestosterone, it is conceivable that intake of these substances
results in metabolites with a related structure. The discovery of such new metabolites
may help in extending the time of detection after the intake of metandienone (12) or
methyltestosterone (18), which would be a considerable contribution to the fight against
doping, as cheating may be traced back over a longer period. Additionally, such findings
may help to further elucidate the metabolism of synthetic steroids and therefore improve
the understanding of human biotransformation.
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2. Results
2.1. Synthesis and Characterization of Reference Steroids
2.1.1. 17-Hydroxymethyl-17-methyl-18-nor-13-enes

Different diastereomeric 17α-hydroxymethyl-17β-methyl-18-nor-5ξ-androst-13-en-3ξ-
ols were synthesized using 3-hydroxyandostan-17-ones as starting material by modifying
the D-ring. The method was adapted from Kratena et al. [33] but started with regu-
larly C13β-CH3 configured androstanes in contrast to the ent-configurated (C13α-CH3)
androstanes used by Kratena et al. As the first step of synthesis, attachment of an addi-
tional carbon-atom at C17 was achieved using Nysted reagent. The epoxidation of the
newly introduced 17(20) double bond and subsequent acid catalyzed ring-opening was
accompanied by the stereoselective Wagner–Meerwein rearrangement, resulting in 17α-
hydroxymethyl-17β-methyl-18-nor-5ξ-androst-13-en-3ξ-ols as the major product, while
the 17β-hydroxymethyl-17α-methyl analogs were obtained as minor side products. The
reaction scheme is displayed in Figure 4. The preceding synthesis of etiocholanolone (5)
is described in the supplementary material (S2). The other educt androsterone (5a) was
obtained from commercial sources.
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Figure 4. Reaction scheme for 17α-hydroxymethyl-17β-methyl-18-nor-5ξ-androst-13-en-3ξ-ol steroids.

As is common in diastereomers, all yielded very similar mass spectra. As an exam-
ple, the spectrum of 17α-hydroxymethyl-17β-methyl-18-nor-5β-androst-13-en-3α-ol (8) is
displayed in Figure 5. Using electron ionization at low energy (15 eV, low energy electron
ionization, LEI) the molecular ion, which was literally invisible at regular ionization energy
(viz. 70 eV), was detected at the accurate mass m/z 448.3162. The retention time of the
bis-trimethylsilyl (TMS) derivatives of the diastereomers are given in Table 1. Further struc-
ture confirmation was achieved by 1D and 2D-NMR analysis. Assignments are provided
in Table 2.
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Table 1. Retention times (GC-QQQ-MS), molecular ions (M•+) in low electron ionization (LEI,
20 eV), and mass difference to exact mass (m/zther 448.3187, C26H48O2Si2+•) of diasteromeric 17α-
hydroxymethyl-17β-methyl-18-nor-5ξ-androst-13-en-3ξ-ols as per-TMS derivatives.

No. Stereochemical
Assignment RT [min] Molecular Ion

(LEI) ∆m/z [ppm]

8 3α, 5β, 17α-CH2OH 9.80 448.3162 −5.6
8a 3α, 5α, 17α-CH2OH 10.13 448.3164 −5.1
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Table 2. 1H and 13C NMR spectral data of 17α-hydroxymethyl-17β-methyl-18-nor-5β-androst-13-en-
3α-ol (8) and 17α-hydroxymethyl-17β-methyl-18-nor-5α-androst-13-en-3α-ol (8a). Multiplicity of
signals indicated as singlet (s), doublet (d).

17α-hydroxymethyl-17β-methyl-18-
nor-5β-androst-13-en-3α-ol

(8)

17α-hydroxymethyl-17β-methyl-18-
nor-5α-androst-13-en-3α-ol

(8a)

δC δH δC δH

1 35.18 α: 1.92
β: 1.06 31.93 α: 1.35

β: 1.58

2 30.64 α: 1.37
β: 1.72 28.93 α: 1.66

β: 1.75

3 71.75 β: 3.66 66.43 β: 4.08

4 36.59 α: 1.75
β: 1.56 35.70 α: 1.41

β: 1.53

5 41.75 β: 1.47 39.03 α: 1.60

6 27.63 α: 1.35
β: 1.93 28.86 α: 1.25

β: 1.30

7 26.08 α: 1.72
β: 1.21 31.47 α: 1.04

β: 1.95

8 37.41 β: 2.14 36.97 β: 2.10

9 38.44 α: 1.67 52.03 α: 1.01

10 34.67 - 36.13 -

11 22.43 α: 1.79
β: 1.14 22.14 α: 1.90

β: 1.16

12 22.65 α: 1.83
β: 2.02 22.59 α: 1.80

β: 2.01

13 135.94 - 135.85 -

14 141.76 - 141.81 -

15 30.60 α: 2.32
β: 2.12 30.61 α: 2.33

β: 2.11

16 34.20 α: 1.58
β: 1.97 34.13 α: 1.97

β: 1.58

17 51.66 - 51.54 -

19 22.93 0.93 (s) 10.61 0.78 (s)

20βCH3 21.72 1.00 (s) 21.75 0.99 (s)

20αCH2OH 68.97 3.34 (d)
3.44 (d) 68.99 3.31 (d)

3.42 (d)

2.1.2. 17β-Methyl-5β-androstane-3α,17α-diol (11)

Additionally, the diastereomeric 17β-methyl-5ξ-androstane-3ξ,17α-diols were syn-
thesized using epi-methyltestosterone (17α-hydroxy-17β-methyl-androst-4-en-3-one, 9) as
educt. After reduction of the 4,5-double bond and the 3-oxo group, the four fully reduced
products (11, 11a, 11b, 11c) were obtained as shown in Figure 6. In parallel, reduction of
the 3-oxo group in epi-mestanolone (17α-hydroxy-17β-methyl-5α-androstan-3-one, 10a)
yielded the two products 11a and 11c. Assignment of the stereochemistry was based on
the known stereoselectivity of the reductions, the comparison of the two reactions, and
the elution order of the bis-TMS derivatives in GC-MS [24,34]. As a major product 3α,5β-
epi-tetrahydromethyltestosterone (11) was obtained (Figure 7). The mass spectrum of its
bis-TMS derivative is displayed in Figure 8. In LEI the molecular ion was detected at m/z
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450.3352 (accurate mass), confirming the elemental composition C26H50O2Si2+• (exact mass
m/z 450.3344, difference ∆m/z = 1.78 ppm).
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thesized using epi-methyltestosterone (17α-hydroxy-17β-methyl-androst-4-en-3-one, 9) 
as educt. After reduction of the 4,5-double bond and the 3-oxo group, the four fully re-
duced products (11, 11a, 11b, 11c) were obtained as shown in Figure 6. In parallel, reduc-
tion of the 3-oxo group in epi-mestanolone (17α-hydroxy-17β-methyl-5α-androstan-3-
one, 10a) yielded the two products 11a and 11c. Assignment of the stereochemistry was 
based on the known stereoselectivity of the reductions, the comparison of the two reac-
tions, and the elution order of the bis-TMS derivatives in GC-MS [24,34]. As a major prod-
uct 3α,5β-epi-tetrahydromethyltestosterone (11) was obtained (Figure 7). The mass spec-
trum of its bis-TMS derivative is displayed in Figure 8. In LEI the molecular ion was de-
tected at m/z 450.3352 (accurate mass), confirming the elemental composition C26H50O2Si2+• 
(exact mass m/z 450.3344, difference Δm/z = 1.78 ppm). 
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2.2. Post-Administration Urines

Urine samples from the administration trials were analyzed with a GC-QTOF-MS and
GC-QQQ-MS after per-TMS derivatization.

The common metabolites of MT (18) and MD (12) were detected by comparison of re-
tention time and quantifier and qualifier transitions, as reported in Table 3. Corresponding
chromatograms are available as supplemental material (S3).

Monitoring of the ion transitions m/z 345.3→ 255.0, m/z 345.3→ 173.0, and m/z 345.3
→ 159.0, selected for the 17ξ-hydroxymethyl-17ξ-methyl-18-nor-5ξ-androst-13-en-3ξ-ol
isomers, resulted in the detection of two signals at RTmetabolite A = 9.56 min and RTmetabolite B
= 9.80 min in a case of metandienone (12). In the post-administration (p.a.) samples of MT
(18), three signals were detected—one in addition to the two mentioned above (RTmetabolite A
= 9.56 min, RTmetabolite B = 9.80 min, and RTmetabolite C = 10.13 min). The comparison with
the synthesized reference compounds assigned the metabolites common for MD (12) and
MT (18) to 17α-hydroxymethyl-17β-methyl-18-nor-5β-androst-13-en-3α-ol (8) and 3α,5β-
epi-tetrahydromethyltestosterone (11). The additional metabolite in MT administration
was assigned to 17α-hydroxymethyl-17β-methyl-18-nor-5α-androst-13-en-3α-ol (8a).

The 3α,5β-epi-tetrahydromethyltestosterone was identified as the first peak in positive
urine samples of metandienone and methyltestosterone at 9.56 min (Figure 8).

Another substance with a slightly different structure as compound 11, namely 3α,5α-
epi-tetrahydromethyltestosterone (11a), has almost the same retention time as compound 8.
However, 8 does not show the transition m/z 450→ 345 because of its structure (M•+ as
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TMS-derivative: m/z 448). As this transition is present in the urine sample, the 3α5α-epi-
tetrahydromethyltestosterone (11a) can be excluded as the metabolite at 9.80 min (Figure 9).
Another closely eluting metandienone metabolite, 17β-methyl-5β-androst-1-ene-3α,17α-
diol (15, RT15 = 9.87 min, M+• = 448), was mainly separated and identified by the selective
ion transitions given in Table 3.

Table 3. Retention times (GC-QQQ-MS) and ion transitions of currently targeted metabolites in
anti-doping analysis.

Compound (Parent Compound) RT [min] Ion Transitions (m/z) &
Collision Energies

17β-methyl-5β-androst-1-ene-3α,17α-diol
(15) 9.87

358.0→ 301.0 (10 eV)
358.0→ 169.0 (30 eV)
358.0→ 196.0 (10 eV)
358.0→ 194.0 (10 eV)
216.0→ 159.0 (5 eV)

268.0→ 211.0 (10 eV)
216.0→ 187.0 (5 eV)

6β,17β-dihydroxy-17α-methyl-androsta-1,4-
dien-3-one

(13)
16.19

517.5→ 229.0 (5 eV)
517.5→ 297.0 (5 eV)

517.5→ 205.0 (30 eV)
517.5→ 429.4 (5 eV)

17α-hydroxy-17β-methyl-androsta-1,4-dien-
3-one
(14)

13.77

444.4→ 206.0 (10 eV)
444.4→ 191.0 (30 eV)
339.0→ 270.0 (20 eV)
444.4→ 283.0 (30 eV)

17,17-dimethyl-18-nor-5β-androsta-1,13-
dien-3α-ol

(16)
6.19

253.0→ 185.0 (20 eV)
253.0→ 197.0 (20 eV)
253.0→ 105.0 (30 eV)
216.0→ 131.0 (20 eV)
216.0→ 145.0 (20 eV)

17β-hydroxymethyl-17α-methyl-18-nor-
androsta-1,4,13-trien-3-one

(17)
13.84

236.0→ 133.0 (5 eV)
339.0→ 193.0 (20 eV)
442.4→ 243.0 (15 eV)
442.4→ 133.0 (15 eV)
339.0→ 133.0 (20 eV)
339.0→ 243.0 (20 eV)

17α-methyl-5β-androstane-3α,17β-diol (20) 13.36

228.0→ 174.0 (5 eV)
270.0→ 157.0 (30 eV)
270.0→ 171.0 (30 eV)
270.0→ 199.0 (30 eV)

17α-methyl-5α-androstane-3α,17β-diol (19) 13.22

318.0→ 199.0 (10 eV)
318.0→ 187.0 (10 eV)
318.0→ 182.0 (10 eV)
450.4→ 365.0 (10 eV)
450.4→ 261.0 (10 eV)
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Two more diastereomers with 17α-methyl-17β-hydroxy configurations (17α-methyl-
5α-androstane-3α,17β-diol (19) and 17α-methyl-5β-androstane-3α,17β-diol (20)) were
commercially available and used for retention time comparison and urinary metabolite
identification.

3. Discussion
3.1. Chemical Syntheses and Characterization of Reference Material

The described syntheses starting from etiocholanolone (5) or androsterone (5a) led
to androstane derivatives with a fully reduced A-ring (8: 3α-hydroxy-5β-; 8a: 3-hydroxy-
5α-) and a rearranged D-ring (17α-hydroxymethyl-17β-methyl-18-nor-13-ene). As ex-
pected from the reactions, stereochemistry at C3 and C5 was retained unchanged. Due
to the commonly known remaining stereochemistry of the 13β-methyl group during the
Wagner–Meerwein rearrangement, the 17α-hydroxymethyl-17β-methyl products were
the major products as expected. In GC-EI-MS, using common ionization energy of 70 eV,
literally no molecular ions were obtained, due to extensive fragmentation. As the domi-
nant fragment, [M-CH2-OTMS]+ (accurate mass m/z 345.2607, exact mass m/z 345.2608,
∆m/z = −0.29 ppm) was found. The loss of 103 Da is considered characteristic for the
TMS derivatized 17α-hydroxymethyl-17β-methyl-18-nor-13-ene steroids [18,35]. The base
peak with an accurate mass m/z 255.2107 (exact mass m/z 255.2107, ∆m/z = 0.00 ppm)
corresponds to an additional loss of TMSOH. This transition was selected as target in the
GC-QQQ-MS method. As qualifiers the transitions to m/z 159 (C12H15

+, accurate mass
m/z 159.1168, exact mass m/z 159.1168, ∆m/z = 0.00 ppm) and m/z 173 (C13H17

+, accurate
mass m/z 173.1324, exact mass m/z 173.1325, ∆m/z = −0.56 ppm) are monitored.

NMR data confirmed the structure assignments. In 17α-hydroxymethyl-17β-methyl-
18-nor-5β-androst-13-en-3α-ol (8) stereochemistry at C5 was assigned by the downfield
shifted C19 (δC19 = 22.93 ppm) signal. C19 shifts δC19 > 22 ppm are known to be character-
istic for 5β-androstanes [36]. Configuration at C3 was deduced from the multiplicity of
H3 (δH3 = 3.66 ppm, dddd, J = 11/11/5/5 Hz). The diaxial coupling with H-4ax and H-2ax
substantiated the axial orientation of H3(β), thus confirming 3α-hydroxy configuration.
The NMR data for the residues attached to C17 (δC20-CH3 = 21.72 ppm, δH20-CH3 = 1.00 ppm
and δC20-CH2OH = 68.97 ppm, δH20-CH2OH = 3.34 ppm and 3.44 ppm) together with NOESY
experiments confirmed the 17α-hydroxymethyl-17β-methyl assignment.

In case of 17α-hydroxymethyl-17β-methyl-18-nor-5α-androst-13-en-3α-ol (8a), stereo-
chemistry at C5 was assigned by the upfield shifted C19 (δC19 = 10.61 ppm) signal. C19
shifts δC19 < 17 ppm are known to be characteristic in 5α-androstanes [36]. Configuration at
C3 was deduced from the multiplicity of H3 (δH3 = 4.08 ppm, dddd, J = 3/3/3/3 Hz) repre-
senting coupling constants of H-3eq with H-2eq, H-2ax, H-4eq and H-4ax. This substantiated
the orientation of H3β, thus confirming 3α-hydroxy configuration. Further confirmation
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was achieved by selective NOE experiments (irradiation of H19, δH19 = 0.78 ppm). The
NMR data for the residues attached to C17 (δC20-CH3 = 21.7 ppm, δH20-CH3 = 0.97 ppm
and δC20-CH2OH = 21.7 ppm, δH20-CH2OH = 0.97 ppm) together with NOESY experiments
confirmed the 17α-hydroxymethyl-17β-methyl assignment.

In comparison to the administered drug, the product of the last synthesis (17β-methyl-
5β-androstane-3α,17α-diol, 11) has a different stereochemistry at C17. Starting from epi-
methyltestosterone (17α-hydroxy-17β-methylandrost-4-en-3-one, 9), the first reduction
using hydrogen gas and palladium on charcoal as catalyst leads to the 5β-product (10)
with huge excess [37]. The subsequent reduction of the 3-oxo group of 5β-dihydro-epi-
methyltestosterone (10) with sodium borohydride mainly results in the 3α-isomer (88:12,
3α-OH:3β-OH according to Schänzer et al. [24]; 11). Stereochemistry at C17 is retained
during these reactions and thus assigned to 17α-hydroxy-17β-methyl. Due to the collision
energy of 70 eV, nearly no molecular ion is found, whereas prominent fragments occur. The
two dominant fragments of the above mentioned 17α-hydroxymethyl-17β-methyl steroids,
m/z 345 and m/z 255, are present in the spectrum of epi-tetrahydromethyltestosterone as
well. The signal at m/z 345 is caused by [M-CH3-HOTMS]+ (accurate mass m/z 345.2619,
exact mass m/z 345.2608, ∆m/z = 3.19 ppm), that at m/z 255 by another loss of TMSOH
(accurate mass m/z 255.2115, exact mass m/z 255.2107, ∆m/z = 3.13 ppm), and the base
peak at m/z 143 by a characteristic D-ring fragment of 17-methyl steroids (accurate mass
m/z 143.0892, exact mass m/z 143.0887, ∆m/z = 3.49 ppm).

3.2. Urinary Metabolites

As is common in several doping control laboratories, glucuronidated metabolites
are enzymatically cleaved and determined as their aglycons together with their analogs
that are excreted as unconjugated compounds. Due to the low abundance of some of the
target analytes, GC-QQQ-MS in MRM mode is considered as a better-suited technique
for metabolite detection after optimization of the ion transitions. As described in the
literature [8,24,38], GC-QQQ-MS analysis detected 17α-methyl-5β-androstane-3α,17β-diol
(20, MT M1) following the administration of both steroids, MD (12) and MT (18), in all
samples. Its 3α,5α-analog (19, MT M2) was detected following the administration of MT
(18), while in MD (12) p.a. samples, only very minor corresponding signals were detectable
in the 48 h urine and remained unconfirmed due to the low signal-to noise ratio of the
qualifier transitions. According to earlier studies, these two metabolites are considered as
longest detectable by GC-QQQ-MS after MT (18) administration in GC-MS [38].

Exclusively after MD (12) administration, the parent compound (12), epimetendiol (15,
M1: EMD), 6-hydroxymetandienone (13, M2: 6OH-MD), epimetandienone (14, M3: EpiMD),
normetendiol (17,17-dimethyl-18-nor-5β-androsta-1,13-dien-3α-ol, 16, M4: NorEMD), and
the long-term metabolite 17β-hydroxymethyl-17α-methyl-18-nor-androsta-1,4,13-trien-3-
one (17, M6: 20βOH-NorMD) were detected, which is in agreement with earlier find-
ings [8,12,13,18].

In addition to the commonly monitored metabolites, the two synthesized 17-hydroxy
methyl-17-methyl steroids were found in p.a. urines of methyltestosterone (17α-hydroxy
methyl-17β-methyl-18-nor-5α-androst-13-en-3α-ol, 8a, 17α-hydroxymethyl-17β-methyl-
18-nor-5β-androst-13-en-3α-ol, 8) by GC-MS comparison.

Aberrantly, only 17α-hydroxymethyl-17β-methyl-18-nor-5β-androst-13-en-3α-ol (8)
was confirmed in the p.a. urines of metandienone (12). The stereochemistry at C17 is
the opposite of the currently monitored long-term metabolite of MD and also to 17β-
hydroxymethyl-17α-methyl-18-nor-androsta-4,13-dien-3-one, which was detected earlier
after administration of MT [38]. They are also different from the majority of metabolites of
analogous 17-methyl steroids [30,31,38–42]. Only less abundant 17α-hydroxymethyl-17β-
methyl metabolites of metandienone, methyl-1-testosterone (17β-hydroxy-17α-methyl-5α-
androst-1-en-3-one) and oxandrolone [13,41], as well as the recently identified 4-chloro-17α-
hydroxymethyl-17β-methyl-18-nor-androsta-4,13-dien-3β-ol (named “M4” by Sobolevsky
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in 2012) as metabolite of 4-chlorometandienone (dehydrochloromethyltestosterone, active
component in Oral Turinabol) [33,43] have a similar stereochemistry at C17.

Interestingly, the structure of the long-term metabolite of 4-chlorometandienone with
modified D-ring structure and a fully reduced A-ring (Sobolevsky’s “M3”) was assigned
to 4α-chloro-17β-hydroxymethyl-17α-methyl-18-nor-5α-androst-13-en-3α-ol by Forsdahl
et al. [31]. The metabolites proposed for MT and MD as described above show an inverse
stereochemistry at the D-ring in comparison to these assignments.

Additionally, the product of the last synthesis (17β-methyl-5β-androstane-3α,17α-diol,
11) has an inverse D-ring at C17 in comparison to the parent compounds and the fully
A-ring reduced metabolites, 17α-methyl-5β-androstane-3α,17β-diol (20, MT M1) and 17α-
methyl-5α-androstane-3α,17β-diol (19, MT M2). The latter are formed through reduction
of the 1,2- and 4,5-double bond and the 3-oxo group. The 17-epimer was found in the
urines after the intake of both mentioned anabolic-androgenic steroids. In the case of
MT administration, the metabolite 11 was also described earlier, but found with shorter
detection times than the 17α-methyl analogs 19 and 20 [38]. After the intake of MD, this
was also found earlier, but with a problem in separation of the four diastereomers [15].

The epimerization of position 17 is a common reaction of 17α-methyl steroids and
was first described in 1971 [44]. In humans, it is generated through sulfonation of the
tertiary 17-hydroxy group and its subsequent hydrolysis [9]. Besides 17-epimerization,
the sulfate may also undergo an elimination of sulfuric acid and concomitant Wagner–
Meerwein rearrangement, leading to 17,17-dimethyl-18-norandrosta-1,4,13-trien-3-one.
This may undergo A-ring reduction, leading to the metandienone metabolite normetendiol
(17,17-dimethyl-18-nor-5β-androsta-1,13-dien-3α-ol, 16, M4: NorEMD) [11].

Generation of 17α-hydroxymethyl-17β-methyl-18-norandrosta-1,4,13-trien-3-one is gen-
erated from the intermediate 17,17-dimethyl-18-norandrosta-1,4,13-trien-3-one by CYP3A4
catalyzed hydroxylation [20], while CYP21A1-catalyzed hydroxylation leads to the formation
of a 17β-hydroxymethyl-17α-methyl analog [20].

The stereoselectivity of the A-ring reduction is dependent on the parent compound.
For metandienone, there is only very limited generation of metabolites with a 5α-structure.
This is is likely due to the 1,2-double bond, which inhibits the activity of 5α-reductase [45].
In contrast, methyltestosterone is metabolized to 5α- and 5β-isomers. This substantiates
our hypothesis of metabolite generation due to the A-ring structure with a double bond
in position 4 and its already saturated positions 1 and 2 in methyltestosterone, while
MD (12) has an unsaturated A-ring (i.e., 3-oxo-1,4-diene). Thus, it is reasonable that
the 17α-hydroxymethyl-17β-methyl-18-nor-5α-androst-13-en-3α-ol-derivative (8a) is only
detectable in p.a. samples of methyltestosterone (18), while the 5β-analog (8) is observed
after MT or MD administration. This supports our concept of the order of reductions: if
the 1,2-double bond was reduced before the 4,5-double bond, there would have also been
5α-metabolites in p.a. urines of metandienone [8].

Thus, the order of the following two reductions of metandienone (1,2-double bond,
3-oxo group) is not yet confirmed, but it seems to be more likely that the formation of the
3-hydroxy group takes place before the hydrogenation of the 1,2-double bond, because
there are known metabolites of metandienone with a 3-hydroxy-1-ene structure but not
with a 3-oxo group in a fully reduced A-ring. Both potential ways represent the last step
of the proposed formation of the metabolites 8 and 11. They are displayed in Figure 10.
The other reactions of the metabolism of both investigated compounds are displayed in
Figure 11.
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ture. This is is likely due to the 1,2-double bond, which inhibits the activity of 5α-reductase 
[45]. In contrast, methyltestosterone is metabolized to 5α- and 5β-isomers. This substanti-
ates our hypothesis of metabolite generation due to the A-ring structure with a double 
bond in position 4 and its already saturated positions 1 and 2 in methyltestosterone, while 
MD (12) has an unsaturated A-ring (i.e., 3-oxo-1,4-diene). Thus, it is reasonable that the 
17α-hydroxymethyl-17β-methyl-18-nor-5α-androst-13-en-3α-ol-derivative (8a) is only 
detectable in p.a. samples of methyltestosterone (18), while the 5β-analog (8) is observed 
after MT or MD administration. This supports our concept of the order of reductions: if 
the 1,2-double bond was reduced before the 4,5-double bond, there would have also been 
5α-metabolites in p.a. urines of metandienone [8]. 

Thus, the order of the following two reductions of metandienone (1,2-double bond, 
3-oxo group) is not yet confirmed, but it seems to be more likely that the formation of the 
3-hydroxy group takes place before the hydrogenation of the 1,2-double bond, because 
there are known metabolites of metandienone with a 3-hydroxy-1-ene structure but not 
with a 3-oxo group in a fully reduced A-ring. Both potential ways represent the last step 
of the proposed formation of the metabolites 8 and 11. They are displayed in Figure 10. 
The other reactions of the metabolism of both investigated compounds are displayed in 
Figure 11. 

 
Figure 10. Potential ways of A-ring reduction. Figure 10. Potential ways of A-ring reduction.
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Figure 11. Proposed metabolism of methyltestosterone (black, 18) and metandienone (red, 12) to the found metabolites
17α-hydroxymethyl-17β-methyl-18-nor-5β-androst-13-en-3α-ol (8), 17α-hydroxymethyl-17β-methyl-18-nor-5α-androst-
13-en-3α-ol (8a), and 17β-methyl-5β-androstane-3α,17α-diol (11) except last step of metandienone. The question marks
represent reactions whose enzymes have not been elucidated yet.

Based on preliminary data, the mentioned substances are detected for at least 48 h after
the intake of parent compounds. Excretion studies with a higher number of volunteers and
prolonged sample collection will be performed in the near future to evaluate the detection
windows of the new metabolites.

In addition to that, a potential next step will be the investigation of the substrate
specificity of 5α-reductase towards 1,2-ene steroids by means of molecular modelling to
elucidate structural requirements for generation of 5α-metabolites of androgenic steroids.

The detection and structure identification of the above-mentioned substances in the
urine samples help to gain further insights into human metabolism of metandienone and
17α-methyltestosterone. Due to the similarity of other anabolic androgenic steroids to the
investigated compounds, it is probable that other metabolites with related structures may
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be found in further 17α-methyl steroids. Finally, the results may support the fight against
doping by introducing new analytes for screening in anti-doping analysis.

4. Materials and Methods
4.1. Instrumentation
4.1.1. GC-MS/MS

The gas chromatographic-tandem mass spectrometric analysis was performed on
an Agilent 7890A gas chromatographic system coupled to an Agilent 7000 GC/MS triple
quadrupole mass spectrometer (Agilent Technologies, Milano, Italy). The following condi-
tions for the analysis of the intermediates and products were applied: Agilent HP1 column
(17 m, 0.20 mm, 0.11 µm), carrier gas: helium, oven program: 188 ◦C, hold for 2.5 min,
+3 ◦C/min to 211 ◦C, hold for 2.0 min, +10 ◦C/min to 238 ◦C, +40 ◦C to 320 ◦C, hold for
3.2 min, injection volume: 2 µL, split: 20:1, injection temperature: 280 ◦C, electron ionization
(EI): 70 eV, transitions: m/z 345→ 255 (5 eV), m/z 345→ 173 (20 eV), m/z 345→ 159 (10 eV).
Prior to injection, samples were treated with 50 µL of trimethyliodosilane (TMIS) reagent
(N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA)/ethanethiol/ammonium iodide,
1000:6:4, v:v:w) at 75 ◦C for 20 min before analysis to generate the per-TMS derivatives.

4.1.2. GC-QTOF-MS

High resolution accurate mass analyses were performed on an Agilent GC-QToF
7890B/7250 (Agilent Technologies, Milano, Italy), equipped with an Agilent HP1 column
(17 m, 0.20 mm; 0.11 µm) with helium as carrier gas. Injection was performed in split mode
with a 1:10 ratio at 280 ◦C. The oven program had the following heating rates: 188 ◦C
hold for 2.5 min, 3 ◦C/min to 211 ◦C and hold for 2 min, 10 ◦C/min to 238 ◦C, 40 ◦C/min
to 320 ◦C, and hold for 3.2 min. The coupled QToF was operated in full scan with an
ionization energy of 70 eV. Aberrantly, in LEI an ionization energy of 15 eV was applied.
Ions were detected from m/z 50 to 750.

4.1.3. HPLC Purification

The purification of the synthesized reference steroids was performed by semi-preparative
HPLC using an Agilent 1260 Infinity Quaternary HPLC system coupled to an Agilent Infinity
1260 diode array detector (Agilent Technologies GmbH, Waldbronn, Germany). Chromato-
graphic separation was achieved on a Hypersil ODS C18 column (pore size: 120 Å, 250 mm
length, 10 mm ID, 5 µm particle size, Thermo Scientific, Schwerte, Germany). Isocratic
elution was accomplished at a flow rate of 3 mL/min using acetonitrile:water (7:3, v:v) as the
mobile phase. The UV signal was monitored at 194 nm.

4.1.4. Nuclear Magnetic Resonance

The nuclear magnetic resonance (NMR) analyses were performed at 500 MHz (1H
NMR) and 125 MHz (13C NMR) at 296 K on a Bruker (Rheinstetten, Germany) Avance
III instrument equipped with a nitrogen-cooled 5 mm inverse TCI cryoprobe with ac-
tively shielded z-gradient coil. Chemical shifts are reported in δ values (ppm) relative to
tetramethylsilane. Solutions of about 5 mg of each compound in deuterated dimethylsul-
foxide (d6-DMSO) were used for conducting 1H; H,H COSY; 13C; edited HSQC; HMBC,
selective NOE and NOESY experiments. Two-dimensional experiments were recorded in
non-uniform sampling (NUS) mode.

4.2. Chemicals and Reagents

Androst-4-ene-3,17-dione (1) was purchased from TCI (Tokyo, Japan), androsterone
(5a), and TiCl4 from Acros Organics (Fair Lawn, New Jersey, USA), 17α-methyltestosterone
(18), palladium on charcoal, nysted reagent, K-Selectride and meta-chloroperoxybenzoic
acid from Aldrich (Steinheim, Germany). 17β-Methyltestosterone (epi-MT, 9) was ob-
tained from Santa Cruz Biotechnology (Heidelberg, Germany). 17α-methyl-5β-androstane-
3α,17β-diol (20) and 17α-methyl-5α-androstane-3α,17β-diol (19) were purchased from the
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National Measurement Institute (North Ryde, Australia). Benzene was delivered from
Thermo Fisher (Karlsruhe, Germany), hexane, ethyl acetate, methanol, dichloromethane,
diethyl ether, hydrochloric acid, sodium bicarbonate, and potassium carbonate from Fisher
Scientific (Loughborough, United Kingdom). MSTFA was obtained from from Chemis-
che Fabrik Karl Bucher GmbH (Waldstetten, Germany). THF, monosodium phosphate,
sodium borohydride, and p-toluenesulfonic acid were purchased from Merck (Darmstadt,
Germany), while TBME, potassium hydroxide, and sodium carbonate were bought from
Carl Roth (Darmstadt, Germany). Hydrogen gas was provided by Air Liquide (Düsseldorf,
Germany) and β-glucuronidase from Roche Diagnostics (Mannheim, Germany). All other
chemicals were purchased from VWR (Darmstadt, Germany).

4.3. Synthesis of Reference Steroids
4.3.1. Diastereomeric 17-hydroxymethyl-17-methyl-18-nor-5-androst-13-en-3-ols

17-Methylene-5ξ-androstan-3ξ-ol (6, 6a)
A flask was flushed with argon gas and held under an argon atmosphere. After

cooling to 0 ◦C, Nysted reagent (20%) was diluted with absolute tetrahydrofurane (THF
abs.), and titanium tetrachloride was added dropwise. After 15 min of stirring, the mixture
was brought to room temperature. The precursor steroid (5, or 5a) was dissolved in 10 mL
THF (abs.) and was added dropwise to the mixture. The reaction was held under these
conditions overnight. After cooling down the mixture to 0 ◦C, aqueous hydrochloric acid
(2 M) and ice-cold water were added, and it was extracted four times with diethyl ether.
The organic phases were combined, washed with sodium hydrogen carbonate and brine,
dried over sodium sulfate, and evaporated to dryness. Detailed amounts of reactants and
solvents are available in the supplements (S4).

Spiro[5 ξ-androstan-17,2′-oxirane]-3ξ-ol (7, 7a)
The crude substance was dissolved in dichloromethane, and potassium hydrogen

carbonate and meta-chloroperoxybenzoic acid were added. The solution was stirred for
3 h at ambient temperature. Afterwards, the mixture was poured into water and extracted
three times with dichloromethane. The organic phases were washed with brine and then
dried over sodium sulfate. Further details are disclosed as supplemental information.

17α-Hydroxymethyl-17β-methyl-18-nor-5β-androst-13-en-3α-ol (8)
The intermediate product 7 was dissolved in 5 mL methanol plus 5 mL aqueous

hydrochloric acid (1 M). The solution was stirred overnight. Then, 10 mL water were
added, and the mixture was extracted three times with 20 mL t-butyl methyl ether. The
organic phases were combined and dried over sodium sulfate. The product was purified
by column chromatography (silica gel 60, 300 mm × 30 mm, particle size 40–63 µm),
using hexane/ethyl acetate (3:2, v:v) followed by HPLC fractionation. The finally purified
product (8) was obtained in a total amount of 16 mg (yield: 1.51%, purity >98%).

17α-Hydroxymethyl-17β-methyl-18-nor-5α-androst-13-en-3α-ol (8a)
The intermediate product 7a was dissolved in 20 mL of methanol and 20 mL of

aqueous hydrochloric acid (1 M). The solution was stirred overnight. Then, 30 mL of water
was added, and the mixture was extracted three times with 50 mL t-butyl methyl ether. The
organic phases were combined and dried over sodium sulfate. The product was purified
by column chromatography (silica gel 60, 300 mm × 30 mm, particle size 40–63 µm), using
hexane/ethyl acetate (3:2, v:v) followed by HPLC fractionation. A total amount of 263 mg
(yield: 57.1%, purity >98%) of the final product (8a) was obtained.

4.3.2. Epi-Tetrahydromethyltestosterones

17β-Methyl-5β-androstane-3α,17α-diol (11)
A mixture of 450 µL methanol and 50 µL potassium hydroxide solution (5 M) was

prepared, and 100 µg epi-methyltestosterone (9) was dissolved. A spatula tip of palladium
on charcoal was added, and hydrogen gas flushed through the solution for 5 min. After
adding 2 mL of water, the mixture was extracted three times with 3 mL of hexane and
evaporated to give the product 10. The residue was dissolved in methanol/water (9:1, v:v)



Molecules 2021, 26, 1354 16 of 18

and a spatula tip of sodium borohydride was added. The solution was stirred for one hour
at room temperature. After adding ammonium chloride to stop the reaction, potassium
hydroxide solution (1 M) was added to yield alkaline solution. Then, the solution was
extracted three times with dichloromethane and evaporated to give the product 11.

17β-Methyl-5α-androstane-3α,17α-diol (11a)
A spatula tip of epi-mestanolon (10a) was dissolved in 2 mL of absolute THF, 80 µL

of K-Selectride was added and the mixture was stirred for 1 h at ambient temperature.
Afterwards, 100 µL of aqueous hydrochloric acid (1 M) was added until there was no
formation of bubbles anymore. Then, 150 µL of potassium hydroxide solution (1 M) was
added and the mixture was extracted three times with 5 mL of hexane. The hexane-phase
was evaporated to give the product 11a.

4.4. Human Administration Trial

Urine samples out of the stock of the anti-doping laboratory in Rome were available
for analysis. Samples collected before and after an oral administration of either MD or MT
were used for evaluation of the excretion of the hypothized metabolites. The excretion
study with MT was carried out by a healthy male volunteer (Caucasian, 50 years old,
80 kg and normal body mass index). A single oral dose of 10 mg of MT (Metadren®,
Novartis, Basel, Switzerland) was administered. For investigation of MD metabolism, a
single oral dose of 5 mg MD (Dianabol®, Ciba-Geigy, Basel, Switzerland) was administered
to a healthy male volunteer (Caucasian, 45 years old, 82 kg and normal body mass index).

4.5. Urine Sample Preparation

An aliquot of 6 mL urine was used for the following analysis. As internal standard
methyltestosterone (50 µL of a solution of 100 µg/mL) was added. After the addition of
750 µL of phosphate buffer (0.8 M) and 50 µL β-glucuronidase, the mixture was incubated
at 55 ◦C for 60 min. Afterwards, 500 µL of carbonate buffer (20%) was added and the
mixture was extracted with 10 mL of TBME. After evaporation, 50 µL of TMIS reagent was
added to the sample and the mixture was treated at 75 ◦C for 20 min before analysis to
generate the per-TMS derivatives.

Supplementary Materials: The following are available online: Supplement S1: Table of steroids, Sup-
plement S2: Preceding synthesis of etiocholanolone, Supplement S3: Chromatograms of urine
samples. Supplement S4: Detailed amounts of reactants and solvents in the synthesis of 17-
hydroxymethyl-17-methyl-18-nor-5-androst-13-en-3-ols.
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