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We study the non-relativistic limit of Dirac equation for mixed neutrinos. We demonstrate that such a 
procedure inevitably leads to a redefinition of the inertial mass. This happens because, in contrast to the 
case when mixing is absent, the antiparticle sector contribution cannot be neglected for neutrinos with 
definite flavor. We then show that, when a gravitational interaction is switched on, in the weak-field 
approximation the mass parameter which couples to gravity (gravitational mass) does not undergo the 
same reformulation as the inertial mass, thus leading to an apparent breakdown of the weak equivalence 
principle.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Neutrino physics has long been considered as an important playground for testing the weak equivalence principle (WEP) both the-
oretically and experimentally [1–3]. The question of how neutrinos can further strengthen the existing constraints on the equivalence 
principle or how they can be used to search for its possible violations has been discussed in a multitude of papers (i.e. see Refs. [4–10]), 
with varying degree of detail and differing conclusions. In addition, over the years several claims have been made addressing a possible 
evidence for the incompatibility of WEP with neutrino phenomenology [11,12].

Virtually, all theoretical studies of neutrino oscillations assume that such particles are ultra-relativistic, since typical experimental se-
tups do not allow to deal with non-relativistic neutrinos. However, this does not mean that the non-relativistic regime is not accessible 
in principle. Indeed, with the infusion of new ideas from particle cosmology and astrophysics and the advent of a high precision instru-
mentation, the behavior of non-relativistic neutrinos has recently been studied from various standpoints. For instance, these particles can 
exhibit novel features when flavor oscillations are properly accounted for [13], and their presence can represent a direct evidence for 
the existence of cold dark matter [14]. Furthermore, neutrinos that constitute the so-called cosmic neutrino background (CNB) — also 
known as relic neutrinos — may open new scenarios in our understanding of the early Universe [15,16]. In fact, it is estimated that the 
CNB decoupled from matter few seconds after the Big Bang [17,18]. In this sense, the CNB contains more information on the primordial 
characteristics of the Universe than the photon-based cosmic microwave background (CMB) radiation. Since the temperature of the CNB is 
estimated [17] to be T ≈ 2 K, it is reasonable to think of relic neutrinos as non-relativistic particles with corresponding virial velocities of 
103 − 104 km/s. Despite difficulties in detecting these elusive carriers of fundamental knowledge, there are some recent proposals [19–21]
that tend to consider the detection of CNB as a feasible endeavor. In passing, we also want to stress that a finite-temperature analysis is 
closely linked to WEP violation for quantum systems; for more details, see for instance Refs. [22].

In this paper, we study the properties of oscillating neutrinos in the non-relativistic regime. For simplicity, we restrict our analysis 
to the case of two flavors, thus considering the (coupled) Dirac equations for electron and muon neutrino. In our investigation, we are 
partially inspired by Ref. [23], where the authors discussed WEP for various (quantum) particle systems. Though quite general, their 
discussion does not seem to be directly applicable to oscillating particles such as neutrinos. To be more precise, the range of applicability 
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of the usual notion of WEP shall be established with greater care. As a matter of fact, there is an apparent violation of the classical 
equivalence principle in the case of composite systems with internal degrees of freedom [24], such as for the case of the spin, which non-
trivially couples to gravity [25]. Given that differing and discordant claims can be found in literature which instead tend to preserve WEP 
even for complex quantum systems [24,26], experimental tests may ultimately have the final word, and several efforts in this direction 
have already been performed, as shown for instance in Ref. [27]. In this context, it is worth observing that the techniques employed for 
the aforementioned experiments could in principle be capable of unraveling new macroscopic forces mediated by exotic particles whose 
strength becomes comparable with the gravitational interaction at certain energy scales [28]. Since flavor neutrinos are regarded as more 
complicated objects with respect to an elementary particle due to the existence of flavor transitions, it is opportune to keep in mind that 
the previous observations may be valid also for them.

In the ultra-relativistic regime, it is widely accepted that the phenomenon of neutrino oscillations is well-described by means of 
Pontecorvo flavor states [29]. Here, however, we are interested in the non-relativistic behavior of such states. In this connection, it should 
be pointed out that, in such a case, corrections to the usual oscillation formula arise when a full-fledged field theoretical approach to 
neutrino mixing is performed [30]. The key aspect is that flavor mixing at the level of fields entails a non-trivial structure at the level 
of the representation (states in the Hilbert space), thus resulting in corrections to the standard Pontecorvo flavor states attributable to 
the rich and complex structure of the flavor vacuum condensate [30]. Since a quantum-mechanical wave function is a matrix element 
of the corresponding (quantized) field between the vacuum and a single-particle state, it imprints information about the vacuum state 
itself. Indeed, by restricting our analysis of neutrino mixing to non-relativistic quantum mechanics (QM), we find that novel and intriguing 
effects related to the notion of inertial mass arise in the flavor basis even without invoking the full quantum field theoretical (QFT) 
apparatus.

This Letter is organized as follows: in Section 2, we study in detail the non-relativistic limit of the Dirac equation for mixed neutrinos 
and show that in this framework one inevitably comes across a non-trivial correction to the inertial mass mi . In addition, if a gravitational 
field is switched on, we prove in Section 3 that the ensuing gravitational mass mg does not undergo the same redefinition as mi , and 
hence mi �= mg, which is a direct signature of WEP violation. A brief summary of results and related discussions are given in Section 4. In 
the Appendix, some finer technical and conceptual details needed in the main text are clarified.

2. Non-relativistic neutrinos without external field

Let us consider the Dirac equation associated with flavor neutrinos νe and νμ . In the simplest case of a two-flavor model and no 
external field, it reads(

iγ α∂α − M
)
� = 0 . (1)

Here, γ α is implicitly meant to be the 8 × 8 matrix I2×2 ⊗ γ α and M is the 8 × 8 (non-diagonal) mass matrix, which in the 4 × 4 block 
formalism reads

M =
(

me meμ

meμ mμ

)
. (2)

The wave-function � contains the bispinors related both to νe and νμ , i.e.

� =
(

ψe

ψμ

)
. (3)

If we explicitly write the two Dirac equations, we get(
iγ α∂α − me

)
ψe = meμψμ , (4)(

iγ α∂α − mμ

)
ψμ = meμψe . (5)

Unless stated otherwise, we will focus only on Eq. (4), since the ensuing results for the muon neutrino are easily obtained by exchanging 
the subscripts e ↔ μ. In addition, with foresight of a non-relativistic treatment of (1) we will employ the standard Dirac representation of 
γ matrices. Consequently, the positive-energy wave functions satisfy algebraic equations

(i∂0 − me)ϕe + iσ · ∇χe = meμϕμ ,

−iσ · ∇ϕe − (i∂0 + me)χe = meμχμ . (6)

Here, ϕe,μ and χe,μ denote the “large” (upper) and “small” (lower) spin components of respective bispinors. At this point, we can perform 
the non-relativistic limit, by assuming that the dominant contribution to the energy comes from the rest mass. Hence, in Eqs. (6) we 
can assume the kinetic energy to be much smaller than the rest mass. One can thus pull out from the bispinor the fast oscillating factor 
e−imσ t (for the positive energy solutions) so that

ψσ (t) = e−imσ tψ̃σ (t) , σ = {e,μ} , (7)

with the field ψ̃σ oscillating much slower than e−imσ t in time. Then, one drops the term ∂0ψ̃σ as small compared to −2imσ ψ̃σ (more 
specifically, one assumes that |i∂0ψ̃σ | � |2mσ ψ̃σ |). Accordingly, Eqs. (6) reduce to

i∂0ϕ̃e + iσ · ∇ χ̃e = meμei
(
me−mμ

)
t ϕ̃μ ,

−iσ · ∇ ϕ̃e − 2meχ̃e = meμei
(
me−mμ

)
t χ̃μ . (8)
2
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Analogous relations hold for νμ . In what follows, we will remove the tilde from the components of Dirac bispinors for simplicity’s sake. 
Note that, in absence of mixing, the small spin component χ is negligible with respect to the large one ϕ . In presence of mixing and in 
the non-relativistic limit, however, the small component χμ can be of the same order as ϕe provided meμ is of order meμ ≈ |σ · p| = |p|.

Let us now plug χe in the expression for ϕe . We get

i∂0 ϕe = − ∇2

2me
ϕe + ei(me−mμ)t

[
meμϕμ + i meμ

2me
(σ · ∇) χμ

]
. (9)

As expected, the first term on the RHS of Eq. (9) represents the kinetic part, whereas the information about the mixing is imprinted in 
two remaining terms.

One can push the above analysis beyond Eq. (9) by employing the ensuing non-relativistic relation for χμ stemming from Eq. (5). 
Indeed, by using the fact that

χμ = − i σ · ∇
2mμ

ϕμ − ei(mμ−me)t
meμ

2mμ
χe ,

and inserting it into Eq. (9), we obtain

i∂0 ϕe = − ∇2

2me
ϕe + ei(me−mμ)t

[
meμ + meμ

2me

∇2

2mμ

]
ϕμ − i m2

eμ

4memμ
(σ · ∇) χe . (10)

It is clear that we can continue this iteration procedure indefinitely. If the corresponding infinite sum converges, we can get rid of the 
small spin components in both ψe and ψμ and obtain two coupled field equations for ϕe and ϕμ only — as it could be expected from the 
non-relativistic limit, where only (equal parity) large bispinor components (Pauli spinors) appear.

The aforesaid iterative process brings Eq. (10) to the form

i∂0 ϕe = − A(M)
∇2

2me
ϕe + ei(me−mμ)t B(M)ϕμ , (11)

where

A(M) =
∞∑

n=0

(
m2

eμ

4memμ

)n

, (12)

and

B(M) = meμ + meμ

2me
A(M)

∇2

2mμ
. (13)

Since for two flavors the relations between me , mμ , meμ and the mass parameters m1 and m2 are known to be1

me = m1 cos2θ + m2 sin2θ ,

mμ = m1 sin2θ + m2 cos2θ ,

meμ = (m2 − m1) sinθ cosθ , (14)

one might easily check that m2
eμ < memμ . For future convenience, let us denote the expansion parameter ω as

ω = m2
eμ

4memμ
. (15)

Because ω < 1, the geometric series A(M) converges and it sums up to

A(M) = 1

1 − ω
. (16)

With this, we obtain the equation for the Pauli spinors (large bispinor components) in the Schrödinger form

i∂0ϕe = −
(

1

1 − ω

) ∇2

2me
ϕe + ei

(
me−mμ

)
t

{
meμ + meμ∇2

4memμ (1 − ω)

}
ϕμ . (17)

Equation (17) is the sought non-relativistic limit of the Dirac equation for an electron neutrino in the presence of mixing. As already 
stressed, when we exchange e ↔ μ we obtain the corresponding equation for ϕμ .

By looking at the formula (17), we can immediately draw two important conclusions. First, in order to have a standard kinetic contri-
bution in Eq. (17), the would-be inertial mass me should be modified. In fact, we should require that the inertial mass is meff

e = me (1 − ω). 
A similar redefinition must be performed also for mμ . The existence of meff

e �= me might be at first surprising, since it is not evident why 
mixing should affect the inertial masses related to flavor states. In this connection, it is worth noting that the presence of the correction 

1 The relations are obtained by diagonalizing (rotating) the mass matrix M of Eq. (1).
3
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term A(M) is due to the fact that Dirac equation (6) simultaneously deals with large and small bispinor components (ϕe and χμ), that 
in the case of mixing can both be important. In fact, to reach Eq. (17), one has to work interchangeably with small and large components 
because these are interlocked at all energy scales. Should the same analysis be performed with the Klein–Gordon equation for mixed fields 
(i.e. the ones describing mixed composite particles with spin 0, such as K 0, D0 or B0 mesons [31–33]), an analogous redefinition of the 
inertial mass would be found. We relegate the proof of this latter fact to our future work.

Second, the part related to ϕμ characterizes the oscillation phenomenon. It can be easily checked that the factor inside {. . .} in Eq. (17)
appears also in the equation for ϕμ . If {. . .} were zero (i.e. when meμ = 0), these two equations would just be two uncoupled equations 
for free electron and muon neutrinos, with masses me = m1 and mμ = m2, respectively. However, there is coupling between the two flavor 
neutrinos by means of the amplitude {. . .}, thus implying that there may be “leakage” from one flavor to the other. This is nothing but the 
“flip-flop” amplitude of a two-state system [34]. Note that its modulus is manifestly invariant under the exchange of flavors e ↔ μ, which 
reflects detailed balance of the oscillation phenomenon.

3. Non-relativistic neutrinos in gravitational field

Let us now focus on what happens if we switch a gravitational potential on. It is not a priori evident that the effective inertial masses 
meff

e and meff
μ will also couple to the gravitational potential. To explore this point, we will restrict our attention on a metric in the post-

Newtonian approximation that goes up to the order O
(
c−2
)
. Moreover, without loss of generality, we will consider the isotropic reference 

frame, so namely for the gravitational potential we have that φ
(
x)≡ φ

(|
x|). The ensuing line element reads [23]

ds2 = (1 + 2φ )dt2 − (1 − 2φ)
(

dx2 + dy2 + dz2
)

. (18)

In order to couple gravity with the Dirac equation (1), we use the conventional spin connection formalism. In particular, we should 
substitute the slash operator /∂ with γ μDμ , where γ μ = eâ

μγ â and Dμ = ∂μ + �μ . �μ is the Fock–Kondratenko connection

�μ = − i

4
σ âb̂ ω

μâb̂ = 1

8

[
γ â, γ b̂

]
eâ

λ∇μeb̂λ
. (19)

Here, σ âb̂ = i/2 
[
γ â, γ b̂

]
are the generators of the bi-spinorial representation of Lorentz group, ω

μâb̂ = eâ
λ∇μeb̂λ

are the spin connection 

components, γ â represent the gamma matrices in flat spacetime, ∇μ is the usual covariant derivative (Levi–Civita connection) and eâ
μ

is the vierbein field. Note that Latin indices denote the “Lorentzian” vierbein labels whereas Greek indices denote manifold coordinate 
indices.

Because in our case both gμν and ηâb̂ are diagonal, the evaluation of the non-vanishing components of the vierbein fields is a simple 
task. By using the relation

gμν = eâ
μ eb̂

ν ηâb̂ ,

we obtain

e0̂
0 = 1 − φ , ex̂

x = e ŷ
y = eẑ

z = 1 + φ , (20)

and the ensuing Fock–Kondratenko connection

�μ = 1

8

[
γ â, γ b̂

]
eâ

λ
(
ημλ∂ρφ − ημρ∂λφ

)
eb̂

ρ . (21)

Let us discuss what modifications of Eq. (17) will be induced by the presence of a weak gravitational field. Using the fact that Eq. (1) is 
now replaced by(

iγ α Dα − M
)
� = 0 , (22)

we obtain the equations for the electron neutrino sector in the form

(i∂0 − me − iφ ∂0)ϕe + i(σ · ∇)χe = meμϕμ ,

−i(σ · ∇)ϕe − (i∂0 + me − iφ ∂0)χe = meμχμ . (23)

The assumption at the basis of Eqs. (23) is that we consider only a weak gravitation field, i.e. the gravitational potential is slowly varying 
(as on the Earth surface). In particular, we consider that ∂iφ ≈ 0, ∀i, and so φ enters in (23) only via vierbeins in γα matrices.

At this point, we can take the non-relativistic limit in Eqs. (23). This yields

i∂0ϕe = meφ ϕe + ei(me−mμ)t meμϕμ − i (σ · ∇) χe ,

χe = − i σ · ∇
2me

ϕe − ei(me−mμ)t meμ

2me
χμ . (24)

By following the same procedure which we have already adopted in the previous Section, one arrives at the non-relativistic Dirac equation 
in the presence of a weak gravitational field in the form

i∂0ϕe =
(

− ∇2

2meff
+ me φ

)
ϕe + ei(me−mμ)t

[
meμ

2me

(
2me + ∇2

2meff

)]
ϕμ . (25)
e μ

4
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As expected, for the electron neutrino we recover the sum of the kinetic and the potential contribution, but also the same “flip-flop” 
amplitude as in (17) (at least in the lowest non-trivial weak-field approximation). Notice, however, that whilst the inertial mass undergoes 
the same redefinition as in the free-field case (17), the gravitational mass remains me . This might be seen as a violation of WEP for flavor 
neutrinos, since meff = mi �= mg.

It is also interesting to observe that the “flip-flop” amplitude can be rewritten as

meμ

2me

(
2me + ∇2

2meff
μ

)
= meμ

⎡⎢⎢⎣1 + ∇2

2meff
e meff

μ

(
1 +

√
1 + m2

eμ

meff
e meff

μ

)
⎤⎥⎥⎦. (26)

This shows that the amplitude can be entirely formulated in terms of effective inertial masses and meμ and, apart from an overall time-
dependent phase factor, it is manifestly invariant under exchange of flavors e ↔ μ (therefore, it satisfies the detailed balance between e
and μ flavors).

Let us finally stress that, should we have performed an analogous treatment in the mass basis, we would not have found any distinction 
between inertial and gravitational masses. This holds true because mass eigenstates are completely decoupled and the absence of off-
diagonal mass terms leads to meff

j = m ji = m jg with j = 1, 2. Consequently, one should be able to retrieve the flavor basis by simply 
rotating the state vectors from the mass basis through the orthogonal transformation(

ψe

ψμ

)
=
(

cos θ sin θ

− sin θ cos θ

)(
ψ1
ψ2

)
≡ G(θ)

(
ψ1
ψ2

)
, (27)

which also automatically implies the mass relations (14). Since Eq. (27) should hold at all energies, it must also be true in the non-
relativistic limit. However, it is not difficult to see (cf. Appendix A) that, given

[i(1 − φ)∂0 − m1]ϕ1 + i(σ · ∇)χ1 = 0 ,

−i(σ · ∇)ϕ1 − [i(1 − φ)∂0 + m1]χ1 = 0 , (28)

(and an analogous pair of equations for the index 2), then

G(θ)

⎧⎨⎩ lim
|p|
m1

,
|p|
m2

→0
[Eq. (28)]

⎫⎬⎭ �= lim
|p|
me

,
|p|
mμ

→0
[Eq. (23)] . (29)

In other words, the non-relativistic limit does not commute with the mass-to-flavor rotation. This apparent contradiction can be easily 
understood by observing that the non-relativistic limit is implemented by factoring out the fast oscillating phases e−imσ t (with σ = {e, μ}) 
and e−imat (with a = {1, 2}). Even though these procedures correctly handle the rest masses in the non-relativistic limit of respective 
Dirac equations, the corresponding non-relativistic flavor- and mass-basis wave functions ψ̃σ and ψ̃a (see Eq. (7)) are not connected via 
the rotation G(θ) anymore. The actual rotation matrix that operates on the non-relativistic wave functions is more complicated (see 
Appendix A) and reduces to G(θ) only in the limit when meμ = 0.

4. Conclusions

In this Letter, we have analyzed the non-relativistic limit of the Dirac equation for mixed neutrinos both in the absence and presence of 
an external gravitational field. In its absence, we have shown that the small components of the flavor bispinor wave functions inevitably 
induce a redefinition of the inertial mass. This rather unexpected behavior is a consequence of the fact that, when mixing is present, 
in the Dirac equation one simultaneously deals with large and small bispinor components that are comparably important in the non-
relativistic regime. Furthermore, when an external gravitational field is considered in the weak-field approximation, we have observed 
that the gravitational mass does not undergo the same redefinition as the inertial one, and hence a violation of WEP arises. Accordingly, 
a non-relativistic limit provides a suitable playground for testing the violation of the equivalence principle in neutrino physics, also in 
light of the novel interpretation which treats such particles as if they were unstable [35], thus validating the exploitation of the results 
stemming from Ref. [36]. In particular, the latter may become relevant in the context of relic neutrinos in the CNB, which are expected to 
be detected experimentally in the near future [37].

We recall that the above study has been performed by regarding neutrinos as Dirac fermions. However, we expect that analogous 
results are also valid for Majorana neutrinos because of the similarity between the two cases in the framework of QFT treatment of 
mixing and oscillations [38].

Let us now briefly discuss another conceivable scenario where our analysis might become relevant, namely physics related to sterile 
neutrinos. To this aim, we define the quantity

η =
∣∣∣∣mg

mi
− 1

∣∣∣∣ , (30)

which is typically considered in experiments involving WEP violation [39]. In particular, by using the fact that mi = me(1 −ω) and mg = me

and invoking that recent experimental bounds on η give η � 10−11, it is straightforward to deduce that the amount of WEP violation in 
our particular case is quantified by the inequality∣∣∣∣ ω

1 − ω

∣∣∣∣� |ω| = m2
eμ

4m m
� 10−11 . (31)
e μ

5
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With the available sensitivity on η, the above expression fails to achieve a bound on the absolute value of the neutrino mass better 
than the one recently obtained with the experiment KATRIN [40]. However, Eq. (31) may turn out to be useful in the context of sterile 
neutrinos [41]. Indeed, if we focus on a single oscillation channel between sterile right-handed neutrinos and active left-handed neutrinos, 
it is still possible to adopt the formalism and reasoning employed in this paper. Specifically, if for instance we focus our attention on the 
electron neutrino disappearance process [42], Eq. (31) can be cast into

M sin2 2θ

4m1 + M sin2 2θ
� 4 · 10−11, (32)

where M is the mass of the sterile neutrino and where we have made the assumption M � m1. Remarkably, the above expression can 
also be employed in cosmology, since it holds true even for the keV sterile neutrino, which is usually addressed as a potential Dark Matter 
candidate (cf. Refs. [43] for more details).

Now, by resorting to recent data on both light and heavy [44] sterile neutrinos and by assuming m1 ≈ 1 eV [40], we note that

M sin2 2θ � 1.6 · 10−10 eV. (33)

This bound is in agreement with the experimental windows available for sterile neutrinos [44]. Furthermore, it must be highlighted that, 
should the sensitivity on η improve, the constraint arising from Eq. (33) may become even stronger than the cosmological ones currently 
at our disposal. Not surprisingly, our analysis better fits the behavior of right-handed neutrinos due to their heavy mass (if compared with 
the active ones).

We want to stress one more time that the results of this paper have been obtained by working in the flavor basis for mixed neutrinos 
and the simple case of two generations only. We have also discussed how the same procedure is not applicable in the mass basis, because 
of the non-interchangeability of the non-relativistic limit and the mixing transformations. In this connection, we remark that our analysis 
supports the view that flavor states correctly describe oscillating neutrinos. This point is of crucial importance in the full-fledged QFT 
description, because there the choice of either mass or flavor basis corresponds to different unitarily inequivalent vacuum states [30], 
which in turn can have observational implications. Along this line, we point out that there are also other frameworks in which the above 
concept becomes relevant. For instance, the study of the inverse β-decay in accelerated frames has recently shown that general covariance 
can be fulfilled only when both the Unruh effect and flavor neutrino states are properly taken into account [45].
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Appendix A

In this appendix we prove the inequality (29). To this end, we concentrate first on the LHS of (29) and, for simplicity, consider the 
gravitational potential φ to be zero. This gives

G(θ)

⎛⎜⎜⎝
i∂0 0 0 0
0 −2m1 0 0
0 0 i∂0 0
0 0 0 −2m2

⎞⎟⎟⎠
⎛⎜⎜⎝

ϕ1
χ1
ϕ2
χ2

⎞⎟⎟⎠=G(θ)

⎛⎜⎜⎝
0 −iσ · ∇ 0 0

iσ · ∇ 0 0 0
0 0 0 −iσ · ∇
0 0 iσ · ∇ 0

⎞⎟⎟⎠
⎛⎜⎜⎝

ϕ1
χ1
ϕ2
χ2

⎞⎟⎟⎠ . (A.1)

By inserting G−1(θ)G(θ) = I in front of mass-state bispinors we can rewrite (A.1) as⎛⎜⎜⎝
i∂0 0 0 0
0 −2me 0 −2meμ

0 0 i∂0 0
0 −2meμ 0 −2mμ

⎞⎟⎟⎠
⎛⎜⎜⎝

ϕe

χe

ϕμ

χμ

⎞⎟⎟⎠=

⎛⎜⎜⎝
0 −iσ · ∇ 0 0

iσ · ∇ 0 0 0
0 0 0 −iσ · ∇
0 0 iσ · ∇ 0

⎞⎟⎟⎠
⎛⎜⎜⎝

ϕe

χe

ϕμ

χμ

⎞⎟⎟⎠ . (A.2)

It is easy to see that the RHS of (29) has the form (again without considering the potential φ)⎛⎜⎜⎝
i∂0 0 −meμeα 0
0 −2me 0 −meμeα

−meμe−α 0 i∂0 0
0 −meμe−α 0 −2mμ

⎞⎟⎟⎠
⎛⎜⎜⎝

ϕe

χe

ϕμ

χμ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 −iσ · ∇ 0 0

iσ · ∇ 0 0 0
0 0 0 −iσ · ∇
0 0 iσ · ∇ 0

⎞⎟⎟⎠
⎛⎜⎜⎝

ϕe

χe

ϕμ

χμ

⎞⎟⎟⎠ , (A.3)

with α = i(me − mμ)t .
Clearly, both (A.2) and (A.3) are mutually different. The reason for this discrepancy can be retraced to the fact that the transformation 

relating the non-relativistic components of the mass and flavor bispinors is not a simple rotation anymore. Indeed, one can easily find that(
ϕe,χe,ϕμ,χμ

)t = G̃(θ, t) (ϕ1,χ1,ϕ2,χ2)
t , (A.4)
6
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with

G̃(θ, t) =
(

cos θ exp
[
i(meμ tan θ)t

]
I2×2 sin θ exp

[−i(meμ cot θ)t
]
I2×2

− sin θ exp
[
i(meμ cot θ)t

]
I2×2 cos θ exp

[−i(meμ tan θ)t
]
I2×2

)
. (A.5)
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