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Bounding the resources for thermalizing
many-body localized systems
Carlo Sparaciari1,2, Marcel Goihl3, Paul Boes3, Jens Eisert3✉ & Nelly Huei Ying Ng 3,4

Understanding under which conditions physical systems thermalize is a long-standing

question in many-body physics. While generic quantum systems thermalize, there are known

instances where thermalization is hindered, for example in many-body localized (MBL)

systems. Here we introduce a class of stochastic collision models coupling a many-body

system out of thermal equilibrium to an external heat bath. We derive upper and lower

bounds on the size of the bath required to thermalize the system via such models, under

certain assumptions on the Hamiltonian. We use these bounds, expressed in terms of the

max-relative entropy, to characterize the robustness of MBL systems against externally-

induced thermalization. Our bounds are derived within the framework of resource theories

using the convex split lemma, a recent tool developed in quantum information. We apply our

results to the disordered Heisenberg chain, and numerically study the robustness of its MBL

phase in terms of the required bath size.
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When pushed out of equilibrium, closed interacting
quantum many-body systems generically relax to an
equilibrium state, where local subsystems can be

described using thermal ensembles that only depend on the
energy of the initial state. While this behavior is plausible from
the perspective of quantum statistical mechanics1–5, it is far from
clear which local properties are responsible for the emergence of
thermalization. The discovery of many-body localization (MBL)
offers a fresh perspective into this question, as this effect occurs in
interacting many-body systems preventing them from actually
thermalizing6,7. Examples of systems that are non-thermalizing,
like integrable systems, have been known before, but these have
been fine-tuned such that small perturbations restore thermali-
zation. Many-body localization is strikingly different in this
respect, as its non-thermalizing behavior appears to be robust to
changes in the Hamiltonian8. A related open question, recently
considered in several papers, is whether MBL is stable with
respect to its own dynamics when small ergodic regions are
present9–13, or when the system is in contact with an actual
external environment14–17. This is both a critical question for the
experimental realization of systems exhibiting MBL properties,
and for its fundamental implications on the process of therma-
lization in quantum systems.

The main focus of this work is to investigate the robustness of
the MBL phase under instances of external dissipative processes.
To do so, we introduce a physically realistic class of interaction
models, describing the interaction between a many-body system
and a finite-sized thermal environment. Within these models, the
interactions are described in terms of energy-preserving sto-
chastic collisions occurring between the system (or regions
thereof) and sub-regions of the bath. During the interactions, the
system and bath can be either weakly or strongly coupled. For this
class of processes, we are able to derive analytical bounds on the
minimum size of the bath required to thermalize the many-body
system. We apply these bounds to the setting where the system is
in the MBL phase, so as to characterize the robustness of this
phase with respect to the coupling with an external environment.
It is worth noting, however, that the bounds obtained hold for
general many-body systems out of thermal equilibrium.

It is key to the approach taken here—and one of the merits of
this work—that in order to arrive at our results, we make use of
tools from quantum information theory, tools that might at first
seem somewhat alien to the problem at hand, but which turn out
to provide a powerful machinery. We demonstrate this by using a
technical result known as the convex split lemma18,19, to derive
the quantitative bounds on the bath size required for a region of
the spin-lattice to thermalize. Given that MBL phases are chal-
lenging to study theoretically, and most known results are
numerical in nature20–26, our work provides a fresh approach in
understanding such phases from an analytical perspective. The
convex split lemma has originally been derived in the context of
quantum Shannon theory, which is the study of compression and
transmission rates of quantum information. Our main con-
tribution is to connect this mathematical result to a class of
thermodynamic models that can be used to describe thermali-
zation processes in quantum systems. This gives rise to surpris-
ingly stringent and strong results. Note, however, in the approach
taken for thermalizing processes, it is assumed that systems
thermalize close to exactly, a requirement that will be softened in
future work.

As part of our results, we find that the max-relative
entropy27,28 and its smoothed version emerge as operationally
significant measures, that quantify the robustness of the MBL
phase in a spin-lattice. The max-relative entropy is an element
within a family of entropic measures that generalize the Rényi
divergences29 to the quantum setting. In order to illustrate the

practical relevance of our results, we consider a specific system
exhibiting the MBL phase, namely the disordered Heisenberg
chain. Employing exact diagonalization, we numerically compute
the value of the max-relative entropy as a function of the disorder
and of the size of the lattice region that we are interested in
thermalizing. Our findings suggest that the MBL phase is robust
to thermalization despite being coupled to a finite external bath,
under our collision models, indicating that such models allow for
a conceptual understanding of the MBL phase stability. This
extends the narrative of refs. 14–16, which find that MBL is
thermalized when coupled to an infinite sized bath. Moreover,
our numerical simulations show that the max-relative entropy
signals the transition from the ergodic to the MBL phase.

Results
Thermalization setting. We first set up some basic notation.
Given some Hamiltonian HS of a system S with Hilbert space HS,
we define the thermal state with respect to inverse temperature β
= 1/(kBT) as the quantum state

τβðHSÞ :¼
e�βHS

Trðe�βHSÞ : ð1Þ

In what follows, we model the process of thermalization of S
with an external heat bath B. In particular, let HS and HB denote
the Hamiltonian of S and B, respectively. If S is initially in a state
ρ, then, for fixed β and any ϵ > 0, we say that a global process
E : B HS �HBð Þ ! B HS �HBð Þ ϵ-thermalizes the system S if

E ρ� τβðHBÞ
� �

� τβðHSÞ � τβðHBÞ
��� ���

1
≤ ϵ; ð2Þ

where �k k1 is the trace norm. Intuitively, this corresponds to the
situation where the process E acts on the compound of the initial
state of the system ρ and the bath state τβ(HB), and brings the
system state close to its thermal state τβ(HS) while leaving the
bath mostly invariant. We write

ρ!ϵ
HB;E

τβðHSÞ ð3Þ

if Eq. (2) holds. It is worth noting that ϵ-thermalization requires
the global system SB to be close to thermal after the channel E is
applied. Monitoring the bath as well is necessary in order to avoid
the possibility of trivial thermalization processes in which the
non-thermal state ρ is simply swapped into the bath, which would
merely move the excitation out of the considered region, rather
than describing a physically realistic dissipation process. Thus,
our notion of thermalization is different from previously
considered ones, where for instance the sole system’s evolution
is considered. At the same time, and as mentioned before, it is a
rather stringent measure, in that close to full global thermaliza-
tion is required.

Having introduced the basic notation and terminology, we
now turn to the model used in this work. We consider a spin-
lattice V, where each site is described by a finite-dimensional
Hilbert space H. The Hamiltonian of the system is composed of
local operators, i.e.,

HV ¼
X
x

Hx; ð4Þ

where x is labeling a specific subset of adjacent sites in the lattice
and Hx is the corresponding Hamiltonian operator whose support
is limited to these sites. Within the lattice, we consider a local
region R⊆V with Hilbert space HR. We are interested in the
stability of the MBL phase with respect to stochastic collisions
between the lattice region R and an external thermal bath B. In
order to precisely re-cast this problem in terms of ϵ-thermaliza-
tion, we first need to detail our choices for the initial state of the
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region R, the Hamiltonians HB and HR, and the class of maps E
that model the thermalization process.

Given an initial state vector of the lattice ψð0Þj i, if we consider
closed evolution generated by the Hamiltonian dynamics, then
the global system is always in a pure state. However, if the local
subsystems eventually equilibrate, then the equilibrium state is
given by partially tracing over the global infinite-time average30,

ω :¼ lim
T!1

1
T

ZT

0

dt ψðtÞj i ψðtÞh j; ð5Þ

so that the state that describes region R at the time of its first
interaction with the bath is ωR ¼ TrRc ω½ �, where we trace out the
remaining of the lattice Rc=V\R. To define a valid Hamiltonian
HR, a natural approach is often to disregard interactions between
R and the rest of the lattice Rc. As such, we consider the
Hamiltonian HR= ∑x:x⊆RHx, which includes only terms Hx whose
support is contained in R, and denote the corresponding thermal
state τβ(HR). It is worthwhile to point out that that there is an
alternative natural approach to defining thermal states of

subsystems, namely τ̂βðHRÞ ¼ TrRc τβðHVÞ
h i

the reduced state

over the complement R of the thermal state of the full lattice31.
These two thermal states are close to each other whenever the
interaction terms between R and Rc in HV are small. During our
later simulations, we check the values of max-relative entropy
using both versions of thermal states, and find that they produced
similar values, implying that these different alternatives are
actually not too dissimilar from each other for the disordered
Heisenberg chain, which is expected, given that interactions are 2-
local.

There has been a large body of work in thermalization, where a
large class of many-body systems can effectively act as their own
“environment”4,30, thus local observables tend to equilibrate
towards the corresponding thermal values. However, there are
exceptions to this, in particular whenever there are non-negligible
interactions between subsystems, of which MBL systems are an
example. Nevertheless, most such systems still do equilibrate, and
this is the assumption we make throughout the paper, that ω as
defined in Eq. (5) exists.

We model the external thermal bath as a collection of n− 1
copies of the region R in thermal equilibrium. More formally, B is
a system with Hilbert space HB ¼ H�n�1

R and Hamiltonian

HB ¼
Xn�1

i¼1

HðiÞ
R ; ð6Þ

where the operator HðiÞ
R ¼ I1 � ¼ � Ii�1 �HR � Iiþ1 � ¼ �

In�1 only acts non-trivially on the i-th subsystem of the bath.
With this choice of Hamiltonian, the initial state on B is
τβðHBÞ ¼ τβðHRÞ�n�1. Such a choice for the bath is crucial to
make our problem analytically tractable but is also physically
relevant for experimental setups, where it is possible to engineer
one-dimensional systems which are then coupled to a bath per
site32,33 or a mixture of a system and bath species that interact via
contact interactions34. Moreover, we note that for the model of
system-bath interactions that we introduce below, any state
transition that can be realized on R with any heat bath
Hamiltonian HB can also be realized, for some n, with a
Hamiltonian of the form (6)35. We also refer the interested reader
to Supplementary Note 3, for a further discussion on bath
choices.

We now turn to our model of the system-bath interactions,
described via the following master equation,

∂ ρRBðtÞ
∂ t

¼
X

k

1
rk

U ðkÞ
RB ρRBðtÞ U ðkÞy

RB � ρRBðtÞ
h i

; ð7Þ

where ρRB is the global state on R and B. This equation models a

series of collisions, each described by a unitary operator U ðkÞ
RB 2

B HR �HBð Þ acting non-trivially on the region R and a subset of
bath components, occurring at a given rate r�1

k > 0 in time
according to a Poissonian distribution (see Supplementary Note 1
for details). We consider elastic collisions, that is, we require that

each unitary operator U ðkÞ
RB conserves the global energy

½U ðkÞ
RB ;HR þ HB� ¼ 0: ð8Þ

It is worth noting that the above condition does not imply that
the total energy of the lattice is conserved. In fact, this is in
general not the case, due to those operators Hx in Eq. (4), with
support on both R and Rc. However, since by assumption these
operators have support on at most k adjacent lattice sites, if the
region R is sufficiently large one expects these boundary terms to
contribute less and less to the total energy of the region. For high
temperatures, such notions that boundary terms are negligible
have rigorously been established31. Note that Eq. (7) is already in
standard Lindblad form, and therefore describes a Markovian
dynamical semi-group on RB. It is also important to note,
however, that the process happening on the region R is in
principle non-Markovian, since B is modeled here explicitly, and
can be a very small heat bath, which retains the memory of the
system’s initial state. See Fig. 1 for a graphical illustration of the
setup.

In summary, the interaction model is general, in the sense that
the unitary operators can act on a single subsystem (thus
generating local Hamiltonian dynamics, for example), on two
subsystems (these are the standard two-body interactions), or
many more subsystems. Long-range interaction terms are also
allowed, with the only restriction of Eq. (8)—in the hope that one
may work toward relaxation in the future. We are nonetheless
neglecting the interaction terms between the region R and Rc.
While this assumption is critical for allowing us to apply our
framework to this problem, we note that there are situations
where it is physically relevant—for example, if the interaction
between R and B occurs on a much shorter timescale than

Fig. 1 Thermalization setting. Thermalization of a region R of an
equilibrated lattice V via stochastic collisions with an external bath B (red).
The collisions are modeled as randomly distributed, energy-preserving
unitary interactions between R and B, where these interactions could be
either between single subsystems of B (top) or multiple ones (bottom). Our
framework is inspired by the resource-theoretic framework of thermal
operations54,55, which have been used to investigate a wide variety of
questions, such as the notion of work for microscopic systems35,56, the
quantum fluctuation theorems57, the third law58,59, and several other
topics60–62.
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between R and Rc, which is allowed by our class of interactions, as
the rates frkgk can be chosen to be high enough. Moreover, our
results on bath size are independent on the system-bath coupling
strength.

We are finally in a position to define our central measure of
robustness to thermalization. Let En denote the set of quantum
channels (i.e., completely-positive trace-preserving maps acting
over the quantum states of a system36) on RB that can be
generated via the above collision process for a bath of size n− 1.
Each channel in this set is realized through a different choice of

unitary operations fU ðkÞ
RBg, collision rates fr�1

k g, and final time t.
Given the region initial state ωR, its Hamiltonian HR, and the bath
Hamiltonian HB defined as in Eq. (6), we define nϵ as the
minimum integer such that there exists an element in Enϵþ1 that
ϵ-thermalizes R,

nϵ :¼ min n 2 N j 9 E 2 Enþ1 : ωR !E
ϵ;HB

τβðHRÞ
� �

� 1: ð9Þ

The integer nϵ then quantifies the smallest size of a thermal
environment required to thermalize region R under stochastic
collisions, and hence provides a natural measure to quantify the
robustness of an MBL system against thermalization.

Upper and lower bounds for thermalization. Our main results
are upper and lower bounds on nϵ that are essentially tight for a
wide range of Hamiltonians HR. These bounds are stated using
the (smooth) max-relative entropy, an entropic quantity that has
received considerable attention in recent years in quantum
information and communication theoretical research35,37,38.
Once again, it is worth noting that our results are applicable in
general for finite-dimensional quantum systems where equili-
bration occurs, of which MBL is a particularly interesting
example. The max-relative entropy27 between two quantum states
ρ; σ 2 S Hð Þ such that supp(ρ)⊆ supp(σ) is defined as

Dmax ρjjσð Þ ¼ inf λ 2 R : ρ≤ 2λσ
� �

; ð10Þ
while the smooth max-relative entropy between the same two
quantum states, for some ϵ > 0, is defined as

Dϵ
max ρkσð Þ ¼ inf

~ρ2Bϵ ρð Þ
Dmax ~ρkσð Þ; ð11Þ

where Bϵ(ρ) is the ball of radius ϵ around the state ρ with respect
to the distance induced by the trace norm.

Upper bound. We first present and discuss the upper bound,
which can be easily stated in terms of the quantities just
introduced.

Theorem 1 (Upper bound on the size of the bath). For a given
Hamiltonian HR, inverse temperature β, and a constant ϵ > 0, we
have that

nϵ ≤
1
ϵ2

2Dmax ωR jjτβðHRÞð Þ: ð12Þ

The above theorem provides a quantitative bound on the size
of the thermal bath needed to ϵ-thermalize a lattice region R,
when the coupling is mediated by stochastic collisions. For this
specific dynamics, the region can be ϵ-thermalized if the size of
the bath (the number of components) is proportional to the
exponential of the max-relative entropy between the state of the
region ωR and its thermal state τβ(HR).

Theorem 1 is proven in Supplementary Note 2. Here, we
present a sketch of the proof in two steps. In the first step, we
show that En can be connected to so-called random unitary
channels39. In the second step, we use this connection to find a
particular channel in En that achieves the upper bound of the

above theorem. A central ingredient to the second step is a result
known as convex split lemma18,19.

Turning to the first step, recall that a random unitary channel
is a map of the form

Eð�Þ ¼
X
k

pk Uk � Uy
k; ð13Þ

where pk
� �

k is a probability distribution, and fUkgk is a set of
unitary operators. For a given number n− 1 of bath subsystems,
we define the class of energy-preserving random unitary channels
Rn as those random unitary channels on RB for which each
unitary operator Uk 2 B HR �HBð Þ commutes with the Hamil-
tonian of the global system, i. e., Uk;HR þ HB½ � ¼ 0. In
Supplementary Note 1, we show that for any n ≥ 1, En � Rn,
therefore allowing us to analyze any element of En as a random
unitary channel.

Turning to the second step, we use a stochastic collision model
with a simple representation in terms of random unitary
channels. Let us first recall that the thermal bath B is described
by n− 1 copies of τβ(HR), the Gibbs state of the Hamiltonian HR

at inverse temperature β. The collisions occur either between the
region R and one subsystem of the bath, or between two bath
subsystems. The rate of collisions is uniform, and given by r−1 >
0. During a collision involving the ith and jth subsystems of RB,
the states of the two colliding components are swapped, so that
the interaction is described by the unitary operator U ði;jÞ

swap . The
action of this operator over two quantum systems, described by
the state vectors ψj i1 and ϕj i2, respectively, is given by
U ð1;2Þ

swap ψj i1 � ϕj i2 ¼ ϕj i1 � ψj i2. For an initial global state

ρð in ÞRB ¼ ωR � τβðHRÞ�n�1, the steady state obtained through this
process is

ρð ss ÞRB ¼
Xn
m¼1

1
n

τβðHRÞ�m�1 � ωR � τβðHRÞ�n�m; ð14Þ

where the a-thermality of the region has been uniformly hidden
into the different components of the bath. It is worth noting that,
under the stochastic collision model described above, the global
system reaches its steady-state exponentially quickly in the
collision rate r−1, see Supplementary Note 2 for more details.

The mapping from the initial state of region and bath to the
steady-state is achieved by the following random unitary channel

�Enð�Þ ¼
Xn
i¼1

1
n

U ð1;iÞ
swap � U ð1;iÞ y

swap ; ð15Þ

which uniformly swaps each of the bath subsystems with R. Such
channels have been studied before in the context of entropy
production40,41, see also ref. 42 for a similar example. Since all
subsystems share the same Hamiltonian HR, it is easy to see that
each one of the U ð1;iÞ

swap commutes with the joint Hamiltonian, so

that �En 2 Rn. Finally, we can invoke the convex split lemma, see
Supplementary Note 2, which allows us to show that, for any ϵ >
0, the channel �En can ϵ-thermalize the region R when the number

of subsystems is n ¼ ϵ�22Dmax ωR jjτβðHRÞð Þ.
The collision model presented here already encompasses a wide

range of possible and physically realistic thermalization processes.
However, before turning to a lower bound, we note that, due to
the particularly simple nature of (15), one can use the above
construction to upper bound the required size of a bath for other
thermalization models as well. For example, by noting that the
channel (15) is permutation-symmetric (in the sense that it has
permutation-invariant states as its fixed points), it follows that
thermalization models with permutation-symmetric dynamics

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00503-1

4 COMMUNICATIONS PHYSICS |             (2021) 4:3 | https://doi.org/10.1038/s42005-020-00503-1 | www.nature.com/commsphys

www.nature.com/commsphys


(i.e., those that allow for any permutation-symmetric channel) are
also subject to the above upper bound.

Lower bound and optimality results. We now turn to derive a
lower bound on nϵ. This bound is obtained through a further
assumption on the Hamiltonian HR, which we call the energy
subspace condition (ESC).

Definition 2 (Energy subspace condition). Given a Hamilto-
nian HR, we say that it fulfills the ESC iff for any n 2 N, given the
set of energy levels Ekf gdk¼1 of the Hamiltonian HR, we have that
for any vectors m;m0 2 Nd with the same normalization factor,
namely, X

k

mkEk ≠
X
k

m0
kEk: ð16Þ

Let us here briefly discuss the physical significance of the ESC
condition. The ESC entails (but is not equivalent to) that energy
levels cannot be exact integer multiples of one another, which also
implies full non-degeneracy. Furthermore, note that the ESC is
not approximate, in other words, it still holds even if energy levels
are very close to each other. Having exact integer multiple energy
levels is a very fine-tuned situation that breaks as soon as
randomness is introduced in the Hamiltonian43. Let us for
example consider how likely it is for MBL systems to have
degenerate energy levels. In the ergodic phase, the level statistics
are Wigner–Dyson, and therefore non-degeneracy is enforced by
level repulsion. On the other hand, in the strong MBL phase, level
statistics are Poissonian, which means that the probability density
function is maximum for zero-energy gaps. Despite this, the
probability of exact degeneracy would correspond to a zero-
volume integral of the Poissonian distribution (which is bounded
from above), and therefore still amounts to zero probability of
having degenerate gaps.

It is clear, however, that the ESC is much more stringent than
requiring non-degeneracy; If we require Eq. (16) to be satisfied for
all n 2 N, this implies that the energy levels of the Hamiltonian
HR need to be irrational. Nevertheless, one can relax this
condition by asking it to hold for all n ≤N, for some sufficiently
large N 2 N, for example with the upper bound on nϵ in
Theorem 1. We refer to this as the ESC being satisfied up to N. In
the next section, we discuss how a paradigmatic MBL system
relates to this condition.

We can now state the following theorem, proved in
Supplementary Note 4, on the optimality of the channel
associated with the convex split lemma.

Theorem 3 (Optimal thermalization processes). If HR satisfies
the ESC and the state ωR is diagonal in the energy eigenbasis, then
the channel �En in Eq. (15) provides the optimal thermalization
process, that is, for any n 2 N,

�En 2 argmin
E2En

E ωR � τβðHRÞ�n�1
� �

� τβðHRÞ�n
��� ���

1
: ð17Þ

Theorem 3 shows that, for Hamiltonians satisfying the ESC,
the channel �En provides the optimal thermalization of R, that is,
no other random energy-preserving channel acting on the same
global system can achieve a smaller value of ϵ in Eq. (2). The
above result applies to initial states that are diagonal in the energy
eigenbasis; this is in general not the case for the reduced state ωR

of the infinite-time average of Eq. (5), since it might have
coherence in the eigenbasis of the reduced Hamiltonian HR. For
states with coherence, the channel of Eq. (15) is not necessarily
optimal anymore, but we can still bound the difference in
thermalization achieved by this channel and an optimal one, see
Supplementary Note 4 for the proof.

Theorem 4 (Thermalization bound for coherent states). Fix
n 2 N, and assume that HR satisfies the ESC. Consider the
channel Eopt 2 En achieving optimal thermalization

ϵopt ¼ Eopt ωR � τβðHRÞ�n�1
� �

� τβðHRÞ�n
��� ���

1
; ð18Þ

and the decohering channel Δ(⋅)= ∑EΠE ⋅ΠE, where ΠE is the
eigenprojector onto the energy subspace associated with E. We
define the parameter δ ¼ ωR � ΔðωRÞk k1, quantifying the amount
of coherence contained in the state of the region. Then, the
thermalization achieved by the channel �En is bounded as

�En ωR � τβðHRÞ�n�1
� �

� τβðHRÞ�n
��� ���

1
≤ ϵopt þ δ: ð19Þ

The above theorem provides a quantitative bound on the
thermalization achieved by the channel �En when the input system
has coherence in the energy eigenbasis. In the case of MBL
systems, the eigenstates of the Hamiltonian are close to product
states, see for instance ref. 44, and therefore the reduced state of
the infinite-time average ωR is expected to have small and
strongly-decaying coherence. Thus, Theorem 4 shows that the
stochastic collision model introduced in the previous section is
able to effectively thermalize the region of MBL systems. From
the two theorems stated above, we can derive the following
corollary, providing a lower bound on the size of the thermal bath
needed to thermalize a given quantum system.

Corollary 5 (Lower bound to size of the bath). For a given β
and ϵ > 0, and some Hamiltonian HR satisfying the ESC, we have

nϵ ≥ 2
D2

ffiffi
ϵ

p þδ
max ωRjjτβðHRÞð Þ; ð20Þ

where δ ¼ ωR � ΔðωRÞk k1 and Δ(ωR) is the decohered version of
the state ωR.

Note that this lower bound is arising from the stringent model
of thermalization of Eq. (2), and that less stringent models will
potentially lead to smaller lower bounds. When HR does not
satisfy the ESC, it is easy to find counter-examples to the
optimality of the channel �E, as we show in Supplementary Note 4.
The idea is that this channel is optimal only when it is able to
produce a uniform distribution within each energy subspace of
the global system, and this is possible if each subspace is fully
characterized by a different frequency of single-system eigenvec-
tors, which is exactly given by the ESC. Indeed, when the ESC is
maximally violated, i.e., when the system Hamiltonian is
completely degenerate, then no bath is required at all. See
“Discussion” section for a discussion of this and its relation to
known bounds from randomness extraction.

The disordered Heisenberg chain. Our results from the previous
section show that, for systems that satisfy the ESC, the max-
relative entropy between the local state of a lattice region and its
thermal state provides a natural measure for the robustness of
that region to thermalization for a broad family of interactions.
This includes many-body systems close to the transition between
the ergodic and MBL phase, where both level repulsion and
randomness effects favor a lack of exact degeneracies so that it
seems reasonable to expect for such systems to satisfy the ESC to
sufficient order n. In this section, we use these results to study the
robustness of the MBL phase to the thermal noise for a concrete
system. Specifically, we consider the disordered Heisenberg chain,
a one-dimensional spin-12 lattice system composed of L sites,
governed by the Hamiltonian

HV ¼
XL
i

σxi σ
x
iþ1 þ σyi σ

y
iþ1 þ σzi σ

z
iþ1


 �þ Δ
XL
i

hiσ
z
i ; ð21Þ

where σx; σy; σz 2 B C2
 �
are the Pauli operators, Δ is the
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(dimensionless) disorder strength, and each parameter hi∈ [− 1,
1] is drawn uniformly at random. We employ periodic boundary
conditions.

It has been demonstrated both theoretically45 and experimen-
tally7 that this system undergoes a localization transition above
the critical disorder strength Δc ≈ 7. The transition manifests itself
in a breakdown of conductance7,45, and a slowdown of
entanglement growth after a quench23,24. Moreover, a phenom-
enological model in terms of quasi-local constants of motions
exists which provides an explanation for the non-thermal
behavior of the system46,47.

To relate the model to our theoretical results, we note that
when the region R is a single qubit (∣R∣= 1) with a non-zero-
energy gap, then the ESC is always satisfied for all n 2 N. For ∣R∣
= 2, we have verified the ESC condition across a large range of
disorder strengths Δ∈ [0.01, 20], up to N= 25 (out of ~2000
realizations, all of them satisfy the ESC); we have additionally
considered a small number of realizations for N= 35, for all of
which the ESC holds. As ∣R∣ increases, higher values of N become
significantly harder to check numerically. However, we have
verified that for example ∣R∣= 4 always satisfies the ESC up to N
= 5 (for 2000 generated realizations), while the condition is
satisfied with high probability when N= 6 (90% of the
realizations).

In our simulation, we choose as initial state vector Ψð0Þj i a
variation of the Néel state with support on the total-
magnetization sectors M= ±1, 0. Our choice is motivated by
the fact that this state, due to its increased overlap over different
symmetric subspaces of the Hamiltonian, thermalizes more easily
during the ergodic phase. For each random realization, we
numerically compute the infinite-time average of Ψj i as defined
in Eq. (5), using exact diagonalization. We then trace out part of
the lattice so as to obtain the state ωR, describing the infinite-time
averaged state reduced to the region R. Notice that in the ergodic
phase, when the disorder strength Δ < Δc, this state is expected to
be close to thermal, with a temperature which depends on the
energy of the initial state of the lattice. However, when the
disorder strength Δ passes its critical value, the state ωR is not
thermal anymore7.

To numerically compute the max-relative entropy for this
system, we use the Gibbs state of the reduced Hamiltonian HR,
obtained from the Hamiltonian in Eq. (21) by only considering
terms with full support on the region R. The inverse temperature
β is obtained by constructing the global Gibbs state of the lattice
and requiring its energy to equal to the one of the initial state
vector Ψð0Þj i. We compute Dmax ðωRjjτβðHRÞÞ for different
disorder strengths Δ, and different sizes of the region R (Fig. 2).

We find that in the ergodic phase the state is approximately
thermal, and the max-relative entropy remains almost constant as
∣R∣ increases. For big enough sizes of the region, the max-relative
entropy starts increasing even in the ergodic case. However, this
effect is due to the finite size of the lattice in our simulation, and it
can be mitigated by increasing the number of lattice sites (at the
expense of a higher computational cost). As Δ approaches the
critical value, we find that the max-relative entropy scales linearly
in the region size ∣R∣, with a linear coefficient which increases
with the disorder strength (Fig. 2a). As a result, the size of the
external thermal bath nϵ scales exponentially in the region size,
due to the bounds we have obtained in the previous section. This
exponential scaling in the size of the bath suggests robustness of
the MBL phase with respect to the dynamics given by Eq. (7),
since the relative size of the bath nϵ/∣R∣ needs to diverge as ∣R∣
tends to infinity. In other words, for the MBL phase to be
destroyed one needs, under the interaction models we consider,
an exponentially vast amount of thermal noise. It is worth noting

that our characterization of the robustness of the MBL phase to
thermal noise is distinctly different from others found in the
literature14–17. Indeed, we couple the system with a finite-sized
thermal bath, and we quantify the robustness in terms of its size.
Furthermore, our notion of thermalization accounts for the
evolution of both the system and bath, rather than focusing on
the system only. Other works instead consider infinite thermal
reservoirs and quantified the robustness as a function, for
instance, of the coupling between system and environment. A
promising experimental realization is recent optical lattice
experiments32–34. However, to connect to our findings one would
need full state tomography on both system and bath which so far
is out of reach for these platforms.

We additionally study the first derivative of the max-relative
entropy with respect to the region size ∣R∣, as a function of the
disorder strength, shown in Fig. 2b. We find that, during the
ergodic phase, the derivative remains constant and small. As Δ
approaches the critical value, the derivative increases, and for
Δ≫ Δc the derivative becomes constant again. Thus, we find that
the derivative of the max-relative entropy with respect to the
region size is an order parameter for the MBL phase transition.
We then use this order parameter to estimate the critical value
ΔðLÞ
c for the finite-length spin chain we are considering, obtaining

a value of ~4.5 for L= 15 sites. While the critical value for
infinite-length spin chains is considered to be Δc ≈ 7, we find that
our value, which we stress is obtained for a finite number of sites,

Fig. 2 Max-relative entropy for the disordered Heisenberg chain. a Max-
relative entropy Dmax ωRjjτβðHRÞ

� �
as a function of subsystem size ∣R∣ for a

lattice of L= 15 sites. The plots show an average of over 100 disorder
realizations. The states were calculated employing exact diagonalization.
For low values of disorder Δ the max-relative entropy is almost constant as
∣R∣ increases, while for higher values of Δ it scales linearly in ∣R∣, hinting
toward robustness of the MBL phase with respect to the class of interaction
models we are considering. b The slope of the max-relative entropy as a
function of the disorder Δ provides information on the phase transition.
Indeed, we can see that this quantity abruptly increases in the proximity of
the expected phase transition from the ergodic to the MBL phase. The slope
is obtained by a linear fit with error bars indicating least-squares errors. The
inset shows the derivative of the slope, with the gray lines, indicate a
possible transition region.
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seems to be in good accord with known results found in the
literature using other measures48,49.

Discussion
We show that mathematical results originally developed to study
quantum information processing may find their applications in
many-body physics as well, in particular for the study of MBL in
this paper. We demonstrate this by applying the recently devel-
oped convex split lemma technique, to derive upper and lower
bounds for the size of the external thermal bath required to
thermalize an MBL system. The class of interaction models
between the lattice and the thermal bath is described by the
master equation (7) and consists of stochastic energy-preserving
collisions between the system and bath components. The bounds
we obtain depend on the max-relative entropy between the state
we aim to thermalize and its thermal state.

We make use of these analytic results to study a specific and at
the same time much ubiquitous system exhibiting MBL features,
known as the disordered Heisenberg chain. We show that the
MBL phase in this system is in fact robust with respect to the
thermalization processes considered here and that the derivative
of the max-relative entropy with respect to region size serves as
an approximate order parameter of the ergodic to MBL transi-
tion. We emphasize that this is not in contradiction with previous
results, where a breakdown of localization was reported14–16, as
the size of the baths considered in these works was unbounded.
Resource-theoretic frameworks offer another potentially useful
approach for studying thermalization with infinite-dimensional
baths; the framework of elementary thermal operations50 which
involves a single bosonic bath that is coupled only with two levels
of the system of interest. One may then study the resources (the
number of bosonic baths with different frequencies) required to
achieve thermalization. Also, and more technically, it would be
interesting to study the extent to which both the ESC condition
and the requirement of exact commutation in our framework can
be relaxed to only approximately hold true and how this, in turn,
affects the lower bound of Corollary 5 (Eq. 20). These questions
we leave to be studied in future work.

The success of our application implies that, potentially, other
information-theoretic tools could be employed to study the
thermalization of MBL systems—and non-equilibrium dynamics
of many-body systems in more generality, for that matter. For
instance, results in randomness extraction51 might be useful to
provide new bounds. In randomness extraction, a weakly random
source is converted into an approximately uniform distribution,
with the use of seed (a small, uniformly distributed auxiliary
system). In analogy, thermalization requires a non-thermal state
to be mapped into an almost thermal state, with the help of an
external bath (the seed). Thus, it seems possible that results from
randomness extraction might be modified to study this setting
and to obtain bounds on the thermal seed.

It has been shown that excited states of one-dimensional MBL
systems are well-approximated by matrix product states (MPS)
with a low bond dimension44,52 if the system features an infor-
mation mobility gap. These states have several interesting prop-
erties, and in particular, they feature an area law for the
entanglement entropy which is logarithmic in the bond dimen-
sion53. Since our result is based on a particular entropic quantity,
it might be possible to use the properties of MPS to derive a fully
analytical bound on the robustness of these systems with respect
to thermal noise. It is the hope that our work stimulates
further cross-fertilization between the fields of quantum ther-
modynamics and the study of quantum many-body systems out
of equilibrium.

Data availability
The data sets generated during the numerical simulation are available from the
corresponding author on reasonable request.

Code availability
The code used for the numerical simulations is written in Python, and it is available from
the corresponding author on reasonable request.
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