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Abstract

Since launched in 2002, the Gravity Recovery and Climate Experiment (GRACE) has been

proven to be a unique way to monitor total water storage (TWS) variations at large spatial

scales (>300 km) by measuring Earth gravity changes and provides valuable information for

hydrological and hydro-meteorological applications. In this thesis, globally gridded monthly-

mean TWS variations are estimated by applying the state-of-the-art post-processing proce-

dure, which has been evaluated first through a closed-loop environment by means of simulated

GRACE-type gravity field time-series. In particular, the median scaling factors calculated

from an ensemble of multiple global land model simulations do make the re-scaling more ro-

bust against particular weaknesses of a single model. The method to estimate gridded fields

of measurement, leakage, and re-scaling errors, which can be used for further estimation of

the basin-averaged TWS uncertainties, is also introduced. The TWS variations and error

estimates are then applied to assess the accuracy of four global numerical model realizations

and to identify the advantages and deficiencies of a certain model. Based on four different

validation metrics, it is demonstrated that for the 31 largest discharge basins worldwide all

model runs agree with the observations to a very limited degree only, together with large

spreads among the models themselves. As a common atmospheric forcing data-set is applied

to all hydrological models, it is concluded that those discrepancies are not entirely related to

uncertainties in meteorologic input, but instead to the model structure and parametrization,

and in particular to the representation of individual storage components with different spatial

characteristics in each of the models. TWS as monitored by the GRACE mission is sensi-

tive to the different model physics in individual basins and it could offer helpful insight to

modellers for the future improvement of large-scale numerical models of the global terrestrial

water cycle. In addition, the TWS variations and error estimates are also applied to assess

skill scores of three different ensemble sets of decadal hindcasts performed with the coupled

climate model MPI-ESM. Moderately positive skill scores of the initialized hindcasts are ob-

tained both with respect to the zero anomaly forecast and the uninitialized projections in

particular for lead year 1 in moderate to high latitudes of the Northern Hemisphere. Changes
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in the initialization and increased resolution implemented in the different experiments indeed

lead to more skillful initialized hindcasts than in the earlier experiments, thereby document-

ing improvements of the MPI-ESM decadal climate prediction system during the most recent

years.



Kurzfassung

Mit dem Start der Satellitenmission GRACE (Gravity Recovery and Climate Experiment)

in 2002 ergab sich die einmalige Möglichkeit Variationen in den grossräumigen kontinen-

talen Wasserspeichern (TWS - total water storage) durch die Beobachtung des zeitvariablen

Schwerefeldes der Erde zu erfassen. Hieraus lassen sich eine Vielzahl an Informationen für

hydrologische und hydro-meteorologische Anwendungen ableiten. Durch die Anwendung

der aktuell gängigsten Prozessierungsmethoden werden in dieser Arbeit monatliche TWS-

Variationen auf einem globalen Gitter abgeleitet. Zum Testen und Optimieren der einzelnen

Prozessierungsschritte werden simulierte GRACE-Schwerefelddaten aus einem Ensemble ver-

schiedener globaler hydrologischer Modelle verwendet. Es zeigt sich, dass die notwendige

Reskalierung der GRACE Schwerefelder durch die Verwendung eines über das Modellensem-

ble gemittelten Skalierungsfaktors robuster gegenüber Eigenarten einzelner Modelle wird. Zu-

dem werden aus den simulierten GRACE-Schwerefeldern Mess-, Leakage- und Reskalierungs-

fehler für die Abschätzung von TWS-Ungenauigkeiten einzelner Einzugsgebiete bestimmt.

Die TWS-Variationen und Fehlerfelder werden anschliessend genutzt um die Genauigkeit von

vier globalen numerischen Modellrealisationen sowie deren individuelle Vor- und Nachteile

zu untersuchen. Basierend auf vier verschiedenen Validationsmetriken, zeigen die Modell-

simulationen für die 31 grössten Einzugsgebiete nur eine sehr begrenzte übereinstimmung

untereinender, sowie mit den GRACE Beobachtungen. Da alle hydrologischen Modelle mit

den gleichen Atmosphärendaten angetrieben wurde, sind die Diskrepanzen auf verschiedene

Modellparametrisierung zurückzuführen. Inbesondere wirkt sich die Modellierung einzelner

Speicherkompartimente mit unterschiedlichen räumlichen Charakteristiken eines jeden Mod-

ells stark auf das Ergebnis aus. Da TWS-Bebobachtungen von GRACE äusserst sensitiv auf

die individuelle Modellphysik in den einzelnen Einzuggebieten reagieren, dient die vorliegende

Arbeit zur Validation und Weiterentwicklung grossskaliger numerischer Modelle des globalen

Wasserkreislaufs. Ausserdem werden diese TWS-Variationen und Fehlerabschätzungen zur

Bestimmung so genannter Skill-Scores dreier verschiedener Ensembles-Sets von dekadischen

Hincast-Modellen verwendet, welche mit dem gekoppelten Klimamodell MPI-ESM simuliert
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wurden. Leicht positive Skill-Scores erhält man mit der zero-anomaly Vorhersage und den

uninitialisierten Projektionen, insbesondere für das erste Jahr in den hohen nördlichen Bre-

iten. Die stetige Verbesserung der Skill-Scores der initialisierten Vorhersage durch änderungen

der Initialisierung und Erhöhung der räumlichen und zeitlichen Auflösung dokumentiert eine

deutliche Weiterentwicklung des MPI-ESM Models für dekadische Klimavorhersagen.
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Chapter 1

Introduction

1.1 Motivation

As two thirds of human body is composed of water, human’s life is directly dependent on

drinking water. Water is also consumed for agriculture, industry and domestic use and

benefits humans for centuries. Besides, water circulates through the land just as it does

through the human body and is a key component of the climate, which has an indirect

impact on human life. Only around 2.5 % of the total amount of water available in the world

is fresh water. The terrestrial water storage (TWS) includes all water components on and

underneath the Earth’s surface, i.e., soil moisture (in subsurface unsaturated zones), surface

water (streams of varied size, ponds, artificial reservoirs, canals and wetlands), groundwater

(in subsurface saturated zones), snow pack, as well as the water contained in biomass. It

affects the partitioning of precipitation into evaporation and runoff, partitioning of available

energy of the surface between sensible and latent heat (Kleidon et al., 2014); and it plays

important role in the terrestrial water budget. Through feedback to the climate system, TWS

influences air temperature, precipitation and evapotranspiration and contains the information

of future climate through land surface memory (Dirmeyer et al., 2009; Koster et al., 2004b).

For instance, TWS affects the atmospheric circulation by means of surface albedo changes

and thermal isolation due to snow cover (Koster et al., 2004a; Meehl et al., 2009). A reliable

estimate of snow water is useful to improve the predictability of subseasonal atmospheric

conditions (Jeong et al., 2013). Soil moisture exhibits a memory for wet and dry anomalies

long after these conditions happened in the atmosphere (Seneviratne et al., 2006) and is

one of the important sources to forecast summer precipitation in the midlatitudes of the

land area (Koster et al., 2010). Groundwater also has a potentially large impact on the

low-frequency climate variability by means of its contributions to soil moisture re-charge
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and evapotranspiration (Bierkens & van den Hurk, 2007). As a slowly varying component

of the Earth system, water storage can be used to improve seasonal predictions, like air

temperature in North America (Koster et al., 2010). However, for the near-term prosperity,

water has been overly exploited without a long-term vision for planning and management.

Besides, anthropogenic activities like water withdrawals and construction of dams already

significantly impact the terrestrial water (Palmer et al., 2008), which poses large challenges

to both economy and our ecosystem. In another way, water can sometimes also turn to be

an enemy, when there is too much (flood) or too little (drought) of it. It causes deaths and

injuries directly and lead to significant economic losses. Such extreme events are becoming

more common in recent years as a result of climate change (Fischer & Knutti, 2015). Thus,

an observational knowledge of the present-day TWS not only describes the current water

mass redistribution in the hydrological cycle but also is essential for streamflow forecast

(Milly et al., 2005), as well as its potential impacts on extreme events as droughts and floods

(Koster et al., 2004b), thus allowing more efficient water resource management.

1.2 Background and current research

Despite of the importance of water storage, a direct measurement of it remains a challenge.

Traditional methods to obtain water storage are field-based or in situ measurements (Dorigo

et al., 2011). These measurements are quite accurate, however, as point-wise estimates, they

are generally sparse. It is possible to achieve large spatial coverage when satellite techniques

as imagery and altimetry are applied, but usually only one component of the TWS (surface

water or snow) that is limited to the uppermost surface can be measured.

Except these two measurements, three other techniques to estimate TWS are introduced by

Troch et al. (2007). One is the basin-scale water balance (BSWB) method (Seneviratne et al.,

2004; Hirschi et al., 2006), where the data is derived by combined atmospheric and terrestrial

water-balances to estimate TWS variations using water vapor content and moisture flux

convergence from atmospheric reanalysis data and river discharge measurements. However,

the method is highly dependent on the accuracy of the reanalysis data which often contain

systematic errors in particular at inter-annual time scales and longer.

Another way to estimate TWS is from hydrological models. The hydrological models fall

into two categories: Land Surface Models (LSMs) and Global Hydrology Models (GHMs).

LSMs provide the lower boundary conditions for General Circulation Models (GCMs) of

the atmosphere and focus on describing the vertical exchange of heat and water by solving

the surface energy and water balance. For instance, the variable infiltration capacity (VIC;
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Liang et al., 1994) model is a macroscale, semi-distributed LSM that solves water and energy

balances. GHMs, however, focus on solving the water balance equation and simulating catch-

ment outlet streamflow to assess water resources or forecast flood (Gudmundsson et al., 2012).

GHMs are generally simple conceptual models, transferring precipitation to evaporation and

runoff to represent the processes of water fluxes and storage. There are several well-known

GHMs from different research groups, e.g., the water and snow balance model (WASMOD-M;

Widén-Nilsson et al., 2007). Large differences between the simulated hydrological variables

and water fluxes on land areas are found among the models (Dirmeyer et al., 2006). These

are due to uncertainties in terms of model structure and physics, parameter values, and me-

teorological forcing data used as model inputs (Güntner, 2008). Another essential reason is

limited observational data at large spatial scales. Several model inter-comparison activities

have been conducted in the past. The Global Soil Wetness Project (GSWP; Dirmeyer et al.,

2006) investigates a broad range of LSMs driven by common forcing data. The Water Model

Intercomparison Project (Haddeland et al., 2011, WaterMIP), which is a joint project from

Water and Global Change (WATCH) and GWSP, focuses on both LSMs and GHMs, while

the anthropogenic impacts on water balance are also investigated. The Inter-Sectoral Impact

Model Intercomparison Project (ISI-MPI; Schewe et al., 2014) compares the results from a

multitude of models to highlight shortcomings and inconsistencies of them. These projects

have primarily focused on evapotranspiration or soil moisture content. Gudmundsson et al.

(2012) also compares nine large-scale hydrological models including both LSMs and GHMs

to assess their abilities to detect features of the mean annual runoff cycle. In this thesis,

the term hydrological model is used for the two different types of models with no distinction

between them. TWS is simulated by hydrological models as the sum of the different TWS

components, like soil moisture, snow and surface water. Thus, TWS variations from models

are also different by which water components are considered and the way they are simulated.

The third way to observe TWS changes is from the Gravity Recovery and Climate Experiment

(GRACE). The water variations and transports are so large on Earth, that they actually

influence the Earth’s gravity. This gravity change can be observed by satellites from space.

Launched in March 2002, GRACE measures the month-to-month changes in the gravitational

field of the Earth mainly based on inter-satellite range-rate measurements (Tapley et al.,

2004b). After removing short-term variability due to tides in atmosphere (Biancale & Bode,

2006), solid earth (Petit & Luzum, 2010) and oceans (Savcenko & Bosch, 2012), as well

as due to non-tidal variability in atmosphere and oceans (Dobslaw et al., 2013) from the

observations, the resulting gravity changes represent mass transport phenomena in the Earth

system, which are, apart from long-term trends, almost exclusively related to the global
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water cycle. Although contaminated by errors which require refined post-processing, GRACE

provides valuable information on the large-scale TWS variations.

Shortly after the launch of GRACE satellites, hydrological models were frequently applied

to explore the value of GRACE. GRACE shows its ability to detect TWS variations in con-

tinental hydrology at spatial scales of several hundred kilometers, and at time scales from

ten days to one month. Good agreements in terms of the seasonal dynamics and their

continental-scale spatial patterns were found between the TWS from GRACE and hydrolog-

ical models (Güntner, 2008). However, some large differences, for instance, the differences

in amplitude and phase of seasonal water storage variations, were found during the compari-

son. As the improvement of the GRACE processing techniques and application of new ocean

and atmosphere models to remove high-frequency signals, noises are significantly reduced of

newly released GRACE solutions than earlier releases. There was increasing confidence with

the data and the researches generally moved in reverse to evaluate the hydrological models

through GRACE data and the differences between the two were used to detect model defi-

ciencies (Syed et al., 2008a; Zeng et al., 2008). It was also suggested by Güntner (2008) to

use GRACE to improve hydrological models which was a major step to accept GRACE as a

robust source for hydrological studies. GRACE-based TWS variations were then applied to

improve models by tuning the parameters (Niu & Yang, 2006; Werth, 2010; Lo et al., 2010)

or assimilating GRACE TWS into the models (Zaitchik et al., 2008; Li et al., 2012).

GRACE TWS variations were also applied in various subjects related to hydrology. For in-

stance, the GRACE estimated TWS became a unique source to quantify variability in the

large scale water cycle that were previously unobservable. Significant groundwater depletion

caused by water withdrawing was confirmed in specific areas such as northwest and northern

India, California Central Valley and northern China (Rodell et al., 2009; Tiwari et al., 2009;

Feng et al., 2013). Since GRACE has captured all storage components of water at and un-

derneath the land surface, it was possible for the first time to close the hydro-meteorological

water budget accurately (Ramillien et al., 2006; Pan et al., 2012). On global domain, sev-

eral studies focused on the teleconnections between land hydrology and oceanography (Llovel

et al., 2010; Phillips et al., 2012). Combined with other observations, like in situ measure-

ments and rainfall data from remote sensing, GRACE provided unique assistance to monitor

the drought at certain areas of the world (Leblanc et al., 2009; Famiglietti, 2014). Besides,

GRACE-based TWS has also been used to analyze the elastic deformation of the Earth due to

hydrological masses (Kusche & Schrama, 2005; van Dam et al., 2007; Tregoning et al., 2009),

thereby providing new information on elastic properties of the Earth in different regions.
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1.3 Research objectives and outline

Although TWS from GRACE is supposed to be a highly useful variable to validate hydro-

logical and climate models, there have been only a few studies working in this field. Through

almost 14 years of development, there has been continuous improvement of the GRACE

dataset and expertise in processing. This length of the time-series together with a recently

completed reprocessing of the whole GRACE record (Dahle et al., 2012) motivates us to

investigate what can be learned from GRACE for the validation of hydrological model rep-

resentations of the global terrestrial water cycle and also for skill assessment of decadal

prediction system. Although there is a mismatch between the spatial resolution of GRACE

data and that of hydrological models, the effective spatial resolution can be extrapolated

to finer spatial scales through post-processing. Proper post-processing method is first in-

vestigated in a closed-loop environment by means of simulated GRACE-type gravity field

time-series. Using this state-of-the-art post-processing method, gridded TWS variations and

errors are estimated which can be applied not only for the specific research purpose in this

thesis but also by non-geodetic users for their own research purposes. The investigation done

in this thesis will also contribute to the specification of the planned GFZ level-3 products for

hydrometeorological applications.

The thesis is organized as follows: Chapter 2 introduces the GRACE satellite project, from

the satellite design to the principle of satellite observations. The processing method and the

processing centers are also introduced. Then the post-processing of the GRACE data-set to

estimate TWS is illustrated, including a description of the geodetic background of the gravity

determination and the detailed post-processing procedures such as the current methods of

filtering, de-striping, rescaling, basin averaging. In Chapter 3, the specific method to estimate

gridded TWS for hydrometeorological applications in this work is described in detail, where

Chapter 3.3 is published as Zhang et al. (2016). The proper post-processing strategy is first

investigated through a closed-loop environment by means of simulated GRACE-like gravity

field time-series. One main focus is on the gridded scaling factors which are estimated from

an ensemble of multiple global land model simulations with different physics and different

atmospheric forcing. An iterative method to estimate degree-1 terms from GRACE data alone

is also introduced, based on Bergmann-Wolf et al. (2014b). The total TWS uncertainties

considering measurement error, leakage error and rescaling error are also analyzed. After the

introduction of the models of interests, the gridded TWS as introduced in Chapter 3 is applied

to validate four hydrological models in Chapter 4, published as Zhang et al. (2017). Then

the topic is moving to the next concern of this thesis, the validation of decadal forecasts

in Chapter 5. Based on the preliminary introduction of the hindcast data and validation
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metrics, the application of the gridded TWS to verify the MPI-ESM hindcast experiments

is further illustrated in Chapter 5.2, which is published as Zhang et al. (2015). Finally, a

summary of the above work is given in Chapter 6 together with the outlook of the methods

to improve the quality of the TWS from GRACE and its application in future.

Bergmann-Wolf, I., Zhang, L. and Dobslaw, H. (2014). Global eustatic sea-level varia-

tions for the approximation of geocenter motion from GRACE, J. Geod. Sci., 4, 37 – 48,

doi:10.2478/jogs-2014-0006.

Zhang, L., Dobslaw, H., Dahle, C., Sasgen, I., and Thomas, M. (2015). Validation of MPI-

ESM decadal hindcast experiments with terrestrial water storage variations as observed by

the GRACE satellite mission, Meteorol. Z., doi: 10.1127/metz/2015/0596.

Zhang, L., Dobslaw, H., and Thomas, M. (2016): Globally gridded terrestrial water storage

variations from GRACE satellite gravimetry for hydrometeorological applications, Geophys

J Int., 206 (1): 368 – 378. doi: 10.1093/gji/ggw153.

Zhang, L., Dobslaw, H., Stacke, T., Güntner, A., Dill, R., and Thomas, M. (2017): Valida-

tion of terrestrial water storage variations as simulated by different global numerical models

with GRACE satellite observations, Hydrol. Earth Syst. Sci., 21, 821-837, doi:10.5194/hess-

21-821-2017.



Chapter 2

GRACE data processing

2.1 GRACE satellite mission

The GRACE satellite mission was launched in March 2002 as a joint NASA/DLR (Deutsches

Zentrum für Luft - und Raumfahrt) project. The two identical satellites of GRACE are

flying at an altitude of 450 – 500 km in a near polar orbit, one following the other with a

separate distance of around 220 km. The initial height was chosen as a compromise of small

drag effect and high resolution of gravity anomalies. The 89.5◦ orbit inclination was applied

to maximize global coverage of the Earth’s gravity field. The design life time was 5 years,

and the mission objectives were to accurately observe the global gravity field every 30 days,

at a spatial resolution of 400 km (Tapley et al., 2004b). Well beyond the first 5 years of

operation, the GRACE mission will hopefully be extended until 2017, although the orbital

height is continuously reducing (Tapley et al., 2014). A follow-on mission is already on the

schedule and planned to be launched in 2018. The concept is basically the same with evolved

versions of GRACE microwave instrument (MWI), GPS receiver, and accelerometer while a

more precise laser inter-satellite ranging instrument is also going to be tested.

The concept of direct measuring the Earth’s gravity from a satellite pair was first suggested

in the 1960s (Wolff, 1969). By the conservation of energy, when atmospheric drag and ra-

diation is neglected, the change in gravitational potential energy could be compensated by

the kinetic energy terms, for instance, the velocity differences between the two satellites.

It is deduced that the relative velocity is proportional to the geopotential difference at the

respective locations. Although some parts of this early derivation was over-simplified, as

the ignorance of atmospheric drag and radiation, this two-satellites system reduced the com-

plexity of the data processing and has fewer sources of errors than the normally applied

method at that time to measure the long-term integrated effects of gravity from position
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measurements. Subsequently, some important algorithms for its implementation were fur-

ther developed by Colombo (1984). Through the years of development, the whole concept

became mature enough to be realized as a Low-Low Satellite-to-Satellite Tracking (LL-SST)

mission. GRACE is the first realization of such a mission to map the Earth’s gravity field.

The accuracy of the mission is high enough that it is also able to detect the temporal gravity

field variations down to spatial scales of several hundred kilometers. This LL-SST principle

is also applied to the Moon. The NASA mission GRAIL (Gravity Recovery and Interior

Laboratory) is the lunar analog of the successful GRACE project and determines a higher-

resolution lunar gravity field with improved coverage on both the near side and the far side

of the Moon (Zuber et al., 2013; Klinger et al., 2014).

When the GRACE satellites fly over an area located on the Earth’s surface with a gravity

anomaly, the orbit of the two satellites will be perturbed at slightly different time due to

different distance to the source. The leading satellite first senses the anomaly that causes a

small orbit perturbation, while the trailing satellite feels the same perturbation afterward with

a time delay. This causes range changes between the two satellites, which are measured by

a two-way, K/Ka-band microwave-ranging system (KBR). The ranging system provides the

information of the changes in the satellites’ distance, velocity and acceleration in the form of

biased ranges, range-rates and range-accelerations separately. The additional perturbations

by non-gravitational forces, such as atmospheric drag and pressure of solar radiation are

accounted for using on-board high-frequency accelerometer at the center of mass. Besides

that, each satellite is also equipped with GPS receivers for precise time-tagging and orbit

determination. For mapping the inertial orientation of the satellites, a pair of star camera

assemblies are provided for each satellite (Schmidt et al., 2008). From the information of

observed changes in the inter-satellite distance, position and acceleration of each satellite,

the Earth’s gravity field can be determined.

2.2 Data processing procedure and analysis centers

The data processing of the GRACE science data is regularly handled by the three processing

centers within the GRACE Science Data System (SDS): the Geoforschungszentrum in Pots-

dam, Germany (GFZ), the NASA Jet Propulsion Laboratory (JPL), and the Center for Space

Research at the University of Texas, Austin (UTCSR). The SDS is designed to perform all

gravity field processing steps to produce monthly mean gravity fields. These centers process

the data differently in terms of the applied background models, the integrated orbit period,

data weights, and the maximum degree of the estimated gravity harmonics (Wouters et al.,
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2014). The data products are categorized according to the processing level that has been

applied. Level-1 products are reprocessed, time-tagged and normal-pointed instrument data

including the K-band ranging, accelerometer, star camera and GPS data of both satellites.

Level-2 data are the monthly and mean gravity field derived from calibrated and validated

GRACE level-1 data product. This is generally done using the “dynamical orbit approach”

through an iterative procedure by analyzing the relationship between orbits and forces on

GRACE satellites. For a satellite in a geocentric inertial frame, Newton’s equation of motion

is expressed as:

~̈r = ~f(t, ~r, ~̇r)/m = ~ag + ~ang, (2.1)

where m is the mass of the satellites, ~r, ~̇r and ~̈r are the vectors of the satellite’s position,

velocity and acceleration, and ~f is the force exerting accelerations (~a) on the satellite. The

subscript “g” denotes gravitational (conservative) acceleration and “ng” denotes accelerations

due to non-gravitational (non-conservative) forces. The non-gravitational accelerations for

GRACE include effects mainly from atmospheric drag and radiation pressure of the Sun and

the Earth, all of which are measured by the accelerometers of the GRACE satellites. The

gravitational acceleration is the sum of the contributions from the static Earth’s geopoten-

tial, tides, non-tidal atmospheric and oceanic variations, and the perturbations due to the

celestial bodies, which are expressed by a-priori best-known geopotential models, also called

background gravity models (Dahle et al., 2012). The non-tidal oceanic and atmospheric

mass variations are obtained from external models to reduce the aliasing effect, which is

referred to as de-aliasing. For instance, non-tidal high-frequency atmospheric and oceanic

mass variation models are routinely generated at GFZ as so-called Atmosphere and Ocean

De-aliasing Level-1B (AOD1B) products which are added to the static gravity model when

GRACE monthly gravity field is estimated. The background models are then used to deter-

mine the orbit of both satellites, which are compared with the satellite observations (KBR

range, range-rate, range-acceleration and GPS-phase measurements). The non-linear relation

between the observations and the targeted parameters is linearized with respect to a set of

initial parameters. A set of improvements of the initial parameters are calculated by minimiz-

ing the difference between observed and predicted orbits estimated in a least squares way for

a selected time span. To guarantee a sufficient coverage, the data is sampled every month.

Shorter time intervals lead to a smaller number of Stokes coefficients and a lower spatial

resolution (Cazenave & Chen, 2010). For several months, the GRACE satellites have a poor

ground coverage because of occasional repeat orbits, for instance, when the satellites were

in a so-called 61/4 resonance orbit. For these months, regularized and constrained solutions

are also provided by the GRACE data centers. By applying a regularization of the equations
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of observations based on Kaula’s power law (Section 2.3.4, Kaula, 1966), the solutions are

constrained by information from a priori background models.

There has been continuous improvement of the processing techniques and the current version

of GRACE Level-2 products from SDS is Release 05. Since major differences are found

between the GFZ RL05 time series compared to CSR’s and JPL’s, the whole RL05 time

series has been reprocessed and redistributed as RL05a time series.

Besides the SDS-groups, other research groups also provide GRACE solutions, which include

the Goddard Space Flight Center (NASA/GSFC; Rowlands et al., 2005), the Delft Institute

of Earth Observation and Space Systems (DEOS; Klees et al., 2008), the Groupe de Recherche

de Geodesie Spatiale (GRGS; Lemoine et al., 2007), the Institute of Geodesy at University

of Graz (Mayer-Gürr et al., 2014; Klinger et al., 2016), the Institute of Theoretical Geodesy

(ITG) at the University of Bonn (Eicker, 2008; Mayer-Gürr, 2006), the Astronomical Institute

of the University of Bern, Tongji University (Tongji; Chen et al., 2016) and others. Some of

these groups also provide 10-day solutions and are working on daily solutions as well. Some

groups also estimate water storage variations directly from the level-1B measurements, so

called mass concentration block (mascon) solutions. Masses at points or uniform distributed

over a certain region are assumed as mascon basis. The mascon basis functions are then

related to the range-rate measurements by explicit partial derivatives. There are, however,

two ways to express the mascon basis function. One is represented by an analytic expression

(Watkins et al., 2005), while the other uses Stokes coefficient representations (Rowlands

et al., 2010). The sets of lumped Stokes coefficients are rescaled to fit the K-band range

rate observations. As constraint equations from a priori information are applied during the

least squares inversion, which largely improves the signal-to-noise ratio, post-processing as

smoothing and de-striping is therefore not as important as for the unconstrained spherical

harmonic solutions. The monthly gravity field variations in terms of 4,551 equal-area 3-degree

spherical cap mascons (JPL RL05M Mascon solution; Watkins et al., 2015) can be downloaded

from Tellus website, while a global set of 41,168 1x1 arc-degree equal-area mascons are also

provided by the NASA GSFC global mascon products (Luthcke et al., 2013).

2.3 Post-processing of GRACE gravity field models

GRACE level-02 products are classically provided as sets of spherical harmonic coefficients.

As unconstrained harmonic solutions from GRACE are contaminated by the noisy short wave-

length components and suffer from poor sensitivity to east-west gradients, a post-processing

procedure has to be applied to derive reliable surface mass variations from these coefficients.
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First, a mathematical description of the gravity potential is needed to represent the gravity

field of the Earth.

2.3.1 The Earth’s gravity field

According to Newton’s gravitational law, the gravitational force between any two particles

with masses M and m attracted to each other can be expressed as:

F =
GmM

L2
. (2.2)

G is the universal gravitational constant: G = 6.6742 × 10(−11)m3kg(−1)s(−2). When one of

the masses is significantly larger than the other, the smaller mass can be set to unity and

larger one can be denoted as M . The gravitational potential V is the potential energy in the

field due to M per unit mass and also the integration over space of the gravity field:

V =
GM

L
. (2.3)

Vice versa, the gravity field which is a conservative quantity, can be expressed as the spatial

derivative of the gravitational potential V . The potential V satisfies Poisson’s equation:

∆V = −4πρG, (2.4)

where

∆V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
. (2.5)

Since outside the attracting masses the density ρ would be zero, 2.4 becomes:

∆V = 0. (2.6)

This equation 2.6 is called Laplace’s differential equation and ∆ is called the Laplace operator.

It is advantageous to use spherical coordinates for Earth, so the Laplace’s equation is re-

written using the spherical harmonic functions as :

∆V = r2 ∂2V

∂r2
+ 2r

∂V

∂r
+

∂2V

∂ϑ2
+ cot ϑ

∂V

∂ϑ
+

1

sin2ϑ

2V

∂λ2
= 0. (2.7)
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By solving the Laplace’s equation, the potential of gravitational attraction between a unit

mass and the Earth system can be expanded into a series of spherical harmonic functions

(Heiskanen & Moritz, 1967):

V (r, ϑ, λ) =
GM

r
+

GM

r

N∑

l=0

(
R

r
)l

l∑

m=0

[ClmP̃lm(cos ϑ) cos mλ + SlmP̃lm(cos ϑ) sin mλ], (2.8)

where r, λ, ϑ are radius, longitude, and co-latitude of the point outside the Earth. R is

the semi-major axis of a reference ellipsoid. The term (R
r )l is used here to fulfill being 1

at the surface and being smaller than 1 in the exterior to solve the boundary problem for

representing the potential outside Earth’s surface. Clm and Slm are the spherical harmonic

coefficients with l, m being degree and order. The Legendre functions P̃lm(cos ϑ) are fully

normalized as:

P̃lm(cos ϑ) =

√
k(2l + 1)

(l − m)!

(l + m)!
Plm(cos ϑ). (2.9)

where k = 1 when m = 0 and k = 2 when m 6= 0.

2.3.2 Gravity changes due to surface mass

A gravity model consists of numerical values for the Stokes coefficients Clm and Slm . In Wahr

et al. (1998), a procedure is outlined for using gravity measurements to determine changes

in surface mass. If ρ(r, ϑ, λ) is the density redistribution causing the gravity changes, the

time-variable Stokes coefficients can be represented by the density redistribution:





∆Clm

∆Slm



 =

3

4πRρave(2l + 1)

∫
∆ρ(r, ϑ, λ) × P̃lm(cos ϑ)(

r

R
)l+2





cos mλ

sin mλ



 sin ϑdϑdλdr.

(2.10)

where ρave is the average density of the Earth and the symbol ∆ here is to indicate that we

are dealing with anomalies with respect to the long-term average. The mass redistribution

can be assumed to happen only in the Earth’s surface layer and ρ can therefore be seen as the

changes only in this thin layer with a thickness of around 10-15km. Thus, ( r
R )l+2 in Eq. 2.10

equals 1 and the density changes can be interpreted as changes in surface density σ(λ, ϑ).





∆Clm

∆Slm



 =

3

4πRρave(2l + 1)

∫
∆σ(ϑ, λ) × P̃lm(cos ϑ)





cos mλ

sin mλ



 sin ϑdϑdλ. (2.11)

The changes of surface mass can cause the direct gravitational changes, while the surface

mass variation in loads will cause deformation to the solid Earth which indirectly induces
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also gravitational changes. These two influences can be described by the term 1 + kl (Farrell,

1972). Consequently, Eq. 2.11 is expanded as follows:





∆Clm

∆Slm



 =

3(1 + kl)

4πRρave(2l + 1)

∫
∆σ(ϑ, λ) × P̃lm(cos ϑ)





cos mλ

sin mλ



 sin ϑdϑdλ. (2.12)

In another way, surface mass changes can be calculated from the changes in the potential

coefficients as:

∆σ(ϑ, λ) =
Rρave

3

∞∑

l=0

l∑

m=0

2l + 1

1 + kl

× (∆ClmP̃lm(cos ϑ) cos mλ + ∆SlmP̃lm(cos ϑ) sin mλ).

(2.13)

For simplicity, ∆σ could also be expanded from surface density coefficients as:

∆σ(ϑ, λ) = Rρw

∞∑

l=0

l∑

m=0

(∆ĈlmP̃lm(cos ϑ) cos mλ + ∆ŜlmP̃lm(cos ϑ) sin mλ). (2.14)

The ratio ∆σ/ρw yields the variation in equivalent water height (EWH), which will be used

frequently during the analysis of the monthly solutions in the following of the thesis. The

relation between the surface density coefficients and the gravitational potential ones can then

be expressed as: 



∆Clm

∆Slm



 =

3ρw

ρave

1 + kl

2l + 1





∆Ĉlm

∆Ŝlm



 . (2.15)

Eq. 2.13 holds true under the assumption that mass redistribution takes place at the sphere

of radius R. As the accuracy of GRACE data processing increases, the inaccuracy of this

assumption could not be neglected. Instead, it can be assumed that mass transport takes

place at the surface of the reference ellipsoid which is closer to the reality. It has been

demonstrated by Ditmar (2015) that the ellipsoidal approximation reduces the inaccuracies

from 10 % to 1 %. To simplify the computation, the locally spherical approximation could

be used. Then the surface mass changes can be expressed as Ditmar (2015):

∆σ(ϑ, λ) =
Rρave

3

∞∑

l=0

l∑

m=0

(
a

r(ϑ, λ)
)l+2 2l + 1

1 + kl

× (∆ClmP̃lm(cos ϑ) cos mλ + ∆SlmP̃lm(cos ϑ) sin mλ),

(2.16)

where r(ϑ, λ) is radius of the point on the Earth’s surface. In practice, the gravity field cannot

be estimated with unlimited spatial resolution. Therefore, a certain truncation degree needs
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to be set as in Eq. 2.13. The maximum degree lmax relates to the spatial resolution at the

Earth’s surface as

λmin ≈ 40000km/(lmax + 0.5), (2.17)

where λmin is the minimum wavelength of the gravity field. A reasonable maximum degree

depends on the precision of the available data, the measurement altitude and also the specific

purpose of gravity field modelling.

2.3.3 GRACE Stokes coefficients

The GRACE level-2 data are provided as sets of fully normalized spherical harmonic co-

efficients: Clm, Slm, also called Stokes coefficients. In this thesis, two current releases of

gravity variations provided by GFZ (RL05 and RL05a) are applied, which are published up

to degree and order 90 (Dahle et al., 2012). For our thesis, we use the data covering the

time span from 01/2003 to 12/2012 where one month is missing due to a 4-day repeat orbit

(06/2003) and four are missing due to the battery status of the satellites and switch-offs of

the K-band device (01/2011, 06/2011, 05/2012, 10/2012). Atmospheric and oceanic non-tidal

mass redistribution and tidal effects are removed during the GRACE data processing using

proper background models (Dahle et al., 2012). Stokes coefficients anomalies are obtained

by reducing a multi-year average.

As the term ∆C00 is proportional to the total mass of the Earth system, it is regarded as

a constant due to mass conservation. Degree 1 coefficients are proportional to the position

of the center of mass of the Earth relative to the center of the figure (Wahr et al., 1998),

which is commonly denoted as geocenter motion (Petit & Luzum, 2010). Geocenter effects

are not measured by GRACE due to the fact that the center of mass is also the center of

the orbit of the two GRACE satellites. Hence, this data needs to be taken from external

sources. Geocenter motion is typically derived from satellite laser ranging (SLR) observa-

tions to geodetic satellites. Observations of GPS permanent stations are also used to derive

geocenter variations (Blewitt et al., 2001; Fritsche et al., 2010). Besides, joint inversions of

several different observations as, satellite altimetry over ocean, in situ ocean bottom pressure

observations, GPS permanent station observations and GRACE time-variable gravity fields

have also shown promising results (Davis et al., 2004; Rietbroek et al., 2012). For this thesis,

the degree 1 terms are estimated from GRACE products alone following the method proposed

by Swenson et al. (2008). The detailed algorithms are given in Section 4.2.

The degree 2 coefficients are related to the Earth’s inertia tensor. The zonal C20 coefficient,

which is related to the flattening of the Earth, is not well determined by GRACE, because
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Figure 2.1: The comparison of the C20 anomalies from the GRACE SH coefficients and the
ones estimated from SLR.

of the orbital geometry of GRACE and the short distance between the two satellites (Tapley

et al., 2004a). Therefore, it is typically replaced by external sources, where usually estimates

from Satellite Laser Ranging (SLR) are applied. Fig. 2.1 shows the comparison of the C20

anomalies with the mean removed from GRACE SH coefficients and the ones estimated from

SLR (Cheng et al., 2011). Besides the effect of mass variation due to water storage change

within a thin layer at the Earth’s surface, GRACE can also detect the mass changes in the

Earth’s interior. The processes as mantle convection and plate subduction lasts over a very

long time scale so that they can be assumed as static over the GRACE period. The effect of

glacial-isostatic adjustment (GIA), which is due to Earth’s ongoing viscoelastic response to

the retreat of the major ice sheets, can cause long-term gravity changes on time scales from

1,000 to 100,000 years. To study hydrological loads on land, the GRACE data are therefore

corrected for GIA from a model, given by, e.g., Paulson et al. (2007), which is provided in

spherical harmonic coefficients ∆CGIA
lm ∆SGIA

lm . Furthermore, quite large earthquakes, such as

the Sumatra-Andaman Earthquake on 24/12/2004, Maule Earthquake (Chile) on 27/2/2010

and Tohoku Earthquake (Japan) on 11/3/2011 cause displacements of the Earth’s lithosphere

to generate gravity changes that can be detected by GRACE. However, during the GRACE

period, most strong earthquakes occurred over the oceans which are not the focus of this

thesis, so no correction has been applied.

2.3.4 GRACE uncertainty characteristics

The errors of GRACE potential coefficients generally fall into these categories: 1) Measure-

ment errors of the instruments (caused by system-noise error in KBR range-rate observations,
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accelerometer error, and orbit errors), 2) spatial and temporal sampling errors and 3) inac-

curacies in the background models, which are investigated in more detail in Schmidt et al.

(2007). As shown in Eq. 2.8, the external gravitational potential decays inversely with dis-

tance from its source, which also depends on the spatial wavelength. Thus the gravity field is

dominated by large scale variations while shorter scale variations are damped with increasing

distance from the sources. Measurement errors are amplified in the same way and cause the

Stokes coefficients uncertainties to become larger with increasing spherical harmonic degree

and order. The near-polar orbit with 89.5◦ inclination leads to an orientation of the ground

tracks in North-South direction. As a result, the observations are highly sensitive in this di-

rection, but very limited along the East-West direction. The uncertainties in the background

models will cause alias errors, which is further manifested as north-south oriented strips in

the spatial gravity field (Fig. 2.2). This is even worse when orbits are repeated in a month

or longer time intervals which cause a shortage of data. Fig. 2.3 shows the latitude weighted

root mean square (wRMS) of the gridded TWS variations, and we can see the peak values

which are caused by the sparse ground track coverage due to occasional repeat orbits.

Signal spectra represents the amplitude of the Earth’s gravity field signal. The degree am-

plitude spectrum expressed as:

∆σl = R

√√√√
l∑

m=0

(∆C2
lm + ∆S2

lm), (2.18)

where R is the spherical earth radius, shows the expected geoid height anomaly amplitude. It

includes contributions from all orders at each degree to the total variance of the geoid height

anomaly. It is demonstrated that the degree amplitudes meet approximately the so-called

Kaula rule (Kaula, 1966):

σl√
2l + 1

≈ 10(−5)

l2
. (2.19)

Meantime, the analogous quantity error spectra can also be derived from Eq. 2.18 with the

estimated uncertainties in the potential coefficients. Fig. 2.4 shows the amplitude spectrum

of both the GRACE signal and errors for the month 04/2003. It is seen that the error of

the GRACE Stokes coefficients increases with the degree, corresponding to increased spatial

resolution. The formal errors are believed to be too optimistic, particularly for low degrees,

which could be caused by the underestimation of the influence of inaccurate background

models (Schmidt et al., 2007). To account for this shortcoming, formal errors are calibrated

according to Schmidt et al. (2008) by applying a degree-dependent scaling factor in order to

match certain characteristics of the fields. The calibrated errors provided by GFZ which are

the diagonal elements of the covariance matrix are shown as well.
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(a) Unfiltered (b) 300km Gaussian

(c) 750km Gaussian (d) DDK2

Figure 2.2: Gridded TWS estimated from GRACE GFZ RL05a gravity field when no filter
is applied (a), and also the ones filtered with 300km Gaussian (b), 750km Gaussian (c), and
DDK2 (d).
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Figure 2.3: Global wRMS of unfiltered gridded TWS variations from GFZ RL05a.



34 Chapter 2. GRACE data processing

0 10 20 30 40 50 60 70 80 90
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Degree

G
eo

id
 H

ei
gh

t (
m

)

 

 
Signal
Formal Error
Calibrated Error
Kaula rule

Figure 2.4: The GRACE signal and error degree amplitude for GFZ RL05a gravity field
solutions from 04/2003.

2.3.5 Filtering and destriping

As shown above, coefficients of high degree contain large noise and correlated errors. There-

fore, it is necessary to filter the Stokes coefficients to balance the trade-off between the gravity

field’s spatial resolution and its accuracy. The filter coefficients can be applied as:

∆σ(ϑ, λ) =
Rρave

3

∞∑

l=0

l∑

m=0

1 + kl

2l + 1

× (F C
lm∆CnmPlm(cos ϑ) cos mλ + F S

lm∆SnmPlm(cos ϑ) sin mλ).

(2.20)

A normally applied method is the isotropic Gaussian filter (Jekeli, 1981), which changes

gradually from the highest weight at its center, to half the value at a certain distance on

the surface of the Earth which is also denoted as the smoothing radius, then to zero at large

distance from the center. The analytical function that approximates the Gaussian filter can

be expressed as:

Wl = exp(−(lr/R)2

r ln 2
), (2.21)

while the recursion formulas can be found in Wahr et al. (1998). However, the Gaussian

kernel is independent of orientation while the noises in the GRACE data have a so-described

“striping” pattern. Therefore, a very large filter radius is often needed which causes a large

damping and leakage effect.

Alternatively, non-isotropic filtering methods were developed by Swenson & Wahr (2002), Han

et al. (2005) and Chen et al. (2007). Swenson & Wahr (2006) pointed out that the stripes in

the surface mass variability estimates are connected with correlations in the spectral domain
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for even and odd degree, separately. A quadratic polynomial is thus fitted in a moving

window to the Stokes coefficients of like parity and and subtracted from the original Stokes

coefficients (appendix A.1). Although the stripes are significantly reduced, the filter performs

poorly near the equator. A Gaussian filter therefore needs to be applied afterward. Kusche

(2007) combines decorrelation and smoothing with a new filter method: the DDK filter. It

imitates the regularization of the normal equations during the GRACE data processing, using

a-priori knowledge of the signal and error information (appendix A.2). Fig. 2.2 b, c, and

d shows the filtered TWS variations by Gaussian filter for a radius of 300 km (indicated as

300km Gaussian filter), 750km Gaussian and DDK2 for the month 04/2003.

2.3.6 Basin function

Through the data post-processing, the gridded TWS variations are estimated (Fig. 2.2). It

should be kept in mind, however, the observations are not point-measurements but rather a

spatial average over a certain region due to the indirect observing principle of GRACE. Eq.

2.17 shows the relation between the spatial resolution and the the maximum degree used for

spherical harmonic expansion. One can average the gridded TWS over areas of interests:

∆σregion =
1

Ωregion

∫
∆σ(ϑ, λ)B(ϑ, λ)dΩ, (2.22)

where dΩ = sin ϑdϑdλ is an element of solid angle, and B(ϑ, λ) describes the shape of the

target area, with a simplest form given by:

B(ϑ, λ) =





0 if (ϑ, λ) ∈ Ω − R

1 if (ϑ, λ) ∈ R
, (2.23)

where Ω denotes the entire Earth’s surface and R the interested region. If the analysis is

performed in spectral domain, the basin function can be expressed as:

B(ϑ, λ) =
1

4π

∞∑

l=0

l∑

m=0

P̃lm(cos ϑ) · (BC
lm∆ cos mλ + BS

lm sin mλ). (2.24)

The basin-averaged water storage over an arbitrary region can be calculated directly from

the spherical harmonics of surface density, basin function and the filter:

∆σ(ϑ, λ) =
Rρave

3

∞∑

l=0

l∑

m=0

2l + 1

1 + kl

× (F C
lmBC

lm∆CnmP̃lm(cos ϑ) cos mλ + F S
lmBS

lm∆SnmP̃lm(cos ϑ) sin mλ)

(2.25)
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Due to the truncation of the series to degree lmax, the basin function does not represent the

shape of the target area accurately and ringing appears in the reconstructed basin function

paralleling inside and outside of the basin boundary, which is called Gibbs phenomenon

(Swenson & Wahr, 2002). Besides, it is seen from Eq. 2.25 that the surface density coefficients

can be multiplied with the filter coefficients and the coefficients of the basin function in any

order.

2.3.7 Rescaling

The filtering required to reduce GRACE errors will lead to attenuation of the signal ampli-

tude. Besides, water in the surrounding areas will leak into the targeted area, which cause

a leakage effect. Because of the bias and leakage problems, there will be under- or overes-

timation of water storage change, depending on the mass distribution. The leakage effect

depends on filter size, basin area and the amplitude of mass variations inside and outside

the target area (Klees et al., 2007). The larger the filter, the more signal is leaked outside

and the more the surrounding region is sampled. Furthermore, the attenuation effect in-

creases with decreasing basin size. Fig. 2.5a shows the original basin function, Fig. 2.5b the

reconstructed basin function using the spherical harmonics truncated to degree lmax = 90

and Fig. 2.5c and d the result after filtering the circular function with a Gaussian filter

and DDK2 separately. The truncation of the basin function already arises the leakage effect.

After filtering, the leakage effect is further amplified. Rescaling can be applied to restore

the signal, at basin scale or on the grid. Three methods to remedy the signal alteration are

introduced by Long et al. (2015). (1) The first method is called scaling-factor approach. A

scaling factor is obtained from the least squares fit between the filtered and unfiltered TWS

changes from a hydrology model and applied on the filtered TWS changes. (2) The additive

correction approach calculates the bias and leakage using output from a hydrological model

and obtains the restored TWS as S0 = Ŝ0 + SB − SL (Klees et al., 2007; Longuevergne et al.,

2010). Ŝ0 is the filtered GRACE TWS at a catchment:

Ŝ0 =
1

R0

∫

Ω
Ŝ · BdΩ. (2.26)

SB and SL are the bias and leakage respectively which can be estimated from the output S0

and Sleak from a hydrological model. They are expressed in the following equations assuming

that the filter is applied on the basin function:

SB =
1

R0

∫

R
S0(B − B̂)dΩ, (2.27)
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(a) (b)

(c) (d)

Figure 2.5: The exact basin function for Amazon basin (a), the reconstructed basin function
using the spherical harmonics truncated to degree lmax = 90 (b) and the filtered basin
function with 300km Gaussian (c) and DDK2 (d) separately.
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SL =
1

R0

∫

(Ω−R)
SleakB̂dΩ. (2.28)

3) The multiplicative correction approach assumes that water is uniformly distributed in a

basin (Velicogna & Wahr, 2006; Longuevergne et al., 2010), and obtains the reconstructed

TWS by rescaling the leakage corrected TWS:

S0 = (Ŝ0 − SL) · K, (2.29)

by the multiplicative factor:

K = (
1

R0

∫

R
B̂dΩ)−1. (2.30)

Since we are estimating gridded TWS variations, the scaling-factor approach is used which

can also be applied on a grid scale. Landerer & Swenson (2012) has provided 1 ◦ × 1◦ TWS

estimates from GRACE using NOAH land model, running withing the Global Land-Data

Assimilation System (GLDAS-NOAH). Long et al. (2015) applied the same approach using

six land surface models (LSMs) and studied the impact of hydrological model uncertainties on

the restored GRACE TWS anomalies. It is concluded that there are large impacts from the

LSMs uncertainties especially in regions that are highly irrigated and/or arid and semiarid

regions. The investigation, however, was only limited to the land surface models, most of

which are close to each other in a way and did not consider the rescaling uncertainties within

the TWS error estimation.



Chapter 3

GRACE-based gridded TWS

variations and uncertainties

This chapter illustrates the specific way to estimate gridded TWS variations and uncertainties

from GRACE gravity data in this thesis by applying the state-of-the-art post-processing

procedure. Before that, post-processing methods are tested in a closed-loop environment

by means of simulated GRACE-type gravity field time-series based on realistic orbits and

instrument error assumptions as well as background error assumptions out of the updated

ESA Earth System Model. Through the simulation test, it is intended to find the appropriate

post-processing strategy applicable for the real GRACE data set. Furthermore, the method to

estimate the approximated geocenter variations from GRACE monthly mean gravity fields

alone will also be introduced. The degree-1 terms from the geocenter variations are then

added to the GRACE gravity Stokes coefficients for further TWS estimation.

3.1 Investigating post-processing strategy on GRACE-like TWS

variations for hydrological applications

As mentioned earlier, post-processing as filtering, de-striping and rescaling are needed to

estimate TWS starting from the GRACE gravity stokes coefficients. For instance, different

filtering methods from the basic Gaussian smoothing to the non-isotropic filtering (Swenson

& Wahr, 2002; Han et al., 2005; Chen et al., 2007; Swenson & Wahr, 2006; Kusche, 2007)

have been suggested to remove the high-frequency and correlated errors in GRACE gravity

data. However, as an unique way to provide global large scale TWS variations, there is

no independent data set that is comparable to validate the GRACE TWS estimates yet.
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Simulation studies are generally performed before the launch of any satellite mission to find

the balance between the scientific target and the overall mission expenses (Wiese et al., 2012;

Loomis et al., 2012). These simulation results can also be applied to test the GRACE post-

processing strategies in a closed-loop environment where the estimated TWS can be compared

with the ones from the source model used in the initial orbit simulation. Flechtner et al. (2016)

have performed such a full-scale simulation to investigate possible improvements of the laser

ranging interferometer (LRI) technology demonstrator with respect to the basic microwave

instrument (MWI) on GRACE Folllow-on (GRACE-FO). The MWI -based simulation data

is applied here to investigate the optimal post-processing strategy for hydrometeorological

applications. The residuals between recovered TWS variations and those from the true world

source model provide another way to quantify the GRACE-based TWS uncertainties and to

quantify how much we can reduce the GRACE/GRACE-FO TWS errors in future.

3.1.1 Simulation strategy

First, the simulation assumptions and strategy are introduced based on Flechtner et al.

(2016). The simulation experiments covering five years from 01/2002 to 12/2006 are done

based on a GRACE-like mission design. The initial altitude of the simulated orbits is 490

km which ends at 450 km after 5 years. This GRACE-like orbits also have an inclination of

89.0◦ and an eccentricity of 0.0015. An annual reset of the inter-satellite distance is applied

to keep it between 170 km to 270 km. Besides, the solar activity values which are needed

for both the non-gravitational forces and accelerometer data simulation are taken from the

period 1995-1999 .

For the simulation, the first step is to forward the satellites’ orbits and the true satellite-

to-satellite tracking (SST) range-rate observations by propagating the satellites with a set

of force models and initial conditions. The same software package is applied as for real

GRACE data analysis: GFZ’s Earth Parameter and Orbit System (EPOS). The background

models used here for simulation is composed of a static gravity model up to degree and

order 100 (EIGEN-GL04C; Förste et al., 2008), 8 main constituents of the ocean tides from

EOT08a (Savcenko & Bosch, 2008)), Sun and Moon ephemerides (DE405; Standish, 1998),

and non-tidal mass variations in atmosphere, oceans, hydrology, ice, and solid Earth from

the updated ESA Earth system model (Dobslaw et al., 2015; Bergmann-Wolf et al., 2014a).

For the non-gravitational forces, atmospheric drag (Hedin, 1987), solar radiation, and Earth

albedo (Knocke et al., 1988) are modeled and transformed to acceleromenter data (ACC).

Then 5-seconds orbits and SST observations are simulated.
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In the next step, colored noise is added to the observations. The 5-seconds SST microwave

instrument (MWI) noises are modeled as amplitude spectral density (ASD) (Elsaka et al.,

2014). The range-rate errors resulting from the accelerometry are derived from the inverse

fast Fourier transform over the spectral density of GRACE-like accelerometer errors following

the same procedure as Loomis et al. (2012).

The last step is to recover the gravity field from the simulated observations and added colored

noises in the first two steps. In order to simulate an error level that is as realistic as possi-

ble, the background models are substituted here. The static gravity model and ocean tides

are replaced by EGM96 (Lemoine et al., 1997) and GOT4.7 separately. For the non-tidal

atmospheric and oceanic mass variability, the realistically perturbed de-aliasing model from

the updated ESA Earth system model is employed (Dobslaw et al., 2016). Finally the 60

monthly gravity field models, expressed in terms of fully normalized SH coefficients up to

degree and order 100 are obtained by performing again with the EPOS software.

3.1.2 The updated ESA Earth system model

As mentioned above, a model of the non-tidal mass variations at the Earth’s surface is

needed for the orbit computation. The updated ESA Earth system model is a new synthetic

model which includes the mass variations in atmosphere, oceans, hydrology, ice, and solid

Earth (AOHIS). Both the individual component and the sum of it are provided as spherical

harmonic coefficients up to degree and order 180 with a temporal resolution of 6 hours

covering a period from 1995 to 2006. The atmospheric component is represented by the

latest ECMWF re-analysis data, ERA-Interim (Dee et al., 2011). A modified IB correction

has been applied to remove the correlation between the atmospheric and oceanic component

of ocean bottom pressure (Dobslaw et al., 2016). The ice component in Greenland and

Antarctica is modeled with the regional climate model RACMO2 (Ettema et al., 2009), while

the low-frequency ice mass balance particularly determined by the ice dynamics, are taken

from the re-synthesized ESM of Gruber et al. (2011). Ice mass balance for mountain glaciers

and isolated ice-caps is included as linear trends for four groups of glaciers in Alaska, the

European Alps, the Karakoram Mountain Range, and the Himalaya (Bergmann-Wolf, 2015).

The Solid Earth component which includes three different signals: 1) GIA secular trends, 2)

co-seismic deformations due to the Sumatra-Andaman earthquake between 00:00 and 6:00

on December 26th and (3) linearly increasing post-seismic deformation over one year, is also

from the ESM of Gruber et al. (2011). The ocean component is composed of two models:

(1) the Ocean Model for Circulation and Tides (OMCT; Thomas et al., 2001) and (2) the

STORM experiment from the MPIOM model (von Storch et al., 2012). As OMCT can not
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resolve the small scale variability, it mainly contributes to the lower spherical harmonics up to

degree and order 60, whereas MPIOM contributes with the small-scale features from degree

and order 61 to 180. The hydrology component is taken from the Land Surface Discharge

Model (LSDM; Dill, 2008) -which will be introduced in detail in Section 4.1)- forced with the

atmospheric fresh water and energy fluxes from ERA-Interim.

3.1.3 GRACE-like TWS estimation

Starting from this simulated gravity data, the TWS variations are estimated by applying

different post-processing strategies. The SH coefficients are firstly truncated to degree and

order 90 to be consistent with the real GFZ GRACE data. Then a multi-year mean covering

the whole five year period is removed to obtain anomalies. The degree-1 terms are not

considered here, and the C20 is substituted by the suggested GRACE TN07 values. Similar

with GRACE, the GRACE-like monthly solutions are also contaminated by satellite errors

mainly in the short wavelength (high degree) Stokes coefficients, and also aliasing errors due

to the under-sampling of the short-term geophysical signals. The approximate decorrelation

and non-isotropic smoothing method (DDK) introduced by Kusche (2007) is used here to

remove such errors. Smoothing in space domain is enabled through a tuning parameter of the

signal covariance matrix. Three different versions of DDK filter (DDK1, DDK2 and DDK3)

that are approximately corresponding to an isotropic Gaussian radius of 530 km, 340 km and

240km separately (see Table A.1) are applied. The filtered spherical harmonic coefficients are

synthesized into mass anomalies on the 1 ◦ × 1◦ grids following the conventions of Wahr et al.

(1998). Filtering and smoothing applied to the GRACE data will cause the basin-averaged

TWS to deviate from the true value due to reduction of variance and incorporation of TWS

variations from regions outside the basins of interest. In order to account for this effect, local

re-scaling factors are introduced. The re-scaling factors are estimated from a small ensemble

of four global hydrological models (GLDAS, WGHM, JSBACH, and MPI-HM). The median

re-scaling factor is also calculated from these models to make it less affected by deficiencies

in a certain model. Detailed introduction of these models are shown in Section 4.1 and the

way to estimate the re-scaling factors will be illustrated in the Section 3.3. Since the main

focus in this work is on the land water, the signals from ice and solid earth are removed over

the same period. The gridded TWS variations are then averaged over the 50 largest basins.
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Figure 3.1: Global wRMS of unfiltered gridded GRACE-like TWS variations over the land
(excluding Greenland and Antarctica).

3.1.4 Post-processing strategy investigation in a closed-loop environment

The estimated TWS variations are compared with the H component of the time variable

AOHIS a priori model used for the simulation, which can be assumed as the “truth”. To get

a first impression on the quality of the GRACE-like TWS, global wRMS of the unfiltered

GRACE-like TWS over the continent (excluding Greenland and Antarctica) are shown in

terms of EWH. It is seen in Fig. 3.1 that there are four peaks in 02/2002, 08/2003, 03/2005

and 11/2005, which are due to the imperfect ground track coverage.

The differences between GRACE-like TWS and the variations from the H components are

calculated over the continent. The time series of wRMS of the differences are shown and

then we analyze the RMS of the differences (RMSD) covering the whole five year period

in space domain. The RMSD comparison is shown for both grids on land and also the

individual targeted basins. The performance of the different post-processing strategy is tested

by comparing the minimum, maximum and wRMS of the RMSD.

3.1.4.1 Filtering

First, the appropriate DDK filter for the GRACE-like monthly gravity data is investigated.

The wRMS time series of the differences between the GRACE-like TWS filtered with DDK1,

DDK2 and DDK3 separately without re-scaling and the H component are shown in Fig. 3.2.

Generally, the application of DDK3 results in smaller wRMS compared to DDK1 and DDK2,

except in those much noisier months as shown in Fig. 3.2, while the DDK1 performs just the
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Figure 3.2: Global wRMS time series of the differences between the H component and the
GRACE-like TWS variations filtered with DDK1, DDK2, DDK3 without re-scaling.

opposite. DDK2 lies in between and more close to DDK3, but does not show those peaks as

DDK3. Fig. 3.3 exhibits the RMSD for the 50 chosen basins, where minimum, maximum

and wRMS of the global values are also shown.

The “best” filter differs from basin to basin, depending on the basin size, shape and location,

as indicated by Werth et al. (2009) when evaluating several filter methods for hydrological

applications on a number of large river basins. For all the basins considered, DDK2 performs

slightly better here, unlike the comparison on grids, as the basin averaging itself suppresses

the noises at high degrees to some extend. Thus, DDK2 is chosen for the following calculation.

3.1.4.2 Rescaling

Gridded scaling factors estimated from a numerical model can be applied to compensate

for the damping and leakage effect caused by the smoothing and filtering. However, the

estimated scaling factors are also largely affected by the characteristics of the simulated

water distribution in a larger area around the region-of-interest. Thus, uncertainties of the

numerical model in terms of the model structure, parameter values and meteorological forcing

will affect the estimated scaling factors as well. A small ensemble of 4 different numerical

models is applied to calculate four sets of scaling factors and also the median values following

the method as introduced in section 2.3.5. Then these scaling factors are applied separately on

the DDK2 filtered TWS variations. Besides, scaling factors calculated from the H component

which is assumed as the “truth”, are also used for the re-scaled TWS estimation as a reference.

Global wRMS time series of the differences are firstly shown in Fig. 3.4. The TWS variations

rescaled by the median scaling factors show the smaller differences with the H component
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(a) RMSD(H-DDK1) (b) RMSD(H-DDK2)

(c) RMSD(H-DDK3)

Figure 3.3: The RMS of the differences (RMSD) between the basin-averaged TWS from
the H component and from the GRACE estimates filtered with DDK1, DDK2 and DDK3.
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Figure 3.4: Global wRMS time series of the differences between the H component and the
GRACE-like TWS variations filtered with DDK2 and rescaled with the scaling factors from
GLDAS, WGHM, JSBACH, MPI-HM, median and the H component.
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than those rescaled by an individual model except the time period from 01/2004 to 06/2004,

indicating that the median of a small ensemble does make the scaling factors less affected by

deficiencies in a certain model. However, there is still a gap with the result rescaled from the

true hydrology signal (H) in terms of the wRMS of the differences. Further research efforts

should be made to narrow this gap, which will significantly reduce the TWS uncertainties.

The gridded RMSD between model rescaled TWS and the H component are compared in

Fig. 3.5. The patterns of the RMSD from the H component and TWS rescaled from different

models are similar, with some differences at the local scale. The large RMSD mainly occurs at

isolated high-variability regions close to the coast, at transition areas between the mountain

and plains, and along spatially concentrated surface water bodies with high storage variability.

The values of global wRMS over the continent are slightly different. Among the four models,

although TWS rescaled from JSBACH exhibits the smallest minimum RMSD, it also shows

the largest maximum and wRMS values; the smallest maximum value is from WGHM while

the smallest wRMS is from GLDAS. TWS rescaled from the median exhibits the smallest

wRMS value compared to those rescaled with individual model.

The RMSD for 50 chosen basins are shown as well in Fig. 3.6. The overall performance of

the model rescaled TWS is different at basin scale from at grids. Here, MPI-HM shows the

smallest minimum RMSD, but the largest maximum and wRMS values, while GLDAS has

the smallest maximum RMSD and WGHM performs best in terms of wRMS. Median rescaled

TWS shows the smallest wRMS of RMSD compared to the other four models, although not

the smallest minimum and maximum RMSD. Still, the H rescaled TWS shows much better

agreement with the “truth” (H). One large difference of the RMSD from median and H

takes place in Nile basin. It is found that TWS variations at Nile basin is poorly simulated

by the LSDM model which has been applied for the H component. The abnormal inter-

annual variations in LSDM make the scaling factors quite different from the ones from other

models. This confirms the earlier assumption that the scaling factors can be largely affected

by numerical models uncertainties. The re-scaling errors should therefore not be neglected

for the total TWS error estimation. Since re-scaling factors could vary temporarily because

TWS changes spatially and temporally, we also calculate the time variable scaling factors for

each month over the whole five year. However, only those rescaled with H monthly scaling

factors show better results than the single scaling factor in terms of both gridded and basin-

averaged RMSD, while for those rescaled from each individual model or median, the results

are not improved (Table 3.1). Fig. 3.2 shows that TWS rescaled with median monthly scaling

factors are quite close to the median scaling factors and the performance of H monthly scaling

factors varies with time. This indicates that time variable scaling factors are very sensitive

to the model uncertainties.
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(a) RMSD(H-GLDAS rescaled) (b) RMSD(H-WGHM rescaled)

(c) RMSD(H-JSBACH rescaled) (d) RMSD(H-MPI-HM rescaled)

(e) RMSD(H-Median rescaled) (f) RMSD(H-H rescaled)

Figure 3.5: The RMS of the differences (RMSD) between H component and the GRACE-
like TWS variations rescaled from GLDAS, WGHM, JSBACH, MPI-HM, median and H
component over land grids.
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(a) RMSD(H-GLDAS rescaled) (b) RMSD(H-WGHM rescaled)

(c) RMSD(H-JSBACH rescaled) (d) RMSD(H-MPI-HM rescaled)

(e) RMSD(H-Median rescaled) (f) RMSD(H-H rescaled)

Figure 3.6: The RMS of the differences (RMSD) between the H component and the GRACE-
like TWS variations rescaled from GLDAS, WGHM, JSBACH, MPI-HM, median and the H
component for 50 specific basins.
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Table 3.1: Minimum, Maximum and wRMS values (cm) of the RMS of the differences
(RMSD) between the H component and rescaled GRACE-like TWS from monthly scaling
factors for both grids on land and the individual targeted basins.

Model spatial scale Minimum Maximum wRMS

GLDAS
grids

basins
0.47
0.47

252.27
8.28

6.3
1.97

WGHM
grids

basins
0.5
0.45

234.62
4.87

6.42
1.6

JSBACH
grids

basins
0.38
0.54

255.73
4.64

6.58
1.64

MPI-HM
grids

basins
0.42
0.44

270.43
5.22

6.49
1.74

Median
grids

basins
0.45
0.44

246.55
4.52

5.74
1.46

H
grids

basins
0.28
0.51

78.65
3.39

3.89
1.26

3.1.4.3 GRACE-like TWS uncertainty estimates

The TWS uncertainties can also be estimated from the the contributions of measurement

errors, leakage errors, and re-scaling errors following the method from Landerer & Swenson

(2012) as demonstrated for the latest GFZ GRACE release by Zhang et al. (2016). The

measurement error is estimated by error propagation from the “calibrated errors”, which is

then multiplied with the gridded re-scaling factors. The leakage error is calculated as the

RMS differences between the original and filtered signals from H components, rescaled by

the ratio of RMS of the TWS from GRACE and H component. The re-scaling error is then

calculated by multiplying the RMS of the GRACE signals with the difference between the re-

scaling factor from the H component and the median value. The total error at each grid point

is subsequently taken as the sum of the measurement error, leakage error, and re-scaling error

in quadrature. Details on the method will also be given in Section 3.3. The basin-averaged

water storage errors are then estimated considering the correlations between the grids using

the squared exponential covariance function as proposed by Landerer & Swenson (2012). The

same de-correlation length scales as in Zhang et al. (2016) are applied, which are obtained

by fitting the error budget from the gridded data set to the ones obtained from estimating

errors directly at basin-scale level. The error estimates (Fig. 3.7) are consistent with the

RMSD between GRACE-like TWS and the H component (Fig. 3.6 e) and generally larger,

implying that those are rather conservative error estimates.

Based on the above investigation, we would suggest to apply DDK2 filter and median scaling

factors from an ensemble of several models on real GRACE gravity data if no additional



50 Chapter 3. GRACE-based gridded TWS variations and uncertainties

(a) Measurement error (grid-scale method) (b) Leakage error (grid-scale method)

(c) Rescaling error (grid-scale method) (d) Total error (grid-scale method)

Figure 3.7: Estimates of GRACE-like TWS errors for 40 largest discharge basins derived
from 1◦ grid point estimates: measurement errors (a), leakage errors (b), re-scaling errors
(c), and total errors (d).
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information is available. The estimated total error can serve as an upper bound for the

GRACE TWS uncertainties.
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3.2 Geocenter motion approximation from GRACE

Based on: Bergmann-Wolf, I., Zhang, L. and Dobslaw, H. (2014). Global eustatic sea-level

variations for the approximation of geocenter motion from GRACE, J. Geod. Sci., 4, 37 –

48, doi:10.2478/jogs-2014-0006.

The global gravity field solutions are typically calculated in a center of mass (CM) frame,

so the degree-1 harmonics are not measurable by the GRACE mission. When compared

with other independent data sets which are defined in the center of figure (CF) (or center of

solid earth (CE)) frame, for instance the hydrological observations and models, the degree-1

term should also be considered. Swenson et al. (2008) proposed a method that infers global

degree-1 terms from a-priori knowledge of mass distribution at a sufficiently large fraction of

the Earth’s surface (for instance, the global ocean) in combination with Stokes coefficients

of the higher degree and order as derived from GRACE observations. Thus a model of the

global eustatic sea-level variations is typically needed. Since eustatic sea-level variability

can be assumed to be globally homogeneous when loading and self-attraction effects are

not considered (Dobslaw & Thomas, 2007; Kuhlmann et al., 2011) and it is included in

the GRACE monthly mean gravity fields (Chambers et al., 2004), it can also be derived

empirically from the GRACE data set. Based on the Swenson et al. (2008), the method

to estimate the eustatic sea-level variations and the geocenter motion in an iterative way is

illustrated.

3.2.1 Review of Swenson’s method

The method of Swenson et al. (2008) is based on the relationship between the global degree-1

coefficients and the oceanic components. Mass anomalies in a certain region (here global

ocean is taken) can be obtained from the knowledge of the global Stokes coefficients and the

area extent of that region. Subsequently the global degree-1 coefficients can be expressed

by a linear combination of the oceanic degree-1 components which can be provided by other

auxiliary sources and the higher degree spherical harmonic coefficients from GRACE.

The surface mass anomalies in a certain region (here global ocean is taken) can be obtained

from the knowledge of the global mass anomalies and the area extent of that region:

σocean(ϑ, λ) = σ(ϑ, λ)B(ϑ, λ) (3.1)
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where B is the ocean function:

B(ϑ, λ) =





1 if ocean

0 if land
, (3.2)

and the global mass anomalies can be estimated from the spherical harmonic coefficients as

shown in 2.13.

The Cocean
lm (denoted as ocean coefficients) can then be expressed as:

∆Cocean
lm =

1

4π

∫
P̃lm(cos ϑ) cos mλB(ϑ, λ)σ(ϑ, λ)dϑdλ, (3.3)

and when the surface mass σ(ϑ, λ) is expressed in terms of the surface density coefficients, it

is denoted as:

∆Cocean
lm =

1

4π

∫
P̃lm(cos ϑ) cos mλB(ϑ, λ)

×
∞∑

l′=0

l′∑

m′=0

P̃l′m′(cos ϑ)(∆Cl′m′ cos m′λ + ∆Sl′m′ sin m′λ)dϑdλ

(3.4)

If we take the degree 1 global coefficients out and move it to the left of the equation, it

can be expressed by the oceanic coefficients and the remaining degree spherical harmonic

coefficients. For instance, for C10:

∆C10 =

4πCocean
10 − ∫

P̃10(cos ϑ)B(ϑ, λ)
∞∑

l=0

l∑
m=0

P̃lm(cos ϑ)(∆Clm cos mλ + ∆Slm sin mλ)dϑdλ

∫
P̃10(cos ϑ)B(ϑ, λ)P̃10(cos ϑ)dϑdλ

(3.5)

To consider the other two degree 1 terms and make the equations more concise, we can

re-arrange the equations into a single rank 3 matrix equation:




∆Cocean
10

∆Cocean
11

∆Socean
11


 =




I10C
10C I10C

11C I10C
11S

I11C
10C I11C

11C I11C
11S

I11S
10C I11S

11C I11S
11S







∆C10

∆C11

∆S11


 +




G10C

G11C

G11S


 , (3.6)

where for instance, I11C
10C is shown as:

I11C
10C =

1

4π

∫
P̃11(cos ϑ)B(ϑ, λ)P̃10(cos ϑ)dϑdλ, (3.7)
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where the superscript indicates the spherical harmonic to the left of B(ϑ, λ) and the subscript

the one to the right, and

G11C =
1

4π

∫
P̃11(cos ϑ)B(ϑ, λ) ×

∞∑

l=0

l∑

m=0

P̃lm(cos ϑ)(∆Clm cos mλ + ∆Slm sin mλ)dϑdλ.

(3.8)

The degree-1 terms can then be estimated by matrix inversion with the oceanic degree-1

terms from auxiliary sources and the higher degree coefficients (l>2) from GRACE. Since

the eustatic signal from the monthly water transport between the land and ocean has been

intentionally excluded from the de-aliasing model (Flechtner & Dobslaw, 2013), it should also

be added to the oceanic degree 1 terms.

3.2.2 Global eustatic mass variations from GRACE

The eustatic sea-level variability can be estimated from the GRACE gravity solutions Cham-

bers et al. (2004). Here, the GRACE RL05 gravity field solutions from GFZ up to d/o 90 are

used. Since degree-1 terms are also needed for this estimation, an annual sinusoid of degree-1

coefficients is taken from Eanes (2000). The ocean mass variability is then estimated with

similar approach as basin-average on land shown in Eq. 2.25. The ocean area, however,

is taken as only the domain 300km away from the coasts to minimize continental leakage.

Furthermore, 300km Gaussian filter is applied to reduce the systematic errors. Since the

filtering can cause attenuation of the signal, a rescaling factor is also applied.

3.2.3 Degree-1 coefficients estimation from GRACE

For the higher degree spherical harmonic coefficients (l>2), we also used the GRACE RL05

gravity field solutions from GFZ. The contribution to the GSM coefficients from glacial iso-

static adjustment (GIA) are estimated from the model of Paulson et al. (2007). The GAD

products from the GRACE project, which are calculated from the Ocean Model for Circula-

tion and Tides (OMCT; Thomas et al., 2001), are used to represent the oceanic components.

The eustatic degree-1 components as estimated above are also considered. The degree-1 terms

(shown in Fig. 3.8) are very similar to the results from the GRACE TELLUS website based

on CSR RL5 solutions. As a priori information of the degree-1 terms are needed for the

eustatic sea-level variability estimation, it can now be replaced by this newly derived global

degree-1 coefficients. Both the degree-1 coefficients and the eustatic sea-level variability can

now be calculated in a iterative way (Bergmann-Wolf et al., 2014b). The results converge
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Figure 3.8: Degree-1 terms variation time series from GFZ RL05 (black) with global ocean
mass variations estimated with 300 km Gaussian filter, compared with the ones provided by
the GRACE TELLUS webpage (http://grace.jpl.nasa.gov/data/degree1/) for the CSR RL05
solutions (red) (Bergmann-Wolf et al., 2014b).

after about 5 iteration with decreasing increments. Besides, even when the initial informa-

tion of degree-1 terms are not included for the eustatic sea-level calculation (experiment 1)

and the ocean degree-1 terms are set to zero for geocenter estimation (experiment 2), after

iterating for 5 times, the final results converge and agree well with previous calculation (Fig.

3.9). This indicates that the degree-1 terms can be calculated from GRACE monthly prod-

ucts without additional model information. The degree-1 terms estimated based on the same

approach are then added to the corresponding GRACE monthly gravity solutions for further

calculation.
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Figure 3.9: Increments in eustatic sea-level from the iterative determination of global
degree-1 coefficients and a globally homogeneous eustatic sea-level variability model: ref-
erence is calculated from global degree-1 coefficients given by Eanes (2000) (left column),
experiment 1 starting from from zero global degree-1 coefficients (middle), and experiment 2
is from zero eustatic sea-level anomaly (right) (Bergmann-Wolf et al., 2014b).
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3.3 Gridded TWS variations from GRACE

Published as: Zhang, L., Dobslaw, H., and Thomas, M. (2016): Globally gridded ter-

restrial water storage variations from GRACE satellite gravimetry for hydrometeorological

applications, Geophys J Int., 206 (1): 368 – 378. doi: 10.1093/gji/ggw153.

3.3.1 Introduction

Satellite observations of temporal variations of the Earth’s gravity field from the Gravity

Recovery and Climate Experiment (GRACE) satellite mission (Tapley et al., 2004b) offer

a new possibility to monitor a wide range of Earth system dynamics that are related to

large-scale mass re-distribution. Over the continents, the mission is in particular sensitive to

several aspects of the terrestrial branch of the global water cycle: it allows measurements of

the mass balance of continental ice-sheets and glaciers (Jacob et al., 2012), deep soil moisture

variability and its consequences for drought and flood potentials (Houborg et al., 2012), as

well as groundwater depletion arising from growing water demands for irrigation and human

consumption in agricultural regions world-wide (Voss et al., 2013).

The anomaly of terrestrial water storage (TWS) with respect to a long-term average is the

most direct hydrological quantity obtainable from the GRACE science products. TWS is

understood here as the sum of all storage compartments of water at and underneath the

land surface. This includes soil moisture; the water content in snow-pack and land ice;

ground water in shallow and deep aquifers; canopy water; and also the content of surface

water bodies as rivers, lakes, and occasionally flooded wetlands. As a new observable that

is available globally from space-based instruments, GRACE-based TWS serves an important

role in assessing the closure of the terrestrial water balance at global and regional scales and

allows for a new way to assess and even improve the quality of hydrological model simulations

(Syed et al., 2008a; Frappart et al., 2013; Eicker et al., 2014).

Due to its observing principle, GRACE data is highly accurate at hemispheric spatial scales

but provides no information on TWS variability at spatial scales smaller than a few hundred

km. GRACE monthly mean gravity fields and their associated uncertainties are typically

provided in terms of global spherical harmonic coefficients – a mathematical representa-

tion that substantially hampers the application of GRACE mission results in non-geodetic

branches of the physical geo-sciences. In order to overcome this limitation, we describe

in this paper a globally gridded data-set of TWS anomalies at monthly resolution that is

corrected for known systematic errors and other deficits by applying state-of-the-art post-

processing methods. To allow for a subsequent application of the data-set in model validation
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efforts or even data assimilation experiments, globally gridded observational uncertainties

are derived as well. Similar gridded TWS products are also available at the Tellus website

(http://grace.jpl.nasa.gov/data/gracemonthlymassgridesland/) which are calculated using a

different processing scheme as described by Landerer & Swenson (2012). For simplicity, we

use the term Tellus to refer to this data-set throughout the manuscript.

The structure of the paper is as follows: The post-processing procedure to derive globally

gridded TWS anomalies out of the GRACE monthly mean gravity fields will be introduced

in detail in Sect. 3.3.2. Subsequently, we introduce our method to correct for the leakage and

bias using median scaling factors estimated from a small ensemble of five hydrological model

simulations in Sect. 3.3.3. In Sect. 3.3.4, we present our gridded error estimates, whose con-

sistency with uncertainties directly obtained from the Stokes coefficients are demonstrated

for the largest 50 basins. We then compare the basin-averaged TWS from our gridded TWS

variations with those from Tellus for these basins in Sect. 3.3.5 to demonstrate the consis-

tency and robustness of our method, and end with some concluding remarks on the general

applicability of GRACE results for hydrometeorological applications in the final Sect. 6.

3.3.2 GRACE data-sets and post-processing

GRACE is a twin satellite mission of NASA and the German space agency DLR that was

launched in March 2002 into a polar orbit at an initial altitude of only 450 km. By means of

highly accurate range-rate measurements between the two space-crafts that follow each other

with a typical separation distance of 250 km, the mission is able to map the Earth’s gravity

field at approximately monthly intervals on spatial scales of a few hundred km and larger.

After removing short-term variability due to tides in solid Earth (Petit & Luzum, 2010),

oceans (Savcenko & Bosch, 2012) and atmosphere (Biancale & Bode, 2006), as well as non-

tidal variability in atmosphere and oceans (Dobslaw et al., 2013) from the observations, the

remaining gravity changes on monthly to inter-annual time scales mainly represent variations

in terrestrial water storage. Since the mission inherently does not provide vertical resolution

but is instead equally sensitive to mass variability at or beneath the surface, an unambiguous

separation of individual storage compartments by means of GRACE data only is impossible.

We use the monthly GRACE release 05a Level-2 products expanded in spherical harmonics up

to degree and order 90 – corresponding to a spatial wavelength of 220 km – from GFZ Potsdam

(Dahle et al., 2012), which show an overall improvement by a factor of two in terms of noise

reduction compared to previous releases (Chambers & Bonin, 2012). The data can be visually

explored and downloaded from the website of the International Centre for Global Earth

Models (ICGEM) available at “icgem.gfz-potsdam.de/ICGEM”. In addition to this routinely
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updated standard GRACE solution, we further utilize in this thesis a recent GRACE release

from the University of Graz (ITSG-Grace2014; Mayer-Gürr et al., 2014), which additionally

provides full variance-covariance matrices consistent with its unconstrained monthly gravity

field solutions.

For the derivation of globally gridded TWS variations from GRACE gravity fields we essen-

tially follow the strategy chosen by Bergmann & Dobslaw (2012), which is briefly recalled here.

First, we add global degree-1 coefficients as derived by Bergmann-Wolf et al. (2014b) with the

methodology of Swenson et al. (2008), replace the C20-coefficients with estimates from Satel-

lite Laser Ranging (Cheng et al., 2011), and remove a multi-year average over the period of

January 2004 to December 2009 which is consistent with Tellus to arrive at anomalies. Next,

we apply the approximate de-correlation and non-isotropic smoothing method introduced by

Kusche (2007) to remove correlated errors in north-south directions that are related to the

anisotropic sensitivity of the track-aligned range-rate measurement system between the two

satellites. Smoothing in space is enabled through the tuning parameter a=1013 of the signal

covariance matrix, which is known also as DDK2 filter and approximately corresponds to an

isotropic Gaussian filter with 680 km full width half maximum (Kusche et al., 2009). The

filtered spherical harmonic coefficients are finally synthesized on a 1◦ latitude-longitude grid

following the conventions of Wahr et al. (1998). Since assuming that mass redistribution

occurs at the surface of a sphere may introduce errors when spherical harmonic coefficients

are expanded to higher degrees, we use a reference ellipsoid as defined by the IERS conven-

tions which is a more suitable approximation of the Earth’s shape. Note that using instead

a spherical surface might only impose differences of up to 0.5 cm equivalent water height

(e.w.h.) in particular at the higher latitudes.

3.3.3 Compensation of filter-induced signal attenuation

The gravitational field of the Earth is conservative in space and might be thus continued both

upward to the satellite orbit and downward to the Earth’s surface without loss of generality.

The signal decay with height depends on the spatial extent of a gravity disturbance, so

that large-scale anomalies generally cause stronger deviations of a spacecraft trajectory from

its reference orbit. Errors of GRACE-based TWS variations therefore grow with increasing

degree of the spherical harmonics expansion, and low-pass filtering in space or spectral domain

is consequently required to reduce the contribution from highly uncertain smaller spatial

scales when gridded estimates are to be calculated.

The process of truncation and filtering, however, typically diminishes amplitudes of highly

localized signals, and increases spatial leakage of signals from neighboring regions (Werth
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et al., 2009). In order to approximately account for such effects in the post-processing, Klees

et al. (2007) suggested to apply local re-scaling coefficients derived from TWS predictions

from a global numerical model. The scaling factors estimated from a numerical model are,

however, strongly related to the characteristics of the simulated water distribution in a larger

area around the point-of-interest. Thus, uncertainties of the numerical model in terms of the

model structure, parameter values and and meteorological forcing will affect the estimated

scaling factors as well. Recent inter-comparison studies of hydrological models demonstrated

that there can be a large spread in model performance (see, e.g., Gudmundsson et al., 2012)

for various regions and frequencies. Thus, the sensitivity of the re-scaling factors to different

models is investigated in this paper more closely by using a small ensemble of 5 different nu-

merical model experiments, which includes land surface schemes of both low and intermediate

complexity; global land assimilation systems; and conceptual hydrological models.

(1) LSDM forced with operational ECMWF analysis data.

(2) A single realization of GLDAS based on the Noah community land surface model down-

loaded from “mirador.gsfc.nasa.gov”.

(3) WGHM of version 2.2 as described by Müller Schmied et al. (2014) and has been forced

with atmospheric data specifically prepared for the Water and Global Change (WATCH)

project, which is based on ERA-Interim re-analysis data (Dee et al., 2011) and bias corrections

for precipitation from the Climate Research Unit (CRU) station-based monthly climatologies

(WFDEI_CRU; Weedon et al., 2011).

(4) An un-coupled version of JSBACH that is also driven by daily the WFDEI_CRU atmo-

spheric data.

(5) MPI-HM that is also integrated with WFDEI_CRU atmospheric forcing data.

Detailed information of the models can also be found in Section 4.1. Besides the apparent

differences in model structure, parametrization, and atmospheric forcing, the model experi-

ments considered here also differ with each other by what particular water storage compart-

ments are actually included in TWS (Table 4.1). The results from all the model runs are

aggregated into monthly averages and – where necessary – conservatively interpolated onto a

regular latitude-longitude grid with a horizontal spacing of 1◦. Since GRACE estimates over

Greenland and Antarctica are dominated by surface mass balance and ice dynamics of the

continental ice-sheets, both regions have been masked out of the model results together with

the global oceans and will not be considered further in the reminder of this paper.

All model experiments and GRACE data are available to us over the period 2003 – 2012.

Since local trends are usually poorly predicted by the models considered here, and since the
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influence of GIA signals cannot be completely removed due to a lack of knowledge on both

glacial ice load history and mantle viscosity (Steffen et al., 2008), we concentrate on TWS

variability on seasonal to inter-annual time-scales only. Linear trends are therefore estimated

and subtracted from all data-sets considered.

Local re-scaling factors that compensate for filter-induced signal alteration have been obtained

from all five model runs by calculating the average ratio between monthly TWS before and

after filtering with DDK2 (Fig. 3.10). Re-scaling factors are almost zero for arid regions

dominated by leakage-in from neighboring regions with stronger signal variability. But factors

are also as large as three for (i) isolated high-variability regions close to the coast, which are

affected by leakage-out due to the much weaker ocean bottom pressure variability near-by; at

(ii) step gradients in orography that are responsible for locally intensified precipitation; or (iii)

along spatially concentrated surface water bodies with high storage variability. By comparing

re-scaling factors for the different models, we note moreover substantial discrepancies among

the model runs, in particular at smaller spatial scales. There is, however, no prior knowledge

of which model performs best at different areas of the world, so that we calculate a median

value of the re-scaling coefficients from the five model runs at each grid point, which is finally

applied to the GRACE data.

To further quantify the uncertainties in the re-scaling factors, we calculate root mean square

(RMS) estimates of the difference between each re-scaling factor and the median value nor-

malized by the median itself (Fig. 3.11). Those variation coefficients show similarities with

the results from Long et al. (2015), which is quite opposite with the pattern of the signal

variability of GRACE-based TWS (Fig. 3.12). Largest variability of the re-scaling factors

occurs in rather dry areas, like North Africa, South Australia, Middle East, and Northwest

China, which is partly explained by the small values of the median scaling factors in these re-

gions. Areas dominated by surface water variability and affected by groundwater abstraction

also show large spreads of the re-scaling factors.

We also look into the re-scaling coefficients estimated from different models at basin-scale level

(Table 3.2). Despite of the differences indicated above, variation coefficients of the re-scaling

factors are mostly below 0.15 when averaged over areas of several 106 km2, thereby indicating

the high consistency of the TWS simulated by all models in these large areas. Uncertainties

grow when smaller basins with a lower GRACE signal-to-noise ratio (SNR) are considered.

The SNR is calculated as the ratio of the RMS of the GRACE TWS time series and the total

error estimated from the basin-scale method which is introduced in Sect. 3.3.4. Both the low

GRACE SNR and the large spread of the scaling factors from hydrological models confirm

the poor ability of GRACE and hydrological models to capture the TWS signal in overly
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Figure 3.10: Re-scaling factors obtained as the average ratio of DDK2-filtered and unfiltered
TWS time-series from five global land model experiments performed with LSDM (a), WGHM
(b), JSBACH (c), MPI-HM (d), and GLDAS (e). In order to reduce the impact of individual
model deficiencies, the median value (f) of all five simulations is applied in the GRACE
post-processing.
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Figure 3.11: Variation coefficients for the re-scaling factors as obtained as the RMS between
individual model-derived re-scaling factors and the median value normalized by the median.

Figure 3.12: RMS variability of GRACE-based terrestrial water storage after applying the
DDK2 filter (a), and after re-scaling of the filtered results (b) with spatially variable median
re-scaling factors obtained from five different model data-sets.

dry areas (Gunkel & Lange, 2011). Care should also be taken in some humid areas where a

large spread of the re-scaling factors is found, as, e.g., in the Yukon basin, where a substantial

contribution of mountain glaciers on observed TWS variability can be expected which is rather

poorly represented in all the models. Considering that we only focus on the seasonal and

interannual signals, it is therefore not suitable to apply such scaling factors in areas which have

large contribution from glaciers. Further, observed TWS in the Chang Jiang basin is affected

by surface water variability, which is not represented properly in both GLDAS and JSBACH.

In the Indus catchment, intensive irrigation takes place which uses both surface water and

groundwater resources. However, only WGHM and JSBACH accommodate groundwater

storage changes in their physical models. Nevertheless, the application of the median value

makes the re-scaling factors less affected by such deficiencies in a single model and therefore

contributes to the robustness of the GRACE post-processing methodology applied here.
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3.3.4 TWS errors from GRACE

In order to provide a quantitative estimate for the uncertainties associated with GRACE-

based TWS errors, we individually assess the contributions of measurement errors, leakage

errors, and re-scaling errors as suggested by Landerer & Swenson (2012). We estimate the

measurement error by error propagation from the “calibrated errors” provided together with

the GRACE monthly-mean Stokes coefficients. The calibrated errors are further re-scaled

to fit the non-seasonal GRACE residuals after subtracting a constant as well as annual and

semiannual sinusoids following Wahr et al. (2006). Then gridded re-scaling factors are mul-

tiplied with the measurement errors to get the final measurement error distribution in the

spatial domain. The leakage error compartment is calculated for all five model realizations

according to

Eleak = RMS(∆So − k∆SF )
RMSGRACE

RMSModel
, (3.9)

where ∆So and ∆SF are the original and filtered signals from the models, respectively, k

is the re-scaling factor, and RMSGRACE and RMSModel are the root mean square (RMS)

of the TWS from filtered GRACE and from one of the unfiltered model data-sets. For the

re-scaling error, we make use of the scaling ratio for the individual model run shown in

Fig. 3.10 by multiplying the RMS of the GRACE signals with the difference between each

realization-based re-scaling factor with the median value. The total error at each grid point

is subsequently taken as the sum of the measurement error, leakage error, and re-scaling error

in quadrature.

While calculating these error compartments individually for each grid point, we obtain total

errors of up to 10 cm in equivalent water height (e.w.h.; Fig. 3.13). The water storage

variation estimated from GRACE is not a point measurement, but rather a regional spatial

average. It therefore does not make sense to compare GRACE at 1◦ grid-scale level directly

to any other data-set. We use, instead, the gridded error estimates as a starting point for

deriving error estimates of arbitrarily shaped regional averages. Here, the shapes of the 50

largest river basins from Table 3.2 are chosen, but the methodology can be similarly applied to

other areas as well, as e.g., climate or altitude zones associated with particular precipitation

regimes, the spatial extent of a specific aquifer system, or an area particularly affected by

land use and land cover changes. Since the error contributors of GRACE-based TWS at the

grid scale are spatially correlated, the basin-averaged water storage errors cannot be obtained

by simply averaging the gridded errors for an arbitrarily shaped region. We use the squared

exponential covariance function to estimate the statistical covariance between two grids as
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Figure 3.13: Estimates of GRACE-based TWS errors calculated at 1◦ grid-scale level:
measurement errors (a), leakage errors (b), re-scaling errors (c), and total errors (d).

proposed by Landerer & Swenson (2012) and estimate the error variance of the regional mean

TWS estimate by the following equation:

var =
m∑

i=1

m∑

j=1

wiwjθiθjexp(
−d2

ij

2d2
0

), (3.10)

where θi is the error for grid point i, wi represents the area weight at the grid i, dij is the

distance between the two points and d0 is the parameter in the Gaussian window representing

the de-correlation length scale. We choose 300 km, 100 km, 10 km as d0 for measurement

error, leakage error and re-scaling error separately by fitting the error budget from the gridded

data set to the ones obtained from estimating errors directly at basin-scale level (Chen et al.,

2007; Klees et al., 2007) as shown in Fig. 3.15. Both methods provide generally consistent

results down to a level of about 20% , indicating that the errors at 1◦ spatial resolution might

indeed serve as a starting point for the derivation of realistic errors for regions of arbitrary

shape.

Since only diagonal elements of the covariance matrix have been provided for GRACE release

05a of GFZ Potsdam, the error correlations between the individual Stokes coefficients are
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Figure 3.14: Estimates of GRACE-based TWS errors for the 50 largest discharge basins
derived from 1◦ grid point estimates: measurement errors (a), leakage errors (b), re-scaling
errors (c), and total errors (d).
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Figure 3.15: Estimates of GRACE-based TWS errors for the 50 largest discharge basins
directly calculated at the basin-scale level out of the Level-2 Stokes coefficients: measurement
errors (a), leakage errors (b), re-scaling errors (c), and total errors (d).
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Figure 3.16: Changes in measurement errors for ITSG-Grace2014 when covariances are
taken into account in addition to the usually considered variances.

typically ignored. To assess the impact of neglecting the error correlations, error estimates

from both the diagonal and full variance-covariance matrices of the ITSG-Grace2014 release

(Mayer-Gürr et al., 2014) are calculated (Fig. 3.16). The ITSG-Grace2014 measurement

errors propagated from only the diagonal part show consistent results with GFZ RL05a. The

differences between the measurement errors from the diagonal and full covariance matrix reach

0.56 cm at some basins (Fig. 3.16). Generally, when the error correlations are neglected, the

measurement errors at the lower latitudes are overestimated, while at higher latitudes they

are underestimated. GFZ is planning to provide the error variance-covariance matrix as well

(Ch. Dahle, personal communication, 2015), which we believe is necessary to further improve

the reliability of the TWS error estimates.

3.3.5 Comparison with gridded TWS results from Tellus

We now compare the basin-averaged TWS time series from our calculation with gridded TWS

products downloaded from the Tellus website, which are based on GRACE Stokes coefficients

truncated at degree and order 60, destriped and smoothed by using a 300km Gaussian filter

following (Swenson & Wahr, 2006) and then re-scaled by scaling factors derived from NCAR’s

CLM4.0 land surface model (Landerer & Swenson, 2012). The RMS of the differences between

the TWS variations filtered with two different methods generally lie within the bounds of the

GRACE error estimates (cf. Fig. 3.14d), which indicates consistency between the different

filtering and smoothing methods applied (Fig. 3.17a).

By comparing the two re-scaled TWS time series, we find several basins with much larger

differences in particular in South America and Southeast Asia and there are ten out of fifty
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Figure 3.17: RMS of the differences between our estimated basin-averaged TWS filtered
with DDK2 and the ones from Tellus for GFZ RL05a for the 50 largest discharge basins (a);
and RMS of the differences between our filtered TWS re-scaled by the median scaling factors
and the results from gridded TWS re-scaled by the scaling factors provided separately also
on the Tellus website (b). (c) and (d) are the relative differences for (a) and (b) where the
RMS of the differences are divided by the RMS of the basin-averaged TWS from Tellus.
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basins where the RMS of the differences are larger than the GRACE error estimates.(Fig.

3.17b; Table 3.2). The relative differences as the percentage of the RMS of the basin-averaged

TWS from Tellus are shown as well (Fig. 3.17c, d). The large relative differences mainly

occur at small basins. By taking Irrawaddy as an example, we present time series of the TWS

variations re-scaled by the scaling factors from all five hydrological models and the median

value and compare them with the re-scaled TWS from Tellus (Fig. 3.18). In this catchment,

the TWS variations re-scaled by different scaling factors from the models show a comparably

large spread, but they are consistent in a way that all the scaling factors are larger than one

indicating signal loss caused by filtering. Besides, the TWS time series re-scaled by median

scaling factors generally lie in the middle. The results from Tellus show, however, a damping

effect from the scaling factors. The TWS differences caused by applying two different scaling

factors reach 10 cm, much larger than the total error (Table 3.2). This could be related to

both the shape of the basin and also to the hydrological signal within and around the basin.

The Irrawaddy catchment is rather elongated and shares a long border with its neighboring

basins which also have high water storage variability. Both factors make it highly susceptible

to spatial leakage effects and thereby vulnerable to uncertainties in simulated water storage in

and outside the basin. If only a single model is used for the re-scaling, inherent uncertainties

of this processing step remain inaccessible and might lead to additional errors in the GRACE-

based TWS series that are not accounted for in the associated error estimates.

Table 3.2: Re-scaling factors estimated from the WGHM, LSDM, GLDAS, JSBACH, and
MPI-HM models for the 50 largest discharge basins of the world. Additionally provided are
the median re-scaling factors subsequently applied in the GRACE processing; the variation
(VAR) coefficients of the re-scaling factors quantifying the uncertainty associated with the
re-scaling; total error and signal amplitude of the basin-averaged TWS (unit: cm) and the
GRACE signal-to-noise ratio; the RMS differences between rescaled TWS from Tellus and the
calculation in this work with median scaling factors. Basin names are taken from the Simu-
lated Topological Network data-set (STN-30p; Vörösmarty et al., 2000b). GHAAS#Number
indicate unidentified basins, where the number is the unique integer identifier adopted in
STN-30p.

Discharge re-scaling coefficients VAR- Total Signal GRACE- Tellus-

Basin LSDM WGHM JSBACH MPI-HM GLDAS Median coeff. error amp. SNR Median

Amazon 1.03 1.01 1.02 0.96 1.01 1.01 0.02 1.46 14.28 9.76 1.81

Nile 1.08 1.16 0.97 1.05 0.91 1.05 0.08 1.06 3.46 3.26 1.33

Zaire 1.08 0.96 1.04 1.01 0.99 1.01 0.04 1.32 5.05 3.82 0.98

Mississippi 1.00 1.00 0.97 0.95 0.97 0.97 0.02 0.86 5.67 6.60 0.59

Amur 1.01 0.99 0.96 0.96 0.94 0.96 0.03 0.68 2.17 3.18 0.67

Parana 1.14 1.10 1.06 1.08 1.01 1.08 0.04 1.32 5.92 4.50 1.51

Yenisei 0.96 0.92 1.03 0.98 0.97 0.97 0.03 0.68 4.52 6.67 0.64

Ob 0.94 0.98 1.02 0.96 0.99 0.98 0.03 0.68 5.64 8.31 0.66

Lena 0.94 0.88 1.00 0.98 0.96 0.96 0.04 0.68 4.12 6.01 0.60

Niger 1.04 1.01 1.03 1.05 0.99 1.03 0.02 1.29 6.37 4.93 0.54

Continued on next page



3.3. Gridded TWS variations from GRACE 73

Table 3.2 – Continued from previous page

Discharge re-scaling coefficients VAR- Total Signal GRACE- Tellus-

Basin LSDM WGHM JSBACH MPI-HM GLDAS Median coeff. error amp. SNR Median

Zambezi 1.02 0.98 1.02 1.00 0.97 1.00 0.02 1.57 10.66 6.80 0.91

GHAAS #14 1.42 1.74 1.77 0.70 0.99 1.42 0.30 0.77 0.68 0.88 0.47

Chang Jiang 1.37 0.98 0.89 0.98 0.89 0.98 0.19 1.49 4.61 3.09 1.26

Mackenzie 0.69 1.02 1.00 0.97 0.93 0.97 0.13 0.83 5.15 6.20 0.92

Ganges 0.96 1.09 1.00 1.00 0.97 1.00 0.05 1.94 11.62 5.99 0.81

Chari 1.19 1.08 1.01 1.02 0.97 1.02 0.08 1.50 5.14 3.42 0.92

Volga 1.00 0.99 0.98 0.98 0.98 0.98 0.01 0.84 7.07 8.43 0.68

St. Lawrence 1.02 0.98 0.85 0.75 0.79 0.85 0.13 1.14 5.63 4.94 1.14

Indus 1.17 0.87 1.00 0.95 0.89 0.95 0.12 1.54 3.72 2.42 1.32

Syr-Darya 1.20 0.92 1.01 0.99 1.00 1.00 0.10 1.12 4.08 3.65 0.84

Nelson 0.93 1.01 0.94 0.87 0.94 0.94 0.05 1.12 4.28 3.82 1.26

Orinoco 0.99 1.09 1.07 1.08 0.93 1.07 0.07 3.14 14.88 4.74 1.97

Murray 1.31 1.04 1.07 1.13 0.91 1.07 0.12 1.88 5.13 2.73 1.38

Great Artesian 1.76 1.17 0.97 0.97 1.29 1.17 0.25 1.33 3.54 2.67 1.10

Shatt el Arab 1.19 0.90 1.15 1.01 0.88 1.01 0.12 1.49 5.67 3.81 1.40

Orange 1.00 1.02 1.20 1.08 0.91 1.02 0.09 1.65 2.75 1.67 1.29

Huang He 1.28 0.52 0.99 1.05 1.02 1.02 0.25 1.28 3.00 2.35 0.91

Yukon 1.08 0.83 0.90 0.88 1.12 0.90 0.15 1.19 9.13 7.68 1.24

GHAAS #34 1.14 1.06 1.40 0.84 0.90 1.06 0.19 1.04 1.13 1.09 0.67

Colorado (Ari) 1.39 0.82 1.04 1.11 0.97 1.04 0.18 1.41 3.93 2.78 0.99

Danube 1.01 1.04 0.96 1.00 0.95 1.00 0.03 1.50 7.45 4.96 0.86

Mekong 1.11 1.07 1.02 1.08 0.90 1.07 0.08 3.86 14.42 3.73 2.32

Tocantins 1.06 1.09 1.04 1.21 1.00 1.06 0.07 2.81 16.72 5.95 2.69

Columbia 0.98 0.99 0.98 1.07 0.92 0.98 0.05 1.85 9.87 5.32 1.76

GHAAS #49 0.80 0.97 0.94 0.84 0.92 0.92 0.08 1.86 3.06 1.65 0.97

Kolyma 0.99 0.78 1.03 0.92 1.04 0.99 0.11 0.98 4.55 4.65 1.27

Sao Francisco 1.06 1.04 0.99 1.09 1.04 1.04 0.03 2.81 9.65 3.43 1.80

Amu-Darya 1.32 1.27 1.11 1.20 0.95 1.20 0.13 2.47 7.27 2.95 2.34

Dnepr 0.99 0.98 0.97 0.99 0.98 0.98 0.01 1.32 6.37 4.81 1.09

Don 1.14 1.07 1.12 1.12 1.05 1.12 0.03 1.68 8.67 5.17 1.16

GHAAS #50 1.01 0.85 1.72 0.47 0.81 0.85 0.48 1.20 0.89 0.74 0.70

Zhu jiang 1.07 1.18 1.19 1.37 1.11 1.18 0.10 3.18 7.92 2.49 2.39

Irrawaddy 1.32 1.43 1.40 1.06 1.26 1.32 0.11 4.18 17.44 4.17 10.07

Volta 0.63 0.88 0.98 1.06 0.97 0.97 0.18 3.36 9.94 2.96 1.83

GHAAS #54 0.72 0.74 1.28 0.83 1.10 0.83 0.27 1.66 3.25 1.96 1.03

Khatanga 0.87 0.94 0.87 0.89 0.93 0.89 0.04 1.01 5.48 5.42 1.43

Dvina 1.04 1.03 1.10 1.01 1.00 1.03 0.04 1.25 7.58 6.05 1.02

Urugay 1.21 1.12 1.30 1.21 1.16 1.21 0.06 2.70 7.28 2.70 3.00

Qarqan 0.49 1.07 0.23 1.04 1.33 1.04 0.54 1.14 1.34 1.18 1.63

GHAAS #75 0.26 1.02 0.77 0.51 0.83 0.77 0.44 0.94 0.75 0.80 0.48

3.3.6 Summary and Conclusions

Globally gridded estimates of terrestrial water storage anomalies have been processed from

the GRACE release 05a monthly-mean gravity fields from GFZ Potsdam (Dahle et al., 2012)

by applying state-of-the-art post-processing methodologies. The de-correlation filter of DDK2
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Figure 3.18: The comparison of the basin-averaged TWS time series from the calculation
in this work and from Tellus for the Irrawaddy catchment. DDK/unscaled indicates the
TWS variations that are filtered by DDK2; LSDM indicates the DDK2 filtered TWS re-
scaled by scaling factors from LSDM, and the same for WGHM, GLDAS, JSBACH and
MPI-HM; median is the TWS variations re-scaled by the median scaling factors from the five
models; Tellus/unscaled is the basin average of the gridded TWS from Tellus website and
Tellus/scaled is the re-scaled TWS from Tellus.
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has been chosen with the goal of minimizing signal loss while maximizing noise reduction.

Re-scaling factors required to account for signal loss during filtering were obtained from the

median values of a small ensemble of five global models in order to make the re-scaling more

robust against particular weaknesses of a single model. We therefore intend to include those

globally gridded TWS data-sets as an additional Level-3 product into the ICGEM website

accessible at “icgem.gfz-potsdam.de/ICGEM”, so that it will be routinely updated as soon as

new Level-2 gravity fields become available, and thereby contributes to a better accessibility

of near real-time GRACE information to users that are not willing or not able to process

Stokes coefficients themselves.

In addition to the monthly TWS estimates, we prepared realistic globally gridded error

estimates by assessing individually the contributions of measurement errors, leakage errors,

and re-scaling errors. The error estimates account for spatial correlations and yield largely

consistent results for most basins when compared to estimates that are directly derived from

the spherical harmonics representation. Thus, errors might guide users in selecting proper

averaging regions and remind them that GRACE is in particular sensitive to the largest

spatial scales as demonstrated by the fact that the SNR values generally decrease when going

from large basins to small basins.

The RMS of the differences between the filtered TWS from our calculation and those from

Tellus generally lie below the TWS error level estimated, which underlines the consistency

of the two post-processing strategies. Larger differences found at certain basins between the

rescaled TWS time-series, however, emphasize the importance of model-based information

required to account for spatial leakage. Since global land models perform differently in

simulating the TWS variability in different areas of the world, an ensemble of multiple models

is helpful to make scaling factors less affected by deficiencies in certain models. In view of

the important role of such models for the GRACE processing, a detailed evaluation of the

quality of such models and their systematic weaknesses is recommended.

Currently, the GRACE mission has been in orbit for more than 13 years and continues

to provide monthly-mean snap-shots of the global gravity field. The GRACE Follow-On

mission is already in its implementation phase and scheduled for launch in 2017 (Flechtner

et al., 2014), thereby improving the prospects of establishing a long-term monitoring of global

TWS variability with gravimetric methods. The GRACE mission has already contributed

unique observations to five out of six current Grand Challenges of the World Climate Research

Programme: (1) Melting Ice and Global Consequences (Sasgen et al., 2010); (2) Climate

Extremes (Reager et al., 2014); (3) Regional Sea-Level Change (Chambers et al., 2010); (4)

Water Availability (Famiglietti & Rodell, 2013); and also (5) Decadal Climate Prediction
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(Zhang et al., 2015). The observing concept is therefore in a good position to be considered

as a contribution to the ’Essential Climate Variables’ (Hollmann et al., 2013) as defined by

the World Meteorological Organization. To foster more applications of satellite gravimetry in

scientific fields like hydrometeorology and climatology, conveniently pre-processed data-sets

as described in this thesis are an essential prerequisite.



Chapter 4

Validation of hydrological models

Published as: Zhang, L., Dobslaw, H., Stacke, T., Güntner, A., Dill, R., and Thomas,

M. (2016). Validation of terrestrial water storage variations as simulated by different global

numerical models with GRACE satellite observations, Hydrol. Earth Syst. Sci., 21, 821-837,

doi:10.5194/hess-21-821-2017.

4.1 Hydrological model simulations

Hydrology is the study of the movement, distribution, and quality of water on Earth. It

encompasses both the hydrological cycle and water resources and is an important indicator

of global change. Besides, the observations of the water storage processes will also help to

provide reliable predictions for future water availability and hazardous risks. Hydrological

models are simplified, conceptual representations of the continental water cycle and its com-

ponents. They also help to understand how water transports on the continents. To simulate

the water cycle, some factors have to be applied to constrain the hydrological models, such

as precipitation and its transfer to other Earth’s subsystems as atmosphere and oceans by

the processes of evaporation and runoff. Besides, other water characteristics like soil prop-

erties, vegetation cover, watershed topography, soil moisture content and groundwater are

also considered. Nowadays, the total water storage (TWS) variations become an important

variable in monitoring the stability and dynamic behavior of the water cycle and in evaluating

large-scale models (Güntner et al., 2007; Werth, 2010).

The terrestrial water balance describing the partitioning of precipitation (P) into evapotran-

spiration (E) and runoff (R) is commonly expressed as:

T W SC = T W SN − T W SN−1, (4.1)
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and

T W SC = P − E − R (4.2)

where the term TWSC represents the change in water storage which is mainly from the sum

of the individual components:

T W S = GW + SM + SW + SW E, (4.3)

such as groundwater (GW), soil moisture (SM), surface water (SW) and snow water equivalent

(SWE).

A selection of five different models is used in this thesis, ranging from complex to conceptional

ones (Table 4.1). Thus, the range of uncertainty in the simulation of water storage can be

represented more reliably than using just a single model. In order to ensure that this spread

between the simulations is indeed related to the representation of physics in the model, four

of the models are forced with the WATCH Forcing Data ERA Interim (WFDEI) data-set de-

veloped during the WATCH project (Weedon et al., 2011) applied to ERA-Interim re-analysis

data (Dee et al., 2011). This WFDEI meteorological forcing dataset is a quasi-observation

which combines the daily variability of the ERA-Interim re-analysis with monthly in situ

observations such as temperature and precipitation (Weedon et al., 2014). There are two

precipitation products available from WFDEI: corrected by using (1) the Climate Research

Unit at the University of East Anglia (CRU) observations; and (2) the Global Precipitation

Climatology Centre (GPCC) observations. Since the WFDEI data sets incorporating the

CRU-corrected precipitation products cover a longer time span, they are used in our thesis

and referred to as WFDEI-CRU.

4.1.1 WGHM

The WaterGAP Global Hydrological Model (WGHM) is part of the Water-Global Assessment

and Prognosis model (WaterGAP; Döll et al., 2003). WGHM is a water-balance model with

conceptual formulations which simplify the most important hydrological processes on large

scales. It is optimized by tuning runoff coefficients against observed river discharge in a

station-based calibration (Hunger & Döll, 2008). The model simulates the continental water

cycle including water storage compartments such as soil moisture within the effective root

zone of vegetated areas, groundwater canopy water, snow and surface water in rivers, lakes,

reservoirs and wetlands. The simulations are also supplied by cell-based information on

the properties of soil, land cover, and locations of reservoirs, lakes, and, wetlands. Human

water consumption is also considered in the water cycle. The potential evapotranspiration
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is based on Priestley and Taylor’s approach which requires net radiation as input data.

The equation is adjusted by a coefficient that differentiates between humid (average relative

humidity of 60% or more) and arid regions (average relative humidity less than 60%). The

actual evapotranspiration is calibrated by the open water albedo and sublimation of snow.

The effect of snow is simulated by a degree-day approach, where the degree-day factor is

based on the type of land cover and is calibrated by a multiplicative factor. Additional

effects on snow storage processes are adjusted by a cell-averaged snow freeze and melting

temperature. The latest version of WGHM as calibrated for WFDEI-GPCC forcing (version

2.2 STANDARD; Müller Schmied et al., 2014) has been applied. In our thesis, however, we

use WFDEI-CRU forcing without re-calibrating the model due to the computational issues.

4.1.2 LSDM

The land surface discharge model (LSDM; Dill, 2008) is based on the Simplified Land Surface

Scheme (SL-Scheme) and the Hydrological Discharge Model (HD-Model; Hagemann & Gates,

2003, 2001) from the Max-Planck-Institute for Meteorology. The SL-Scheme includes a soil

bucket scheme for the computation of the vertical water balance and uses a simple snow

scheme based on the degree day approach. The daily fields of runoff and drainage from

the SL-Scheme are passed down to the HD-Model, which is a state of the art river routing

model. The code has been tailored to enable the simulation of globally the vertical and

lateral water transport and storage on the continental land surface for geodetic applications,

that include the derivation of Effective Angular Momentum Functions of the continental

hydrosphere to interpret and predict changes both in the Earth rotation (Dobslaw et al.,

2010; Dill & Dobslaw, 2010); and of vertical crustal deformations as observed from GPS

permanent stations (Dill & Dobslaw, 2013). The global water storage variations contain

water in rivers, lakes, wetlands, groundwater and soil moisture, as well as water stored in

snow and ice.

4.1.3 JSBACH

JSBACH (Raddatz et al., 2007; Brovkin et al., 2009) is a land surface model and forms

together with ECHAM6 (Stevens et al., 2013) and MPIOM (Jungclaus et al., 2013) the

current Max-Planck-Institute for Meteorology’s Earth System Model (MPI-ESM). As part of

the MPI-ESM, JSBACH includes interactive vegetation and a 5-layer soil hydrology scheme

to provide the lower atmospheric boundary conditions over land, particularly the fluxes of

energy, water and momentum. Snow is treated as external layers above the soil column.
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With increasing snow depth in winter, new layers are added up to maximum of five snow

layers. The top four layers are always 5 cm in thickness, while the bottom layer is unlimited

in size. Soil moisture in deep layers below the root zone is simulated and buffers extreme soil

moisture conditions in the layers above. For this thesis, however, JSBACH was used in an

offline mode without interactive coupling to the other MPI-ESM compartments, but driven

by prescribed WFDEI-CRU atmospheric forcing.

4.1.4 MPI-HM

Finally, the Max Planck Institute of Meteorology’s Hydrology Model (MPI-HM; Stacke &

Hagemann, 2012) is a global hydrological model. Similar to LSDM, it is also adapted from two

sub-components, the SL-Scheme and HD-Model. Its water flux computations are of similar

complexity to land surface models, but it does not account for any energy fluxes. Additionally

to precipitation and temperature, it requires potential evapotranspiration as input which also

was derived from the WFDEI using the Penman–Montheith equation similar to the Weedon

et al. (2011) study. TWS from MPI-HM is simulated as the sum of soil moisture in the root

zone, snow and surface water.

4.1.5 GLDAS

The Global Land Data Assimilation System (GLDAS) operated at the National Center for

Environmental Prediction (NCEP) (Rodell et al., 2004) is a land surface simulation system

which incorporates ground and space-based observations of the global water and energy cycle

into the land surface models. GLDAS is driven by the meteorological forcing data come

from the Global Data Assimilation System (GDAS) (Derber et al., 1991), supplemented

with a down-scaled version of the NOAA Climate Prediction Center’s Merged Analysis of

Precipitation (CMAP) (Xie & Arkin, 1997) and downward radiation from the Air Force

Weather Agency (Kopp & Kiess, 1996). We analyze a single realization of GLDAS that is

based on the Noah land surface model. The continental water storage in GLDAS includes the

soil moisture storage in four layers within the first 2 m of the ground, snow water equivalent

and canopy interception storage, while groundwater and surface water are not accounted for.

Some of the main characteristics of the numerical models are presented in Table 4.1, which

provide more information on how models are different with each other. For instance, although

soil moisture and snow water are included in all models, surface water and groundwater are

simulated differently. JSBACH is the only model which does not include surface water.

Groundwater is simulated by WGHM, where the anthropogenic impact such as groundwater



4.2. TWS Estimates from GRACE 81

Table 4.1: Overview of the main characteristics of the five numerical models particularly
considered in this thesis.

Model Meteorological Storage compartments Soil moisture Potential
name forcing variables included depth Snow Evapotranspiration

LSDM
Precipitation,
temperature

subsurface water
(root zone), snow,

surface water

bucket scheme
without
a depth

degree day Thornthwaite

WGHM
Precipitation,
temperature,

shortwave radiation

subsurface water
(root zone+

groundwater),
snow, surface water

varies with
rooting depth
of land cover

degree day Priestley–Taylor

JSBACH

Precipitation,
temperature,

wind, shortwave and
longwave radiation,

surface air

subsurface water
(root zone+
deep layer),

snow

down bedrock
but at

most 10 m
energy balance

physical
parametrization

MPI-HM
Precipitation, wind,

temperature,
radiation, humidity

subsurface water
(root zone),

snow, surface water

bucket scheme
without
a depth

degree day
Penman–
Montheith

GLDAS
GDAS meteorological data,

CMAP precipitation
canopy, soil

moisture, snow

Within first
2 m of

the ground
- -

abstraction is also considered. JSBACH does not include groundwater explicitly. However,

soil moisture in deep layers below the root zone is simulated and buffers extreme soil moisture

conditions in the layers above. Thus, some of the characteristics of real groundwater are

considered. We use the term subsurface water for both soil moisture and groundwater.

LSDM, WGHM, MPI-HM are provided on a 0.5◦ by 0.5◦ grid, while GLDAS is on 1◦ by 1◦

resolution and JSBACH has a coarse resolution, with 1.875◦ spacing in longitude and irregular

spacing in latitude. The mean values and the linear trends estimated over the period Jan

2003 to Dec 2012 – i.e., the common period of GRACE observations and model results – are

first removed for each grid cell. Then the TWS variations are averaged over the interested

basins to obtain the basin-scale TWS. For the model validation, we mainly focus on four

of the models (WGHM, LSDM, MPI-HM, and JSBACH) which are forced with the same

meteorological data. Since ice dynamics and glacier mass balance are not included in the

numerical models applied in this thesis, water mass variations in Antarctic and Greenland

are not considered throughout the reminder of this paper.

4.2 TWS Estimates from GRACE

The GRACE US–German twin satellite mission provides estimates of month-to-month changes

in the gravitational field of the Earth mainly based on precise K-band microwave measure-

ments of the distance between two low-flying satellites (Wahr, 2009) since April 2002. After

correcting for short-term variability due to tides in the atmosphere (Biancale & Bode, 2006),
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Figure 4.1: Locations of 31 globally distributed basins from the simulated topological
networks (STN-30p) with underlying Köppen–Geiger climate zones. Basin IDs and names
are indicated in Table 4.2.

solid Earth (Petit & Luzum, 2010) and oceans (Savcenko & Bosch, 2012), as well as due to

non-tidal variability in the atmosphere and oceans (Dobslaw et al., 2013) from the observa-

tions, the resulting gravity changes mainly represent mass transport phenomena in the Earth

system, which are – apart from long-term trends – almost exclusively related to the global

water cycle.

We use the monthly GRACE release 05a Level-2 products from GFZ Potsdam (Dahle et al.,

2012), which can be downloaded from the website of the International Centre for Global Earth

Models (http://icgem.gfz-potsdam.de/ICGEM). The GRACE products are expressed in

terms of fully normalized spherical harmonic (SH) coefficients up to degree and order 90,

approximately corresponding to a global resolution of 2° in latitude and longitude. We apply

the same post-processing steps to the GRACE data as described by Zhang et al. (2016).

The degree-1 coefficients are added following the method of Bergmann-Wolf et al. (2014b).

The non-isotropic filter DDK2 corresponding to an isotropic Gaussian filter with 680 km full

width half maximum (Kusche, 2007; Kusche et al., 2009) is applied to remove correlated

errors at particular higher degrees of the spherical harmonic expansion. In order to account

for signal attenuation and leakage caused by smoothing and filtering, local re-scaling factors

are introduced for each grid cell. We use median re-scaling factors obtained from a small

http://icgem.gfz-potsdam.de/ICGEM
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Figure 4.2: Relative amplitude differences of four hydrological model realizations with
GRACE-based TWS observations.

ensemble of global hydrological models. The gridded TWS anomalies are then estimated

which can be averaged over arbitrary basins. As for the model data, the linear trend is

removed over the period January 2003 to December 2012. Error estimates as a quadrature of

measurement error, leakage error and re-scaling error are also provided to assess the signal-

to-noise ratio (SNR) of GRACE for particular basins (full details are given in Zhang et al.,

2016). In the case of a small signal-to-noise ratio, discrepancies between TWS from GRACE

and models might also be attributed to comparatively large GRACE TWS errors.

4.3 Evaluation of TWS from model realizations with GRACE

We compare the basin-averaged TWS from GRACE with the results of four different numer-

ical model realizations introduced above. In total, 31 globally distributed basins where the

GRACE SNR is larger than 2 (see Fig. 4.1 and Table 4.1) are selected for further study.

We first focus on the global statistical performance of the models compared to GRACE. For
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Figure 4.3: Phase differences for the annual signal of four hydrological model realizations
with GRACE-based TWS observations.

these basins, evaluation metrics as suggested by Gudmundsson et al. (2012) that focus both

on seasonal signals and year-to-year variability are applied.

4.3.1 Evaluation metrics

First, relative annual amplitude differences are calculated according to

∆µ = (µM − µO)/µO, (4.4)

where µO is the annual amplitude of the time series of TWS variations from GRACE, and

µM the annual TWS amplitudes from the different model realizations (Fig. 4.2). Second,

the timing of the annual cycle is assessed using phase differences of the annual harmonic for

models and observations according to

∆φ = φM − φO. (4.5)
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Figure 4.4: Variance of GRACE-based TWS observations that is explained by TWS as
simulated in four hydrological model realizations.

If the value of ∆φ is negative, it implies that the seasonal maximum is earlier in the year in

the model than in GRACE (Fig. 4.3). Annual amplitude and phase are calculated by least

square regression as follows:

MIN
!
= (∆TWS(t) − (A sin(2πt/T + φ))T (∆TWS(t) (4.6)

− (A sin(2πt/T + φ)),

where ∆TWS is the TWS anomaly time series and T is the period of 1 year. Third, the

explained variances for all the model realizations are calculated:

R2 = (var(TWSO) − var(TWSO − TWSM))/var(TWSO), (4.7)

where var denotes the variance operator. Fourth, we repeat the calculation of the explained

variances for TWS time series from GRACE and the models with the mean seasonal variability

removed.
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Figure 4.5: Variance of GRACE-based TWS observations that is explained by TWS as
simulated in four hydrological model realizations. For both observations and model results,
the annual harmonic signal has been removed.

4.3.2 Global evaluation

As shown in Fig. 4.2, the values of ∆µ for WGHM and JSBACH are mostly negative.

For JSBACH, these negative values mainly occur at mid to high latitudes of the Northern

Hemisphere. WGHM underestimates the annual amplitude, especially at the low latitudes.

Contrarily, MPI-HM has more basins with positive ∆µ. For LSDM, most ∆µ values lie

between −0.3 and 0.3, indicating on average better agreement of annual amplitude with

GRACE. The phase difference varies more among the different models, but in most cases an

earlier seasonal storage maximum is shown for the model runs relative to GRACE. There

are more basins with phase difference values near zero for LSDM, while WGHM, JSBACH

and MPI-HM show large differences with respect to the GRACE result, especially at high

latitudes of the Northern Hemisphere (Fig. 4.3). LSDM explains the GRACE TWS variations

relatively better than the other models at most basins (Fig. 4.4). Only in the Yukon, Nile,

Zaire, Yangtze, Indus and the two basins in Australia are explained variances less than 50 %.

Low values of explained variance also occur at the mid-latitude of the Northern Hemisphere
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Figure 4.6: The differences between the explained variance values from WGHM with and
without groundwater.

for WGHM. JSBACH and MPI-HM perform generally better at basins in Africa, but have

worse results in Siberia. When the annual signal is removed, the explained variances for TWS

time series from GRACE and the models are generally less than 60 % (Fig. 4.5), indicating

the models’s poor ability to capture the inter-annual variations. LSDM shows especially low

explained variance values for many basins in Africa.

The impact from consideration of groundwater to TWS variations in WGHM is investigated

by showing the differences of explained variances with and without groundwater (Fig. 4.6).

The positive values indicate that WGHM with groundwater exhibits better agreement with

GRACE than the one without. The large impact is mainly located at basins such as Tocantins,

Niger, Huang He, Mekong and Mississippi. Only in three basins (Lena, Indus and Yukon) is

the effect of groundwater consideration on the model negative.

As each metric usually focuses only on one specific property of statistical performance and

has its own limitations, the time series of TWS are given for some basins with the largest

deviation between GRACE and the model. We show the Yukon basin, where both WGHM

and JSBACH exhibit the largest deviation of annual amplitudes from GRACE. Although

the annual amplitude is simulated better by LSDM and MPI-HM, apparent negative phase

differences are shown. The Amur basin is also shown, as LSDM, WGHM and MPI-HM all

have the largest negative phase differences with GRACE here. Models generally capture

the inter-annual signals but perform quite differently among each other and with GRACE

in terms of seasonality. Almost opposite phase differences are found for these models. The

smallest explained variance for MPI-HM happens at the St. Lawrence basin, where a much
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Figure 4.7: Examples of monthly TWS time series from GRACE and models for the basins
with the largest deviation between model and GRACE in each of the four metrics: Relative
amplitude differences (Yukon), phase differences (Amur), explained variance (St. Lawrence)
and explained variance with annual harmonic signal removed (Nile).

larger amplitude and a negative phase difference compared with GRACE are found. When

the annual signal is removed, models perform differently in terms of the explained variance.

In the Nile basin, large inter-annual variations simulated by LSDM even lead to negative

explained variance compared with the other models.

Fig. 4.8 summarizes the overall performance of each statistical metric for all the basins

considered by means of box plots. The median ∆µ for MPI-HM is almost zero where the

other three values are all negative, indicating an underestimation of the annual amplitude of

TWS from LSDM, WGHM and JSBACH. As shown in Fig. 4.2d, MPI-HM overestimates the

TWS variations at many basins, which compensate with those underestimated values and

lead to a median value at almost zero. All the models have a median phase difference below

zero, with LSDM having the smallest bias and range, and MPI-HM the largest bias. This

means that the TWS peaks of the models tend to proceed GRACE peaks. For the explained

variance, LSDM shows the best median value, followed by WGHM, JSBACH and MPI-HM.

However, when the annual signal is removed, many outliers appear in LSDM for the explained

variances, while WGHM and MPI-HM show slightly better performances.
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Figure 4.8: Box plots illustrating the ∆µ (a), phase differences (b), explained variance
(c) and explained variance with the annual harmonic signal removed (d) for the TWS from
GRACE and models. The red horizontal line is the median, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme data points not considered
outliers, and outliers are plotted individually and set within the extreme data limits as
indicated by the dashed line.

We also present the basin-averaged TWS errors from GRACE and the root mean square

(rms) differences between TWS variations from GRACE and from the hydrological model

runs (Table 4.2), where the largest and smallest differences are shown in bold and underlined

separately. The basins are grouped according to the Köppen climate zones (Kottek & Grieser),

which include tropical climates, dry climates, temperate climates and cold climates (see Fig.

4.1). For most of the basins, the GRACE errors are much smaller than the rms differences,

which indicates that the main contributions to the differences arise from model uncertainties.

Out of the five basins in the tropical zone, three basins have the largest differences between

TWS variations from GRACE and models in LSDM. In contrast, WGHM has no largest

differences in this climate zone. The smallest value, however, seems to occur randomly among

the models. In the dry zone, most basins have low SNR values and the smallest rms of the

TWS differences is sometimes quite close to the GRACE TWS errors. For instance, at basins
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Figure 4.9: Time series of TWS (left) from GRACE and models and model simulated AET
time series (right); each for three different catchments in dry zone: Niger, Chari and Indus.

like the Nile, Indus, and the two Australian basins, the GRACE SNR estimates are all below

3. Thus, it is likely that the large uncertainty in GRACE TWS estimates contributes largely

to the bad agreement in these basins. Still, MPI-HM and LSDM perform comparably better,

showing a smaller number of largest differences and comparably more smallest differences. In

the temperate zone, WGHM has the most largest differences, while MPI-HM has the least.

There is, however, no regular pattern of where the smallest difference occurs. In the cold

zone, all the smallest differences happen in LSDM, whereas the largest differences mainly

occur at MPI-HM and JSBACH.

The performance of the models varies from basin to basin, even within the same climate

zone, which could be due to the model structure, parametrization, and also the different
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Table 4.2: Characteristics of the basins shown in Fig 4.1. Bold and underlined numbers are
the largest and smallest RMS differences between GRACE and models separately.

Climate Basin Area RMSE(cm) between TWS from GRACE and GRACE TWS
Zones ID Name (1000 km2) LSDM WGHM JSBACH MPI-HM error(cm) SNR

Tropical

1 Amazon 5853 4.39 6.08 5.60 9.53 1.46 9.76
3 Zaire 3699 5.26 3.36 3.08 3.49 1.32 3.82
21 Orinoco 1039 6.37 4.96 6.21 5.79 3.14 4.74
29 Mekong 774 5.87 5.60 6.28 4.51 3.86 3.73
30 Tocantins 769 7.69 7.49 4.99 5.45 2.81 5.95

Dry

2 Nile 3826 4.02 1.85 1.61 1.39 1.06 3.26
10 Niger 2240 2.53 2.97 1.87 2.23 1.29 4.93
15 Chari 1571 2.94 1.96 2.40 2.50 1.50 3.42
18 Indus 1143 2.17 2.61 3.08 3.04 1.54 2.42
19 Syr-Darya 1070 2.00 3.30 3.07 2.89 1.12 3.65
22 Murray 1031 3.45 3.61 3.68 3.38 1.88 2.73
23 Great Artesian 977 2.44 2.67 2.36 2.22 1.33 2.67
24 Shatt el Arab 967 2.28 3.64 3.67 2.85 1.49 3.81
25 Huang He 894 1.52 2.09 1.74 2.38 1.28 2.35
27 Colorado(Ari) 807 1.90 2.59 2.98 2.91 1.41 2.78

Temperate

4 Mississippi 3203 1.68 3.54 2.36 3.45 0.86 6.60
6 Parana 2661 4.17 3.03 3.59 2.81 1.32 4.50
11 Zambezi 1989 2.89 7.05 4.83 3.30 1.57 6.80
12 Chang Jiang 1794 2.58 2.05 3.24 3.12 1.49 3.09
14 Ganges 1628 4.04 4.43 3.73 2.90 1.94 5.99

Cold

5 Amur 2903 1.20 1.73 1.88 2.05 0.68 3.18
7 Yenisei 2582 1.89 2.34 3.44 3.54 0.68 6.67
8 Ob 2570 1.50 3.20 4.35 4.14 0.68 8.31
9 Lena 2418 2.33 2.40 3.40 3.99 0.68 6.01
13 Mackenzie 1713 2.67 2.83 3.95 3.39 0.83 6.20
16 Volga 1463 2.11 4.55 3.28 5.22 0.84 8.43
17 St.Lawrence 1267 2.59 4.74 3.42 4.88 1.14 4.94
20 Nelson 1047 1.67 3.87 3.19 3.31 1.12 3.82
26 Yukon 852 5.06 5.72 5.74 5.29 1.19 7.68
28 Danube 788 1.72 4.18 4.03 4.27 1.50 4.96
31 Columbia 724 2.69 4.75 6.09 5.71 1.85 5.32

water storage components included in TWS. In order to find reasons for the different model

performance, we focus on two specific areas that are dominated by snow and arid climates in

more detail. There, we assess actual evapotranspiration (AET) and runoff which are the main

components of the terrestrial water budget and subsequently look into the mean monthly time

series of TWS and its individual storage components.

4.3.3 Actual evapotranspiration and runoff

As part of the terrestrial branch of the water cycle, actual evapotranspiration (AET) and

runoff may explain part of the differences among the models in terms of storage variations.

Although some large differences of AET are present, the effects on subsequently simulated

TWS are damped. Especially in humid areas, no direct impact can be found. For arid

basins, however, the impact from AET is more dominant. We choose three particularly af-

fected basins (Niger, Chari and Indus) and show the AET time series from all models (Fig.

4.9). For these basins, the time series comparison shows that the smaller (or larger) AET in
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the wet season leads to higher (or lower) seasonal amplitude of TWS. In addition, in these

dry areas, LSDM generally exhibits enhanced AET due to high temperatures and extremely

low humidity which then lead to smaller TWS variations. As exemplarily demonstrated for

the Niger basin, the relatively larger AET from LSDM covering the time period 2007 to

2009 is just correspondent to the comparably smaller TWS variations. AET is calculated

from the potential evapotranspiration (PET) as a function of the available amount of water.

While starting with the same meteorological forcing data, PET is calculated differently by

the models using various approaches. PET in the LSDM is calculated by the Thornthwait

method, using only the daily temperature and a seasonal heat index that is based on monthly

mean temperatures. In WGHM, PET is based on the Priestley–Taylor approach using net

radiation, which in turn is computed as a function of incoming shortwave radiation, temper-

ature and surface albedo. For MPI-HM, PET is computed in a pre-processing step based on

Penman–Montheith using radiation, temperature, wind and humidity. JSBACH computes

evaporation based on the energy balance by internally computing atmospheric water demand.

Fig. 4.10 displays time series comparison of runoff from the models for three basins in the

tropical zone (Amazon, Orinoco and Mekong). The runoff is calculated from the models

following the equation

R(t) = P (t) − ET(t) − TWSC(t), (4.8)

where t is the time, P , ET and R are the basin-averaged precipitation, evapotranspiration and

runoff, and TWSC is the terrestrial water storage change (Ramillien et al., 2006). It is seen

that the performance of a certain model is connected with its differently simulated runoff. At

the Amazon basin, the comparably large runoff simulated from MPI-HM also leads to smaller

variability in TWS, which is also shown at the Orinoco basin. At the Mekong basin, the larger

amplitude in TWS from JSBACH compared with GRACE is related to the apparently small

amplitude in its runoff.

4.3.4 Snow-dominated catchments

As highlighted in Section 4.3.2, models perform quite differently at high latitudes of the

Northern Hemisphere (cold zone), which are generally dominated by snow. Especially JS-

BACH and MPI-HM show large differences in the TWS when compared with GRACE. We

focus here on four basins in this area, Lena, Yenisei, Ob and Yukon, and look into the mean

monthly time series of the TWS and its different components (Fig. 4.11). For LSDM and

MPI-HM, subsurface water only includes the water storage in the root zone, while for WGHM

and JSBACH, both root zone and deep layer water storage are included. LSDM and WGHM
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show the smallest phase differences with GRACE in terms of TWS, while the other two ex-

hibit negative phase shifts. The subsurface water variations from WGHM and LSDM have

very similar patterns, with an apparent peak usually in May. The phases of the snow water

time series from LSDM and WGHM are also quite close, but LSDM always has a slightly

larger amplitude. Since the two use the same snow scheme (degree-day method), this is

certainly related to the different model parameters or sub-grid representation schemes. The

surface water storage from these two models are sometimes different. For the Ob River, for

instance, the different surface water storage also leads to the poor performance of WGHM

in terms of TWS when compared with GRACE. The snow variations from LSDM and MPI-

HM are almost identical to each other. However, the different subsurface and surface water

simulated by MPI-HM causes a bad timing of the TWS peaks. For the Lena basin, although

the snow variations from LSDM, WGHM and MPI-HM are quite close, MPI-HM simulates

almost no surface water variations, which leads to a poor agreement of TWS with GRACE

estimates. For JSBACH, there is already a large phase difference in the snow storage, which

is mainly due to the poor capture of the phase of the snow accumulation and onset of melting.

This could be caused by the specific snow scheme applied by JSBACH. Yukon, however, is

quite different from the other snow-dominated basins. Here, all the models underestimate

the annual amplitude of TWS when compared with GRACE. Since the basin-average TWS

error from GRACE at Yukon is 1.19 cm and much smaller than the discrepancies between

GRACE and the models (Table 4.2), it could be the case that all models fail to represent

certain hydrological processes, or that our GRACE TWS errors are too optimistic here since

the re-scaling errors are also estimated from a hydrological model ensemble. In addition, Seo

et al. (2006) found also large TWS errors at Yukon basin and suggested that the atmosphere

and ocean tidal and non-tidal de-aliasing errors might be a problem in this area. Investigating

those discrepancies in full detail, however, is beyond the scope of our present paper and will

be left open for future study.

4.3.5 Dry catchments

We also focus on four catchments in the dry zone, which are characterized by annual pre-

cipitation lower than annual potential evapotranspiration (McKnight & Hess, 2000). For the

Nile and Niger basins, the subsurface water is the main contributor to the TWS changes

(Fig. 4.12). The TWS variations from JSBACH and MPI-HM show a quite similar annual

cycle when compared to GRACE. MPI-HM generally exhibits a larger amplitude in simulated

subsurface water and TWS. WGHM deviates considerably with a much smaller amplitude

and a large phase shift in the subsurface water. The simulated surface water from WGHM
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brings TWS slightly closer to that from GRACE. LSDM, however, performs differently in

these two basins. In the Nile basin, although the subsurface water from LSDM is consistent

with JSBACH and MPI-HM, the simulated surface water variations lead to a higher am-

plitude of TWS variations when compared with GRACE. In Niger, LSDM performs quite

closely to WGHM, but with a slightly larger amplitude. All models tend to perform poorly

in terms of TWS when compared with GRACE in the Indus basin. We note a comparably

low SNR (2.2 cm) for the GRACE estimated TWS here, which is mainly contributed by the

large leakage error at this basin (Zhang et al., 2016). In addition, the Indus basin is not only

subject to large-scale groundwater depletion from intensive irrigation, but is also affected by

snow melting and glacier melting from Himalaya. Here, the subsurface water simulated by

the models already shows large discrepancies. As in other basins affected by snow dynamics,

JSBACH also fails to capture the snow variations properly. MPI-HM performs poorly in sim-

ulating the surface water, with a delayed dynamics which leads to a preceded annual cycle.

At the Huang He basin, the subsurface water from LSDM, WGHM and JSBACH as the main

contributors to the TWS show similar annual variations to GRACE, while MPI-HM has a

much larger amplitude. The surface water, however, is simulated differently by LSDM and

WGHM, which consequently leads to different TWS variations.

4.4 Summary

We validate TWS variations simulated by four different global hydrological models with

monthly GRACE gravity data. All the models are forced with the same WFDEI meteoro-

logical data set to exclude the effect of meteorological forcing on the models. Four statistical

metrics focusing on different aspects of model performance compared with GRACE have been

applied. In addition, time series of TWS variations from GRACE and models are investigated,

where different water storage components from models are shown as well.

At certain basins like the Danube, Tocantins, Columbia, Ganges, Mekong, and Amazon, all

numerical models show good agreement with GRACE. However, models still perform quite

differently at many other basins, even though forced with the same meteorological data set.

At the Nile, Indus, Murray and Great Artesian basins, large TWS errors and low SNR are

found, which suggests a major contribution from GRACE errors to the differences. A good

capture of annual amplitude and phase at most basins leads to high values of explained

variance in many basins for LSDM. However, serious problems are also found in the same

model run in some central Africa basins, like the Nile and Zaire, where TWS simulated

by LSDM exhibits unusual large inter-annual variations. WGHM performs generally well
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in tropical and cold regions, but rather poorly in the temperate zone. JSBACH and MPI-

HM show large discrepancies with GRACE at the basins at high latitudes of the Northern

Hemisphere.

Model performance is also investigated in some snow-dominated and dry catchments in more

detail through time series comparison. The poor performance of JSBACH and MPI-HM

in snow-dominated regions is mainly related to negative phase shifts compared to GRACE.

MPI-HM simulates identical snow variations to LSDM; however, the different simulations

of subsurface water and especially surface water still lead to different TWS variations in

snow-dominated regions. Despite the missing surface water component, the simulated snow

variations in JSBACH already show smaller amplitude and negative phase differences com-

pared with all the other models. This could be related to the fact that JSBACH simulates

snow in a more physical way based on energy balance, which is totally different from the

degree-day method applied by all the other models. The comparably better agreement of

LSDM and WGHM with GRACE in terms of TWS in these snow-dominated basins is partly

caused by the realistic surface water component represented by these two models. In the

dry catchments, the impact from AET on TWS is relatively strong. The smaller AET from

MPI-HM also leads to better agreement with GRACE, whereas LSDM shows large differences

with GRACE in terms of TWS, especially at some dry basins in central Africa, partly due to

the overly simple evaporation scheme. PET is simulated using a superior parametrization by

MPI-HM, while LSDM still applies the traditional Thornthwaite method based solely on air

temperature. The groundwater considered by WGHM also has some impact on the simulated

TWS, especially at basins such as Tocantins, Mekong, Niger and Mississippi. At the Yukon

basin, we found the bad performance of all models in terms of TWS when compared with

GRACE, which could be due to the effects of atmospheric and oceanic de-aliasing errors not

further discussed in our current study. In future, we would like to assess all possible errors

of GRACE TWS through investigation of simulated GRACE-type gravity field time series

(Flechtner et al., 2016) based on realistic orbits and instrument error assumptions as well as

background error assumptions out of the updated ESA Earth system model (Dobslaw et al.,

2015, 2016), which we believe will further help to explain the discrepancy between global

models of the terrestrial water cycle and GRACE satellite observations.
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Figure 4.10: Time series of TWS (left) from GRACE and models and model simulated
runoff time series (right); each for three different catchments in tropical zone: Amazon,
Orinoco, and Mekong.
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Figure 4.11: Mean monthly time series of TWS (first column) and the individual storage
contributions from subsurface water (second column), snow water equivalent (third column)
and surface water (fourth column); each for four snowy catchments: Ob, Lena, Yenizei and
Yukon. TWS from GRACE (dashed line) has been included into every sub-figure for reference.
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Figure 4.12: Mean monthly time series of TWS (first column) and the individual storage
contributions from subsurface water (second column), snow water equivalent (third column)
and surface water (fourth column); each for four dry catchments: Nile, Niger, Indus and
Huang He. TWS from GRACE (black line) has been included into every sub-figure for
reference.



Chapter 5

Validation of MPI-ESM Decadal

Hindcasts

5.1 Decadal predictions and MPI-ESM hindcast experiments

5.1.1 Decadal predictions

Near term climate predictions, ranging up to one decade in the future, are also called decadal

predictions. As a new endeavor in climate change, it can provide information about the

climate state over the next few years, which is very important for policy and decision makers.

For instance, it offers potential to assess the probability of extreme events, like drought, flood,

wildfire, so that comprehensive planning can be made ahead.

The time horizon of decadal prediction lies between seasonal-to-interannual predictions and

long-term projections (Meehl et al., 2009), and it thus combines some features of the two

time scales. Numerical weather forecasts predict the evolution of the atmospheric circulation

for the following days, which requires the information of the current or initial state of the

system, predominantly the atmosphere and land surface. On longer time scales climate

predictions rely on history and future evolution of natural and anthropogenic forcings (Smith

et al., 2016). Similar to seasonal-to-interannual predictions, decadal predictions also need

information about the current state. It, however, relies on the evolution of the oceanic

circulation over the next few years, as the oceans are evolving more slowly and have longer

“memory” than the atmosphere. Thus, the decadal predictions depend not only on how it

captures the current state of the system which is addressed as “initial value problem”, but

also how well it captures the anthropogenically-forced and naturally-forced climate changes,

referred as “Boundary condition problems” (Fig. 5.1; Meehl et al., 2009).
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Figure 5.1: Schematic illustrating progression from initial value problems with daily weather
forecasts at one end, and multi-decadal to century projections as a forced boundary condition
problem at the other, with seasonal and decadal prediction in between. (Meehl et al., 2009)

Generally, decadal predictions are produced using the same models as for long-term climate

projections. A climate model is a simplified mathematical representation of the climate

system, and it includes the four fundamental elements of it (atmosphere, ocean, land and

cryosphere). The climate models are normally initialized with the observed ocean tempera-

ture and salinity fields, and some with sea-ice and atmospheric variables at the starting time

of the decadal simulation. With this initialization, the simulations start from a climate state

that better matches the current phase of the observed climate. To assess the predictive skill

of decadal experiments, retrospective forecasts, named “hindcasts”, are constructed from the

historical observations.

5.1.2 MPI-ESM hindcast experiments

The current ongoing German research project MiKlip (Mittelfristige Klimaprognosen) is ded-

icated to develop a climate forecast system that is able to provide skillful decadal predictions

for up to a decade ahead. This system is based on the Max Planck Institute Earth System

Model (MPI-ESM). As an Earth system model (ESM), it includes processes of the atmo-

sphere, the land and the ocean simulated by different model components. An overview of

these modules is given in Giorgetta et al. (Fig. 5.2; 2013). The dynamical atmospheric part

of the MPI-ESM is simulated by the general circulation model European Center-Hamburg

Atmosphere Model version 6 (ECHAM6, Stevens et al., 2013), while the Max Planck In-

stitute Ocean Model (MPIOM, Jungclaus et al., 2013) simulates the ocean. Both modules

are coupled through an interface to the Jena Scheme for Biosphere Atmosphere Coupling

in Hamburg (JSBACH, Reick et al., 2013; Hagemann et al., 2013) and the Hamburg Ocean

Carbon Cycle Model (HAMOCC, Ilyina et al., 2013), respectively, which is performed by the

Ocean Atmosphere Sea Ice Soil (OASIS, Valcke, 2013).
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Figure 5.2: Schematic view of MPI-ESM: Colored boxes show the model components:
ECHAM6 is the atmospheric general circulation model, which is directly coupled to the
JSBACH land model that describes physical and biogeochemical aspects of soil and vegeta-
tion. MPIOM is the ocean general circulation model, which includes the HAMOCC model
for the marine biogeochemistry. OASIS is the coupler program, which aggregates, interpo-
lates, and exchanges fluxes and state variables once a day between ECHAM6+JSBACH and
MPIOM+HAMOCC. The coupler exchanges fluxes for water, energy, momentum, and CO2
(Giorgetta et al., 2013).

Numerous long-term experiments have been performed with the MPI-ESM following the 5th

Phase of the Coupled Model Intercomparison Project (CMIP5) experiment protocol (Taylor

et al., 2012). The long-term uninitialized historical simulation starts in 1850 and goes un-

til 2005 driven with prescribed natural and anthropogenic forcings, like solar and volcanic

variability and anthropogenic greenhouse gas concentrations and aerosols. For the subse-

quent years, projections following the RCP4.5 emission scenario are applied (Giorgetta et al.,

2013). The historical simulations include ten ensemble members that are randomly initialized

in 01/1850, realized by using lagged initialization for different start dates. In addition to the

long-term experiments, decadal climate predictions (CMIP5) are also available.

Within MiKlip, there are three decadal prediction hindcast experiments, baseline-0 (b0),

baseline-1 (b1) and prototype (pr). They mainly differ from each other in their employed

initialization technique and the ensemble size (Müller et al., 2014). The b0 hindcast is

analogue to the initialized CMIP5 hindcast. The anomaly technique (Pierce et al., 2004;

Smith et al., 2013) is applied to initialize the b0 hindcasts with the oceanic temperature and

salinity anomaly fields from MPIOM forced with NCEP/NCAR atmospheric reanalysis data

(Kalnay et al., 1996). The simulations were initialized for the period 1961 to 2012, each

simulating a decade with three ensemble members. An additional set of 7 ensemble members

is initialized every five years. Two different model configurations LR/MR are implemented,
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that differ from each other not only in vertical resolution of atmospheric part but also in

horizontal resolution of the ocean (Giorgetta et al., 2013). The atmospheric component

of b0-LR is ECHAM6 in T63L47-resolution (approximately 210 km horizontal grid spacing

at the equator), while the ocean is represented by MPIOM with GR15L40-resolution (grid

spacing ranging from approximately 15 km around Greenland to 185 km in the tropical

Pacific) (Kruschke et al., 2015). The 47 vertical pressure levels of the atmosphere in the b0-

LR is doubled to 95 in MR. For the ocean, b0-MR uses a tri-polar grid (TP) with a horizontal

resolution of approximately 0.4 ◦ at the equator (Giorgetta et al., 2013). The ocean in the

b1 simulations is also initialized using the anomaly technique, but with ocean reanalysis data

from the ocean reanalysis system 4 (ORA-S4) from ECMWF (Balmaseda et al., 2013). In

addition, the atmospheric components in b1-LR is initialized with full-field parameters as

surface pressure, temperature, vorticity and divergence from ERA-Interim (Dee et al., 2011).

An ensemble of 10 members is lagged initialized each year. The b1-MR experiment is similar

with the LR version except for the higher resolution in ocean and atmosphere as mentioned

above and its number of ensemble members (five members). The prototype prediction system

initializes the atmosphere the same way as b1, but applies full field method to initialize the

ocean with temperature and salinity fields taken from ORA-S4 and German contribution to

Estimating the Circulation and Climate of the Ocean (GECCO2) (Köhl, 2015). The ensemble

size is increased to 30, with 15 ensemble members based on ORA-S4-initialized simulations

and additional 15 members initialized with GECCO2. Both b1 and pr are initialized yearly

for the period from 1961 to 2013.

5.1.3 Verification

Decadal predictions take into account both natural variability and forced climate change.

They requires information of the atmosphere, oceans, cryosphere, and land surface so that

the coupled general circulation models can be best initialized. Meanwhile, these initial states

are not only affected by the natural variability, but by the anthropogenic forcing as well.

There are, however, no comprehensive observations of the ocean and the climate models still

have large uncertainties. These all make the decadal prediction quite challenging.

Due to these difficulties, the decadal prediction research is still experimental. The decadal

prediction experiments can be used to compare the prediction quality across the different

experiments and assess what predictions should be attempted and how it should be done.

Goddard et al. (2013) introduced a framework to verify decadal hindcast experiments, which

mainly focuses on these research questions: 1) Does initialization of the hindcasts with ob-

servations of the slowly-varying components of the climate system result in more accurate
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near-term predictions in comparison with uninitialized projections? and 2 ) Is it plausible to

use the ensemble spread of the prediction model to represent forecast uncertainty on average?

5.1.3.1 Preprocessing

Before employing the set of metrics to assess prediction quality, both model data and obser-

vations have to be re-arranged to be consistent. First, the ensemble averages are calculated

as the mean of all ensemble members Hijk that differ only in their initial conditions.

Hij =
1

N1

N1∑

k=1

Hijk (5.1)

where k=1, N1 is the set of ensemble members, run at each initial time i=1, N2, and extend

over a prediction range of j=1, N3. It is known that the model tends to drift away from

its initial state which is close to the observations toward its own model climate due to the

problems with the model equations, numeric schemes and parameterizations, leading to bias

in the forecasts (Zhang, 2011). The drift can be calculated as the climatological averages of a

series of initialized hindcasts over all starting dates (Smith et al., 2013), or as climatological

average for each time period from the hindcasts from the corresponding period (García-

Serrano & Doblas-Reyes, 2012), or as a function of lead-time and calendar month based on

a set of hindcasts. The lead-time dependent prediction anomaly is estimated by subtracting

from every lead month tj (with j = 1 ;...; N2) of a given hindcast experiment Hi (i = 1 ;...;

N2) the climatological mean of the same lead months from all other experiments:

∆Hij = Hij − 1

N2 − 1

∑

p 6=i

Hpj (5.2)

This procedure is then applied to all other lead months of all experiments. The long-term

simulations and observations are handled differently, where the climatological mean covering

the whole time range is subtracted.

As small-scale variability in spatial and temporal scales could contaminate the larger-scale

climate variability, noise could be introduced, which reduces the prediction skill. On temporal

scale, different scales: year 1, years 2-5, years 6-9 and years 2-9, are recommended to assess

the skill for different lead times and temporal averaging. The temporal average between the

initial year, Y1 and the final year YN3 of a certain hindcast is calculated as:

Hi =
1

(YN3 − Y1 + 1)

YN3∑

j=Y1

Hij (5.3)
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The long-term simulations and observations are sampled as the average of the same respective

years as is done for the hindcasts. Spatial smoothing is sometimes applied before verification

to reduce the unpredictable grid-scale noise. On the spatial scale, 5◦ × 5◦ is suggested to

be used for smoothing precipitation, and 10◦ × 10◦ for temperature, since precipitation is

derived from more localized processes (Räisänen & Ylhäisi, 2011).

5.1.3.2 Evaluation metrics

To solve the first question of whether the initialization results in more accurate predictions, a

deterministic metric, the mean squared skill score (MSSS), is applied. The MSSS is calculated

from a set of hindcasts Hi and the observations Oi via the mean squared error (MSE):

MSE =
1

N2

N2∑

i

(Hi − Oi)
2 (5.4)

where Hi and Oi are both anomalies for which the mean bias has already been removed. The

MSSS of a prediction with respect to the reference, like the climatological average Ō can then

be written as:

MSSS(H, Ō, O) = 1 − MSEH

MSEŌ

. (5.5)

The MSSS can be also defined using the uninitialized predictions (P) instead of the observa-

tions as reference:

MSSS(H, P̄ , O) = 1 − MSEH

MSEP̄

. (5.6)

A perfect MSSS has the value 1, where the mean squared error of the targeted predictions is

0. Accordingly, a positive value indicates the predictions H is more skillful than the reference

predictions, whereas a negative MSSS means just opposite.

Since the decadal prediction is a probabilistic forecast, it is important to assess the range of

possibilities for individual predictions. The probabilistic skill is evaluated through the con-

tinuous ranked probability skill score (CRPSS), which can also be used to solve the second

question of whether the ensemble members spread represents the possibilities of the predic-

tions. The CRPSS is derived from the continuous ranked probability score (CRPS), which

quantifies the difference between the predictive cumulative distribution functions (cdf) of the

hindcasts and the cdf of the observation (Goddard et al., 2003):

CRPS(Hik, Oj) =

∫ +∞

−∞
(G(Hj) − H(Oj))2dy (5.7)
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where H represent the Heaviside function assuming perfect observations and G represents the

Gaussian distribution centered on the mean Hj and ensemble variance about that mean, σ2
H .

Taken the CRPSF as the hindcast distribution, and the CRPSR as the reference distribution

CRPSS = 1 −
∑N2

i=1 CRPSFi∑N2
i=1 CRPSRi

, (5.8)

shows the way to estimate the CRPSS. To solve the question mentioned above, the hindcast

variance is calculated as:

σ2
F =

1

N2

N2∑

i=1

1

N1 − 1

N1∑

k=1

(Hik − Hi)
2, (5.9)

while the variance for the reference distribution is expressed as:

σ2
R =

∑N2
i=1(Hi − Oi)

2

N2 − 2
. (5.10)

For the skill verification, it is also important to evaluate the statistical significance of scores.

Here, a non-parametric block bootstrap approach (Wilks, 2011; Goddard et al., 2013) has

been applied. Firstly, a re-sampled set of p = 1, M initialized and uninitialized simulations is

made. Accordingly, the H̃IK is sampled by first randomly selecting the new start times from

the set of years and then setting the new N1 ensemble members from each start time. This new

sampled bootstrapped hindcasts can then be applied to derive different score distributions.

Take MSSS score for instance, the distribution of MSSS values can be obtained from the

bootstrap-generated time series from ˜MSSS(k). The p value for the test is represented by

the fraction of values that are negative. If p is smaller than or equal to the selected significant

level α, the score of this grid cell is considered significant for the (1 − α) × 100% confidence

level.

5.2 Deterministic skill investigation of MPI-ESM decadal hind-

casts with TWS from GRACE

Published as: Zhang, L., Dobslaw, H., Dahle, C., Sasgen, I., and Thomas, M. (2015).

Validation of MPI-ESM decadal hindcast experiments with terrestrial water storage variations

as observed by the GRACE satellite mission, Meteorol. Z., doi: 10.1127/metz/2015/0596.
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5.2.1 Introduction

Reliable predictions of near-future changes in the Earth’s climate beyond the seasonal time-

scale would be highly valuable for the human society. Since adaption to and mitigation

of climate change require far-reaching decisions many years before any measure might be

effective, reliable estimates on low-frequency climate variability including near-term trends

with lead time of a few years would be very beneficial for policy management and decision-

making on climate change investments. This includes, for example, predicting the probability

of extreme events as demonstrated in skillful multi-year predictions of Atlantic hurricane

frequency (Smith et al., 2010), but also near-surface air temperatures and the global water

cycle.

The assessment of forecast skill of any decadal prediction system is typically based on validat-

ing extensive sets of hindcast experiments, where observations are already available (Smith

et al., 2007; Keenlyside et al., 2008). Besides atmospheric and oceanic state quantities, also

land surface conditions are increasingly recognized as influential for the evolution of climate

in particular on the longer time scales. Water stored on the continents does not only affect the

atmospheric circulation by means of surface albedo changes and thermal isolation due to snow

cover, but also influences evaporation (Koster et al., 2004a; Meehl et al., 2009; Seneviratne &

Stöckli, 2007). Further, groundwater has a potentially large impact on the low-frequency cli-

mate variability by means of its contributions to soil moisture re-charge (Bierkens & van den

Hurk, 2007).

For a thorough skill assessment of any decadal prediction system it is therefore important not

to focus solely on traditionally well-observed quantities as air temperatures or precipitation,

but to take additionally many more types of observations into account (Mahmood et al.,

2010). The satellite mission Gravity Recovery and Climate Experiment (GRACE; Tapley

et al., 2004b) provides since 2002 monthly snap-shots of the time-variable global gravity field

of the Earth. Over the continents, gravity variations are primarily related to changes of water

stored as snow, soil moisture, surface water, groundwater, and biomass. Since mass anoma-

lies affect gravity measured by GRACE independently of a surface exposure, the GRACE

experiment is the only realization of a remote sensing technique that is able to provide es-

timates of water masses integrated vertically from the surface down to the deep aquifers.

The sum of the water masses in all those different hydrological storage components observed

by GRACE is typically denoted as terrestrial water storage (TWS). TWS can be viewed as

a measure of the vertical and lateral water fluxes in time and is therefore characterized by

distinct low-frequency variability. This low-frequency character makes TWS ideally suit for

decadal climate prediction model validation efforts. However, even though TWS estimates
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from GRACE are available for more than one decade up to now, the currently available

knowledge on the overall accuracy of the GRACE-based TWS in particular on periods longer

than seasonal is still limited, since it relies so far primarily on the assessment of hydrological

model data (Syed et al., 2008b) or the analysis of combined atmospheric-terrestrial water

balances (Seneviratne et al., 2004).

In this thesis, we examine three different sets of decadal hindcasts performed with the cou-

pled Earth System Model from Max-Planck-Institute for Meteorology (MPI-ESM) within

the German research project “Mittelfristige Klimaprognosen” (MiKlip) (Müller et al., 2012;

Pohlmann et al., 2013). We follow the verification framework proposed by Goddard et al.

(2013) to assess the prediction quality of the MPI-ESM decadal hindcasts against terrestrial

water storage anomalies from GRACE. Other satellite observations like the upper troposphere

and lower stratosphere region (UTLS) temperature and satellite-retrieved cloud parameters

have also been applied to evaluate the same MPI-ESM decadal hindcast experiments (Schmidt

et al., 2015; Spangehl et al., 2015). The structure of our paper is arranged as follows: the pro-

cessing of the GRACE satellite observations is outlined in Sec. 5.2.2. Subsequently, Sec. 5.2.3

gives a brief summary on the available hindcast experiments, whereas Sec. 5.2.4 sketches the

validation approach applied. Results for deterministic skill scores are presented in Sec. 5.2.5,

followed by some conclusions in the final section of this paper.

5.2.2 GRACE satellite observations

We use monthly GRACE RL05 Level-2 products from January 2003 to December 2011 pro-

cessed at GFZ (Dahle et al., 2012) and estimate globally gridded and re-scaled TWS estimates

from GRACE following the same procedure as introduced in Section 3.3. Then the gridded

TWS variations are aggregated into 5◦ averages as suggested by Goddard et al. (2013), and

a mask is applied that removes ocean, small islands, and areas where the standard deviation

of TWS as seen by GRACE is smaller than 1 cm of equivalent water height (eq.w.h.).

The time-variability in TWS as seen by GRACE is primarily dominated by the seasonal cycle

(Fig. 5.3a). We note standard deviation values of up to 15 cm eq.w.h. in tropical areas as,

e.g., in the Amazon catchment, the Congo basin, and the Indian Monsoon area. Variabilitiy

is substantially smaller at higher latitudes, but still reaches standard deviation values of up

to 10 cm eq.w.h. in snow-dominated regions of North America and Eurasia. Calculating

standard deviations from yearly averages (Fig. 5.3c) in order to focus on differences between

individual years only indicates much smaller variability of up to 5 cm eq.w.h. It is interesting

to note that for the annual means the TWS variability at moderate latitudes is equally high

as in tropical catchments.
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Figure 5.3: Standard deviation of monthly (top) and yearly averaged (bottom) TWS anoma-
lies from GRACE (left) and the ensemble mean of a decadal hindcast experiment b0-LR
(right) for lead year 1. Both data-sets are available from January 2003 to December 2011
and are aggregated here into 5◦ grid cells.
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5.2.3 Decadal hindcasts from MPI-ESM

I apply three different ensemble sets of decadal hindcasts that are available from two different

versions of the MPI-ESM coupled climate model. The low resolution (LR) model variant has

been used already within the Coupled Model Intercomparison Project Phase 5 (CMIP5)

(Taylor et al., 2012) and includes the oceanic component MPIOM (Jungclaus et al., 2013)

discretized on a 1.5◦ curvilinear grid with 40 layers in the vertical, the atmospheric model

ECHAM6 (Stevens et al., 2013) at T63 (1.875◦) horizontal resolution with 47 vertical levels

that reach up to 0.1 hPa in the upper stratosphere, and the land surface model JSBACH

(Reick et al., 2013; Hagemann et al., 2013). A second variant of MPI-ESM with medium

resolution (MR) has a finer horizontal resolution in the ocean (0.4◦ curvilinear grid), and 95

levels in the atmosphere.

For both model variants, historical runs in line with the CMIP5 protocol are available until

2006. For the subsequent years, projections following the RCP4.5 emission scenario are used.

In the remainder of this thesis, we denote those runs as “uninitialized projections”. In order to

cover the same time span, GRACE observations in the period 2003 - 2011 have been applied,

and the following sets of decadal hindcasts are considered in the subsequent analysis:

(i) baseline0 at low resolution (b0-LR): three ensemble members initialized every year between

1994 and 2000, ten ensemble members initialized every year between 2001 and 2010;

(ii) baseline1 at low resolution (b1-LR): ten ensemble members initialized every year between

1994 and 2010; and

(iii) baseline1 at medium resolution (b1-MR): five ensemble members initialized every year

between 1994 and 2010.

For all model runs, the standard output variables “total soil moisture content” (mrso) and

“surface snow amount” (snw) are taken as the dominant contributors to the terrestrially

stored water; the sum of both is contrasted against GRACE-based TWS in the remainder

of this thesis. Note that both surface water and deep aquifers are likely to contribute to

TWS as well, their effects have been, however, omitted in this assessment, since none of them

is properly represented by MPI-ESM. We are primarily interested in assessing the hindcast

quality in relation to the lead time, thus we re-sort the data and build lead year time-series

for the ensemble means of each ensemble set of hindcasts.

Exemplarily, variability of TWS as simulated within the b0-LR hindcast experiment is de-

picted in Fig. 5.3b. In general, signal magnitudes and spatial patterns fit well to the GRACE

observations. Boundaries between different hydro-climates are more sharply defined in the
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Figure 5.4: Mean squared skill score (MSSS) for three different decadal hindcast experi-
ments within the MPI-ESM with respect to GRACE-based TWS observations for the period
2003 - 2011. Top row: MSSS of initialized hindcasts vs. uninitialized projections for lead year
1 of the experiments b0-LR (left), b1-LR (middle), and b1-MR (right). Middle row: MSSS
of initialized hindcasts vs zero anomaly forecasts for lead year 1 of the experiments b0-LR
(left), b1-LR (middle), and b1-MR (right). Bottom row: MSSS of uninitialized projections
vs. zero anomaly forecasts of the uninitialized-LR (left), and the uninitialized-MR run.
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model results, suggesting that spatial leakage is still present in the post-processed and re-

scaled GRACE results. For the standard deviation of annual means, however, we note sub-

stantially lower variability compared to the GRACE data in almost all regions of the world,

and the magnitudes typically reach only half the amount of the observations (Fig. 5.3d).

5.2.4 Validation approach

By using TWS from GRACE as the reference observations, we are going to assess how skillful

the three different sets of hindcasts from the MPI-ESM are in terms of predicting anoma-

lous terrestrial water storage. By posing this validation question, we attempt to investigate

whether the models provide information about water availability below the long-term mean

(i.e., which might lead to drought conditions) or above it (i.e., which might lead to flood

conditions). Since the trends in TWS observed by GRACE cannot be exclusively assigned

to natural climate variability, but are also due to, for instance, solid earth geophysics and

anthropogenic groundwater extraction from deep aquifers, the average trends of TWS over

the observation period are removed from both the observations and hindcasts. To exclude

also seasonal effects, which are not in the focus of a decadal climate prediction system, we

confine ourselves to the assessment on annual averages only. Finally, both model and ob-

servational data-sets are aggregated onto a regular 5◦ grid as used also in Goddard et al.

(2013). As a deterministic metric, we use the mean-squared skill score (MSSS, Eq. 5.5), that

compares the mean-squared errors (MSE, Eq. 5.4). This score is also implemented in the

central evaluation system of MiKlip as described by Kadow et al. (2015). Here, both Pj and

Oj are anomalies relative to their respective climatologies calculated over the same data span.

Besides the uninitialized projections, we also use “zero-anomaly forecasts” as a reference R

in Eq. 5.6. As a deterministic score, the MSE is typically calculated from ensemble mean

averages that we obtain from the re-sorted lead year dependent time-series from the different

sets of ensemble hindcasts as described in the previous section. Besides showing MSSS for

the single lead year 1, average MSSS over lead years 2 - 5, and 6 - 9 are also calculated.

Following the non-parametric bootstrapping method described in Appendix 2 of Goddard

et al. (2013), we also assess the significance of the MSSS of initialized hindcasts b1-MR with

respect to uninitialized projections for lead year 1 with three different confidence levels of

90%, 95% and 99% .
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Figure 5.5: Significance of the MSSS of initialized hindcasts b1-MR with respect to unini-
tialized projections for lead year 1. Red areas shows statistical significance that the MSSS
is positive at the 99% confidence level, green indicates the added areas where the confidence
level is chosen as 95%, light blue is for 90% and dark blue represents the other areas.
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Figure 5.6: Same as Fig. 2, but for lead years 2-5.
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5.2.5 Results

With globally gridded TWS anomalies at 5◦ spatial resolution from GRACE as the ref-

erence, MSSS maps are calculated for the three different MPI-ESM decadal prediction en-

sembles. Focusing on lead year 1 (Fig. 5.4), we note that the scores of the uninitialized

projections compared to a zero-anomaly forecast are generally small for the LR and MR

model version considered: estimates hardly exceed 0.5 even in isolated regions. Neverthe-

less, we note a slight improvement of the scores for MR in moderate to high latitudes of

the Northern Hemisphere, and also a reduction of the highly negative skills shown in LR in

the Southeast-Asian Monsoon regions. When looking into scores of the initialized runs with

respect to a zero-anomaly forecast, we find moderate skills in large parts of Siberia in b0-LR

that are substantially improved in b1-LR, indicating that the combined atmosphere/ocean

initialization strategy implemented in baseline1 is also beneficial to the representation of

land-surface processes in MPI-ESM. This improvement is also reflected in scores calculated

for the initialized versus the uninitialized projections, that also increase from b0-LR to b1-

LR, culminating in the latter in positive skill scores in almost all regions apart from the large

deserts, where TWS variations are small and observations are certainly dominated by errors.

Skills are also largely positive for b1-MR when comparing predictions to the uninitialized

projections. However, since the uninitialized projections already show better skill than the

LR projection with respect to a zero-anomaly forecast, there is no obvious improvement com-

pared with b1-LR. We note from the significance figure (Fig. 5.5) that the regions where we

discussed changes in the skill scores (e.g., parts of Northern Eurasia, Monsoon areas) indeed

show significant skills.

For longer lead time of the predictions, however, skill scores of all three model runs diminish

since the influence of the initialization becomes increasingly smaller. Skill scores averaged over

lead years 2-5 are generally smaller when calculated against the zero-anomaly forecast (Fig.

5.6), and the distinctness of the two different initialization strategies or model versions are not

substantial anymore. With respect to the uninitialized projections, we still note generally

positive skills for all three hindcast ensembles considered, but notable differences between

baseline0 and baseline1, or LR and MR are no longer evident, and scores are regionally much

less coherent than for lead year 1. Generally the same holds true for the averaged scores

over lead years 6- 9 (Fig. 5.7). Although still positive scores are obtained for the initialized

forecasts when compared to uninitialized projections, those are typically only slightly larger

than zero and do show very little regional coherence.

To analyze the time-variability of the simulated terrestrial water storage for selected regions

in more detail, we average TWS from both GRACE and the different model runs for two
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Figure 5.7: Same as Fig. 2, but for lead years 6-9.

differently located discharge basins: The Lena catchment in Central Siberia whose climate is

generally classified as “snow dominated, fully humid with cool summer (Dfc)” according to the

Köppen-Geiger Climate Classification (Kottek & Grieser), and the Nelson River catchment in

North America with a slightly different hydro-climate of “snow dominated, fully humid with

warm summer (Dfb)”, in at least the major fraction of its area. For the Lena catchment (Fig.

5.8), we note for the lead year 1 a generally good representation of the TWS anomalies in the

dry years 2003 and 2010, that are represented well in both b1-LR and b1-MR. The baseline0

hindcast, however, does not capture those anomalies, its time-variability instead is rather

comparable with the uninitialized projections of both model versions. The wet anomaly in

2007 is also captured by both b1-LR and b1-MR, but with much smaller peak amplitudes.

In particular, multi-year changes in TWS potentially related to storage changes in deeper

soil layers and near-surface aquifers are not reflected in the MPI-ESM model runs. Since

feedbacks from those deeper storage reservoirs to the climate system are generally difficult

to quantify, it remains open at this point if this deficit of MPI-ESM is important for the

quality of decadal climate predictions. Similar conclusions for lead year 1 are obtained for

the Nelson catchment. We note a general increase in area-averaged TWS during the years

2003 to 2005 in both b1-LR and b1-MR, which closely resembles the observed variability

but is not present in the uninitialized projections. We see a subsequent decline in TWS

during the following years until 2008, which is again quite nicely captured by both baseline1

hindcast ensembles. Dry conditions in 2009, however, are only reproduced by b1-LR, whereas

the MR hindcasts rather predict a rapid increase in TWS for that year. Focusing on longer
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Figure 5.8: Time series of yearly averages of TWS for the Lena catchment in Siberia (left)
and the Nelson catchment in North America (right): GRACE-based observations (black),
uninitialized projection at low resolution (cyan), uninitialized projection at medium resolution
(green), and decadal hindcast experiments b0-LR (red∗), b1-LR (red), and b1-MR (blue).
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lead times of 2 - 5 or 6 - 9 years, however, we note substantially smaller differences between

hindcasts and projections for both model versions in both catchments considered. For those

lead years, the ensemble mean of the hindcasts is more frequently close to a zero-anomaly

forecast, supporting our conclusions drawn from Figs. 5.5 and 5.6.

5.2.6 Discussion and conclusion

One decade of terrestrial water storage estimates from GRACE are applied for the vali-

dation of three different decadal hindcast experiments with the MPI-ESM coupled climate

model. Mean squared skill scores of annual averages of the ensemble means indicate positive

skill for the initialized hindcasts in particular for lead year 1 in moderate to high latitudes of

the Northern Hemisphere when compared to the uninitialized simulations or their climatolo-

gies. In addition, skills gradually increase when moving from b0-LR to b1-LR, and also less

pronounced from b1-LR to b1-MR, indicating that changes in the initialization and increased

resolution implemented in the different experiments indeed lead to more skillful initialized

hindcasts than in the earlier experiments.

For lead years greater than 1, however, skill rapidly drops down towards zero, and also the

differences between the three experiments are diminished. It appears that the simulated TWS

variability is substantially lower for the uninitialized projections (and the later lead years of

the initialized runs), indicating that the models tend to stay closer to its climatology instead

of simulating substantial deviations from it, which is, however, not uncommon in numerical

modeling experiments of the climate system.

The average level of skill in predicting TWS in all three experiments is quite modest, in

particular when compared to more traditionally considered validation variables. This might

be related to the relatively short period of observations, but since GRACE is still in operation

and a follow-on mission is scheduled to launch in 2017 (Flechtner et al., 2014), this situation

will gradually improve during the next years. Further, contamination of GRACE results due

to spatial leakage and mass transport processes not related to the global water cycle must be

taken into account. In this regard, on-going re-processing efforts and refined post-processing

approaches will contribute to a more accurate quantification of random noise and systematic

biases in the satellite data.

The good capture of the dry and wet anomalies in the first year of the initialized runs in some

areas and the improvement caused by the new initialization strategy is encouraging, given that

only oceanic and atmospheric initialization is applied. Earlier studies already demonstrated

that land surface initialization is able to additionally contribute - via direct feedbacks into the
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atmosphere - to the skill of sub-seasonal and seasonal predictions by, for instance, increasing

the boreal summer predictability from soil moisture observations (Dirmeyer, 2005; Koster

et al., 2010; Douville, 2010). Since also multi-year memory effects of soil moisture have been

found to have promising feedbacks on the climate (Seneviratne et al., 2013), it would be

straightforward to also consider GRACE-based TWS as an observable to be assimilated into

a land surface re-analysis data-set, that might be subsequently used for initialization of future

decadal climate prediction experiments.

5.3 Probabilistic skill metric investigation of MPI-ESM decadal

hindcasts with TWS from GRACE

The probabilistic skill of the hindcast experiments is also assessed to quantify the range

of possibilities, through the continuous ranked probability skill score (CRPSS). It serves

to answer the research question of whether the prediction model’s ensemble spread is an

appropriate representation of forecast uncertainty on average. The CRPSS is based on the

continuous ranked probability score, defined by Eq. 5.8. Since the conditional bias could

dominate the probabilistic error in this metric, the Hj here has also been corrected for the

conditional bias which is obtained by:

Ĥj = (S0/SH)rHOHj, (5.11)

where SO and SH are the square roots of the variances of the observations and hindcast

ensemble means, respectively; and rHO is the correlation between the observations and en-

semble means. The corresponding skill score is then expressed as Eq. 5.8. We take b1-LR

as an example, and assess the skill score of the average ensemble spread against the stan-

dard errors of the mean prediction, the average ensemble spread against the climatological

distribution and also the standard error of hindcasts against the climatological distribution

(Fig. 5.9). The average ensemble spread is measured as the average standard deviation about

the ensemble mean from each ensemble member, and the standard error is calculated as the

standard deviation of the residuals from the least squares fit between the observations and

the ensemble mean hindcasts.

The application of standard error and average ensemble spread exhibits improved probabilistic

skill compared to the climatological distribution (Fig. 5.9, bottom). Goddard et al. (2013)

indicates similar statements for temperature and precipitation. The CRPSS that tests the

uncertainty from the average ensemble spread against the uncertainty from standard error,
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Figure 5.9: Continuous ranked probability skill score (CRPSS) between the b1-LR hindcast
experiments with uncertainty of the average ensemble spread against the standard error of
the ensemble mean (top); CRPSS with uncertainty given by the average ensemble spread
against the climatological distribution (middle), and CRPSS comparing the same hindcasts
with uncertainty given by standard error against the climatological distribution (bottom) for
lead year 1.
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however, shows negative values in most areas (Fig. 5.9, top). This demonstrates that the use

of ensemble spread for each individual forecast is less reliable and not suitable as reference

for the forecast uncertainty. Considering that the number of ensemble members applied here

is still quite small, the ensemble spread can hardly represent the true range of possibilities

for the hindcast experiments.
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Chapter 6

Conclusions and outlook

In this thesis, TWS variations estimated from GRACE gravity field data have been inves-

tigated for hydrometeorological applications, firstly to validate global hydrological models,

and secondly to assess the skill performances of the different sets of decadal hindcasts.

Through a closed-loop environment by means of simulated GRACE-type gravity field time-

series based on realistic orbits and instrument error assumptions as well as background error

assumptions out of the updated ESA Earth System Model, different post-processing strategies

are compared and investigated. It is found that the application of DDK2 filter approximately

corresponding to a Gaussian radius of 340 km performs slightly better with smaller RMS dif-

ferences (RMSD) between basin-average H and the GRACE-like TWS variations than the

other two versions of this non-isotropic filter (DDK1 and DDK3). The scaling factors to

remedy the signal alteration caused by filtering are largely affected by numerical model un-

certainties and its contribution to the total TWS error cannot be neglected. The median

scaling factors calculated from a small ensemble of multiple hydrological models make them

less affected by deficiencies in a certain model. There is, however, still a large gap with the

results rescaled with the true hydrology signal (H) in terms of the wRMS of the differences,

indicating that further research efforts are needed to narrow this gap, which will significantly

reduce the TWS uncertainties. The time variable scaling factors for each month over the

whole five years do not yield smaller RMSD values than the constant ones, due to their high

sensitivity to the model uncertainties. The globally gridded error estimates from individual

contributions of measurement errors, leakage errors, and re-scaling errors exhibit consistent

results with the RMSD between the GRACE-like TWS and the “truth” (H, hydrological

component of the updated ESA Earth System Model). The TWS variations and uncertain-

ties are then estimated from the real GRACE gravity data (GFZ RL05a) by applying the

suggested post-processing strategy from the simulation test. The filtered-only TWS varia-
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tions are consistent with the ones from the Tellus website, with the RMSD between the two

generally below the estimated TWS error level. Some larger differences are found at cer-

tain basins between the rescaled TWS time-series from different models, indicating again the

importance of model-based information required to account for spatial leakage. The basin-

averaged TWS errors from gridded error estimates show largely consistent results for most

basins when compared to estimates that are directly derived from the spherical harmonics

representation, which could be used as an upper bound for the GRACE uncertainties.

With almost 14 years of GRACE data available, the TWS variations and uncertainties es-

timated from this state-of-the-art post-processing strategy are then applied to validate four

different global hydrological models. The four statistic metrics investigation indicates that

for the 31 largest globally distributed basins, model runs agree with GRACE to a very limited

degree only in terms of TWS, with large spreads among the models themselves. Although

a common atmospheric forcing data-set has been applied to all hydrological models, poten-

tial evapotranspiration (PET) calculated from the models are different due to the various

approaches applied, which in a way affect the actual evapotranspiration (AET). Although

some large differences of AET are seen, their relationship with the subsequently simulated

TWS variations is complicated and in many cases the effects are damped. In addition, the

performance of the models varies in different areas as exemplarily shown in the TWS time

series comparison in two specific regions: the snow-dominated catchments and the dry catch-

ments. The large model discrepancies are not entirely related to uncertainties in meteorologic

input, but instead to the model structure and parametrization, and in particular to the rep-

resentation of individual storage components with different spatial characteristics in each of

the models. The different statistic performances of the models at different basins shows that

GRACE-based TWS is quite sensitive to very different model physics in individual basins,

which offers helpful insight to modellers for the future improvement of large-scale numerical

models of the global terrestrial water cycle. There are still some large differences between

TWS from GRACE and models at certain basins (eg. Yukon) that cannot be well explained.

With the development of the GRACE gravity solutions and improved model simulations, the

reasons for these gaps will be further investigated.

One decade of the TWS estimates from GRACE are applied also for the validation of three

different decadal hindcast experiments with the MPI-ESM coupled climate model. Mean

squared skill scores of annual averages of the ensemble means indicate positive skill for the

initialized hindcasts in particular for lead year 1 in moderate to high latitudes of the North-

ern Hemisphere when compared to the uninitialized simulations or their climatologies. In

addition, skills gradually increase when moving from baseline0 at low resolution (b0-LR)

to baseline1 at low resolution (b1-LR), and also less pronounced from b1-LR to baseline1
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at medium resolution (b1-MR), indicating that changes in the initialization and increased

resolution implemented in the different experiments indeed lead to more skillful initialized

hindcasts than in the earlier experiments. For lead years greater than 1, skill rapidly drops

down towards zero, and also the differences between the three experiments are diminished.

The short time period of GRACE observations still leads to less significant skill score in many

areas, which could be improved in future since GRACE is still in operation and the GRACE

follow-on mission is scheduled to launch in 2018.

Both applications exhibit high requirement for good quality GRACE-based TWS, where on-

going re-processing efforts and refined post-processing approaches to a more accurate quan-

tification of random noise and systematic biases in the satellite data are needed. The ITSG

(Institute of Theoretical Geodesy and Satellite Geodesy) solutions (latest version ITSG-Grace

2016) at Graz University of Technology using variational equations approach is demonstrated

to provide better quality GRACE gravity data with reduced noises. Besides, the GRACE-FO

is going to be launched soon in 2018, and it not only extends the time series of the gravity

field from GRACE, but also uses slightly improved MWI-based gravity field models. There

will also be a new laser ranging interferometer (LRI) on-board which provides more precise

range observations and could lead to accuracy improved gravity field (Flechtner et al., 2016).

There are also several proposals for future gravity missions. For instance, a combination

of two pair satellites that fly in different orbits would increase the sampling frequency of

the mission and bear higher East-West sensitivity to the gravity field (Wiese et al., 2012).

This would, in one way, reduce the level of errors in the gravity solution, in another, require

less strong smoothing or filtering which remove the geophysical signals and also decrease

the spatial resolution. With the improvement of the accuracy of the gravity field, different

post-processing procedures would be needed to pose least leakage and signal reduction. It is

then interesting to investigate what more can be learned of the geophysical process on land

and whether the targeted science and user needs for observing global water mass transport to

understand global change and benefit society found by an expert assessment initiative of the

International Union of Geodesy and Geophysics (IUGG) (Pail et al., 2015) would be satisfied.

The thesis mainly focuses on the seasonal variations where the secular trend is removed and

the high-frequency signals are not considered. The comparison of the trend of GRACE-like

TWS and the “truth” (H) exhibits some large differences even when the same GIA and

ice melting signals are removed (not shown in this thesis). Although the trend of TWS is

contaminated by the poorly captured trend of ice and solid earth, it is also partly related

to the fact that the rescaling factors from hydrological models to compensate for leakage

and reduction effects are not suitable beyond the seasonal timescales, as current hydrological

models perform poorly to capture those long term and inter-annual signals due to missing
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processes and storage parametrization. As shown in areas with intensive irrigation and glacier

melting, large variations are found in the re-scaling factors, indicating large uncertainties

(Zhang et al., 2016). Within the closed-loop simulation environment as introduced in Section

3.1, where the secular trend of signals from TWS, ice and solid Earth from the source model

is already known, it would be interesting to investigate on the effect of a set of two scaling

factors for seasonal and long-term variations separately.

The high-frequency signals in GRACE-based TWS are generally not paid attention to, as they

are assumed as noise. It is found, however, meaningful hydrological information also exists in

the sub-seasonal signals which have high correlation with the daily precipitation through an

adequate averaging filter (Humphrey et al., 2016). Daily GRACE gravity field model series

also demonstrate their ability to capture the high-frequency non-tidal mass variations, such as

the extra-tropical sea-level variability in the Southern Ocean (Zenner et al., 2014). Although

the short-term TWS variability is not well simulated by current hydrological models, the

reconstructed high-frequency TWS signals from the daily precipitation and the daily GRACE

gravity field products can serve as alternative ways for GRACE de-aliasing (Eicker & Springer,

2016). The reconstructed high-frequency signals provide a new perspective to assess GRACE

uncertainties and may help to explain the differences between TWS from GRACE and global

numerical models, which will be further investigated in future.



Appendix A

Filters

A.1 Swenson-Wahr filter

Swenson & Wahr (2006) indicated that the stripes in the surface mass variability estimates

are related to correlations in the spectral domain for even and odd degrees, separately. First,

smoothed Stokes coefficients for a particular order (m) are obtained by fitting a quadratic

polynomial in a moving window centered at a certain degree l which is done for even and odd

separately and then such correlated-error coefficients are subtracted to remove the stripes.

The smoothed coefficients can be expressed as a combination of the un-filtered coefficients:

Cs
lm =

l+w/2∑

n=l−w/2
n:even or odd

ΛlnmCnm, (A.1)

and the filter is defined as:

Λlnm =
p∑

i=0

p∑

j=0

L−1
ij njli, (A.2)

where p is the order of the polynomial, and in a quadratic case, p = 2. w is the window width,

and only the terms with the same parity as l within w are summed. As indicated by Swenson

& Wahr (2006), the correlations occur at approximately m = 8 and then are present in all

high degrees. The filter is then only applied to the orders starting from 8. The window width

w decreases with increasing orders and can be express in the following equation according to

Duan et al. (2009):

w = max(Ae−m/K + 1, 5) (A.3)
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A and K are empirically chosen as 30 and 10 based on a trial-and-error procedure. The small

window width for higher orders is chosen to apply a stronger filter in higher orders which

are much noisier. When the w becomes smaller than 5, the window width is defined as 5

to assure the minimum number of degrees for a polynomial least square fit. The choice of

the parameters p, w and m could also be different depend on the applied GRACE gravity

data and specific applications. Chambers (2006) has chosen m = 11 for the CSR RL04 data,

and applied fifth order polynomial to fit all the spherical harmonics of the same order for

even and odd degrees seperately. As the purpose of Chambers (2006) is to apply the method

on the ocean, which has much smaller signals compared with land area, a stronger filter

has been applied. Chen et al. (2007) kept the spherical harmonics of orders 5 and below

as they were and calculated the correlations by applying a third order polynomial to fit the

spherical harmonics of the same order. Since he was interested in the 2004 Sumatra-Andaman

earthquake induced mass changes, the comparably weaker filter was applied to exibit more

detailed information around the equatorial region. This also caused the stripes to be less

reduced.

A.2 DDK filter

The concept of DDK filter proposed by (Kusche, 2007) is in some way comparable to the

Swenson & Wahr (2002) filter, both of which have applied a priori signal and error covariance

matrices. For Swenson & Wahr (2002) filter, the error covariance matrix is obtained by an

empirical inspection of the coefficients, while Kusche (2007) imitates the regularization of

GRACE data processing, and derives the error covariance matrix synthetically from one set

of GRACE monthly normal equations. The filtered Stokes coefficients can be expressed as:

x̂γ = Wγx̂, (A.4)

where Wγ is the matrix of decorrelation coefficients. Unlike Gaussian filtering, which is only

degree dependent, the weights in the W matrix of DDK and the Swenson & Wahr (2002)

filter depend on both the degree and order of th SH coefficients:

x̂lmq;γ = wlmq,γx̂lmq, (A.5)

and the xlmq is expressed as:

xlmq = { Clm

Slm

for
q = 1

q = 2
. (A.6)
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Table A.1: The corresponding Gaussian radius and parameter a and p for the decorrelation
filters from DDK1 to DDK8 (Kusche et al., 2009).

Decorrelation filter Corresponding Gaussian radius (km) Parameter a and p

DDK1 530 a = 1 × 1014, p = 4
DDK2 340 a = 1 × 1013, p = 4
DDK3 240 a = 1 × 1012, p = 4
DDK4 220 a = 5 × 1011, p = 4
DDK5 160 a = 1 × 1011, p = 4
DDK6 140 a = 5 × 5010, p = 4
DDK7 120 a = 1 × 1010, p = 4
DDK8 100 a = 5 × 509, p = 4

The W for DDK filter is obtained by a least squares adjustment. The Stokes coefficients,

denoted as the parameters x, are obtained from:

x = N−1b, (A.7)

where N is the normal equation matirx and b is the right hand side vector. A regularized

estimate for the parameters is given by:

xγ(a) = (N + aM)−1b = (N + aM)−1Nx = Wγ(a)x, (A.8)

where N−1 is the GRACE error covariance matrix and M−1 the a priori signal covariance

matrix. By tuning the regularization parameter a, it is possible to downweight the signal

covariance and change the strength of smoothing.

There are eight different filter matrices Wγ(a), for DDK1 to DDK8 available, where DDK1

implies the most and DDK8 the least smoothing. Their corresponding choice of the regular-

ization parameter a is given in Table A.1. The filter effect depends on latitude and is stronger

in the East-West than in North-South direction, so that it adapts well to the GRACE error

structure. The decorrelation effect is mainly due to the negative side lobes.
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