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Abstract Ageing provokes a plethora of molecular,
cellular and physiological deteriorations, including heart
failure, neurodegeneration, metabolic maladaptation,
telomere attrition and hair loss. Interestingly, on the
molecular level, the capacity to induce autophagy, a
cellular recycling and cleaning process, declines with
age across a large spectrum of model organisms and is
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thought to be responsible for a subset of age-induced
changes. Here, we show that a 6-month administration
of the natural autophagy inducer spermidine in the
drinking water to aged mice is sufficient to significantly
attenuate distinct age-associated phenotypes. These in-
clude modulation of brain glucose metabolism, suppres-
sion of distinct cardiac inflammation parameters,
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decreased number of pathological sights in kidney and
liver and decrease of age-induced hair loss. Interesting-
ly, spermidine-mediated age protection was associated
with decreased telomere attrition, arguing in favour of a
novel cellular mechanism behind the anti-ageing effects
of spermidine administration.

Keywords Spermidine - Ageing - Hair growth - Glucose
metabolism - PET - Cardiac telomeres

Introduction

As average human life expectancy increases constantly,
understanding the mechanisms underlying physiologi-
cal ageing has gained a lot of scientific interest [20].
Ageing is a natural process characterised by a progres-
sive impairment of cellular functions leading to a time-
dependent functional decline in tissue and organ homeo-
stasis. Pathological changes in numerous cellular pro-
cesses, including mitochondrial dysfunction, telomere
shortening, dysregulation of nutrient-sensing and affect-
ed intracellular signalling pathways, are characteristic
features of ageing in most organisms [31]. Among the
many deteriorating cellular processes in ageing, autoph-
agy plays a major role, as its restoration has been shown
to counteract manifold ageing phenotypes and is capa-
ble of prolonging health and lifespan in various model
organisms. Thus, autophagy-inducing interventions
have become a major field of gerontology research.
Overall, ageing-related deteriorations at the cellular lev-
el arguably represent the major risk factor for most non-
communicable diseases [23].

Ageing however is a multifaceted process, taking
place at multiple molecular, cellular and organismal
levels, with organs and specific tissues being affected
to a different degree. In this regard, it is becoming
increasingly apparent that the brain is particularly vul-
nerable and highly susceptible to pathological age-
related changes, making advanced age the major risk
factor for developing neurodegenerative diseases. Ac-
cordingly, the number of the individuals affected by
ageing-associated neurodegenerative brain disor-
ders, importantly Alzheimer’s disease, is constantly
increasing during the last decades [2], with
dementia-like diseases meanwhile ranking among
the top five causes of death [66].

In addition to neurodegenerative disorders, ageing
represents the dominant risk factor for the development

of cardiovascular diseases as well. Ageing produces
numerous changes in the human heart at the molecular,
structural and functional level [12]. The most common
age-related alterations in the heart are cardiac hypertro-
phy (in particular affecting left ventricle), fibrosis and
maladaptive remodelling leading to diastolic dysfunc-
tion and heart failure [54].

To date, the most robust intervention towards an
increase in the healthy lifespan is caloric restriction
without malnutrition [27]. However, the compliance of
caloric restriction in human is low as it is rarely com-
patible with most people’s daily life. Thus, food supple-
ments acting as caloric restriction mimetics (CRM)
might provide attractive alternatives [32, 35, 40]. Par-
ticularly, the naturally occurring polyamine spermidine
has been shown to extend life- and health span in
worms, flies and mice [30, 56]. Levels of endogenous
spermidine decline with age in model organisms and in
humans (for review, see Madeo et al. [34]). Spermidine
action has been linked to the modulation of reactive
oxygen species, DNA replication, transcription and
translation, anti-inflammatory properties, altered mito-
chondrial function, improved proteostasis, increased
hypusination and the induction of autophagy [13, 37,
46, 69]. Furthermore, analysis in ageing mice has shown
that spermidine feeding not only prolongs the lifespan
but also exerts cardio-protective effects as well as pro-
tective measures on the synaptic and mitochondrial
status of ageing mice [12, 34, 36].

In this study, we aimed to analyse potentially bene-
ficial impact of prolonged spermidine administration on
commonly age-affected organ systems, including the
heart, the liver, the kidney and the brain. Therefore, we
analysed the putative effects of spermidine supplemen-
tation in two cohorts of aged mice comparing animals
after 6 months of supplementation, starting at an ad-
vanced age of 17/18 months, with age-matched non-
treated mice. We also analysed an additional cohort of
6-month-old non-treated mice as ‘young controls’. Our
results demonstrate a protective role of spermidine con-
sumption against age-related hair loss. In addition, anal-
ysis of the metabolic changes in the brain using
['®F]fluoro-2-deoxy-D-glucose positron emission to-
mography (['®F]JFDG-PET) revealed that spermidine-
treatment affected glucose uptake in the brain of aged
mice towards the level observed in young animals.
Furthermore, we observed cardio-protective effects of
spermidine-treatment at histological levels, which were
accompanied by a decrease in telomere attritionin in
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comparison to untreated aged animals. These results
further underline the potential of spermidine supplemen-
tation to impact age-induced deteriorations of the brain,
the liver, the kidney and the heart.

Material and methods
Animals

Male C57Bl/6JRj mice were purchased from Janvier
labs at an age of either 6 months or 17 months. The 6-
month-old group served as young control cohort and
received no spermidine supplementation. The 17-
month-old mice were randomised into two groups: one
group was given drinking water supplemented with
3 mM spermidine (spd”) (Sigma-Aldrich, aqueous stock
solution, pH 7.2) ad libitum over the whole test period.
The other group received normal tap water. The initial
number of animals each group was 11 according to
power analyses [15] (G*power; n=11, effect size =
1.5, a=0.05, 1-3=0.95). All groups were kept at a
14/10 light-dark-cycle and standard chow containing
22.5% protein, 5.1% fat, 4.5% fibre and 6.1% ash
(Altromin #1314). In general, four mice were housed
per cage. Of note, mice were separated into single cages
at least 3 weeks prior to the final experiments to avoid
barbering. PET experiments were conducted at an age of
6 or 23 months, whereas the histology sampling took
place at an age of 24/25 months. Husbandry and proce-
dures involving animals were carried out according to
the German Animal Welfare Legislation as set forth by
the European Convention for the Protection of Verte-
brate Animals used for Experimental and Other Scien-
tific Purposes, Council of Europe, ETS no.123, appen-
dix VIII and according to national regulations and stan-
dards. All experiments were approved by the local In-
stitutional Animal Care and Research Advisory Com-
mittee and by the local government, namely the Lower
Saxony State Ministry of Food, Agriculture and
Consumer Protection in consultation with the An-
imal Protection Committee with the approval ID:
33.12-42502-04-16/2206.

Cohort parameters
Each mouse was weighed once at the age of 17 month

and at the age of 23 month using a table balance (CM
320-1N, Kern). The amount of consumed water was

measured within a 2-week long-lasting time period at
the end of the experimental phase. The amount of water
was measured twice a week for each mouse. To quantify
the fur coverage, images of the mice (top view) were
taken during the final experiment. Those images were
converted into 8-bit files and analysed using F1JI. First,
the area of the visible body (top view; excluding ears,
claws, tail) was quantified. Second, the fur-uncovered
area was quantified by drawing a ROI manually around
the less hairy part of the body. Total area was set to
100% and fur-uncovered area was quantified in relation
to the whole body.

PET imaging

PET images were acquired using a small animal PET/
computer tomography (CT) camera (Inveon, Siemens).
Mice were anesthetised with 1.5-2.5% isoflurane in
humidified oxygen. Monitoring of respiration (BioVet,
m2m imaging) was used to adjust anaesthesia levels to
maintain a stable respiration rate. Mice were positioned
prone in a continuously warmed double mouse chamber
(Minerve) with the brain in the centre field of view.
["®F]FDG was injected via a custom-made catheter
inserted into a lateral tail vein (12.82+0.71 MBq).
The scan was started with the beginning of the radio-
tracer injection and dynamic data were acquired for
60 min in 32 frames (5%2s,4%x5s,3%x10s,8x%x30s,
5%60s,4x300sand 3 x 600 s). For image reconstruc-
tion, iterative ordered subset expectation maximization
algorithm followed by 18 iterations of maximum a
posteriori (OSEM3D/fastMAP) applying standard cor-
rections for decay, random and scatter was used. For
attenuation correction we referred to a 20 min >’Co
transmission scan. After PET, a low-dose CT scan
was performed to provide anatomical information
for image analysis. Directly after induction of an-
aesthesia and at the end of the imaging session,
blood glucose levels were measured by a micro
puncture of the saphenous vein (Conrour XT®,
Bayer Consumer Care) and averaged for image
analysis. In total, 22 mice were subjected to
["®FIFDG PET (young: n=9; aged: n=6; aged +
spd*: n=6). One mouse of the aged group died
during the scan, and due to movement artefacts at
the beginning of the scan in one mouse of the
aged + spd” group, only uptake analysis was pos-
sible. The whole experiment including analyses
was performed in a blinded fashion.
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PET image analysis

Imaging data were analysed using PMOD software
(PMOD 3.703). A region of interest was defined for
the left ventricular myocardium, and for brain analysis,
images were co-registered to an MRI-based volumes of
interest (VOI) —atlas [38]. Uptake was analysed in mi-
nutes 50-60 after tracer injection as percent injected
dose per cubic centimetre of tissue [%ID/cc]. In addi-
tion, kinetic modelling was performed. Image input
function of the blood was derived from a 18 mm?® cy-
lindrical VOI placed on the inferior vena cava superior
to the renal branches, excluding the last three time
frames. For regional brain analysis, blood time activity
curves (TAC) were fitted to a two-tissue compartment
model setting t4 to 0. Additionally, curves were fitted to
the Patlak kinetic model. Brain influx rate constant K;
[ml/g/min] was the graphically defined Patlak slope, and
the metabolic rate of glucose uptake MRy, [pmol/min/
100 g] was calculated as K; x blood glucose / LC,
whereas LC is the lumped constant equally 0.67 as
estimated for rodents [59]. Both models revealed highly
similar results (data not shown). Additional parametric
maps using Patlak graphical analysis on a voxel level
were calculated with PMOD.

Average images and statistical parametric mapping
(SPM) were calculated using the MATLAB software
(The MathWorks) and SPM12 (University College Lon-
don). For SPM, differences between groups were calcu-
lated by unpaired 2-sample ¢ tests with a significance
level threshold of 0.05 (uncorrected for multiple com-
parisons). Minimum voxel cluster size was set to 50 and
threshold of # maps was set according to the degrees of
freedom of the comparison.

Preparations of tissue paraffin sections

At the dedicated time points, the animals were
sacrificed. Tissues were fixed in neutral buffered 4%
paraformaldehyde for at least 24 h. After trimming
according to the Registry of Industrial Toxicology
Animal-Data recommendation and dehydration
(Shandon Hypercenter, XP), the samples were embed-
ded in paraffin (TES, Medite). Sections (2-3 pm thick,
microtome Reichert-Jung 2030) were deparaffinised in
xylene and haematoxylin and eosin (H&E) stained or
periodic acid Schiff stained according to standard pro-
tocols. Blinded evaluation of 24 mice (young: n=7,
aged: n=9; aged spd*: n=8) by light microscopy

(Axioskop 40, Zeiss) was performed by a trained pa-
thologist and representative microphotographs were tak-
en (AxioCam MRc, Zeiss).

Histology of tissue sections

The hearts were screened histologically for age-related
changes. A longitudinal section through both ventricles
was made from the heart base to the apex, presenting the
auricles, main and surrounding vessels, aortic valve,
mitral valve and in some animals as well the tricuspid
valve. Samples were reviewed for signs of cardiomyop-
athy and endocarditis including arteritis of aorta and
surrounding vessels, heart valve inflammation and atrial
thrombosis. Gross organ systems were screened for
neoplastic changes. For scoring, a semi-quantitative
system was used. Specifically, three parameters were
scored for alterations of the heart valves and of the aorta:
1, mild inflammatory infiltration; 2, marked inflamma-
tory infiltration; 3, severe inflammatory infiltration with
thrombus formation. Scores for heart valves and aorta
were summarised. Neoplastic changes were reported as
yes/no. The presence of a neoplastic change was scored
with 1 and quantified separately.

The kidneys were analysed in respect to chronic
progressive nephropathy, glomerulonephritis and amy-
loidosis and each part was scored according to severity
[11, 43, 68]. The liver score was based on the frequency
of the appearance of (a) lymphatic infiltration of the
intrahepatic bile ducts, (b) parenchymla granuloma and
(c) necrotising hepatitis [16, 39].

Quantitative fluorescence in situ hybridization

Mouse cardiac tissue samples were also used for telo-
mere analysis. Five-micrometre thick sections of
paraffin-embedded tissue were cut and deparaffinised
in xylene and then rehydrated in serial ethanol concen-
trations. The slides were washed in PBS for 5 min and
incubated at 37 °C for 10 min in acidified pepsin solu-
tion (1 mg/ml pepsin, Roth; 0.01 M HCI, Roth). Slides
were washed with PBS and fixed with 4% paraformal-
dehyde again, and then dehydrated in a 70-100% etha-
nol series (5 min each). After 10 min of air drying, 30 ul
of telomere probe mix (10 mM Tris pH 7.4, 25 mM
MgCl,, 9 mM citric acid, 82 mM Na,HPO,, 70%
deionised formamide (Ambion), 0.25% blocking re-
agent (Roche) and 0.5 pg/ml Telomeric Cy3 PNA probe
(Panagene)) were added to each slide. A coverslip was
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added and then slides were incubated at 85 °C for 3 min,
and further incubated at room temperature for 2 h in a wet
chamber in the dark. After probe incubation, slides were
washed 2 x 15 min in wash buffer (10 mM Tris pH 7.2,
0.1% BSA and 70% formamide (Roth)) under vigorous
shaking (550 rpm), then 3 x5 min in TBS-0.08%
Tween20, and then incubated with 4',6-diamidino-2-
phenylindole (DAPI) (Sigma) before mounting samples
in Vectashield (Vector™). Confocal images were acquired
as z-stacks every 1 um for a total of 5 um using a Zeiss
LSM 780 confocal microscope equipped with a x 40
objective. Maximum projections were created using the
ZEN software. Telomere signal intensity was quantified
using the ImageJ plugin Telometer. Three sections per
heart were imaged in a blinded fashion and 40 nuclei were
counted for each section resulting in 120 nuclei per animal
(young: n=35; aged: n=4; aged spd™: n=4). To digitally
reduce noise signals from non-specific qFISH probes,
intensity value threshold was set to 25.000 and afterwards
data were analysed for outliers using ROUT (Q = 1%).

Statistical analysis

Statistical analysis was performed using the Prism7
(GraphPad Software) software. Group data were either
compared by one-way analysis of variance (ANOVA)
followed by Tukey’s post hoc test or Kruskal-Wallis
with Dunn’s comparison for multiple comparisons. Two
groups were compared using Mann Whitney test or
unpaired 2-sample ¢ test. Values of p <0.05 were con-
sidered to be significant. If not stated otherwise, data are
given as mean =+ standard deviation (SD).

Results

Spermidine treatment protects against ageing-induced
hair loss

In the present study, we investigated the role of spermidine
supplementation on different aspects of the ageing process
using mice as a model. To this end, we compared three
independent cohorts of mice: a non-treated young control
group (6 months), non-treated aged (25 months) mice and
spermidine-treated aged (25 months) mice. The latter had
received a 6-month long spermidine supplementation in
the drinking water (3 mM, ad libitum) prior to the first time
point of the analysis, starting the supplementation at
18 months of age.

First, comparing the two groups of aged animals
revealed no difference in drinking behaviour, suggesting
no apparent adverse effects of the administration of
spermidine (spd*) (Fig. la). Moreover, both aged
groups showed a similar body weight increase relative
to starting point of the analysis at 18 months (Fig. 1b),
with no significant differences in body weight gained
(Fig. 1c). Despite these similarities, we found that aged
spd” animals obviously exhibited less hair loss. As
shown in Fig. 1d, the spermidine-treated mice appeared
to still bear fully covered bodies. In contrast, the control
animals showed areas on their back with significantly
sparse fur coverage (Fig. 1d). As hair loss is a charac-
teristic feature of advanced ageing in mice [21], we
quantified the effects of spermidine treatment for this
phenotype. Indeed, quantitative analysis revealed that
the fur-uncovered area was significantly decreased upon
spermidine treatment (Mann Whitney test, p =0.041;
Fig. le). To exclude effects of barbering in aged ani-
mals, mice were separated into single cages at least
3 weeks prior the final experiments.

Spermidine supplementation partly ameliorates
age-related changes of brain glucose metabolism

Having observed that spermidine supplementation was
effective against age-induced hair-loss, we next
analysed whether 6 months of spermidine treatment
would also have effects on another age-impaired func-
tional entity - brain glucose metabolism. To investigate
the cerebral effect of spermidine, we performed
["FJFDG PET in anaesthetised mice. We analysed
three different parameters: (i) glucose uptake, (ii) the
brain influx rate constant K; and (iii) the metabolic rate
of glucose uptake MRy,,. This was done in two different
ways of image analysis: first, we used volume of interest
(VOI) atlas-based approach, which allows for a com-
parison of functionally related brain areas within the
treatment groups. Second, we used statistical parametric
mapping (SPM)-based image analysis, which allows for
statistical analysis of group differences at the atlas-
independent whole-brain voxel-level.

Analysing glucose uptake, which corresponds to the
absolute amount of ['*F]JFDG in the brain in a certain
time window, both ways of image analysis revealed a
higher ['®FJFDG uptake in aged animals compared to
young animals in parts of the caudate putamen, thalamic
regions and cerebellum (Fig. 2a, b). Such an increase is
surprising and maybe a homeostatic counteraction to
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Fig.1 a Consumption of drinking water in two independent cohorts of
mice including non-treated aged (25 months) and spermidine-treated
(spd") aged (25 months) mice. The latter was undergoing a 6-month
long spermidine treatment (3 mM) in the drinking water ad libitum,
starting at 18 months of age. Min-to-max box whisker of the mean water
intake per day for a single mouse in both groups is shown. b Changes in
the absolute body weight (mean + SD) in mice during ageing and

, N Spd+

aged+spd*

treatment. ¢ Difference in gain of body weight in both aged groups of
mice as min-to-max box whisker plot. N=10 mice per group. d
Representative images of aged and aged+spd” mice at an age of
25 month highlighting the differences in top-side fur coverage in aged
animals. e Quantification of the hairless area in percent, depicted as min-
to-max box whisker plot. N =6 mice, Mann Whitney test, p = 0.041
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Fig. 2 Coronal and horizontal
average [ °FJFDG PET
parametric brain images of a
['*F]FDG uptake ([%ID/cc]), ¢
influx rate constant K; [ml/g/min]
and d glucose metabolic rate
MRgy, [mmol/min/100 g]
calculated using Patlak graphical
analysis in 6 month old (young)
and in 23 month old untreated 0.0
(aged) or spermidine-treated
(aged +spd*) mice. b Results of
voxel-based statistical parametric
mapping of ['*F]JFDG uptake
(unpaired 2-sample ¢ test) identi-
fying differences between young,
aged and aged spd* mice. The
caudate putamen is indicated by a
white arrowhead, thalamic re-
gions by an asterisk. Cerebellum
is flanked by two white hexagons.
Threshold has been set to show
only statistically significant
voxels (p <0.05; minimum clus-
ter size of 50 voxels). Increases
are indicated as hot scale. Addi-
tional data are presented in Sup-
plementary Fig. S1

-

~

compensate for the usual functional decline of the brain
during ageing. However, age-associated increase in glu-
cose uptake was much less pronounced in the spd*
group (Fig. 2b, S1A), suggesting that spermidine-
treatment might be able to attenuate the normally occur-
ring age-induced increase in glucose uptake.

Next, we analysed a kinetic parameter, the brain
influx rate constant K;, which is defined as the unidirec-
tional uptake rate constant that incorporates both net
inward transport and trapping of the radiotracer in tissue.
Only slight group-related differences were found (Fig.
S1B, D). Notably, however, the lowest K; values were
always obtained in the aged non-treated group indepen-
dent of the way of analysis (Fig. 2c¢, S1B), and
spermidine-treated and non-treated aged mice regional-
ly differed significantly in SPM analysis (Fig. S1D).

The last investigated parameter was the metabolic
rate of glucose uptake MR, which takes into account
the rate constant as well as individual blood glucose
levels and biochemical differences between natural D-
glucose and ['®F]FDG. This analysis revealed that

young

aged b aged spd* spd*
+spd* Vs. young Vvs.young Vs. aged

& 4
& oOH

aged

A A

Uptake 5.0 0.05 p value 0.001

aged

young aged +spd*

aged

young aged +spd*

young animals showed higher MRg,, in comparison to
both aged non-treated and aged spd* groups in various
brain regions (Fig. 2d, S1C and S1E), reaching signifi-
cance for the hypothalamic region (aged vs. young: p =
0.012, aged + spd* vs. young: p =0.033).

Spermidine treatment ameliorates age-related
pathologies in the heart, the kidney and the liver

Ageing is frequently accompanied by cardiac disease
(cardiac hypertrophy, myocardial infarction, etc.) lead-
ing to declined left ventricular function and ultimately
heart failure. Therefore, we next investigated the impact
of spermidine on heart function and heart tissue mor-
phology in our aged mouse model. Analysing the left
ventricular myocardium with ['*F]FDG PET, we did not
obtain any significant changes in [ *FJFDG uptake and
in K; between groups (Fig. 3a to ¢). However, MRgy,
was significantly decreased in both aged groups com-
pared to young animals (aged vs. young: p=0.0002,
aged + spd™ vs. young: p=0.0004), whereas no
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Fig. 3 a Representative transaxial myocardial ['*F]JFDG PET
uptake images in 6 month old young and in 23 month old untreated
(aged) or spermidine-treated (aged+spd*) mice. Quantification of
b myocardial ["*FIFDG uptake [%ID/cc], ¢ influx rate constant K
[ml/g/min] and d glucose metabolic rate MRy, [tmol/min/100 g]

difference between the two aged groups could be ob-
served (Fig. 3d). While blood glucose values did not
differ between aged and aged spd* mice (Fig. 3¢), young
animals had significantly higher blood glucose levels
(measurements before the ['*FJFDG PET/CT scan) than
either aged non-treated (p =0.003) or aged spd* mice
(» =0.005). These data suggest that an age-induced
decrease in general glucose metabolism is not respon-
sive to spermidine supplementation.

Having performed non-invasive molecular heart im-
aging, we then addressed the possible role of spermidine

O young
d O aged
_ 5007 * B aged+spd*
2 *
(SR -
S E 400 _I.
ol ofe
‘.G-,.) E 300' .
€ £ 'f‘
Q 5
% 22004 [k
-
O o 100
T
0

in the left ventricular myocardium. e Blood glucose levels
[mmol/l], measured prior to the PET scan. Significant differences
calculated by one-way ANOVA and Tukey’s post hoc test com-
paring all groups with each other are indicated by asterisk
(p<0.05)

in preventing age-induced histological abnormalities
within aged hearts (Fig. 4a). In this study, we mainly
focused on inflammatory cardiac lesions, since lesions
like calcification or myocardial infarction were not ob-
served in any animal. As shown in Fig. 4b, the young
control group showed no signs of age-related histo-
pathology. Quantification of a histo-pathological/in-
flammatory score retrieved a significant increase in the
aged non-treated and aged spd* groups when compared
to the young mice (Kruskal-Wallis test p=0.010 and
p =0.039 respectively, Fig. 4b). To better visualize the
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effects of spermidine supplementation in ageing hearts, Fig.
4c shows the histogram of individual scores for different
experimental groups (Fig. 4c). This histogram indicates that
within the spermidine treated group, 8.3% of the mice
suffered from severe inflammatory changes within the heart
compared to 26.7% in the aged control group. Furthermore,
in the treated group, 66.7% of the animals showed mild
signs of inflammation, whereas in the aged control group
only 40% showed mild changes, supporting a general ben-
eficial effect of spermidine on the ageing heart.

Of note, none of the young mice showed neoplastic
changes, whereas in 44% of the aged non-treated mice
neoplastic changes occurred. In the aged spd™ mice, a
similar number (37.5%) showed neoplastic changes,
suggesting that spermidine treatment did not influence
the occurrence of neoplasia.

In addition, we performed a histo-pathological analysis
of the liver and the kidney using literature-based scores to
quantify the severity of pathological changes. Within the
liver, we recognised granuloma within the parenchyma in
all groups as well as infiltrations within the bile duct to a
similar extend ([65] and Fig. S2). Aged control and
spermidine treated animals showed 33.3% and 37.5% se-
vere pathological changes in the liver, respectively. Notably,
however, necrotic changes within the liver were obtained
only within the control aged group (11.1%), but not in the
spermidine-treated one. Moreover, the percentage of ani-
mals with mild pathological changes was higher in the
spermidine-treated group (62.5% vs. 55.6%).

In the kidney, we observed chronic nephropathy with
few foci of basophilic tubules, no or mild interstitial
mononuclear accumulation and some proteinaceous
casts within both aged groups (Fig. S3). Furthermore,
aged animals showed signs of a glomerulonephritis with
some glomeruli affected by hypertrophy and hyperpla-
sia of mesangial cells and dilatation of glomerular uri-
nary space. Detailed histological analysis revealed that
only 12.5% of spermidine treated animals show severe
pathological changes compared to 33.3% in the aged
group. At the same time, spermidine treatment increased
the percentage of mildly affected animals up to 87.5%,
while 66.7% of the aged control animals were mildly
affected.

Spermidine treatment protects against telomeres
shortening in cardiac tissue

To test whether cardioprotective effects of spermidine
were also associated with a modulation of telomere

length in cardiac tissue, we applied quantitative fluores-
cence in situ hybridization (QFISH) to assess the relative
telomere length in heart tissue sections [7].

Frequency distribution analysis of the telomere length
of at least 4.400 individual telomere signals per group
revealed an expected shift to shorter telomeres in non-
treated old animals in comparison to young mice (Fig.
Sa). Intriguingly, a similar distribution was obtained when
non-treated aged (more short telomeres) and aged spd*
(less short telomeres) groups were compared (Fig. 5b).
Importantly, however, this ageing-related shift was absent
when young and old spermidine-treated mice were com-
pared (Fig. 5¢). These differences are further underpinned
by quantifying Spearman correlation coefficients for the
different groups, which highlights the similarity between
young and spermidine-treated groups (R=1 vs. R=0.97
for young vs. aged control) with regard to their telomere
length distribution (Table 1).

It is well documented that the percentage of short
telomeres per cell is particularly associated with ageing
and age-related pathologies including those of the heart
[3, 61]. Thus, we determined the incidence of short
telomeres for individual animals in the different experi-
mental groups. Telomeres were defined as short if their
signals were below 50% of the mean telomere length/
nucleus value (defined individually for each animal).
Strikingly, this analysis revealed that spermidine treat-
ment provoked a significantly decreased percentage of
nuclei with short telomeres in comparison to untreated
aged animals (0.4% +0.47% in aged spd* vs. 9.1% +
7.63% in aged control; Kruskal Wallis test, p=0.033,
Fig. 5d). In addition, image analysis clearly demonstrated
that nuclei of cardiac cells from young and aged spd*
animals contained more qFISH spots of high fluores-
cence intensity than nuclei from control old animals
(Fig. 6a). These results were further corroborated by
analysing the number of detectable telomere signals per
nucleus. Here, numbers were significantly lower in aged
controls when compared to aged spd* mice, indicating
that more telomeres had shortened below the detection
limit in the aged mice under our specific experimental
settings (Kruskal Wallis test, p = 0.033, Fig. 6b).

Discussion
Spermidine supplementation previously has been

shown to promote lifespan extension, although under-
lying mechanisms are not completely understood [34].
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As ageing has multiple mechanistic dimensions, we supplemented aged wild-type mice in respect to several,
investigated an extended spectrum of age-associated translationally relevant age-related alterations.
phenotypes in the present study. To this end, we com- By phenotypic analysis, we noticed that the ageing-

pared young, normally aged and late-in-life spermidine related hair loss was decreased upon the long-term
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Fig. 4 a Representative haematoxylin/eosin stainings of the histo-
logical heart samples. Upper panel illustrates pathophysiological
changes within the aortic valve across all groups. The lower panels
highlight the severity of different age-related changes within the
aorta. Arrowheads point to tissue infiltration of macrophages
characteristic for inflammation and tissue degeneration, whereas
asterisks mark thrombus (dashed line) built-up within the aorta.
Scale bar 100 um. The scheme on the right illustrates anatomical
structures analysed. Grey part undergoes pathological changes in
aged mice and is shown in all images. b The pathological score
(heart) as mean + SEM. Kruskal-Wallis test with Dunn’s multiple
comparison, adjusted p**=0.010; p*=0.039. N=7 for young
control, N=15 for aged non-treated animals and N =12 for spd-
treated mice. ¢ Histogram showing percentage of mice carrying
none, mild or severe pathological heart changes

spermidine supplementation, suggesting a protective
role of spermidine against hair loss (alopecia) in aged
mice. Interestingly, these data are in line with in vitro
findings that spermidine may promote human hair
growth [47] and with clinical trial data indicating that
spermidine supplementation may be beneficial against
human hair loss [49]. These results further indicate that
the spermidine supplementation per se was effective
against age-induced deteriorations. Of note, in mice,
denudation of special parts of the body can also be
linked to a behavioural phenotype called barbering. It
based on the interaction of a barber animal and a recip-
ient in which the barber nibbles whiskers and fur of the
recipient for various reasons [22]. To avoid a barbering,
we separated mice into single cages at least 3 weeks
prior to the final experiments. This time period should
be enough for the fur regrowth [52], and thus, we think
barbering does not play a role in the observed fur loss.

One possible reason for preserved fur growth in spd*
animals could be a spermidine-mediated induction of
autophagy, which was documented across a wide spec-
trum of experimental models [18, 33, 36]. Indeed, pre-
viously, it was shown that quiescent hair follicles can be
stimulated to initiate hair growth in mice by feeding
small molecules activating autophagy, including -
ketoglutarate (x-KG) and o-ketobutyrate (x-KB) [8].
This is in line with the previous observation that sup-
plementation of «-KB in old mice can prevent alopecia,
which refers partial hair loss from head or body. A
mechanistic link between autophagy and hair regenera-
tion was further supported by the fact that stimulation of
hair growth by «-KG and «-KB was blocked by spe-
cific autophagy inhibitors [8].

Alopecia is very common in human ageing [60].
Even tough not experimentally tested yet, one could

thus speculate that dietary spermidine might increase
hair growth in humans as well. Indeed, first evidence
in this direction was obtained for human ex vivo hair
follicle cultures, in which the spermidine-induced
growth was shown to be autophagy-dependent [42].
Consistently, caloric restriction was shown to promote
hair follicle growth as well, although the molecular
mechanisms were not investigated in detail [17]. Since
spermidine not only is an inducer of autophagy
[44] but also has features of a caloric restriction
mimetic [35], it could be interesting to explicitly
test the protective potential of spermidine supple-
mentation towards age-induced alopecia in future
preclinical and clinical studies.

Of note, the spermidine-treated animals showed no
increase in neoplastic changes compared to the aged
non-treated animals, confirming that the prolonged sup-
plementation with spermidine is safe in terms of neo-
plasia induction. This might be linked to spermidine-
triggered depletion of regulatory T-cells [45]. This find-
ing is also in line with our recent observations from a
tolerability study which demonstrated that spermidine is
well tolerated and does not increase morbidities or
change behaviour in BALBc/Rj mice [53]. Furthermore,
this study along others [12] showed that even though
spermidine is proposed to harbour caloric restriction
mimicking properties, food consumption usually does
not change with the treatment, neither in young, nor in
aged mice.

['®*F]FDG PET was used to obtain novel information
about spermidine effects on brain glucose metabolism.
["®F]FDG PET is one of the commonly used non-
invasive approaches to study functional decline in the
ageing brain, with ['*F]JFDG as the most popular radio-
tracer for analysis of cerebral glucose uptake [6]. Partic-
ularly, neurodegenerative diseases are often accompa-
nied with gluco-metabolic changes. While atlas-based
uptake analysis did not result in significant changes, the
statistical parametric mapping (SPM) approach, which
allows for statistical comparison between the experi-
mental groups, revealed that ['*F]JFDG uptake is signif-
icantly increased in caudate putamen, thalamus and
cerebellum of aged animals when compared to young
mice. Of note, this age-induced increase was less prom-
inent in the aged + spd* group. The reduced glucose
uptake observed in young animals could be explained
by the fact that ["®FJFDG, which was administered in
tracer dosage, is competing with endogenous blood
glucose for brain uptake, with young mice being known
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Fig.5 Comparison ofthe frequency distribution histograms of the
telomere length between a non-treated aged mice and young mice,
b non-treated aged and aged+spd* mice and ¢ aged+spd* mice and
young mice. At least 4.400 individual telomere signals per group
were evaluated. d Quantification of the nuclei with short

to have higher blood glucose levels than old animals
[28], as also confirmed in the present study.

In contrast to sole uptake analysis, kinetic modelling
describes the dynamic tissue uptake relative to the plas-
ma activity by measuring rate constants and therefore
allows calculating values describing glucose turnover,
an entity coupled with synaptic activity. Voxel-based

telomeres. Min-to-max box whisker plot is shown. Telomeres
were defined as short, if their signals were below 50% of the mean
telomere value of the same mouse. Each mouse is represented as a
single dot in the plot. Kruskal-Wallis test with Dunn’s multiple
comparison, adjusted p = 0.033

average MRg), and K; maps hint towards lower values
in aged control mice but preserved or increased values in
spermidine-treated animals compared to young mice.
Accordingly, SPM analysis of K; maps revealed signif-
icant regional differences between spermidine-treated
vs. non-treated aged mice in cortical, thalamic and cer-
ebellar brain tissue. SPM analysis of MRg;, maps also
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Table 1 Spearman correlation coefficient between different
groups highlighting the similarity between young and
spermidine-treated groups with regard to telomere length
distribution

Spearman coefficient [R] p value

Young vs. control 0.97 1.48:1077

Young vs. spd* 1.00 4.59-107"

spd* vs. control 0.97 1971077
a young

displayed an age-dependent decrease in various brain
regions, reaching significance in the hypothalamus.
These finding underline the importance of performing
kinetic modelling as sole uptake analysis without taking
blood glucose into account can be misleading. As al-
ready mentioned, the metabolic rate of glucose con-
sumption MRy, can be a measure reflecting synaptic
activity. During physiological ageing, not all brain areas
are affected to a similar extent. Indeed, there are hot
spots of ageing within the brain with decline typically
starting in thalamic areas [57]. Another brain region that

aged aged+spd*
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Fig. 6 a Representative qFISH staining of paraffin heart sections
for all three conditions. Telomeres were stained with Cy3 (red),
and nuclei with DAPI (blue). Scale bar 10 pm (inset 5 um). b

aged aged+spd*

Quantitative analysis of the number of detectable telomere signals
per nucleus (7 <120 nuclei/mouse). Kruskal-Wallis test with
Dunn’s multiple comparison, adjusted p = 0.033

@ Springer



686

GeroScience (2021) 43:673-690

is strongly affected during ageing is the hypothalamus
[25]. Our PET analysis revealed ageing-related decrease
in the metabolic rate within these brain areas in non-
treated age mice, while spermidine supplementation
seems to be protective against such changes. Among
several pathways affected by spermidine, the observed
changes might be explained by an improved mitochon-
drial function in these brain areas and by modulation of
the synaptic vesicle pool [36].

Ageing is undoubtedly linked to inflammatory pro-
cesses, which also cause many comorbidities. This sce-
nario referred to as ‘inflamm-ageing’ plays a crucial role
in the development of cardiovascular diseases [29]. In
the present study, we found severe tissue inflammation
within aortic valves and aortas in aged control animals,
but not in the heart tissues of young mice. More impor-
tantly, these pathological changes were ameliorated up-
on spermidine supplementation, suggesting that
spermidine possesses an anti-inflammatory effect [26].
Notably, previous analysis using a similar study design
showed that spermidine supplementation reduced plas-
ma TNF-«x, and could thus contribute to a decrease of
inflammation in heart tissue [12]. Furthermore,
spermidine might improve cardiac health by facilitating
mitochondrial biogenesis [64]. It is also noteworthy that
our results suggest protective actions of spermidine in
other organs as well, including the liver and the kidney.
Consequently, this calls for future extended mouse stud-
ies in various ageing tissue types.

To investigate molecular details of spermidine action
on cardiac tissue, we addressed the effects of ageing and
spermidine interventions in respect to telomere length.
Age-induced changes on molecular levels include accel-
erated telomere shortening, which was described across
species borders, including mice and humans [61]. Telo-
mere length represents a well-established biomarker to
score the degree of age-induced deterioration, also for the
cardiovascular system [14]. Consequently, preservation
of telomere length by means of cardiac telomerase gene
therapy was shown to confer cardioprotection in aged
mice [4]. Importantly, it was previously demonstrated
that supplementation of spermidine reduces cardiac hy-
pertrophy and preserves diastolic function in aged mice
[12], which is also supported by our own data. The length
of telomeres in cardiomyocytes is basically not deter-
mined by cell division [9], but still undergoes pronounced
shortening during ageing [58]. Our data clearly demon-
strate that even when applied late-in-life (months 18 to
24), spermidine treatment was able to rescue age-related

telomere shortening to levels comparable of young mice.
Importantly, in our study, late-in-life spermidine supple-
mentation could clearly decrease the amount of nuclei
with short telomeres in cardiac tissues, known to be
critical factors and indicators of cellular senescence and
the development of cardiac pathologies [67]. The mech-
anisms by which spermidine supplementation might lead
to less telomere attrition remains elusive at this point.
Polyamines are known to play a crucial role in DNA
stabilisation and might support G-quadrupole telomere
in DNA structures [55], potentially interfering with telo-
mere shortening. In addition, caloric restriction has been
linked to attenuated telomere erosion in mice [62]. Recent
research supports a beneficial effect of long telomeres,
which go along with slowed metabolic ageing [41].

Another intriguing mechanism might involve
spermidine-mediated protection of telomeres from oxidative
stress. It has been widely documented that age-related in-
crease in cardiac diseases is accompanied by increased level
of oxidative stress mediated by reactive oxygen species
(ROS), such as free radicals, oxygen ions and peroxides
[10, 50]. Indeed, ROS are considered as a risk factor for a
wide range of cardiac diseases in elderly [5], although
underlying molecular mechanisms are not yet completely
understood. In vitro studies show that telomeric DNA is
more susceptible to cleavage by ROS than non-telomeric
sequences [63]. Moreover, oxidative stress inhibits telome-
rase function in vivo, leading to the facilitation of direct
ROS-damaging effect on telomeres [1]. On the other hand,
natural polyamines, including spermidine, have long been
known to act as free radical scavengers [19] and thus protect
DNA against oxidative damages [24, 48]. In addition to the
direct effects of polyamines on ROS, they stimulate the
expression of proteins essential to an effective antioxidant
response, including superoxide dismutases, glutathione and
catalases [51]. Therefore, increased amounts of longer telo-
meres obtained in spd” aged animals might also be ex-
plained by the spermidine-mediated reduction of ROS.
Whether spermidine partially acts on healthy lifespan ex-
pansion by affecting telomerase activity or directly
protecting telomeres from attrition by e.g. affecting mito-
chondrial dysfunction strongly warrants further
investigation.

Conclusions

Spermidine is an endogenous natural substance, whose
concentration declines with age and whose systemic
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availability can be enhanced by both nutritional regimes
and supplements. Our study links cardio-protective ef-
fects of spermidine at the histological level with de-
creased telomere attrition in heart tissue. In addition,
spermidine might modulate age-related changes of brain
glucose metabolism and ameliorate number of patho-
logical sights in kidney and liver. Since late-in-life ex-
ternal administration of spermidine protects against
many age-associated maladies and seems safe in
humans, clinical trials may investigate the possibility
of its use as an age-protective strategy.
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