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Abstract

We investigate opinion dynamics based on an agent-based model and are interested
in predicting the evolution of the percentages of the entire agent population that share
an opinion. Since these opinion percentages can be seen as an aggregated observation
of the full system state, the individual opinions of each agent, we view this in the
framework of the Mori—Zwanzig projection formalism. More specifically, we show
how to estimate a nonlinear autoregressive model (NAR) with memory from data
given by a time series of opinion percentages, and discuss its prediction capacities for
various specific topologies of the agent interaction network. We demonstrate that the
inclusion of memory terms significantly improves the prediction quality on examples
with different network topologies.

Keywords Memory-based model - Sparse model identification - Mori—-Zwanzig
formalism - Nonlinear autoregressive model - Opinion dynamics - Agent-based
model

Mathematics Subject Classification 37M10 - 39A50 - 91D30

1 Introduction

Political opinion polls capture how the opinions of people within a society regarding
a certain topic or their current voting preferences are distributed. Individual opinions
do not have to be constant, but rather are subject to change induced by impactful
events or the opinions of their peers which is formalized under the term conformity
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in Stangor (2015). There have been recent advances in simulating the process in
which members of a society change their opinions; see, e.g., Banisch et al. (2011),
Klimek et al. (2007), Misra (2012), Li et al. (2012), Nardini et al. (2008), Bohme
and Gross (2012), Bolzern et al. (2017) and the review articles Anderson and Ye
(2019), Xia et al. (2011), Castellano et al. (2009), Sirbu et al. (2017). This is in part
due to increasing computing power which enables to carry out agent-based models
that simulate behaviour of members of a synthetic population, such as members of
a society, on the microscale by emulating the decision-making rules. The agents are
often treated as the nodes of a network, while an edge between two nodes means that
these agents are neighbours of each other and thus influence each other’s respective
opinions.

One is often not interested in modelling, or predicting, which person has which
opinion, but rather, as in polls, what the percentage of each opinion within the society
is. There is ample interest in deriving dynamics for the evolution of these percentages.

In this article, we will present a framework which identifies the governing equations
for the dynamics of opinion percentages for different types of networks, more precisely,
how the governing equations can be inferred from data on the opinion percentages.
To this end, we will emulate the decision-making process with a simple agent-based
model (ABM) that is based on the assumption of conformity and inspired by the ABM
in Misra (2012). Introductions into agent-based modelling in general can be found in
Jennings et al. (1998) and Laubenbacher et al. (2009) and specifically into agent-based
models for opinion dynamics in Banisch (2016).

The literature contains a variety of approaches for finding governing equations
on the macrolevel (here, opinion percentages) based on microdynamics (here, agent-
based model). However, most do not deal with opinion formation or voter models,
but with models originating from the context of the natural sciences. There it is well
known that the aggregation process from the micro- to the macrolevel typically leads
to non-Markovian processes, i.e., finding the governing equations on the macrolevel
requires the inclusion of memory, cf. the Mori—Zwanzig formalism (Zwanzig 2001;
Lin and Lu 2019; Chorin et al. 2002. In the context of opinion formation, this aspect
is hardly discussed at all. Banisch (2014) discusses the issue for agent-based models;
he gives stochastic and combinatorial arguments for the appearance of memory with
heterogeneous microstructure, but does not present any practical methods for find-
ing appropriate governing equations for the macrodynamics. Several other authors
discuss the micro-macroaggregation problem in opinion formation, e.g., via influ-
ence matrices between agents (Wu et al. 2018; Ravazzi et al. 2019; De et al. 2019),
but ignore memory effects entirely. Others discuss memory effects, but only on the
microlevel, e.g., Jedrzejewski and Sznajd-Weron (2018), Chen et al. (2018) (agents
have memory), Moussaid et al. (2013) (agents gain experience) or Boschia et al. (2019)
(microdynamics depends on collective memory). Very few articles consider the prac-
tical methods for finding governing equations on the macrolevel, e.g., by inferring
them from microlevel simulation data, but memory effects are ignored, cf. Lu et al.
(2019). Thus, there is a significant gap between Banisch’ insight that opinion aggre-
gation introduces memory and its practical use for finding appropriate description of
the resulting macrodynamics.
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This article aims at closing this gap by (1) utilizing techniques like the Mori—
Zwanzig formalism and Taken’s well-known embedding theorem for showing that
agent-based models for the microdynamics lead to memory effects on the macrolevel
if the interaction between the agents is heterogeneous, while doing this in a way that
allows for (2) proposing practical algorithmic techniques to learn governing equations
for the macrodynamics including memory utilizing macroobservations of microlevel
simulation data.

More precisely, we investigate complete and incomplete interaction networks: in
complete networks, every agent interacts with all others (homogeneous interaction),
while in incomplete networks there are subcommunities within the society that have
few links between each other (heterogeneous interaction). As we will show, in the case
of a complete network, one can identify a Markovian model for the macrodynamics
of the opinion percentages using standard well-mixedness arguments known from the
mean-field approaches or population limits, e.g., for predator—prey models Berryman
(1992). However, arguments used for that case do not hold true in cases when the
network is not complete. We will show how to use information from the past (memory)
via a kind of delay embedding of the dynamics to describe the evolution of opinion
percentages in the general case.

The exact reason for the inclusion of memory will formally be derived in Sect.2
by using the Mori—Zwanzig formalism (Zwanzig 2001; Lin and Lu 2019; Chorin
et al. 2002). Inspired by problems in statistical physics, the Mori—-Zwanzig formalism
explains how in the case of only low-dimensional observations of a high-dimensional
system being available, the evolution of these observations of the full system can be
obtained by replacing the missing information of the full system by past information
of these available observations. This is in light of the result of Takens (1981) that
states that, under fairly generic assumptions, the delay embedding of the dynamics of
an observable is diffeomorphic to the dynamics of the full system.

There are various techniques for the modelling of time-discrete dynamical sys-
tems which involve the memory of the system. An intuitive approach is comprised by
higher-order Markov models (Raftery 1985; Tuyen 2018). These models are defined by
transition probabilities between discrete states where each state represents a sequence
of cells of a discretization of the state space with a given length (“memory depth”).
Although these models can be powerful in investigating the long-term behaviour of the
process by means of Markov state models for Markovian processes (Bowman et al.
2014), they yield two problems: the loss of accuracy obtained from the discretiza-
tion and an exponentially increasing number of states with increasing length of the
sequences and number of grid cells.

Another example is simplex projection as in Sugihara and May (1990) where, using
Takens’ result, subsequent states of a system are predicted from relative next steps of
similar patterns as its recent history. A younger modelling technique is long short-
term memory neural networks (LSTMs) (Hochreiter and Schmidhuber 1997; Pan and
Duraisamy 2018) which is a subclass of recurrent neural networks and specifically
designed for prediction of time series for which past information is vital. However, both
these techniques provide little to no understanding of the dynamical rules of the system:
simplex projection does not produce any model or dynamical law, but rather uses a
procedure similar to the nearest neighbour classification algorithm (see, e.g., Devroye
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etal. (2013)). LSTMs, as most neural networks, typically have far too many parameters
to admit interpretability. An additional means for forecasting of memory-dependent
dynamical systems is the well-known class of autoregressive (AR) models (Brockwell
and Davis 1991), which describes the evolution of a system by a linear combination
of its most recent states. Additionally, there exist variants of these AR models that are
sparse (Davis et al. 2012; Fujita et al. 2007) or nonlinear (Billings 2013) or comprise
both aspects in application to a singular value decomposition of a data matrix (Brunton
etal. 2016). As we will see, linear (Markovian) systems cannot describe the evolution
of opinion percentages even in the simplest case, but simple polynomial terms are
sufficient for fully connected networks. We shall address this point with nonlinear AR
(NAR) models, as derived through the Mori—-Zwanzig formalism.

In addition to the analysis of micro-macroaggregation for opinion formation, further

novelty in our work lies in the methods we propose for learning NAR models from data,
to describe the evolution of opinion percentages, and their theoretical justification. We
will show that the prediction accuracy of the NAR models for the opinion percentages
increases with larger memory depths. To this end, we will deploy methods from data-
driven (sparse) system identification—as in dynamic mode decomposition (Schmid
and Sesterhenn 2008; Tu et al. 2014; Jovanovic et al. 2013) or sparse identification of
nonlinear dynamics (SINDy) (Brunton et al. 2016a)—to the field of opinion dynam-
ics. More precisely, we will extend SINDy towards finding (sparse) NAR models to
describe the evolution of opinion percentages. The new method is called “sparse iden-
tification of nonlinear autoregressive models” (SINAR), as it is technically a natural
generalization of SINDy by including nonlinear memory terms. We will demonstrate
that SINAR is well suited for our purposes in learning macroscopic opinion dynam-
ics. A conceptually similar method has been introduced in Brunton et al. (2016) with
Hankel alternative view of Koopman (HAVOK). It can be interpreted as a special case
of SINAR.
Outline In Sect. 2, we start with outlining the opinion aggregation process and proceed
with the derivation of NAR models for the evolution of observations through the Mori—
Zwanzig formalism. Next, in Sect.3, we present the SINAR method for estimating
the coefficients in these NAR models from data. Last, we demonstrate how to apply
SINAR for increasing the accuracy of prediction of opinion percentages in the case of
incomplete interaction networks in Sect. 4.

2 Derivation of a Nonlinear Autoregressive Model Using the
Mori-Zwanzig Formalism

Below, we will model the spread of opinions inside a closed society by an agent-based
model. It will consist of a high number N of agents who change their opinions X;,i =
I, ..., N, within a finite set of M possible opinions over discrete time steps according
to a rule that is based on the opinions of themselves and other agents. This rule will
be Markovian, or memory-free, i.e., the changes of opinions are only influenced by
opinions in the current time step. These dynamics will be called the microdynamics.
The state of the microdynamics at time ¢ is denoted by X; = [(X¢)1, ..., XHwn1T.
The respective state space is denoted by X and has cardinality |X| = MV,
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We will only be able to observe the percentages of opinions, i.e., the ratios of those
among all agents with each of the M opinions. In this article, we are interested in iden-
tifying the dynamical rules of the evolution of the percentages of opinions, which we
call the macrodynamics. Identifying the dynamics of low-dimensional observations
of a higher-dimensional system is a typical setup for the Mori—Zwanzig formal-
ism (Zwanzig 2001; Chorin et al. 2002; Lin and Lu 2019). We will consider a general
framework for this and show how it yields a nonlinear autoregressive model (Billings
2013) for the macrodynamics. Later on, we show how it can be applied to the specific
case of the spread of opinions.

2.1 The Setting: Microdynamics and Projected Observations

First we assume that the microdynamics are Markovian (memory-free) and determin-
istic. We consider the dynamical system F : X — X that governs the microdynamics

X1 =F(X)) e X. 2.1

Further, we denote the space of observations of the microdynamics (observables) by
Y € R™andby G := {g : X — Y} the set of functions that map states of the dynamical
system (2.1) to Y. We suppose from here on that we do not have knowledge of the
state of the microdynamics at any point in time, but instead only have the value of the
fixed observable x = £(X) € Y which we call the accessible, or relevant, variables.

Additionally, we define the subspace 7 of functions in G that depend only on these
relevant variables and map to Yas H := {h € G | I EX) > Y: h=hot)
Functions in H still depend on X € X, but the information of £(X) is enough to
evaluate them. When we write h(x) for x € Y, we abuse notation and mean /(£ (x)).
An example is

X=R2% &X)=X|+X2, h(X1,X2) =X+ X2)?=¢£(X)2

In this case, it is enough to know the value of £(X) to evaluate h(X).

The goal is now to represent the evolution of the observations x; = &(X;) under
the microdynamics with knowledge only about values of x;, but not of the states X; of
the microdynamics. As illustrated in the following diagram, instead of taking one step
of the microdynamics and then evaluating £, we only have access to the observation
£(X) and want to evaluate £ (F (X)) under the premise that £(X) = x.

x—F S Fx (2.2)

| I

E(X) = x —> E(F(X))

To this end, we define a projection operator P : G — H that maps a function depending
on X to a function depending on & (X). We additionally define its complement Q :=
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Id — P. We assume from now on that the microdynamics are stationary with an
F-invariant probability distribution p over X, so that when asking what g(X) is,
we assume that X; is distributed by u.l We, of course, are interested in the case
g = & o F. We follow Lin and Lu (2019) until the end of Sect.2.2 and define P as the
orthogonal projection onto the span of a set of linearly independent functions from
‘H. These functions are denoted by ¢, ..., ¢r : Y — R™ which build the columns
of o =1lg1,..., 0Ll

(PR() = 9, 9) (9. 8) 2.3)

where x € Y and the scalar product (-, -) is defined for matrix-valued functions
fiX—>R"™%andg: X — R"*b a5

(f.g) = / FOOT g(X) du(X) € R,
X ——

cRaxm ERmxb

which itself is matrix-valued. The term (@, ¢) is a mass matrix that ensures that P is
an orthogonal projection. This orthogonal projection has the property that Pg is the
closest function in span(¢) to g with respect to (-, -).

Note that if H is infinite-dimensional, one would need an infinite number of func-
tions to yield that span(¢) = H. In this case, the projection formalism is well defined
if H is closed. In practice, in this case for the computation that will follow one would
choose a sufficiently rich finite set of functions so that span(¢) covers those parts of
‘H that are of interest.

2.2 Mori-Zwanzig Representation of the Macrodynamics

We will now show how to represent the evolution of the observations over time. With
the Koopman operator (Koopman 1931) K for the system (2.1), defined as the operator
that maps a function g € G to g o F € G, we consider the Dyson formula

t
ICI+1 — Z,lekPIC(QIC)k + (Q’C)k+l. 2.4)
k=0

The Dyson formula describes a way to iteratively split up the application of the Koop-
man operator to a function g into parts PXg and QKg. Equation (2.4) yields, by
application of both sides of the equation to & and evaluation at the initial value X of
the microdynamics, that

t

Xep1 =Y _[P(p* 0 F)I(xi—x) + o' (X0). 25)
k=0

1" A natural candidate for P would be the conditional expectation with respect to u, given by (Pg)(x) =
El[g(X) | £&(X) = x]; see Appendix A.4. Approximating the conditional expectation can be a challenging
task, see Gilani et al. (2020). Instead, we consider the orthogonal projection onto basis functions since we
are seeking models spanned by such functions with the option to control the sparsity of the model. In Chorin
et al. (2002), the connection between both projections is discussed.
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where pX := (QK)*&. The derivation of Eq. (2.5) is explained in detail in Appendix
A.1, together with interpretation of terms of its right-hand side.

Substituting the definition of P as the orthogonal projection onto basis functions
as in (2.3), we obtain

P(p* o F)(x—t) = o), @) N, pF 0 FY = () e R™ (2.6)

with vector-valued coefficients hx = (¢, ¢) ™! [ @(E(X)T p* (F(X)dpn(X).

Finding a suitable approximation of the non-accessible noise term p’*!(Xp) in
(2.5) is generally a non-trivial task and depends on properties of the microdynam-
ics. Examples are discussed in Li and Chu (2017), Hijén et al. (2010), Kondrashov
et al. (2015). From this point onwards, we will make the simplification of replacing
0'T1(X0) by a zero-mean stochastic noise term &,; € R™. A typical practice is to
let €;41 be a zero-mean Gaussian random variable as, e.g., in Lin and Lu (2019), Lei
et al. (2016). With this, we obtain the macrodynamics

t

Xept = Y9 hi + Erp1. 2.7)
k=0

As we can see, the evolution of the observations now depends on past terms, although
the microdynamics are Markovian. For k > 0, the terms [P(pk o F)](x;—¢)inEq.(2.5)
and ¢(x;_x) in Eq.(2.7) are usually referred to as memory terms.

2.3 Macrodynamics as a Nonlinear Autoregressive Process

If it is reasonable to assume a sufficiently fast decay of the terms h; with increasing
k, the memory terms that lie far in the past have negligible influence (Horenko et al.
2007; Venkataramani et al. 2017; Chorin et al. 2000; Zhu et al. 2018). In light of (2.5)
and (2.6), it is sufficient that the p* decay fast. To understand when this is the case, we
recall p* = (QKC)¥& and assume the range(P) ~ H, i.e., functions parametrized by &
are well approximated by the chosen approximation space. Then, p* decays fast if QK
has a small norm, which is the case if F mixes well functions that are perpendicular
to H. In other words, the dominant modes of XC should align well with the space H.
For quantitative statements we refer to Zhu et al. (2018).

Thus, in order to obtain a feasible number of memory terms, from now on we
approximate the dynamics by ending the sum in (2.7) with k = p — 1 instead of
k = t,i.e., by truncating the terms ¢(x;—)hp, ..., ¢(x0)h,. Regarding the selection
of an appropriate value for the memory depth p, there are various methods such
as Information Criteria (Konishi and Kitagawa 2008; Aho et al. 2014) or the L-curve
method (Hansen and D. O’leary 1993). We have thus derived a nonlinear autoregressive
model (NAR) (Billings 2013; An and Huang 1996) over x given by

p—1
Xep1 =)o i)hk + &1 (2.8)

k=0
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with matrix-valued basis functions and vector-valued coefficients Aj.

In Sect. 3, we will introduce a method that identifies coefficients for NAR models in
away thatis motivated by system identification methods such as dynamic mode decom-
position (Williams et al. 2014; Tu et al. 2014), extended dynamic mode decomposition
(Williams et al. 2014) or sparse identification of nonlinear dynamics (Brunton et al.
2016a,b), see Fig. 1, where the dynamics are expressed with a vector of scalar-valued
basis functions and a matrix-valued coefficient. Having selected the scalar-valued basis
functions @1, . .., ¢k and denoting @ = [@1, ..., k1! : Y — RX we thus formulate
the macrodynamics

p—1
X1 = Y Hi@(xi) + &g, (2.9)
k=0

with H, € R™*K_ Although seeming like only a slight notational modification,
both formulations represent different model forms. While in (2.8) the dynamics are
expressed using different basis functions and the same coefficients across all coordi-
nates, we will now switch to the framework in (2.9) where we select scalar-valued
basis functions ¢, ..., ¢; which are used for each coordinate, while the coefficients
for all coordinates can be different (the different rows of the Hy). In summary, for
(2.8), one chooses L m-dimensional basis functions and finds L-dimensional coef-
ficients, while for (2.9), one chooses K one-dimensional basis functions and finds
(m x K)-dimensional coefficients.

Equation (2.9) is still consistent with the way we derive (2.8) through the Mori—
Zwanzig formalism: basis functions are evaluated at observations made at distinct
times—no terms with mixed delays occur. In Appendix A.2, we show how to choose
basis functions and coefficients in each of the models to derive the equivalent dynamics.
Please note that this does not mean that both model forms are always equivalent, as
explained above. Merely, one can always choose ¢ in dependence on ¢, respectively,
vice versa, in a way that makes the dynamics equivalent.

2.4 Stochastic Microdynamics

Let us consider stochastic dynamics
X1 = F(X;, o)

where w; € Q2 is a random influence on F' which is now defined as F : X x Q@ — X.
We will assume that the noise process w;, t € N, is i.i.d. with law P. In this case,
we only strive to forecast the expected macrodynamics, and define the (stochastic)
Koopman operator as

(Ko g)(X) = Ep[g(F(X, )]

The spaces G and H, just as the projection P remain unchanged. Naturally, to

the derivation of the Mori—Zwanzig approximation we need to apply the necessary
obvious modifications. For example, the last step in (2.5) now has to be modified as:
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[Pt ] =gt o™ [ | oe00 o ox nancodp).

We can thus obtain the identical structure of the macrodynamics as in (2.7) where for
the computation of the coefficients Ay in (2.6) the expectation with respect to P had
to be added.

3 Sparse Identification of Nonlinear Autoregressive Models (SINAR)

We propose here a method of data-based identification for coefficients Hy in (2.7) that
is an extension of the sparse identification of nonlinear dynamics (SINDy) algorithm
from Brunton et al. (2016a), Brunton et al. (2016b), Kaiser et al. (2018). SINDy can
be used to identify the governing equations of a Markovian—in our case, discrete
time—dynamical system

X1 = f() €R" 3.1

from data

X=|x0...x7_1 |, X' =|x1...27 |, X, X e R"*T,

We will extend this method to non-Markovian systems by applying SINDy to an
extended version of X, the Hankel matrix

Xp—1 .- XT—1

X0 ... XT—p

In essence, this is the concept used for the Hankel alternative view of Koopman
(HAVOK) analysis from Brunton et al. (2016), where an autoregressive model is
identified on transformed coordinates obtained from a singular value decomposition
of the Hankel matrix from a scalar-valued observation function to separate linear from
nonlinear, or even chaotic, behaviour of a Markovian system. We, however, seek a
formulation for the dynamics of multidimensional observations. In this section and
by the choice of the name SINAR, we explicitly want to point out the connection of
system identification methods for nonlinear Markovian systems to their counterparts
for nonlinear non-Markovian systems (with finite memory these are NAR systems)
that can be derived through the Mori—-Zwanzig formalism from Sect. 2.

3.1 SINDy: A Short Summary
We start with a short description of SINDy (Brunton et al. 2016a). In SINDy, we

try to approximate each coordinate of f by a linear combination of basis functions
6; : R™ — R and define
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01(x) 01(xp) ... 01(xT-1)
om=| : |, ex=| : :
0y (x) Oy(x0) ... Oy(xT-1)

—~

To this end, we fit a sparse coefficient matrix £ € R™*? with rows E; to the data
X, X’ by solving for every row X of X/,

E; = argmin |X; — E;0X) [ + Al Ei]1. (3.2

S

We then obtain the model
X1 R BEO(xy). (3.3)

In (3.2), we enforce a sparsity constraint using the LASSO regression algorithm (Tib-
shirani 1996) in which a regularization term is added onto the coefficient matrix, in
order to only obtain the basis functions from ® that are dominant for the relation
between x;11 and © (x;).

The use of the 1-norm generates a sparse solution if we set A > 0 appropriately.
Sparse models will often times be less accurate than non-sparse models. However,
what we gain through a sparse right-hand side of (3.3) is a better interpretability of
the model since only the dominant terms have been identified as influential to the
dynamics. It is vital to set A so that the loss of accuracy is minimal compared to the
gain in interpretability.

SINDy is closely related to the (first step of) the method of dynamic mode decom-
position (DMD) (Williams et al. 2014; Tu et al. 2014), which aims at finding a linear
connection between x; and x;1. To this end, one solves?

A = argmin | X' — AX||F. (3.4)
A

3.2 Extending SINDy to SINAR

When the dynamical model (3.1) is insufficient in the sense that x,4; depends not
only on x; but on memory terms too, we can apply the SINDy algorithm to suitably
transformed data to obtain a nonlinear autoregressive model as in (2.9) with sparse
coefficients. That is, only a few basis functions should occur with nonzero coefficients.

2 In a second step, DMD then uses E from (3.2) to uncover properties of the Koopman operator of the
system. SINDy, instead, tries to explain the evolution of x; by basis functions that do not have to be
linear. Still, essentially, the problem (3.4) is equivalent to (3.2) for ®(x) = x and A = 0. Further, there
exists a sparse version of DMD (Jovanovic et al. 2013), where the sparsity constraint is enforced by the
additive 1-norm regularization as in (3.2). Then the emerging minimization problem is the same as (3.2)
with ®(x) = x.
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NON-LINEAR

LINEAR & SPARSE
Z
= Dynamic Mode
S Y " SINDy
g Decomposition
= [BPK16a, BPK16b]
= [WKR14, TRL*14]
=
é Autoregressive SINAR
o 8 models [BD91]
] i . -
Z. é See also: Hankel- Spe(()zlal case.+HA
5 DMD [AM17] VRORS [ETEE L]

Fig. 1 Relation between different system identification methods. All of them are based on solving a least
squares problem with respect to transformations of past to future states. While the AR minimization problem
can be seen as the DMD problem on delay-embedded states and SINDy finds a nonlinear instead of linear
connection between states (as in Hankel-DMD in Arbabi and Mezic (2017)), SINAR finds a nonlinear
connection between multiple past states and future ones. SINAR allows for imposing a sparsity constraint
onto the determination of macromodels in the same fashion as is done in SINDy for Markovian systems.
This has already been done in a special way in Brunton et al. (2016), which is a special case of SINAR

Selecting a memory depth p and denoting

Xt
Fo=| 1 | eR™,

Xt—p+1
let us define as data matrices the Hankel matrix

xp_l cee XT1 | |
e Rmpx(T—p+l)

M
Il

Il
=1
S|
L
b
T

o evi] L s

and X' = | xp ... xp | e R™*T=p+D,

Again, we choose basis functions

01(%) 01(Fp_1) ... O1(Fr—1)
O®F) = : , OX) = : :
6, (%) Oy (Gp—1) ... 0y(Fr_1)
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Fig. 2 Sketch of the SINDy algorithm (left) and SINAR (right). SINAR contains the additional step of
creating a Hankel matrix

for example

O = [T, ()1 ()2, - sin(Qir—D D -y (=) Cr-3)11"
and minimize for every row &; of &:

g; = argmin | X} — E;0X)|r + Al &l (3.6)

i

o

~
™)

Then with the basis functions with nonzero coefficients in & € R”*?, we have derived
a nonlinear autoregressive model that approximates the evolution of x:

v
xip1 = 80(%) e R", or equivalently, (x11)i =Y 840;&). (3.7
j=1

By deleting all columns of & that only contain zeros, which should be many if we
enforce the sparsity constraint, we get a reduced matrix and thus a low number of terms
on the right-hand side of (3.7). We have thus identified a sparse nonlinear autoregres-
sive model so that we call this extension of SINDy sparse identification of nonlinear
autoregressive models (SINAR). Note that for a memory depth of p = 1, SINDy and
SINAR are equivalent. Figure 1 shows the connections between several prominent
methods for learning macrodynamics from microsimulation data in the Markovian and
non-Markovian setting. Figure 2 further illustrates the different structures of SINDy
and SINAR.

The choice of © allows for an arbitrary functional dependence between the distinct
time-delayed observables. We can recover the special structure used in the Mori—
Zwanzig formalism (2.8) and (2.9) by a particular choice of the basis by choosing

OGF) = [P1(X0)s -+ s PR (Xe), ooy §1 (Xt p1)s vy B (e pr DT
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with @1, ..., g being scalar-valued functions as introduced in Sect.2.3. Then we
could directly estimate the coefficients Hj of the model (2.9)—which was derived
through the Mori—Zwanzig formalism previously—from data, provided its distribution
is approximately . Then 2 has the block-wise form

E= [Ho, ..., Hp_1] e Rk

and B
p—1 @1(xr—)
EOF) =) Hi
k=0 Ok (X1—k)

Of course, by choosing linear basis functions ©(%;) = X, and setting A = 0, one
obtains a well-known linear autoregressive model (Brockwell and Davis 1991). Except
for the sparsity term, the determination of model coefficients as in (3.6) is exactly the
least squares method commonly used for the linear AR models. In Appendix A.3, we
explain the structural equivalences and differences between SINDy, SINAR, DMD
and AR models that are also sketched in Fig. 1.

The covariance of the noise term ¢, in (2.9) can be estimated in the common way
for linear or nonlinear AR models (Brockwell and Davis 1991; Lin and Lu 2019) by
calculating the statistical covariance between X’ and 20 (X) (see Appendix A.6 for
more details on both statements).

In Appendix B, we apply SINAR to an extended Hénon system, a two-dimensional
dynamical system that admits a global attractor, and inspect both its accuracy in short-
term predictions and its capacity to reconstruct the original attractor. This is to illustrate
basic properties of nonlinear autoregressive models for a simple system yielding com-
plex dynamics.

4 Application to an Agent-Based Model for Opinion Dynamics

We will now consider a network-based model of agents that change their opinions on
a topic based on the opinions of their neighbours in the network. Suppose, we can only
observe the percentages of agents inside the network that share each opinion, but not
which agent exactly has which opinion, as in an anonymous opinion poll. Describing
the evolution of these percentages can be approached by the Mori—Zwanzig formalism
that we discussed in Sect. 2, since they are simply observations of hidden micrody-
namics. We will demonstrate the efficacy of NAR models in predicting the evolution
of opinion percentages, compared with Markovian models. We use a time-discrete
agent-based model (ABM), similar to the concept of modelling opinion changes in a
population explained in Misra (2012). The ABM in Misra (2012), however, is time-
continuous, while we use a time-discretized version of it. To apply the Mori-Zwanzig
formalism to a time-continuous microdynamics, we refer the interested reader to the
literature such as (Chorin et al. 2000, 2002).
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4.1 Formulating the ABM

The ABM is given as follows: suppose there are N agents and each agent has exactly
one out of M different opinions, denoted by 1, ..., M. The vector X;, which comes
from

X={1,..., M}V,

then represents the opinions of each agent at time ¢ and (X;); denotes the opinion of
agent i at time 7. The neighbourhoods of all agents are represented by the symmetric
adjacency matrix A € {0, 1}¥V*V where A; 7 = 1 means that agents i and j are
neighbours of each other and A;; = 0 otherwise. Let N; := #(j : A;; = 1) be the
number of neighbours of an agent. The diagonal entries of A are set to 1, so that every
agent is its own neighbour.

Let the procedure of opinion changing be given by the following rule: in every time
step, every agent picks one of its neighbours in the network uniformly at random and
changes its opinion with adaption probability o, ,,» where m' is the opinion of the
agent and m” is the opinion of the selected neighbour. This results in the term

#(j: Ajj=1land (X;); =m")
N;

IP)[(Xt—i-l)i zm//|(Xt)i :m/] =Um'm" for m’ #* m//a

which we denote by p; (m’, m"). The probability for an agent not to change its opinion
thus is

pim’,m') = P[(Xep1)i =m'|(X)i =m'] =1~ Z pi(m',m").

m//#m/

In algorithmic form, the agent-based model is executed in the following way:

Algorithm 1: Agent-based opinion change model

1 Choose end time 7', number of agents N, network adjacency matrix A, opinion
change coefficients «,,,,,~, initial opinions X
2 fort=0,...,7T do

3 fori=1,..., Ndo

4 Draw j from {j : A;; = 1} uniformly at random (Choose neighbour)
5 Draw u; ~ U]0, 1]

6 Ifui < ax)xn;: (Xet1)i = (X1)j (Adapt neighbour’s opinion)

7 end

8 end

To clarify the notation, remember that (X;); and (X;) ; denote the opinions of agents
i and j at time 7. Hence, a(x,), (x,); is the adaption probability of opinion (X;); given
that an agent has opinion (X;);. Note that in each time ¢ every agent is given the
opportunity to change its opinion, and whether this happens is a probabilistic event
depending only on the opinions at time ¢.
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We can now state the so-defined microdynamics by
Xi+1 = F(X;, o)

where at every time step, w; denotes a tuple consisting of N agents that represents the
chosen neighbour of each agent plus numbers u; ~ U[0, 1] that govern the adaption
probability «(x,),(x,); as in Algorithm 1. To be more precise, ; has the form

o = [ji,- s N, Uty unl, ji ~UG DAy =1}, up ~ U0, 1]

F then is given by

o )Xoy i < ey,

Kes1)i = FXe, 00 = {(Xt)i otherwise.

This way of stating the microdynamics seems complicated compared to the more
intuitive option of denoting by (w;); the new opinion of the ith agent, distributed by
[PI((X)i, D), ..., pi((X;)i, M)]. However, this would mean that the distribution of
w; changes over time, since the pf depend on (X;);. For the Mori—Zwanzig formalism,
this would prevent us from applying the procedure of skew—shift systems introduced
in Sect. 2.4 where we drew all w, a priori and thus independently of the X,. By using
the notation of w; denoting a tuple of neighbours j; and random numbers u; that
are compared to the adaption coefficients, we can draw the whole sequence of w;
independently of the X, and maintain consistency with the notation of skew—shift
systems.

4.2 Deducing Macrodynamics from the ABM

Closed-form macrodynamics.
We now define as the opinion percentages the function

#X; =1

1
§(X) = v :
#X, =M

and are interested in modelling how these percentages evolve over time. It turns out
that for a complete network, i.e., A;; = 1 Vi, j, we can derive macrodynamics for the
expected evolution of

xe = §(Xy),

that do not require memory terms. They are given by

IE:[(xt+l)m’ | x:] = ) + Z @ — Q) (Xt ) (X)) fOT m' = L...,m.
m'" £m’

4.1
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This equation can be derived as follows: in case of a complete network, p!(m’, m") =
p'(m’, m") is independent of i because the percentages of opinions among neighbours
are equal for all agents since they all have the same neighbours. Then

pl (m/, m”) = ' (X )

In every time step, every agent with opinion m’ chooses its opinion in the next time
step with respective probabilities p’ (m’, m”) for all opinions m” # m’ and probability
1=z P' (', m") for keeping opinion m'. Since the number of these agents is
given by N - (x;),, the expected absolute number of agents that change their opinion
from m’ to m” is given by

E[#Agents changing opinion from m’ to m”]

— Z pt(m/’ m//)

i:(X )=’
=N @)y - p'm',m")

=N - X)m Gy (X))

This is the expected absolute number of agents that change their opinion from m’ to
m”. This means that from this term alone, the percentage (x;),, of m’ is reduced by
% times this term, which is &/, (x;),7 (x;),. Since at the same time agents with
opinion m” can change their opinion to m’ with probability &, (xX;)m (Xt) s We
have to subtract the analogous term for E[#Agents changing opinion from m” to m’]
and the factor («,,,7;,y — @) comes in. As a consequence, for a complete network
the expected evolution of x can be written in terms of x alone, without requiring
additional information of the microstate X.

Consequences of the Mori-Zwanzig formalism.
In the abstract language of the Mori—Zwanzig formalism from Sect. 2, the above
means that
PKE¢ = K&, thus QK& = 0, 4.2)

because we can express K& = E[£ o F] as a function of & directly by using (4.1). Let
us now consider (2.5), where terms of the form

PKpk  with pf = (QK0)ke

occur. Equation (4.2) yields for k > 0 that p* = (QK)*~1(QK¢) = 0. In this way,
we can see that memory terms are not required for the dynamics of £ if the network is
complete. However, this is generally not the case for incomplete networks, as demon-
strated in detail in Banisch (2014). In other words, (4.2) is no longer valid so that
the p¥ do not vanish. In this case, by using as P the orthogonal projection onto basis
functions we were able to find approximate representations of the terms P(of o F)
in (2.5). Here lies another part of the value of the application of the Mori—-Zwanzig
formalism: it installs that the structure of the ensuing macrodynamics in (2.5) is addi-
tive, i.e., it can be written as a sum of transformations of memory terms of individual
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delays, as opposed to memory terms containing mixed delays (e.g., V1 (x;)¥2(x;—1)).
This guides our choice for a good approximation structure and reduces the number of
potential basis functions from exponential in the delay depth p to linear.?

For an incomplete network which is still sufficiently densely connected, we expect
the microdynamics to be in expectation still close to that of a complete network. Thus,
in such a case we expect QK& = 0, even if (4.2) does not hold exactly. Consequently,
assuming dense connectedness, the opinion percentages should allow for a closed-
form description of their evolution with a small memory depth. In the following, we
will use SINAR to identify NAR models of this form suggested by the Mori—Zwanzig
formalism.

4.3 Recovering the Macrodynamics in Case of an Incomplete Network

We now create realizations of the ABM with networks that consist of equally sized
clusters of agents. Edges between agents from different clusters exist, but are few.
Inside the clusters, all agents are connected with each other. To this end, we create
networks with a total number of agents N consisting of equally sized clusters. Two
agents from different clusters are connected with probability pperween-

From the same initial state and with the same parameters, we create multiple
realizations of the form [X( ..., X 7] of the ABM and deduce the percentages of opin-

ions [xg, ..., x7] = [E(X0), ..., E(X7)]. We denote the realizations of the resulting
macrodynamics by X1, ..., X, and divide these data into training data X1, . .., X;4in
and validation data X;,4in+1, - - . , Xr. Subsequently, we execute the SINAR method

with different memory depths p on the training data. SINAR gives us NAR models that
we use for the reconstruction of the validation data. For this, the SINAR method can
straightforwardly be modified for multiple trajectories by defining data matrices X =

X, ... traln] and X = [Xl, .. X,mm] in the notation of Sect. 3. We then compute
the reconstructlon errors of the validation data for each value of p = 1, ..., pmax-
For the reconstruction, we divide each realization X; of the validation data into blocks
of length / > p. A block denotes / states x(/) [xji, ..., x(j+1)i—1], while the next

block will be xi]+ ) = [xG+1)is -+ -5 X(j+2)1—1]. We then compute a reconstruction

£ = [%1, ..., Rj+ni-1] of this block with the NAR model obtained with SINAR
for which we use the last p values of the previous block as starting values. We calculate
the relative Euclidean error between reconstruction and data for each block by

Ix” = 2”11k

err(x(]))

x| ¢

Afterwards, we take the mean over all err(f(ﬁj )) to measure the performance of the
NAR model.

3 Supposing that there are K basis functions to be used to approximate the space H, a tensor product
basis for the complete space of “delay functions” Y” — Y would require K? functions. Meanwhile, the
Mori—Zwanzig formalism does not mix terms from different delays, essentially working on @le ‘H, that
is approximated by pK functions.
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Since the entries of £(X,) always sum up to 1, information about the percentages of
opinions 1, ..., M — 1 immediately yields the percentage of opinion M so that we use
SINAR to find an NAR model for the evolution of the percentages of the first M — 1
opinions only and omit the redundant information & (X)) 5s. For the reconstruction error,
we compare data about the percentages of only the first M — 1 opinions with their
reconstructions. This NAR model does not necessarily ensure that the predicted first
M — 1 percentages stay between 0 and 1 and their sum is at most 1. Since we make
short-term predictions only, however, there will at most be only slight deviations from
this property.

In the form of the diagram (2.2) from Sect. 2, the Mori—Zwanzig procedure applied
to this concept can be described as

Fin ABM Opinions

Opinions
Xpyw) — X at time t + 1

at time ¢ (

13 13

Opinion concen- Expected opinion

trations at times
t—p+1ltot

# ———=FE|x .
¢ Nar [ t+1} concentrations

at time ¢t + 1

Case 1: A Complete Network

For pperween = 1, the network is complete and there should be no improvement of the
prediction by allowing memory terms.

We set N = 5000, T = 300 and A;; = 1Vi, j. The number of different opinions
is M = 3. As coefficients «,,,,,» we choose

air o og3 0 0.165 0.03
21 oy 023 | = 0.03 0 0.165
3] 32 033 0.165 0.03 0

Asinitial percentages we assign values to the (Xg); sothat&(Xg) = [0.45, 0.1, 0.4517.
As the block length in the validation data, we use / = 40. We can already write
down the macrodynamics since they are given in (4.1) (see Appendix C.1 for details):

El(x+0)1 | %] = (1 4+ 31 — a13)(x)1 + (@13 — a31) (67 + (@21 — a1z — a31 + @13) (41 (x1)2
= 1.135(x)1 — 0.135(x/)? — 0.27(x)1(x/)2,
El(xr+1)2 | %] = (1 4+ @32 — a23)(x)2 + (@23 — @32) (x)3 + (@12 — 021 — 32 + @23) (x0)1(x1)2

= 0.865(x;)2 + 0.135(x;)3 + 0.27(x,)1 (x1)2.
4.3)

Inspired by this structure, we choose as basis functions in SINAR

(@1, - .., PLIC) = [(x)1, ()2, (407, (60)3, (X1 (x0)2]
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so that

OG) = [(x)1, (x)2, (x0T, (x)3, k)1 (x0)2, - -

Markovian terms as in (4.3)

(4.4)
D1, (=12, D3, (13, G- 1G—1)2, .. 1T

Memory terms

Since (4.1), resp. (4.3), describe the expected evolution of the percentages and are thus
in the form of deterministic models, we omit the noise term &, from (2.9) which we
assumed to satisfy E[e;+1] = 0.

We create r = 20 realizations of which we use 12 for training and the others for
validation. We set the sparsity parameter to A = 0 and to A = 0.05 to test how the accu-
racy decreases with a sparser model. Since the macrodynamics (4.3) are Markovian,
we obtain for the prediction error of the validation data no improvement by allowing
memory terms (Fig. 3) for neither the 40- nor the one-step prediction error. Note that
the predictions with the sparse NAR model provide slightly better accuracy for large
memory depths. This is because small nonzero coefficients for memory terms improve
the fit of the training data, but cause errors in the prediction of the validation data,
because the macrodynamics are Markovian. Through the sparsity constraint enforced,
these nonzero coefficients for memory terms are cut off. The recovered sparse macro-
dynamics for p = 1 reads

(xr11)1 = 1.1353(x,)1 — 0.1351(x/)7 — 0.2709(x,)1 (x1)2 ,
(x141)2 = 0.8655(x,)2 + 0.1344(x)3 + 0.2699(x,)1 (x/)2 .

which is very close to the analytically derived macrodynamics (4.3).
Case 2: A Two-Cluster Network

We now construct a network with N = 5000 agents, divided into two clusters of size
2500 each. We set pperween = 0.0001. Again, M = 3 and o/, are the same as in
case 1. As the starting condition, we let opinions in the first cluster be distributed by
[0.8,0.1,0.1] and in the second cluster by [0.1, 0.1, 0.8]. If the initial percentages
in both clusters were equal then the percentages in both clusters would evolve in a
quite similar way in parallel so that the macrodynamics would essentially be the same
as in the complete network case. With the initial percentages being so different, it is
possible that an opinion that is dominant in one cluster at one point in time but only
sparsely represented in the other can become popular through the links between agents
from different clusters. This will cause the difference in behaviour of the evolution of
percentages compared to the complete network.

Moreover, in order to derive the Markovian macrodynamics in Eq. (4.1), we needed
that the probabilities for an agent i to change its opinion (X,); at time ¢, which we
denoted by p’((X;);, m"), be independent of i. If the neighbourhoods of different
agents are generally different from each other, this is no longer the case. Especially
so, if agents are distributed into different clusters, where opinion percentages might
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Fig.3 Results for the complete network. Top left: One realization of the microdynamics. Every column of the
graphic represents the opinion of each of the 5000 agents at one point in time. Blue denotes opinion 1, green
denotes opinion 2 and red denotes opinion 3. Top right: Corresponding realization of the macrodynamics
£(X) that represent the percentages of opinions among all agents. We can observe oscillatory behaviour
since agents with opinion 1 tend to change their opinion to 2 and analogously from 2 to 3 and from 3 to
1. Bottom: 40-step and one-step relative prediction errors of the NAR models determined by SINAR for
different memory depths p with A = 0 and 1 = 0.05. As expected, the prediction error does not decrease
with higher memory depth than p = 1 (Color figure online)

be very different. Thus, we cannot derive Markovian macrodynamics for this case, but
in light of the Mori—Zwanzig formalism, we will need memory terms.

To show this, we create r = 20 realizations of length 7 = 500 and again use 12 for
training, the remaining for validation. As block length, we choose I = 20. Memory
terms become immediately significant, as the error graphs illustrate (Fig.4). We use
the basis given in (4.4), which has the length 5p.

The non-sparse and sparse solutions only deviate slightly from each other in their
accuracy, but the sparse solution gives a significantly more compact model. For exam-
ple, for p = 2, we obtain for the coefficients

N0 = 2.04 0.03 —0.07 —0.08 0.02 —1.05 —0.02 0.07 0.07 —0.02

T "7 [-0.051.88 0.00 0.11 0.06 0.06 —0.89 —0.01 —0.12 —0.05
=005 5 — 1.9691 0 000 —-0.9700 0 000
T 0 19662000 0 —-0.9671 000

so that for & = 0.05 the NAR model is given by

(xr+1)1 = 1.9691(x1)1 — 0.9700(x;—1)1
(x41)2 = 1.9662(x:)2 — 0.9671(x1—1)2.

For p = 1, the NAR model obtained with SINAR (A = 0.05) is

(xr+1)1 = 1.0094(x1)1 — 0.053(x1)1(x;)2
(xr+1)2 = 0.9894(x;)2 4 0.0574(x;)1(x1)2.
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Fig.4 Results for the two-cluster network. Top left: One realization of the microdynamics. Colours represent
opinions as in Fig.3. Top right: Corresponding realization of the macrodynamics £(X). Again there is
oscillatory behaviour but also plateaus and short dips as in the red and green graphs at time 25 - 150. This
is because at these times one opinion is dominant in one cluster, but not present in the other. Through the
links between the clusters, an opinion, that is not present in a cluster but dominant in the other one can be
revived, e.g., the blue opinion in the upper cluster. Bottom: 20-step and one-step relative prediction errors of
the NAR models determined by SINAR for different memory depths p with A = 0 and A = 0.05. Memory
terms yield a significant decrease in the prediction errors compared to Markovian predictions

With A = 0, the obtained NAR model has other terms with nonzero coefficients, but
these are small. In Fig.5, an example for the predictions of opinion percentages in
one block using the NAR models with p = 1,2 and 10 is depicted and compared
to the corresponding data. As the error graphs in Fig.4 show already, the predicted
percentages come closer to the percentages in the data with increasing memory depth.
In order to illustrate why memory terms improve the prediction accuracy, let us imagine
for now that there are no links between the clusters. Then, the evolutions of opinion
percentages in both clusters run in parallel to each other and are Markovian as derived
previously. The opinion percentages in the full network are then given by the averages

of the cluster-wise percentages xt(i), ie.,x; = %(xt(l) + xt(z)). This means, if we know

X;, then there are various options for what x,(l) and x,(z) can be, all of which might
M @
1+ 1+

X¢—1, this might yield possible values for xt(l)l and xt(i)l , which themselves make some

of the candidates for xt(l) and xt(z) unlikely. Thus, through the information of memory

terms we can restrict the options for what the percentages inside each cluster are. We
illustrate this in more detail in Appendix C.2.

The links between the clusters have as consequence that within one cluster agents
generally do not have identical opinion change probabilities since their neighbour-
hoods are different. This yields additional need for memory terms since then not even
for the macrodynamics in one cluster a Markovian formulation can be derived.

result in different values for x,.", and x,"; and thus x; . If we are additionally given
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Fig.5 Opinion percentages over one block of length 20 from the validation data and prediction evolutions
with NAR models obtained with SINAR for p = 1, 2 and 10 and A = O (two-cluster network). Percentages
from validation data are depicted with thin lines and predicted percentages with lines with crosses. With
p = 1, the prediction accuracy is poor and improves drastically for p = 2. With p = 10, the predicted
evolutions come even closer to the curves from the validation data

Case 3: A Five-Cluster Network

We repeat the same procedure as with the two-cluster network, but with five clus-
ters of equal size 1000. Again, all agents within a cluster are connected with each
other and pperween = 0.0001. The «,,,,» are identical to the ones used in the first
two examples. As starting conditions we let opinions in the different clusters be
drawn according to different distributions for each cluster. Those distributions are
[0.8,0.1,0.1], 0.1, 0.1, 0.8], [0.1, 0.8, 0.1], [0.3, 0.4, 0.3] and [0.5,0.3,0.2]. The
evolution of the opinion percentages is now much more irregular compared to the
previous examples. The oscillatory behaviour is still present, but the amplitudes differ
from time to time. Through the higher number of clusters, more randomness comes
into the model since an opinion can be randomly spread from one cluster, where it is
dominant, to another one, where it is not dominant, suddenly altering the evolution of
percentages in this cluster and thus in the whole network.

We now show that, similar to when we used a two-cluster network, memory terms
become important for predictions of the evolution of the microdynamics. This is shown
in Fig. 6. Again, the mean relative error per block converges with increasing p. While
in the two-cluster network example the performance did not improve visibly with
p > 10, in this case we can get slightly lower errors for p approaching 20.

For p = 2 and X = 0.05, we obtain the NAR model

(xr41)1 = 1.8745(x;)1 — 0.8748(x1—1)1
(Xr41)2 = 1.8672(x;)2 — 0.8674(x;—1)2.
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Fig.6 Results for the five-cluster network. Top left: One realization of the microdynamics. Every column of
the graphic represents the opinion of each of the 5000 agents at one point in time. Top right: Corresponding
realization of the macrodynamics & (X). The behaviour is much more complex than in the first two cases.
Bottom: 20-step and one-step relative prediction errors of the NAR models determined by SINAR for
different memory depths p with A = 0 and 1 = 0.05

0.7 p=1 0.7 p=2
06+ 1 06+ 1
05+ 1
0.4
F
03+ 1
4
0.2+
0.1 1 0.1 1
0 . . 0 . . .
80 90 100 110 120 80 90 100 110

t

t

120

0.7

0
80

90

100 110 120
t

Fig.7 Opinion percentages over one block of length 40 from the validation data and prediction evolutions
with NAR models obtained with SINAR for p = 1, 2 and 20 and 1 = O (five-cluster network). Percentages
from validation data are depicted with thin lines and predicted percentages with lines with crosses. As in
the example with a two-cluster network, we can see what the error graphs in Fig. 6 indicate: the predicted
evolutions are closer to the validation data with higher memory depth of the NAR model
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For p > 2, the models show increasing complexity, e.g., for p = 3:

(xr41)1 = 1.4662(x;)1 — 0.1188(xs)2 + 0.0552()6,)% 4+ 0.1318(x¢)1(x7)2
4+ 0.2309(x7-1)2
—0.1899(x;—1)1(xs—1)2 — 0.2021()6,,1)% — 0.4658(x;—2)1
—0.1060(x;—-2)2

+0.1206(x;_2)? + 0.0644(x;_2)3 (xr11)2
= 1.3157(x1)2 — 0.3161(x,—2)>.

Again, we show as an example the predictions of percentages for one block of length
40 with memory depths 1, 2 and 10 (Fig.7). As in the example with the two-cluster
network, we can see that a higher memory depth indeed increases the prediction accu-
racy for the evolution of the opinion percentages in the short term, i.e., for predictions
of length 20 resp. 40. Plus, enforcing the sparsity constraint with the parameter A in
SINAR set to 0.05 yields significantly sparser models, while the prediction accuracy
only suffered slightly.

5 Discussion

In this article, we have summarized how the evolution of observations of a dynam-
ical system can be derived through the Mori—Zwanzig formalism and how this can
result in a nonlinear autoregressive model with memory. For the determination of
model parameters, we have used methodology from data-driven system identification
methods, inspired by SINDy (Brunton et al. 2016a). We could then extend SINDy
to SINAR which identifies sparse nonlinear autoregressive (NAR) models from data,
thus deploying a common system identification method for non-Markovian systems.

We applied this to an agent-based model (ABM) that simulates the dynamics of
opinion changes in a population. Assuming that all agents are equally strongly influ-
enced by all other agents in the population, we showed that for the prediction of the
percentages of opinions within the population memory terms are not necessary. How-
ever, for incomplete networks, this is no longer the case. Our methodology enabled us
to make more accurate predictions for the percentages of opinions among the agents
when the population of agents was defined by clusters with little influence between
them. Additionally, sparse models obtained from enforcing a sparsity constraint in the
estimation of NAR models in SINAR gave almost equally good prediction accuracy
as the non-sparse ones, while yielding far simpler models. In the context of opinion
dynamics, such sparse models permit to point out more clearly which opinions impact
which others and how.

The following challenges have yet to be addressed:

e In our methodology, we have assumed a noise term resulting from Mori—-Zwanzig
that was zero mean. This allowed us to omit it when making predictions of the
expected value of the opinion percentages. This simplifying assumption does not
need to be true, and one could try to derive a more accurate representation for the
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noise term. As aresult of this simplifiying assumption, the NAR models we consid-
ered were deterministic, even for non-deterministic microdynamics. Introduction
of explicit noise in the NAR models, e.g., by extending the approach outlined in
Klus et al. (2020), could improve their (statistical) predictive capacities.

e One could additionally choose a different projection P in the Mori—-Zwanzig for-
malism. The choice of an orthogonal projection on a finite set of basis functions
explicitly yielded an NAR model. The right projection for a given system could
inspire an optimal choice of basis functions, e.g., such that the memory depth is
minimal.

e We have derived models that are stationary, i.e., do not change over time. Since the
assumption of an equilibrium distribution over states of the microdynamics might
not always hold, coefficients of the NAR model may become time-dependent. One
could use a regime switching model as in Horenko (201 1) that fixes coefficients for
atime interval before changing them to other fixed values when the macrodynamics
show certain behaviour, e.g., coefficients might be different depending on which
opinion is dominating.

A MATLAB toolbox for the experiments done in Sect. B and Appendix 4 is provided
under https://github.com/nwulkow/OpinionDyamicsModelling.
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A Technical Details on the Mori-Zwanzig Equation and SINAR
A.1 The Derivation of the Mori-Zwanzig Equation

We show here how to derive Eq. (2.5) from the Dyson formula in Sect.2.2. The Dyson

formula states
'

ICI+1 — Z,lekP’C(QIC)k + (Q’C)k+1.

k=0

Application of both sides of the equation to £ and evaluation at the initial value Xy
yield
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t
(K'e)(Xo) = Y KPR E1(X0) + (0K T E(X0)
k=0
t
which results in: £(X,41) = Z[PIC(QIC)kS](Xt—k) + (Q/C)t+1§(XO)
k=0

t
Setting p* = (QK)*& yields: §(X,11) = ) [PKo"1(X,—) + o' (Xp)
k=0

t
= D _[PGF o PIX—p) + 0" (X0).
k=0

(A.1)
We can replace X;_j by x;_ in the last step because the application of P to a function
makes this function depend only on the relevant variables. We explicitly used the
parentheses around the operator P/Cp* and its equivalent formulations to indicate that
P is a projection operator that works on the function K p¥.

Since p¥ = &, we obtain that P(p° o F) = P(£ o F). This is usually referred to as
the optimal prediction term since it is the best Markovian approximation of £(X,41),
i.e., the best approximation of & (X, 1) that only uses £(X;). The sum in the last row
of (A.1) starting at k = 1 is referred to as the memory terms, since these terms use
information from previous values of £(X). The term P (Xo) depending on the full
state X and not on the projection &£(Xy), is often called noise, because one does not
have explicit access to it and can often only treat it as a stochastic influence.* In total,
the last row of (A.1) is called the Mori—-Zwanzig equation.

Substituting the definition of P as the orthogonal projection onto basis functions
as in (2.3), we obtain

P(p* o F)(x—1) = (1) (0, )" Hp, p* o F)

= o(x—) (@, ) ! / pEXNT pF(F (X)) dpn(X)
cRmxL cRLXL cRLxm ceYCRm

eRL
= p(x—p)hy € R™

with vector-valued coefficients iy = (¢, ) ™! [5 (E(X)T p*(F(X))dpn(X).

A.2 Translations Between the Model Forms (2.8) and (2.9)

We show here how to translate a model in the form of (2.8) into the form of (2.9) and
vice versa. Starting in the form of (2.8), we suppose we have chosen basis functions

4 It accumulates unobserved effects as witnessed by the complement projector Q. Note that it is expected
to decay fast, if the system mixes strongly (in the sense that K has a small spectral radius on the set of
functions perpendicular to the constant function, which in turn is assumed to lie in the range of P). In this
sense, the term “noise” refers to negligible correlation to variables x,_ that contribute strongly to £(X;41).

@ Springer



Journal of Nonlinear Science (2021) 31:19 Page27of42 19

o =1[e1,....0r] € R™Land hy = [(hi)1, - .., (hy)1] € RE. This gives

L

Qe =) (hi)igi (Xe—1).

i=1

Let us choose ¢ = [p], ..., ¢! 1T € R™L, set Hk(i) = hilLysxm € R™™ and define
He=[H", ..., H"] € R Then

o1(xr—k) L
~ 1 L . i
HegOoop) = H" 5P 0 | =Y B e
oL (xt—k) i=l

L

=Y (h)igi (xi 1)
i=1

= @ (xr—p)hg.

Thus, we can express (2.8) in the form of (2.9) by imposing the restriction on the
matrices Hy that they have the form Hy = hy I, <, - Note that we have simply modified
the forms in which the dynamics are expressed, but not generated a different model
structure.

For the backward direction, suppose we have chosen scalar-valued basis functions
@1, ..., P and determined matrix-valued coefficients Hy € R"™* X Then we can
bring (2.9) into the form of (2.8) by setting L = mK, defining ¢ as the Kronecker
product ¢ = Lyxm R [@1, ..., ¢k, i.e.,

¢1(x)...g5K(x) 0 0
0 ... 0 ¢i(x)...¢x) 0 ... 0 B
(p(x) — : . c Rmxm ,
0 o1(x) ... pg (x)

and using m K -dimensional coefficients

hi = [(HOW, - (HO1k s - (HOms - (HOmk 1T

Then,

(Hi)11 (Hon - (Hoik | | @10x—)
(1) hk = @(xr—1) : = : : :
(Hi)mk (Hm1 -+ (H)mk | | ¢k (Xr—k)
= Hy@(xi—k)-
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A.3 Relation Between SINDy, SINAR, DMD and AR

The diagram in Fig. 1 sketches how system identification methods from different
contexts are related. With DMD, SINDy, SINAR and AR models in mind, one can
observe that in all of them, a minimization problem of the same form is solved: given
are data matrices X and X’ which contain data points of the realization of a (possibly
memory-exhibiting) dynamical system that are shifted from each other by one time
step. Then one tries to find a connection between both through a transformation of X
which is multiplied with a coefficient matrix by solving (omitting possible sparsity
constraints)
E =argmin |X' — EOX)| r

In DMD, one tries to find a linear and Markovian connection between x; and x;41,
i.e., ®(x) = x. In SINDy, X is transformed in a possibly nonlinear way in order to
explain the evolution of systems for which a linear model might be inaccurate.

Linear AR models look for a linear connection between a fixed number of past
values of the system and its next value. The columns of X, in this case, contain not
just data points of the system but sequences of data points of a fixed length. More
precisely,

T—1
In DMD, one minimizes Z lxr41 — Exsll2
=0
T—1
In AR models, define x; = [x,T, e, x,T_pH]Tand minimize Z lxr4+1 — EX¢l2
t=p—1

Since in DMD one maps time-shifted versions of the same coordinates onto each other
(i.e., x; to x¢41), let us augment the AR minimazation problem to ZtT:_pl_l %1 —

C%|l2. Then E is equal to the upper m rows of C, while the lower m(p — 1) rows of C
have simple structure copying the associated rows from x; (C is a so-called companion
matrix). In this way, the AR problem is equivalent to the DMD problem with states
from the Hankel matrix defined in (3.5). In Arbabi and Mezic (2017), the authors
discuss Hankel-DMD to extract properties of the Koopman operator of a system from
observational data. In doing so, they essentially fit an AR model.

In the same fashion, SINAR is the delay-embedded counterpart to SINDy and
brings together SINDy and AR models in the sense that one seeks a possibly nonlinear
connection between past values of the system and subsequent ones.

A.4 Definition of the Conditional Expectation

Let states X € X be distributed according to w. Let us define for & € G the level sets
Ly :={X € X : £&(X) = x}. Then, through the coarea formula (Federer 1996), the
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expectation of a function g € G with g € L'(X) can be written as

E;L[g(X)]=/Xf(X)dM(X)

= / FORX) det(VEX)T VE(X)) ™2 dx doy (X)
EX) JL,

where o, is the Hausdorff measure on L,. Then, the conditional expectation of f(X)
given that £(X) = x is (see, e.g., Bittracher et al. (2018))

1
Eule(X) [ §(X) =x] = o ), gORX) det(VEX) T VE(X) 2 dor (X),

where I'(x) is a normalization constant.

A.5 Determination of Coefficients of Linear AR Models

A linear autoregressive model with zero-mean Gaussian noise has the form

p—1
X4l = Z Hixi—i + &1, &1 ~N©O,27%).
i=0

The best linear unbiased estimator (BLUE) (Plackett 1949; Baksalary and Kala 1981)

for the H; is the least squares minimizer & = [Ho, ..., Hp_1], given by
E= argmin ||X — EX|F,
E=[Ho,....Hp-1]

where X and X' are defined as in (3.5).
Omitting the sparsity constraint, SINAR solves the problem

& = argmin [|X' — EOX)||r.

(o0

If ®(x) = x, then this is precisely the least squares method for linear autoregressive
models.

A.6 Covariance of Noise Terms of NAR Models
Assuming a relation of the form
X =EO()+e&, &~N©O '),

we find that
Cov(x; — EO(x;)) = Cov(g;).

@ Springer



19 Page300f42 Journal of Nonlinear Science (2021) 31:19

An unbiased estimator for the covariance of a random variable y is the statistical
covariance

_ 1 < _ _
T = ﬁg(” - N ="

T
- _ 1
where y = 7 Zly,.
=
In order to estimate the covariance matrix of noise terms ¢, in Eq.(2.9), one has

p—1
to substitute x; by x,4+1 and EO (x;) by > Hi@(x;—k) to derive the form of Eq. (2.9).
k=0
p—1
Subsequently y has to be substituted by x,+1 — > Hp@(x;—x) and we can calculate
=0

the statistical covariance of &1 in (2.9).

B Example: Application of SINAR to an Extended Hénon System

We demonstrate here the emergence of memory terms in the case of inaccessible
variables in the sense of the Mori—Zwanzig formalism by means of an example of
a dynamical system and use SINAR to detect an NAR model that reconstructs the
dynamics.

B.1 The Classical Hénon System and an Extension

The classical Hénon system (Hénon 1976) describes a two-dimensional system that is
one of the most famous examples for systems with chaotic behaviour, i.e., where
slightly deviated initial conditions lead to a significantly different trajectory. The
dynamical system is given by

2
X1 =1 —ax; + )

Vi1 = bxy,

where a, b are fixed parameters. As we can observe, y; is nothing more than a scaled
and time-delayed version of x,. We now consider x as the relevant and y as the
irrelevant variable; this means in the Mori—Zwanzig formalism the space H is given
by all functions depending on only x. We can then still express the evolution of x
exactly with dependence on the past two values of x by plugging in the equation for
V+1 into the equation for x;41:

X1 =1-— ax,2 + bx_1.
Let us now consider an extended version of the Hénon system

X1 =1 _axt2 + ¥ (B.1)
Ye+1 = bx; + ¢y,
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Fig. 8 Trajectory of length 5000 of the two-dimensional extended Hénon system (B.1) witha = 1.3,b =
0.3, ¢ = 0.3 and initial values xy = yo = 0. The first 1000 states are omitted here so that the trajectory has
time to converge towards the attractor

whose dynamical behaviour is visualized in Fig. 8. Now y is more than only a scaled
and time-delayed version of x. If we try to express x; only in dependence of its own
past terms and without values of y, then we do not get a system with a finite memory
depth, but with an infinite one:

Xep1 =1 —ax? +bx,—1 4 ey
=1- ax,2 + bxi—1 + cbxi_p + czy[,Z
=1 —ax? 4 bx;_1 4 chbx;_o + *b_3 4+ yi_3 (B.2)

t
=1- axt2 + Zc/_lbx,_j + 'y,
j=1

which can be quickly shown by induction on .
We have hereby derived an equation of the form of the Mori—Zwanzig equation

(2.5) for this simple example: the term 1 — axtz is the optimal prediction, i.e., the
Markovian approximation using the relevant variables x;. The sum

t
Zcf_lbx,,j
Jj=1

contains the memory terms depending on past values of x and the term ¢ yq is the
noise term with information about the irrelevant, or for us inaccessible, variable y.

B.2 Reconstructing the Extended Hénon System with SINAR
We now apply the SINAR algorithm to data originating from a trajectory of the

extended Hénon system and demonstrate the increase in performance by using memory
terms compared to applying the usual Markovian SINDy algorithm.
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Fig.9 Relative error of validation err(f(/) for SINAR on visible variable x of the extended Hénon system
for two different values of ¢ with different memory depths p on the x axis. The prediction accuracy improves
with increasing memory depth. Results based on SINAR with A = 0. As parameters in the extended Hénon
system, we chose @ = 1.3, b = 0.3 and ¢ = 0.3 (left) resp. ¢ = 0.03 (right). For every value of p, the same
80 time steps were taken into account for the reconstruction error

We set as parameters a = 1.3, b = 0.3, ¢ = 0.3 and initial values xo = yp = 0.
Then, for example, the exact model up to a memory depth of 3 in Eq. (B.2) is

X1 =1 —1.3x2 4+ 0.3x,_1 +0.09x,_5 4 0.027x;_3 + O(c>).

As basis functions, we choose monomials of the time-delayed coordinates up to second
order without mixed terms between different delays,

Short-Term Predictions

We now generate a trajectory of length 7 = 2000 out of which we erase the first
1000 steps to give the trajectory time to converge to the attractor. We then use the first
Ttrain data points for training and the remaining 1000 — T34, for validation. With the
training data, we determine coefficients E for the basis functions in ® with SINAR
for different memory depths p and compute reconstructions X7,, ., +1s-- -, X1000
of X7,,,in+15 - - -» X1000 using Eq.(3.7) with initial values x7, ..~ p+1, ..., X7, I
essence, we recover the coefficients of the forms a resp. ¢/~'b from Eq. (B.2) until
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Jj = p — 1 and recompute values of the extended Hénon system with the recovered
coefficients. As error measure we use the relative Euclidean prediction error

A/
o IX' =X
err(X) = ———— (B.3)
X1
where X' = [x7,,,.,+1 - - - » X1000] denotes data points from the original trajectory and
A/ A . .
X = [X7,,4in+1s - - - » X1000] data points from the reconstructed trajectory.

Although all coefficients are recovered up to an error of smaller than 10~!# when we
use 800 time steps for training, the reconstruction becomes inaccurate after around 100
time steps which underlines the strongly chaotic nature of the system, i.e., small devi-
ations at one point in time causing significant deviations in the long-term behaviour.
We thus use 920 time steps for training and only 80 time steps for validation to inves-
tigate how the relative Euclidean reconstruction error depends on the memory depth.
Below we discuss how the attractor of the system is recovered using much longer
reconstructions.

We see in Fig. 9 how the relative Euclidean prediction error decreases for increasing
memory depth p. Predicted was the evolution of x with data about x. It is interesting to
note how large a memory depth is necessary to get an accurate prediction for x when
¢ = 0.3 (Fig. 9 (left)). The chaotic nature of the system yields that even coefficients of
the form bc/ for j = 27 have to be taken into account. Of course, for smaller ¢ such
as ¢ = 0.03, memory terms in (B.2) decay quicker and a memory depth of p = 8 is
sufficient to yield an accurate prediction as shown in Fig. 9 (right). For the full system
(x,y), the system is Markovian and the prediction error is unsurprisingly very small
even for p = 1.

Attractor Reconstruction

Although large deviations between original and reconstructed trajectories of x; occur
after around 100 time steps, both trajectories remain on roughly the same set of points.
We quantify this by the Hausdorff distance between the two-dimensional delay embed-
dings (see definition in Appendix B.3) of the original trajectory and each reconstructed
trajectory. The Hausdorff distance denotes the maximal minimal distance of members
of one set of points to another set. In other words, the Hausdorff distance between two
sets is O if the sets are equal and big if there is a point in one set which is far away
from all points in the other set.

We make predictions of 3000 time steps based on coefficients that were obtained
with SINAR on data of 1000 time steps. In Fig. 11 are depicted the two-dimensional
delay embeddings of the original trajectory of x and the reconstructed trajectories for
p = 1,2,5,10 and p = 30. There we see how already for p = 2 the original and
reconstructed attractors look much more similar compared to p = 1. Figure 10 shows
the Hausdorff distances for different memory depths. Similar to the relative Euclidean
prediction error, the distance decreases with increasing p. The remaining error is

@ Springer



19 Page340f42 Journal of Nonlinear Science (2021) 31:19

c=0.3 c=0.03

05 ; ‘ 05 ‘ ;

045+ 045
N N
£ 04r £ 04
3 3
T 0.35 035
£ £
¢ 03 o 03
= H
8 025 8 025
= =
8 8
Z 02 Z 02
h=l ©
€ o1s| £ 015
el o
(2] 12
8 04 3 04
T T

005+ . 005

L
0 0 ‘
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Fig. 10 Hausdorff distances between original and reconstructed attractors with 3000 points of two-
dimensional delay embeddings of x for two different values of ¢ with different memory depths p on the x
axis. Results based on SINAR with & = 0 with parameters in the extended Hénon systema = 1.3,b = 0.3
and ¢ = 0.3 (left) resp. ¢ = 0.03 (right)

due to the fact that the complicated geometry of the attractor is hard to approximate
uniformly well with a finite set of points (Fig. 11).

B.3 Hausdorff Distance of Delay Embedding of Trajectories

The Hausdorff distance between two non-empty compact sets measures the maximal
minimal distance a point from one set has to the other set. It is commonly used to
compare attractors of dynamical systems. The lower the Hausdorff distance between

two sets, the more similar they are. From two trajectories X' = [xo, ..., x7] and
S/ A~ A~ . . .
X = [xp, ..., XT], we construct the delay embeddings with embedding depth p as
Xp—1 Xp Xp-1 xp
A/
D,X) = Sl ] DX = S N I
X0 X1 X0 X1

We then calculate their Hausdorff distance as

max { max  min |x — X[z, max min |x — %[>
xe€Dp(X) 2D, (X) teD,(X)¥€DpX)

5 Coverage of a two-dimensional object of diameter 2 by 3000 points results in a mesh size &~ 2/+/3000 ~
0.03. This is the same order of magnitude as the error we observe.
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Fig. 11 Two-dimensional delay embedded attractors wih 3000 points of the extended Hénon system with
a =1.3,b = 0.3, c = 0.3. Original (upper left) and reconstructed ones based on SINAR with A = 0. For
p > 2, differences are difficult to see, but exist as the Hausdorff distances in Fig. 10 indicate

C Details on Expected Opinion Dynamics
C.1 Derivation of Eq. (4.3)
With m = 3 opinions, Eq. (4.1) reads

(e = ()1 + (021 —o12) ()1 (x)2 + (@31 — @13) () 1(x1)3
(Xrp1)2 = (x)2 + (a2 — a21) ()1 (xp)2 + (@32 — @23) (X)2(X1)3
(X413 = (x)3 + (@13 — a31) (x)1(x)3 + (@23 — @32) (X1)2(x7)3.

Using (x/)3 =1 — (x1)1 — (x7)2, we get

(xr1)1 = ()1 + (o2 —a12) ()1 (x)2 + (@31 — @13) () 1 (1 — (x)1 — (x1)2)
(xXr41)2 = (k)2 + (o2 — 021) ()1 (x)2 + (@32 — @23)(x1)2(1 — ()1 — (X4)2).

Rearranging gives
)1 = (1 + a3 — a13) (X1 + (@13 — a31) ()]
+ (21 — @12 — 31 +@13) (x)1(x0)2

(412 = (1 + az2 — @23) (x)2 + (@23 — @32) (x1)3
+ (@12 — a1 — a3 + @23) (X)) 1(x1)2.
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This is Eq. (4.3).

C.2 Representations of Uncoupled Expected Two-Cluster Dynamics

In this subsection, we discuss the derivation of NAR models for a network which
consists of two equally sized clusters without links between them. Having derived
the expected dynamics for a complete network in Eq.(4.1), we assume for now that
the expected dynamics are identical with the true dynamics in order to investigate the
macrodynamics if the agents behave perfectly as expected. We then get Markovian
deterministic dynamics that describe the evolution of opinion percentages in each
cluster. Their means are the opinion percentages in the whole network. The derivation
of an NAR model for this property is analytically challenging but numerical results
suggest certain structures of the macrodynamics dependent on the initial percentages.

Macrodynamics inside the clusters.
Since the clusters represent complete networks of their own, we obtain for the opinion

percentages x,(’) inside each cluster

(xl(ﬂr)l)l = (L + a3 —a13) ()1 + (a3 —0131)()6,(’))% + (1 — o — a3t +a13) )1
(xl(;)l)z = +az — 0!23)()6,('))2 + (a3 — a32)(xz('))% + (a2 — a1 —a3 +0l23)(xz('))1(xl('))2‘

(C.1)

With x, = %(xl(l) +xl(2)) and denotinga = a31 — @13, b = ap] —ap — 31+ 13, ¢ =
a3 — a3, d = ajp — a2 — a3 + a3, this gives

1 b
et = (L +a) (0 + =P —%((xf”)% + 0 + S0+ PPy
2t
(x1)1
1 d
Grg)2 = (L4+0) S (2 + «?) —%((x,‘”)% + ) + G + ).

<
(x1)2

Even making the simplifying assumption that a = —c and b = —d = —2a as is the
case for the coefficients we chose for the examples, we arrive at

1
D1 = (1 +a) 5((xf”n + P —%((x}”)% + 6D — a1 M + P P
—_—
(xe)1
1
g2 =(1—a) 5(<x§”>2 + P +%(<x§”>% + ) +acMn M + PP,
—_—
(x1)2

From this, it seems impossible to find a closed Markovian expression for x;. In order
to understand why memory terms should help to express the evolution of x;, note the

t(i)l and xt(z)l so that these equations

following: given x;_; and x;, we could now find x
would yield those values for xt(l) and xt(z) whose average is x;. This set of pairs of xt(])

and xt(z) would significantly be limited compared to all pairs which have this x; as their
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)

average. From these x(l we could compute subsequent values xt + |- Hence, we would

have gained a more precise estimate of x D and x(z) and thus of x;1. In the stochastic

ABM, the evolution of x; is originally stochastlc if it represents the percentages of
opinions of agents. Hence, one would not search for the x(’)1 that exactly yield x;,
but rather make this argument in terms of probabilities. We would then get different
probabilities for the x; ® dependent on what x;,_ is.

Simplified example: Linear dynamics inside the clusters.

Of course, a closed expression for the evolution of x;4; that depends only on
memory terms of x; and not on the xt(l) is desirable. However, the analytical derivation
of such an expression seems out of reach. Thus, as an example for much simpler
macrodynamics inside each cluster, we illustrate how one can find a closed expression
for the mean of two linear dynamics. For this, let

(1)1 _ Mx(l)
@, = apx®
and
Xt (x(l) xt(z)).
Thus,

XD = A’x(()l), i=1.2
and x;, = E(A a4 ).
Then one can observe that

(A + A2) A1Ao
) [ ) Xt—1

Xi+1 =

since
(A1 +22) Ao
i S 2V
2 2

1 _
= S101 + 220" +2555”) = a2 xg” + 257 xg?)]

1
:E[(x’“x“)+x’+1x(2>)+xm'2x§)2)+A2A’ x§ = a2t D = ayahx P

1 (Am () 4 i1,y ( D 4 x@) = x40,
Numerical results with symmetric initial percentages.

For the macrodynamics (C.1) of opinion percentages in a two-cluster network, we
have not derived such a closed expression analytically. However, we can see numer-
ically that almost exact models can be derived for a memory depth of p = 2 if we
impose symmetric starting conditions, i.e., initial percentages that fulfill

(o)1= (g 02 =1 =202, (g1 = (g D2 = 1= 20xg7)a.
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Fig. 12 Original trajectories for initial percentages in (C.2) and predicted trajectories with the NAR model
(C.3)

To illustrate this, we create trajectories of length 7 = 900 of the deterministic
dynamics (C.1) with initial percentages

aMi=08, &Ma=01, =01, Pn=08 (2

and @ = 0.135 which is also the case in the examples in Sect. 4.

From the first 500 time steps of the resulting x; = %(x,( Rt xt(z)), we estimate the

NAR model (with A = 0 in SINAR)

(D1 = 12101 — 0.65(x1)2 + 0.27(x)T + 0.54(x1) 1 (x,)2
—0.26(x;-1)1 4+ 0.71(x—1)2 — 0.17(x;_1) — 0.10(x;_1)3
—0.54(x—1)1(xr—1)2

(xr41)2 = —0.82(x)1 — 1.31(x,)2 — 0.27(x,)3 — 0.54(x,)1 (x1)2
+0.68(x,—1)1 — 0.16(x;—1)2 — 0.30(x;—1)7 — 0.03(x;—1)3
+0.54(x )1 (xr—1)2.

(C.3)

With this model, we reconstruct the remaining 400 time steps in the data by com-
puting a trajectory of length 400 with starting values given by x499 and x5¢p9 (Fig.
12). The relative Euclidean error between both trajectories amounts to 2.4 - 10~ For
the one-step prediction, i.e., mapping every two values x;_; and x; to x;41 with the
above model, the error is 1.5 - 10~!4. For larger memory depths, there is no improve-
ment in prediction accuracy. This suggests that for these specific initial conditions the
macrodynamics can be reproduced with memory depth p = 2.

Numerical results with non-symmetric initial percentages.
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12 Predicted trajectories - Original trajectories
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Fig. 13 Original trajectories for initial percentages in (C.4) and predicted trajectories with the NAR model
(C2)

For other initial percentages, we get quite different coefficients that significantly
decrease the influence of the second-order terms (xt)%, (xt)g and (x;)1(xs)2. Let

M1 =07, &"a=02, =01, Pn=0s (C.4)
Then for p = 2, in the same manner (A = 0), we obtain the model

(g1 = 2.09(x))1 — 0.01(x1)2 — 0.09(x,)] + 0.01(x1)5 — 0.15(x)1(x;)2
— 1.09(x;—1)1 + 0.01(xs—1)2 + 0.09(x,_1)% —0.02(x;-1)2
+0.15(x—1)1(xr—1)2

(xr41)2 = —0.04(x;)1 — 1.90(x1)2 — 0.01(x,)7 — 0.08(x)3 + 0.15(x,)1(x;)2
+0.04(x;—1)1 — 0.90(x;—1)2 — 0.08(x;,—1)3 — 0.16(x,—1)1 (x1—1)2.

The original trajectories and the trajectories obtained from this model are depicted in
Fig.13.

The one-step prediction error improves for memory depths larger than p = 2
(Fig. 14). Since with NAR models obtained from the trajectories for these initial per-
centages, the predicted trajectories diverge, the full prediction error is not shown.

In summary, for a network that consists of two clusters which are uncoupled but
fully connected internally, the expected macrodynamics are given by the mean of
the expected intra-cluster dynamics. Assuming the dynamics to have no variance and
hence to be deterministic, given in Eq.(C.1), with symmetric initial percentages, a
memory depth of 2 is enough for us to generate an almost exact NAR model for the
macrodynamics. However, for non-symmetric initial percentages, the ensuing best-
fitting NAR models with the basis functions we use are not accurate in the long term.
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One-step prediction error
T T

Realtive Euclidean error

Cl

p

Fig. 14 One-step prediction error for the NAR models obtained from trajectories of x; with initial percent-

ages of the x,(i) as given in (C.4)

This seems to be in part due to the fact that for non-symmetric initial percentages,
the trajectories show more complex behaviour which no longer consists of periodic
oscillations, but is rather more irregular. This could cause the best-fitting NAR models
to then be dominated by linear terms. Results about to which degree one can analyti-
cally derive NAR models for both symmetric and non-symmetric initial percentages
require further research.
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