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Abstract

This thesis studies the large scale behaviour of biological processes in a random en-
vironment. We start by considering a system of branching random walks in which
the branching rates are determined by a random spatial catalyst. In an appropriate
setting we show that this process converges to a superBrownian motion in a space
white noise potential. We study the asymptotic properties of this superprocess and
prove that it survives with positive probability. We then consider scaling limits of a
spatial A-Fleming—Viot model, relating it both to the process we just introduced and
to a stochastic Fisher-KPP equation. Finally, we study the longtime behaviour of the
Kardar-Parisi-Zhang equation on finite volume, proving asymptotic synchroniza-
tion and a one force, one solution principle. Our analyses rely on techniques from
singular stochastic partial differential equations for the parabolic Anderson model
and the KPZ equation, and on the theory of superprocesses.
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Introduction

In this thesis we study stochastic processes that describe the evolution in space and time
of idealized chemical or biological systems. These processes, much like the Gaussian dis-
tribution in the Central Limit Theorem, capture the mesoscopic behaviour of microscopic
particle systems. Often the small scale probabilistic features of these particle systems are
irrelevant and only their overall structure is important. This phenomenon, which mo-
tivates the importance of the Gaussian distribution and of Brownian motion, is called
universality and will be a leitmotiv throughout our work.

A notable process that arises in such a way is the superBrownian motion, introduced
by Dawson and Watanabe [Daw?75|, [Wat68]. It describes the evolution of the density of a
large number of particles that, independently of each other, perform a random walk and
occasionally give birth to new particles, or die. It is a measure-valued process that solves,
in an appropriate sense, the stochastic partial differential equation (SPDE)

(0= A)plt,x) = (£, x)E(1,x),  p(0,x) = po(x),  te(0,00), xeRY, (1)
where & is space-time white noise, a Gaussian field with covariance
E[£(t,%)E(s,9)] = 6(t —5,x— ),

the latter being the Dirac 6 function.

The main theme of this thesis is to take into account the additional effect of a random
spatial environment in the branching mechanism that leads to the superBrownian mo-
tion (SBM). At a microscopic level, we imagine particles performing a random walk on
Z%. In every point x on the lattice we fix a potential &(x) such that

{€(x)}yeze is ani.i.d. sequence of random variables, &(x)~ D,

for a given random variable ® normalized via E® = 0,[EP? = 1. A particle in position
X(t) at time t > 0 gives birth to a new particle at rate £(X(#)), or dies at rate &(X(t))_.
After branching, the old and the new particle follow the same rule independently of one
another. This process is called a branching random walk in a random environment (BR-
WRE). In the first part of the thesis we determine scales at which the density of particles
associated to these dynamics is well approximated by a process that does not depend,
other than for one parameter, on the particular distribution of ®. We then study the
relationship between this process and the SBM.

In determining the large scale behaviour of this particle system we see two oppos-
ing forces. On the one hand there is an averaging effect over space, since the random
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variables are centered, normalized and independent. On the other hand, the random-
ness determines the existence of arbitrary high peaks of the potential, where particles
can reproduce at an accordingly high rate. In fact, this model was particularly stud-
ied in relation to intermittency and localization [ZMRS87| I(GM90, [GM98]. For example,
some works [ABMYO00, [GKS13]] show that for long times the moments of the BRWRE
are far from Gaussian and the strength of intermittency depends on the moment gener-
ating function t > [Ee®. Such results also tell us that if we consider only the longtime
behaviour of the BRWRE, its properties will still strongly depend on the particular distri-
bution of the potential. Instead, we show that in a diffusive regime, that is on large scales
both in space and time and with a small potential, the system is well approximated by a
process that does not depend on the particular distribution of £. A similar approach was
taken by Mytnik [Myt96], under the assumption that the environment is white also in
time. If we tune the potential so that we are in the regime of the Central Limit Theorem,
we prove that the empirical measure associated to the particle system converges to the
solution of the SPDE

(91 = A)pu(t, x) = S (XDt x) + A [2vp(t, 0)E (%), p(0,%) = po(x), t€(0,00), x€R?,  (2)

where v = E®D,, & is now space white noise on R? and £ is a space-time white noise
independent of £. The problem we are confronted with in studying this convergence
is that in dimensions d > 1 the SBM is very irregular, and one can make sense of the
related SPDE only via its martingale problem. At the same time, if we average out the
randomness of the fluctuations we are left with the parabolic Anderson model (PAM)

(d; — Nw(t, x) = E(x)w(t, x), w(0,x) = wy(x), t€(0,00), x€ R%. (3)

This equation admits a known solution only in dimensions d < 3 and requires theories
from singular stochastic PDEs [Hail4, [GIP15] to be solved if d = 2,3 (we restrict to d =
1,2 in this work). In Chapter [l we show how to combine these approaches. We also try
to understand whether some of the interesting longtime properties are conserved in this
passage to the limit. While we do not address the question of intermittency, we prove
that the process is locally persistent — and indeed the local mass may explode more than
exponentially fast. This is in stark contrast with the classical SBM and is a consequence
of the particular spectral properties of the Anderson Hamiltonian.

A different approach to this problem is to consider a population consisting of two
types, say a and A that are competing against each other. Here the random environment
takes the role of a selection coefficient that favors one of the two types according to its
sign. If the selection coefficient is sign changing these kind of models attempt to explain
the coexistence of the two types in different regions of space. Already in early works
by Wright [Wri43]], spatial structure and heterogeneous selection play a key role in un-
derstanding genetic diversity and give rise to a mechanism called isolation by distance.
This is supported by empirical studies on plants [PCFF03], bacteria [RT98] and animals
[KP97] (see also [TBG™04, Hed06, SGK14]).

The starting point for our analysis is the class of spatial A—Fleming—Viot (SLFV)
models, introduced by Barton, Etheridge and Veber [Eth08, BEV10]. In these models,
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the population is distributed over continuous space, whereas the reproductive events in-
volve macroscopic regions of space — say balls of a certain radius — and are driven by a
space-time Poisson point process. Since the SLFV combines features from discrete and
continuous settings, we refer to it as a semidiscrete model.

We study two different scenarios. In the first one, we assume that type a is rare
compared to A. At the same time, we consider the selection coefficient s, to scale to a
spatial white noise & on the torus T¢ and perform a diffusive scaling in space and time.
Just as a small sub-population in the Wright-Fisher model is described by a branching
process, we obtain that in the limit, the density of particles of type a is described by the
superBrownian motion in a random spatial environment of Equation (2). Similar scaling
results were obtained by Chetwynd-Diggle and Etheridge [CDE18]] without selection (see
also [CDP00] for an analogous scaling regarding the voter model) and recently extended
in [[CP20]] to certain critical values of the scaling parameters. For an SLFV with a selection
coefficient that is white in time and correlated in space the scaling limit was obtained by
[CK19] using a lookdown representation. The main difficulty in proving our convergence
result is to treat the vanishing nonlinear terms that derive from the interaction between
the two types of particles. To simplify this analysis we restrict to the compact domain
T? instead of the entire space. For our proof, we need to adapt the tools for singular
stochastic PDEs to incorporate semidiscrete approximations. In this we rely on suitable
two-scale regularity estimates.

In the second scenario, the selection coefficient s, approximates a smooth random
function &, and we do not take the sparsity assumption. In this case, under diffusive
scaling we obtain convergence of the relative particle density to a solution of the (in
d =1 stochastic) Fisher-KPP equation

(at - VOA),M(trx) = E(x);/t(l - y)(t,x) + \”’l(l —‘l/l)(t,x)é(t, x)l{dzl}l te (0,00), Xe€ Td (4)
#(0,x) = po(x), x€ T

for some v > 0. As before & is a space-time white noise independent of &. The treatment
of this second regime is apparently much simpler, as the solution is bounded between 0
and 1. The only difficulty is to prove convergence in a topology, in which one can pass the
limit inside the nonlinearity. Unlike previous works [EVY20, BEK18] we can make use of
the regularity estimates we mentioned and provide a concise argument for the tightness
of the approximating sequence in a Sobolev space of positive regularity. In this setting
we can study the longtime behavior of the equation.

The last problem considered in this thesis pertains to a different class of models. We
will study the longtime behavior of SPDEs of the form

(9—A)n(t,x) = VA2 (£ x) +5(tx),  h(0,x)=ho(x),  t€(0,00), xeTd,  (5)

where # is some random noise. The most notable example is to be found in dimen-
sion d = 1 with 1 being space-time white noise. In this case we obtain the Kardar—
Parisi-Zhang (KPZ) Equation [KPZ86]]. The latter is the scaling limit of many micro-
scopic growth models under weak asymmetry or intermediate disorder: see, inter alia,
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[BG97, HQ18| [GP16|, [HS17]. Yet the KPZ equation is itself not scale invariant. It is
conjectured to connect — by considering the solution on appropriately large scales — the
microscopic models to a less understood object, called the KPZ fixed point: see [QS15]
for an overview. These conjectures motivate the interest behind the longtime behavior of
equations of type (5). Another motivation comes Burgers-like equations. These are toy
models in fluid dynamics, and are formally linked to KPZ via v = Vh:

(3, — A(t,x) = VIv[>(t,x) + Vi(t,x),  v(0,x) =vo(x), te(0,00), xeT? (6)

Wellposedness for the KPZ equation was a milestone obtained in works by Hairer [Hail3)}
Hail4] and Gubinelli, Imkeller and Perkowski [GIP15}(GP17]] that contributed to the de-
velopment of the theory of singular SPDEs. Preceding these results there was no clear
understanding of the quadratic nonlinearity in (5), yet the equation could be studied
through the Cole-Hopf transform, by imposing that u = exp(h) solves the linear stochas-
tic heat equation (SHE) with multiplicative noise, a step that can be made rigorous for
smooth 7 but requires particular care and the introduction of renormalisation constants
if 11 is space-time white noise:

(dy=A)u(t,x) = n(t, x)u(t,x), u(0,x) = ug(x), t€(0,00), x€ T, (7)

In addition to proving wellposedness for the KPZ equation, Hairer introduced the no-
tion of local subcriticality [Hail4], which provides a formal condition on # under which
Equations (5) and (7)) are well posed. Recent works show that this condition is indeed
sufficient [BHZ19, BCCH21,[CHI16]. Therefore it makes sense to investigate the longtime
behaviour of KPZ-like equations of type (j5) for arbitrary noise #, under the assumption
that a solution map to the equation is given and satisfies some natural requirements.

For the KPZ Equation, unique ergodicity “modulo constants” — since the equation
is translation invariant — was established by Hairer and Mattingly [HM18b] as a conse-
quence of a strong Feller property that holds for a wide class of SPDEs. In addition, the
invariant measure is known to be the Brownian bridge [FQ15] and in [GP18] the authors
prove a spectral gap for Burgers equation, implying exponential convergence to the in-
variant measure, although restricting to initial conditions that are “near-stationary”.
On the other hand, Sinai [Sin91]] considered a noise of the form #(t,x) = V(x)d,p(t), for
smooth V € C®(T) and a Brownian motion . The article shows that there exists a ran-
dom function v(t,x) defined for all t € R such that almost surely, independently of the
initial conditions vy within a certain (random) class:

tli_)rgov(t, x)-v(t,x) =0,

for all x € T? and with v solving Equation (6). This property is referred to as synchroniza-
tion. In addition, if one starts Burgers equation at time —n with v™"(—n, x) = vy(x):

lim v™(t,x) =¥(t,x),  Yte(—o00,00), x€T

n—-oo

The last property is called a one force, one solution principle (1F1S) and it implies that v is
the unique (ergodic) solution to Equation (6)) on R. Results of this kind have subsequently
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been extended, most notably to the inviscid case [WKMSO00] or to infinite volume, for
example in [BCK14] and recently in [DGR19], all for specific noises.

In Chapter [V]we will prove synchronization and 1F1S on the torus for a large class
of ergodic noises, including space-time white noise, providing deterministic exponential
convergence rates in appropriate Holder spaces. The proof relies on the theory of random
dynamical systems and on a contraction principle, due to Birkhoff [Bir57], in the cone of
positive functions endowed with a particular metric.

In the rest of the introduction we will give a more detailed review of our results.

Chapter ]|

This chapter is based on the joint work [PR19b] with Nicolas Perkowski.

Scaling limits of branching particle systems have been an active field of research since
the early results by Dawson et al. and gave rise to the study of superprocesses, most
prominently the so-called superBrownian motion (see [Eth00, DMS93}, [LG99] for excel-
lent introductions). We follow this original setting and study the behavior of the BRWRE
introduced above under diffusive scaling: spatial increments will be of order Ax ~ 1/n,
while temporal increments will be of order At ~ 1/n?. The particular nature of our prob-
lem requires us to couple the diffusive scaling with the scaling of the environment: this
is done via an “averaging parameter” p > d/2, while the noise is assumed to scale to space
white noise, namely we fix a sequence of random potentials such that &"(x) =~ n?/2.

The diffusive scaling of spatial branching processes in a random environment has
already been studied, for example by Mytnik [Myt96]. As opposed to the current setting,
the environment in Mytnik’s work is white also in time. This has the advantage that the
model is amenable to probabilistic martingale arguments, which are not available in the
static noise case that we investigate here. Therefore, we replace some of the probabilistic
tools with arguments of a more analytic flavor. Nonetheless, at a purely formal level our
limiting process is very similar to the one obtained by Mytnik. Moreover, our approach to
uniqueness is reminiscent of the conditional duality appearing in later works by Crisan
[Cri04], Mytnik and Xiong [MX07]. Notwithstanding these resemblances, we shall see
that some statistical properties of the two processes differ substantially.

At the heart of our study of the BRWRE lies the following observation. If u(t,x) in-
dicates the numbers of particles in position x at time ¢, then the conditional expectation
given the realization of the random environment, w(t,x) = [E[u(t,x)|£], solves a discrete
version of the parabolic Anderson model (3). The PAM has been studied both in the
discrete and in the continuous setting (see [Kon16|] for an overview). In the latter case
the SPDE is not solvable via It integration theory. In particular, in dimension d = 2,3
the study of the continuous PAM requires special analytical and stochastic techniques
in the spirit of rough paths [Lyo98], such as the theory of regularity structures [Hail4]
or of paracontrolled distributions [GIP15]. In dimension d = 1 classical analytical tech-
niques are sufficient. In dimension 4 > 4 no solution is expected to exist, because the
equation is no longer locally subcritical in the sense of Hairer [Hail4]. The dependence
of the subcriticality condition on the dimension is explained by the fact that white noise



6 CONTENTS

loses regularity as the dimension increases.

To apply the named theories in singular SPDE in dimension d = 2,3, we need to
tame certain functionals of the white noise via a technique called renormalisation, with
which we remove diverging singularities. In this work, we restrict to dimensions d = 1,2
as this simplifies several calculations. At the level of the 2-dimensional BRWRE, the
renormalisation has the effect of slightly tilting the centered potential by considering
instead an effective potential:

& (x)=&MNx)=cy, ¢y =log(n).

So if we take the average over the environment, the system is slightly out of criticality, in
the biological sense, namely births are less likely than deaths. This asymmetry is counter-
intuitive at first. Yet the random environment has a strongly benign effect on the process,
since it generates extremely favorable regions. These favorable regions are not seen upon
averaging, and they have to be compensated for by subtracting the renormalisation

The special character of the noise and the analytic tools just highlighted will allow us,
in a nutshell, to fix one realization of the environment — outside a null set — and derive
the following scaling limits. For “averaging parameter” p > d/2 a law of large numbers
holds: the process converges to the continuous PAM. Instead, for p = d/2 one captures
fluctuations from the branching mechanism. The limiting process can be characterized
via duality or a martingale problem and we call it rough superBrownian motion (rSBM). In
dimension d = 1, following analogous results for SBM [KS88), [Rei89], the rSBM admits a
density which in turn solves the SPDE (). The solution is weak both in the probabilistic
and in the analytic sense. This means that the product \/;1(t—,x)(f(t,x) is interpreted via a
stochastic integral in the sense of Walsh [Wal86| and the space-time white noise is con-
structed starting from the solution p. At the same time, the product &(x)u(t,x) is defined
only upon testing with functions in the random domain of the Anderson Hamiltonian
# = A+¢&, a random operator that was introduced by Fukushima-Nakao [EN77] in d =1
and by Allez-Chouk [ACI5] in d = 2, see also [Lab19] for d = 3. The crux of our analysis
is to combine the martingale and the pathwise approach via a mild formulation of the
martingale problem based on the Anderson Hamiltonian. A similar point of view was
recently taken by Corwin-Tsai [[CT20]], and to a certain extent also in [GUZ20].

Coming back to the rSBM, we conclude this work with a proof of persistence of the
process in dimension d = 1, 2. More precisely we even show that with positive probability
we have u(t,K) — oo (in fact the mass may explode faster than exponentially) for all
compact sets K ¢ RY with non-empty interior. This is opposed to what happens for the
classical SBM, where persistence holds only in dimension d > 3, whereas in dimensions
d = 1,2 the process dies out: see [Eth00, Section 2.7] and the references therein. Even
more striking is the difference between our process and the SBM in random, white in
time, environment: under the assumption of a heavy-tailed spatial correlation function
Mytnik and Xiong [MXO07] prove extinction in finite time in any dimension. Note also
that in [Eth00, MXO07] the process is started in the Lebesgue measure, whereas here we
prove persistence if the initial value is a Dirac mass.



CONTENTS 7

Chapter

This chapter is based on the joint work [KR20] with Aleksander Klimek.

There are many approaches one can take to model a spatially structured population
consisting of two competing types. For example, in the stepping stone models [Kim53]]
the population evolves in separated islands distributed on a lattice and interacts only
with neighboring islands. Other approaches are based around the Wright-Malécot for-
mula [BDE02, Mal48|, Wri43|), which was introduced to quantify the phenomenon of iso-
lation by distance. These models suffer in part from inconsistencies in their assumptions:
see [BEV13] for an overview of difficulties associated with modeling spatially distributed
populations. Moreover, in dimension 4 = 2, Equation (4) has no known analogous that
incorporates “genetic drift” (i.e. the space-time white noise term), essentially because
of the irregularity of the noise in higher dimensions. The spatial Lambda-Fleming-Viot
(SLFV) class of models, introduced in [Eth08]] and formally constructed in [BEV10], has
been proposed specifically to overcome these difficulties, and is at the basis of our work.
As we already mentioned, in the SLFV the population is distributed over continuous
space and at random times particles of type a or A reproduce, in an amount propor-
tional to an intensity u in balls B, of radius 1/n. In fact, the radii of the balls can be
chosen themselves at random, leading to long-range diffusion, so that in scaling limits
the Laplacian is replaced by some fractional Laplace operator (see e.g. [EVY20]]). We are
interested in the limit # — oo, by scaling time diffusively and the intensity parameter u
at the correct level to see fluctuations.

In the neutral SLFV there is no bias in the relative fitness of the populations at hand.
Our work considers instead the case in which there is a bias, which is modeled by a
sign changing selection coefficient s,(x),x € T%, so that a is favored in the location x if
sy(x) > 0 and A is favored in the opposite case. Instead of choosing a specific selection
coefficient, we sample it from a probability distribution IP. We will consider the propor-
tion X, (w,t,x), evaluated at time ¢t > 0 and position x € T4, of particles of type a with
respect to the total population, given the realization s, (w) of the selection coefficient. In
all our scaling limits the effect of selection is weak, that is of lower order, with respect to
neutral events.

In the first regime under study, we assume that type a is rare compared to A. The
rarity is described by considering an initial condition X,,(w, 0,x) of order n¢ for certain
values of p > 0. In this scenario a represents a mutation which tries to establish itself
among the wild type A. We prove that the scaling limit of Y, = n?X,, is given by the
superBrownian motion in a random spatial environment (2). By considering the lin-
earization near zero of the Fisher-KPP Equation instead of the SLFV in a sparse regime,
the reader can imagine that in performing this limit we have to treat vanishing non-
linear terms of the form n?Y?2. These terms are vanishing, yet difficult to control. To
treat them, previous articles make use duality, under the assumption that the selection
coefficient has a fixed sign (see e.g. [EVY20]]). In our setting, although we present a dual
for the SLFV with sign-changing selection, we do not understand yet its behaviour under
diffusive scaling and even less so if the selection becomes rough. For this reason we use
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a purely analytic argument to bound the square terms, which on the downside leads to
some unnatural assumptions on the parameter p. Eventually, the scaling limit follows by
an application of the Krein-Rutman theorem. At this point it is particularly important
that the space is compact, while all other results in this chapter seem to extend from T%
to R?. The Krein-Rutman theorem is applied to a sequence of operators approximating
the Anderson Hamiltonian:

I =y + E" = cylig=),

where @7,(¢)(x) = n? J(B,,(x) J(B,l(y) @(z) — p(x)dzdy is a semidiscrete version of the Laplace
operator. Understanding completely this limit is postponed to Chapter but in the
study of singular SPDEs the smoothing effect of the Laplacian is essential. Hence, as a
first step towards the convergence of the operators, in Chapter [[II| we establish the reg-
ularization properties of the approximate Laplacian 7,, commonly known as Schauder
estimates. Through a two-scale argument, we separate macroscopic scales in frequency
space, at which .7, regularizes analogously to the Laplacian, and microscopic scales,
which are small but see no regularization.

The regularizing properties we show turn out to be useful in the second scenario,
where s,, is chosen to scale to a smooth random function & and they allow us to provide a
streamlined proof of the scaling limit. In this second case, the intensity of the fluctuations
is governed by a parameter # > 0 that is linked to the intensity of impacts in the SLFV.
There exists a critical value 7.(d) > 0 such that the noise is of order n=0171) In dimension
d =1 we consider 1 = 1., while in dimension d = 2 we choose 7 > #.. In some models,
again by taking into account dual processes, cf. [Eth08,[FP17], one can prove thatind = 2
the deterministic limit holds also at the critical value # = #.. This is linked to the fact that
the stochastic Fisher-KPP equation has no analogous in dimension 4 > 2. In our analysis
the convergence at the critical value remains open.

Eventually, we briefly study the longtime behavior of the limiting processes. Regard-
ing the Fisher-KPP equation (4), many works study the longtime properties if selection
has a definite sign, especially in relation to the existence and speed of traveling waves (see
for example [MS95])). If the selection is sign changing the first question is whether there
exists a unique nontrivial limit. In this case, if the noise is sufficiently strong, uniqueness
follows as an application of a result by Henry [Hen81] (see also [BO86] in the case of
definite sign but Dirichlet boundary conditions), which relies on a bifurcation argument.
This argument depends on the particular form of the nonlinearity p(1 — p), which is con-
cave and of first order in 0 and 1. Outside this setting it may happen that the limit is not
unique (see for example [Sov18] for an overview and many references).

Chapter
This chapter is based on the joint work [KR20] with Aleksander Klimek and on[Ros20].

It is dedicated to two technical points, both instances of discretizations of the Ander-
son model. First, we consider the semidiscrete approximations

Ay =y +&" _Cnl{d:Z}
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of the Anderson Hamiltonian we introduced previously. Then we study lattice discretiza-
tions of PAM (3) on a box with Dirichlet boundary conditions. The first analysis is essen-
tial to derive the scaling limits in Chapter The second analysis is used to deduce the
longtime behaviour of the superBrownian motion in a random spatial environment (2).
In analogy to the classical case of SDEs, where one has to take care that discretizations
converge to the correct notion of stochastic integral, discretizations of singular SPDEs
require some attention. In the frameworks of regularity structures or paracontrolled dis-
tributions the problem is usually reduced to a two-step analysis. First one has to show
that certain, possibly renormalised, stochastic quantities converge (from the discrete to
the continuous setting). Then one needs an appropriately robust analytic machinery to
see that discrete solutions depend continuously on these stochastic quantities. Previous
works (see [MW17,[HM18a|,[EH19,/CGP17, MP19] for a partial literature) do not consider
the semidiscrete setting, so in this case our main point is to extend the available analytic
tools for paracontrolled distributions in order to incorporate the two-scale regularity es-
timates we proved in Chapter Eventually we prove that the semidiscrete Anderson
Hamiltonian converges in the resolvent sense to its continuous analogue.

As for the second setting, we fix an L € N and consider PAM on a box:

(dr = A)w(t, x) = E(x)w(t, x), w(0,x) = wo(x), t€(0,00), x€ (O,L)d

w(t,x)=0, te(0,00), x€ 8[O,L]d, ®)

where ¢ is space white noise. Singular SPDEs with Dirichlet boundary conditions have
been studied using both regularity structures [GHI9] and paracontrolled distributions
[Cv19]. Since we introduce a boundary the most natural renormalisation procedure,
which consists in taking Wick products of distributions, amounts to removing a space-
dependent function and not just a constant. Intuitively, this becomes clear if we consider
the solution X to the elliptic problem (—A + 1)X = £ with Dirichlet boundary conditions.
The process X is Gaussian, but its variance Var(X(x)), x € [0,L]%, is spatially inhomoge-
neous. Therefore we will need to pay particular attention to the renormalisation proce-
dure and make sure that it is sufficient to remove only a constant and that moreover this
constant does not depend on the size of the box. The last points are crucial for the appli-
cation in Chapter[[l} On the contrary, the analytic theory does not require much attention,
since one can adapt the tools for discrete paracontrolled distributions [MP19,[CGP17] to
the method for Dirichlet boundary conditions introduced in [Cv19].

Chapter|V]

This chapter is based on [Ros19].

We will attempt to understand and extend the results by Sinai [Sin91]] regarding the
synchronization and 1F1S principle for KPZ-like equations of the form (5) via an appli-
cation of the theory of random dynamical systems. The power of our approach lies in the
possibility of treating any noise n which satisfies roughly the following two conditions:

i The noise 7 is ergodic.
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ii The stochastic heat equation (7)) is almost surely well-posed: there exists a unique,
global in time solution for every u, € C(T%), the solution map being a linear, com-
pact, strictly positive operator on C(T%).

For example, # can be chosen to be space-time white noise or a noise that is fractional in
time.

In the original work [Sin91]], the solution u to (7)) evaluated at time 7 is represented
by u(n,x) = A"ug(x) for a compact strictly positive operator A”. The proof of the result
makes use in turn of the explicit representation of the operator A” via the Feynman-Kac
formula. Such representation becomes more technical when the noise 7 is not smooth
and requires some understanding of random polymers. Although in principle this path
appears feasible also in the case of space-time white noise (see [[CC18, [DD16] for the
constructions of the random polymers in this setting) it is quite technical. Instead, we
follow a different road.

If 17 were a time-independent noise, the synchronization of the solution v to (6) would
amount to the convergence, upon rescaling, of u to the random eigenfunction of A! as-
sociated to its largest eigenvalue: an instance of the Krein-Rutman Theorem. We will
extend this argument to the non-static case with an application of the theory of random
dynamical systems.

To be precise, we will introduce a particular distance dy, called Hilbert’s projective
distance, on the cone of positive functions, such that for any positive operator A and
strictly positive functions f, g:

dy(Af,Ag) < t(A)du(f,g)

for some constant 7(A) € [0, 1]. The existence of such a contraction constant is a result by
Birkhoff [Bir57] (see [Bus73]] for an overview), and this contraction method was already
deployed by [AGD94] and later refined by [Hen97] in the study of random matrices. In
fact, with an application of the ergodic theorem, these results give rise to an ergodic
version of the Krein-Rutman theorem.

In this way we obtain synchronization and 1F1S with a deterministic exponential
speed in the topology determined by the distance dy. This topology is naturally linked
to convergence in the space of continuous functions for solutions to the KPZ equation
“modulo constants”. With this we mean that we identify two functions f, i’ : [0, 00)xT% —
R if there exists a ¢: [0,00) — R such that h(t,x) — h'(t,x) = c(t),Vt > 0,x € T?. In particu-
lar, we obtain synchronization and 1F1S for the gradient v = Vh, which satisfies Burg-
ers equation. In an example with smooth noise we show that the constant that has to
be subtracted for synchronization at the level of the KPZ equation can be chosen time-
independent, a fact that we expect to hold in general. Of course, the constant will always
depend on the initial conditions since this is the case also in the time-independent set-
ting, but the explicit dependence is not given.

So far we showed synchronization for KPZ in the space of continuous functions. This
is a very weak topology: in fact we would fall short of the result by Sinai, which proves
synchronization pointwise for Burgers equation. Therefore we would like to lift the con-
vergence to appropriate Holder spaces, depending on the regularity of the driving noise.
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We prove that this is possible and obtain the same deterministic exponential speed of
convergence. On the downside, our arguments require some additional moment bounds,
such as

[Esup |h(t,x)| < oo,

xeT

for t > 0. In concrete examples we show how to obtain these bounds from a quantita-
tive version of a strong maximum principle for (7). The case of space-time white noise
requires particular attention. While a classical result by Mueller [Mue91]] guarantees al-
most sure strict positivity for the solution to the SHE (7), this is not sufficient to bound
the required expectation. Instead, the proof we present makes use of the pathwise so-
lution theory to the equation through a bound obtained in [PR19a]| (also the variational
principle developed in [GP17, Section 7] appears sufficient). Although the study of con-
vergence in Holder spaces seems to be new, for different reasons moment bounds of the
likes of the one above appeared already in the finite-dimensional case [AGD94].

As we already mentioned, the examples we treat are the original KPZ equation, namely
the case of 7 being space-time white noise in d = 1, and the case of 7(t,x) = V(x)dp! for
B a fractional Brownian motion of Hurst parameter H > % and V € C®(T). In the latter
case the solution is not Markovian and ergodic results are rare, see for example [MP08§]
for ergodicity of linear SPDEs with additive fractional noise.

Finally, there are several instances of applications of the theory of random dynam-
ical systems to stochastic PDEs. Particularly related to our work is the study of order-
preserving systems which admit some random attractor [AC98,[FGS17,BS19]]. The spirit
of these results is similar to ours. Yet, although the linearity of Equation (7)) on the one
hand guarantees order preservation, on the other hand it does not allow the existence
of a unique random attractor. In this sense, our essentially linear case appears to be a
degenerate example of the synchronization addressed in the works above.
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Notations & function spaces

The following definitions will hold throughout the thesis.

N={1,2,..},

Ny =NU{0},

Z={.,-2,-1,0,1,2,...1,

R is the set of real numbers,

R, =[0,00),

1=v-1,

C is the set of complex numbers,

x|, for x € C%,d € N, denotes the Euclidean norm.

T is the d-dimensional torus: T4 = R? /Zd , for a dimension d €N,

C(X;Y), given two metric spaces X, Y, is the space for continuous functions from X
to Y. If Y = R we write C(X),

Cy(X) is the space of continuous and bounded real-valued functions on a metric
space X,

A(X) is the Borel o-algebra of a topological space X,

supp(¢q), for a continuous function ¢: X — R on a topological space X, is the closed
support:

supp(¢) = {x eX | Q(x) = 0},

For a sufficiently smooth function ¢ on an open set O CR% and k € Ng denote with
|k| = ki +---k; and write the derivative:
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For any set 2" and any two functions f,g: 2 — R we write:
fsg

if there exists a constant C > 0 such that f(x) < Cg(x), Vx € 2. Similarly
f=3

if f<gand f > g.

I.0.1 Function spaces

Below, let O denote an arbitrary open subset O C R? or O C T¢.

C>(0) is the space of smooth functions, that is of functions ¢: O — R such that the
partial derivatives 0% exist for any k € N¢,

C(0), C(O) are respectively the spaces of smooth and continuous functions with
compact support in O,

7 (0) is the space of functions ¢ € C*(O) such that for any k € N%, 2 eN:

l@lluk.o :=sup(1 +[x))*|dF p(x)| < oo,

x€O

with the topology induced by the seminorms || ||, x.o-
#’(0) is the topological dual of .#(O): the space of Schwartz distributions on O,

LP(0), for p € [1, 0], is the space of measurable functions ¢: O — R (up to modifi-
cation on sets of zero Lebesgue measure) with the norm:

Iollor = | lots |de) ,

A (0) is the space of positive finite measures on O, with the topology of weak
convergence. That is hm y = pin . (0) if for all f bounded and continuous:

}L‘E}Jf x)dp(x ff x)dp(x)

(,-)o indicates at the same time the dual pairing between . (0O) and .#”(O), the dual
pairing between LP(O) and LP'(O) (with p’ = (1 —1/p)~!) and the pairing between
A (0) and Cy(0), that is the integral of a continuous function against a measure, as

in the point above. Whenever it is clear from the context, we will omit the subscript
o,

@+, for p € .77(0), P € #(0), is the convolution:
x> @*p(x) ={@(), p(x =)o,

ID([0,0);Y), for a given metric space Y, is the space of cadlag functions ¢: [0, 00) —
E endowed with the Skorohod topology. We may also consider the time interval
[0, T] instead of [0, c0), for some T > 0,
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1.0.2 Scaling

We are interested in discrete approximations of continuous systems. To describe the
scaling we will use a parameter n € N, and we will study systems in which particles
evolve in space on distances of order Ax = n~!. Hence define:

e zd=17d

T4 = uT4 =R? /74,

A2 ={p: 7~ R| sup(1 + Il < oo, Va>0),

xeZ4

S(Z28) = {(p: Z¢ >R | sup(1l +|x])*|@(x)| < oo, for some a < 0},

xeZ4

()ga (28 x.#(Z%) — R is the pairing:

@)= ) gl

erﬁ

Z(T4) = C=(T%) is defined analogously to .#(T¢) and similarly also the pairing
(-,-)p¢ is an extension to distributions of:

(@ P)ra = fd P(x)p(x)dx,

n

»
”(P”Lp(zg) = (nld Y vezd |(P(x)|p) , for p €[1,00].

With this go on to the first chapter of the thesis.

I.1 Besov spaces & Co

In this section we are going to introduce the function spaces we will use throughout the
thesis. In particular, we will make use of Besov spaces, which we will define via Fourier
transformation. Let us start with the latter.

Fourier Transform

Consider O=T? and V=Z%0or O=R*, V=RYor 0=27%V =T% and ¢ € .7(0), ¢ €
L (V).

¢ Define the Fourier transform on R? and its inverse by:
Fri( k) = j Plx)e 7R d, Vk e RY
Rd

Fra@)(x)= | p(k)e?™ 0 dk, Vx e R4,
Rd
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* Analogously, on the torus:

Fra(p)(k) = J- (P(X)€_2”‘<x’k> dx, Vk e Z4
Td

Fr@)x) = ) k)b, VxeT!.
kezd

¢ And in the discrete case:

1
Frl@)k) = —= ) glx)e ™ H, VkeT?,
" xEZﬁ
Foi)x) = | (k)e™ 0 dk, VxeZzd,
n Td

The previous definitions are extended to any distribution ¢’ € .#’(O) via:
(Fop' p)o=(¢" Foplo, VpeL(0),
and similarly for the inverse Fourier transforms. Eventually we consider
* Y(D): ’(0) — &’ (0) the Fourier multiplier associated to ¢ € .(V), defined by:
YD) = Zo' [9Fop], Ve es(0).
Finally, let us recall a connection between the Fourier transform on T? and the one on
RY.
Lemma I.1.1 (Poisson summation formula). For ¢ € Z(R%) it holds that:

Frto(x) = Z Fadplx+2).

z€Z4

In particular, this implies for @ € .7 (R?) the bound:
1 Zd @Il oy < 17t @l re).

I.1.1 Besov spaces

Again, let O =R%,V =R or O =T% V = Z%. Fix a dyadic partition of the unity

{oj}jez,j>-1-
By this we mean that there exist two radial functions p_;, oy € .(R) with supports in a

ball B = {k e R? | |k| < a1} about 0 and an annulus < = {k € R? | a, < |k| < a3) respectively,
for some ay,a,,a; > 0 such that

supp(p_1), supp(oo) € (~1/2,1/2)".

Then defining p;(k) = 00(277k) if j > 0, a dyadic partition of the unity must satisfy the
following:

) 0j(k)=1,  supp(pj) Nsupp(p;) =0, if|i-jl>2
i>—1
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Here the sum contains only finitely many non-zero terms. The existence of dyadic parti-
tions of the unity is guaranteed for example by [BCD11], Proposition 2.10]. Having fixed
such partition, define for ¢ € .’(0):

* Ajp = 0j(D)g is the j-th Paley block associated to ¢, for j€Z,j > 1.

lpllzz0) = supjs_ 2"‘j||Aj(p||Lp(O) for a e R,p €[1, 0], is the norm of the space:
€5(0) = {¢ € 7" (0) | lpllz(0) < o).

. ©9(0)=%€%(0).

B ,(0), for p,q € [1,00] is similarly defined via the norm:

1

aj l .
) 2 M||A]-(p||LP(O))

j>1

lllss,(0) = (

The following embedding holds true.

Proposition I.1.2 (Besov embedding). Consider O = T¢ or O = R%. Forany 1 <p; < p, < oo

and 1 < q; < g5 < oo the space By  (O) is continuously embedded in Bg;gz(l/pl_l/pZ)(O). In

other words, there exists a constant C > 0 such that:
lepllgg-avrm-riea) o) < Cligllsg, , 0)

In addition, if O = T¢, for a’ < a the embedding BS, . (O) C B

P2d> 5,,q,(O) is compact.

I.1.2 Products of distributions
In general, given two distributions ¢, ¢ € .#’(0), their product
Py

is not well-defined. The Paley block decomposition we introduced singles out a part
of the product that is in general not well-defined — the resonant product, indicated with
©® — and a part that is always well-defined: the paraproduct, indicated with ©. We write
formally (that is without considering whether the infinite sum is converging):

i—1
Sip = ZANP' Py = Zsi—l(PAiED: PP =90p,  POYP:= Z AjpAiy,
j=—1 i>-1 li-jl<1

so that one can decompose a product:

P YP=9p0P+tpOP+pOP.

The following result provides conditions under which the single terms in the product are
well-defined.
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Lemma I.1.3 (Theorems 2.82 and 2.85 [BCD11l). Fix a,p € R and p,q € [1,00] such that
1= %+% <1. For @, € ¥'(0O)
llp © Plige < lleplleellipllze,
I © Ploon < el glvllee, if B <0,

lp © Pligess <ll@ll pllpllag if atp>0.

I.1.3 Besov spaces, weighted and discretized

Many of the structures introduced in this section have been developed in [MP19]. We
refer the reader to the latter work for a more complete description of these spaces.

The function x > e’, for some o € (0,1), does not belong to the space of Schwartz
distributions .#’(R%) because it does not decay polynomially at infinity. Hence it falls
outside the framework of the previous spaces, yet it will play a role in our study. To
overcome this problem, we introduce ultradistributions. Consider

@(x) = |x[°

for some o € (0,1) which is henceforth fixed. Following [MP19} Definition 2.8] consider
the set of admissible weights:

ol@) = {z: R—>R | there exists a A > 0 such that z(x) < z(y)e'®* ¥, Vx,pe R}.

For our purposes it suffices to know that for any a € R,,/ € R, the functions p(a) and e(/)
belong to p(®), where

p@)(x) =1 +x)  e(l)(x)=e K.
Now consider the set of seminorms, for k € Ng, AeR:

[@lloxa = sup e*®]9*(x)| < co.
xeR4

The spaces .7, (R%),.7,(Z%) of (discrete) test functions for ultradistributions are defined
by
SR = {go: R? > R | ll@lloir + 11 Fri@llojr <oo, ¥Ya,A>0,ke Ng} C.7(RY),

Fo(Z9) = {(p: z¢ >R | sup [e*"®g(x)| < 00, VYA > 0}.

erf,

The spaces .} (R%),.}(Z%) are the topological dual spaces of the ones just defined. On
these the Fourier transform is defined just as for classical distributions.
One can define weighted Besov spaces ‘K;‘(Rd;z), for a given z € p(®), via the norm:

lplomez =@ 2@y, Mol ez = sup 218l é;z)-
j2-1
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This definition can be extended to the discrete case, following the construction in [MP19].
Fix n € N and write j, € N for the smallest index j > —1 such that supp(p;) Z n[-1/2, 1/2]%.
By our assumptions on the support of p_;,po we have j, > 1. For j < j, and ¢ € .7,(Z%)
define the Littlewood-Paley blocks

NMo=Z,M(0;7z0)  Ae=Z0(0- ) 0)Fz)

_lsj<jil

For @ € R, p €[1,] and z € p(®) the discrete weighted Besov spaces %ﬁ(lﬁ;z) c .72
is defined via the norm:

||(P||Lp(zg;z) = ||(P'Z||Lp(zg{): ||(P||<gpﬂ(zg;z) = sup 2ja||A?(P||Lp(z;{;z)-

_1S]’Sjll

The discretized and the continuous Besov spaces can be put in relationship to each other
consistently via an extension operator as in [MP19, Lemma 2.24]

E" N (Zh;2) > 6y (RGz),  EMp= ﬂgi[tp(’@(n-)fzg(ﬁ(-)],

where ¢ is a smooth function with compact support in (=1/2,1/2)? (see the quoted
article for the precise requirements). We said that the extension is consistent. By this we
mean that uniformly over n:

||éan(P||‘§p“(Rd;Z) 5 “(P”‘w”p“(lff;Z)

and for a smooth function ¢, &"(¢|z2) — ¢ in the sense of distributions.
In this setting we can decompose the product of two discrete distributions as

P P=¢p0YP+tpOP+PpO ¢,

with:
pop= ) S oAy,  @op= )  AlgAly,
1<i<), li=jl<1
71Si'jsjn

where '@ =) i A;?(p (here we assume i < j,,). For simplicity, we do not include n
in the notation for © and ®. We can prove the discrete analogue of Lemma|[.1.3]

Lemma I.1.4 (Lemma 4.2 [MP19]]). The estimates below hold uniformly over n € N (as well
as for Z% replaced by R?). Consider z,,2, € p(®) and a,p € R, p,q € [1,00] such that % =
Il)+ % < 1. We find that:

19 © Plige 242, 2,) S NPllio 2,z 1 llp 2452,
”(P © lp”gf”ﬁ(zd.zlzﬂ < ”(p”(gf(zd.zl)||11b||<€,;7‘(Zﬂ;22)’ lfﬁ < 0'

ny 1ns

9 © Pl ey S NPl g Wb i) if a+B> 0.
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I.1.4 Time dependent functions

It will be also important to consider the temporal regularity of functions. Throughout the
work T > 0 will always indicate an arbitrary time horizon. The spaces we introduce de-
pend implicitly on the choice of T: we omit writing it explicitly to simplify the notation.
In particular, since we work with the heat equation, we will consider spaces in which the
regularity is parabolically scaled: namely to a spatial regularity of order a corresponds a
temporal regularity of @/2 (here a € (0,2)). We will also introduce a parameter y € [0,1)
which quantifies the blowup at time t = 0 of the regularity of a time-dependent func-
tion. This is used to deal with non-smooth initial conditions. For example, it p € €% (T9),
a € R, and P, is the heat semigroup, we expect that P,¢ is smooth for t > 0, and we can
bound [|P,@llga+2y(ray S 77 ||pllga(Ta)-

In what follows, let X be an arbitrary Banach space and O = T%,R? or Z¢.

* CX is the space of continuous functions ¢: [0, T] — X, with the norm:

llpllex = sup lle(®)llx-

0<t<T

* C%X, for a € (0,1), is the space of a—Holder continuous functions ¢: [0,T] — X,
with the norm

t)— (s
Igllcex = Ipllcx + [pleex = lgllex + sup 1L =P
0<s<t<T |t —s]|

o /X, for y €(0,1), is the space of functions ¢: (0, T] — X with a blow-up of order
yint=0:

lll.arx = sup t7llg(t)llx-
0<t<T

. fpy’a(O), fora €(0,2),7 €[0,1),p € [1, 0], is the space of functions in C([0, T];.¥"(0))
defined via the norm:

el 2«0y = It = £ @(t)llcarzre(0) + I@llarag 0)-

. .Zpy’a(O;z), for @ € (0,2),y € [0,1),p € [1,00],z € p(®) and O = R¥ or O = Z¢ is
defined analogously, via the norm:

@l 20,2 = It = 7 @(E)llcarziriozz) + 1@llarss (052)-

It will be useful to exchange regularity in time with a smaller blow-up at t = 0:

Lemma 1.1.5. The estimates below hold uniformly over n € N (and also for Z% replaced by R?
or T¢). Consider z € p(®@), a €(0,2), y €[0,1) and e € [0,2y]N[0,a). We can bound:

Il e ) S 10l 24 (L1)

Proof. The estimate is proven in [MP19, Lemma 3.11]. In that lemma the case ¢ =2y <«
is not included, but it follows by the same arguments (since [GP17, Lemma A.1] still
applies in that case). O]
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A Random walk in a random environment

II.1 Introduction

In this chapter we consider a branching random walk in a random environment (BR-
WRE). This is a process on the lattice Z¢, for n € N and d = 1,2, and we are interested in
the limit # — co. The evolution of the BRWRE depends on the environment it lives in:
every particle performs a simple random walk and it may give birth to a new particle or
die according to how favorable the environment is.

In Assumption [[I.2.1]we state the probabilistic requirements on the random environ-
ment. These assumptions allow us to fix a null set outside of which certain analytical
conditions are satisfied, see Lemma for details. We then introduce the model, (a
rigorous construction of the random Markov process is postponed to Section of the
Appendix). We also state the main results in Section namely the law of large num-
bers (Theorem [[.2.10), the convergence to the rSBM (Theorem [[1.2.13), the representa-
tion as an SPDE in dimension d = 1 (Theorem and the persistence of the process
(Theorem [[1.2.21). We then proceed to the proofs. In Section [[.1] we introduce the func-
tion spaces we will need throughout this thesis. In Section we study the discrete
and continuous PAM. We recall the results from [MP19] and adapt them to the current
setting.

We prove the convergence in distribution of the BRWRE in Section First, we
show tightness by using a mild martingale problem (see Remark which fits well
with our analytical tools. We then show the duality between the rfSBM and the solution
to the SPDE (II.4) and use the duality to deduce the uniqueness in law of limit points of
the BRWRE.

In Section we derive some properties of the rough super-Brownian motion: we
show that in d =1 it is the weak solution to an SPDE, where the key point is that the ran-
dom measure admits a density w.r.t. the Lebesgue measure, as proven in Lemma [[1.6.1}
We then apply the results of Section [[V.3|to construct the rSBM with Dirichlet boundary
conditions on large boxes. These constructions, along with the eigenvalue asymptotics
for PAM derived in [Cv19}[EN77] allow us to show that the process survives with positive
probability.

21
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II.2 The model & its scaling limits

Before we introduce the BRWRE, let us clarify our assumptions on the environment. A
deterministic environment is a sequence {&"},cn of potentials on the lattice, i.e. functions
&": 24 — R. A random environment is a sequence of probability spaces (QP", ZP", PP
together with a sequence {£"},,c5 of measurable maps &": QP x Z4 — R.

Assumption I1.2.1 (Random Environment). We assume that for every n € N, {£"(x)},cz4 is
a set of i.i.d random variables on a probability space (Q", .#",IP") that satisfy:

n~42&M(x) = @ in distribution, (IL.1)
for a random variable ® with finite moments of every order such that
E[®] =0, E[®?]=1.
Next, let us recall the definition of space and space-time white noise.

Definition I1.2.2 (White noise). White noise on R% is a probability space (Q),.%,1P) together
with a measurable map:

& Q> ' RY,
that is uniquely characterized by (&, @) being a Gaussian random variable for all ¢ € S (RY),
with covariance:

E[(&, o)X 0| = (o), Vo pe s RY).

By taking a limit in L*(Q) one can define (&, @) also for ¢ € L*(R%), as a Gaussian random
variable with variance ||| 2ra). We write:

€= | o

Since with d we indicate the spatial dimension of the processes we consider, we call a white
noise on R**! a space-time white noise.

Remark I1.2.3. It follows that £" converges in distribution to a white noise & on R, in the
sense that (&", @)za — &(@) in distribution for all @ € C.(R%).

To separate the randomness coming from the potential from that of the branching
random walks it will be convenient to fix a realization "(w) of £" and consider it as a
deterministic environment. But we cannot expect to obtain reasonable scaling limits for
all deterministic environments. Therefore, we need to identify properties that hold for
typical realizations of random potentials satisfying Assumption The reader only
interested in random environments may skip the following assumption for deterministic
environments and use it as a black box, since by Lemma below the assumption is
satisfied a.s. by any random environment under In particular, we will make use
of the weighted Holder-Besov spaces and related constructions, whose definition can be
found in Section

Below we indicate with A" the discrete Laplacian (here for x,v € Z4 we say x ~ v if
=yl = n7):

A'p(x)=n ) (p)-¢(x)

x~y=1



II.2. THE MODEL & ITS SCALING LIMITS 23

Assumption II.2.4 (Deterministic environment). Let £" be a deterministic environment and
let X" be the solution to the equation —A"X" = x(D)&" = ﬁg;(xﬂzzén) in the sense explained
in [MP19, Section 5.1], where x is a smooth function equal to 1 outside of (—1/4,1/4)* and
equal to zero on (~1/8,1/8)% (in this way the existence of X" is guaranteed). Consider a
regularity parameter

ae(l,3)ind=1, ae(}1)ind=2.
We assume that the following holds:

(i) There exists & € (50 € 2(R%; p(a)) such that for all a > 0:

SUpIE llga2(z8,p(a) < +o0 and E"E" — & in €* 2R p(a)).
n

(i1) For any a,& >0 we can bound:

—d/2€n
+

sup || g z:ptay * SUP N 21E Nlege 8 pay) < +00
n n

as well as for any b > d/2:
sup e
Moreover, there exists v > 0 such that the following convergences hold:
g oy, Er21£n s 2y
in €¢(R%; p(a)).

(iii) If d = 2 there exists a sequence c, € R such that n=%?c,, — 0 and distributions X €
Nuso C¥(RY, p(a)) and X o & € 50 €>*2(RY; p(a)) which satisfy for all a> 0:

SUP X" liga zg;pa) + SUPNX" © E%)=Cullgaa-2 zsp(a) < +o0
n n

and &"X" — X in €*(R%; p(a)) and é"”((X” © cf”)—cn) — X o & in €2 2(R%; p(a)).

We say that & € .#/(RY) is a deterministic environment satisfying Assumption if
there exists a sequence {&"},cn such that the conditions of Assumption [[I.2.4/hold.

The next result establishes the connection between the previous probabilistic and
analytical conditions. To formulate it we need the following sequence of diverging renor-
malisation constants:

[ x(k) o
Ky = L% (k) dk ~log(n), (I1.2)

with x as in the previous assumption and /" being the Fourier multiplier associated to
the negative discrete Laplacian —A", i.e. —A"¢ = 9’2‘5 [I"(-)Fza(-)]. An explicit formula
for I" is simple to obtain, but is not important at the moment: it suffices to know that
1"(k) ~ |k|?, which explains the logarithmic divergence.
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Lemma I1.2.5. Given a random environment {E"},en satisfying Assumption there ex-
ists a probability space (Q, %, P) supporting random variables {E"},eN such that " = &" in
distribution and such that {E™(w,)},en 1s a deterministic environment satisfying Assumption
[[L.2.4) for all w € Q. Moreover the sequence c, in Assumption can be chosen equal to
K, (see Equation (I1.2)) outside of a null set. Similarly, v is strictly positive and deterministic
outside of a null set and equals the expectation E[D, .

Proof. The existence of such a probability space is provided by the Skorohod represen-
tation theorem. Indeed it is a consequence of Assumption that all the conver-
gences hold in the sense of distributions: The convergences in (i) and (iii) follow from
Lemma [[.7.2]if d = 1 and from [MP19, Lemmata 5.3 and 5.5] if 4 = 2 (where it is also
shown that we can choose ¢, = k,). The convergence in (ii) for v = [E[®, ] is shown in
Lemma After changing the probability space the Skorohod representation theo-
rem guarantees almost sure convergence, so setting £",&,¢",v = 0 on a null set we find
the result for every w. (There is a small subtlety in the application of the Skorohod repre-
sentation theorem because €7 (R%; p(a)) is not separable, but we can restrict our attention
to the closure of smooth compactly supported functions in €7 (R“; p(a)), which is a closed
separable subspace). O

Notation I1.2.6. A sequence of random variables {E"},cn defined on a common probability
space (Q, .F,P) which almost surely satisfies Assumption|[I.2.4]is called a controlled random
environment. By Lemmal[l.2.5} for any random environment satisfying Assumption we
can find a controlled random environment with the same distribution. For a given controlled
random environment we introduce the effective potential:

& (w,x) = EM(w, X)—c,(w)1g=y).

Given a controlled random environment we define 7 the random Anderson Hamiltonian
and its domain 9 yp.: see Lemma Roughly speaking:

HY =A+E&(w) = lim A" + &) (w).

n—-oo

We pass to the description of the particle system. This will be a (random, i.e. de-
d
pendent on the environment) Markov process on the space E = (Ng”)o of compactly

supported functions 17: Z¢ — N, endowed with the discrete topology. The rigorous con-
struction of this process is discussed in Appendix[A.1} We define

1% (2) = (2)+ (1 (2) =11 (2) 11 ()21

and

For F € C(E), x € Z% we write:

ALF() =n® ) (FOp™%)=F(n)),  diF(y) = F(7™)=F(y).

y~x
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Definition I1.2.7. Fix an “averaging parameter” p > 0 and a controlled random environment
E". Let P < IP“"" be the measure on Q) xID([0, +o0); E) defined as the “semidirect product mea-
sure” of P" and P“" (see Equation (A.1)), where for w € Q) the measure P“" on ID([0, +c0); E)
is the law under which the canonical process u"(w,-) started in u"(w,0) = [n?]1o)(x) is the
Markov process with generator

LY DL — Cy(E),
where £ (F)(n) is defined by:

D e [ ALFOD + (E2) (@ )T F ) + (£2) (w0, ) ()| (IL.3)
erﬁ
and the domain P(L™%) consists of all F € Cy(E) such that the right-hand side of (I1.3)) lies
in Cy(E). To u™ we associate the process y" with the pairing

W@, (@)= ) [0 " (@, x)p(x)

XEZZ

for any function @: Z% — R. Hence " is a measure-valued stochastic process. We indicate
with P" =< P“"" its law on the Skorohod space ID([0, +00); .4 (RY)).

Remark I1.2.8. Although not explicitly stated, it is part of the definition that w +— IP“"*(A) is
measurable for Borel sets A € 2(ID([0, +o0); E)).

Since all particles evolve independently, we expect that for p — oo the law of large
numbers applies. This is why we refer to p as an averaging parameter.

Notation II.2.9. In the terminology of stochastic processes in random media, P“"" is the
quenched law of the process u™ (or u") given the noise &". We also call P*%" := P" < P“"" the
total law.

We can now state the main convergence results of this chapter. First, we prove
quenched results: the corresponding total versions are then an easy corollary. We start
with a law of large numbers.

Theorem I1.2.10. Let & be a deterministic environment satisfying Assumption and
let p > d/2. Let w be the solution of PAM with initial condition w(0,x) = 8g(x), as
constructed in Proposition|[[I.3.1|(see also Remark([[I.3.2). The measure-valued process u" from
Definition converges to w in probability in the space ID([0, +o0); .# (RY)) as n — +oo.

Proof. The proof can be found in Section|I1.4.1 O]

If the averaging parameter takes the critical value p = d/2, we see random fluctuations
in the limit and we end up with the rough super-Brownian motion (rfSBM). As in the case of
the classical SBM, the limiting process can be characterized via duality with the following
equation:

K
dhp=H =597 9(0)=gpy, (IL.4)

for ¢ € Cg"(Rd), @o = 0. With some abuse of notation (since the equation is not linear)
we write U;py = @(t). Here as before recall that J# is the Anderson Hamiltonian as
constructed in Lemma
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Definition I1.2.11. Let & be a deterministic environment satisfying Assumption con-
sider k > 0 and let y be a process with values in the space C([0,+00); .4 (RY)), such that
#(0) = 6. Write F = {F}ic[0,+00) for the completed and right-continuous filtration gener-
ated by p. We call p a rough superBrownian motion (rSBM) with parameter « if it satisfies
one of the three properties below:

(i) Foranyt>0and ¢y CX(R?), @y > 0 and for U.q the solution to Equation (IL.4) with
initial condition ¢, the process

N/ (s) = el Uispo), s€[0,t],
is a bounded continuous F —martingale.

(ii) For any t > 0 and @y € C2(RY) and f € C([0,t];6°(R%;e(1))) for arbitrary T > 0 and
I € R, and for ¢, solving

dspr+H @y = f, s€[0,t], P(t) = @o,

it holds that
s M;po’f(S) = (p(s), pi(s))—(u(0), (Pt(O»_J; (u(r), f(r))dr,

defined for s € [0,t], is a continuous square integrable ¥ —martingale with quadratic
variation

My, = "L ) (92 (1) dr.

(iii) For any @ € 9, the process:

L9(1) = <u(t>,qo>—<y<0),<p>—f0 Gu(r), A pydr,  te[0,+00),

is a continuous .# —martingale, square integrable on [0, T| for all T > 0, with quadratic
variation

t
(L) = | G gyar
Each of the three properties above characterizes the process uniquely:

Lemma I1.2.12. The three conditions of Definition|l1.2.11|are equivalent. Moreover, if p is a
rSBM with parameter «, then its law is unique.

Proof. The proof can be found at the end of Section|l1.4.1 O]

Theorem II.2.13. Let {&"},en be a deterministic environment satisfying Assumption
and let o = d/2. Then the sequence {u"},en converges to the rSBM y with parameter k = 2v in
distribution in ID([0,+o0); .4 (R?)).

Proof. The proof can be found at the end of Section [I1.4.1 O
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Remark 11.2.14. Lemma [[I.2.12|gives the uniqueness of the rSBM for all parameters x > 0,
but Theorem|[[.2.13|only shows the existence conditionally on the existence of an environment
which satisfies Assumption This leads to the constraint v € (0, 3] because we should
think of v = E[®, ] for a centered random variable ® with E[®2] = 1. For general x > 0 we
establish the existence of the rSBM in Section as a perturbation of classical branching
process.

Remark I1.2.15. We restrict our attention to the Dirac delta initial condition for simplicity,
but most of our arguments extend to initial conditions p € M (RY) that satisfy (p,e(l)) < oo
for all 1 < 0. In this case only the construction of the initial value sequence {y"(0)},en is more
technical, because we need to come up with an approximation in terms of integer valued point
measures (which we need as initial condition for the particle system). This can be achieved by
discretizing the initial measure on a coarser grid.

The previous results describe the scaling behavior of the BRWRE conditionally on
the environment, and we now pass to the unconditional statements. To a given random
environment &" satisfying Assumption (not necessarily a controlled random envi-
ronment) we associate a sequence of random variables in .#’(R?) by defining &"(¢) =
nd 2 EM(x)p(x) for @ € Z(R%). Recall that the sequence of measures P = P" i P¥"
on .7’(R%) x D([0, +o0);.# (R?)) is such that P" is the law of &" and IP“"" is the quenched
law of the branching process u" given £".

Corollary 11.2.16. The sequence of measures P*4" converges weakly to Pt = IP < P“ on
7" (R?) x ID([0, +00); .# (R?)), where P is the law of the space white noise & on .#'(R%), and
IP® is the quenched law of p given & which is described by Theorem |[1.2.10|if o > d/2 or by

Theorem if o=d/2.

Proof. Consider a function F on .7’(R%) x ID([0, +c0); .# (R?)) which is continuous and
bounded. We need the convergence lim,, IE[F(&”, ]4”)] - IE[F(E,y)]. Up to changing the
probability space (which does not affect the law) we may assume that £" is a controlled
random environment. We condition on the noise, rewriting the left-hand side as

E[F(E", 1) = JIE“*"[P(&"(w» W] dP" ().

Under the additional property of being a controlled random environment and for fixed
w € Q, the conditional law IP“"" on the space ID([0, +0);.# (R%)) converges weakly to the

measure [P“ given by Theorem [II1.2.10] or Theorem [I1.2.13} according to the value of p.
We can thus deduce the result by dominated convergence. O]

For p > d/2 the process of Corollary|lI.2.16|is simply the continuous parabolic Ander-
son model. For p = d/2 it is a new process.

Definition I1.2.17. For p = d/2 we call the process p of Corollary|I1.2.16|an SBM in static
random environment (of parameter x > 0).

In dimension d = 1 we characterize the process p as the solution to the SPDE (II.5)
below. First, we rigorously define solutions to such an equation.
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Definition I1.2.18. Let d =1, k >0, and py € #(R). A weak solution to

O pu(t, x) = A u(t, x)++Jxp(t, x)E(t, x), u(0) = uo, (I1.5)
is a couple formed by a probability space (QQ'°t, Z 1, P and a random process
p: Q" — C([0, +c0); 4 (R))

such that Q% = Q x Q and P is of the form P =< P® with (Q,P) supporting a space white
noise & and (Q'°, P'Y) supporting space-time white noise & (see definition independent
of &, such that the following properties are fulfilled for almost all w € Q):

* There exists a filtration {F"}[0,7] on the space (Q,P®) which satisfies the usual condi—
tions and such that u(w,-) is adapted and almost surely lies in LP([0, T];L*(R;e(l))) for
all p <2 and | € R. Moreover, under P“ the process é(w, ) is a space-time white noise
adapted to the same filtration.

* The random process y satisfies for all ¢ € P o and for all t > 0:

jﬂ(w t,x)@ dx—f J w,s,x)(HVp)(x)dsdx
J J Kpp(w, s, X)p(x )dg(w’S’X)JFL(P(X)dP‘o(X):

with the last integral understood in the sense of Walsh [Wal86].

Theorem 11.2.19. For d = 1 and py = o9 and any k > 0 there exists a weak solution u
to the SPDE (IL.5)) in the sense of Definition |I.2.18| The law of p as a random process on
C([0,+o0); . # (R)) is unique and corresponds to an SBM in static random environment of pa-
rameter K.

Proof. The proof can be found at the end of Section|I1.6.1 O]

As a last result, we show that the rSBM is persistent in dimension d =1, 2.

Definition I1.2.20. We say that a random process p € C([0, +00); . (R?)) with law P is super-
exponentially persistent if for any nonzero positive function ¢ € C2(R?) and for all A > 0 it
holds that:

P( lim e Mu(t), @) = 00) > 0.

Theorem I1.2.21. Let u be an SBM in static random environment. Then for almost all w € Q)
the process p(w,-) is super-exponentially persistent.

The result follows from Corollary[I1.6.6|and the preceding discussion.
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I1.3 Discrete and continuous Anderson model

Here we review the solution theory for the Parabolic Anderson Model (PAM) on R?
in the discrete and continuous setting and the interplay between the two (we refer to
[MP19] and [HL15,[HL18], where the theory we present here was developed). The reader
should be able to follow the arguments without understanding completely the machinery
behind it: in any case, we will discuss further discretizations of the Anderson model in
Chapter [IV|(without weights), where the problem is explained more thoroughly.

Recall that the regularity parameter a from Assumption satisfies:

ae(l,3)ind=1, ae€(31)ind=2 (IL.6)

We choose an initial condition wy € %p(’(Rd;e(l)) and a forcing f € ///VO%pao(Rd;e(l)), and
we consider the equation

dw=Aw+Ew+f, w(0) = wy (I1.7)
and its discrete counterpart
dw" = (A" +ENHw" + 7, w"(0) = wy. (I1.8)

To motivate the constraints on the parameters appearing in the proposition below,
let us first formally discuss the solution theory in d = 1. Under Assumption it
follows from the Schauder estimates in [MP19, Lemma 3.10] that the best regularity we
can expect at a fixed time is w(t) € CfpaA(CJrz)A(aoJrz)(R;e(k)) for some k € R. In fact we lose
a bit of regularity, so let 9 < a be “large enough” (we will see soon what we need from
J) and assume that C +2 > 9 and ay+ 2 > 9. Then we expect w(t) € %pS(R;e(k)), and the
Schauder estimates suggest the blow-up y = max{(9+ ¢ —C),/2,y,} for some € > 0, which
has to be in [0, 1) to be locally integrable, so in particular y, € [0,1). If 9+a—2 > 0 (which
is possible because in d = 1 we have 2a — 2 > 0), then the product w(t)E is well defined
and in ‘Kﬁ_z(R;e(k)p(a)), so we can set up a Picard iteration. The loss of control in the
weight (going from e(k) to e(k)p(a)) is handled by introducing time-dependent weights
so that w(t) € ﬁfp‘g(Rd;e(l +t)). In the setting of singular SPDEs this idea was introduced
by Hairer-Labbé [HL15], and it induces a small loss of regularity which explains why we
only obtain regularity 9 < a for the solution and the additional +&/2 in the blow-up y.

In two dimensions the white noise is less regular, we no longer have 2a —2 > 0, and
we need paracontrolled analysis to solve the equation. The solution lives in a space of
paracontrolled distributions, and now we take ¥ > 0 such that ¥ + 2a —2 > 0. We now
need additional regularity requirements for the initial condition wj and for the forcing f.
More precisely, we need to be able to multiply (P,w)¢& and (jot P,_sf(s) ds)é, and therefore
we require now also C+2+(a—2) > 0 and ap+2+(a-2) >0, i.e. C,ag > —a.

We do not provide the details of the construction and refer to [MP19] instead, where
the two-dimensional case is worked out (the one-dimensional case follows from similar,
but much easier arguments).
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Proposition I1.3.1. Consider a as in (IL.6), any T >0, p € [1,+o0], | € R,y € [0,1) and
9,C, ag satisfying:

9c {(2—0(,0(), d=1,

C>(O-2)V(-a), ag>(9-2)V(-a), (I1.9)
(2-2a,a), d=2,

and let wl! € 6y (Z4;e(l)) and f € MV, (Z%;e(1)), such that
éa”wg — Wy, in Cng(Rd,e(l)), é‘)nfn — f in '//Vogp‘)‘O(Rd;e(l))'

Then under Assumption|l1.2.4|there exist unique (paracontrolled) solutions w",w to Equation
(I.8) and (IL.7). Moreover, for all y > (9~C),/2V yq and for all [ > 1+T, the sequence w" is
uniformly bounded in DSfpV’S(Zﬁ;e(f)):

SUPIw™ll 2 4,0y S WP IWollest (zseqmy + SUP ISl aoiggo ey (IL.10)

where the proportionality constant depends on the time horizon T and the norms of the terms

in Assumption Moreover
" > win £ (R%e(l)).

Remark I1.3.2. We consider the case p < oo to start the equation in the Dirac measure 9.
Indeed, &g lies in €% (R4, e(1)) for any I € R. This means that { = —d, and in d = 1 we can
choose 9 small enough such that holds. But in d = 2 this is not sufficient, so we use
instead that o, € %;lu_p)/p(Rd,e(l))for p € [1,00] and any | € R, so that for p € [1,2) the
conditions in are satisfied.

It will be convenient to introduce, with a slight abuse of notation (as we will explain
below) the following semigroup notation.

Notation I1.3.3. We write

t t
t— T/ 'wj + J T . f'ds, t > Tawg + J Ti_sfsds
0 0

for the solution to Equation (I1.8)) and (I1.7), respectively.

Proposition provides us with the tools to make sense of Property (ii) in the
definition of the rSBM, Definition To make sense of the last Property (iii), we
need to construct the Anderson Hamiltonian. In finite volume this was done in [EN77,
ACT5,IGUZ20,[Lab19]], respectively, but the construction in infinite volume is more com-
plicated, for example because the spectrum of .7 is unbounded from above and thus
resolvent methods fail. Hairer-Labbé [HL18] suggest a construction based on spectral
calculus, setting 2 = t"!log T, but this gives insufficient information about the domain.
Therefore, we use an ad-hoc approach which is sufficient for our purpose. We define the
operator in terms of the solution map (T;);>( to the parabolic equation. Strictly speak-
ing, (T;);>0 does not define a semigroup, since due to the presence of the time-dependent
weights it does not act on a fixed Banach space. But we simply ignore that and are still
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able to use standard arguments for semigroups on Banach spaces to identify a dense sub-
set of the domain (compare the discussion below to [EK86|, Proposition 1.1.5]). However,
in that way we do not learn anything about the spectrum of .77. In finite volume, (T});>¢
is a strongly continuous semigroup of compact operators and we can simply define .7 as
its infinitesimal generator. It seems that this would be equivalent to the construction of
[ACI15] through the resolvent equation.

We first discuss the case d = 1. Then & € ¥* 2(R;p(a)) for all a > 0 by assumption,
where a € (1, %). In particular, #u = (A+&)u is well defined for all u € €°(R;e(l))
with 8 > 2-a and I € R, and #u € €% %(R;e(l)p(a)). Our aim is to identify a subset
of €°(R;e(l)) on which #u is even a continuous function. We can do this by defining for

t>0 ,
Aju = j T,uds.
0
Then A,;u € €°(R;e(l+t)), and by definition
t t
AU = J HTuds = J d;T,uds = Tyu—u € %S(R;e(l +t)).
0 0
Moreover, the following convergence holds in @ (R;e(l+t+¢)) for all & > 0:
t+1/n 1/n
lim n(Ty/,—id)A;u = lim n(f Tsuds—j Tsuds) = A u.
n—00 n—>00 ¢ 0

Therefore, we define
Dy ={Au:uecE’(R;e(l),l eR,t€[0,T]).

Since for u € €¥(R;e(l)) the map (t > T;ut)te[0,¢] is continuous in the space €°(R;e(l+¢))
we can find for all u € ¥¥(R;e(l)) a sequence {1™},,en C 2. such that llu™—ulpo Rse(i4e)) —
0 for all £ > 0. Indeed, it suffices to set u™ = m~'A,,-1u. The same construction also works
for 7" instead of 7.

In the two-dimensional case (A+&)u would be well defined whenever u € €#(R?,¢e(1))
with § > 2-a for a € (,1). But in this space it seems impossible to find a domain that is
mapped to continuous functions. And also (A+&)u is not the right object to look at: we
have to take the renormalisation into account and should think of J# = A+&—c0. So we
first need an appropriate notion of paracontrolled distributions u for which can define
Au as a distribution. As in Proposition [[I.3.1|we let 9 € (2-2a, a).

The following lemma is crucial to understand the meaning of paracontrolled solution.
It tellsusthatifu=u'"©X + uﬁ, for sufficiently smooth u’, uﬁ, then the resonant product
u ® & is well-defined, given the product X © &.

Lemma I1.3.4 (Lemma 4.4 [MP19]]). The estimates below hold uniformly over n € N (and
also for Zﬁ replaced by R?). Consider 21,22,23 € p(®@), p € [1,00] and a, B,y € R such that
B+y <0and a+p+y>0. Define the commutator

Cp,,0)=(pe ) OC-p(Pp ).
We have:

ny

IC®(e, ¢;C)||(gpﬁ+v(zd.zlz223) S ||<P||<g,;“(2ﬂ;z1)||1P||<ﬁ(zﬁ;zz)||C||<m(zﬁ;z3)-
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We can now define paracontrolled distributions.

Definition I1.3.5. Consider X = (-A)™! x(D)& and X & defined as in Assumption We
say that u (resp. u") is paracontrolled if u € €°(R?,e(l)) for some | € R, and

W = u—ue X e (R ().

Then set
Hu=AM+E@u+u0&+ut0&+COu, X, &) +u(X &),

where C© is defined in Lemmal|ll.3.4] The lemma, together with Lemmal|l.1.3|guarantees that
Hu is a well defined distribution in €% >(R?,e(l)p(a)). In the discrete setting the same holds,
with X, X o & replaced by X", X" © £" —c,, respectively.

The operator T; leaves the space of paracontrolled distributions invariant, and there-
fore the same arguments as in d = 1 give us a domain %, such that for all paracon-
trolled u there exists a sequence {u"},,ex C 2 With [[u™~ullys(R2 ¢(14¢)) — 0 for all € > 0.
For general u € €°(R?,¢(l)) and € > 0 we can find a paracontrolled v € ¥°(R?,¢(1)) with
lu=vlleor2,e(1+¢)) < € because Tyu is paracontrolled for all ¢ > 0 and converges to u in
€% (R?,e(l+¢)) as t — 0. Thus, we have established the following result:

Lemma 11.3.6. Under Assumption let 9 be as in Proposition There exists a
domain 9,4 C |Jjer €°(R%,e(1)) such that #u = lim,, n(Ty,—id)u in %S(Rd,e(l+£))for all
ue€ 2,6 R e(l)) and e > 0 and such that for all u € €°(R%,e(l)) there is a sequence
(U™ e C Dyp with |[u™~ullgsR2 e(14¢)) — 0 for all € > 0. The same is true for the discrete
operator A" (with R replaced by Z2).

II.4 The rough superBrownian motion

I1.4.1 Scaling Limit of the BRWRE

In this section we consider a deterministic environment, that is a sequence {£"},en of
maps &": Z% — R, satisfying Assumption m to which we associate the Markov pro-
cess " as in Definition[[.2.7; our aim is to prove that the sequence y" converges weakly,
with a limit depending on the value of p. First, we prove tightness for the sequence y" in
D([0, T];.# (R%)) for p > d/2. Then, we prove uniqueness in law of the limit points and
thus deduce the weak convergence of the sequence.

Remark I1.4.1. Fix t > 0. For any ¢ € L=(Z%;e(1)), for some 1 € R:
[0,£]3 5 > M, (s) = ! (T{0)~T/"(0) (IL.11)

is a centered martingale on [0, t] with predictable quadratic variation

S
(M%) = j i (eI T o + n O\ (T, ) ) dr.
0
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Sketch of proof. Consider a differentiable function ¢: that is i € C([0, T];L(2%;e(1))),
d:1 € C([0, T];Lm(Zﬁ;e(l))) for some I € R, T > 0. One can use Dynkin’s formula and an
approximation argument applied to the function (s, y) — F:b(s, u") = pu"((s)). By truncat-

ing F' , discretizing time and then passing to the limit, we obtain that

u?(rp(s))—y’a(w(o»—fo W@ (r) - AP (r) dr

is a martingale with the correct quadratic variation. Now it suffices to note that for
rel0,t]: o, T} , ¢ =-H"T/" . O

For the remainder of this section we assume that p > d/2. To prove the tightness of the
measure-valued process we use the upcoming auxiliary result, which provides tightness
of the real-valued processes {t — ui'(¢)},en for smooth ¢.

The main difficulty in the proof lies in handling the irregularity of the spatial envi-
ronment. For this reason we consider first the martingale [0,¢] 5 s — (T ;) (cf. (IL.11))
instead of the more natural process s — ul'(¢). We then exploit the martingale to prove
tightness for p"(¢). Here we cannot apply the classical Kolmogorov continuity test, since
we are considering a pure jump process. Instead we will use a slight variation, due to
Chentsov [Che56] and conveniently exposed in [EK86, Theorem 3.8.8].

Lemma I1.4.2. ForanyleRand ¢ € C®(R%e(l)) the processes {t — i (@)},en form a tight
sequence in ID([0, +o0); R).

Proof. It is sufficient to prove that for arbitrary T > 0 the given sequence is tight in
ID([0, T];R). Hence fix T > 0 and consider 0 < 9§ < 1 as in Proposition In the
following computation k € R may change from line to line, but it is uniformly bounded
forleRand T > 0 varying in a bounded set.

Step 1. Here the aim is to establish a second moment bound for the increment of the
process. Let (#/");>o be the filtration generated by u". We will prove that the following
conditional expectation can be estimated uniformly over 0 <t <t+h < T:

Bl ) (@)PLZ] < [T ) o 5| (1.12)
In fact, via the martingales defined in (II.11)), one can start by observing that:
B[l (@)1t (9)P177]

= E[IM] (1) =M () + (T} o) 1.7 |

t+h
<ot IEU WOV Tl + T ) )dr

+ h¥ | ()],

where the last term appears since h +— T)'¢ € 2928, e(k)). The first term on the right-
hand side can be bounded, for any ¢ > 0 by:

t+h
J ,u';(T;“ (n OV TP+ n O (T ) ))d
t

(IL.13)

t+h . .

SJ ,u’f(eklxl +(r—t)_2gek|x| )dr.
t
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Here we have used Lemma [I1.9.1] to ensure that ¢|, is smooth on the lattice together
with the a-priori bound (II.10) of Proposition and with Lemmata [[1.9.2|and [I1.9.3]
which show respectively a gain of regularity via the factor n™° and a loss of regularity via

the discrete derivative V", to obtain:

. e A\vi lPNPAT —
35&2;32”'” IVET @l s zgse24m)) = O

for 0 < § < 9-1+p/2 (we can choose 9 sufficiently large so that the latter quantity is
positive). Since 9 > 0 and the term is positive, one has by comparison:

T (V' T o) < PN oIV T 0P lles 2oty
Moreover, according to Assumption [II.2.4] for p > d/2 the term n~¢|&}| is bounded in

€~¢(Z%; p(a)) whenever ¢ > 0. It then follows from the uniform bounds (IT.10) from Propo-
sition and by applying from Lemma together with similar arguments to

the ones just presented, that:

sup sup [ls — Tsn(”fp|<§g|(Trn(P)2)||(///2£<gf(zg;e(k))
neN re[0,T]

<Ssup s s> T C|EM(T  @)? e,
SR o o B O

Ssup sup ||n_p|5g|(Trn(P)2||<,§—s(z;{;e(k)) < 00.
neN rel0,T]

This completes the explanation of (II.13)). So overall, integrating over r we can bound the
conditional expectation by:

2 () (R < ) 4 ) 2

assuming 1 —2¢ > 9. This completes the proof of (II.12).
Step 2. Now we are ready to apply Chentsov’s criterion [EK86, Theorem 3.8.8]. We
have to multiply two increments of y"(¢) on [t—h,h] and on [t,t+h] and show that for

some x > 0:
E[ (1., (0)=p (@) A D (i (0)-pi_ (@)l A 1| < B (IL.14)
We use to bound:

[} (@)1 (@) A (5} (0)= (@) A1)
<E| I} (@)1 (@)1t (0)=p (@]
<O () + R i () )]
< hSIE[(l + |ﬂ?(€k|x|a)|2)|#?(‘P)—I‘?7h(({’)|]-

By the Cauchy-Schwarz inequality together with (IT.12) and the moment bound for [ (XXl
from Lemmal [[I.8.1|one obtains:

E[(l + m?(ek""“>|2>|n?<<p>—u?_h<<p>|]

" - 1/2 " " 1/2
< (1 Bl @] el )00 <
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Combining all the estimates one finds:

HﬂﬂﬂﬁhWﬂ—ﬂ?WﬂlA1Vﬂﬂ?mﬂ—yihw»L«1V]sh%?

Since 9 > %, this proves Equation (II.14) for some x > 0. In particular, we can apply
[EK86, Theorem 3.8.8] with = 4, which in turn implies that the tightness criterion of
Theorem 3.8.6 (b) of the same book is satisfied. This concludes the proof of tightness for

{t = pi (P)}hnen- O

Consequently, we find tightness of the process y" in the space of measures.
Corollary I1.4.3. The processes {t — p"(t)},en form a tight sequence in D([0, 00); . % (RY)).

Proof. We apply Jakubowski’s criterion [DMS93|, Theorem 3.6.4], which we recall in the
appendix, Proposition We first need to verify the compact containment condition.
For that purpose note that for all R > 0 the set Ky = {u € MR | u(|->) < R} is compact
in . (R%). Here u(|-|*) = IRd |x|? dp(x). Since the sequence of processes {u"(| - |*)} en are

tight by Lemma we find for all T, e > 0 an R(¢) such that

supP( sup ' (1)(1-1) > R(s)) <e
n te[0,T]
as required. Second we note that C2°(R?) is closed under addition and the maps y

{1(@)}pec(re) separate points in M (RY). Since Lemma [[1.4.2 shows that ¢ - u'(t)(e) is
tight for any ¢ € C®(R), we can conclude. O

Next we show that any limit point is a solution to a martingale problem.

Lemma I1.4.4. Any limit point of the sequence {t — p"(t)},en is supported in the space of
continuous function C([0,+co);.# (R?)), and it satisfies Property (ii) of Definition|[.2.11|with
k=0ifp>d/2, and k =2vifp=d/2.

Proof. First, we address the continuity of an arbitrary limit point y. Since .#(T9) is en-
dowed with the weak topology, it is sufficient to prove the continuity of t — (u(t), @) for
all ¢ € C,(R?). In view of Corollary[I1.4.3| up to a subsequence:

(W', @)y — (@) in ID([0,o0);R).

Then by [EK86|, Theorem 3.10.2] in order to obtain the continuity of the limit point it is
sufficient to observe that the maximal jump size is vanishing in #:

sup i, ) = iz ) s n 70l @l
t>

Next, we study the limiting martingale problem. First we will prove that the process
M;Po’f from Definition is a martingale. Then we will compute its quadratic varia-
tion.

Step 1. We fix a limit point y and study the required martingale property. For f, ¢,
as required, observe that ¢ = ¢glz¢ is uniformly bounded in €% (Z4;e(1)) for any > 0
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and | € R, and similarly f" = f|;4 is uniformly bounded in C([0,t];€%(Z%)), with an
application of Lemma|l1.9.1{ Hence by Proposition [II.3.1|the solutions ¢}’ to the discrete
equations

Ispi+A" e =", @ () =g
converge (when extended via ") in Z3R%e(l)), for 0< 9 <1, to ¢;. To be accurate, we

might need to increase the value of I: so let us assume that [ > 0 is large enough so that
the convergence holds. At the discrete level we find, analogously to (II.11)), that

MPT T (5) = (™), @I(s)) — ((0), 1 (0)) —L (W'(r), fi(r)ydr,  se[0,4]

is a square integrable martingale. Moreover this martingale is bounded in L? uniformly
over n, since the second moment can be bounded via the initial value and the predictable
quadratic variation by

t
L R R R R S T B L
0

and the latter quantity is uniformly bounded in n. To conclude that Mt(po’f is an .# —martingale
note that by assumption M, oo converges to the continuous process M’ */ Then by
[EK86|, Theorem 3.7.8], for 0 < s < r < t and for bounded and continuous @ € C,(ID([0, s]; .#))

E[D (0, )M (1) - MP (5))]
= B[ (| o.M (1) - M (5))] = 0

by the martingale property of Mo/, From here we easily deduce the martingale prop-
erty of Mt(po’f.

Step 2. We show that M/ "/ has the correct quadratic variation, which should be given
as the limit of

M= [ o g+l 1))

We only treat the case p = d/2, the case p > d/2 is similar but easier because then we can
use Lemma [[1.9.2|to gain some regularity from the factor n%/?=¢, so that

1€ lege (225 p(ay) = O

for some ¢ > 0 and for all a > 0.
First we assume, leaving the proof for later, that for any sequence {¢"}, cn With

1i1511||4)”||<g76(1{d;p(a)) =0

for some a > 0and all € > 0:

s<t

s 2
lE[sup L p'O(9" - (@1 (r))?) dr ]—>o. (IL.15)
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By Assumption [[1.2.4] we can apply this to " = n7?|£"|-2v, and deduce that along a
subsequence we have the following weak convergence in ID([0, t];R):

(M) =P — (M) = | (2t 0)

Note also that the limit lies in C([0, t];R). If the martingales on the left-hand side are uni-
formly bounded in L? we can deduce as before that the limit is a continuous L>~martingale,
and conclude that

S
M= [ (vt ) ar
As for the uniform bound in L2, note that it follows from Lemma [[1.8.1|that

sup sup IE[lMt(PO’f’n(s)|4] < +o00.

n 0<s<t

For the quadratic variation term we estimate:

1E[|<M§"°'f'”>s|2]szosm[|y"<r>(n—@|\7"(p (N + el (@l (1)2)[] dr,

which can be bounded via the second estimate of Lemma [L.8.1]
Step 3. Thus, we are left with the convergence in (II.15). By introducing the martin-

gale from Equation we find that
[l (r)( Wl((p?(r))z)ﬁ]
<IT 9" (@1 (r)?]P(0) fo T;[ﬂ|v"[T;1q[¢”<<p?<r>>21]|2 (IL16)
T[4 (1 (1)) 0)d

We start with the first term. By Proposition [II.3.1|we know that forall e >0and 0 <9 <1
satisfying 9 + 3¢ < 1 and for I > 0 sufficiently large:

= Tr"[v,b”((p:’(r)ﬂllf et
< lly™ ”ﬂﬁ“f(Zﬁ;p(a))'

Together with Equation (I.1) from Lemma and (I1.17), we thus bound:
I[P ]P(0) < ¥l = 1T [9" (01 (DI e 0.
—4e 2
S e gy

Now we can treat the first term in the integral in (II.16]). We can choose 0 <9 <1and ¢ >0
with 9 + 3¢ < 1 such that 0 < § = 8 — 1 + d/4. We then apply Lemmata [[1.9.2and [[1.9.3]
which guarantee us respectively a regularity gain from the factor n% and a regularity

loss from the derivative V", to obtain:

e N 0 | e N A Ao A
S (V_CI) (9+3¢) ”11[) ”%*f(lﬂ;p(u))’
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where the last step follows similarly to ([I.17). Overall we thus obtain the estimate:
r
_ 2
JO T (o[0T [ (0 (1)) ) 0) dg
r

—(9
S gy |, -0 ST

wp(a))

Following the same steps, one can treat the second term in the integral in (IL.16). We
now use the same parameter ¢ both for the regularity of n~¢|£"| and of ", in view of
Assumption and choose 9,¢ as above with the additional constraint 9 + 5¢ < 1.
Then we can argue as follows:

—p|cn IR PN 21\2 —(9+3¢)1,1,1|12

and hence:
,
| e v en @y o)
r
n|2 _\—(9+3¢) ,—2¢
n2
S e ztpiar

where in the last step we used that 9 + 5¢ < 1. This concludes the proof. O

Our first main result, the law of large numbers, is now an easy consequence.

Proof of Theorem Recall that now we assume o > d/2. In view of Corollary
we can assume that along a subsequence p* = u in distribution in ID([0, +c0);.# (R%)).
It thus suffices to prove that u = w. The previous lemma shows that for ¢ € C&(R¥)
the process s — (s)(T;_s¢)—T;@(0) is a continuous centered square integrable martingale
with vanishing quadratic variation. Hence, it is constantly zero and u(t)(p) = T;¢(0) =
(T;00)(¢) almost surely for each fixed t > 0. Note that T.9( is well-defined, as explained
in Remark Since p is continuous, the identity holds almost surely for all t > 0.
The identity u(t) = T;6( then follows by choosing a countable separating set of smooth
functions in C2° (R%). O

Now we pass to the case p = d/2. To deduce the weak convergence of the sequence
p" we have to prove that the distribution of the limit points is unique. For that purpose
we first introduce a duality principle for the Laplace transform of our measure-valued
process, for which we have to study Equation (II.4). We will consider mild solutions, i.e.

@ solves (II.4) if and only if

t

PO =Tipo =% | ds ToolpleP),

We shall denote the solution by ¢(t) = U;¢,, which is justified by the following existence
and uniqueness result:
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Proposition II1.4.5. Consider T,x > 0, ly < =T and ¢, € C®(RY, e(ly)) with @9 = 0. For
I =1y+T and 9 as in Proposition |I1.3.1| there is a unique mild solution ¢ € Z3R%e(l)) to

Equation (IL4):
K
dhp=H =59 9(0)=po.
We write U, g := @(t) and we have the following bounds:

CINT, c oo (Rd;
0< Ut(PO < Tt(POl ”{Ut(PO}tE[O,T]||$S(Rd;e(l)) <e I{Te o} rero,mllcr (REe(1)) |

Proof. We define the map .#(¢) = ¢, where ¢ is the solution to
K
dhp=(A~S),  @(0)=gp.

If g < =T, then (T;9o)se[o,7] € Z%R%e(l)) for I = Iy + T, and thus a slight adaptation of
the arguments for Proposition [II.3.1|shows that .# satisfies

7: L2RGe(l) » L2RGe(l), 1T (@)lgomeseny < eIt

for some C > 0. Moreover, for positive i this map satisfies the bound 0 < .7 (¢)(t) < T; o,
so in particular we can bound || ({)llcrerase(r)) < IHTi@o}tefo,T1llcroRe(r))- Now, define
¢°(t,x) = T,py(x) and then iteratively ™ = .#(¢™!) for m > 1. This means that ¢ solves
the equation:

at(pm — %(p _ g(pm—lqom'
Hence our a-priori bounds guarantee that

sup " | s raeq) < e P Tler i,

m
By compact embedding of .Z°(R%;e(l)) ¢ Z°(R%e(l’)) for C < 9, I’ < we obtain conver-
gence of a subsequence in the latter space. The regularity ensures that the limit point is
indeed a solution to Equation (II.4). The uniqueness of such a fixed-point follows from
the fact that the difference z = ¢p—1 of two solutions ¢ and 1 solves the well posed linear

equation: d;z = (%”+§(g0+1,b))z with z(0) = 0, and thus z(t) =0, V¢ > 0. O

We proceed by proving some implications between Properties (i) — (iii) of Defini-

tion [[L2.111

Lemma I1.4.6. In Definition|lI.2.11|the following implications hold between the three prop-
erties:

(ii) = (i), (ii) & (iii).

Proof. (ii) = (i): Consider U.gq as in point (i) of Definition [[I.2.11}, which is well de-
fined in view of Proposition |[1.4.5 An application of Itd’s formula and Property (ii)
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of Definition with ¢@.(s) = U,_s@,, guarantee that for any F € C%(R), and for
f(r)=5(Ur—rpo)*:

t
F((u(t), o)) = F((puls), Ut—s¢0>)+j F'((p(r), Ur—r o)) (plr), f (r)) dr

t t
“3 | P, Ueroon ™) [ G, Uipo a0,
where d(M;po’f)r = (u(r), k(Uy_r0)?ydr = (u(r),2f (r)ydr. We apply this for F(x) =e™*, so
that F” = —F” and the two Lebesgue integrals cancel. Since F’ is bounded for posmve X
the stochastic integral is a true martingale and we deduce property (7).

(ii) = (iii): Let p e Zpand t >0and let 0 =t <t <...<t; =t,n €N, be a sequence
of partitions of [0, t] with maxy<,_1 A} := maxg<,_; (t/,,~t;) — 0. Then

(H(t), 9)=(p(0), @)

n—

=) [(<ptE ) )=(Er), Tz @)) + (e, Tz =)
=0
1

—

:‘P\“

T n@—
(vt M)+ et =)

teat

S

=0

We start by studying the second term on the right-hand side:

=l Tarp—¢
ZAZ<I’1(tI’(1)'kA—n>
k=0 k
-1
Z[ ﬂ—%@w (utg), 2 @)
k=0

=R, +ZAk(y ), A ).

By continuity of y the second term on the right-hand side of the latter equation converges
almost surely to the Riemann integral fot (u(r), 7 @)dr. Moreover, from the characteriza-

tion (i) we get E[(s)(1)] = (4(0), T.$9) and
E[i(s)(#9)2] < (4(0), (Ts(# ) >+f<y | e?)ar

which is uniformly bounded in s € [0,f]. So the sequence is uniformly integrable and
converges also in L! and not just almost surely. Moreover,

n—1

EllR.1 5 ) Af{po, T (A} (Tayp-9)-# ),
k=0

and since Lemmal(ll.3.6[implies that max;,,_; (AZ)‘1 (Tarp—¢) converges to 7 ¢ in € (R%e(1))
for some I € R and 9 > 0 (so in particular uniformly), it follows from Proposition [lI.3.1
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and the assumption (p, e(I)) < oo for all / € R that [E[|R,|] — 0. Thus, we showed that
t
LY = (o) ) = (0,0 | () )
n-1 !
- 5 g o),

and the convergence is in L!. By taking partitions that contain s € [0,¢) and using the
martingale property of M;p’o we get [E[LY(t)|.%] = L?(s), i.e. L? is a martingale. By the
same arguments that we used to show the uniform integrability above, L?(t) is square
integrable for all t+ > 0. To derive the quadratic variation we use again a sequence of
partitions containing s € [0, t) and obtain

B[L?(t)2-L (5)2| 7| = E[(L? (1)-L?(5))*| 7]

. ,0 ,0 2
=lim ) E[(ME g )-ME () 7]
kit], >
. tl?—f—l 2
“tim Y [ [ . (1 oy ar] 7
kitg >s ty

_ IE[K Ltw(r), (p2>dr'95].

Since the process KL;(}J(T),(p2>dT is increasing and predictable, it must be equal to (L?).

(1ii) = (ii): Let t > 0, g € Z,, and let f: [0,t] — &, be a piecewise constant func-
tion in time (it might seem more natural to take f continuous, but since we did not equip
9 » with a topology this has no clear meaning). We write ¢ for the solution to the back-
ward equation

(Ds+)p=f,  @(t)=po,

which is given by @(s) = T;,_spo + Lt T,_sf (r)dr. Note that by assumption ¢(r) € Z,, for
allr <t. For0<s <t let0=t] <t/ <...<t;=s,neN,bea sequence of partitions
of [0,s] with max<,_; A} := maxg<,_1(t},,~t) — 0. Similarly to the computation in the
step “(ii) = (iii)” we can decompose:

with
R, = ZJ; [<ﬂ(r): AP AN, (AN (Tar—id)p(t], 1))

), rt"f(f»—(M(”)rf(f))]dr.



42 II. A RANDOM WALK IN A RANDOM ENVIRONMENT

As before we see that R,, converges to zero in L!, and therefore

s <y<s>,qo<s>>—<u<o>,<p<o>>—f0 (ulr), £ (1) dr

is a martingale. Square integrability and the right form of the quadratic variation are
shown again by similar arguments as in the previous step.

By density of 2, it follows that M, of is a martingale on [0, ¢] with the required
quadratic variation for any @, € C°(R%) and f € C([0,t]; ¢ (R?)) for ¢ > 0. This concludes
the proof. O

Characterization (i) of Definition [[I.2.11{enables us to deduce the uniqueness in law
and then to conclude the proof of the equivalence of the different characterizations in

Definition [L2.11}

Proof of Lemmal([I.2.12] First, we claim that uniqueness in law follows from Property
(i) of Definition m Indeed, we have for 0 < s < t and ¢ € CX(R?), ¢ > 0 that
IE[e‘<”(t)'(P>|fis] = ¢~#)Ui=?) For s = 0 we can use the Laplace transform and the linearity
of @ — (u(t), ) to deduce that the law of ((u(t), 1),...,{p(t), ¢,)) is uniquely determined
by (i) whenever ¢, ..., ¢, are positive functions in C®°(R%). By a monotone class argu-
ment (cf. [DMS93, Lemma 3.2.5]) the law of u(t) is unique. We then see inductively that
the finite-dimensional distributions of p = {u(t)};>¢ are unique, and thus that the law of
M is unique.

It remains to show the implication (i) = (ii) to conclude the proof of the equivalence
of the characterizations in Definition But we showed in Lemma that there
exists a process satisfying (i), and in Lemma [[[.4.6] we showed that then it must also
satisfy (7). And since we just saw that there is uniqueness in law for processes satisfying
(i) and since Property (i) only depends on the law and it holds for one process satisfying
(i), it must hold for all processes satisfying (i) (strictly speaking LemmaII.4.4|only gives
the existence for x = 2v € (0,1], but see Section [[I.5.1|below for general «). O

Now the convergence of the sequence {y"},cn is an easy consequence:

Proof of Theorem|I1.2.13] This follows from the characterization of the limit points from
Lemma [[I.4.4{together with the uniqueness result from Lemma [[I.2.12 ]

II.5 Variations on the theme

II1.5.1 Mixing with a classical superprocess

In Section[[T.4.1]we constructed the rSBM of parameter « = 2v, for v defined via Assump-
tion which leads to the restriction v € (0, %] This section is devoted to constructing
the rSBM for arbitrary x > 0. We do so by means of an interpolation between the rSBM
and a Dawson-Watanabe superprocess (cf. [Eth00, Chapter 1]). Let W be the generating
function of a discrete finite positive measure W(s) =) ;- prs (s0 pr > 0and ¥ py < )



II.5. VARIATIONS ON THE THEME 43

and let £" be a controlled random environment associated to a parameter v = [E[®, ]
(recall Notation [II1.2.6]). We consider the quenched generator:

Ly E)m =) e [A”F(ﬂ) +(&2)+(, x)dg (1)

erii,

+(ED)_(w, x)d; F(17) + Zpkd,ﬂ"‘”zs(q)]
k>0

with the notation dXF(17) = F(11°F)~F(1), where for k > —1 we write n%*(y) = (M(@)+k1(@))+-

Assumption II.5.1 (On the Moment generating function). We assume that W’'(1) =1 (crit-
ical branching, i.e. the expected number of offsprings in one branching/killing event is 1) and
we write 6> = W (1) for the variance of the offspring distribution.

Now we introduce the associated process. The construction of the process 1" is anal-
ogous to the case without W, which is treated in Appendix

Definition I1.5.2. Let p > d/2 and let V be a moment generating function satisfying the
previous assumptions. Consider a controlled random environment £" associated to a parameter
v e (0, %] Let IPfI‘jt'" = 1P><IPf‘f,’” be the measure on () xID([0, +00); E) such that for fixed w € Q,
under the measure ]P\‘f,’” the canonical process on ID([0, +o0); E) is the Markov process ti"(w, )
started in 11"(0) = |n° |1(oy(x) associated to the generator fé‘,”” defined as above. To i" we
associate the measure valued process

(@t p)= ) a"(wtx)p()n’ |

erﬁ

for any bounded @: Z% — R. With this definition i" is defined on Q x ID([0, T];.# (R?)) with
the law induced by Py

Remark I1.5.3. As in Remark |II.4.1| we see that for fixed w € Q and any @ € L®(Z%;¢(1))
w,n

with 1 € R the process M;"?(s) := i (w)(T" s0)=T/'@(0) is a martingale (under Py~ and with
respect to the filtration F“" generated by p"(w,-)), with predictable quadratic variation:

S
(M) = L Y (@)(n IV Tl + (n0|E +0?) (T, ) ) dr.

In view of this Remark, we can follow the discussion of Section [[I.4.1| to deduce the
following result (cf. Corollary [lI.2.16).

Proposition I1.5.4. The sequence of measures Il’fﬁt’” as in Definition converge weakly as
measures on Q x D([0, T];.#(R?)) to the measure IP x P associated to a rSBM of parameter

K= 1{0:%}21/4—02, in the sense of Theorem|I1.2.13|and Corollary|l1.2.16

In particular the rSBM is also the scaling limit of critical branching random walks
whose branching rates are perturbed by small random potentials.
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I1.5.2 Killed rfSBM

In this section we introduce a rSBM with Dirichlet boundary conditions. For arbitrary
L € 2N, we want to consider particles that are spatially distributed on the lattice

AL={xez?: xe[-L/2,L/2])%).

We will make use of the tools for discrete paracontrolled calculus with Dirichlet bound-
ary conditions from Section where for convenience we used the lattice AL = {x €
Z% . x €[0,L]%). Of course, since L € 2N, up to translation the two lattices are the same
and all the results of that section remain valid. Define in addition the space of functions

L d
El = {17 € Né\" :n(x)=0,Vx e aAﬁ}, while previously we worked only with E = (N%”)O.
We work in the following framework.

Assumption I1.5.5. Let {&"} be a random environment on a probability (Q, #,IP) satisfying
Assumption Assume in addition (up to changing probability space: see Lemmata
and that both Assumption and the results of Lemma are satisfied. Then
define:

& (w,x) = EM(w, x)—cy (@)1 {g=2)-

Let u(w, t,x) be the (random) stochastic process constructed in in the case

and let u"(w, t) be the measure associated to it. Such process lives on:
(QxID([0,00); E), Z, P < P2,

where P is the quenched law of u", conditional on the environment £"(w), for w € Q.

Observe that previously any p > % was allowed. We restrict to p = %, since we are only

interested in the fluctuations.

The process u” does not keep track of the individual particles (all particles are iden-
tical, only their position matters). Instead, consider a labeled process that distinguishes
individual particles in which all particles that leave the box (~L/2,L/2)" are killed. Hence
introduce the space EJ}, = UmeN(%Zd U {A})", where | | denotes the disjoint union, en-
dowed with the discrete topology. Here A is a cemetery state. For 1 € E[}, we write
dim(y) =mifn e (%Zd U {A})". A rigorous construction of the process below follows as

in Appendix

Definition I1.5.6. Fix w € Q and X{ € E}}, with dim(X{) = [n?],(X{); = 0,i = 1...[n°].
Let X"(w) be the Markov jump process on E|, with initial condition X"(0) = X and with

generator:
dim(#) '
28 =Y Azl Y (F")-Fon)
i=1 ly—r;l=n""

+ (7)o, 5) (F () =F (1) J+(£")-(, ni)(P(ni”)—F<11))],
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where _

W;Hy =1;(1-13(G)+y 1), ’7}’+ =11 [0,dim(y)] (/) +7i Ldim(y)+1) ()
as well as ;1]1."— = 1i(1=1((j))+AL;)(j), on the domain D(£5,) of functions F € Cy(E[},) is
such that the right hand-side is lies in Cy(E]}, ). We can then redefine the process

W'(w,t,x) = #li € (1,...,dim(X" (@, 1))} 1 X(w,t) = x)

which has the same quenched law IP“"" as the process above.
Similarly, for i € N consider stopping times

oM (w) = inf{t > 0: dim(X"(w, 1)) > i and X!'(t) € IAL),

1

so that we can define X! (w, t) € El, by dim(X"(w,t)) = dim(X"™(w, t)) and

X" (w, t) = X (w, 1)1

1

+ Al

nL n,L
{t<T1' (w)} i

{t""(w)<t})

Then as before construct u™ taking values in E* by

ulw, t,x) = #{i e (1,...,dim(X"w, 1)} : X"Hw,t)=x),  Vt>0,xeZ
n

1

Write . ((~L/2,L/2)%) for the set of all finite positive measures on (-L/2, L/2)* and
for y, v in this space we say p > v if also p—v is a positive measure. The following result is
now easy to verify (cf. Appendix|A.I).

Lemma I1.5.7. For any w € Q and L € 2N the process t — uL(w,t,-) is a Markov process
with paths in ID([0, +oo); EL), associated to the generator L Cy(EL) — Cy(EL) defined via:

LE =) nx'[znz(F(n’“Hy)—P(n))

xeAL\IAL x~y

+(&)+ (@, )[F () =F ()] + (&)~ (w, )[F (117 )=F ()]},

where for ne E"we define ’/IXH}}(Z) = (W(z)_l{z:x}"'l{z:y, yeBA%})+ and I/Ixi(z) = (ﬂ(z)il{z:x})+-

We associate to u™(w, t) a measure:
1w, t)(@) = ZLn_" JuHw, t,x)p(x), VYo eC((-L/2,L/2)%). (11.18)
xeAL
Finally:
' w, t) < " w,t) < - < (w,t) Yo eQ,t>0. (I1.19)

When studying the convergence of the process p'"L, special care has to be taken with
regard to what happens on the boundary of the box. Indeed a function ¢ € C®([-L/2,L/2]%)
(i.e. smooth in the interior with all derivatives continuous on the entire box) is not
smooth in the scale of spaces B;,’ff, for [ € {d,n} that are introduced in Section and
encode, respectively, Dirichlet and Neumann boundary conditions. In fact such ¢ does
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not satisfy the required boundary conditions. For this reason we consider only vague
convergence for the processes L. We write

My = (A ((-L/2,1/2)),7,)

for the set of finite positive measures on (—L/2,L/2)? endowed with the vague topology 7,
(cf. [DMS93) Section 3)), i.e. p" — pin AL if u"(@) — u(e), for all ¢ € Co((-L/2,L/2)%),
the space of continuous functions that vanish on the boundary of the box (the latter is
a Banach space, when endowed with the uniform norm). This topology is convenient
because sets of the form Kp C .//ZOL, with K = {u € //ZOL : (1) < R} are compact. The
observation below now follows from a short calculation.

Remark I1.5.8. For a > 0 there is a continuous embedding of Banach spaces
¢ ([-L/2,1/2]%) = Co((~L/2,L/2)%).

Moreover, if {u"},en C //ZOL satisfies that for some R > 0, {y"*},en C R, then " — p in //ZOL is
equivalent to:

p(@) = ulp), Ve eCX((-L/2,L/2)%).

We study the convergence of the killed process. First observe that one can bound its
total mass locally uniformly in time.

Lemma I1.5.9. For all w € Q) it holds that:

lim sup IP“)’"( sup p"Hw,t)(1) > R) =0, sup sup [|T/"*“1||o, < +oo.
R—co ¢ te[0,T] n te[0,T]

Proof. The first bound follows from comparison with the process on the whole real line
(i.e. Equation (II.19))), see Corollary The second bound follows from Theorem
IV.3.4|because the antisymmetric extension of 1 is bounded: |IT,1(-)| = 1. Hence by com-
parison and the discussion preceding Equation (IV.30): [|T/"*"“ 1|l < [[@(t)|leo, with @
solving:

w = N"w+TL(E" (w)—cp(w)1g=0)) W, w(0) = 1.

O]

Lemma I1.5.10. For every w € Q the sequence {t > p"*(w,t)},en is tight in the space
ID([O,oo);///OL). Any limit point ut(w) lies in C([O,oo);j/oL).

Proof. We want to apply Jakubowski’s tightness criterion [DMS93| Theorem 3.6.4]. The
sequence u'! satisfies the compact containment condition in view of Lemma The
tightness of the entire process is guaranteed if we prove that the sequence {t — u™(t)(¢)}en
is tight in ID([0, T];R) for any ¢ € C®((~L/2,L/2)%). Here we can follow the calculation
of Lemma [[I.4.2] (only simpler, since we do not need weights), using the results from
Theorem The continuity of the limit points is shown as in

O
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One can characterize the limit points of {y"},cn in a similar way as the rough super-
Brownian motion, and for that purpose we need to solve the following equation (for any
w € Q,Le?2N):

dip = L%’gf‘i(p—vqoz, ©(0) =g, @(t,x)=0, ¥(t,x) € (0, T] x d[-L/2,L/2]". (I1.20)

We say that ¢ is a solution to (II.20) if
t
(1) =T" g0 fo T2 (9P ()] ds.

Lemma I1.5.11. Fix w € Q,L € 2N. For T > 0 and @, € C®((—~L/2,L/2)%) with ¢y > 0 and
9 as in Theorem there exists a unique solution ¢ € %S([—L/l L/2]%) to (I1.20) and the
following bounds hold:

bLw CINT o ero il poo d
0<@(t) < T, o, ”‘P”%"([fuz,uz]d) s e,

The proof is analogous to the one of Proposition [lI.4.5| As before we write Utb’L’w(po
for the solution ¢(t) to Equation (I1.20) started in ¢,. We thus arrive at the following
n,L}

description of the limit points of {y"""},cn.

Theorem I1.5.12. For any w € Q) and L € 2N, under Assumption there exists pl(w) €
C(RZO;///OL) such that y"(w) — pl(w) in distribution in ID(RZO;///OL). The process p*(w)
is the unique (in law) process in C(RZO;///OL) which satisfies one (and then all) of the follow-
ing equivalent properties with F“ = {#’};>¢ being the usual augmentation of the filtration
generated by pt(w).

(i) Foranyt >0 and @y e CX((-L/2,L/2)%), @y > 0 and for Uf’L’w(pO the solution to Equa-
tion (I1.20) with initial condition ¢, the process

NP (s) = e HH@DVL90) 5 e0,1]
is a bounded continuous F“—martingale.

(ii) Forany ¢ € 9y the process:

K1) = (4w, f);(P>—<50r§0>—J; G, r), 2 pydr,  te[0,T]

is a continuous .F “—martingale, square integrable on [0, T] for all T > 0, with quadratic
variation

t
() =2v [ (o, g?)ar

Proof. The proof is almost identical to the one of Theorem [[1.2.13| The main difference is
that here we only test against functions with zero boundary conditions and thus use the
results from Section O
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We call the above process the killed rSBM on (—%, %)d. Note that one can interpret
the killed rSBM as an element of C([0, o0);.Z (R%)) extending it by zero, i.e. pl(w,t,A) =
p(w,t, AN (-L/2, L/2)%) for any measurable A C R?. This allows us to couple infinitely
many killed rSBMs with a rSBM on R so that they are ordered in the natural way.

Corollary I1.5.13. For any w € (), under Assumption there exists a process

(pl(w, ) I/‘z(w! ) ]/14(0), .-

taking values in C([0,00);.4 (R?))N (equipped with the product topology) such that u is an
rSBM and pt is a killed rSBM for all L € 2N (all associated to the environment {£"},en), and
such that:

1 (w,t,A) < ptw, t,A) < - < plw, t,A) (IL.21)

for all t > 0 and all Borel sets A C R%.

Proof. The construction (II.18) of 4" and p™* based on the labeled particle system gives
us a coupling (u", ;4”'2, ]A”A, ...) such that for all w € Q)

P2 (w,t,A) < pHaw, t, A) < - < p'(w, 1, A)

for all t > 0 and all Borel sets A C R?, where as above we extend y’*! to R? by setting it to
zero outside of (—%, %)d (cf. Equation (II.19)). By Theorem mone obtains tightness
of the finite-dimensional projections (u", u?,..., u™*) for L € 2N, and this gives tightness
of the whole sequence in the product topology. Moreover, for any subsequential limit
(u,p?, pt,...), pis an rSBM and p! is a killed rSBM on (—%, Ij)d. It is however a little subtle
to obtain the ordering (II.21), because we only showed tightness in the vague topology on
J/ZOL for the p™* component. So we introduce suitable cut-off functions to show that the
ordering is preserved along any (subsequential) limit: let x € C°((—L/2, L/2)%), x™ >0
such that x” = 1 on a sequence of compact sets K™ which increase to (~L/2,L/2)% as
m — oco. Note that on compact sets the sequence p™' converges weakly (and not just
vaguely). We then estimate (in view of Equation ([I.19)) for ¢ € C,(RY) with ¢ > 0:
(), @) = lim GuH (1), @ x™) = lim lim (™" (), x™)

—>00 H—>00

< lim (u(t), @ - x™) = (u(t), ),

and similarly one obtains (ul(t), @) < (u!'(t), @) for L < L. Since a signed measure that
has a positive integral against every positive continuous function must be positive, our
claim follows. ]

II.6 Properties of the rough superBrownian motion

I1.6.1 Scaling Limit as SPDE in d=1

In this section we characterize the rSBM in dimension d = 1 as the solution to the SPDE
(I.5) in the sense of Definition [I1.2.18] For that purpose we first show that the random
measure p, admits a density with respect to the Lebesgue measure.
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Lemma I1.6.1. Let u be a one-dimensional rSBM of parameter v. For any p < 1/2, p €
[1,2/(B+1)) and I € R, we have:

p
]E[”m|Lp([0,T];B§,z(R:€<l))>] =

Proof. Consider t > 0 and ¢ € C®(R). By Point (ii) of Definition the process
Mtq)(s) = (u(s), Ti_s@) — (u(0), T;p), s € [0,t], is a continuous square integrable martingale
with quadratic variation (Mfo)s = L)s(;/t(r),(Tt_,qo)z)dr. Using the moment estimates of
Lemma which by Fatou’s lemma hold also for the limit y of the sequence {y"},cn,
this martingale property extends to ¢ € €°(R;e(k)) for arbitrary k € R and 9 > 0. In
particular, for such ¢ we get

t
E[(u(t), 9)*] < L T,((Ter)*)(0) dr + (T;0)*(0).
Now note that

E[llﬂ(t)lgﬁl(r{;e(l))] - Z 2%P J E[(pu(t), Kj(x - N2]e 2 gy,

j>-1
where K;(x) = ffﬁlpj(k) (so that for j > 0: Kj(x) = 219K (2/x)) so we apply the estimate
above to ¢ = K;(- —x):
t

E[(p(t), Kj(x—))] sfo T, ((Ti—r K (x—))*)(0)dr+(T,K;(x—))*(0). (I1.22)

We start by proving that [|K;(x —)llga(R,e(k)) S 2/%e~k” for any k > 0. Indeed, using that
K; is an even function and writing Ki—j = 20=DdK,(277].)« K if i,j > 0 (appropriately
adapting the definition via K_; if i = -1 or j = —1), we have:

1A (K (x = -))e(k)llLyr) = 1yiji<1) j 1K+ K (- p)le 91 dy
R
= 1{|i—j|S1} L |Ki—j (y)|e—k|x—2‘]y|(r dy
S Hi-fst J;{ Ri_j(@)|eF> " dy < 1y iy,

where in the last step we used that |Ki_]-(y)| < e 2B and 2779 < 29 < 2,
Now, for C < 0 satisfying the assumptions of Proposition [II.3.1|and for p € [1,00] and
sufficiently small € > 0:

T K (x — )|eze(r: ST Ki(x =) -1,
|| s ]( )”%I,(R,e(k+s)) ” s ]( )”Z”]l P Rie(kss)

. 1 -
< T+ =2602 kil

To control the first term on the right hand side of (I1.22), we apply the last estimate with
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p =2 and obtain for t € [0,T] and C > -1/2

t
J;T}«T}rKﬂx—JVNO)df

rt
< ”Tr((Tt—rKj(x_’))z)”%’;(R;e(Zk+T))dr
JO
rt
< ”Tr((Tt—rKj(x_'))2)||<511“(R;e(2k+7“))dr
JO
rt _14+2¢e 2
< 2 |I(T—r K (x=)) llge (Rse(2x)) A7
JO
r‘t +2t 2
< > || T, ( _')”cng(R;g(k))dr
uO
rt I+2a C fl klxla 2
S| rmr (25(t-r) T 2 )-dr
JO

~ 92jC p=2klxI? tl—%q)—%—zg 22jC = 2k|x|” tC—Se’
where we used that fot r=%(t —r)"Pdr ~ t1797F for a, f < 1. The second term on the right
hand side of (II.22)) is bounded by

(TeKj(x = )*(0) S I(TKj(x = )2 llge (Rie(2k+27))

< ||Tt1<].(x_.)||%;(R;e(k+T)) < 92jC 4C—1-2¢ ,~2klx|”
Note that this estimate is much worse than the first one (because t € [0, T] is bounded
above). We plug both those estimates into ([I.22) and set { = —f — ¢ and k > —I to obtain
IE[llpt (I? ] < t7P=173¢ for B < 1/2 and for I € R. So finally for p €[1,2)

T
(-B-1-3¢)L
P flwm|@2,]m<Lt L,

and now it suffices to note that there exists ¢ > 0 with (- — 1 —3¢)5 > -1 if and only if
p<2/(p+1). O

B
B, (R

Corollary I1.6.2. In the setting of Proposition[[I.6.1|we have almost surely
VE € L2([0, T, L (R;e(1)))
forall T>0andleR.

Proof of Theorem We follow the approach of Konno and Shiga [KS88]. Applying
Corollary for x € (0,1/2] or Proposition for ¥ > 1/2, we obtain an SBM in
static random environment y, which is a process on (Q xID([0, T];.# (R)),.#,P=<IP“), with
7 being the product sigma algebra. Enlarging the probability space, we can moreover
assume that the process is defined on (Q x Q,.% ®.%,P < IP“) such that the probability
space (Q,.#,IP) supports a space-time white noise & which is independent of £&. More
precisely, we are given a map & : QxQ — .7/ (R x[0, T]) which has the law of space-time
white noise and does not depend on Q, i.e. &(w,®) = &(@).
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For w € Q) let {#{"}c[0,7] be the usual augmentation of the (random) filtration gener-
ated by p(w,-) and &. For almost all w € Q the collection of martingales t > L?(w, t) for t €
[0,T], ¢ € Zw defines a (random) worthy orthogonal martingale measure M(w, dt, dx)
in the sense of [Wal86]], with quadratic variation Q(A x B x [s, t J u(r)(A N B)dr for all

Borel sets A, B C R (first we define Q(¢ x i X [s,t]) = f (u(r) (pgb)dr for ¢, € 7,40, then
we use Lemma [.6.1|with p =1 and € (0,1/2) to extend the quadratic variation and the
martingales to indicator functions of Borel sets). We can thus build a space-time white
noise & by defining for ¢ € L?([0, T] xR):

- S, X
f P(s,0)E(w, ds, dx) :=j D oo M@, ds, dx)
[0.T] [0, T]xR

VHl@,5,%)

+ j (P(Sr X)l{y(w,s,x):o}é(dS, dx)
[0,T]xR

By taking conditional expectations with respect to & we see that £ and £ are independent,
and by definition the SBM in static random environment solves the SPDE ([L5).
Conversely, it is straightforward to see that any solution to the SPDE is a SBM in static
random environment of parameter v = x/2. Uniqueness in law of the latter then implies
uniqueness in law of the solution to the SPDE. O]

I1.6.2 Persistence

In this section we study the persistence of the SBM in static random environment y and
we prove Theorem namely that y is super-exponentially persistent. For the proof
we rely on the results of Section where we constructed the rSBM ul with Dirichlet
boundary conditions on the box (~L/2,L/2)%, for integer L € 2N. This process is obtained
from the one considered so far by killing particles that reach the boundary of the box. In
this way, the processes {u!};cx are naturally coupled and satisfy:

ph<ptr <y,
for L; < L,. In particular, the following result holds.

Lemma I1.6.3. Let ji be a YSBM associated to a random environment {E"},eN satisfying As-
sumption There exists a probability space of the form (Q x ID([0, +o0); .# (R%)),.Z, P
IP?) supporting a rSBM p such that y = p in distribution. Moreover () supports a spatial white
noise & and there exists a null set Ny C Q such that:

i Forall w € Njand L € N the random Anderson Hamiltonian associated to & with Dirich-
let boundary conditions on (—L/2, L/2)4, c%”b“i, on the domain .@}fﬂ) is well defined (cf.
[Cv19]] and Section W Moreover, @%ﬁ C C¥((-L/2,L/2)% ) for any 9 < 2—-d/2. Fi-
nally the operator has discrete spectrum. If Ai(w,L) is the largest eigenvalue of (7,
then the associated eigenfunction ey, (1) satisfies ey, (,,1)(x) >0 for all x € (—%, %)d.

i There exist random variables {u"}; cn with values in ID([0, co);.# (R?)) satisfying ' (w,t) <
y“l(a), t)<--- < plw,t) and yL(O) = 0g. Moreover, forallw e N§,Le2Nand p € w

t
Kf (w,1) = (", t>,<p>—<yf~<w,0>,<p>—fo (W (w, 1), B p)dr, >0
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is a continuous centered martingale (w.r.t. the filtration generated by u*(w,-)) with
quadratic variation (Kf(a)))t =2v fot(y(a),r),(p2>dr.

Proof. For the first point see [Cv19] and Lemma|[[V.3.5] The second statement is proved
in Theorem [I1.5.12|and Corollary|I1.5.13 O

Analogously to the previous section and following the notation of Section we
denote with t — Tth’w the semigroup associated to ] for some fixed L,w. Now we
prove that given a nonzero positive ¢ € C°(R%) and A > 0, for almost all w there exists
an L = L(w) with

P( }i_)TOe_tA(yL(w, o), ) = 0) > 0. (I1.23)
This implies Theorem [I1.2.21}]

The reason for working with u! is that the spectrum of the Anderson Hamiltonian on

(~L/2,L/2)% is discrete, and its largest eigenvalue almost surely becomes bigger than A

for L — co. Given this information, (II.23)) follows from a simple martingale convergence
argument, see Corollary [I1.6.6/below.

Remark 11.6.4. For simplicity we only treat the case of a (killed) rSBM with parameter v €
(0,1/2]. For v > 1/2 we need to use the constructions of Section after which we can
follow the same arguments to show persistence.

Let us write A;(w,L) for the largest eigenvalue of the Anderson Hamiltonian J#%
with Dirichlet boundary conditions on (-L/2,L/ 2)4.

Lemma I1.6.5. There exist cy,c, > 0 such that for almost all w € Q):

(i) Ind =1 (by [[Chel4, Lemmata 2.3 and 4.1]):

/\1(a), L)
im ———— =¢.
L—+co log(L)%/3
(i1) In d =2 (by [Cv19, Theorem 10.1]):
,L
Mo, L) _ .

L>te0 log(L)

Corollary I1.6.6. Consider d <2 and A > 0 and let y be an SBM in static random environ-
ment, coupled for all L € N to a killed SBM in static random environment u* on (—%, %)d with
ul < y (as described in Lemma . For almost all w € Q) there exists an Ly(w) > 0 such
that for all L > Lo(w) the killed rSBM p*(w,-) satisfies (I1.23). In particular, for almost all

w € Q) the process u(w,-) is super-exponentially persistent.

Proof. In view of Lemma for almost all w € (O we can choose Ly(w) such that the
largest eigenvalue of the Anderson Hamiltonian A;(w, L) is bigger than A for all L > Ly(w).
Now we fix w such that the above holds true and work conditional on the environment
(we omit @ from the notation to improve the readability). We also fix some L > Ly(w)
and write A; instead of A;(w,L) for the largest eigenvalue. Finally, let e; be the strictly
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positive eigenfunction with ||61||L2((_%'%)d) =1 associated to A;. By Lemma [lI.6.3| we find
for0<s<t:

E[( (1), e).F5] = (b (s), TR ger) = (ut(s), e ey),

and thus the process E(t) = (ul(t), e Mte;), t > 0, is a martingale. Moreover, the variance
of this martingale is bounded uniformly in t. Indeed:

t

1E[|E(t)—E(0)|2] ~ J: T (e M7e)?)(0)dr < L eMdrgl,

where we used that by Lemmal|ll.6.3|we have e; € ‘5‘9((—%, %)d) for some admissible 9 > 0,
and therefore

TP ((e77e1)?)(0) < llerlleoe™ " T, (e e1)(0)

= llerllooe™1"e1 (0) s e~

It follows that E(t) converges almost surely and in L? to a random variable E(co) > 0
as t — oo, and since E[E(c0)] = E(0) = ¢;(0) > 0 we know that E(co) is strictly positive
with positive probability. For ¢ > 0 nonzero with support in (~L/2,L/2)* we show in
Lemma that:

e M uk(t), @) — (e, p)E(c0), ast— oo, in L*(P?) (I1.24)

so that we get from the strict positivity of e; and from the fact that A; > A
P( lim e M k() @) = 00) > P(E(0) > 0) > 0.

This completes the proof.
O

Lemma I1.6.7. In the setting of Corollary let p € %bs and let = @ — ey, p)e;. Then
lim IE“’[le_/\lt(yL(w, t),¢)|2] =0. (I1.25)

Proof. As before we omit the dependence on the realization w of the noise. Using the
martingale (ul(s), T" ,1)), we get

t
IE[IWL(t),w>|2] < TR ()12(0) +J Tf[(T}’_,v,b)z](O)dr. (11.26)
0

Let A, < A; be the second eigenvalue of the Anderson Hamiltonian (the strict inequality
is a consequence of the Krein-Rutman theorem, see also Lemma |[V.3.5). The main idea
is to leverage that:

A
IT 9l < e[z,

since 1 is orthogonal to the first eigenfunction. The only subtlety is that of course the
value of a function in 0 is not controlled by its L> norm. To go from L? to a space of
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continuous functions, we use that for all 9 as in Equation (IL.9) and sufficiently close to
1:

”beH%)S <IT /3f” 54 S ||T7_b/3f||<gfz

<|IT /3f|| q_,<|| Vafllgs < Iflicz,

in view of the regularizing properties of the semigroup T® (which hold with the same
parameters as in Proposition see Theorem and by Besov embedding. We
refer the reader to Section [[V.3|for the definition of Besov spaces with Dirichlet boundary
conditions. For all present purposes these spaces behave identically to their counterpart
on R,

Let us consider the second term in , for t > 2. With the previous estimates, we
bound it as follows:

1 t

JTD[ (T2, 9)°]0) dr+JTh[ (T, 9)*)(0)dr

0

< ||T?,¢||Wdr+f|| (T2 )2l dr
J
0

1
r t
< [ ime, i, dr+f1 MOV )2 dr

0
1 t—1 t

Ai(r-1) -1 2
< I pldre [ DT, i dre [ NI ar
J b
0 1 t—1
t

~
< 62/\2(t—7‘)+/\1rdr < 62/\21‘(1 +e(/\1—2/\2)t+ t) < (62/\2t +e/\1t)(1 + t),
J
0

where we used that for any A € R one can bound Jo eMds < |/1\|(1 +eM + t). Plugging this

estimate into (I1.26]), we obtain

E |€_/\1t<'l/lL(t),lP>|2 S6—2/\11‘62/\2(1‘—1)+e—2/\1t(62)tzt+e/\1t)(1 +t)

<e Mt e 2] 4y,

This proves ([1.25)). O

Remark I1.6.8. The connection of extinction or persistence of a branching particle system to
the largest eigenvalue of the associated Hamiltonian is reminiscent of conditions appearing in
the theory of multi-type Galton-Watson processes: see for example [Har02, Section 2.7]. The
martingale argument in our proof can be traced back at least to Everett and Ulam, as explained
in [[Har51, Theorem 7b].
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I1.7 Stochastic estimates

In this section we prove parts of Lemmalll.2.5} i.e. that a random environment satisfying
Assumption|II.2.1|gives rise to a deterministic environment satisfying Assumption|II.2.4

Lemma I1.7.1. Consider a,e,q> 0 and b > d/2. Under Assumption|l[1.2.1|we have

+E||ln~%?(& < +o0,

g

sup |Elln™ (&), 7.,
np ( )+ ” {(Z‘,i,,p(a))

and the same holds if we replace (£"), with |E"|. Furthermore, for v = E[®, ], the following
convergences hold true in distribution in €~¢(R%; p(a)):

E (&), — v, EM 2" — 2y,

Proof. We prove the result only for (£"),, since then we can treat (£")_ by considering
=& (—D is still a centered random variable). Now note that

Ellr (&) ) = 2 1 Bl HEN ) Ip(a) (017

xeZ4
<E[lo] J (L+1y) 4 dy,
Rd

which is finite whenever aq > d. From here the uniform bound on the expectations fol-
lows by Besov embedding.

Convergence to v is then a consequence of the spatial independence of the noise £",
since it is easy to see that IE[((S’”({”)+—V, (p)] = O(n™%) for all ¢ with compactly supported
Fourier transform. O

The following result is a simpler variant of [MP19, Lemma 5.5] for the case d = 1,
hence we omit the proof.

Lemma I1.7.2. Fix &" satisfying Assumption|[[.2.1, d =1, a,q > 0 and a < 2—d/2. We have:

SUPE[IE" I 0aiy ] < Ho0r  E7ET &,
n

where & is a white noise on R and the convergence holds in distribution in €% *(R;p(a)).

I1.8 Moment estimates

Here we derive uniform bounds for the moments of the processes {y"},cN. As a conven-
tion, in the following we will write [E and P for the expectation and the probability under
the distribution of u” conditional on the realization of the environment.

Lemma II.8.1. Fix q,T > 0. For all n € N, consider the process {u"(t)};>o as in Defini-
tion Consider then ¢": Z% — R with ¢" > 0, @" = = @lza with ¢ € €2 (R%; (1)) for
some | € R. Then

sup sup IE[ly ”)lq]<+oo.
n te[0,T]
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If for all € > 0 there exists an | € R such that sup, ||¢" |l ra;e(1)) < +00, we can bound for all
Y €(0,1):

sup sup tVIE[Lu ”)|‘7] < +o00.

n te[0,T]

Proof. We prove the second estimate, since the first estimate is similar but easier (Lemma|[L.9.1]
below controls ”(Pn”w(z;ﬁ;e(l)) for all 9 < 2 in that case). Also, we assume without loss of
generality that g > 2. As usual, we use the convention of freely increasing the value of [
in the exponential weight. Let us start by recalling that IE[y” ") ] = T/'¢"(0). More-
over, via the assumption on the regularity, Proposition [ and Equation ([.I) from
Lemmauguarantees that for any y € (0,1) there exists a 5 =09(y,q) > 0 such that

Sup ||t d Ttn(f)n”zy/q,{)(zz;e(l)) < +00.
n
By the triangle inequality it thus suffices to prove that for any y > 0:

sup sup tVIE[ly )—Tt”(p”(0)|‘7] < +o00.
n te[0,T]

We can interpret the particle system u" as the superposition of |n?] independent
particle systems, each started with one particle in zero; we write u" = u{ +--- + ”an- To
lighten the notation we assume that n® € N. We then apply Rosenthal’s inequality, [Pet95),
Theorem 2.9] (recall that q > 2) and obtain (with (f,g) = ¥, 74 f(x)g(x)):

E[lw"(#)(@") =T/ " (0)l"] = [ n—p<u;:<t>,<p”>—n-"n”<p”<o>]ﬂ
k=1

<701y B[ul (), "= T 9" (0)l]
k=1

; n-m( (O o) O]

n ME[Kul )"0+ ([ (1), "))

T T e

for the same 6 > 0 and I € R as above. The two scaled expectations are of the same form
IE[l(u?(t), go”)lp], for some p € [1,0]. To control them, we define for p € N the map

mgf(t,x) = n"(l_p)lE[|(”’11(t)'(Pn)|p]'

P solves the discrete PDE

As a consequence of Kolmogorov’s backward equation each m,;

(see also Equation (2.4) in [ABMY00]):

p-1 ‘
Il (t,x) = Al (8, x) + (L), Z( ) xX)ml, " (¢, x),
i=1
with initial condition m’(;',?(O, x) = n®1=P)|p"(x)|P. We claim that this equation has a unique

P, such that for all ¥ > 0 there exists 6 = 6(y,p) > 0

(paracontrolled in d = 2) solution m,
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with sup,, ||m ||$ya Zise(1)) < - Once this is shown, the proof is complete. We proceed
by induction over p. For p =1 we simply have m”’,}(t,x) =T/'¢"(x). For p > 2 we use that
by Lemma [I1.9.2| we have [[n?1=P)|¢"(x )IPII%K zde(y) — 0 for some ¥ > 0 and we assume
that the induction hypothesis holds for all p’ < p. Since it suffices to prove the bound for
small ¥ > 0, we may assume also that x > y. We choose then »’ <  such that for some

o(y',p)>0:

p in

nm < +00.

MV EV PN Zie(1)

sup

Since by Assumptlon_ ||n o( (Se )illg-¢ (24;p(ay) i uniformly bounded in n for all €,a > 0,
the above bound is sufficient to control the product:

p-1
_ z im_p-in
n P(ég)+ m(p”m(p”
i=1

Now the claimed bound for m(p follows from an application of Proposition [II.3.1} For
non-integer g we simply use interpolation between the bounds for p < g < p” with p,p’ €
N. O

< +o00.
MV C(Zise(D))

sup

II.9 Some estimates in Besov spaces

Here we prove some results concerning discrete and continuous Besov spaces. First, we
show that restricting a function to the lattice preserves its regularity.

Lemma I1.9.1. Consider ¢ € €%(R%) for a € (0,c0) \ N. Then the restriction ®lza belongs to
€*(Z2%) and

SUP”(Plzd”%a 74 < ”(PHY,’H R%)-
n ( T’l) (
neN

For the extension of ¢|za we have &"(¢plza) — ¢ in €P(RY) for all p < a.
Proof. Let us write ¢" = ¢|zs. We have to estimate ||A;7(p”||Lm(Zg), and for that purpose

we consider the cases j < j, and j = j, separately. In the first case we have A;.l(p”(x) =

Kj*p(x) = Ajop(x) for x € Zﬁ because supp(p;) C n(-1/2, 1/2)2. Therefore:
IAT @l zg) < 1A @llo(re) < 27l pllge.

For j = j, we have p].”n(-) = 1-0_1(277".), where p_; € .7, is one of the two functions
generating the dyadic partition of unity. By construction we have p]’.’ (x) =1 for x near
the boundary of n(~1/2,1/2)%, since supp(p_;(277-)) € n(-1/2,1/2)?. Let us define ¢, =

fz_dl 0-1 (ijn ) = ﬁ[:dl 0-1 (27jn .)’ so that

1, (x) = F(0) = p_y (277 0) = 1.
erﬁ
To avoid confusion, write:

. ndZWc V)Y

yeZd
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Then, for every monomial M of strictly positive degree we have, since i, is an even
function,

n P, (x)M(x) = (%, M)(0) = Tt (0-1(277) FraM)(0) = M(0) = 0,

erﬁ

where we used that the Fourier transform of a polynomial is supported in 0. Thus for
x € Z4 we get A;fn(p"(x) = @(x)—(Py, *, @)(x), that is:

P10 ) == =gl = Y el o)

1<|k|<|a]

with the usual multi-index notation and where as above we could replace the discrete

convolution #, with the continuous convolution on R¥. Moreover, since ¢ € €%(RY) and
a > 0 is not an integer, we can estimate

L ok ok a

o= ) G el=) <1l llerey

o<lkl<la) L*(RY)

and from here the estimate for the convolution holds by a scaling argument. The conver-
gence then follows by interpolation. O

The following result shows that multiplying a function on Z¢ by n™* for some « > 0
gains regularity and gives convergence to zero under a uniform bound for the norm.

Lemma I1.9.2. Consider z € @ and p € [1,00],a € R and a sequence of functions ¢" €
%’f‘(Zﬁ;z) with uniformly bounded norm:

n
Then for any x > 0 the sequence n™" f" is bounded in C@“*"(Zfl;z):

sup ||n_K(Pn||<g;+x(zg;z) < sup ||fn||(gg(zf;{;z)
n n

and n=*&" f" converges to zero in ‘Kpﬁ(Rd;z)for any f < a+x.

Proof. By definition, we only encounter Littlewood-Paley blocks up to an order j, =~

log,(n). Hence 2/(a*¥=€)y=% < 2j@p~¢ for j < j, and & > 0, from where the claim fol-
lows. O

Now we study the action of discrete gradients. We write ‘KP“(Zﬁ ;z;R?) for the space of
maps ¢: Z% — R? such that each component lies in %;‘(ZZ;Z) with the naturally induced
norm. The following result is analogous to [MP19, Lemma 3.4], hence we omit the proof.

Lemma I1.9.3 ( Lemma 3.4, [MP19]). The discrete gradient

(V" );() = nlp(x+ )= x)
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fori=1,...,d (with {e;}; the standard basis in RY) and the discrete Laplacian
d e e
n _ 2 _1 _ __i
A"p(x)= ;<<p<x+ )20 (x)+(x—1))
1=
satisfy:
||VH(P||<@0§*1(Z§;Z;R¢1) < ||(P||%ﬂpa(zg;z); ”AH(P”chgX*Z(Zg;Z) < ”(P”%ﬂpa(zg;z),

forall @ e R and p € [1, 0], where both estimates hold uniformly in n € N.

59
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I11

The spatial A-Fleming-Viot model

III.1 Introduction

In this chapter we are going to work on the torus T in dimensions d = 1,2. The model
we will consider, called spatial A—Fleming-Viot process, describes a population of two
types distributed in the spatial continuum. Reproductive events will not affect only a
single particle, as is the case in the branching random walk of the previous chapter, but
have an impact on a macroscopic area of diameter approximately %, for n € N. We study
the behaviour of this process in different regimes for n — co.

In Section we describe the SLFV with random selection, the related martingale
problem and a dual process. Rigorous constructions and proofs of all results are de-
ferred to Section Then, in Section [[II.3] we state the main results of this chapter,
namely the convergence to the rSBM in the sparse regime (see Theorem under
Assumptions [[II.3.2|and [III.3.1)), the convergence to the Fisher-KPP equation (see Theo-
rem under Assumptions [[II.3.7] and [[IL.3.8). We also state two technical results
that are at the heart of our proof methods. On the one hand a two-scale regularization
results for the semidiscrete Laplacian (see Theorem [[II.3.13). On the other hand an ap-
proximation result for the Anderson Hamiltonian (see Theorem [[II.3.15), which we will
prove in the upcoming chapter.

Section|[[II.4]is devoted to the proof of the convergence of the Spatial Lambda-Fleming-
Viot process with selection in rough potential to the rSBM in the sparse regime, whereas
in Section we establish the convergence to the Fisher-KPP equation. Section
covers the Schauder estimates.

Notations

Indicate with |A| the Lebesgue measure of a Borel set A C T?. Let B,(x) C R be the ball
(with respect to the Euclidean norm) of volume n~¢ about x. Similarly, let Q,,(x) C R? be
the d-dimensional cube

yean(x)<=>(y—x),~e[ ! 1), Viell,...,d).

“2n’2n

61
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As we work on the d—dimensional torus we denote with we define
B,(x)=Bu(x)/z¢ €T, Q,(x)=Qu(x)/z¢ T

for the projections of Q,, B, on the torus. To make sure that these sets still satisfy the
normalization

|Bn(x)| = |Qn(x)| = n_dr

observe that for every d € N there exists a ¢(d) € N such that

En(o)lan(o)g(_%;%)d, Vn?c(d).

For this reason, throughout this chapter we consider only
nzc(d).

We will not repeat this assumption to avoid an additional burden on the notation. Now,
since Q,(x) for x € Z4 N'T? are disjoint, we can decompose the torus in the disjoint union

T? = U Qu(x).

xeZiNTH

For integrable w: T — R define I, w(x) as an average integral of w over B, (x), that is

1
Mio)= | RS i uildy

Since characteristic functions normalized to integrate to 1 enter the calculations repeat-

edly, for a set A we write:

xalx)= |—1A(X)-

Al

In the special case of balls and cubes we additionally define

xnx):= g, )(x),  Xalk) = X0 k) 1= Fraxn(k) = Fraxu(k), VxeT! keZt,
xo,(x):=n11g 0x),  Xo,(k)=Xo(n k)= Fraxg, (k) = Fraxo, (k), VxeT?, kez’.

Observe that in order to obtain the identity between the Fourier transform on the torus
and in the full space, we have used that n > c(d).
A special role will be played by the semidiscrete Laplace operator .o7,;:

2 _ — 2 4
Gy(p)(x)=n J€3,,(x) J(Bn(y) J[;B,l(z) J(B”(r)q)(s) @(x)dsdrdzdy =n (Hn(p (p)(x). (IIL.1)

Such an operator is a Fourier multiplier with

Ay =8,(D),  S,(k)=n*(X*(nk)-1).
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II1.2 The spatial A-Fleming-Viot process in a random environ-
ment

We now describe the Spatial Lambda-Fleming-Viot process. In addition to the original
neutral process we consider the effect of a randomly chosen spatially inhomogeneous
selection. We consider a population that presents two genetic types, a and A. At each
time t > 0, X' is a random function such that

X{'(x) = proportion of individuals of type a at time ¢ and at position x.

The dynamics of the Spatial Lambda-Fleming-Viot model are determined by repro-
duction events. In order to incorporate selection, we distinguish two types of reproduc-
tion events, neutral and selective. These events are driven by independent Poisson point
processes. In simple terms

Neutral event: Both types have the same chance of reproducing,

Selective event: One of the two types is more likely to reproduce than the other.

The strength, and the direction of the selection are encoded respectively by the magni-
tude and sign of a random function s,(w). The function s, should satisfy the following
requirements.

Assumption III.2.1. Consider a probability space (Q),.%#,P) and fix n € N. We assume that
s, is a measurable map
5,1 Q — L®(T%R),

such that:
ls,(w, %) <1, VYweQ,xeT"

Conditional on the realization s,(w) of the environment, the process X"(w) will be
a Markov process. Its dynamics are defined below, deferring some technical steps re-
garding the probability space on which the process is defined until Section We
write:
M = {w: T - [0,1], w measurable}.

Definition III.2.2 (Spatial A-Fleming-Viot process with random selection). Fix n € N,u e
(0,1) and consider s, and Q satisfying Assumption |[11.2.1/and X™° € M. Define the process
X" on the probability space

(QQ xID([0, 0); M), F ® B(ID([0, 00); M)), IP < P"),
so that for every w € Q) it holds that

i) The space (ID([0, c0); M),IP“"") supports a pair of independent Poisson point processes
2% gnd 113! on R, x T¢ with intensity measures dt ® (1 — |s,(w,x)[)dx and dt ®
s, (w, x)|dx respectively.
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ii) The random process R, 3 t +— X['(w) is the canonical process on ID([0,00); M). It is
the Markov process with law P“" started in X™° with values in M associated to the
generator

L(n,s,(w),u): Cp(M;R) — Cyp(M;R)
(see Lemmal[I.8.2for its construction), that can be described by the following dynamics.

1. If (t,x) e ITZ%Y, a neutral event occurs at time t in the ball B, (x), namely:

(a) Choose a parental location y uniformly in B, (x).

(b) Choose the parental type p € {a, A\} according to the distribution
Plp=a] =T X (w,y), Plp=R]=1-TLX{ (,y).

(c) A proportion u of the population within B, (x) dies and is replaced by offspring
with type p. Therefore, for each point z € B, (x),

X (w,2) = Xi' (@, 2)(1 = 1) + W) (p=g)-

2. If (t,x) € Hﬁj’l, a selective event occurs in the ball B,,(x), namely:

(a) Choose two parental locations v,y independently, uniformly in B, (x).

(b) Choose the two parental types, po, p1, independently, according to
Plp; =a] =T X (w,9:), Plpi = R]=1-THX (w,9:).

(c) A proportion u of the population within B, (x) dies and is replaced by an off-
spring with type chosen as follows:

i. If s,(w,x) <0, their type is set to be a if po = p; = a, and R otherwise.
Thus for each z € B,(x)

th(w!x) =(1 _u)th—(w’Z) T UX {pg=p,=a}-

ii. If s,(w,x) > 0, their type is set to be a if pg = p; = a or py # p; and N
otherwise, so that for each z € B,,(x),

X (w,2) = (1 =W)X (w,2) + W(1 = X, =p,=A))-

Remark II1.2.3. In the original SLFV process the probabilities at points 1.b, 2.b of the defini-
tion do not depend on the local average T12X,_(y). Instead they depended only on the evaluation
at the exact point X;_(y). Introducing the local average is a mathematical simplification of the
model: the main implication is that the operator S, considered in Theorem [[I1.3.15| will be
selfadjoint.

Remark I11.2.4. In Section |[1I.8.1| we construct only the Markov jump process X" (w). The
Poisson point processes mentioned in Definition |[11.2.2|are not described explicitly, but can be
reconstructed from the jump times and jump locations.
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Most of the arguments we use take advantage of the martingale representation of
the process. We record this representation as a lemma. The proof can be found in Sec-
tion [lI1.8.1} For a function ¢: [0, c0) — R we write

Pt,s = Pt — Ps-

Lemma IIL.2.5. Fix w € Q) and X" the SLFV as in the previous definition. For every ¢ €
L=(T%) the process t > (X["(w), @) satisfies the following martingale problem, for t > s> 0

t
i@ p) = | (1)@ )

S

(M5 (@)(T X} (@)~ (T X)) )], @) dr + M ()

where M{' (@) is the increment of a square integrable martingale with predictable quadratic
variation given by

t
(M"(@)); = un -Mjo<<1+sn<w>>H2X:1<w>,<Hn<p>2—z<nn<p>(nn<Xf<w><p>)>

(X (@)p)) 1)
~(su(@) (T X 7 (@), () = 2(T T, ) (T (X} (@) ) )y dr-

II1.3 Scaling limits and main results

ITI.3.1 Sparse regime

First, we consider a scaling regime in which the part of the population of type a is rare,
which means that X}’ is very close to 0. To quantify what we mean with "close to zero",
we introduce a smallness parameter p > 0. We assume that the initial condition X" is of
order n™? and we will work under the following, mostly technical, assumptions on the
parameter p.

Assumption II1.3.1 (Sparsity). Fix any

_3d
0=

and a sequence X™° € M such that for some Y° € .4/ (T?)

lim n°X™0 = Y% in . (T?).

n—oo

Our selection coefficient will converge to space white noise, similarly to what we have
done in the previous chapter. To obtain a non-trivial scaling limit in dimension d = 2,
renormalisation has to be taken into account. Hence we define c,, as

A

ol
= Z X k). (II1.2)

kez?

The assumptions on the noise are summarized in what follows.
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Assumption III.3.2 (White noise scaling). Fix d = 1 or 2 and consider a probability space
(Q, Z,P) supporting for any n € N a sequence of i.i.d. random variables {Z,,(x)} 74 satisfying:

]E[Z,f(x)] =1, Z,(wx)€(-2,2), forall xeZ%, weQ.
Then define
Sulw,v) =Z,(w,x) - n_%cnl{dzz}, ifyeQ,(x), Vo eQ,xeT?

and write:

Ed(w,x) = n%sn(w,x), EMw,x) = & (@, x) + ¢y 1 (g=2)-

Under appropriate scaling, we will prove that the process X" converges to a rough
superBrownian motion. First, we recall the Anderson Hamiltonian on the torus, and its
relationship to our setting.

Lemma I11.3.3. Let (Q,.%,P) be a probability space supporting a white noise &: QO — .'(T%).
For almost all w € Q) there exists an operator

A 9, CC(T - (T,
with a dense domain 2,, C C(T?), such that

A = lim | o, +TI5(E" = ¢y 1 1amp)TI5 | = VoA + &,

n—-oo

with v defined by:

1 1
vo=73 in d=1, Vo= in d=2.

The limit is taken in distribution, with &" as in Assumption|l11.3.2} The precise meaning of
the limit is provided in Theorem|[11.3.15)

This lemma is a consequence of Proposition [[II.3.14Jand Theorem [II.3.15|below. Now
let us recall the definition of the rSBM in this setting. We provide only one of the equiv-
alent characterizations of Definition One can follow the same calculations as in
the previous chapter and show all other properties as well. In fact, we will silently use
duality to obtain uniqueness in law of the process. In contrast to the previous chapter,
though, we do not rely on the mild martingale problem formulation. Instead our tight-
ness proof will rely on the convergence, in an appropriate sense, of the eigenfunctions
and eigenvalues of the semidiscrete Anderson Hamiltonian.

Definition II1.3.4. Let (Q),.%,P) be a probability space supporting a white noise & and con-
sider YO € .#/(T9). Consider an enlarged probability space (€ xQ, 7 eF,P wa), where
F ®F is the product sigma-field and P is the conditional (given the realization w of the
environment) law of a process

Y: QxQ — C([0,00); . (T%)).
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For any w € Q let {Z};5¢ be the filtration generated by t > Y,(w), right-continuous and
enlarged with all null sets. And let 7“ be the operator in the definition above. Y is a rough
superBrownian motion, if for all ¢ € 9, and T > 0, the process

t
MY = <Yt<w>,<p>—<Y°,<p>—L (Vu(w), 9 )ds

is a centered continuous, square integrable .#’-martingale on [0, T| with quadratic variation

t
M7= | (@) ds
0
We are now in position to state the first main result of this chapter.

Theorem I11.3.5. For any p > 2d consider a random environment s, as in Assumption|I11.3.2
and initial conditions X" as in Assumption |[I1.3.1} Consider the process X" as in Defini-
tion |l11.2.2} associated, for each w € Q), to the generator

nd+2+’7$(n, n%_zsn(a)), n),
with 1 defined by
ni=0+2-d. (IT1.3)
Then the process t — Y/ = n®X{' converges in distribution:

lim Y"=Y in DD([0,00);.(T%)),

n—oo

where Y is the unique in distribution rough superBrownian motion as in Definition |[1I.3.4
started in Y°.

Remark II1.3.6. Let us comment on the scaling in the previous theorem. The temporal speed
of order n*>*1 corresponds to parabolic scaling. The factor n? is payed to cancel the corre-
sponding factor appearing in Lemma The factor n'l instead cancels with the size of the
impact. So we are left with a factor n?, which corresponds to parabolic scaling, since spatial
distances are of order 1/n.

As for the selection, we necessarily consider a weak regime, that is |s,| ~ n~2, which cancels
with the temporal speed up, providing a term of macroscopic order.

Finally, the smallness of the impact enters only to see fluctuations of the correct order. It is
clear that impacts should be small, since we expect at least jumps to become small. For a given
positive smooth test function ¢ a jump is of magnitude:

Y2 @) — (Y ) < n@n—'fj

N )|1J—X?<y>|<p<y>dyswn-ﬂf o(v)dy.
a(x

B, (x)

So we expect at least n > p —d (here with 1, we indicate events in which particles of type a
are produced). This is not enough, since we would like the quadratic variation to converge, so
we should impose that the sum of the squared jumps is finite, which brings to the pessimistic
bound:

) KV @)= (YL @) < nPr 2o,

t<n2+d+q
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This would lead us to require § > 20 + 2 —d. In doing so, though, we did not consider the
sparsity assumption. In fact by sparsity events that produce particles of type a will be much
less common (in fact they happen with probability ~ n~=?), so the typical jump will be of order

Y o) = (YL o)l s npn‘”f ( )Xli(y)@(y)dy <1 |pl|co-
B, (x
In this way we obtain the sharper bound:
IE( ) KL ey (YL, <p>|2) < P (om0 g2 ED),
t<p2+d+n

So we finally get the correct scaling 11 > p + 2 —d. Of course, a more efficient derivation of the
required scaling follows from the predictable quadratic variation in Lemmal|lll.2.5

I11.3.2 Diffusive regime

The second scaling regime we consider is a purely diffusive one. As before, the impact
parameter u is scaled as n". The restrictions on the value of # follows

Assumption I11.3.7. Choose 1 such that
n=1ifd=1, n>0if d=2.
In this diffusive regime we still assume that the selection coefficient may be random,
but we restrict to smooth selection.

Assumption I11.3.8. Consider a probability space (Q0,.7,IP) and let & be a measurable map:
£ Q- <5”(Td).
Then define:
sp(w,x) = (n72&(w,x)) V1A (-1).
The limiting process in this setting will be the (stochastic if d = 1) Fisher—-KPP equa-

tion in a random potential, defined as follows.

Definition I11.3.9. Consider Q and & as in Assumption|[I1.3.8} Fix any a > 0 and X% e B%z.
A (stochastic if d = 1) Fisher-KPP process in random potential is a couple given by a probability

space (A xQ,.F ®.Z,P<P") (cf. Definition and a map
X: QxQ > LY ([0,00);B5,).

For w € Q let {F’};>0 be the filtration generated by t — X;(w), right-continuous and enlarged
with all null sets. Then for all w € Q) it is required that, depending on the dimension:

i In dimension d =1 for all ¢ € C*(T):

N = (Xi(w), ) ~(X’, ) - J;t<Xs(w), VoAP) = (&(@)Xs(@)(1 - Xs(w)), p)ds
is a continuous in time, square integrable martingale with quadratic variation
rt

(NP); = i (X (@)(1 - X (w)), p?)ds.
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1i In dimension d = 2, X is a solution to

9 X(w) = voAXy(w) +E(a))Xt(a))(1 - Xy (w)),
Xo(w,x) = X%(w,x),  YxeT%

The solution is interpreted in the sense that for all ¢ € C*(T?)
t
(Xi(@), @) =(X°, )+ L (Xs(@), voA@) + (& (w)Xs(w)(1 = Xs(w)), @) ds.

Remark I11.3.10. Note that in the previous definition, since X € L2

loc

([0,00); B] ), the quadratic
non-linearity:

t
REOEE
0

is well-defined. Moreover, up to enlarging the probability space, the process can be represented
in d =1 as a solution to an SPDE of the form

9:X = voAX + EX(1 - X) + VX (1 - X)&,

where the spatial noise & is independent of the space-time white noise &, following the classical
construction by Konno and Shiga [KS88|] (see also Theorem|I1.2.19).

In this setting, we can prove the following scaling limit.

Theorem II1.3.11. Let 1 satisfy Assumption|[I.3.7\and s, be as in Assumption|[11.3.8| Con-
sider Xy € .7 (T%) with 0 < Xo(x) < 1, Vx € T4, and let X"(w) be the Markov process associated

to the generator
n* 2 2,5, (w),n M)

and started in X, as Definition There exists an a > 0 such that for every w € ()
{t = I, X (@)}hen
is tight in the space leoc([O, oo);Bg‘J(Td)). Similarly, the sequence
{t = X{(@)lnen
is tight in ID([0, 00);.# (T%)). In particular:

i In dimension d = 1 both sequences converge in distribution to the unique in law solution
to the martingale problem of the stochastic Fisher-KPP process in a random potential, as

in Definition|[11.3.9

ii In dimension d = 2 both sequences converge in distribution to the unique solution to the
Fisher-KPP equation in a random potential as in Definition|[11.3.9

Remark I11.3.12. The scaling in Theorem|[11.3.11|is similar to that of Theorem|I11.3.5|(in the
case 0 = 0). The only difference is the assumption > 0 in d = 2. As we already commented, the
parameter 1] tunes the strength of the noise, and we expect that at = 2—d we see fluctuations.
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One would thus naturally also expect that by choosing 1 =0 in d = 2 one obtains as a scaling
limit the stochastic Fisher-KPP equation. But, even assuming & = 0 we cannot hope to make
sense of the product X? in the quadratic variation term, since a solution X, to a stochastic
Fisher-KPP equation should not live in a space of positive regularity. This point is not just
technical: instead the limit is expected to be deterministic also if 1 = 0. If & = 0 one can
show that the dual converges to a system of coalescing Brownian motions: in dimension d = 2
Brownian motions can get arbitrarily close, but cannot meet. Hence the dual is a system of
independent Brownian motions: so the correct scaling limit is the heat equation. In our setting
we expect that the same argument holds and the correct scaling limit for n§ = 0 should still be
the deterministic Fisher-KPP equation. Since we do not have a complete understanding of the
dual, this study is left for a future work.

I11.3.3 Proof methods

The main ingredient of the proofs of the scaling limits in the previous sections is a careful
study of the semidiscrete Laplace operator 7,. Intuitively, one expects that this operator
approximates the Laplacian with periodic boundary conditions and therefore has similar
regularizing properties. To quantify this intuition we introduce a division of scales. On
large scales, namely for Fourier modes k of order |k| < n we show that <7, has the required
regularizing properties. On small scales, that is for modes of order |k| > n we do not
expect any regularization. Instead we prove that small scales are negligible in terms of
powers of n. Below we state a slimmed version of the results we require. The proof of the
following theorem, as well as additional side results, is the content of Section

Theorem I11.3.13. Fix any smooth radial function with compact support 7: R4 — R such
that for some 0 <r <R

(k)=1, Yk|<r,  T(k)=0, Y[k| > R.
Define
2,=n"'D), 2,=01-T)xn"'D).
For any a € R,p € [1, 0] the following holds:
i) Forany C>0and ¢ e‘fp‘*
g, — voAe in ‘Kp“_z_‘:, as n€N,
where

1 1
VOZE in d:l, VOZ; in d:2. (111'4)

ii) Uniformly over A >1,n € N and @ € 6 the following estimates hold:

| L=y + /\)_1<P||<gpn+2 + 1212, (= + 1) @ligy < lpllegp

A precise control of the regularization effects of the semidiscrete Laplacian 7, al-
lows us to treat semidiscrete approximations of the Anderson model that appear in the
study of the rough superBrownian motion. In the next proposition we recall some salient
features of the continuous Anderson Hamiltonian.
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Proposition I11.3.14. Fix d =1 or 2, k > 0 and (Q, .#,IP) a probability space supporting a
space white noise &: Q) — .7"(T%). Then the following hold true for all w € Q. The Anderson
Hamiltonian

HY =vogA+ E(w)

associated to &(w) is defined, as constructecﬂ in [EN77]in d =1 and [ACI15|] in d = 2. The
Hamiltonian, as an unbounded selfadjoint operator on L*(T%), has a discrete spectrum given
by pairs of eigenvalues and eigenfunctions {(Ay(w), ex(w))}ken such that:

(@) > Ay(w) > A3(w) > ..., lim A (w)=—oco,  ey(w,x)>0,VxeT

k—o0
In addition, for every k € N, ex(w) € %2_%‘K(Td), and the set
9., = {Finite linear combination of {ex(w)}ren}
is dense in C(T4).

The proof of this proposition is postponed to Chapter[[V} in Lemmata[[V.2.1Jand [[V.2.2]
For the semidiscrete Laplace operator .«7, the following holds.

Theorem II1.3.15. Fixd =1 or 2, x > 0 and &" satisfying Assumption|[T1.3.2} Up to changing
probability space C), the following hold true for almost all w in Q).

For every k € N let m(Ay) be the multiplicity of the eigenvalue Ay of € (as in Propo-
sition |I11.3.14) and let {e,i(w)}?i(l/\k) be an associated set of orthonormal eigenfunctions. Then
m(Ay) > 0.

For every k € N there exists an ng(w,k) € N such that for every n > ng(w, k) there exist

orthonormal functions {e,i(’"(a))}:i(l/\k) C L2(T%) such that, considering the operator

A =y + T (EN (@) = )T, 40 LT - LA(TY),
with ¢, as in (111.2), one has for some € > 0:

lim ¢;"(w) = ei(w), in LX(T?)  lim IT,e{"(w) = el (w) in €4(T?),

n—-00 n—-00

and

lim ¢ (w) = Agel(w), in LXT?), lim IT, el (w) = Mek(w) in €5(T?).
n—-oo n—-oo
If the eigenvalue is simple, i.e. m(Ay) = 1, then in addition e/(w) is an eigenfunction for J,” :
A el (w) = Aflel(w),
with lim,,_,, A}l = Aj.

The proof of this result is the content of Section [IV.2.4

ITo be precise, [FN77] constructs the operator in dimension d = 1 with Dirichlet boundary conditions,
but their construction can be extended to periodic boundary conditions. Alternatively, the operator can be
constructed with arguments similar to the ones presented in Sectionm
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II1.4 Scaling to the rough superBrownian motion

This section is devoted to the proof of Theorem Since we want to prove conver-
gence in distribution for the sequence Y”, the exact choice of the probability space ()
of Definition is not important. For this reason we adopt the following standing
assumption that allows us to work with a suitably chosen probability space.

Assumption I11.4.1. Let (Q),.#,IP), the probability space appearing in Definition |[1I.2.2\and

Assumption |[11.3.2|be such that the results of Proposition |I11.3.14|and Theorem |I11.3.15|hold

true for almost all w € Q).

The first step towards establishing tightness is to restate the martingale problem of
Lemma [[II.2.5|to take into account the scaling assumed in Theorem [[11.3.5

Lemma II1.4.2. In the setting of Theorem [I11.3.5| and under Assumption |[11.4.1} for every
w € Q and n € N, under the law P¥, and for every ¢ € L®(T%) the process t — (Y/"(w), @)

satisfies the following martingale problem:

(V@) ) = f (Y (@) + T[T Y ()], ) s
(Y (@) (@)L, (@) dr + M (@),

where M (@) is a square integrable martingale with predictable quadratic variation given by:

t
44 _
(M™(@)): = J; (1417225, ()Y (@), (T1,0)° =20 L, (@)L, (Y (@) )
- 2 I11.6
e (T (@)p)) 1) (IL6)
_ 244 -
= 2, (@) (T Y (@))%, (TL,) 2 =207 IL (@)L, (Y () ) dr-
Remark II1.4.3. The only term that is not of lower order in the quadratic variation is
(Y, (M,p)?),
which explains the superBrownian noise in the limit.
Remark II1.4.4. At first sight this martingale problem has no relationship with the operator

AP = oy + T EN ()T

we introduced earlier. The reason for our choice of the approximating operator is that if we test
the martingale problem on ¢ =1I1,e", with e" in the domain of J,° (say an eigenfunction),
then the first line of the drift becomes

(Yi(w), IT, 7€),
which is exactly the kind of term that Theorem|l11.3.15|aims at controlling.

In order to obtain the convergence, the first step is to prove a tightness result.
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Proposition I11.4.5. In the setting of Theorem |I11.3.5 and under Assumption |[11.4.1|fix any
w € Q. For any T > 0 the sequence {Y™(w)},en is tight in D([0, T];.# (T%)). Moreover any

limit point is continuous, i.e. lies in C([0, T];.# (T%)).

Proof of Proposition Since w € () is fixed, we omit the dependence on it. The proof
relies on Jakubowski’s tightness criterion, which we recall in Proposition The cri-
terion consists of a compact containment condition and the tightness of one-dimensional
projections of the process.

In a first step of the proof, we establish the compact containment condition. Since for
R > 0 sets of the form Ky = {: (s, 1) < R} C.#(T?) are compact in the weak topology, it
is sufficient to show that

¥6>0, AR(5)>0, n(5)€ N such that inf IP( sup (Y1) < R(é)) >1-5.  (1L7)
n>n(d) te[0,T]

In a second step, we establish the one-dimensional tightness. By Theorem (since
the domain Z,, is dense in C(T%)), it is sufficient to show that for every k € N the pro-
cess (Y[, ex) is tight in ID([0, T];R), where the sequence {e;}xen is an orthonormal basis of
L%(T“) consisting of eigenfunctions of .7, as in Proposition By Aldous’ tightness
criterion [Ald78|, Theorem 1], this reduces to proving that for any sequence of stopping
times t,, taking finitely many values and adapted to the filtration of Y", and any se-
quence 0, of constants such that o,, > 0asn — oo

V6>0,  lim 11)(|<YT”+(5 ,ek)—(YT",ek>|25):0. (IT1.8)
n—o0 nt"n n

In the third step we address the continuity of the limiting process.

Step 1. By Theorem for any k € N and n > ny(k) there exists a function ¢} €
L?(T%) such that IT,ef — e in €¢(T%), and IT,2,e; — Arey in €¢(T?) for some ¢ > 0. In
particular, choose k = 1. Then A; is simple and we can choose e} to be an eigenfunction
of J, of eigenvalue A} — A,. Since e; > 0, we may assume that IT,ef > 0,Yn > ny(1) and
hence for any positive measure y there exists a C > 0 such that

(1) <C(uIle)),  Yn>no(l).
Therefore (II1.7)) follows if one can show that

¥6>0, AR(S)> 0, n(3)> np(1) such that inf IP( sup (Y, IL,el) < R(é)) >1-6.
n>n(o) t€[0,T]

Let us focus our attention on (Y/,I1,e!'). By the martingale representation (IIL.5) one
obtains

t
2
(Y, ety = (Y3, el + LASWf,H”eﬁ —n((T1Y) ), EXTTR ey dr + MJ(TT ).

To treat the nonlinear quadratic term, we shall consider a stopped process. Let us fix
R >0 and consider the stopping time 7z and a parameter g, defined as

d
tr:=1inf{t > 0 : (Y, I1,e}) >R}, 00 :p_z_d_
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Since |£"(x)| < n% and since
ITE Y oo < ITL, Yoo < n¥(Y, 1) S (Y, T ),
one can bound
ORI Y/ e )% ETIREN) < O ST T el)? < R0V Tel),
and therefore

t
E(Y/h e Tl ) < (VG 1)+ (1+ Rn@ﬂ)flE|<szTR,Hne?>|2dr + E(M"(IT,e}))tar,-
0

Furthermore, using the formula for the predictable quadratic variation from Lemmal|lll.4.2
one obtains

! _o4d _ 2
E(M" (T, )iz, <IEJO (14172 25, )T Y/ ) o (TTel)?) + 70TV, TTel)) 1)

_ _o4d _
+ 0 0P, (T Y ), (Tnel)? + 200 (T e} )T, (Y o T1 e ) dr.

n-rATR

Since by Assumption [[I1.3.2 n‘2+%|sn| < 212*%, and since SUP 5, (1) L€} lloo < 00 as well

as 0 < Y, < n?, we can rewrite the bound as:

rt

E(M"(IT,e1))ipc, S . <H2an/\rR’H1216?> + <Hn(an/\rRHne?)’ 1)
J

+(IY)

TATR

2
Tz el ydr
rt

SE | (Yore, Ief)dr.
0

J

Therefore, by Gronwall’s inequality, there exists a C > 0 such that

sup E[(Y/\ TT,ef)|? < eCHRme), (111.9)
0<t<T

It follows that if n > R%

]P( sup (Y7, T,el)| > R) _ IP(l(Y” Tl = R) <R

T
0<t<T R

This concludes the proof of the compact containment condition (II1.7)).

Step 2. Next we want to prove (IIL8), so let us fix k € N, > 0 and 6 > 0. In view of
calculations from Step 1 there exist R(y), n(y) for which holds (with o replaced by
7). In addition, for some n(y, ) > n(y) we may also assume that

o
Ynzn(y,0)  le—Telis < 5o,

Hence, for every n > n(y, )

P(KY7 0060 = (Vi) 2 8) < + P(K(Y 5 Tl = (¥, Tl 2 0).
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Now, using the definition of R(y) (and writing for simplicity R instead of R(y)):

(|< s el = (Y2, TI, ek>|>6)<7/+IP(|(YT+5 MR,nneg>—<YgMR,nneg>|25).

At this point, via the representation of Lemma [lII.4.2|we have that

(Tn+5n)/\TR
O~ Voo Ty = [ Oty = (11,2, 212
Ty ATR

+ M7 s (ILye) — My (IT,ep).
Hence we obtain
(KY’;,, YATR 2 eZ> < T, ATR? Hne;z>| 2 5)

(Tn+6 )/\TR 2
J (Yr",Hn%eD—n"’((HnYr”) LEMTZeydr| >
T

n/ATR

<IP(

N o
~——

4
4 SEIMY o (T = MY (TP,

where we used Markov’s inequality in the last line. Following the calculations of Step 1
and using that both I1,57, ¢ and I1,,¢; are uniformly bounded in ¢* (T?) for some ¢ > 0,
we now find

(Tn"'bn)/\TR
| st - e
T,

nATR

Trz+
sj (Y ydr < 6,R(p).
T,

n

Similar calculations for the quadratic variation show that
IE|M” T,+0,)ATg (IT, ek) T, /\TR(H ek)' < 0,R(y)

Collecting all the bounds we proves so far and passing to the limit n — co we obtain that

l1msupIP(|< s, sepy —(Y! ek>|26)£27/

n—-oo

Since y is arbitrary, this proves (IIL8).

Step 3. So far any limit point Y of the sequence Y" lies in ID([0, T];.#(T%)). Since
(T%) is endowed with the weak topology, to prove that actually Y € C([0, T];.#(T%)),
it is sufficient to show that for any continuous function ¢, (Y;, @) is continuous in time.
Here one can apply a criterion [EK86, Theorem 3.10.2] according to which it is sufficient
to prove that the maximum size of a jump converges weakly to zero. In our case such

convergence is even almost sure, since:

(Y, @) — (Y @) < 1™ plleeray = n2ll@llcere)-



76 III. THE SPATIAL A-FLEMING-VIOT MODEL

This follows from the definition of the generator, as well as the exact definition of # (cf.
Equation (III.3)), which imply that jumps are bounded as follows:

Y =Y/ || < 07" < 1.

Since a jump has an impact only in a ball B,,(x) for some x € T, integrating ¢ over such
ball guarantees the previous bound. O

Finally we are in position to deduce Theorem [I11.3.5

Proof of Theorem|[11.3.5] By Proposition [lI.4.5|the sequence Y"(w) is tight, for every w €
), under Assumption|III.4.1|(recall that we can always put ourselves in the setting of this

assumption by changing probability space, which does not affect the convergence in dis-
tribution). It remains to show that, for a fixed realization w € (), every limit point satis-
fies the martingale problem for the rough superBrownian motion as in Definition [II.3.4}
which is covered by Steps 1 and 2, and that solutions to such martingale problems are
unique, which is covered by Step 3.

Step 1. As in the proof of Proposition since w € () is fixed we omit writing
it. Moreover it is sufficient to fix a finite but arbitrary time horizon T > 0 and check the
martingale property until that time. Assume that (up to taking a subsequence and ap-
plying the Skorohod representation theorem) Y" — Y almost surely in ID([0, T];.#(T%)).
Recall that the domain Z of the Anderson Hamiltonian is composed of finite linear com-
binations of eigenfunctions, hence we have to check the martingale property for ¢ of the

m
P = Zakiekir
i=1

for some m € N, ky,...k,, € N, a, € R, and where {e}icn is the set of eigenfunctions of
. Now consider the approximate eigenfunctions e}’ from Theorem [[I1.3.15/and define
Q" as

form

m
p" = Z“ki ey.
i=1
Then Theorem [lII.3.15|implies that for some € > 0

m
lim IT,¢" = ¢, lim I1,.5,¢" = # ¢ = Zaki/\kieki’ in c*.
n—-oo .

n—>00
i=1

In this setting, recalling the definition of the martingales M" from Lemma [[1I.4.2} one
has that almost surely

t
MY = (Y, 0,9) - J(; (Y, p)ds
t
= lim [<YtnO’HH(Pn> - J <anfnn<%l(Pn>_”_p<(H2an)2, énnﬁ(pn> dr]
n—00 4 0
t
T [<Ytn0’n”“0n> - e L)’ ézﬂifp”mr]
n—co ’ 0

= lim M"(IT,¢").

n—-oo
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Here the convergence to zero of the non-linear term follows as in the proof of Proposi-

tion [L11.4.
2 d
(T1,Y), &2 9") <m0 2 I, 0" [l (Y, 1) — 0,

by the assumption on p. Our aim is to establish the martingale property for M{ with
respect to the filtration .%#; generated by Y;. The almost sure convergence M/ (I1,¢") —
M/ is not sufficient. Instead, we will pick a sequence of stopped martingales M!(IT,¢"),
such that M/(IT, ") — M, almost surely and in L!, for all ¢ € [0, T]. As we will see, the
additional convergence in L! will guarantee that the limit M is a martingale. Hence, let
us define the following stopping time, for any path z € ID([0, T];.#(T%)):

Tr(z): =inf{t €[0,T]:|(z;, 1)| > R}.
Sine Y takes values in ID([0, T];.#(T%)) we have that

lim 7x(Y) = oo

R—o0

Now, Lemmal|lll.4.7|guarantees that almost surely (that is, on the events in which Y" — Y
in D([0, T];.#(T%))) for any 0 < & < R:

Tz (Y) < liminfrg(Y").

n—oo

We deduce, using the monotonicity 7z(z) < tr/(z) if R < R’, that for gy = p - % —d >0 (by
Assumption [[II.3.1)) almost surely:

lim Tye0 (Yn) = Q.
n—-o00

Now, Equation (III.9) implies that

2
phe ol 4 IE[I Y/ ny 1 |]<w
neN 0<t<T < tATy00 (Y) >

In particular, following the calculations of Proposition [II1I.4.5| the sequence of stopped
martingales
n n
(M0 T, o

is uniformly integrable:

sup sup IEleM”pO(Yn)(l_ln(p”)l2 < oo.

neN t€[0,T]
Moreover, following from the previous observations Z\Z[’(Hn(p”): = M/; . po(w)(l_[n(p”)

converges almost surely to M. The uniform integrability implies that the convergence
holds also in L!. In order to conclude that M? is a martingale with respect to .% it suffices
to show that for every s <t, me N, 0 <s; <--- <s,, <s and every bounded measurable
function h: R™ — R, that

E Mf’h(ysl,...,ysm)] :IE[MS(ph(YSI,...,Ysm) .
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From the convergence in L' and almost surely that we just proved we obtain that

¢ _1; A
E| M h(Ysl,...,YSm)] = lim IE[Mt"(l‘[n(pn)h(Ys’anpo(Y,,),...,YS’;ATnpO(Y,,))]
- l}i—EIgOIEI:M;l(Hn(pn)h(Y;lZATU{)O (Y”)’ B YsrilnATnpo (Yn))] (IIIlO)

= IEI:M;ph(YSl""’ Ysm)]'

where in the second line we used the martingale property for M"(IT,¢").
Step 2. Now we have to show that the martingale has the correct quadratic variation,
namely that

(MP), = L (Y, ¢?)ds.

Here the problem is that we do not control moments of M*(I1,,¢") higher than the second
one. So proving that the martingale property of (M!")2 — (M"), is preserved in the limit
does not follow from the same arguments we just used. Instead we stop the martingales
in a different way. Consider the following stopping times as a sequence indexed by R € N:

{TR(Y") A T}ren € [0, TIN.

Here the space [0, T]N is endowed with the product topology and under this topology
it is both compact and separable. In particular, since we are assuming that Y — Y in
distribution in ID([0, T];.#(T%)), the sequence

{tr(Y") AT} rens Y nen

is tight in the space
[0, TIN x ID([0, T];.#(T%)).

Hence let ({Tg}ren, Y) be any limit point of the joint distribution. Since the space [0, TN x
D([0, T);.#(T?)) is separable, by the Skorohod representation theorem, up to changing
probability space, we can pick a subsequence ny, for k € N such that almost surely

lim ({g(Y™) A T)gen, Y™) = ({Trlren Y), i [0, TN xID([0, T];.(T7)).

k—o0

The limiting random variables still satisfy the ordering:

TR < TRm» VmeN,
as well as, by Lemma [[11.4.7
TR e (V)AT <t <tree(Y)AT,  Ye>O0. (IIL.11)

Now, the same calculations leading to Equation (III.10) show that for any R € N the
Ny ¢
tATR(Y"K) tATR

that now the martingales M;q/’iTR(Ynk)(an(p”k) are even bounded). Similarly we obtain that

stopped martingales M (IT,, @) converge to M;, ; almost surely and in L' (note
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. . . . . —=R .
Mﬂfl< is a martingale with respect to the filtration .7, generated by Y;,¢,. Following the

calculations of Proposition [[1I.4.5|we observe that

EATR(YE)
(M (T, 0" e (1) < cf (Y™, 1yds,
0

for some deterministic C > 0. In particular, following once more the calculations of
Proposition [I11.4.5, we deduce that the martingale

2
(M} oy (T, @) = (M (T ™)) g v

is bounded and converges almost surely to:

(MM?R) —J; (Y5, p7)ds.
We then conclude that i
R

M= [ gt

Now, defining t,t’ = kTT, for k < n e N, we can view the quadratic variation as the limit in
probability:

n
@ : 2
<M-/\?R>f =P - lim (Mt/\fk/\t;;+1 —Mt/\fR/\t,'j)

n—-oo

k=0

Similarly also for the martingale whose quadratic variation we would actually like to
compute:

n
(M) == lim ) (Mynp, ~Mingy)*
k=0
Now, for any 0 > 0 and t € [0, T) we can choose an R € N such that
II)(’fR>t)Zl—6,

by comparison with the stopping time 7z_.(Y) for any ¢ > 0 (see Equation (III.11)) and
since limp_,, Tr(Y) = co0. So we finally conclude that for any t < T:

IP((M)t = J:(Ys,goz)ds) >1-9.

Since 0, T > 0 are arbitrary we obtain the correct quadratic variation for all times.

Step 3. We conclude by explaining the uniqueness in law of any process Y satisfying
the martingale problem of the rough superBrownian motion (in the following as always
w € Q) is fixed, and we omit from writing it. In particular, all averages are still conditional
on the realization of the environment). The uniqueness is the consequence of a duality
argument. For any ¢ > 0, p € C* we find a process t — U;@ such that

E[e—m@] = YO Uip) (I11.12)
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Hence the distribution of (Y}, @) is uniquely characterized by its Laplace transform. This
also characterizes the law of the entire process (Y;, ¢) through a monotone class argument
(see [DMS93], Lemma 3.2.5]), proving the required result.

We are left with the task of describing the process U;¢. This is the solution, evaluated
at time t > 0, of the nonlinearly damped parabolic equation

(Up)=H(Uep)-=(Ugp)?’,  Up=o,

1
2
where we consider the solutions in the mild sense, namely
N B LTy 2
Ugp=eT -] ¢ 77 (Usp)ds,
0
as constructed in Lemma [[11.4.6{ To obtain Equation (III.12) consider some C > 0 and a
process 1 € C([0, T];6°) of the form

t

P = e 1y +j =7 1 ds,

0

with f € C([0, T];6°), 1y € €°. Now approximate f through a piecewise constant func-
tion in time f and in turn approximate both f and 1, via a finite number of eigen-

functions (here we use the density of the domain proved in Lemma [[V.2.2). Using the
continuity of the semigroup as in Equation (IV.2), it follows from the definition of the
rough superBrownian motion that for 0 <s <t:

(Yo tr-) — (Yo 1) —L Y, fydr =: ()

is a continuous martingale with quadratic variation

S
(W), = [ (002 ar
Now we apply this observation together with It&’s formula to deduce that
[0,t] 35 > e YU

is a martingale on [0,¢]. In particular, this implies Equation (III.12) and concludes the
proof. O

The following result states the wellposedness of the dual PDE to the rough super-
Brownian motion. The proof is identical to that of Proposition |lI.4.5, only here there is
no necessity to consider weights.

Lemma II1.4.6. Under Assumption|[11.4.1} fix w € Q). For any ¢ > 0, € C*, time horizon
T>0and C <2- %, there exists a unique function (t,x) — (UL @)(x) such that U@ €
C([0, T];€°), where

w 1! v
UPep=e” (p—EJ (UL ) ds.
0
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We conclude the section with a consideration on stopping times and convergence in
the Skorohod topology, which is used in the proofs above.

Lemma II1.4.7. Consider T > 0 and {z"},en,z € ID([0, T|;R) such that z* — z in ID([0, T],R).
Define, for R > 0:

tr(z) =inf{t € [0, T] : |z;| > R},
and identically also tx(z"), with the convention that inf() = co. Then, for any € >0

Tr_e(2z) <liminf rg(z") < limsup 1g(2") < Trye(2).

=00 n—00

Proof. Let us distinguish the cases Tz_.(z) = oo and Tg_.(z) < .
Step 1. Assume that Tz_.(z) = oc0. Then also 7z, .(z) = co an we only have to prove that

liminfg(z") = co.

n—-oo

Suppose on the contrary that for some a > 0 the following holds: for every m € N there
exists an n,, > m such that 7z(z"") < a. Then there exists a sequence of times t"'» < a such
that |z | > R. Then recall the Skorohod distance for z,z’ € ID([0, T];.# (T)):

Tm

ol )= faf ;= {0V sup fr i}

Here A is the set of time changes
A= { Strictly increasing bijections A : [0,T] — [0, T]},

and

y(A)= sup

0<s<t<T

Alt) - A(s))’_

log( P

Now, from the convergence z" — z, choose an m € N such that dp(z",z) < §,¥n > m, for
such m we can estimate

"y, My
sup |z;"| < sup |zypl+ sup |z;" =z

t€[0,T] t€[0,T] te[0,T]
&
<(R-¢)+ =
(R-e)+ 3
<R_£I
2

m

where we chose A such that d(z",z, 1) < 5. This is in contradiction with |z:l,,m| > R.

Step 2. Now we assume that 7_,(z) < oo, as well as 7z, .(z) < oo (if the latter does not
hold the second of the claimed inequalities is trivial). Suppose again that there exists a
0 < a < Tg_¢(z) such that for every m € N we can find an n,, > m such that

TR(2") < @ < TR_(2).
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In particular, we have a sequence of times t"" < & < Tz_,(z) such that
zp > R.
Now for any given 6 > 0, if m is sufficiently large, we have that for some A € A:
d(z"m,z,1) <.
In particular we can choose 6 small enough, so that
AMa) < Tr_e(2).

Under this assumption we have that

o>d(z",z,\)> sup |z —zZypl = |ZZ:‘ -z,

0<t<a
n
>z, = lzal
>R-(R-¢)==¢.

Since this should hold for any 6 we can choose 6 < ¢, obtaining a contradiction.
As for the upper bound, assume that there exists an a > tg,.(z) such that for every
m € N we can find an n,, > m satisfying

TRye(2) <@ < TR(2"™).
As before, for any o > 0, if m is sufficiently large, there exists a A such that:
d(z,z", 1) <96,
and if ¢ is sufficiently small this implies that
MTrye(2)) <a.
Then we find that
6>d(z,2",A) > sup |z, -2z, |

At
0<t<T ®

= |Z’[R+i.(z)| - sup |Z?m|
t€[0,A(Tr4e(2))]

>R+e—-R=g¢g,

which is a contradiction as soon as o < ¢. O

II1.5 Scaling to Fisher-KPP

As in Section |III.4] we will fix one realization w € ) of the environment and work condi-
tional on that realization.

The first step towards the scaling limit is to restate the martingale problem of Lemmal(III.2.5
in the current setting. The proof is an immediate consequence of the aforementioned
lemma.
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Lemma III.5.1. Under the assumptions of Theorem |[11.3.11| fix any w € Q. For all ¢ €
L®(T?), the process t — (X{(w), @) satisfies

t
(Xp(w), @) = f (p(X] (@), @) + (T [E(@) T X (@) = (X} (@))?)], @) dr + M7 (),
° (I11.13)
where M (@) is a centered square integrable martingale with predictable quadratic variation

t
(M* ()} = n_”_d”fo (s, (@)X (@), (T1,0)° =201, (@)L, (X} (w)))

+ <(Hn(Xf(w)cp))2, 1) (I11.14)

= (su(@)(TT X7 (@), (TT,0)” = 2TT, ()T (X; (@) p)) dr-
Now we are able to show tightness for the process.

Proposition I11.5.2. Under the assumptions of Theorem |[11.3.11|fix any w € Q. Fix T >0
and a such that

a€(0,1/2) ifd=1,
a € (0,min{zy, 1}) ifd=2.

The sequence {s > I'1, X!'(w)},en is tight in the space
L*([0, T];BS,).

In addition, the sequence {s — X! (w)}yen is tight in D([0, T];.#(T%)), and any limit point
lies in C([0, T];.#(T?)).

To prove the proposition we will make use of the regularizing properties of the semi-

L,

group e"“n as described in the following lemma.

Lemma III.5.3. Forany y €[0,1),p €[1,00],T >0 and a € R one can bound, uniformly over
neN, (pe%p"‘,te [0,T]:

A _r
T, pllgarr < 2 llpllecs-
Proof. We can bound
o, o,
”ynet "Hn(Pncg;”V < ”@net n(P“Wp"‘“’
_r
<t lplles,

where in the first step we applied Corollary [III.7.4] and in the last step the large scale
estimate of Proposition |I11.6.7] Instead, on small scales we find:

o, o,
”Qnet "Hn(P”rgpaWSny”o@net "(P”%ﬁ
_r
< lglles,

where we again applied Corollary [III.7.4]in the first step and Proposition [[II.6.7|in the
second step. O



84 III. THE SPATIAL A-FLEMING-VIOT MODEL

Proof of Proposition Since w € () is fixed throughout the proof, we omit writing it,
to lighten the notation.

Step 1.Tightness of the sequence X" in ID([0, T];.#(T%)) is a consequence of the bound
0 < X{! < 1. In fact, we can apply Jakubowski’s tightness criterion, which we recall in
Proposition The criterion consists in proving first a compact containment condi-
tion. This is immediately satisfied since

P( sup KX/, 1)|>1)=0

0<t<T

from the boundedness of X". The second and last requirement for Jakubowski’s tightness
criterion is the tightness of one dimensional distributions. Namely it suffices to prove
that for any ¢ € C*(T) the sequences of process

{t > (X P)hnen

is tight in ID([0.T];R). For this purpose we use Aldous’ tightness criterion (note that this
is the same approach as in the proof of Proposition [lII.4.5)). Let us define

Dl‘r,ls((P) = <Xtr,ls' (P> - M;}S((p),

where we used the notations of Lemma [lII.5.1, Now to prove tightness of the one-
dimensional distributions Aldous’ criterion guarantees that it suffices to show that for
any sequence of stopping times 7" and any deterministic sequence 9, with 6, — 0 one
has

Trl+bn"[)l

V>0  lim IP(l(X” e 5) — 0.
n—-oo
In particular it suffices to show that for any 0 > 0

lim ]P(|D” B 5) = lim IP(lM” (@) > 6) 0.

n—00 Tyt0, Ty n—00 Tyt+0n, Ty

Now by Proposition |II1.6.6|we find that (since ¢ is smooth)

sup ||, @llL~ < 0.
neN

Hence the following deterministic bound holds (since 0 < X{' <1 ):

|D'7fln+5,,,Tn((P)| S(p 6nl

which proves the first limit. As for the second one, we observe that

1 5
IP(|M¥”+6,,,T”(‘P)| > 5) < gE[W"((P»wém 5570

where for the quadratic variation we used similar bounds as for the drift. Finally, to show
that any limit point lies in C([0, T];.#(T¢)) note that for any ¢ € C(T9)

KXP, @) = (XI, @) < 17T @l < n72l@llLe,
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so that the maximal jump size is vanishing as n — co. The continuity of the limit points
follows then through [EK86| Theorem 3.10.2].

Tightness in the space of measures is not sufficient to make sense of the nonlinearity
in the limit. Hence from now on we now concentrate on proving the tightness of the
sequence IT, X" in L%([0, T];B3,) for some a > 0. Our aim is to apply Simon’s tightness
criterion, which we recall in Proposition with

_ po’ _ pa _ pa”
X = Bz,zl Y = Bz,zl Z = Bz,zf

for appropriate a’ > a > a”.
Step 2. First, we derive a uniform bound for the second moment of the BS , norm (this
in particular implies boundedness of the sequence IT, X" in L?([0, T];B3,)):

sup sup ]E||1_[,1Xt”||123(212 < o0. (I11.15)
neN 0<t<T ’
To obtain this bound it is convenient to prove the following stronger estimate. Uniformly
overs€[0,T]
sup E[ITT, X/ 13,

s<t<T

Z| sr 1+ I X G (ITL16)

where {Z#,};¢ is the natural filtration generated by X" (we omit the dependence of the
filtration on n). We state the bound with the conditional expectation, since in this form
it is simpler to derive, via a Gronwall-type argument. For brevity, fix the notation

X" =11, X"
By the martingale representation of Lemmal|lll.5.1|and a change of variables formula
t t
X! = el %" 4 f AT ETTR (X, - (X)?)]dr + J I, dM],
S s+

where the last integral is understood as a stochastic integral against a martingale measure
(cf. [Wal86l)). For the purpose of the proof it is sufficient to consider its one dimensional
projections, that is for ¢ € C(T%)

t

t
(X1 @)= (X, e =%p) J (Z[E (X7 -(X))? )] e ) dr+ f M/ (IT,,e! %)
S

S+

The B , norm is estimated by

t 2
E[IX1B, 7] < IRUIE, ”EHU AT ST (X — (K1) dr ﬂ]
’ ’ s B‘zy,z
t 2
+ IEH f I1,et =" dM! 95].
S+ 33’2

An extension of the paraproduct estimates of Lemma to the Bj , scale (see [BCD11)
Theorems 2.82, 2.85]) guarantees that

1f2llsg, <2117 © Fllgg, + 1 © Fllag, < I ll=lllpg,.
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Now we apply the Schauder estimates of Proposition Note that here we do not
need the real strength of the estimates, as we do not need to gain any regularity. Note
also that the estimates are proven on the scale of By ,, spaces but extend verbatim to By ,
spaces for g € [1,0). Hence, using the L* bound on X" and the fact that & is smooth one
obtains

I [ET3(X] - (X;)?)]

r

et erieer - X0, <
2,2

a
BZ,Z

N
< 11XV Ilgs
so that:

<lt=s” sup E[IX] |3 |7

s<t<T

t 2
[ ermmlenie - (e ar
B

S

IEH 7]

As for the martingale term, let us introduce a parameter A according to the following

definition:

Ifd=1, n=1 = setA=0,
Ifd=2, n>0 = setA=minfy,1}.

Then, from the definition of the space Bj , one has

t
IE[ J I1,el =" dM!
S+

= Zzzﬂﬂj IE[

j=-1

2

g ]
S
B3,

t 2
j dMy! (e~ L, KF)
s+

5‘;] dx
where with K ]x we indicate the function:

KX(v) = Zrl0j(x-),

with p; the elements of the dyadic partition of the unity that define the Besov spaces.
Using the predictable quadratic variation computed in Lemma [[II.5.1| one obtains, uni-
formly over x

i

t 2
j dM;Z(e(f—f%Han)
s+

t
n—AIEU (TIEX, (L) [ (T2 2T el KT, (X T, e K )

S

o+ ((TTy (X TT, e "Kx)) 1)

— (TTX)?, 83 (T e K2 20T (=7 K )T, (X T el K5 |y dr

(II.17)

<ot [t
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since [s,|, | X", |Xn| < 1. Now, for C € R, for example via the Poisson summation formula
in Lemma and a scaling argument on R?

1K < 27
“1
and therefore by the Schauder estimates that we recalled in Lemma [I11.5.3} for y € [0, 1)
L, e K| ey < (t—r)f%ZjC.
] Cgl

Now, for clarity, dimension d = 1 and dimension d = 2 will be treated separately. In
dimension d = 1 choose —% <C<-aandfix y€(0,1)such that C+y > % Then, by Besov
embedding, one has

T[T, e KENI2, < T, K17, < (1T, et nKX||%+y~<t r)772%¢,

In dimension d = 2, we make additional use of the regularizing properties of I, to-
gether with the factor n~* appearing in front of the quadratic variation. Note that Corol-
lary allows only to gain one degree of regularity, which is why we have defined
A = min{l,n} (we have no use for additional powers of 1n). Now, choose x > 0 such that
a < A—5« and set y = 1 — . Then Corollary[[IL.7.4implies that

T, [T, Kl < AT, Kl

and Besov embeddings additionally guarantee the following chain of inequalities
(here the main aim is to get rid of the absolute value):

[T, Kl a2 < [T Kl

1+1-3x

< T, e kx||
1T /\37{

ST, K e

< (=) 2K s

< (t—r)227(A-50),
Overall, we have obtained that
I, [T, et =" K2 < (e = ) 227759,
In this way, in both dimensions, substituting the estimate into (III.17) one obtains
|

For sufficiently small, deterministic T*, chosen uniform over all parameters, inequality

t
J- I1,et=" dM? 95] <lt=s|'7.
S

2
B3>

(I1I.16) is shown for all (t —s) < T*. Due to the presence of the conditional expectation,
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one can exploit this argument for general t,s via a Gronwall-type argument. Indeed, to

|

|
SC(T*)(1+C( (1+11a[||n X21R,. ))

extend the estimate to 2T*, observe there exists a C(T*) such that

sup IE[llH X/ ||Bzx

te[s,s+2T*]

J]<C )(1+ sup IE[lll_IXllBaI ;

te[s,s+T%]

Iterating this argument yields the bound for arbitrary T.
Step 3. The next goal is a bound for the expectation of an increment. For this reason
fix
0<p<a,

with a as in Step 1. We shall prove that there exists a C > 0 satisfying:
1E[||X’§ ‘Xf”égz] <Jt—s[*. (I11.18)
Indeed, arguments similar to those in Step 1 show that
B[ -T2, | SE|IR - e IARIR, ||l % X X,
2,2 2,2 2,2
N — —n _ N
SE[IRY e IARR, |+l s PEIRG,
Sle=s"7 (L BIXCI2, )+t =" PEIXC |G,
BY :

2

where the penultimate step follows from Lemma [lII.6.8} This is enough to establish
(LII.18).
Step 4. Notice that (III.15) and (III.18) together guarantee that

—— N
sup E[[IX" ”Lz +]1X| < oo,

([0,T];BS,)
neN

W2([0,T);BS.,)

with C as in (III.18). Note that this implies tightness in L2([0,T];B§”2) for any a’ < a,
which is still sufficient for the result, since a varies in an open set.
O

At this point, the last step is to prove that any limit point satisfies the required mar-
tingale problem (in 4 = 1) or solves the required PDE (in d = 2).

Proof of Theorem As in all previous cases, we fix w € QQ and do not state explicitly
the dependence on it. We treat the drift and the martingale part differently.

Step 1. We start with the drift, which is the same in both dimensions. Since Let X
be any limit point of X" in C([0, T];.#(T%)). The previous proposition guarantees that
any such X lies almost surely in L2([0,T];B’§’2) for some a > 0. In addition, through
Skorohod representation, we can assume that IT, X" — X in L?([0, T]; B3 ,) almost surely.
In particular, for ¢ € C*(T%), defining

t
N = (X,0,0) - jo (Xoy voAA@) + (E(Xs = X2), ) ds,
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and since regarding the nonlinear term one can estimate:

t t
| J e xiaxds < [ {2 -1, X0 drds < 1X - TLX oo,
and applying Lemma|lII.6.5, one has almost surely:
t
N = lim [<anzo,(p> —fo (A, XL, @)+ (ETT[TT, XY~ <Han>2],H£<p>ds]

: lim N~ e g

n—-oo

Step 2. Now we prove that N, is a centered continuous martingale, with quadratic
variation depending on the dimension. In d = 2 the quadratic variation will be zero and
hence N? = 0, proving that the limit is deterministic (conditional on the environment).
Since N,"% is a sequence of martingales, by Lemma the fact that also N is a
martingale follows from the uniform bound of Equation (III.15) (the continuity of N¥ is
as well a consequence of that proposition). The quadratic variation of N"*¢ is given by:

(N"P), = n-*f«nsn X}, (T2 ) > =215 ()IL,(X) )

H(MXITL)) 1) — (5, (X2, ([T2)? 2T ()T, (X} T, ) dr,

with A =0ind =1and A =# > 01in d = 2. In the latter case (d = 2,1 > 0) the bounds
0< X" <1,|s,| < n~? guarantee that

lim (N"%), =
n—00

Instead if d = 1,1 = 0 we have to take more care. As before, the bound |s,,| < 12 guaran-
tees that all terms multiplied by s, vanish in the limit, so we are left with considering

lim <H3X" (T2~ 2012 (@)L, (X! p)) + (L, (XVTL ), 1)dr.

n—oo

We can rewrite the quantity in the limit as:
J (XY, (2 -2 )T, X )]y + (T, X)), 1) dr
[ 2 D ) + (O 1)
+ (DX, ), (T, XITL, ) dr,
where we have defined the commutator (cf. Lemma for a similar construction)

D (g, ) =T, (¢ ) ~ (T, ) - .

Now we observe that for 0 € [0,1]:

sup D5, 9/)) = sup| f p(3)@' )9/ ()]
x€T? xeT4

<n lezb”L‘”“l;b llgo-
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We can apply this bound to our quadratic variation, observing that ¢ € C®(T) and
X"l <1, so that:

t

lim | -2 X}, ([Tae) D™ (X], @)y + (D' (XL TL,9)), 1)

n—o0 0
+ DX, T, ), (T, X)), ) dr
=0.

Finally we are left with computing the limit

t
lim (N"%), = lim | (IT2X, ([C29)*-2(TR2@) ([, X)) + (((IL,X)T,p) 1) dr
n—00 0

n—-oo

t

_ j (X, 0% = 2X, %)+ (X2, 0%)dr
0
t

Here the second equality follows by calculations analogous to those in Step 1, since
now the quadratic nonlinearity is a function of I1,X" and the latter is converging in
L2([0,T); BS,,).

Finally, since the martingale (Ntn’q))2 — (N™?), is bounded (using that 0 < X" < 1),
also the limiting process (th))2 —lim, ,(N™?), is a martingale, implying that (N¥), =
lim,,_,..(N"?),. Hence the quadratic variation is of the required form for Theorem[[I.3.11]

So far we have proven that any limit point solves the required equation. To conclude
the convergence, we have to prove that such solutions are unique. In d = 2, that for every
w € () there exists a unique solution to the equation

X =voAX +E(w)X(1-X),  X(0)=X,

follows from classical solution theory. Instead in d = 2 uniqueness in law can be estab-
lished via a Girsanov transform, as we show in Lemma [lI1.5.4| below.
O

LemmaIIl.5.4. In d = 1 and under Assumption|l11.3.8} solutions to the stochastic Fisher-KPP
equation as in Definition|lI1.3.9|are unique in distribution.

Proof. As usual, the argument works for fixed w € (2, so we omit writing the dependence
on it. First, the same calculations as in Proposition prove that any solution X to
the martingale problem of the stochastic Fisher-KPP equation lives in L2([0, T]; B ,), for
some «a > 0 and arbitrary T > 0. Then, following the same arguments as in the proof of
Theorem|[[I.2.19] we see that (up to enlarging the probability space) X is a solution to the
SPDE:

9, X =voAX +EX(1-X)+X(1-X),  X(0) = X,,
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where £ is a space time white noise. Here we mean solutions in the sense that for any
@ eC=(T% and t € [0, T]:

t
(Xer ) = (X0 ) =L (Xo Vo) + (EX(1 - X,), p)ds

t
. j VX - X, () () dE (5, x),
0 Jrd

where the latter is understood as an integral against a martingale measure, in the sense
of Walsh [Wal86]. Now we can use a Girsanov transform [Daw78, Theorem 5.1] (see
also [Per02, Theorem IV.1.6] and [MMR109), Section 2.2] for more recent accounts). Let us
denote with IP the law of X on L?([0, T];B3 ,) and define the measure Q by:

2
)X, (01 - ( x)(1 - Xs(v)) )
(f - ¢x T JL X )

Clearly, this transformation defines a change of measure, since

(1= X,(x) _
J Ld l—X( ) dsdx < T|&]|%.

Under this change of measure, for every ¢ € C*(T?), the process:

t
(Xt @) = (X0, ) —fo (X, voA@)ds = LY

is a continuous Q—-martingale with quadratic variation:

t
(L) = | (-0, 97as
This means that under Q, the process X; is the unique (in law) solution to the SPDE:

X =voAX +X(1-X)E,  X(0)=X,.

The uniqueness in law of solutions to the latter equation follows by duality, see for ex-
ample [Shi88].
O

II1.6 Schauder estimates

This section is devoted to the proof of Theorem and other similar results. Since
the central object in this section, the semidiscrete Laplace operator 7, is defined through
convolutions with characteristic functions, the following result collects some information
that will be useful in the upcoming discussion.
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Lemma IIL1.6.1. Let (D¢); = % and (Dz(p)iyj = % indicate the gradient and the Hes-
i ]

sian matrix of a smooth function ¢: RY 5 R respectively. Recall that %,(k) = x(n"'k) =
9Rd(nd1{gn(o)})(k). Then:

2 2
D#(0)=0,  D2¢(0)= - Z)vdd,
with .
vo—gmdzl, vo=— in d=2

Next, recall that
8u(k) = n*(R3(k) ~ 1),

Then for any choice of constants ¢ <1 < C, there exists a x(c,C) > 0 such that

Sn(k) -1
<—" 7 <, Vk: <x(cC).
c< 2ok S C k: |kln x(c, C)

Finally, the decay of X can be controlled as follows for any n e NU{0} and iy,...,i,, € {1,...,d}:

d"x (k)

d+1
L |, k)
’dxh-ndx%|~”( )™

The proof of this result is deferred to Section Instead, we pass to the central
result of this section, from which all other will follow. Recall that <7, is a Fourier mul-
tiplier, therefore also the exponential " and the resolvent (-7, + A)~! (for A > 1) are
naturally defined as Fourier multipliers. As explained already in other points, the action
of &7, is different on large and small Fourier modes. The next result provides the correct
choice for this division of scales.

Proposition II1.6.2. For some, and hence for all, ko > 0 the following holds. For any p €
[1,00], € R and j > —1 there exists a ¢ > 0 such that uniformly over n € N,t > 0,7 > -1 and
¢ € €, one can bound:

1A ;o) < 27 iplige, if 2/ <xon,

. o (II1.19)
||Aj£/n<P||Lp(Td) <n2 a]||<P||<g;f; if 2/ > xon.
And similarly for the exponential:
—ct2% n—aj i
A" @l o iy S €27 27% ||@llga, for 20 <xon,
je Pl Plg f 0 (I11.20)

—ctn? A—
ctnz

W : )
||Aj€t "@llpprey Se a]||(P||<g,,“: for 2/ >xqn,

and for the resolvent (uniformly over A > 1):

-1 —ai i
1A (=, + A) @llpp(re) < G pllge, for 2/ <won,

' | | (TTL.21)
1A (= + ) pllpprey L /\Z_MH(PH%;, for 2/ >xqn,




III.6. SCHAUDER ESTIMATES 93

Proof. If the estimates hold for a certain xy > 0, it is evident that they hold for all xg >
0 (up to changing proportionality constants). In fact, for 2/ ~ n the first and second
estimate in every pair are equivalent.

Since all of the estimates follow the same pattern and the first one is particularly
simple, we will mainly discuss the proof of the inequalities in ([I1.20), pointing out how
to adapt the calculations to the other cases. We also restrict to the case

j>0,

since the case j = —1 is immediate. We begin by restating the inequalities for distributions
on R?. This is useful because on the entire space we can use scaling arguments. Then
we examine the behaviour on large and small scales separately. The precise separation of
modes is chosen based on Lemma [IL6.1]

Step 1. To restate the problem on R¥ we extend distributions on the torus periodically.
Let t: .7'(T%) — .’(R%) denote the such periodic extension operator of distribution on
T4 to the full space. Its adjoint is the operator 7*: . (R%) — .#(T%), given by

Tp()= ) pl+k).
kezd
We observe that (., ¢@) = @7, 7(p), where with a slight abuse of notation we have ex-
tended 7, to act on distributions on the whole space (simply through Equation -
and note that it is still a Fourier multiplier, since for ¢: RY — R, «7,¢ = 91;} O, FRiP).
Similarly, by the Poisson summation formula (Lemma , 7(Aj@) = Ajme(p). As a con-
sequence of this last observation, and since 7(A;¢) is periodic, for any a > % (ora>0if
p=o0):
1A (@) Lo (R4 p(a)) Zap 1A @l (Ta),s

Here we have used the weighted spaces introduced in Section Therefore in order to
show it is sufficient to show that for all ¢ € .’(R?) and setting a = d + 1:

2l ;
A" % @lleRapeasiy S €% NA@lleRapear1), for 2/ <xon

_ 2 i
A" llrprazpias1)) S € NA@llrowepar), for 27> xon.

The same holds for (III.19) and (III.21)), with the natural changes. Hence, from now on let
us consider all functions and operators defined on R?. Let ) be a smooth radial function

with compact support in an annulus (i.e. (k) = 0 if |k| < ¢y or |k| > ¢, for some 0 < ¢y < ¢3)
such that py = p (here p is associated to the dyadic partition of the unity through which
we define Besov spaces: see Section [l.1). By Young’s inequality for convolutions and by
estimating uniformly over x,p € R?

_(d+1) _d+y d+l
(I+x*)" 7 s+ 2 Q+lx-y) 7,

one obtains:

A" llrorap(as1)) S 1P (€ 2T N Rap-a-1) 1A PllLoRep(a1)-
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In this way, through a change of variables, we reduced the problem to a bound for
_2i drl - 9 (2.
Ld(l + 272 ) ) [e”n@’ >¢(-)](x)| dx (I11.22)

(and similarly for (IIL.19) and ([IL.21), with e® replaced by 9, and (-9, + A)~! respec-
tively). Before we move on, we finally observe that by Lemmal|lll.6.1} there exists a k5 > 0

such that for 2/n71 < x:
j
E < (2 k). sé,
27 —(2m)2v2% k|2 T 2
Step 2. We now estimate (TI1.22) on large scales, i.e. 2/n~! < x. In this case the term
can be bounded by:

| Zbterss 1+z|fm O]

d
< sup [|et3n (27k) (k)| + Z|a]zz_(d+1)et88(2jk)llb(k)|:|'
i=1

Vk € supp(y).

kesupp (i)
To bound the term involving derivatives we observe that:
Dx (k)

D[t9,(2/)](k) = f(2/n " k)e2% |kl f(k) = 42> (k) Al

where f is smooth on R¥, again by Lemma [[I1.6.1, In particular, since 2/ < n, taking
higher order derivatives one has for any ¢ € N: |8£4[t8n(2]‘-)]|(k) < t2% for k € supp(y).
Now recall Faa di Bruno’s formula for £ € N:

a€ ZC m} e m1+ +ngf
where the sum runs over all {m} := (my,..., mg) such that m; +2m,+---+€my = €. Applying

:l‘\

) r=1

this formula and by our choice of «, there exists a constant ¢ > 0 such that:

- [ L(2TKk) Z|a 2(d+1) 13, (27k) 1p(k)|] 3 EmPvot2% (1 | 492])20d41) ¢ pelt2?)
kesupp (1))

This concludes the proof of the large-scale bound in (III.20)). For the resolvent equation
one similarly has to bound:

d

kesupp(y)

Here as before, for the derivative term one has, through the choice of «x:

1
S WZ}'—sn(k)m

1
3(2m)2vp2% + A
1 1
T Ien)2ve2i+ AT S

T+my+-t+m, € o,
[1(27)
r=1

1+my+-+my )
(22])m1+-~-+mg

4
‘ ki—9,(k)+ A

{m}
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as requested for (II.21). The estimate follows similarly.

Step 3. We pass to the small-scale estimates, namely for j such that 2/n~! > ;. Here
we will need tighter control on the decay of X(k): since x is not smooth, the decay at
infinity is not faster than any polynomial and is quantified in Lemma We now

estimate (I11.22) by:

(L TR dx)sup [(1 e 2 P 7 ts"(zj‘)‘l’(’)]|(x)]

xeR4

d
S o™l + 10— A F eI (s + Y 2T,
i=1

for any p € (1,00). As for the first term, since |¢(k)| < 1 for k = 0 and it decays to zero at
infinity, up to reducing the value of ¢ > 0 we can assume that:

9,(27k) < —cn.
This is sufficient to show:
le" ¥ 2 () < €7,

which is a bound of the required order.
Now bounding these derivatives is similar to bounding the last term:

d

_i 2(d+1 i
Y 2 g e @ (),
i=1

so we concentrate on the latter, which has the added difficulty of containing derivatives of
higher order, counterbalanced by the factor 277(#*1), Here observe that for 1 < £ < 2(d+1):

aiietsn(yk af 1[ £9,,( 2]k)4)23(2jn_1k)[aki)f](ﬂn_lk)]-(2jn_1)-(tn2).

Iterating the above procedure, we apply Faa Di Bruno’s formula again to obtain

5=jd+1) aé £9,(27k) | <2 J(d+1) o8, ( (27k) Zl_[ ar 1[4 ak)( ]|2]n_1k 2]11_1) ) (th)mr
{m} r=1

In view of Lemmal [[1I.6.1}, for any r € N:

1
sup |95 [423()[9k £ ()] S —
kesupp() [ ]|21n L 1+|2]n_1|2(d+1)

Hence, as before up to further reducing the value of ¢ > 0:
. . . e .
||aiets,,(27-)||Lw < e—Ctle 2—](d+1)(2] n—l )Z ZI_[(l + |2] n—l |)—2m,(d+1)

~

—ctn? 5—j(d+1)(5j,~1\{-2(d+1 —ctn?
<ecn2](+)(2]n) (+)$ecn’
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since at least one of the elements of the sequence m, is strictly positive and since ¢ <

2(d + 1). This concludes the proof of (III.20). Regarding the resolvent, one can follow
mutatis mutandis the previous discussion until one has, as before, to bound:
2(d+1)

Zz—] (d+1) _9 ) ” Z Z y=j(d+1)

Then again, with Faa di Bruno’s formula:

| -9 (211) ,\” '

Ia 2(d+1)

1+my+--+my 1 A3
I_“ar (VI X ODlierg] ™ - (I

‘8 2(27k) +/\| Z| 21k +A

4
1 1 pmtetme 2m,(d+1) .
< | | 2]1171 rm
n2+/\Z|n2+/\' (1+|21n—1|) ( )
{m} r=1
L i+
< _2]( + )'
n2+A

Plugging this into the previous formula provides us the correct bound. Similarly one can
also treat the small-scale estimate for (I1I.19). O

The previous proposition motivates the introduction of cut-off operators as follows.

Definition I11.6.3. Let 7: R? — R be a smooth radial function with compact support. Let us
define the annulus AR = {x € R%: r <|x| <R} } for 0 <r < R. Then we additionally assume that:

Tx)=1, ¥xeAp () =0, Vxe AR,
for some 0 < r < R < oo. Define
Z,="(n"'D),  2,=(1-T)(n"'D).

We say that &2, is a projection on large scales, since those Fourier modes describe a function
macroscopically, whereas 2,, is a projection on small scales.

The next lemma states that the cut-off operators are bounded.

Lemma III.6.4. Consider « € R and p € [1,00]. For T as in Definition |[I1.6.3|one can bound
uniformly over n € N:

1Zupllze Sllpllgg,  2uplley < llpllgg

Proof. Define the inverse Fourier transform /'i\(x) = ﬁ’ﬁdl'l(x). By an application of the
Poisson summation formula (Lemmal|l.1.1) and a scaling argument:

(7' D)@llgy = sup 2 N(Fpd [T~ )+ Ajplle < NP [0l
j>-1

<)l e llplles < llellse

The same argument shows that (1 —7(a-)) is bounded. O
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I11.6.1 Elliptic regularity

In this subsection we prove Theorem [[11.3.13] The theorem is a direct consequence of the
lemma and the proposition that follows.

Lemma II1.6.5. Fix any a € R, > 0,p € [1,00]. Uniformly over ¢ € ¢ and n € N:

Moreover, as n — oo
g, — voAg in %p“_z_‘:,

where ) .
== d=1, =— d=2.
Vo =73 for Vo= for

Proof. On large scales, Proposition [I1I.6.2|and Lemma [I11.6.4|imply that
7 Zn@llge—2 <1 Znellsg < ll@ligg-
Moreover on small scales the same results guarantee that for any ¢ > 0:

12y @llgaz-c < n*sup 22 NA; 2,0l < 17 Nl

2izn

which tends to 0 as n tends to oo if ¢ > 0. Combining these two observations provides
the first bound and guarantees compactness in %pa—z—c. Convergence follows since, by

Lemma forany k e zZ4:
Fpal oy Pupl(k) = Un~ K)n? (22 (07 )=1)p (k) > —(270) volk PP (k) = Fpa[voAg] (k).
OJ

The regularity gain provided by the operator %7, can be described as follows (for the
proof of Theorem [[1I.3.13|we require the result only for 6 = 0).

Proposition I11.6.6. Fix any a € R, 0 € [0,1] and p € [1,o0]. Uniformly over A > 1,n € N and
@ €6y the following estimates hold:

APy 4 AVl oo + ANy = 4 AVl <l
Moreover, as n — oo,
P~y + N7 o — (—vpA+ 1)L
where the convergence is in CK,,MZ_C for any C >0 and vy is as in Lemmallll.6.5

Proof. Consider the large-scale estimate. Proposition|l11.6.2|and Lemmal|lll.6.4/guarantee
that for 2/ < n:

I18; Py + 1) @l < 2Py pllgg < 277N g,

227+ )
which is a bound of the correct order. All other bounds follow similarly, and the proof of
the convergence is analogous to the one in Lemma [[11.6.5 O
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I11.6.2 Parabolic regularity

In this subsection we study the regularization effect of the semigroup e*“:. This dis-
cussion requires the spaces of time-dependent functions introduced in Section [[.1.4}
Throughout this section we fix an arbitrary time horizon T > 0. All function spaces will
depend implicitly on this choice. All estimates hold locally uniformly over the choice of
T, unless stated otherwise.

Now we state the main result of this section, the parabolic Schauder estimates.

Proposition III.6.7. Fix p € [1,0],T > 0,y € [0,1) and a € (-2,0),p € [a,a+2) N (0,2).
Uniformly over ¢ € €' and f € A7 and locally uniformly over T > 0:

It > Pue @l yip-ars S 1Puplly, (I11.23)

t
e | 2250y <170 gy (.29
0 P

In addition, let C1,C,p € [0,1) such that C;+Cy <1 and 01,0,,03 € [0,1] such that 61+0,+063 =
1. Then:

It > 19742, e pllcargn 1722, @llsg, (IT1.25)
t - -
||t > 17 J =% g f(s)ds| e ST, f] . (II1.26)
0 “p

with constants independent of f, ¢, T.

In many steps the proof mimics proofs in [GIP15] and [GP17], to which we refer the
reader for simple proofs of classical Schauder estimates in the setting of stochastic PDEs.

Proof. Step 1. We begin with large scales, namely (II1.23)). By Proposition [[11.6.2

j <, —ct22 A (B—a)i
sup 287||A; 2, el pp(pay < sup e 287 )| 2, ¢l os0
j>-1 j>-1
_ba —ct2% 52 B2 _ba
=t 2 supe 7 (127) T || P pllge ST 1 Ppllgyp.
j=-1
Therefore
,
It > Pye! "Gl -y SN Pnplligs

Similarly, for (I1I.24)

a+2)

sup 21

t , |
|J Aje(t—s)%n gznf(s)ds“ SINZufll.ares sup 2]2J €_C522](t—s)_7’ ds.
j2-1 0 LP(T4) P 0

j=-1

which can be bounded by ||, f||.4r¢¢ by the same arguments as in the proof of [GIP15]
Lemma A.9]. We still need to address the temporal regularity for both terms. Again,

Proposition I11.6.2|leads to:

t
te, - &
li(e —Id)9n¢||Lp(Td)—l'J;es "Z{”‘@stuu(m
(IIL.27)

t
_1+& (4
< | 2l ds = 12,0l
0
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To conclude the proof of both and it is now sufficient to follow the same
steps as in [GP17, Lemma 6.6].

Step 2. We turn our attention to the small scale bounds (III.25) and ([I.26). Fix
Cq = 01 = 0 first. With calculations in the same spirit as in the Step 1, we arrive at:

o, o, 2 2\—
12" pllgs = sup 2Y|A; 2ye"  llpray S € 120 plles < (t1°) 2012, pllise
]> 1

For the inequality (II1.26)), if 65 > 0 the spatial bound follows from the previous result. If
03 = 0, we observe that

Hje@ets (s)ds

The last bound in the above inequality is obtained in the same spirit as [GIP15, Lemma
A.9]. Namely, choose A € (0,1/2) and split the integral at time A. We note that

A s A A/t
J e &M (t=s)Vds < f (t-s)Vds =7 j (1-s)7ds<t77A,
0 0 0

since, as A/t <1/2, 1—(1—/\/t)(1’7’) < A/t. We then observe that for any p € (0,1),

t
—csn? — -2 ,—
SI2uf Loy | € 197 ds w2012 Ly
0

p

t t 1
J ~esn® (t-s)7Vds SJ (sn?)" 00 (t—5)77 ds < t_V_pn_z(H")J s~1+0)(1-5)V ds
A A A/t

< Y 2(0+0) -0
If n=2 < t/2, choosing A = n~2 provides the result. Otherwise, one simply notes that

t
f e_“”z(t—s)_y ds <tV <t+77n?
0

Step 3. We now investigate the full temporal regularity for (III.25) and (III.26), that
is, we allow for Cq,0; > 0. We first observe that for 6 € [0, 1)

t
le-1d) 2yl = | | o 2pas,
0 ’ (111.28)

t -
<120l | (072072 ds =12 gl 201,
0

Hence for ¢ = (1+C; €[0,1), the temporal regularity of the first terms can be established
via
€' 2, 5" 5% Dy pllgs < (K=Y 22022, s + S (e 9% —1d)e"% 2, ls
S (=)0 2, pllgg + 5% (t-5)' =0 n 72071 2, g
S [(#0=s)72n 20 4 (t=5) 7020 | 2 lley

-2C
< (1= 17222, I

where in the last step we set & = 1-{; and notice that (t—s%)t=%2 < (t—s)%1.

~
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The bound for (I11.26)) follows similar pattern. For simplicity write V (¢) = fot et 9, f(s)ds.
Then

AN F—Td) V (5)llesp

t
17V (O)-57 VOl <05V O+ e 2,
S “p

The only term for which the estimation does not follow the already established pattern
is the one in the middle, for which we observe that

t
s sz (t=1)2) 021 drl 2, fll gy
p S

t
57’||J e(t_r)%o@nf(r)dr
S

1
sl2ufllareg n202g7 7027yl J (1-r)"%2r7 7 dr
s/t
1

s/t

SN2 flLarggn=>0241 702 (1=s/1)! =%
-20 1-96
< 2ufll.argen = (t=s) =

SN2 llarggn 22T (t=5)",
which completes the proof of the proposition. O]

The following result is essentially a by-product of the previous proof, but deserves a
separate statement, for later use.

Lemma II1.6.8. Consider o, € R and p € [1,00] with y := a — p € [0,2]. Then uniformly
over @ € 6,

Y
(" 1)@l s < t2ll@llse-
p

Proof. The proof follows from Proposition [[1I.6.7} Indeed, Equation (III.27) implies that
for 2/ < n one has:

2H||(e" ~1d)Ajplli < 2 2P I plly < t 7l
While a slight modification (to LP spaces) of (II.28) guarantees that for 2/ > n:
j v v i Y
2P| ~1d)Ajpllre < £2 2P 07 1A lle < £2 27IA @l < £2 [l

This concludes the proof. O]

III.7 Some analytic results

In this appendix we recall some of the analytic theory we require. First we concentrate
on special properties of Besov spaces and the regularity of characteristic functions. Later
we will address some relevant points in paracontrolled calculus.
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II1.7.1 Besov spaces & characteristic functions

In certain cases, it will be convenient to use the following alternative characterization of
certain Besov spaces.

Proposition III.7.1 (Sobolev-Slobodeckij norm). For every a € R, \ N and for every p €
[1,c0) define the Sobolev-Slobodeckij norm for ¢ € .#(T%) as:

ID"p(x) - D" p(p)IP e
Mol =l = 3 ([ P deay)  cloe)

ml=(a]

There exist constants a pair of constants c(p), C(p) > 0 such that for ¢ € .#’(T%)

cllllsg, <llollwg < Cligllsg -

For a proof consult e.g. [Tri10] Theorem 2.5.7 and the discussion in Section 2.2.2. The
next result states the regularizing properties of convolutions.

Lemma II1.7.2. For p,q,r € [1,00] satisfying + = ~1 and for any @, € .7’ (T?)..

1.1
P q
I+ @l cees < 1f g gl

Proof. By Young convolution inequality

IA(f * &)l = 1A f *Aigller < A f Il AL, (IT1.29)

where A; is associated with a dyadic partition of the unity different from the one we
use for most of the proofs. Namely we require that it satisfies {0;};>_; such that p;p; =
;. Then the bound follows immediately, since the Besov norms associated to different
dyadic partitions are equivalent (cf. [BCD11], Remark 2.17]). O

The following lemma is a special case of results obtained by [Sic99]. The proof is
included for completeness.

Lemma II1.7.3. Fix p €[1,00), C €0, z%)‘ Then:

~(—d+14
supn p”Xn”W( < oo.
neN
Proof. We shall make use of the characterization of fractional Sobolev spaces in terms of

Sobolev-Slobodeckij norms. A direct computation shows that

15,00~ 15,0)F |\
—_ dpl Bn Bn
by =+ ([ e 22 vy

1 1 p l/p
Sndz+( J J dplB (x)=1p,®)l dxdy) .
T4\B, |x y|d+Fp
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Now let d,(z) be the Euclidean distance of a point z from the boundary dB,, and let
Bd 2)(») be the ball of radius d,(z) about y. Then the previous integral can be estimated
by:

1 1 P 1/p 1/p
U, Jo e < ([ [ )
T4\B, lx —y|?*ep TA\B,, ) (v) |x y|trep
1 1/p p . 1/p
———dxd ) s(f nPd,(y)~“Pd )
(f Ld\Bd (0) |x|d+C” Y B Y Y

n

1
» 1/p
S(J P(c/n—r)"CPrd- 1dr) gnd(ncpfd) < nf+c-dlp,
0

Corollary I11.7.4. Recall that we define the operator I1,, by
Ip(x) = X0+ ().
Then, for C €[0,1),p € [1,00] and a € R

supn CIIHMII%M < llgllge
neN

Proof. This is now a direct consequence of Lemma [[II.7.2|and [[II.7.3| (the latter with p =
1).

O
The rest of this subsection is devoted to the proof of Lemma [lII.6.1
Proof of Lemmal|lll.6.1} Let us start with the term involving the gradient. We have that

fori=1,...,d:

(DE)Z(O) = —27(Lf xie—27‘ll<k,x> dx’ —-0.
B, (0) k=0

For the term involving the Hessian, we observe that an analogous computation for i # j

shows that (Dz)?)i,j(O) =0.If i = j we find that

2. .(0) = 2 2 —2mik,x) . _(Zn)z
(D 5(\)1 Z(O) - _(27-() xi e dx =: Vo,
' B1(0) k=0 4

with the value of v, as in the statement. The two-sided inequality follows by a Taylor
approximation.
We are left with a bound on the decay of x:

1’l

_d+1
|dxll—dXB(k)|$(1+|k|) .

For this purpose let ], (-) be the Bessel function of the first kind with parameter v, that is

) k 2m+v
Zm'Fm+v+1)(2) '

m=0
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The Fourier transform of xp can be written, for some ¢, C > 0, as
T
xg(k) = c(d)J sin (¢)e 27 klcos (V4 ¢ = Clk|=%2] o (meK|/2). (111.30)
0

In the last step we used one of the alternative representations of Bessel functions, see e.g.
[Wat95|, Section 6.15, Equation (5)] (the author uses the notation K, for the real part of J,,,

but in our case the Bessel function is real valued). Since ]%(k) =4 /% sink, the bound for
d =1 is immediate. For d = 2, we make use of an asymptotic bound for Bessel functions:

sup 02|, (p)| < +co.
=1

We provide a proof of this bound in the next Lemma. The bound for the derivatives then
follows from (III1.30), the asymptotic result for Bessel functions, and the following pair
of identities

90 = 3Ur (), YneZ,

]—n(') = (_1)n]n(') VHENO.
]

The following result is well-known (see e.g. [Wat95], where many deeper results are
presented). For completeness we provide a proof that satisfies all our purposes.

Lemma II1.7.5. Fix v € R. Then

sup p/?|],(p)| < +oo,
=1

Proof. Through (II1.30) and by changing variables x = cos(t) we rewrite the Bessel func-
tion as
1 2 d-1 1 ) d-1
J (I-x7) 7 e'®*dx = ZRe(J (1-x )2e“’x)dx.
-1 0

A change variables x = 1-u2. yields

! d-1 io (Ve 2 4

el"f (uZ(Z—uZ)) 7 o0y dy = edﬂj (w2(2—w—)) 7 ey dw.
0 0?2 0 0

Observe that in order to obtain the desired bound it is now sufficient to show that the

integral terms is bounded uniformly in p. After another change of variable w = ™3z we
obtain

17t

ed\o d-1
J (—Lz2(2+Lz2/p)) 7 e %' zdz
0

Ve FET /4 o
:f (—122(2+122/0)) Pet zdz+‘[ (—Lpez’(”(2+162‘q’)) 2 e 0 pe?? dg.
0 0

The first integral can be trivially bounded uniformly over p while the second one is tends
to 0 as p tends to infinity since the exponential term dominates all the others. O
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II1.8 Discrete results

I11.8.1 The SLFV in a random environment

In this section we provide a rigorous construction of the spatial A-Fleming-Viot process
(SLFV) in a random environment. We work under the following assumptions.

Assumption II1.8.1. Let (Q),.%,IP) be a probability space. Fix n € N and u e (0,1),d =1,2
and let w®: T¢ —[0,1] and s,,: Q x T? — (=1,1) be two measurable functions.

The natural state space of the spatial SLFV process is:
M ={w: T -[0,1], w measurable},

which is a metric space when endowed with the distance dy;(u, w) = sup, o [u(x) —w(x)|.
Then under the assumption above, for x € Td,p € {a, A} and any function w : T4 > [0,1]
define the operator ©%: M — M by

Ow(y) = w(y)L 5y (¥)+ (1 =gy H(L-1)w(¥)) 1 (B, (1)) ()
= w1 (=) =w(¥))1(B,(x) (¥)-
In the discussion below, let Z(E) be the Borel sigma-algebra associated to some metric
space E. We say that a probability measure P“ on (E, #(E)) indexed by w € Q is a Markov
kernel, if for any A € #4(E) the map w +— P“(A) is measurable. Then one can build the
semidirect product measure IP x P“ on () x E (with the product sigma-algebra), charac-
terized, for A € #,B € #A(E), by:
P=xP“(AxB)= J- P“(B)P(dw).
A
In the definition below we write:

s, (x) = max{s(x), 0}, s_(x) = max{-s(x), 0}.

Lemma II1.8.2. Under Assumption [I11.8.1} fix w € Q). There exists a unique Markov jump

process t — w(t) in ID([0, c0); M) started in w(0) = w°

ZL(n,s,(w),1): Cp(M;R) — Cyp(M;R),

, associated to the generator

defined by
L) = [ (Fw)-fwhplw dw),  feCMR),
where the transition function p: M x (M) — R (depending on s,(w),u, n) is defined by:
p(w, dw’) =0 unless there exist x € T, p e {a, A} such that w’ = Ofw.

And if w’ = @%w for some x € T4, p e {a, A}:
) = 100 D 3 1T |

+ (sn)_(a),x)[(l‘[iw)zl{p_aﬁ(1—(Hflw)2)1{p—].\} (x)

+ (sn)+(a),x)[l_[‘2w(2—l_12w)l{p:a}+(1—l_[zw)21{p:].\}

(x)}dx.
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The law P“ of w in ID([0, 00); M) is a Markov kernel and induces the semidirect product mea-
sure IP =< IP¥ on () x ID([0, 00); M).

Proof. Note that p defined as above is a Markov kernel on M x #(M) (to be precise,
here we have to observe that for fixed w the set {Ofw, x € T%,p e {a,A})} is closed and
hence measurable in M). Hence, the Markov process is constructed following [EK86)
Section 4.2]. In addition, for f € Cy(M;R) measurable and bounded the map w
fo(w’)yw(w, dw’) is measurable (we made explicit the dependence of y on w). This
implies, e.g. by [EK86, Equation 4.2.8], that the map w +— P“(A) is measurable, for
A € B(D([0,00); M)). So the proof is complete. O

Lemma II1.8.3. Under Assumption|lI1.8.1|fix w € () and let w be the Markov process as in the
previous result. For any ¢ € L®(T?) the process t > (w(t), @) satisfies the martingale problem

of Lemmallll.2.5)

Proof. In the discussion below we omit the dependence of s,(w) on n and w, since such
dependence is not relevant here. We will apply the generator to functions of the form
Fy(w) = F({w, ¢)), with F € C(R;R), ¢ € L®(T“). For simplicity we divide the operator
Z = Z(n,s,u) in three parts:

Z(Fp)(w) = L (Fy)(w) + L°(Fy)(w)

1= LME,)(w) + L2 (F,) (w) + L2 (Fy)(w)

¢ ¢

(the first is the neutral part, the second two are the selective parts of the operator), where

27Ew) = [ -5 TEg (OFw)-Fy ()] (1-TTEw) Fy (O ) E ()] |(x)
T4

L2 (Fy)(w) = s_<x>[(nzw)2[F(p<@;w>—F¢<w>1+(1—(sz)z)[F¢<®,Z*w>—F(p<w>1]<x>dx
T4

L) = [ 0] T2 T2 301y} 1T [ (©30)Fy )] )
7

Now, in the special case of F =1d,,, the neutral part of the generator takes the form

21y )= [ (- w)T )~ (wp)(5)d
Analogously, the selective part can be written as

25 (1d ) (w) = undf ()T (wep)~(TT3w) TLg ] (x) + 25, (x)[[T3wIT, p~TT, (we) ] (x) dx.

T4

Adding those two we conclude that

Z(1dg)(w) =wn™ Ld[miw)(rln@)—nn<w<p>]<x>+s<x>[<H2w>(Hn<p>—<H2w>2Hn<p1<x> dx.



106 III. THE SPATIAL A-FLEMING-VIOT MODEL

This justifies the drift in the required decomposition. To obtain the predictable quadratic
variation of the martingale make use of Dynkin’s formula, that is

t
(M"(@)); = L 2(1d3) - 2(1d, £ (1dy) )(w, ) dr.

Once again, it is natural to treat the terms involving .Z"¢" and .#*¢! separately. For the
neutral term:

(£ (1d7) - 2F 2 (1d,) ) (w)
RS Ld<1—|s<x>|>[H:’;w(nn@—Hn(wcp))z + (1), (wg) o) d
which can be written as
W2 J”Td<1—|s<x>|)[Hiw[(nnqo)2 - 201, (L (we)] + [T, (we)]|ix)d.
Analogous calculations for .Z5¢! lead to
(2=e(1d3) - 21d -2 1d ) (w) =
— w2 L 50 (T30 P[0 - 201,011, ()] + [T () )

Whereas for .Z5¢! they lead to
(25! (1d3) - 21d 251, ) (w)

= 12 L 5. (0] () - Tw) Ty (TTy(wep)) + (1-TEw) (ML) o) dx

— w2 L s (0 (T3) =TT (1) 201, T, () T ) 0

Summing neutral and selective terms one obtains
w2 T, (1) (T ) 20T, ) (T wep)) (1-1s))
+un N (Mw)?, s_[(nn<p)2 - 2(Hn<p)(Hn(w<p>)] + <(Hn(w‘P))2' 5-)
2 2w, s+[<z—n3w>(<Hn<p>2—z<nn<p>(nn<w<p>))]>+<(Hn<w<P>)2’S+>f

which can be written in the form from the statement of the Lemma.



IV

Discretizations of the Anderson model

IV.1 Introduction

In this chapter we study discretizations of the Anderson Hamiltonian (and the associated
semigroup)
H=N+E&

with & space white noise on a box in dimension d = 1, 2.

In Section[[V.2]we consider semidiscrete approximations with periodic boundary con-
ditions. The main result is the proof of Theorem stated in the previous chapter.
The proof relies on some stochastic estimates, which we provide in Section and
some commutator estimates we prove in Section [[V.2.6]

In Section we consider instead lattice approximations of the Anderson model
with Dirichlet boundary conditions. We recall the approach of [Cv19]| for paracontrolled
distributions with Dirichlet boundary conditions and show some required stochastic es-
timates in Section [V.3.3]

The Anderson Hamiltonian was introduced in d = 1 by [EN77]], in d = 2 by [AC15]]
and d = 3 by [Lab19]. In the last two cases the construction relies on theories in singular
stochastic PDEs [Hail4,GIP15]). In higher dimensions the d = 4 or higher these solution
theories do not work, because the noise becomes too rough (a problem known as super-
criticality [Hail4l]). To see why the problem becomes more complicated as the dimension
increases, consider the resolvent equation for A > 0:

(A+E-Np =0g.

If we can solve this equation, for example for any ¢ € L? and some A > 0 large enough,
we would have:

p=(A+ ) HEY-g).

Now, assume that such 1 has a regularity ip € €5 for some a > 0 (if & = 0 Schauder
estimates would guarantee this regularity for any a < 2). Since space white noise has
regularity & € €27 for any « > 0 (see for example the discussion in the upcoming

_d_
section), the product & lies in €, * “ and hence we cannot expect any better than a <

107
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2- %. Yet to define the product £ (see the paraproduct estimates Lemma we would
need a—%—K > 0, which can be the case only in d = 1. In this sense, in d = 2, 3 the equation
is singular. The solution theory involves a Taylor expansion in terms of functionals of
the noise, which is encoded in the theories of regularity structures or paracontrolled
distributions.

In the next section we will construct semidiscrete approximations of the Anderson
Hamiltonian. With “semidiscrete” we refer to the setting of Chapter [TI}

In the second half of this chapter we will consider a lattice approximations with
Dirichlet boundary conditions of the Parabolic Anderson Model (PAM) — that is, we con-

struct the semigroup e'” — in the framework of [Cv19].

IV.2 Semidiscrete Anderson Hamiltonian

This section is devoted to the proof of Theorem This theorem is an approxi-
mation result for the continuous Anderson Hamiltonian in dimension d =1 and d = 2.
Before we proceed, let us collect some basic ideas of the proof that will follow.

The proof of the theorem concentrates on the two-dimensional case, since here the
resolvent equation is a singular stochastic PDE. In the construction of the Hamiltonian
in d = 2 we follow the results in [AC15]] that rely on paracontrolled calculus (we refer the
reader to [GIP15] and [GP17] for a more in-depth discussion).

IV.2.1 Density of the domain

We start with some results regarding the continuous Anderson Hamiltonian, which im-

ply Proposition [[1I.3.14

Lemma IV.2.1. Consider a probability space (Q),.%,P) supporting a space white noise & : (2 —
"(T4). Fix any x > 0. The following hold true for almost all w € Q. The Anderson Hamilto-
nian

HY =vogA+ E(w)
associated to &(w) is defined, as constructed in [EN77] in d = 1 and [AC15|] in d = 2. The

Hamiltonian, as an unbounded selfadjoint operator on L*(T%), has a discrete spectrum given
by pairs of eigenvalues and eigenfunctions {(Ay(w), ex(w))}ken such that:

A (@) > Aa(w) > As3(w) > ..., lim Ag(w)=—oco,  e1(w,x)>0,Vxe T

k—oo

Proof. The Hamiltonian .7“ has been constructed in dimension d = 1 in [EN77]] (albeit
with Dirichlet boundary conditions, but the construction for periodic boundary condi-
tions is identical) and in dimension d = 2 in [ACT5]], for almost all @ € Q). In both cases
% is an unbounded, selfadjoint operator on L?, that is:

HO: PAY)C L — L2

In particular, in d = 2 [ACI15| Proposition 4.13] implies that the operator .7’“ admits
compact resolvents (cf. [FN77, Section 2] for the analogous discussion in d = 1). This
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means that for some A(w) > 0 for all A > A(w) the operator .##® — A is invertible, and
(% — 1)~ is a compact operator on L?. Hence the spectrum of .7#% is discrete and the
eigenvalues converge to —co. By a classical result, see [Paz83, Theorem 3.3], the semi-
group generated by #%, denoted by e'”"”, is compact. Moreover, as a consequence of
strong maximum principle (in d = 2 such a result for singular stochastic PDEs is proven
in [CEG17, Theorem 5.1 and Remark 5.2]), the semigroup e'”" is strictly positive: that
is, for any non-zero continuous function f that is positive (i.e. f(x) >0, Yx € T%), it holds
that e/””“ f(x) > 0, Vx € T%. Therefore since e/ is a compact, strictly positive operator,
the Krein-Rutman Theorem ([Dei85 Theorem 19.3]) implies that the largest eigenvalue
of 77 has multiplicity one and the associated eigenfunction is strictly positive.

O

Lemma IV.2.2. Fix w € Q) and consider the Anderson Hamiltonian S as in the previous
lemma. Define the domain:

9., = {Finite linear combinations of {ex(w)}ken}-

The domain 9, is dense in C(T%). Moreover, for arbitrary C € (0,1) and all ¢ € C*, there
exists a sequence ¢* € 9, with limy_,o, ¢* = ¢ in €°.

Proof. Since w € Q) is fixed, we avoid writing the dependence on it to lighten the notation.
As the statement regarding the approximation of ¢ in ¥* implies density in C(T%) we
restrict to proving the approximation. First, we require some better understanding of
the parabolic Anderson semigroup. Here we make use of some known regularization
results.

Step 1. Consider the operator .7 as in the previous lemma and the associated semi-
group:

e LA(T9) — LX(TY).

This semigroup inherits some of the regularizing properties of the heat semigroup, namely,
for T > 0 and p € [1,00] it can be extended so that:

sup t7[le"” @llga < llll, s, (IV.1)
0<t<T k

for a, p and y satisfying:

y>“;ﬁ, ﬁ+2>§, a<2—g, a>p.

The first constraint is essentially identical to the one appearing in Schauder estimates (cf.
Proposition , the second one guarantees that the product !¢ - & is a well-defined
product of distributions, while the third constraint is due to the fact that fj e")A& ds has
always worse regularity than 2 — %. Similarly, for g > 2 - % and (<2 - % one has:

sup ||e'” Pl < lpllp- (IV.2)

0<t<T

We will not prove these results. Instead we refer to [GP17, Section 6] for the study of
singular SPDEs with irregular initial conditions (see also Propositions |II.3.1)and Theo-

rem [[V.3.4{for similar statements).
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Step 2. Applying iteratively Equation (IV.1) and Besov embedding implies that ¢ €
€25 for any k¥ > 0. Hence the embedding %, C %2757 holds. Now we prove the
statement regarding the approximability of ¢. For any ¢ € C® and C =1 -« < 1 (for

some x > 0) one has:
1
lim = | ¢ pds=¢ in %°.
t—0t ¢t 0

This result can be seen as follows: Equation ([V.2) implies that

1 (",
?J; e pds

forC <’ <2- %. The estimate above implies compactness in €. Projecting on the

sup
0<t<T

< 00,
¢t

eigenfunctions e; one sees that any limit point is necessarily ¢. Hence fix any ¢ > 0
and choose t(¢) such that

1 t(é) S% c
H%L e pds—¢ <§'

Define 1oy = ZkN:(){(p, exyex. Since the projection commutes with the operator, the

748

proof is complete if we can show that there exists an N(¢) such that:

[ €
— 7T -@)d <-.
Here we use (V) to bound for general i € L?:
1 te) sH 1 t(e) S _(l_%) 5 4
- 21 d < _— (_) SH «d
Hf(f)J:) e e t(&)J:) 2 e Wllg-s ds
1 He) S _(%_%) S o
< — = 2 .
~ t(e) J; (2) lez 4}”%}'7 ds

A

1 He) —1+54% “1+5
< (_J § a8 ds)“lPHLZ Ste) T E e,
t(e) Jo

where we additionally applied Besov embedding. Choosing N(¢) such that ||[TT<y¢ —
ol < t(s)l‘%%, the proof is complete. O

IV.2.2 Convergence of eigenfunctions

Before we move on to study semidiscrete approximations of the Anderson Hamiltonian,
we recall and adapt a result by Kato concerning the convergence of eigenvalues and (in
a generalized sense) the convergence of eigenfunctions of a sequence of closed linear
operators. In this subsection we will restrict to closed linear operators on a Hilbert space
H (with norm ||-|| = V{-,-)). We will denote with

a(A),e(A)cC

the spectrum and the resolvent sets of a closed linear operator A on H respectively. If A
is bounded, we denote with [|A]| = SUP||y=1 ||Ax|| its operator norm. We write B(H) for the
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space of bounded operators, endowed with operator norm.

Now, consider a bounded set QQ C C such that the boundary I' = JQ) is a smooth curve
satisfying I' C p(A). We write R(A,C) = (A—C)~! for the resolvent of A at { € p(A). Then
we introduce the Riesz projection

1
P(Q,A)=—5— rR(A,C)dc,

which for all our purposes coincides with the projection on certain eigenspaces, as de-

scribed in the following lemma.

Lemma IV.2.3. Let A be a selfadjoint operator on H. Suppose that Q) (with boundary T
as above) contains only isolated points of the spectrum: (Ao (A) = {A;}i2,. Then P(Q,A)
coincides with the orthogonal projection on the space:

m
U Ker(A-A;).
i=1

This result is proven for example in [HS96| Proposition 6.3]. We provide the main
steps of the proof for clarity, highlighting the salient points but omitting technical steps,
such as motivating that a given function is holomorphic.

Idea of proof. Write P instead of P(Q),A) and assume first that m = 1. To see that P is an
orthogonal projection we have to show that P? = P and that P is self-adjoint. For the first

2 JJ dCdC
) [, [ S acac

where we assume that I, = dQ, C p(A), with Q, open, satisfies ,QQ C Q, and Q,\Q C
0(A), so that the resolvent is holomorphic in (), \ Q (in this way changing the curve from

point observe that

I' to I, does not affect the integral). Then by Cauchy’s integral formula:

7ol J

=—5— | R(C)dC

dCdC’

so that indeed P is a projection (but not yet an orthogonal one). Since m = 1 we can
also assume that I is a circle of radius 6 around A; € R (the eigenvalue is real, since the
operator is self-adjoint). In this way we see that the adjoint of P satisfies:

1 (7 :
Pr=——— | R(AMN+6e79)5d6
21 )
1 TC

=——— | R(AM+6e9)s5do
—TC
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through a change of variables. Hence the operator is self-adjoint, so that P is an orthog-
onal projection. Denote with Rng(P) the space onto which P projects. We want to show
that Rng(P) = Ker(A — A;). If h e Ker(A — A;), then

1

_ _ -l _
Ph=—— JAl ¢y hdg = h.

Hence Ker(P) C Rng(P). If instead h € Rng(P), then:

(A—/\l)hZ(A—/\l)PhZ——l (A= A)(A-C)hdC
271 r
R e _o)!
=3 | €= 2a-0) hat.

Now we use that A is self-adjoint, which implies that for every n € N, IR(A, 0| =

IR(A,0)||*", so that:
. n 1 B
”R(A; C)” = llm ||R(A,C)2 ||2” = Sup |/\| — |/\1 _ Cl 1.
e Aeo((A-0) )

Here the first equality is a consequence of Gelfand’s formula; the last equality holds by
choosing I' to be a sufficiently small circle about A;. In particular

IC-A)A-0) <1

uniformly over { € Q \ {1} and the map C > (C — A;)(A - C)~! can thus be extended to
a holomorphic function (with values in the space of bounded operators) on the entire Q
(in particular it is defined also in A;). So one obtains

(A= A)Ph=0.

The case m > 1 follows analogously by considering I' a union of small circles around each
point of the spectrum. O]

The last step in the proof uses very indirectly the self-adjointness of the operator A.
It can therefore be useful to observe that the speed of the blowup of R(A,C) near A is
connected to the algebraic multiplicity of the eigenvalue. As a prototypical example, in

A:Ol,
0 0
1

2[CP
the identity ||A%"|| = ||A||*" fails completely, because A? = 0. In conclusion, if A is not self-

the case of the matrix

the resolvents explode at order: ||[R(A,C)|| = (1+0(C))as C — 0. Also, in this example
adjoint one has only the inclusion Ker(A — 1) C Ran(P). The projection P then projects
onto the generalized eigenspace associated to A;.

The following result states that Riesz projections are continuous with respect to conver-
gence in the resolvent sense. This is a weaker version of a result by Kato, that holds
for operators that are not necessarily selfadjoint and parts of the spectrum that are not
necessarily isolated eigenvalues: [Kat95, Theorem IV.3.16].
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Proposition IV.2.4. Let A, be a sequence of closed self-adjoint operators on H. Let A be a
closed self-adjoint operator such that, for some Cy € p(A):

Co€p(A,), YneN, and lim |[R(A",Co) — R(A, )|l = 0.
n—o00

Let A be an isolated eigenvalue of A and consider a smooth curve I' = dQ around A, such that
I'Co(A), QM o(A)={A}. Then

lim [|[P(Q,A,) - P(Q, A)l[ = 0.

n—00
Idea of proof. The integral representation of the Riesz projections allows to reduce the
problem to one of passage of the limit under integral sign. Namely, we would like to
prove that:

1 1
lim -—— | R(A",()dC =——
o 21 I (4%.0dc 27 Jr

R(A,C)dcC.

Then the problem is to prove the continuous dependence of R on A and C. [Kat95| Theo-
rem IV.2.25] guarantees that if |R(A", Cy) — R(A, Cp)|| — 0 for one Cj € p(A), then the same
holds for all C € p(A) (and #n sufficiently large). In addition, this implies convergence of
A" in a so-called generalized sense (with respect to a distance named $). The main point
of the proof is then the continuity of R jointly with respect to C and A, using the latter
distance: see [Kat95, Theorem IV.3.15]. O

The previous result allows us to deduce the following.

};ﬂ:({\) be orthonormal eigen-

Corollary IV.2.5. In the setting of the previous proposition, let {e;
functions associated to the eigenvalue A of the operator A (here m(\) is the multiplicity of A).

There exists an n(A) € N such that for all n > n(A) the following statements hold.
i dim(Rng(P(Q,A,))) = dim(Rng(P(Q, A))) = m(A).

ii Forevery j € {1,...m(A)} there exists an e]’f € Z(A,) (the domain of A,) satisfying:

e;-‘—>e]~ in H, Ane;7—>/\e]~ in H.

n

iii For every je{l,...,m(A)}, e;

has a representation of the form

m(A)

m(A)
n_ n=n ny\2 _
o= ) g ) (@l =1,
i=1

i=1
.....

Ayel = Alel,  forsome Al eRs.t lim AT = A

n—-oo

iv If A is a simple eigenvalue, then e} can be chosen to be an eigenfunction of A,, with
eigenvalue A} — A.
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Proof. Consider m,(A) = dim(Rng(P(Q,A,))) and {E;?};nz”l(/\) an orthonormal basis for the
subspace on which P(Q),A,) projects. In particular, in view of Lemma we can
choose E;-l to be eigenfunctions for A,, each associated to an eigenvalue /\;1. According to
the same lemma, one has:

(1)
P(Q,A,)v = Z (vEhe!,  VveH.
i=1

Define for j =1,...,m(A):

()
o= ) (epEie =PQ A
i=1

From the convergence
IP(Q,A,) - P(Q,A)| =0,

which is the content of the previous proposition, we obtain that for j =1,...,m(A):

m,(A)
lim é":= lim (e, elye’ =e; in H.
n—00 ] n—-o00 ] ! ! ]

i=1

Hence we can assume that n(\) is sufficiently large, so that

j-1
- R 1 .
|||67—Z(e7,ef)ef||—l|2§>0, Vi=1,...,m(A).
i=1
Then we can define (via a Gram-Schmidt procedure)

3 i1, o s

R R

T =1, a1l
& =) (g, e)e]

m(A) of orthonormal functions with

and we obtain a set {e}“}j:1

lime?=e; in H, P(Q,An)e}1 = e;.q.

n—oo J J

In particular, m,(A) > m(A). Suppose m, (1) > m(1) on a subsequence ny of n that con-

verges to co. Choose, along that subsequence, a unit element (e:;‘(/\)Jrl € H with

n n n n .
PO Ay = € =0 Vi=Tom(d).

We can then assume for arbitrary o (provided ny is large enough), that

m(A)
Y llef =ejll <.
j=1
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Then

m(A)
IP(Q, Ay )epiay ) = PIQAepin > 1= 1) Centy el —ejde;
j=1

=>1-9.

Since ¢ is arbitrarily small this contradicts the convergence of the projections.
Let us pass to the convergence of Ane;-’. Observe that:

m(A)
Ayé; = Z Aie;, ehyel.
i=1
Hence

142!~ Aejll < 14,2} — A2+ Alle} — el

m(A)

<\ Y (A= A1)+ Allel — e
i=1

mn

<\ Y (A= An2 Al el

i=1

and the last two terms converge to zero, provided that for each i:

lim AY = .

n—oo !

This follows from the upper semicontinuity of the spectrum proven in [Kat95, Theorem
IV.3.1]. If we now use the definition of e;l we obtain similarly that:

- i1, - 3
Ane;-’ - Zizl(e;?, eNA,e!

- 1, 1 o~
& -

lim A,e" = lim
n—00 ] n—-o00

= )\e]

To conclude the proof, note that the representation of e? in terms of the basis {e'} follows

from the fact that the latter consists of orthonormal functions and that ||e]r-’|| = 1. Clearly,
if m(A) = 1 we can choose e} =¢}. O

IV.2.3 Convergence in resolvent sense

This section describes the general idea behind the convergence that we will prove in the
upcoming subsection. As before, we denote with Rng(A) the image A(H) of a bounded
operator on a Hilbert space H.

Proposition IV.2.6. Consider a sequence of selfadjoint operators A, on a Hilbert space H.
Assume there exists a Ao € R and an operator B) € B(H) such that:

Ag€p(Ay) VneN, lim [[R(Ay, Ag) =By, ll =0,
n—o0
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and satisfying
Ker(B,,) = {0}.

There exists a unique selfadjoint operator A on H defined by:
D(A)=Rng(B,)), and  A=Bjlx+1px, xeD(A)
The domain D(A) and the operator A do not depend on the choice of Ay. Moreover, A satisfies:
B), = R(A, Ap).

Proof. First, note that if x € D(A) = Rng(B, ), then the preimage B/_\;x is uniquely defined,
since we assumed that Ker(B, ) = {0}. It remains to check that A is a self-adjoint operator:
for this we refer, for example, to [Tay11], Proposition 8.2]. By construction we have that
B), = R(A, A9) and through the resolvent identity (for all A € p(A)):

R(A,A) =R(A, Ag)+ (A= Ag)R(A, Ag)R(A, A),
we see that the domain does not depend on the choice of A. O]

At this point, we can describe the structure of the proof of Theorem [III.3.15|as fol-
lows:

i The crux of the argument is to show that for a fixed A € R the resolvents R(.77;, 1)

converge:
lim R(74,,A) = B,

n—o0

for some bounded injective B).

ii The previous proposition then guarantees the existence of a selfadjoint operator J#
such that By = R(JZ, A).

iii Finally, the convergence of eigenfunctions and eigenvalues follows from Corol-

lary|IV.2.5

Remark IV.2.7. This argument does not require an explicit construction of the operator 5 or
of its domain D(FC). It will appear clearly from the proof that the limiting resolvent R(, 1)
coincides with the resolvent constructed in [[ACI5|] (although the article treats only the case
d = 2, a similar but simpler construction works also in d = 1). In particular, the latter article
explicitly describes the range of the resolvent (i.e. the domain of the operator ), as a space of
strongly paracontrolled distributions and it provides an explicit representation of 7 on this
domain.

IV.2.4 Proof of Theorem [I11.3.1

The paracontrolled approach in [ACI5] to construct the Anderson Hamiltonian in d = 2
follows the Ansatz that the solution ¢ to the resolvent equation we introduced above is of
the form ¥ = p’©X -H/Jﬁ, the previous being a paraproduct as defined in Lemma with
X, solving (-voA+1)X =&, and z,l)lj € ¢1+2% (we will call a ¥ of this form paracontrolled).
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This should be interpreted as a “Taylor expansion” in terms of functionals of the noise,
and the reason why the rest term is expected to be of better regularity is encoded in the
concept of subcriticality, introduced in [Hail4l]. Now, for paracontrolled ¢ the previously
ill-defined product can be rewritten as P& = (¢' © X)& + v,bﬁcf. While the last term is now
well-defined (recall that if d = 2, £ € ¥717%), a commutator estimate (see Lemma
guarantees that the resonant product can be approximated as ('©X)0& =~ ' (XOE). The
latter resonant product X ©® £ remains still ill-defined in terms of regularity, but one can
make sense of it through some Gaussian computations (since X, and & are both Gaussian
fields), up to renormalisation. By this we mean that the product lives in two levels of the
Wiener chaos. While the second chaos part turns out to be well-defined, the zeroth chaos
is diverging. Eventually, one can rigorously define a distribution X ¢ £ that formally can
be writtenas X @& —c0o =X O & - IE[X O 5], which lives in the second Wiener chaos and
explains the co appearing in the equation. This explains why in d = 2 the Hamiltonian is
sometimes written as:

VOZX-+ & — oo,

where the latter “co” comes from the renormalisation.

In the cartoon we have just sketched, we hope to explain that theories for singular
stochastic PDEs have two critical ingredients. First, some stochastic computations guar-
antee the existence of certain products of random distributions. Second, given a realiza-
tion of these distributions, an purely analytic argument, based on regularity estimates
and a Taylor-like expansion guarantees the existence of a solution to the PDE.

In the present setting we concentrate on semidiscrete approximations of the Ander-
son Hamiltonian, that is we will prove that i as a above is the limit ¢ = lim,,_,, ¢,,, with
(= + A, = TI2(E" = ¢, 11420)T12,, — ¢, with o7, as in Chapter [T} Following the pre-
vious explanation we will first state some stochastic estimates and then pass to the main
analytic result. The next definition introduces the space in which we will control the
stochastic terms.

Definition IV.2.8. Consider d = 2 and fix any x € (O,%). For any n € N we will call an
enhanced noise a vector of distributions

Eq = (E",Y,) € 7/ (T?) x C([1,00);.7"(T?)),
where Y, is a map
[1,00)3 A Y,y € .(T?).

For &,, we introduce the following norm, with X,, = (-4, + A)~Len:

— -1 —_1-
BE ull s := sup NSl cog f+ 7 1E o + n 7 E s
Cel0,1] b3
_K
+sup{nll2, Xy allp + A5 Y,,ll,5 .
A>1

We observe that we can immediately bound some further quantities related to &,,.
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Lemma IV.2.9. For n € N and A > 1 consider an enhanced noise &,, as in Definition|[V.2.8
Then we can bound, for any x € (0, %), € [0, 1] and uniformly over n, A:

o,,— 2(1-6
sup A2n 12Xl -a-cross + 12 N20 Xl 0005 | S HE e
Cel0,1]

Proof. This is a consequence of the elliptic Schauder estimates of Proposition [[11.6.6] []

The following stochastic estimates hold true and give meaning to the definition of the

norm [|€,l;, «-

Proposition 1V.2.10. Let (Q),.%#,IP) be a probability space supporting a sequence of random
functions E": T? — R as in Assumption|[I1.3.2 In dimension d = 2, for A > 1, define

Xpr = (= +A)7HE", EMoTIX, ) =E"OIIAX, 1 —c,

where

1k 1k
—Z XQ ), with ¢, ~logn.
kez?

If d = 1 one can bound for any x € (0,%):

-1
ey + 1 E ] < oo

supE[ sup n~%|i¢"|
neN " Ceg[0,1]

If d = 2 define the enhanced noise
En=(&" (" OT X0 = Cuas1)
taking values in the space of Definition One can bound, for any x > 0O:

SUp E[II€ Il < co.
neN

Moreover, for any fixed « € (0, %) there exists a probability space (Q,.7,P), supporting space
white noise & on T%, and a sequence of random functions En: T — R such that &" = En in
distribution and such that for almost all w € Q:

£'(w) - &(w) in 6
In dimension d = 2, for any A > 1 there exists also a random distribution & ¢ X such that:

D=ty + 1)1 (@) > (A + ) E (w) in €,
En QH%XW\ — & OX/\(Q)) in €7 .

Finally, again in d = 2 and for almost all w € Q, one an bound:

supll€, (w)ll;,, < oo
neN

The proof of this result is mostly technical, and for the sake of readability deferred to
after the proof of the theorem, in Section [[V.2.5| In view of the previous result we will
work under the following assumption.
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Assumption IV.2.11. Consider x € (0, %)ﬁxed. Up to changing the probability space (Q, #,1P),
we assume that for all w € Q) outside a null-set N the convergences in Proposition|[V.2.10|hold
true. If d = 2 in addition:

supll€,(w)ll;;, < oo.
neN

Having fixed the correct probability space and having explained our method, we are
now in position to prove Theorem [[II.3.15] The next result proves that the operators .77,
converge in resolvent sense.

Proposition IV.2.12. Under Assumption [IV.2.11|fix w € QQ \ N. Consider, for n € N, the
bounded selfadjoint operators

AL L2, A = (ol + T (E e )TT;) .
There exists a A(w) € [1, 00) such that —#,* + A(w) is invertible for all n € N and Mw) > Mw),
and there exists an operator B (w) € B(H) such that

lim (- + A(w))"! = By(w) in B(L*(T?)).

n—-oo

Proof. The strategy of the proof is a perturbation of the proof in [ACI5|] and is based
on a fixed point argument. In Step 1 we describe the space in which we can solve the
resolvent equation through a fixed point argument, uniformly over n and A large enough
(throughout the proof the realization w is fixed and omitted to keep the notation clean).
The estimates that will allow us to apply Banach’s fixed point theorem are discussed in
Steps 2 through 4. The convergence as n — oo is established in Steps 5 and 6. Throughout
the proof the parameter « € (0, ) will be chosen small enough, so that all computations
hold.

Step 1. Fix p € [1,00] as well as ¢ € ‘Kp’“z". In dimension d = 1, solving the resolvent
equation (-7, + 1) = @ is equivalent to solving (with c,, = 0) the fixed point problem

=M (9) = (—a, + A) T2 [E" - ¢, T2 + ). (IV.3)

In dimension d = 2 we will not prove directly that M, , is a contraction (while in d =1
this is possible: the arguments that follow are then superfluous and Proposition
allows to find a fixed point ¢). Instead, to find the fixed point we look for a paracon-
trolled solution. Consider a space Z;} C.7’(T%) x.#’(T%) which consists of pairs (1, gbﬁ)
and is characterized by the norm

2—
1 99l = 19 s + 12t gy + 127N 2,0 e,

where we used the operators &, 2, as in Definition |[I1.6.3] The norm does not depend
on A, but to every pair (¢, z,l)ﬁ) € 2;} we associate a function ¢ by

P =T{y © (-7, + ) &)} + gt

With an abuse of notation, we identify the pair (¢’, 1) with the function ¢ and write
||¢||% =1y, M)H%. Define the map ]\_/I(p,A: @;} — LP as

M () = (e + ) HITRE ISP — ¢, IT59 + @],
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The map M(P'?\ can be extended to a map from &} into itself by defining:

M) = (M, (), ME, (1))

i= (I, M2 (9) - TGATTp) © (-, + 1) E")) € 7.
Any fixed point of .7, ) is also a fixed point for M(p, 1 and since the fixed point satisfies

P =T,

it solves also the fixed point equation for My, ). Similarly, if ¢ € LP solves Equa-
tion (IV-3), then i € 2 (for fixed n € N the embedding LP C ;! is continuous) and ) is a
fixed point for .#, ;. We conclude that solutions i € L? to (=7, + 1)1 = ¢ are equivalent
to fixed points of .Z, ;. We will show that for A sufficiently large .#, y admits a unique
fixed point for all ¢ € %”p‘“z’“. In the course of the proof we repeatedly make use of the
elliptic Schauder estimates of Proposition the regularization properties of I, of
Corollary the estimates on X,, , of Lemma and the paraproduct estimates
of Lemma without stating them explicitly every time.

Step 2. Our aim is to control (paying particular attention to the dependence on A and
the uniformity over n) the quantity:

2 ()5 = T2l + 192 ME ()l + 112, ME ) ()l oo,

in terms on [[¢{[| ;) and ||g0||%;1+z;<. As for the first term, ||H%ll)||<gpl—x, we observe that

I il = [T © X} + T,
<19 g+ (12Xl + 12512, Xl )
NPl + 12712, g v10e
< ATl (1 + 0E D) + 120 Hl gy + 12712l e,

(IV.4)

To tackle the norms involving M¥, first rewrite
M () = M5 () + M5 (),
with
My () =(~ty + A>‘1{<p+ﬂﬁ[é" O T p* ]+ TH{E" © [T (1 © X,,.0)] - e’} + TTH{E" @Hﬁw}}
and
M () = T12C, (T2, £"),
where C,, ,(IT2¢,&") is the commutator
Co (T, &™) = (= + A) ' [(T ) © £"] = [(TT799) © (=, + A) 7 (E)].

For clarity we divide the estimates for the two terms Mﬁ'l,Mgg'2 in two distinct steps.
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Step 3: Estimates for Mg,’l. Combining the Schauder estimates with the smoothing
properties of I, and the paraproduct estimates one finds that

x ,1 — ,1
A5 (12, ME @)l + 122, ME ()l 102
< Nl + Tl 1E7, 15 + 1E™ © [TTR(Y" © Xy )] = €t 102w

To treat [|E" O [TT3(¢’ © X,,0) — cnz,b']||%)p71+z»<, we introduce (cf. Lemma([V.2.14) the commu-
tators

Clf.9)=T(feg)-fellig,  CO(f.gh=fo(goh)-g(f @h).
Then the previous resonant product can be split into:

&7 © [TT2(9 © Xp0) = o T 1-20 <IE" © CLLW, Xl o2 +IC (™, 9, T2, )12
+ ”Eb,(én O] H%Xn,/\ - Cn)”%’l;“z"-

(IV.5)
Starting with the first term, by Lemma|lV.2.16
1" © CLH (W, X2 )l 1v2e
SNEM -5 120 Cl (@ X )l + 1€ g5 112 Ch (3, PnXn Nl 1-5
P

+E" 0 2,ClN Y, 2,X,, Dl
s ||l1b,||%1]17’(|"£n|"31,7< + ”5” @ anyll_[(lp,; ann'/\)”%;lJrZK.

The last quantity requires a bit of attention, since at first sight none of the two terms
involved in the product has positive regularity: while the commutator guarantees us
powers of #, it does not guarantee regularization on small scales. For this we need the
estimate of £" in spaces of positive regularity. Since £" is constant on boxes this is not
possible in the L® scale of spaces, so we have to introduce an additional integrability
parameter. For this we assume that x is small enough so that % = Ilj+ 2k <land -1+2«k <
—77". Then:

1" © 2, (W 2y X llgy 1o < NE" © 2uCil (@ 2o Xl o
“p

<llE"© 2,Cl (Y, 2 Xl
<1 e 12aCil (W', 20 XI5
brd P

where in the second step we used Besov embedding and in the last step we used the res-
onant product estimate with arbitrary integrability parameters from Lemma Over-
all:

1€ © 2,CH (Y, 2, Xu)llge2 < n”"lllén|||n_“_2")lll,b'll<gpl—:<IIQanILg-g
P

2
S lgglEall™.
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As for the second term in (IV.5), by Lemma[[V.2.15
ICO(E", ", T X, v <NICOET, /T X g
<15 19l N2 X5 % 19T I

Here we estimated, via Lemma [IV.2.9

T2 X ll -5 < I 2 X all 15 + T2, X0 0l 15

< |||£n"|n,7< + n”Xn,/\lLér% < "|§n"|n,1<'
Similarly for the last term in (IV.5). Here we recall that in the norm ||&,]l,, . the term
Yy =&"0 H%Xn,,\ —c, is allowed to mildly explode for A — co. We obtain:
/(" O I X0 = enlleax S 1Y llgiclIE" OTIE X, = cyllg-1es

C (IV.6)
< AP g Nl -

Step 4: Estimates for Mg,’z. Here we apply the commutator estimate for C,, y(IT2¢,&")
from Lemma|IV.2.17| We start by estimating the large scales:
2
12 ME (@)l = 112,22, Cp, (T2, pos
< ||<@ncn,/\(nil;bl (Sn)”%p“"
S AT Pl 1E" -
S A2 [Pl (1 + NEull i),
where we used that, provided « is sufficiently small, (1 -«x)+(-1-x/2)+2(1 -x/2)> 1+«
together with the estimate (TV.4) for I12). On small scales we find:
A5 022, ME2 ()l re2e < A5 12702, Cpr (TT20, EM 12
niVlip % =~ nenA n¥» )
< n—l(/\%n1+2(1—7</2)”a@ncn’/\(nilp’ (En)llfgp*HZK)
S IR Pl (7 HIE -1+
Sl (1 + 1€l i),
where we once again used the estimates on I12¢ from (TV.4).
Step 5: Collecting the estimates. The estimates of step 2 guarantee that there exists an

increasing map
c:[0,00) > [1,00)

such that

MG ()l < cE ulla i) (A2 19 g+ + 12l + 1121020, (IV.7)

In addition, estimates of steps 3 and 4 guarantee that (up to choosing a larger c):

12 M D)l + 1212 ME )12 < A Sl ) (Il vas +1pll ). (IV-8)
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Observe that the factor A™%, instead of A~2, is not a typo: it follows from (IV.6), where
we pay a factor A% to control the product &” ® 12X, ) — c,. Combined with the linearity
of the map .#, we find that:

1 (®)l, < cUEM ) [Pl + s,

I[#00) - oD, < UEM| A - s, |

Note that we take the second power of the map in the last estimate, because in we
do not have a small factor A™% in front of the rest term with 1,!1ﬁ.
In particular, we finally can conclude that there exists a A = A(sup,,lI&,ll,, ) (so it is in-
dependent of 1) such that for A > A the map .#, admits a unique fixed point, which we
denote by %’;‘i @. Moreover, by the Banach fixed point theorem

15, A Pllg, < 145(0)ll5, < P UE ull i)l pllyo2c, (IV.9)

implying that e%’j[j € B(%p_“z",@,’l‘), with the norm bounded uniformly in n. Similar,
but less involved calculations lead to a construction of the resolvent ij\_l =(#-A)"tin
the continuum for A > A (in the continuous case no division of scales is required). The
resolvent is then a bounded operator z%”/\_l € B(‘Kp‘“z", @’\), where the latter is the Banach
space defined by the norm (for ¢ =’ © (-A+ 1)1 & + z,bﬁ):

pllgn = 13 gy + 1Pl

By linearity and computations on the line of those in the previous steps one can then
show that:

lim  sup
n—-oo
IIfPII%p—HzKSl

(A @) = (A o)

B o Ui WL

Since c%’jq‘/% € B(%p‘“z", P}), to prove convergence of the resolvents in B(L?,L?) it would
be sufficient to show, in the particular case p = 2, that &;} < L?, in the sense that ||1)||;» <
||1/)||% Unfortunately, this is not the case, because a priori in,bﬁ € %p‘“z". So we need a
better control on the regularity of {, which we will obtain by using that ¢ € L2.

Step 6: L? estimates. Let us fix p = 2. We want to improve our previous bound by
showing that if ¢ € L?, then for every i € 2

12, M ()12 < 1 UE ull NIl + 1l (IV.11)
Let us start with estimating by Plancherel (using the same notation as in Section [lI1.6):

(- 'k

A 2
1o n2(1 - pi a1y | [P

=+ N7 2yl ~ )
kezd

1 Sy 1
S5 2= 09k s 12
kez
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where we used that ¢#(n~'k) < 1¥k = 0, together with the support properties of (1 —
T)(n'k). Hence we conclude that

12, M@z < 17202l + 12,0 (Wl + 1 2,M5 ()l
with M(%Z(l,b) as in step 2 and
VL (0) = (—of ~1q2fen 2.8 cn 2017 ) aEh 2
Mg () = (=, + A) I E" OIL 9" + E" O [T (" © Xy 1)) - cpp” + E" © Ty
The smoothing effect of IT2 and the elliptic Schauder estimates guarantee that
X ~#1
W2, M5 s

2

= 5 [.2,(~ef, + )7 (" O Ty + 8" O [T (Y © Xy )]~y + 8" O T )| 1o

<172+ V)7 E O TP + € O [T (Y © Xy )]~ cut)’ + £ OTT1Y)

s|le" oTg?+ £ O [TI2(Y © X,y 1)] - cutp’ + E" S TI2¢

|cg2—1+2;<

(KZ—HZK‘

Now we can follow verbatim the estimates of step 3 to obtain, up to slightly increasing c:
—~ ’1
n¥||.2, M}, W15 < cUEnll, Ollpll - (IV.12)
22

Similarly for Mﬁ;z(z,b), where we find:
nI2ME W 1o = 12 Co AT, € 1o
< 12712, Cop A (T, £l 102 (IV.13)
< c(l€nlln, Pl
where in the last step we followed verbatim the calculations in step 4. In particular,
we have concluded the proof of ([V.11). The bound allows us in particular to

conclude that
lim sup ||an‘fj1j(p||Lz =0.

n—-o00
llpll2<1

Together with (IV.10) we conclude that

lim sup ||, 1@ - @l

n—00
llpll2<1

<lim sup {7 10) © X~ (5 9) © A+ N) el

gl 2<1 ’
2 o) - (A e + ||£n<ff;;i<p>ﬁ||u}

=0,

thus proving the convergence of the resolvents.
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Having established convergence in resolvent sense of the operator ., we complete
the proof of Theorem |III.3.15| by showing that the eigenfunctions of the operators con-
verge in an appropriate sense.

Proof of Theorem |[11.3.15] Asusual, let us fix w € (), the latter satisfying Assumption[IV.2.11

and to lighten the notation we avoid writing explicitly the dependence on w in what fol-
lows. Also, as in the previous proof we restrict to discussing the case d = 2, which is more
complicated.

To complete the proof of the theorem we collect all the previous results. Proposi-
tion guarantees that ¢, converges to . in the resolvent sense, as operators on
L*(T%). In particular, Corollary guarantees that, for any eigenvalue A of J# with

multiplicity m(A) € N and associated orthogonal eigenfunctions {ej};n:(f), there exists a

sequence {e?};n:(?) C L*(T), for n > n(A) with n()) sufficiently large, such that:

e}“ —ej, jﬂe}“ — He;j, in L2(T?).

Moreover any e? can be represented as

m(A)

m(A)
n _ n=n ny2 _
=) apEh ) lap’=1,
i=1 i

where ¢} are eigenfunctions for ., with eigenvalue A? such that lim,_,,, A = A. To con-
clude the proof we will show the following additional convergences, for any « € (0, 1)
sufficiently small:

Myef —ej, T, e — Ae in €°(T%),

for k¥ > 0 sufficiently small. In the previous discussion we already have explained the
convergences above in L3(T9). By compact embedding €*(T%) C €% (T?) for x’ < «, and
since « is arbitrary, it thus suffices to prove the bounds:

sup {ITLefle + [T, el e | < o

nzn(A)

By our previous considerations, observing that
m(A)
n_ n.. sn
,%”nej = Z/\i aije;,
i=1

we can further reduce the problem to proving that

sup [[IT,e/[lxx < oo, Vi=1,...,m(A). (IV.14)

nzn(A)

Now we fix i and make use of the fact that €}’ is an eigenfunction of %, with eigenvalue
/\? — A. To lighten the notation, since i is fixed, let us write

e"=¢e;.
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We find that for y > 1 sufficiently large such that Proposition [IV.2.12| applies (with A
replaced by y, and following the notations introduced by the proposition and its proof)
and defining v" = (u— A}')e™:
e = jfnjﬂlv”
=TT2{(e") © Xy, + (")}
The bound (IV.9) now guarantees that

2—
el = 1e™) Nl + 1 2u(e"Fllgron + 1> 12" Fll 126 < el < 1.

This bound is sufficient for large scales, but small scales need more care. Here we observe
that

(") = (—ty + ) 0" + M (e") + MEZ(e),

i pn

where M#!1, M*2 have been introduced in Step 6 of Proposition [IV.2.12|and satisfy, fol-
lowing (IV.12) and (IV.13):

BLEMI s +112,M52 (e

pn |( 1+7
6)2

12, M ¢ <lle"l < 1.

|<521+7

Now we are in position to conclude our estimate. By Besov embedding, since we are
considering the case d = 2 (note that in d = 1 we loose less regularity, so the estimates
simplify) we have

@llgar Sll@lleg, Yo ey
In particular we find that

sup [l(e") llg-~ < sup [le"[|yn < oo,
nzn(A) nzn(A)

so that (note that the term IT> appears because we want to estimate the norm of IT,e":
for this estimate the presence of the additional IT,, does not matter):

sup
n=n(A)

(") © X,

< sup nZ_K”(en),@Xn,#H(g_l—b«

Gt nzn(A)

< sup (1" llgxl1X llg-1-+
nzn(A)

< sup 1"l lE Ml e < oo.
nzn(A)

Next we control the rest term:

Il 5 < (Pl s

2

il

UL l_ses + 12Tl (=t p)7 0o + 12T, (M (") + ME ("))
2 2

— ~11 ,2
SULTL (=t + )0 ses + 1P + 12 (BT () + MEZ (15
2 ©2 ©2

-1
< ||°@71Hn(_t52{n + ]/l) vn”%;% + “en”%l:,

I

K

2
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where in the last step we used all the previous estimates. Observe that so far we did non
use the smoothing effect of the additional term IT,. We use this effect in the following
last step, where we estimate the only remaining term:

12T (= ) 0" e <[l 1B F Fr( 21, (- + 7 )| ziy
2

Here we used that for « sufficiently small and sinced = 2: 1+ 5 < d—;rl‘ Then we used one
of the many definitions of fractional Sobolev spaces, via the norm (for a > 0):

lpllze =110 = )2 @llagra) = I +1+ )3 Froplice,
together with the embedding (see for example [Tril0} Section 2.3.5]):
lpllze Slpllga, Yo e HE.

Hence we conclude with the following estimate (here we follow the notations of Sec-
tion [I11.6)):

|+ 1) Fro( 2Tty 4 17 )

1+|k 5 2 1272
= k)(1-7 k k
= a0 00 =0 P
: u+nz) Z (L kD e 0 ) (1 =T K)PLe" (k)P

kezd

(1 + k) d+1

s l‘+n2) Z 1+|+n|-1|k| 771 =T )P (k)P

kezd

1 + (1+|k|)d+l n
S ,an) n*! Z HTle (k)I?
kezd4\{0}

a7, < lle"l17 <

/\I

Here we used the fact that (k) < 1 for k = 0 together with the support properties of 7 to

bound
1 1

<
pr (1= ) =

uniformly over n and k such that (1 —T)(n~'k) = 0. We also applied the bound
1

d+l
)

(1+ k|

X (k)| <

from Lemmal(lIL.6.1] This concludes the proof of the theorem, since we have proven ([V.14)
with «x replaced by 5 (but this does not matter since « is arbitrarily small).

Before we conclude, let us observe that in the last bound we used that d = 2 to bound
1+5< d%l. If d =1 this fails, but we actually need less, since by Besov embedding

||Hnen”‘5K(T1) < ”Hnen” %ﬂ» .
¢y (Th)
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In particular, following all the previous steps we can bound, for « sufficiently small such
that L +x <4l = 1:

[N

12,11, (= + )" llge S 112,11, (-7, + ﬂ)_lenll( 1.
&5

<[+ 1S Fro a4 107 | 2 gy

and from here we can follow, for example, the same calculations as above. O

Remark IV.2.13. We observe that in the last bound for (e")* we used I1,, to gain %L d“ regularity.
In dimension d = 2 this is crucially larger than 1. This statement is in apparent contraddzctzon
with Corollary[[I1.7.4) where we show a possible regularity gain of at most 1. While the latter
corollary works for any integrability parameter p and extends to other characteristics functions
(than just those of balls), the improvement we see in the proof depends on the choice p = 2 and
our exact computations for the decay of the Fourier transform x.

IV.2.5 Stochastic Estimates

Before concluding, we provide the proof of the stochastic bounds we stated at the begin-
ning of the section.

Proof of Proposition First we will prove the bounds for £&",X,,  and " o T12X,, ;.
Eventually we address the convergence of these terms. Although only in the first case
the dimension is allowed to be both d = 1 and d = 2, we will keep d as a parameter
throughout the proof, for the sake of clarity. For convenience, let us indicate sums on Z%
with integrals (for m € N):

Flkyye.. k) dky - dky, = Z [{3n)

@z k.. k€24

Step 1: Bounds on &". First, observe that by Assumption |[11.4.1
| (x)| < 2n2.

This explains both the L* bounds on " and the bound in €% (ie. for ¢ = 1). If we show
that

sup E[[1£"]

] < 00,
neN

(/****

the bound for arbitrary C follows, since by interpolation, from the definition of Besov
spaces, for any C €[0,1] and a, B € R:

lpllgeasi-on < lpllallolly,

Hence let us consider the case C = 0. By Besov embedding, the required inequality fol-
lows if one can show that for any p € [2, o0):

< 00.

sup E||" [P
neN By,

_K

= N\&
.;;
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Here in view of Assumption [lII.3.2} and by the discrete Burkholder-Davis-Gundy in-
equality as well as Jensen’s inequality one finds that:

d d 2 P2
.[rd 1E[|Ajnzsn|P(x)]dx < J;d( Z nAjxg,l (z+x)) dx

zeZ4

p/2
SJ (J dz |K]-(x+z)|2) dx <|IK;1IP, < 2%,
T4 T4

which is a bound of the required order.
Now, let us pass to the bound in ¢’} . In fact we will prove that for any p € [1,00), C €

2K
[O,%) we have a bound on ”‘En”%’f' We use the Sobolev-Slobodeckij norm of Proposi-

tion [[I1.7.1|for the Besov space Bg,p (which embeds in ‘fpc, so finding a bound in the latter
space is sufficient). Let us start by computing:

r n _n P %
e, ="+ [ dedy)

Jra  |x—y|i+Cr

; " () " |\
<n +( Z LdeXdy)

J
zeziprd ¥ Q(?)

1

r n _ztn P »

Sn;+( Y[ [ Emeswr, )
Ja,drn,e X —ylPrer

zeZiNTH

—dxd )
(JQn Ld\Qn |x - yl"’”” g

where we have used in the last step that ||£"||, <n 5. Now we can follow the same calcu-
lations as in the proof of Lemma [[II.7.3|to obtain

o i) <4
T\Q, (0 |x y|d+Cp xdy| <sn .

Hence, overall for any p € [1,00) and C € [0, 1/p):

N\&

d
namn

'U\Q-

"l < m2 .
Step 2: Bounds for X,, y. As for X,, 1, we need to bound n||2,X,, ,||~. Here:
120 X allpgray = 1t [(A=T) 7Y (=8 + )7 ()& ()l es(rey
< IZR =T )=+ A7 O eI e (IV.15)
< 1 A Z =T )7 + 112207 () g o 1€ sy
where we applied the Poisson summation formula of Lemma Note that

[ Fd (A=) ) (=% + L+ 172 0) " (07 )l re
_ -1,
s”ﬁ;}[mﬂl—‘i)m‘l-)[ ! N ](n‘l-)]

1+n72) —x2+1+n72A 1+n2A L(RY)

1-T(n") -1 -1 [ 1 1 ] -1
< |7 | — |z =y - :
_H [ L+n724 |l gy re [(1=D00) “X2+1+n2)2 1+4+n2) ()

L' (R7)
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The first summand is bounded in L!(R%) uniformly over n and A (with some abuse of
notation for the Dirac 6 function). As for the second summand observe that, for some
c>0:

1 1
F (1= ‘1-[ B ] -
d[( o )—7(7+1+n‘21 1+n2) (™) LY(R9)

1 1
2ok (1 — Tk - dk’
_L{de ( ( ))[—?(k)+1+n—2)\ 1+n‘2A]

dk,

d+1
< sup(l +|x|2)%
x€R4

sZLd

0<|al<2d

2 1 1,
(k) +1+n 24 1+n2x)| k=

where with the sum we indicate all partial derivatives up to order 2d4. Now this term can
be bounded by Lemma [I1I.6.1] Let us show this for a = 0 (the other cases are similar),
where by a Taylor expansion:

1 1
(k)+1+n2) 1+n2)

2
1 A2
Lijkjzc) dk Sc(m) JRdX (k)1 {jkj=c) dk

1
< J ———dk < 0.
Rre 1+ k|91

Combining the last two observations with ([V.15) leads to

X

-2 44
sup 12, Xy Allpeo(ray S 1 NE" Ipoopay S 17772,

A>1

which is of the required order.

Step 3: Bounds on &" ®T12X,, ;. We now consider the bound on £" ®T12X,, ), starting
with A = 1: at the end of this step we explain how to obtain a bound uniformly over X at
the cost of a small explosion in A. In this computation it is important to note that d = 2.

Define iy (k, kp) and &, (k) as

dolki k)= Y oilkiojlka),  E(k) = Fra&" (k)

li—-jl<1

Then
E[&,()5 (k)] = j gmlbinthn) o () dy, s
= Lz e 2kl g (7 kg ) dxy = Xo (7 k1) Lk, +ky0)-
Hence to compute the renormalisation constant observe that
= E[¢" O I} X,,(x)] = f(z gtk zpo(kl,kz)%m[én k1)&u(ko)] dky diey

-2 71k" —lk
_ f TR
72 —Sn(k)-l-l
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A similar calculation shows that actually ¢, = ]E[E ”H%Xn,l] and the asymptotic c,, ~logn
follows from a manipulation of the sum.
We turn our attention to a bound for ||£" ¢ H%Xm ||<(),g. As before, for p > 2, consider

P _ i P
EllE" © X,,1-callyy = _le“fplEllAj<£"®Xn,l—cn1 Y o
j=-

_ZWJ EIA;(E" ® Xp1—c,1j )P (x)dx

j2-1

(IV.16)

It is now convenient to introduce the notation:

=2/ 1.
510 = 75 ot 2 oo

Then the integrand in (IV.16) can be written as
]E[|Aj(5" O} X, 1)(x) - Cnl{j:—l}lp]
= E[|A;(£" O T17X,,1)(x) ~ BA; (" © T, X,,, 1 ) ()P |

Lz Kj(x-y) Z

[I-m|<1

p
=E

(-[(Tz)z Ki(y =21) 200 (y = 22)E"(21) 0 £"(22) dz) dZZ)

(IV.17)
where, conveniently:

£"(z1) 0 £"(20) = £"(21)E™(22) — B[ €"(21)E"(22) |

Now we can write ([V.17) as a discrete stochastic integral and apply [MP19, Lemma 5.1]
to obtain

J Kj(x-p) Z ( J Ki(y —21) %, (y—22)dzy dzz)é’l(xl)ogn(xz)dy
B FmslaeZinT? g, (xy)xQ, (x2)
21p/2
f Kj(x-y) Z J( Kz(y—zl)e%/n?(y—Zz)dzlez) ]
L eZinT? T =<1 (%0 )

Z 24
— 2d P2
Y [ ke Y Ke-mse-mdydadz ]
T2 I=m<1

p
E

A

'Xl,XZGZ%mTz Qi (x1)xQy(x7)

, 2 p/2
< J f Ki(x=y) ) Kily=21)A(y—z)dy d21d22] '

L J(T2)2 1JT2 |I=m|<1

where the last step is an application of Jensen’s inequality. Now, via Parseval’s Theorem,
the latter is bounded by

k) o i
| ki Y emberoeieron ) K02 kg
(z2)2 1 J12 / _Sn(k2)+1
[l-m|<1
(k) i
=U ez’“‘k“kz)'p<k1+kz>¢o<k1,k2>Tz dkldkz] .
(22 n(ka) +
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By Lemma [[TI.6.T}

72,41 72(,-1 -3
X“(nk) _x"(n"k) k| 1

< 1 < .
oL S kT kst T Liken S T

Finally, taking into account the supports of the functions,

o

which provides a bound of the required order. This concludes the proof of the required

2
dk, dk,

1 p/2

. p/2
TP L]
+ K2

oj(ki +ka)o(ky, k)

bound in the case A = 1. For general A > 1 we observe that
M OTX, 0 =6y = E" O T (X1 = X 1) + £ OTLX, ) — 6y
To complete the proof of our result it now suffices to show that

Esup A~ 418" @ T (X0 = X1 )ll-5 < oo
A>1

For this purpose we observe that by a resolvent identity:

Xn,/\ - Xn,l = (_Mn + /\)71 - (_Mn + 1)71 ‘Sn
= (1= A)(~a, + A)  (~e, + 1)1 &N
Now we can apply the elliptic Schauder estimates of Proposition [lII.6.6|to obtain:

AL 20X p = X )l ey < A3 (= + 1) 7 X1l e
S Xl 1%
< e s
And on small scales, using the regularizing properties of IT2 from Corollary

/\_%“H%Qn(xn,/\ - Xn,l)”%ﬂ*rﬁ < /\_En2_£”gn(xn,/\ - Xn,l)”{—H%
S A2, (~ ey + A) T X

1+ K
¢ T2

23k

snto4 ||°@n—koxn,l||<g—l+§
_3x

S IE s

Here we have chosen a deterministic kg € N (uniformly over 1) such that 2,2, _; = 2,.
Hence overall we obtain:

Esup A3 [&" © T3 (X1 — Xp1)ll, -5 S Esup A™5[|€" © T3 (X0 — X1l 5
A>1 A1

SEIIE|, -5 sup AT (X, 0 = X1)

Il s
A>1 et

_k_kx
SB[IE" g (1" g +m7 5 E vy )]

<L



IV.2. SEMIDISCRETE ANDERSON HAMILTONIAN 133

where the last averages is bounded by the arguments presented in Step 1 (up to changing
x). With this we have concluded the proof of the regularity bound. We are left with a
discussion of the convergence.

Step 4. What we established so far implies tightness of the following sequences of
random variables in their respective spaces:

e, DX, €CVF,  EMolRX,, eC .

The next step is to show that the limiting points of &"” and &" o [12X,, ) are unique in
distribution. In particular, in view of Proposition this would imply weak conver-
gence also of &2, X, ). In the last step we will address the almost sure convergence and
the almost sure uniform bound.

Convergence of £" to space time white noise & is an instance of central limit theorem
(notice the normalization of variance in Assumption [[I.3.2). We therefore focus our
attention on the more involved Wick product £" ¢ X,, ;. Now, the deterministic bounds
at the end of Step 3 show that the convergences

E"—E& in @Y, EolliX,; —»&eX, in €7F

for any x > 0 imply also the convergence of £" o T12X,, ) for general A > 1. Hence we can
restrict to discussing the case A = 1. For fixed ¢ € .%(T?)

<(Pf5n<>Xn,l>
f ow ) ) ( f Ki(y = 21) A (y-22)d21 dzp | (1) © " (x5) dy
T2

=Sl e ZinT? g, (x))xQ, (x2)

(p() ) TLK (=)0 (—x0))E" (1) © " (x)

xl,xzezy% |l—m|§1

Consideramap L, : (Z%)2 — R defined by

Lu(x1,%2) 1= (@(), ) TITKY (= x0TI A (—52)) L (3, aemer)-

[I-m|<1

This definition naturally extends to 7 = co, where L maps (R?)? to R. Our goal is to show
that

Z Ly (x1,%2)E"(x1) 0 E"(x2) — L(x1,x2)&(dxp) 0 £(dxy), (IV.18)
(x1,%)€(Z5) (R?)?

where convergence holds in distribution and the limit is interpreted as an iterated stochas-
tic integral in the second Wiener-Itd chaos. It is sufficient to verify the assumptions of
[MP19, Lemma 5.4]. That is, we have to show that there exists a g € L?((R?)?) such that:

Sup|1(nT2)29(Z,21)an| <& nhjﬂ ||1(nT2)29(Z%,)2L11 - Zr2yp Ll (r2y2) =0
neN o
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For this purpose we calculate

1(HT2)2ﬁ(Z%)Z Ly (ky, ko)

= Lor2pe (k1 k) j btk (), ) TR (- = x1 TR (=) dixy iy

= Lok ko) j (2l (o) Z K)(- = x1 ) (—x5))ydxy dxs
(T2)2 [I-m|<1
=2 . -1
X2 (-n"ky) d

_ , 2mu(ky+ky)-y _
Lo, (kl,kz)sz(z))e Y oil-kn)om(—ka) X 8, () + 1

[l-m|<1
X2 (" ko)

= Lmp(k k) (Tl k) Y aitkiou(k) 55 o

[I-m|<1

so that the required assumptions are naturally satisfied. Since ¢ is smooth, the latter term
is bounded in L?, uniformly over n. In particular follows. Hence the distribution
of any limit point of (¢,&" 12X, 1) is uniquely characterized and since ¢ is arbitrary
this implies convergence in distribution of £" 012X, ;.

Step 5. Above we have proven that £&" and &£" ¢ T12X,, ) converge in distribution in
€ ~17% and €~ respectively. Now let us prove almost sure convergence up to changing
probability space (we discuss only the case of £", since the other term can be treated
similarly). We would like to apply Skorohod’s representation theorem, which requires
the underlying space to be separable. Unfortunately the space ¢~'~* is not separable,
but we can embed

1 1 “1-2
S By €T

for some p(«x) € (1, 00) sufficiently large. Now the space B;(lK_)’;(K) is separable, so we can

apply Skorohod’s representation theorem to obtain almost sure convergence in ¢ 172,
Since « is arbitrary this is sufficient for the required result.

The last statement we have to prove is that in this new probability space (that we call
(Q,.Z,P)) we have a uniform bound for almost all w € Q:

supll€ (@)l < oo
neN

Recall that
I (@)l = sup {mCIE | umoms )+ 1 I o + 7 g
Cel0,1] 2%

_K
+sup {12, Xl + A5V ll, -5 }-
A1

Now following Steps 1 and 2 we see that the bounds on || (w)||co» ||§”(a))||<g:<1 and [|X; 1 (0)lleo

depend only on the deterministic bound [£"(w,x)| < 2n (in d = 2), so wzé are left with
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proving:

sup{ sup n_cllc’f”(a))||%_(1_g)_g +sup A" OI—I,%Xn,/\(a))ll%,_g}
neN | cefo,1] A>1

-
e A IET O TIAX (@), -5

ag %2

<sup{ sup (171" (@)l 1€ (@)
neN * C€[0,1] ¢

#sup AH €7 © T2 (Xo, - Xy )@l }
A>1

<sup {14 1E"(@)l-5 +1€" © TEX, 1 (@5
neN

+1E @)l (€™ (@)l g + 1725 E (@) 1v5 )},

where we used interpolation for the first term, as in Step 1, and the same bounds as in
Step 3 for the last term. In particular now the uniform bound is a consequence of the
convergence of £” and £" oT12X,, ; in the correct spaces. O

IV.2.6 Commutator estimates

This section is devoted to products of distributions and commutator estimates. Recall
from Section that we can decompose a product of distributions in paraproducts
(through the symbol @) and resonant products (®). For @, € .#/(T%) set

i—1
Sipi= Y Ajp,  @oPi=) Siphp,  @opi= ) AjpA,

j=1 i>—1 li—jl<1

where the latter sum might not be well defined. Then, an a-priori ill-posed product of ¢
and 1 can be written as

P YP=90P+pOYP+pOYP.
The aim of this section is to deal with the following commutators.

Definition IV.2.14. For distributions @, 1,0 € .7"(T%) we define the (a-priori ill-posed) com-
mutators

Cop,h,0) =@ (P Qo) -P(p®o),
Cllp,p) =TT (pop)-polliy,
Cor(@ )= (—y+ 1) (PO P)—p O (—ay+ A) 4.

The first commutator estimate is crucial, but by now well-known (we already used it

in Lemmal|ll.3.4).

Lemma IV.2.15 ([GP15], Lemma 14). For @, 1,0 € . (T%), a,,y e Rwith a + f+y >0
and p € [1,0]:
IC®(p, 9, 0)llgeer < lipllegellipll plolle-

We pass to the second commutator. Recall the operators &, 2, as in Definition

ML.6.31
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Lemma IV.2.16. For ¢, € .7 (T%) and a € R, p > 0,p € [1,00] it holds for every & € [0, fA1):

120Gl (@ W)llgzes S Nl gpllllca,  N2uCal(@ g < llll gl llcn.

Proof. Note that for any i > 0 there exists an annulus .o/ (that is a set of the form {k €
R? | r < |k| < R} for some 0 < r < R) such that the Fourier transform of

T [Si1 A ] = Si1 @I A
is supported in 2.7 It is therefore sufficient to show that
T30St 0] = Sic1 T A |, < 172l pllA L, (IV.19)

since this implies the required bound by estimating n™° < 27 for i such that Z2,A; = 0.
To obtain (IV.19), recall the Sobolev-Slobodeckij characterization of fractional spaces of
Proposition [[1I.7.1}, which implies that for 6 € [0, A 1)

1/p
IN1S;-p0) =Sl < | | f, s -5l s

-5 [Si-10(y)-S i—l(P(x)]A_ dol’d )Up
sn (Ld L(x) ly— 2P iY(®) y| X

1/p
-5 1Si-19@)-Si-1p(x)P" S »
. (LJ e WIx] Al SIS @l 2 e,

where the first inequality follows by Jensen and we have used the embedding Bﬂ,oo C Bg,p.
Now the result follows since:

ISi-1¢llys < llll -
This concludes the proof. O]

Lemma IV.2.17. For a € (0,1), € R,A > 1 and p € [1,00] it holds that:
120 Coa (@ W)l oorr S N@llsgllplles, Yo eby,pew?.
In addition there exists a k € N such that for n > k
12, Cpa (9 )l oorr SNl 2u-ipller, Vo ety pee?.

Proof. By the elliptic Schauder estimates in Proposition [I11.6.6} it is sufficient to prove
that

1=y + 1) 2, Co A (@, Pl S Nplligg 1l
1=+ )20 Cou 2 (@, Pt S @l 12k Plligr-

In turn to obtain this bound, since the quantities below are supported in an annulus 2'.¢7,
it suffices to estimate for a given sequence i(n) such that 2/(") ~ n:

ISi-1 @AY = (= + N[Si1 (= + 1) Al < 27 Pllgllise lplles, (IV.20)
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if i <i(n), and similarly

ISi-1 @A = (= + V[Sic1 (= + V) Al < 17" 27 P D gllga | 2,k e,
(IV.21)
if i > i(n). Moreover, we can choose k such that

D kNi = A, Vi >i(n),neN,

so that we may replace i by 2,,_;1 on small scales (hence we will no longer discuss the
appearance of 2, ;). To obtain these estimates, let B, (¢, ¢) be defined as

B)x) = 2 _ _(x))dsdrdzdy.
B, )(x) = J(B . JfB . J(B . JfB (PO NPLs) -yl dsdrdzdy

Then .7, acting on a product can be decomposed as
D@ - P) = Gn(@) - Y@ - T (P)+Bu(p, P),
Hence proving Equations and reduces to finding a bound for
(= + M[Si 1) (= + 1) ANy + 1B(Sic1 ) (= + 1) Al
Starting with the first term, one has:
(= + DS 1 @)=+ 1) [Ai]llr < (= + DS @Nleell(=7, + 1)~ APl

If i <i(n), since a < 2, one can estimate via Proposition |[11.6.2

i—1 i—1

=+ VIS @l < ) M=+ MA@l 5 )~ 2% Vlplige <27l
j=1 j=-1

If i > i(n), following the previous calculations and using that a > 0:

i(n)-1 i-1
=+ D[Sl < ) M=o+ MA@l + ) =y + N[Aj@]lle
j=1 j=i(n)

<12l
By Proposition moreover
(— + 1) Al < (2_2i1{i§i(n)} + ”_21{i>i(n)})2_’3i||l/’||<grs.
Together with the previous bounds we have proven that for i <i(n):
(=7 + A)[Sia @)=+ V) TA e < 27 Pl plless,
and similarly (using that a < 1) for i > i(n):

(= + M[Sic1 )=+ 1) Al < 17727 Pllllise 120 i pllgr
< 17 27 plgal| 2, kg,
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which are bounds of the required order for (IV.20) and (IV.21). Finally, we have to bound
the term containing B,,. If i <i(n), using a <1 we find

IB(Si-10, (= + A) " Ay S IVSi-1 @llio IV (=7, + 2) 71 Al
< 270 Dlllo 2 Bl s < 27 Pl g,
whereas if i > i(n)
B (Si—10 (= + M) Ai)llee < 1lIVSi 1 pllio (=7 + )7 Al
<1272 gl gpa |l

These bounds are again of the correct order for (IV.20), (IV.21) and hence the proof is
complete. O

IV.3 Dirichlet boundary conditions

In this section we study PAM with Dirichlet boundary conditions on the box [0,L]?, for
d = 1,2 and arbitrary L € N. The continuous case was already studied in [Cv19], so
we do not devote much attention to it. Our aim is rather to develop a suitable lattice
discretization of the approach in [Cv19]] and to recover the continuous case as the lattice
become coarser.

To ease the upcoming notation we write:

N =2L.

Consider n € N. Write respectively A, for the discretized box and ©,, for the discretized
torus 1

Ap=—(Z'n[0Ln)"),  ©,=Z;/NZ!.
Define the “dual lattice” to ©,;:

- d - 1

E,=2ZN/nZ?, By = ﬁ(zd n[0,Ln]?).
Then we can introduce the discrete boundaries

dN, ={keA, : k;=0forsomeie(l,...,d}}

and similarly dZ} (observe we only consider boundary points on the axes). Write

Ay =E;\JZ], Al =E}.
For p > 1 and any functions ¢,: ©" — R, we write
1 ’ 1
p
. p -
Iollen=( 3 Y V0P). o) =g 3 pteapio
xe@" x€0,,

As we are interested in 1 — oo, note that formally:
A, —[0,L)%, 0, » Ty =[-LL]/~, E,—ZY, E; — N

In this sense all above notations extend to the case n = co and we may use this notation
when it is convenient.
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IV.3.1 The Analytic Setting

The idea behind the approach of [Cv19] is to consider even and odd extensions of func-
tions on A,, to periodic functions on ©,,, and then to work with the more common tools
from periodic paracontrolled distributions on ©,. It will be convenient to write, for
xeAN,ge{-1, 1}d:

gox =(9;%;)i=1,.,a  1Ig= ]_[ g;.
So for u,v: A, — R such that u[y, = 0 we define the even and odd extensions:
Myu: ©®, >R, Il,u(gox)=(Ig)u(x), IMT,v: 8, - R, Ilv(gox)=v(x).

Once we extend functions to the discrete torus, we can work with the discrete periodic
Fourier transform, defined for ¢: ©, — R by

1 - =
Fo,pk)=—7 ) e, kes,

x€0,

We have a periodic, a Dirichlet and a Neumann basis, which we indicate with {ex}iez , {de}kezi\oz:, (i) kes:

—n

respectively. Here ¢y is the classical Fourier basis:

eZm(x,k) 4
gr(x) = —, sothat Fg @(k)=Nz{(p,er), k€E,,
N2

while the Dirichlet and Neumann bases consist of sine and cosine functions respectively:

d d
1
_ ]_I2sin(27zkix,-), ke Al m(x)= — ]_[zl-lnkf:o}/zcos(znkl.xi), ke AP
N2 g N2 g

di(x) =

To the previous explicit expressions we will prefer the following alternative characteri-

zation, with v = 2-#iki=0/2,

T, = 14 Z Tlg-eqor, Yk €Al Ty = vy Z Cpokr VK EAL
qE{—l,l}d qe{_l'l}d

For [ € {b,n} and n < co write .7{'(A,) = span{[k}keA{« for the space of discrete distributions.
In the continuous case we define distributions via formal Fourier series:

LS”[’([O,L]d) = { Z agly : lagl < C(1+]x]”), for some C,y > 0}.
keAr

Now let us introduce Littlewood-Paley blocks on the lattice with Dirichlet boundary con-
ditions, in order to control products between distributions on A, uniformly in n. Con-
sider an even function o: £, — R. Then for ¢ € .#/(A,) we define the Fourier multiplier:

o(D)p=) (k) g, L.

keAl

Upon extending ¢ in an even or odd fashion we recover the classical notion of Fourier
multiplier (namely on a torus: (D)@ = ﬁél (0 Fe,®)), since HO(G(D)(p) =o(D)I1,p and
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verbatim for I1,: here we use that ¢ is an even function. Consider the dyadic parti-
tion of the unity {o;};>_; we fixed at the beginning of this work and define j, = min{j >
—1: supp(p;) Z (-3, %)d} (by our assumption on the support of p_; and py we have j, > 1),
so as to define for ¢ € .7(A,,):

N =oiDipforj<ju  Ale=(1-) oD
_lsj<jn
This allows one to define the paraproduct and the resonant product of two distributions

respectively:

pop= ) ) AlgAly,  gop= )  AlgAlp.
1<j<j, ~1<i5)-1 lijl<1
_1<i,i<j,

In view of the previous calculations this is coherent with the definition on the lattice we
used in Chapter (with the difference that here we consider periodic functions, whereas
in Chapter we consider distributions on R), in the sense that:

M, (Afp) = ATlp,  TI(Afp)=AlTlp, —1<j<j,.
We then define Dirichlet and Neumann Besov spaces via the following norms:
lellgsea, ) = Mollag, @, = I2VIA T Toullse, illessjy 1 €F5(Ay)
and similarly for n upon replacing I'l, with Il,. For brevity we write
(g[?;;(An) = B;;,Dfx)(An) (g[a(An) = B&goo(An)l Le {II, b}'

) and ”””Lﬁ(/\,l) = |TT,ull;p@,): this is coherent with

n

We also write ”””Lﬁ(AH) = |, ullze @

the definition of the Besov spaces, but the scaling is slightly unnatural, since HlllLf(An) =
d

(2L)?. Having introduced Besov spaces we can define the spaces of time-dependent func-

tions .4 7‘5& and ,,2”[7;0( for L€ {d,n} as in The last ingredient to understand products of
distributions with Dirichlet boundary conditions is the following pair of identities:

(@) =Teplley,  Tlo(@y) = T, oI L. (IV.22)

To solve equations with Dirichlet boundary conditions, introduce the Laplace operators
forp: A, >R, ¢: ©, > R:

A =n ) p)-pE),  Alp=(A"TLe)ls,  App=(A"TLp)a,
Px—pl=n~!
The latter two operators are defined only on the domain Dom(A[') = .#{(A,). A direct
computation (cf. [MP19, Section 3]) then shows that one can represent both laplacians as
Fourier multipliers:

A= 1"k, 1"(k)==) 2n?(cos(2mk;/n) - 1), for [ € {b,n).

&.
i Mm
L
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Note that [” is an even function in k, so all the remarks from the previous discussion
apply. In the continuous case we use the classical Laplacian: the boundary condition
is encoded in the domain. We write A for the Laplacian on %’([O,L]d). We introduce
Dirichlet and Neumann extension operators as follows:

Eu = E(,u)| EMu = EM(T,u for 1 < o,

[o,L]#’ )l[O,L]"”
where the periodic extension operator &” is defined as in Chapter [} These functions are
well-defined since for fixed n the extension &"(:) is a smooth function. Moreover a simple

calculation shows that

To(&u) = E"(Tou),  T(&u) = £ (T u). (IV.23)

IV.3.2 Solving the Equation

We now study Equation (8) in dimension d = 1,2 on a box. We recall Assumption |[II.2.1
on the random environment.

Assumption IV.3.1. For every n € N, {E"(x)}, 74 is a set of i.i.d random variables with:
2 (x) ~ O, (IV.24)
for a probability distribution ® on R with finite moments of every order and which satisfies
E[®] =0, E[®?]=1.

These probabilistic assumptions guarantee certain analytical properties which are
highlighted in the next lemma. For convenience, in the remainder of this work we shift
A, to be centered around the origin and identify it with a subset of [-L/2, L/2]*, naturally
extending the results of the previous section to this set. To be precise, for L € 2N we
redefine A, = {x € Z% : x € [-L/2,L/2]%}. Moreover, in the following let x be the same
cut-off function as in Assumption [[.2.4] In dimension d = 2 define the renormalisation
constant: .

Ky = L% % dk ~log(n). (IV.25)
Remark IV.3.2. The renormalisation constant k,, is identical to the one in (IL.2), that is used
for the renormalisation of PAM on R?. This is very important to us: if the renormalisation
constants were different we would not be able to compare the rfSBM on R? with the one on
(—=L/2,L1/2)* with Dirichlet boundary conditions.

LemmaIV.3.3. Let {En(x)}xezz’neN satisfy Assumption There exists a probability space
(Q, #,P) supporting for all n € N random variables c,, v and {£"(x)}, 74, € € " (RY) such

that & is space white noise on RY and &" = En in distribution.
Such random variables satisfy the following requirements. Let X[ be the (random) solution
to the equation —ALX]! = x(D)&". For every w € () and «a satisfying

ae(l,3)ind=1, a€(3,1)ind=2, (IV.26)

the following holds for all L € 2N:
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(i) &(w) € G 2([~L/2,L/2]%) as well as sup,, 1€ (w)llge—2(a,) < +o0 and &J'EM(w) — E(w)
in €22([-L/2,L/2]%).

(ii) For any € >0 (with (-), = max{0,-}):

—d/2|€n —d/Z(En
+

suplln™2 & (w)llg<(a,) +suplin (@)l (a,) +suplln ()llz2(a,) < 00
n n n

Moreover, v(w) > 0 and @ﬁ{in‘dﬂéf(w) - v(w), zo‘”;{“n‘d/zlé”(wﬂ — 2v(w) in €55 (A,).

(iii) If d = 2, in addition, n~%?c,(w) — 0 and there exist distributions X,(w), Xy ¢ &(w) in
C3([-L/2,L/2]%) and €2*~*([-L/2,L/2]%) respectively, such that:

sup [IXg (w)llzz(a,) + supll(Xy © &%) (@)=cy(w)llgza-2(4 ) < 00
n n

and EFXHw) — Xy(w) in €X([-L/2,L/2]%), é"tf((Xg ©) é”)(w)—cn(w)) - X 0 &(w)in
€20=2([-L/2,L/2]%).

Finally, P(c,(w) = k,,Vn € Nand v(w) = ED,) = 1 and for all w € Q), £"(w) satisfies As-
sumption|[1.2.4} with the same renormalisation constant c,(w) as above if d = 2.

The proof of this lemma is postponed to the next subsection. For clarity, observe
that the first point is a CLT, the second point a LLN, while the third one is essentially
the convergence of a Wick product in a second Wiener-Itd chaos. We say "essentially",
because we are not defining exactly x,, = E[X]! ® £"], as the latter average is a function,
not a constant. Instead, we choose «,, such that the limit lim,, (Kn -E[X}© é”]) exists in
some appropriate function space.

Theorem IV.3.4. Consider &" as in Lemma [V.3.3| and « as in (IV.26), any T > 0, p €
[1,+00], 79 €[0,1) and 9,C, o satisfying:

{(2—0(,0(), d=1,
de C>(9-2)V(-a), ag > (9-2)V (-a), (Iv.27)
(2-2a,), d=2,

and let w; € CKifp(An) and f" e %VO%h?po(An) be such that
EMwll — wy in %{;p([—uz, L2, &' fin A (-L/2,L/2])").

For every w € Q let w": [0, T]xA,, — R be the unique solution to the finite-dimensional linear
ODE:

diw" = (A§ + EM(w)—cy (@) (g=p))w" + f", w"(0) =wg, w(t,x)=0 Y(t,x)€(0,T]xIA,.

(IV.28)
There exist a unique (paracontrolled in the sense of [Cv19]in d = 2) solution w to the equation

dw=(Ay+Ew+f, w(0)=wy, w(t,x)=0 Y(t,x)e(0,T]xd[-L/2,L/2)%,  (IV.29)
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and for all y > (8-C),/2V y, the sequence w" is uniformly bounded in ,Z;;’)S(An):

Supllw o0 ssupliwgllge o3 +supllfll g4, )
n ppliin n bp V0

where the proportionality constant depends on the time horizon T and the magnitude of the
norms in Lemma Moreover,

S > win £ ((-1/2,1/2]7).

Proof. In view of (IV.22) we can take w = Il,w, so that solving Equation (IV.28) is equiv-
alent to solving on the discrete torus ©,, the equation:

90" = A" TT(E"(@) ~ cul@) g +TLo ", @"(0) =TTy, (IV.30)

and then restricting the solution to the cube A, with w" = @"|, . Via the bounds in
Lemma [[V.3.3|this equation can be solved for all w € Q through Schauder estimates and
(in dimension d = 2) paracontrolled theory following the arguments of [MP19]] (without
considering weights, which make the problem only more complex). From the arguments
of the same article and Equation we can also deduce the convergence of the ex-
tensions. Note that the solution theories in [Cv19] and [MP19] coincide, although the
former concentrates on the construction of the Hamiltonian rather than the solutions to
the parabolic equation (confront also with Proposition[II.3.1). O

For every w € (), define the Anderson Hamiltonian J] = Ay + &(w) with Dirichlet
boundary conditions:

A D) S LA((-L/2,1/2]) — L*([-L/2,1/2)).

The domain and spectral decomposition for this operator are rigorously constructed in
[Cv19] with the help of the resolvent equation for d = 2 and [Gaul9] via Dirichlet forms
in d = 1. At the discrete level, write %‘;’i’“’ for the operator A{+&"(w)—c,(w)1ig=p). These
Ttn,b,L,w _ et.}ZfL’“’ and Ttb,L,w _ et,}?;“L’

In particular, the following result is a simple consequence of the just quoted works.

operators generate semigroups of compact operators

Lemma IV.3.5. For a given null set Ny C Q) and all w € N, for all L € N the operator F|
has a discrete, bounded from above, spectrum and admits an eigenfunction e, (1) associated

to its largest eigenvalue Ay (w, L), such that e) (4, 1)(x) > 0 for all x € (-5 L %)d

Proof. That the spectrum is discrete and bounded from above can be found in the works
quoted above. For ¢, € L2((—%,%)d) we write ¢ > @ if P(x) — p(x) > 0 for Lebesgue-
almost all x and we write ¢ > ¢ if (x) — ¢(x) > 0 for Lebesgue-almost all x. By the

strong maximum principle of [CFG17| Theorem 5.1] (which easily extends to our setting,

see Remark 5.2 of the same paper) we know that for the semigroup Tth = ¢! of
the PAM we have Ttb’L’wqo > 0 whenever ¢ > 0 and ¢ # 0; we even get T“w(p(x) > 0

for all x in the interior (—%,%)d . So by a consequence of the Krein-Rutman theorem,

see [Dei85, Theorem 19.3], there exists an eigenfunction eA (w,L) > 0. And since e}, (4, 1) =

e‘t/\l(“"L)Tth’L’“)e/\l(a,,L), we have e (,,1)(x) > 0 for all x € (=%, 5)4. O
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IV.3.3 Stochastic Estimates

Here we prove Lemma The following bounds are essentially an adaptation of
[CGP17, Section 4.2] to Dirichlet boundary conditions (see [Cv19] for the spatially con-
tinuous setting). The key issue is to bound the resonant product X! ® £", that can be
decomposed in its zeroth and second Wiener-1t6 chaos. The main difference with respect
to the periodic case, and the central point of the following proof, is that the zeroth chaos
is not a constant, yet our calculations will show that up to a constant blow up «,, this term
is well-defined.

Proof of Lemma([[V.3.3] Step 0. We shall prove the lemma for fixed L,a,e. The conver-
gence happens simultaneously over all parameter choices in view of similar arguments
as in the proof of Corollary Instead of proving the path-wise convergences of
the lemma, it is sufficient to show the convergences in distribution. The results then fol-
lows by Skorohod’s representation theorem, by setting v(w) = ¢,,(w) = £"(w) = 0 on a null
set. Let us write &" instead of En. We will show that there exists a space white noise &
on R? and (if d = 2) a random distribution X, ¢ & such that (all convergences being in
distribution):

SuplE[Ilé IIW syl <Foo EEN > Ein €272([0,L]9), (IV.31)

as well as:
sup E[lln™ (") llge(a,) + 1072 (E)lr2(a, )] < +o0, (IV.32)
n

with &'~ ¥2(&m), — E®, in €;¢([0,L]%). Moreover, in dimension d = 2, we have (recall
K, from (IV.25)):

sup E[IXgllga(a,) + (X5 © £")=xullgze2(a,)] < +00 (IV.33)
n

as well as £'X!" — X, in €([0,L]?), and &(X!' ©&"—x,,) = Xy o& in €2972([0,L]?). Once
these bounds and convergences are established, the proof is concluded. Note that &”
satisfies Assumption[[I.2.4]in view of Lemma[[I.2.5]

Step 1. The bound and the convergence from for £" and for X" are sim-
pler than the bound for X! ® £". Also, Equation and the following convergences
are analogous to the ones in Section[[I.7} Hence we restrict to proving the bound and the
convergence of X! ® £" as in (IV.33).

Step 2. We establish first the uniform bound in Bg:ga_2(An) (instead of €2%72) for
any p > 1 and a such that 2a — 2 < 0. The results on the Holder scale follow by Besov
embedding. In order to avoid confusion, we omit the subindex n in the noise terms and
write sums as discrete integrals against scaled measures with the following definitions:

Jo sae= LR [ - 52 [ o 3 s

x€0, -1,1)4

Then, observing that v,;z =#{ge{-1,1}* : gok =k}, one has for f: E, - C:

ﬁ f(k)dk = j{ s v f(gok)dgdk. (IV.34)
=y -1, Xy



IV.3. DIRICHLET BOUNDARY CONDITIONS 145

In this setting, our aim to estimate uniformly over n the following quantity:

]N

B[ 0 - el | = Zzw”’f B[ M (X" 0 €7 - )P ()] x

j=-1

For ky,k, € Z,, and qy,9; € {~1,1}¢ we adopt the notation:
kp12) = k1+ka, g12) = 91 +92, (o k)12 =091 0ki+g2 0k
and ¢g(ki, k)= X pi(ki)pj(kz). Hence via (IV.34):

li-jl<1
—1<ij<g,

AT (X" ® £")(x) = j Nty vy e2motasba.

((-1,1}9xE7)?

x(k
o5{(a0 Rz ko) A2

(k2)
= J 1{k1¢k2}Nde1 Vi, e27u(x,(qok)[12])_

({-1,1}9xE})?

0j((gok)1z )%(klyb)

(&", e, }E", m, ) dgyo dkg o

x(k2)
I"(kz)

where Diag indicates the integral over the set {k; = k;}. First, since @ has all moments

(&", g, X&) dgy, dky, + Diag

finite, we apply a generalized discrete BDG inequality [CGP17, Proposition 4.3] and the
same calculations as in [CGP17, Corollary 4.7] to find:

E[|A; (T (X" @ £")(x)=x,)I"]
S E[IA;(IT(X" © &")(x)-E[Diag]P] + [E[Diag] - 1(j—_1jxc,[°

k
deQdklz x(k2)

oj((go k)[lz])%(kl;kz)l (ky)
For the first term on the right hand side we have:

2
] +|E[Diag]-1{j—_1)x,/°.

x(ko) | (k)
J ‘ '((qok)[12])¢8(k1,k2)1n(k2) daizdhiz = Ezpj(k[121)¢g(klfk2)ln(k2) dki2
({-1,1}4xE})?
ZJ\ 1{|k1+k2| 2] {lko|~ 2Z dk12< E 2]d21d -4) <22](d 2)
izj— B ‘—‘n 5 ~

which is of the required order (and we used that d < 4). Let us pass to the diagonal, term.
Since {(&",ny)}kear are uncorrelated we rewrite the term as:

o x (k)
-f x({ 11}d)2v1332m<x,q[121 k>p (qm]Ok)l”(k)dq”dk = Ljj=—nxn

We split up this sum in different terms according to the relative values of gy, g;,. If g; = —g,
(there are 27 such terms) the sum does not depend on x and it disappears for j > 0. Let
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us assume j = —1. Via (IV.34) and parity we are then left with the constant:

d 2 x(k) o _j x(k) o
2 j;vkl”(k)dk Ky = E”l”(k)dk Ky-

=
=

The sum on the left-hand side diverges logarithmically in #, just as x,,. We show that
the difference converges to a constant. To clarify our computation let us introduce an
auxiliary constant ,, = IE,I dk V%%, where v = 2-#liki=tnl/2 Bor x € R9,r > 0, indicate
with Q”(x) C T? the box Q"(x) = {ve T¢: |vy—x|eo < 7/2} (| |e being the maximum of the
component-wise distances in T%). Then we bound uniformly over 1 and N:

| [ A [l |y [ ae) gy,
ol =| [ - | P e - 2 o o iy~ iy 24
n N
1( 1 (k) 1 1 X0\ 1
<s—(1+— sup VI | s |1+ — < —,
N\ Nd = s<Q (k) (1"(9))? N\ N4 keI{,sz k> ]~ N

where we have used that d = 2, [I"(9)| 2 |9]? on [-1/2,1/2]% as well as |[VI*(9)| < |6] on
[-1/2,1/2)%. Similar calculations show that the difference converges: lim,,_, ., x,~%, €R.
We are now able to estimate:

. e

where we used that the sum on the boundary J&, converges to zero and is thus uni-

< 1+ |7€n_Kn| < 1

formly bounded in n. For the same reason, the above difference converges to the limit
lim,_, . %,—%, € R.

For all other possibilities of g1,3, we show boundedness in a distributional sense. The
same calculations show that in fact these terms converge to a deterministic distribution
for n — co. If g; = g, we have:

< 2/d=2) 4,

x(k

Finally, if only one of the two components of g;,g, differs (let us suppose it is the first
one) we find ( with x = (x1,x,) and k = (k, k,)):

L ][Z jopa | <2

ki>1 k>1

x(k

for any ¢ > 0, up to choosing 0 € (1/2, 1) sufficiently close to 1/2.

Step 3. Now we address the convergence in distribution. The previous calculations
and compact embedding of Holder-Besov spaces guarantee tightness of the sequence
X! ® £"—x,, in the required Holder spaces for any a < 0. We have to identify uniquely
the distribution of any limit point. Whereas for & and X|! the limit points are Gaussian
and uniquely identified as white noise & and A;! x(D)& respectively, the resonant prod-
uct requires more care. Here we can use methods developed in [CSZ17] (also used in
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[MP19], Section 5]) for discrete Gaussian chaos decomposition. Pick any smooth function
@: [-L,L]* = R and consider the quantity:

(PIL(X"OE" —x,))= =Y p(I(X" 0 £")(x) - x,)

x€0,,

ZQD HeXHGHeén)(X)_Kn)-

x€®,

The latter quantity (omitting the integral against ¢ at first) can be rewritten with (IV.34)
as:

J;@ . KR! (2 = x1 )TT,E™(x; )K}Z(X —xp)IT,E" (xp) dxyp — Ky

li-jl<1

1<i,j<jy

= Z j v ve KiM(x - 0 x1)K{ (x =95 0x)&" (x1)E"(x2) dx1 2 dg12 — Ky,
li—jl<1
—fsf,jsj,,(‘\”x{‘l'”d

)
tions we could show that IE[X o) 5”] -k, converges in the sense of distributions. Hence,

where K”( ) =g [p,( )l,,( ) ]( ) and K].”(x) = ﬁéi[pj(-)](x). Now in the previous calcula-

when tested against ¢ is suffices to study the convergence in distribution of

J R e e e - B e Loos?
(Ay)?
with
Wom= [ ow Y [ v R aex K]l g o) dan dr
G)n |i—j|§1 ({ ll}d

-1<i,j<j,

Now we can apply [CSZ17) Theorem 2.3] to obtain that

JLf(xl,xZ)(.S”(xl)E”(xz)—lE[é”(xl)E”(xQ)])dxlz—> f LY (x1,x2)&(dxq) o £(dx),

(An)? ([0,L]?)?

in distribution (and where the latter is an integral in the second Wiener chaos), with

L?(xy,x7) = f Z f 2 vi Ki(x =91 0x1)Kj(x —g; 0x5)dgyp dx,
ji—ji<1 2= L2
-1<i,j<j,

(the definition of K” and K]” naturally extend to ). The theorem can be applied, provided
that lim,, . ||ILy — L|lz2((o,Lp2)2) = 0, where we extend LY to ([0,L]?)? by defining it as a

constant on any square centered at lattice points. To see this we can follow the calcula-
tions that brought us until here. To improve the readability let us just prove that L is
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uniformly bounded in L%(([0, L]?)?) (the convergence follows similarly):

2

||Lf||1%2(([0,L]2)2) SJ\ f (P(X) Z Kl-”(x—xl)K]-”(x—xz)dx dx12
(®n)2 911 |i—j|§1
-1<i,j<j,
' 2
<] |Festki-k) Y etk o) ks,
(E,)? Farred (k2)
_15i’jsjn

by Parseval. Using the smoothness of ¢ and |I"(k)| = |k|> one obtains the uniform bound.
This concludes the proof. O
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Synchronization for KPZ

V.1 Introduction

In this chapter, we prove synchronization and a one force, one solution (1F1S) principle
for KPZ-like equations (the true KPZ equation is driven by space-time white noise in
d=1):

(D,-A)h(t,x) = VA2 (LX) +(tx),  h(0,x)=ho(x),  te(0,00), x€T%,  (V.1)

where # is some ergodic noise. At least formally, this equation is linked to two avatars.
The first one is Burgers equation, satisfied by v = Vh:

(9, — A)v(t,x) = Vv (t,x) + Vi(t,x), v(0,x) =vo(x), te(0,00), xeT (V.2)
The second avatar is the heat equation with multiplicative noise, solved by u = exp(h):
(dy=A)u(t,x) = n(t, x)u(t,x), u(0,x) = ug(x), te(0,00), x€ T, (V.3)

We will mainly work under the assumption that the last equation is well-posed and the
solution map generates a linear random dynamical system that satisfies certain proper-
ties. In Section we introduce Hilbert’s projective metric and a related contraction
principle for positive operators (see Theorem [V.3.1). This allows us to formulate a ran-
dom variant of the Krein-Rutman (see Theorem [V.4.4). Assuming a random dynamical
systems satisfies some properties that we consider natural for solution maps to Equa-
tion we show that synchronization and 1F1S holds (see Theorem [V.5.3). We then
show in Section [V.6lhow to apply this result in the case of space-time white noise and in
the case of a fractional noise.

V.2 Notations

In this chapter the notation differs slightly from previous chapters, so we introduce again
some definitions, at the cost of slightly repeating ourselves.

For a > 0 let |« be the smallest integer beneath a and for a multiindex k € N? write
|k| = Z?Zl k;. Denote with C(T9) the space of continuous real-valued functions on T,

149
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and, for a > 0, with C%(T) the space of |a |- differentiable functions f such that o*f is
(a—La])-Holder continuous for every multiindex k € N? such that |k| = |« ], if a—|a]|> 0,
or simply continuous if & € Nj. For a € R, we obtain the following seminorms on C a(T4):

|0 f (x)=0"f ()|
[x—yla-tal

[fla = max [0°flleol gm0, + sup
|k|:|_a_] x’yer

We write C®(T%) = Men CK(TY).

Now, let X be a Banach space. We denote with #(X) the Borel o—algebra on X.
Let [4,b] C R be an interval, then define C([4,b];X) the space of continuous functions
f:[ab] - X. For any O C R, we write Cj,.(O; X) for the space of continuous functions
with the topology of uniform convergence on all compact subsets of O. Given two Ba-
nach spaces X,Y denote with .Z(X;Y) the space of linear bounded operators A: X —» Y
with the classical operator norm. If X =Y we write simply .Z(X).

Next we introduce Besov spaces which, unlike those in Section are weighted
in time. Following [BCDI11) Section 2.2] choose a smooth dyadic partition of the unity
on R? (resp. R%*1) (x,{0j}j>0) and define p_; = x and define the Fourier transforms for
f: T >Rand g: RxTY - R:

Frra f (k) = J e 2N f(x)dx,  keZf,
Td

Frx1i8(T, k) = J e 2Tt k) (¢ x) dt du, (1,k) e Rx Z°.
RxT“

These definitions extend naturally to spatial (resp. space-time) tempered distributions
S/(T?) (resp. " (RxT%)), which are the topological duals of Schwartz functions: .7 (T%) =
C®(T) and

y(Rde):{qo: sup {(1+[H)P14e(t, )} < oo, Vp}O,yeNg“}.

teR,xeT4

Similarly one defines the respective inverse Fourier transforms .%-! and .%;! ,. Then

T4 RxT4"
define the spatial (resp. space-time) Paley blocks:

Aif(x)=Zoiloj- Frafllx),  Ajg(tx) = T raloj Fryragl(t, x).

Eventually one defines, for « € R, a> 0, p,q € [1, 0], the spaces B‘g‘,q(Td) and Byg(R x T)
as the set of tempered distributions such that, respectively, the following norms are finite:

£ 1z, ey = 127 NA; fllzecny) js—tlles,
lIglBse oty = 127 NAG £ (/) lpRure)) st lless

where we denote with ((¢,x)) the weight ((t,x)) = 1+|t|. For p = g = 2 one obtains the
Hilbert spaces H*(T%) = Bg"z(Td) and

HZ(RxT?) = BS5(Rx T?). (V.4)
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One can also consider functions that depend on time only and introduce, for the same
range of parameters, the spaces By’ (R) via the norm:

£ gy = I7UAGf A M@ js-tlless 8y =1+,

Here the Paley blocks are defined by A;f(¢) = ffﬁl(pj - Frf)(t), for a dyadic partition of
the unity {¢;};>1 on R. As above we then define

HZ(R) = B35 (R). (V.5)

Finally, recall that for p = g = co and a € R, \ Ng: Bffom(Td) = C%(T%) (see e.g. [Tril0)
Chapter 2]).

V.3 Setting

This section, based on [Bus73]], introduces the projective space of positive continuous
functions and a related contraction principle for strictly positive operators. Let X be
a Banach space and K C X a closed cone such that K N (-K) = {0}. Denote with K the
interior of K and write K* = K\ {0}. Such cone induces a partial order in X by defining
for x,y € X:

x<yoyp-xeK and x<ypeoy-xek.

Consider for x,y € K*:
M(x,y) =inf{l > 0: x < Ay}, m(x,y) =sup{pu>0: py < x},

with the convention inf(@ = co. Then M(x,y) € (0, 0] and m(x,p) € [0,00) so that one can
define Hilbert’s projective distance:

dii(x,y) = log (M(x,y))-log (m(x,9)) € [0,00], V¥ x,y €K™,

This metric is only semidefinite positive on K*, and may be infinite. A remedy for the
first issue is to consider an affine space U C X which intersects transversely K*, that is:

VxeK*, JA1A>0 st. AxeU.

Write A(x) for the normalization constant above. As for the second issue, one can observe
that the distance is finite on the interior of K, cf. [Bus73, Theorem 2.1], and thus, defining
E =K N U, one has that (E,dy) is a metric space.

Consider now .Z(X) the set of linear bounded operators on X, and for an operator
A € Z(X) the following conventions define different concepts of positivity:

K = A nonnegative.
AR)CK = A positive.
K

= A strictly positive.
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The projective action of a positive operator A on X is then defined by: A™x = Ax - A(Ax).
One can view A”™ as a map A™: E — E and one then denotes with 7(A) the projective
norm associated to A:

(V.6)

The backbone of our approach is Birkhoff’s theorem for positive operators [Bus73|, Theo-
rem 3.2], which is stated below.

Theorem V.3.1. Let A(F) denote the diameter of a set F C E:

A(F) = sup {dp(x,p)}.
x,y€F

The following identity holds:
(A) = tanh(iA(A"(E))) <1,

Then denote with Z,(X) the space of positive operators A which are contractive in
(E, dH)
Ae Zp(X) & AeZ(X), Apositive, T(A)<1.

The only example considered in this work is X = C(T9) the space of real-valued con-
tinuous functions on the torus, where K is the cone of positive functions. Here the fol-
lowing holds.

Lemma V.3.2. Let X = C(T*)and K = {f € X : f(x)>0, Vx €T?), and consider:

U= {f ex: | fode= 1}.
T4
For the associated metric space (E,dp) the following inequality holds:

og (f)-10g(g)llo < du(f,g) < 2||llog(f)-log(@)lle,  Yf,g€E. (V.7)

In particular, (E,dy) is a complete metric space. In addition, if a strictly positive operator A
can be represented by a kernel, i.e. there exists K € C(T% x T%) such that:

AP0 = [ Kiopf) dy, vxe
and there exits constants 0 < a < p < co such that
a<K(xvy)<p, Vxpe T¢,
then A is contractive, i.e. A € Zp(X).

Proof. As for the inequality, since f,g € U (and hence [ f(x)dx = [g(x)dx = 1), there
exists a point x such that f(xg) = g(xo). In particular if we rewrite the distance

dy(f,g) =logM(f,g)—logm(f,g)

=max (log(f/g))—min (log(f/g))
= max (log (f/g)) + max (log (g/f))
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we see that in the sum both terms are positive an bounded by ||log(f)-log(g)ll.. Con-
versely we have that:

llog (f)-1log(g)ll < max(log(f)-log(g))+max(log(g)-log(f)).

Completeness of (E,dy) is a consequence of Inequality (V.7): for a given Cauchy se-
quence f, € E the sequence log(f,) is a Cauchy sequence in C(T“). By completeness of
the latter there exists a ¢ € C(T%) such that log(f,) — ¢ in the uniform topology. By
dominated convergence JTd exp(g)(x)dx =1, so that exp(g) € E, and hence f, — exp(g) in
E.

The result regarding the kernel can be found in [Bus73}, Section 6].

O

Remark V.3.3. For the sake of simplicity we did not address the general question of complete-
ness of the space (E,dy), since in the case of interest to us completeness follows from (V.7).
Yet general criteria for completeness are known, see for example [Bus73| Section 4] and the
references therein.

Remark V.3.4. In view of (V.6), an application of Banach’s fixed point theorem in (E,dy) to
operators satisfying the conditions of Lemma delivers the existence of a unique positive
eigenfunction for A. This is a variant of the Krein-Rutman theorem. The formulation we
propose here is convenient because of its natural extension to random dynamical systems.

V.4 A Random Krein-Rutman Theorem

In this section we reformulate the results of [AGD94, Hen97]], which refer to the case of
positive random matrices, for positive operators on Banach spaces.

An invertible metric discrete dynamical system (IDS) (CQ),.#,IP,9) is a probability space
(Q),.#,P) together with a measurable map 9: Zx Q) — Q such that 9(z+z’,-) = 9(z, 9(z’,+))
and 9(0,w) = w for all w € Q, and such that P is invariant under 9(z,-) for z € Z. For
brevity we write 9%(-) for the map 9(z,). A set Q C Q is said to be invariant for 9 if 92Q =
Q, for all z € Z. An IDS is said to be ergodic if any invariant set Q satisfies IP(ﬁ) € {0,1}
(cf. [Arn98| Appendix A]).

Consider X,E as in the previous section and, for a given IDS, a random variable
A: Q) - Z(X). This generates a measurable, linear, discrete random dynamical system
(RDS) (see [Arn98), Definition 1.1.1]) ¢ on X by defining:

Pn(w)x = A" w) - A(w)x, n € Ny. (V.8)

If A(w) is in addition positive for every w € () (we then simply say that A is positive), we
can interpret ¢ as an RDS on E via the projective action:

Pl(w)x =A™ (9" w) o0 A™(w)x, n € Ny.

Before we move on, let us recall the definition of invariant measures for random dynam-
ical systems, cf. [Arn98, Section 1.4].
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Definition V.4.1. In the same setting as above, we say that a measure y on () X E is invariant

for o™ if:
i The marginal uc of u on Q) satisfies
po =P
ii The measure p is ©,—invariant, where ©,, is the skew-product
O(w,x) = (8"w, gy (w)x).

Remark V.4.2. In most cases an invariant measure y for a random dynamical system ¢ admits
a factorization of the form

H(AxB) = L ol d2P(do),

where A C () and B C X are measurable sets, and w > p,(C) is a measurable function for
every measurable C C X. We then identify the measure y with its factor . In the setting of
this article we will only deal with random Dirac measures, of the form

ﬂw(dx) = 6x0(w)r
for a measurable map xy: Q — X.

Assumption V.4.3. Assume we are given X,K, U, E as in the previous section and that (E,dy)
is a complete metric space. Assume in addition that there exists an ergodic IDS (Q, #,IP,9).
Let @,, be a RDS defined via a random positive operator A as above, such that:

]P(A . .ZCP(X)) >0,

In this setting the following is a random version of the Krein-Rutman theorem.

Theorem V.4.4. Under Assumption there exists a S—invariant set Q C Q) of full P—measure
and a random variable u: () — E such that:

i ForallweQand f,g €E:

. 1
hmsup[;fsur; (IOgdH(qJZf(w)ﬂ @Z(w)g))
n—-oo }ge

< IElog(T(A)) <0.

ii u is measurable w.r.t. to the o—field .#~ = o ((A(97")),1en) and:
P (wu(w) = u(¥"w).

iii Forall w € Q:

limsup [%i{ug(logdH(gog(S_”w)f,u(w)))] < lElog(T(A)) <0

as well as:

limsup [l sup(logdH(gog(w)f,u(S”w)))] < IElog(T(A)) <0.

n—o00 n feE
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iv The measure () is the unique invariant measure for the RDS ¢™ on E.

Notation V.4.5. We refer to the first property as asymptotic synchronization and to the third
property as one force, one solution principle.

Remark V.4.6. Theorem|V.4.4|can be stated also in continuous time. Suppose that 9: RxQ —
Q) generates an invertible, measure-preserving and ergodic dynamical system over (Q,.#,IP)
and

p: Ry xOxX—>X

defines a linear (i.e. @;(w) € L(X), Vt > 0,w € Q) random dynamical system (see [[Arn98,
Definition 1.1.1]). Assume in addition that

@i(w) is positive YVt >0, w €, P(p; € Zp(X)) > 0.
Then there exists a 9—invariant set Q of full P—measure, such that for all w € Q:
hmsup[? sup (log(dH (pf(w)f, pf (@ )))] < IElog(T((pl)) <0
t—o0 fgeE
And similarly one can adapt the properties at the points (ii) — (iv) of Theorem [V.4.4 This
extension follows directly from the discrete case, observing that for n = |t], since t(-) < 1:
log (i (@ (@)f, ¢ (@)g)) < log (T(@r—n(8"w))dp (@} (@) f, Py (@)g) )
< 1Og(dH (Pn f (Pn ))

Then one can apply Theorem|V.4.4|since any discrete random dynamical system has the form (V.8),
with A(w) = @1 (w).

The proof of Theorem will rely on the following lemma.

Lemma V.4.7. There exists a 9—invariant set Q C Q of full P—measure and an .F~—adapted
random variable u : () — E such that:

pl(w)u(w) =u(d"w), Vo eQ,neN.
Moreover for all w € Q:
limsup [—sup(log dy(er(d™"w)f,u (a))))] < IElog(T(A)) <0.
n—00 feE

Proof. We start by observing (as in [Hen97, Proof of Lemma 3.3]) that the sequence of
sets F,(w) = ¢ (9 "w)(E) is decreasing, i.e. F,;; C F,. Let us write F(w) = (),>1 Fu(®).
Hence by Theorem

A(F) < lim A(F,) = lim 4 arctanh (t(@,(97"w))).

n—o00 n—o0

Now, by the ergodic theorem and Assumption there exists a 9—invariant set Q of
full P-measure such that for all w € Q:

1
limsupzlog(rﬂpn(@‘”w )<hm Zlogr (97 w)) lElog(T(A))<O. (V.9)

n—co n—oo 11
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In particular lim,,_,, T((pn(G‘”w)) =0, and since arctanh(0) = 0 we have that A(F) = 0. By
completeness of E it follows that F is a singleton. Let us write F(w) = {u ( )} and extend u
trivially outside of Q: it is clear that u is measurable with respect to .%~. Since for k € N
and n >k
Pu(97"8w) = pr(w) 0 Pk (97" M),

passing to the limit with n — co we have: u(kw) = Pp (w)u(w).

Finally, as in the former result, a Taylor expansion guarantees that there exists a con-
stant ¢(w) > 0 such that:

Al (37" w)(E)) = 4 arctanh (t(¢,(37"w))) < 4(1 + (@) T( ("))

This estimate, combined with the fact that
i[up dr (@ (37" w)f, u(w)) = i‘up dp(@r (3" w)f, o (3" w)u(d"w)) <A@y (" w)(E))
€E €E

and provides the required convergence result.

Proof of Theorem As for the first property, compute:

dr(@n(w)f, oy (w)g) <T(A(S" w))dp(py_1 (@) f, ¢y (w)g)

SI_IT(A(Siw))dH(f'g)'

i=0
Then, applying the logarithm and Birkhoff’s ergodic theorem we find:
limsup%log(’c((pn(a)))) < Elog(t(A))<0.

n—-oo

If IElog(T(A)) = —co we can instead follow the previous computation with T(A(8'w)) re-
placed by 7(A(8'w)) V e™ and eventually pass to the limit M — co. To obtain the result
uniformly over f, g first observe that via Theorem

sup (log (¢ (w)f ¢ (w)9) =108 (A (@)EN ) <log 4 arctanhic(y )

and by a Taylor approximation, since lim,,_,, (¢, (w)) = 0, there exists a constant c¢(w) >
0 such that
limsup %log (4 arctanh(r((pn(w)))) <limsup % log ((1 + c(a)))T(qon(a))))

n—o00 n—oo
=limsup % log (T(gon(a)))) <IElogt(A).
n—oo

Point (ii) as well as the first property of (iii) follow from Lemma[V.4.7] As for the second
property of (iii) we observe that

sup | log dyy (@7 (@)f, u(9"w))) = sup logdiy (¢ (@) i (w)u(w)))
feE feE

< sup (logdu (@ (@)f i (w)g)),
f,8€E
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so that the estimate is now a consequence of point (i). As for (iv), we have that for any
two measurable ACQ,BCE:

j 1A<s"w>13<<pz<w>f>éu<w><df)lP(dw)=f La(9"w) L p(u(8"w))P(dw)
QxE QxE
=f 1y (@)1 p(16(w))P(dw),
QxE

which implies that 6, is invariant (see Deﬁnltlonm V.4.1). Finally, to see that ¢, is the
unique invariant measure, let y be any invariant measure. Then

min{l,dy(f,u(w))}u(dw, df)= lim min{l,dy (@) (0)f, u(d"w))}p(dw, df)
QxE =0 JQxE
< lim | supmin{l,dy(@)(w)f,u(d"w))}P(dw)
n—=e )0 feE
<0,

where in the last line we used dominated convergence and the results of point (iii). In
particular, we have found that

pl(w, f)eQxE : f=u(w)})=0,

implying that y(dw, df) = y(df)P . Note that the invariant sets in all points can
be chosen equal to the same Q up to takmg intersections of invariant sets, which are still
invariant.

O

V.5 Synchronization for linear SPDEs

In this section we discuss how to apply the previous results to stochastic PDEs. Concrete
examples will be covered in the next section. For clarity, nonetheless, the reader should
keep in mind that we want to study ergodic properties of solutions to Equation (V.1).
Since the associated heat equation with multiplicative noise is linear and the solu-
tion map is expected to be strictly positive (because the defining differential operator is
parabolic), we may assume that the solution map generates a continuous, linear, strictly
positive random dynamical system ¢.

Definition V.5.1. A continuous RDS over a discrete IDS (Q,.%,P,8) and on a measurable
space (X, %) is a map
P: R, xQOxX—>X

such that the following two properties hold:
i Measurability: ¢ is Z(R,)Q .F @ #B-measurable.

ii Cocycle property: ¢ (0, w) = Idy, for all w € Q and:

p(t+n,w) = @(t, 9" w) o p(n, w), VteR,,neNjyweQ.
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We then formulate the following assumptions, under which our main result will hold.

Assumption V.5.2. Let d € Nand > 0. Let (Qp,, 7, P, 9) be a discrete ergodic IDS, over
which is defined a continuous RDS ¢:

@R, xQy,, = ZL(C(TY)).

There exists a 9—invariant set Q C Qyp, of full P—measure such that the following properties
are satisfied for all w € Q and any T >S > 0:

i There exists a kernel K : Qyp, — Cloc((0,00); C(T? x T4)) such that forall S <t < T:
Ppr(w)f(x) = Ld K(w,t,%,9)f(y)dy,  VfeC(T%),xeT".

ii There exist 0 < y(w,S,T) < 6(w, S, T) such that:
y(,5,T) <K(w,t,x,9) < 8(w,S,T), Vx,peTd, S<t<T,
which implies that P(¢; € Zp(C(T4)),Vt € (0,00)) = 1.
iii There exists a constant C(B, w, S, T) such that:

lpefllg <CB @, S, Tlifllor Y EC(TY), S<t<T.

iv Consider (E,dy) as in Lemma The following moment estimates are satisfied for
any f € E:

Elog(C(8,S,T))+ EsiljdeH(goff,f) < +00,

where @} is defined to be the identity outside of Q.

The first two assumptions allow us to use the results from the previous section. The
last two will guarantee convergence in appropriate Holder spaces. In view of the moti-
vating example and in the setting of the previous assumption, we say that for z € Z and
hy € C(T?) the map

[2,+00) x T 5 (£, x) > W (w,1,x), W (w,2,x) = ho(x)

solves Equation (V.1)) if h*(w,t) = log(qot(Sza))exp(ho)) for ¢, as in the previous assump-
tion.

Theorem V.5.3. Under Assumptionfori =12, hf) € C(T%) and n e N, let h;(t) € C(T%)
be the random solution to Equation started at time O with initial data hé and evaluated
at time t > 0. Similarly, let h;"(t) € C(T?) be the solution started at time —n with initial data
hf) and evaluated at time t > —n. There exists an invariant set Q) C Qyp, of full P—measure
such that for any 0 < a < B, for any T > 0 and any w € Q:
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i There exists a map c(h(l),hg): Qypz xRy — R such that:

) 1
limsup [; log( sup || (w,t)—hy(w,t)—c(w,t, h(l), h%)”ca(’rd))]

n—oo te[n,n+T]
< (1 - %)Elog(r((pl)) <0,

as well as:
1
limsup [Elog( sup [hi(a),t)]/g)] <0.
te

n—00 [nn+T]

And uniformly over hy:

limsup [llog( sup |y (w, t) = ha(w, t)—c(w, t,h(l),hé)lloo)] <Elog(t(¢1)) <0,
n—eo |1 A picc(rd),
te[nn+T]
ii There exists a random function hey,: Qyp, — Cioc((=00,00); C*(T%)) and a sequence of
maps c‘”(h(l)): Qyp, xRy — R for which:

1
limsup [— log( sup |[h{"(w,t) = heo(@, t) — " (w, 1, h(l))llca(Td))]
n—o0 n h(])EC(Td),

te[(=T)V(-n),T]

S(l—%)lElog(T((pl))<O.

Passing to the gradient one can omit all constants and find the following for Burgers’
Equation.

Corollary V.5.4. In the same setting as before, it immediately follows that also:

. 1 o
limsup [Elog( sup ||Vyhi(w,t) = Vihy(w, t)||Ca1(Td))] < (1 - E)IElog(T((pl)) <0,

n—o0 te[n,n+T]

1
limsup [—log( sup  |IVih{"(w,t) = Vihe(w, t)||Ca1(Td))] < (1 - g)IElog(T((pl)) <0,
n—oo n h(l)EC(Td), ﬁ

te[(-T)v(-n),T]

where the space C*~1(T%) is understood as the Besov space Bg‘ojgo(Td)for a€(0,1).

Proof of Theorem Let us first define Q = Q, the latter as in Assumption and
consider w € Q and T > 0. In the course of the proof, where necessary (for example to
apply the ergodic theorem) we will redefine Q to be a smaller 9—invariant set of full
IP-measure.
Step 1. Define:
ub = exp(h)/|lexp(hi)llp € E,

so that h;(w,t) = log((pf(w)ué)+ci(w, t), where c;(w, t) € R is the normalization constant:

i, t) = log(Ld«pt(w)ué)(x)dx) + log( I exp(hé)(x)dx).
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Let us write ¢(w, t, h(l),hg) = c1(w, t)—cy(w, t). Similarly, for —n <t < 0 one has:
I (@, 1) = log (@it (97" @)uf )+c; ™ (@, ) = hi(9 " w, n+1),

where ¢;"(w,t) = ¢;(97"w, n+t). Also, write c™*(w, ¢, hé,h%) =i (w,t)=c;"(w,t). Now we
prove the following simpler version of the required result:

1
limsup[—log( sup ||h1(a),t)—hz(a),t)—c(w,t,h(l),hg)Hoo)]
n—eo | picc(rd),

te[n,n+T]

SIEIOg(T((Pl)); (Vl())

limsup[llog( sup ||hfn(w,t)—hEn(w,t)—C_"(w,t,h(l),h(z))||oo)]
oo |7 HjyeC(T?)
te[(=T)v(-n),T]
<Elog((¢1)).

First we eliminate the time supremum, since in view of Inequality (V.7):

1
limsup[—log( sup ||h1(w,t)-h2(w,t)—c(w,t,h}),hg)nm)]
n—00 n hBEC(Td)

te[n,n+T]

<limsup|log( sup dH<<pf<w>ué,<pf<w>u3>)]
nooo [T A piecird)
te[n,n+T]

<timsup| -~ log( sup dH<<p3<w>ué,qoZ<w>u§>)]

n—o0 hieC(T4)
where we used the definition of the contraction constant 7(-) together with the fact that
7(-) £ 1 (cf. Theorem[V.3.1)) to obtain
(P (w)ug, PF (w)ug) = Ay (@[ (3" @) (@)ug, I (8" )y (w)ug)
< (@ (8" ) dp (@] (@)ug, iy (w)ug)
< dn (@5 (@)ug, @ (@), 149)

so that one can estimate:

sup ]dH<<p?<w>ué,<pf<w>u§> < dp (T (w)ud, P (w)ud).
teln,n+T

Similarly, also for the backwards case. At this point, in view of Assumption we can

apply Theorem in the setting of Lemma with A(w) = ¢1(w) to see that there
exists a g, = exp(heo): Qypz = C(T%) such that:

<Elog(t(¢1)),

hmsup[llog( sup dy (¢ (w)ud, ¢ (@)1if))

n—-oo M(I)EE

< IEIOg (T((Pl));

lim sup[% log( sup dp (R (8™ "w)u}, uoo(a))))

n—o0 uéeE
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up to choosing w in a possibly smaller Q, which via the previous calculation implies
(V.10). In particular, this also proves the bound uniformly over hf) at point (i) of the
theorem.

Step 2. We pass to prove convergence in C%(T%) for 0 < a < . Hence consider a < f8
fixed and define 0 € (0,1) by & = 6. As convergence in C(T%) is already established, to
prove convergence in C%(T%) one has to control the a—seminorm [-], of hj — h,. We treat
the forwards and backwards in time cases differently, starting with the first case. Let us
recall the bound

[fla < Cla plIf Nl [f 15
which is proven in Lemma With this bound one can estimate the Holder seminorm

via:
[y (@, t)=ho(@, t)=c(@, £, ho, h)]a < Cla, Pl (@, t)=ho(w, B)=c(w, £, hy, hp)lles -
6 (V.11)
(1o (7 (w)u 1y +Dog (pF (@)ud)ly ) -

Since we already proved that the first factor in the product vanishes exponentially fast,
our aim will be to prove that the second factor does not explode exponentially fast. This
amounts to proving the second bound at point (i). To this end, fix n € N,T > 0 and
t € [n,n+T], and define 7 by t = n—1+7. We can use Lemma|[V.8.6|to bound the last terms

by:
[h1(w, 1)]g = [log (@] (w)u)]s

(14 [eM@)ui], \PH
=C )( m<[z;<(w>)u§>]ﬁJ
T ﬁ)(l +[PF (3" w) o I (w)ug g ]W“
m(@f (w)up)
e ﬂ)(l +C(B, 9" w, 1, T+l (@)l )W“
m(p (w)ug)

where m(-) indicates the minimum of a function and E(/S ) is the deterministic constant
of Lemma|V.8.6] We can plug this estimate into Equation (V.11)) to obtain for some deter-
ministic E(a,ﬁ) >0:
log[hy (@, t)~hy(w, t)—c(w, t, b, h3)]a
<(1-6)1ogllh (@, H)=hy(w, t)=c(w, t, I, )l

1+C(B, 9" w, 1, T+1)|lp™ | (w)uthloo
+6(|_/5J+1)10g('; o) 1(@)ug )

+C(a, B)
<(1-0)log Iy (@, 1)=ha(@, )=cle, £ b, 1)
1+ C(B 9" V0, 1, T+l (@)l
6 1)1 2 g
+i;2 181+ tog (Tt )

+ C(a, B),
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where in the last line we used that log max; x; = max; logx; and that ||¢§71(w)u6||m >1,
since (pg_l(a))u(i) € E and hence de (p;‘_l(a))ué(x)dx = 1. To conclude, in view of Equa-
tion (V.10), we have to prove that fori =1,2:

(1 +C(B, 9" w, 1, T+1)
m(ef (w)ug)
In particular, the latter inequality also implies the f-Holder norm bound of h; at point

(i) of the theorem. Now we observe that forn e N,n>1, T >0,t =n—-1+7t€[n,n+T]and
for any f € E:

limsup [%log( sup ||(pr’f_1(a))u6||m))] <0. (V.12)

n—o00 n<t<n+T

1og(1 +C(B, 9" w,1, T+1))+log(||<PZ_1(w)f||oo)—log(m((pf(w)f))

slog(l+C(ﬁ,9”_1w,1,T+1))+2 sup  dig(@™ 1, (@)f, f).

1<t<T+1

Here we used again that ¢(w)f lies in E for all @ and s, and that for g € E we have
m(g) < 1 <|¢lleo, since it holds that de g(x)dx = 1. In fact this implies

tog (@2 (@)f)) < 0 <log(lgF (@)l ),
so that
tog (g3, (@) o }-1og (m( @7 (@) ) < Log (P} (@) )~ Log (@i (@))
+10g 9 (@)fllo )~ Tog m(F ()1 )

<2 sup dy(py g (@)f, f)

1<t<T+1

Hence we have reduced (V.12) to proving the following;:

limsup — [log( (ﬂ,S”_lw,l,T+1))+ sup dy(e_i. (@)f,f) (V.13)
n—oo 1<t<T+1
Let us start with the last term and bound:
A (@14 (@)f, f)

< (@ (8" w))du(@fy (w)f, f) +du(@F (3" ), f)
n-1 n-1 (V.14)

< (1 (Y w)dy (T (Y w)f, f)+ sup dy(pF(3" ' w)f, f).
=0 j=it1 1<t<T+1

By Assumption |V.5.2] - Sup1S1§T+1 dp(@F1,1)] < oo, hence by the ergodic theorem, up to
further reducing the set Q, for all w € Q:

=

lim sup dy(@F(9'w)1,1)=E| sup dy(eFl,1)[<oo

N M A= << T+1 1<7<T+1

Now by the triangle inequality we have, for any f € E:

di(pr (8" w)f, f) <dp(@7r (8" w)f, 7 (3" w)1) + du(p7 (8" w)1,1) +du (1, f).
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Hence, in particular, by our previous results and Lemma applied to the central term
above, we find that for any j € N:

lim 1 sup dy(eF(" T w)f,f) = (V.15)

N—=00 1 | <7<T+1

Here we used that Q is invariant under 9. So if € (O, then also 97w € Q. Now observe
that by Lebesgue dominated convergence, since dy(¢] (w)f, f) € L'(Q) and since 7(-) < 1
as well as lim,_, ]_[]:1 (1 (S w)) =0, Vo € Q, it holds that:

lim IE[]_[T((Pl(SJ )dp (@7 (- ff]

c—00
j=1

Hence fix any ¢ > 0 and choose a deterministic c(¢) € N so that:

c(e)
E|[ et (9 Ddntor11.1)] <.

j=1

Now we use the bound (V.14) together with (V.15) and the ergodic theorem to obtain:

1
limsup— sup dy(@)_; (@)f,f)

n—oo M 1<r<T+1

n—1-c(e)i+c(e)

<limsup— ) | | wloi(8w)dulef(8'w)f. f)

noeon T min
1 n
+limsup — Z sup  dy(eF(Sw)f, f)
n—00 nz n—l—c(s)1<T<T+1

<e.

As ¢ is arbitrarily small we have proven that

1
limsup— sup dy(p) i, (0)f,f)<
n—oco Mi<r<T+1
which is of the required order for (V.13). To complete the proof of (V.13) we are left with
the term containing C(f, 9" w). Once more Assumption together with the ergodic
theorem and Lemma imply that:

]}LI&ElogC(ﬁ w,1,T+1) =0,
thus completing the proof of and hence of point (i) of our theorem.

Step 3. Now, let us pass to the convergence in C* backwards in time, which completes
the proof of point (ii). The proof is analogous to, but simpler than the one we presented
in Step 2. Since in Equation we proved convergence in the || - ||, norm, we now
have to consider the [-], seminorm. Up to replacing T with [T] assume T € N. Then,
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consider n e Nwith T <n-1and -T <t <Tsothatt=-T-1+7t with 1 <7 <2T+1. As
. . _a . .
in (V.11) we define 6 = % €(0,1) and use the interpolation bound of Lemmaw

1-6
(17" (@, 8)=heo (@, 1)=c(, £, h)]a < C(a:ﬁ)(llhf”(w;t)—hoo(w,t)—C(w, t, h(l))lloo) :

0
(10 (@7(5 w1+ 10g (el D]

In view of Equation (V.10) it now suffices to prove that
1
limsup [—log( sup ([log((pf(S_”a))ué)]ﬁ+[log(uoo(a),t))]lg ))] <0. (V.16)
n—oo |1 -T<t<T

Since the [-]3 seminorm is invariant under constant shifts (i.e. [f +Clg = [f]p for any
f: TY SR, C e R) we can rewrite the terms inside the limit as

[log ((pT(S_T_la)) 0@ 1 (87" w)u} )]ﬁ + [log ((pT(S_T_la))uoo(a), —T—l))]ﬁ.

In particular, since (pZ_T_l(S_”w)ué — Ug(w,~T-1) in C(T%) uniformly over ué, there

exists a ¢(w) > 0 such that
Uoo(@,~T-1)(x) > c(®), @™ 7 (8 "w)ul(x) > c(w), YxeT9, neN, u}eC(T?).

By Assumption and Lemma this implies that:

sup [log(us(w,t))]p < oo,

-T<t<T
as well as:
inf inf | inf (87T ) (@] (97" w)ug )(0) 2 E(w),
uleC(Td)n>T+11<7<2T+1 n-T-
xeT?
with

t(w) =c(w)y(d T w,1,2T+1).

Hence, applying again Lemma we obtain:

7 i Lp1+1
L+ [pe(8 T w) o oF 7y (8 ”a))ué]ﬁ]

c(w)

[log ((PT(S_T_l w)O(pZ—T—l (9—”a))u(l) )]ﬁ <

_(1+CB T w01, 2T + Dl (9" w)ullo |
) &(w)

7

< 1+ C(ﬂ; S_T—la), 1, 2T + 1)M(w) [pl+1

with M(w) = sup,, |97 ;_; (97" @)ulle < oo in view of (V.10). All the calculations so far
show that we can bound both terms in (V.16) uniformly over n. So (V.16)) is proven, and
this concludes the proof of (ii). O
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V.6 Examples

We treat two prototypical examples, which show the range of applicability of the previ-
ous results. First, we consider the KPZ equation driven by a noise that is fractional in
time but smooth in space. In a second example, we consider the KPZ equation driven by
space-time white noise.

V.6.1 KPZ driven by fractional noise

Fix a Hurst parameter H € (%,1) and consider the noise #(t,x) = £H(t)V(x) for some
V € C®(T) and where &£¥(t) = 9, (t) for a fractional Brownian motion S of Hurst
parameter H. We restrict to H > % because the case H = % is identical to the setting in
[Sin91]], while for H < % one encounters difficulties with fractional stochastic calculus
that lie beyond the scopes of this work. For convenience, we let us define the noise
&M via its spectral covariance function, see [PT00, Section 3], namely as the Gaussian
process indexed by functions f: R — R such that fR |t|'=2H|f (1) dt < oo (with f being
the temporal Fourier transform), with covariance:

I'(2H+1)sin(tH)

E[£(£)e )] = eu [ [l fgmdr, o= I (va7)

For the statement of the following lemma, recall the definition of H(R) given in (V.5).

Lemma V.6.1. Fixany H € (%, 1), a<H-1,a> % Let EH be the Gaussian process as defined
by (V17). Then, almost surely &M takes values in H(R). Next, define Qup,, = HZ(R) and
F = B(HS(R)) and let P be the law of EH on Qyp,- Furthermore, let {9%},c7 be the integer
translation group, which acts on smooth functions ¢ € .#(R) by:

Sp(t)=@(t+z), VYteR,
and which is extended by duality to all distributions w € Qyp,:
(*w, @) =(w,¥ %), Ype.sR).

Then the space (Qyp,, 7, P, ) forms an ergodic IDS. In addition, up to modifying EH ona
S—invariant null-set Ny, for any w € Qy,, there exists a B (w) € Cfgc’l (R) with:

EH(w) = 9,1 (w) in the sense of distributions, ﬁ(l){(a)) =0.
Moreover, (BH),s¢ has the law of a fractional Brownian motion of parameter H.

Proof. To show that £ takes values in HY almost surely, observe that:

B ey = ) 22VEIAEC/N 2w

j>-1
Then one can bound:
1
E ||Ang<-)/<->a||§2] = LWE[|A]£H<t>|2]dt <a stxellgm[mjeH(t)lz]

_ CHJ |T|1_2Hpj2(’[)d’[ < 2j201-H),
R
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where in the first line we used that 2a > 1. In the second line, we used that for j > 0
oi(-) = p(277-) for a function p with support in an annulus (i.e. a set of the form .o = {t :
A <|t| < B} for some 0 < A < B). This provides the required regularity estimate:

IE”(SH”%I;Y(R) < 0.

The ergodicity is a consequence of the criterion in Proposition [V.7.1|with B = HY(R),
provided that we can verify condition on the covariances. Observe that HY(R) is
a separable Banach space with dual (H¢(R))* = HZ%(R) (this result follows with the same
calculations of [Tril0, Theorem 2.11.2] for the unweighted case, see also the discussion in
[Tril0} Section 7.2]), and that the space .’(R) of Schwartz functions, i.e. smooth functions
with polynomial decay at infinity of any order, is dense in Hf (R) for any value of g € R
and b > 0 (see [Tril0, Remark 7.2.2]).

In view of these facts, and since we have shown that IE||€H||123 < 00, by condition of
Proposition [V.7.1]it suffices to prove that for any ¢, ¢’ € .7 (R):

lim Cov((&™, ), (8", ")) = 0.

Here we can compute as follows:

lim Cov((€™, ), (8"¢", ) = lim | Jol' 2Me o) (r)de
n—-00 n—-oo R
=0.
To obtain the last line we made use of the Riemann-Lebesgue lemma, since f(t) = |7|!72" ¢
satisfies f € L'(R). In fact, f is integrable near T = 0 because H € (1/2,1) while f(t) decays
polynomially fast for T — +oo since ¢, ¢’ € .”(R). Hence, ergodicity is proven.
Now, one can define the primitive g (w) through

B =&(194), in L*(P),

so that following [PT00, Section 3] (B5),5( has the law of a fractional Brownian motion.
In particular, almost surely, the process f(w) has the required regularity. The null-
set Ny on which the result does not hold can be chosen to be 9—invariant, by defining
Ny = U,z 9°N. Then one can set £ = 0 on Nj.

O

The next step is to show wellposedness of the SPDE:
(94=02)u(t,x) = EX()V (x)u(t, x), u(0,x) = up(x), (t,x) e R, xT. (V.18)

We will work pathwise: since our noise is sufficiently regular, i.e. H > % we can use
Young integrals to make sense of the solution (for H = %, we would need It integration
instead). We will use the following result:

Lemma V.6.2. For any a, 8, T > 0 such that a + > 1 and f € C*([0,T]), g € CP([0, T]) one
can define the Young integral

t
Ifg) = L £(s)dg(s).

P\t
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The map . is continuous between the spaces:
7 C%([0,T])x CE([0, T]) — CP([0,T)),

satisfying the bound
17 (f, 9llceqo,ry) < Nf llcaqo,mpligllcs (o, 1))-
If g € CY([0, T)) the integral coincides with

t
Ifg) = fo £(5)95g(s)ds.

An instructive proof of this result is given in [FV11], Proposition 6.11] (for é—variation
spaces instead of Holder spaces), or in [FH20|, Chapter 4].
Definition V.6.3. Consider H € (%, 1) and let P, be the periodic heat semigroup:

P =) tamey [ e

zeZ

Fix w € Qyyp,, and EH as in Lemma We say that u: Qyp, xR, xT — Ris a mild solution
to Equation (V.18)) if for any a < H and S > 0
s> P_[u(w,s,-)V(-)](x) € C*([S, t]), Vt>S,xeT

and if u satisfies:

u(w, t,x) =P_gu(w,S)(x) + J-St P_[u(w,s,-)V(-)](x) d/if(a)), Vt=S, xeT, (v.19)

lim u(w,S,) = (), in C~Y(T), VC>0,

where, since the time regularities & < H of the integrand and a’ < H of t — B (w) can be
chosen so that a+a’ > 1, because H € (1/2,1), the integral in (V.19) is well-defined as a Young

integral: see Lemma

We can now prove the following result.

Lemma V.6.4. Consider H € (%, 1) and Qkpz,cfH as in Lemma For all w € Qyp,, for
every ug € C(T) there exists a unique mild solution u to Equation (V.18 such that for any
a<H,keN,0<S<T<oco:

(t,x) = Xu(w, t,x) € C¥([S, T]x T).
Moreover, the solution u can be represented as:
u(w,t,x) = eX(“”t’x)w(a), t,x),
with ,
X(w, t,x) :I P_ V(x)dpH(w), (V.20)
and w a solution to ’
(9,=2)w(t, x) = 20, X (t, %) w(t, x) + (0, X)*(t, x)w(t, x), (v.21)
w(0,x) = up(x).

The solution map (@;(w)ug)(x) := u(w, t,x) defines a continuous linear RDS on C(T).
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Proof. Let us fix any w € (). Since all the following arguments work pathwise, we will
henceforth omit writing the dependence on w. To solve Equation (V.18), observe that
(s,x) = P,_;V(x) € C®([0,t] x T), since V is smooth. We can then use Lemma to
define X(t,x) by Equation (V.20), so that formally X(t,x) solves:

(=02 X(t,x) = EH(t)V(x),  X(0,x)=0,  Y(t,x)eR, xT.

We will require a bound on the temporal regularity of X. To this end, let us write by
integration by parts

X(t,x) = —fot BH(P_02V)(x)ds + V(x)pf,

so that taking spatial derivatives in the above representation we obtain the following
regularity:
(t,x) > X X(t,x) € C*([0, T] x T) (V.22)

for any a € (%,H), T >0,k € Ng. We also observe that for any other path f € C*([0, T];R),
by Lemma (taking smooth approximations of g and using the continuity of the
Young integral)

t t t
jﬂdX(s,x):J ﬂ&ﬁX(s,x)ds+f f.V(x)dpE. (V.23)
0 0 0

Now, as a consequence of Lemma there exists a unique mild solution w to Equa-
tion (V.21)) and the same result implies that the solution w satisfies:

(t,x) > Pw(w, t,x) € CL ((0,T]xT), (V.24)

for any T > 0,k € N. At this point, let us define u as u = eXw. For any fixed S > 0

we find that, by the chain rule (which holds in view of Lemma by taking smooth
approximations of the integrand and integrator)

t t

e w(s, x)dX (s, x) + J X Mw(s, x)dw(s, x)ds
s

u(t,x)=u(S,x) +J
S

=u(S,x)+ jt d%u(s,x)ds +f u(s,x)V(x)dpH,
S S

where we used (V.23) and (V.21). Now by (V.22) and (V.24)

(t,x) — dXu(t,x) e C¥([S, T] x T)

for any k e Ng,a € (%,H) and 0 < S < T. In particular, we find that

(5,x) > P [u(s, ) V()](x) € C¥([S,t]xT), YO0<S<t ac (%,H).

Then we can define u via the Young integral:

t

7(t,%) =Pt_su<s,x>+f Py [u(s, )V ())(x) dBP.

S
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An application of the chain rule show that u - is a smooth solution to (d; —d2)(u—1) = 0,
and hence u = u. To conclude that u satisfies Equation (V.19) we need that

lim u(S,) =ug, in C~Y(T), VT >0,

which follows since limg_,yw(S,-) = uy. Conversely, one can follow the steps of this proof

backwards to find that every mild solution is of the required form u = eXw.

Finally, Lemma also implies that the solution map is, for fixed t > 0, an element
of Z(C(T)). To conclude we have to show that the cocycle property holds for ¢, namely
that for n € Ng:

Pran(@)g = @i (8" w) 0 @, (w)u.
First observe that X;,,(w) - P,X,(w) = X;(3"w). Hence, recalling the decomposition of ¢:

Xr(S"w)( P Xy(w)

e

Pran(w)ug =e Wi (W),

so that the cocycle property is proven since one can check that w;(w) = "Xy, (w)
solves Equation (V.21) with X(w) replaced by X(9"w) and w( = ¢;(w)uy. O

We can now prove that Equation (V.18 falls in the framework of the theory developed
in the previous sections.

Proposition V.6.5. The RDS ¢ introduced in Lemma satisfies, for any p > 0, As-
sumption In particular, for all w € Qyyp,, for any ug € C(T),ug > 0, the function
t > log (@ (w)ug) =: hy(w) is the unique mild solution to

(94=02)h(w, t,x) = (h(w, t,x))> + V(x)ET (w, 1),  h(w,0,x) =log (ug(x)), (V.25)
meaning that for any « <H,k e N,0< S < T < oo:
(t,x) > Fh(w, t,x) € C¥((S,T) xT)

and forall 0 <S<t, C>0and xeT:

hw,£,) = Pr_sh(w, S)(x) + L P [(9yh(w,9)?](x)ds + L B VI(x)dpH,

lim h(w,S,) =ho(-) in ct.

Such solution satisfies all the results of Theorem

Proof. Let us fix w € Qyyp, and to lighten the notation we will henceforth not write ex-
plicitly the dependence on it. The first step is to prove that for such w, points (i) — (iii)
of Assumption are satisfied. Let us start with the kernel representation. Formally,
one can write:

K(t2,9) = 91(6,)(x). (V.26)

This can be made rigorous, if one can start Equation (V.18) in o,. In Lemma we
show that that for any y > 0, {0,}yer C BI’;;O, and ||6, — 53’”37 < |x—v|”. In addition, by
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Lemma|V.6.4{the solution @,u, = eXtw,;, where X(t,x) = Jot P,_[V](x)dBH does not depend
on uy and w is the solution to:

(0y — PP)w =20, X w + (9, X)*w, w(0) = uy.

As the coefficients (d,X)? and 9, X are smooth in space and continuous in time, Lemmam
implies that the equation for w can be started also in ug = 6,. Let us denote with w* such
solution. The same Lemma|V.8.1]implies the following bound, for any 1 €[0,2), t €[S, T]
and some g > 0:

L)+l k
¥ (8, ) = w*(t, gy < 18, — 8ol eSS TIIEc suPosear 22X (@)le)

We can choose 7, ¥ so that 11 — > 1. In this case, by Besov embeddings
¥ (1) = (6, Meqra < 0¥ () = w6 Mot = Y (8, = w6, )y

< I (1) w8, -

Hence K in Equation (V.26) is rigorously defined as K(t,x,v) = eX(t*)w?(t,x). In particu-
lar, putting together the previous bounds, we have that

sup 1K () = Kt 2)lles < [y — 217 eCETIIHELS supocyer 05X (@)leo)”

S<t<T
which implies that for any t > 0,K(t) € C(T x T). That K is a fundamental solution for
the PDE follows by linearity, thus concluding the proof of (i) in Assumption The
fact that K is strictly positive, as required in point (ii) of the assumptions is instead
the consequence of a strong maximum principle (cf. [Lie96, Theorem 2.7]) applied to
w, since eX > 0. The smoothing effect of point (iii) in Assumption follows again
from the representation ¢;u, = eXtw, and spatial smoothness of both X and w we already
showed in the proof of Lemma In particular, the smoothing effect can be made
quantitative, via the estimate of Lemma to obtain that for 0 < S < T < oo there
exists constants C(S,T),q > 0 such that:

LBI+1 k
sup [lpy(@)ugllcs < lligllooe ST suPoccr Il

S<t<T

Note that at first Lemma allows to regularize at most by 1 < 2, but splitting the
interval [0, S] into small pieces and applying iteratively the result on every piece provides
the result for arbitrary . Now observe that in view of (V.20) for any k € N:

t
14X (1, 2)] = UO P ["V](x)dpl

S lIs - P[5 VI@)llceqo,plls = B lce(o,r)-

for any a € (%,H), as an application of Lemma Since s > P [d,V](x) is smooth
(since V is smooth), we have obtained:

sup 195X (t)lleo < C(T, V)BT llce (0,7

0<t<T
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Now, for any g > 0
ElI87 1o,

«([0,T]) < oo.

This follows from Kolmogorov’s continuity criterion, or via calculations similar to those
in Lemma (note that we show 1E||£H||H;x < oo, but the similar calculations show that
IElléHlqua,a < 00, for any g > 0). We can conclude that:

LBJ+1
Z E sup [|0°X,| < oo,

ko] 0st<T

thus proving the first average bound of point (iv) in Assumption[V.5.2} As for the second
bound, in view of Lemma one has:

du(pf (w)f, f) < llog (pi(w)f) - 10gJ-T(§0t(w)f)(X) dx|e +|log f —logJ-Tf(X)Glxllc>o

< [Nog (@¢(@) f)lleo + 1108 f llcos

so that our aim is to bound
E sup [|log(@:f)lle-

S<t<T

On one side, one has the upper bound:

1

1og (1(@)) < 10g |@1(@) o S5 10glf s + {1+ ) sup 195X, (@l

k=0 0=t<T

which is integrable. As for the lower bound, observe that log (p;(w)f) = X;(w)+log w;(w).
One can check that v;(w) = logw;(w) is a solution to the equation:

(9 — %) = 2(3,X) v + (3, X)* + (,v)>,  v(0)=logf. (V.27)

By comparison (cf. [Lie96, Theorem 2.7]), one has: v(t,x) > —||log f|l., Yt > 0,x € T. So
assuming that g > 1, one has overall:

1
lHog (@) ke <71+ (14 sup X (@lo]

=5 0<t o

which is once again integrable. Hence the required assumptions are satisfied and we can

apply Theorem
Finally, that h; satisfies the smoothness assumption and is a mild solution to the KPZ
equation driven by fractional noise follows by the same steps of the proof of Lemma
O

Remark V.6.6. In the same setting as in Proposition for any hl,hg € C(T) the constant
c(w, t,hé,h%) in Theorem can be chosen independent of time.

Proof. Observe that it is sufficient to prove that there exists a constant ¢(w, h, h3) such
that for every w € Q) (for an invariant set Q) of full P-measure) and any T > 0:

limsup 1 log sup |c(w,t, hé, h%)—f(a), h(l), h%)l <[Elog (T((pl ))

n—oco M te[n,n+T]
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As a simple consequence of Theorem one has:

. 1
limsup— sup log|[[T,(hy(w, t)~hy(,t))llo < Elog(t(¢1)),

n—oo M te[nn+T]

for any a > 0, where I, is defined for f € C(T) as Il f = f—ij(x)dx, and without loss
of generality one can choose the constants to be defined as:

c(w, t,h(l),h%) = j hi(w,t,x)—hy(w, t, x)dx.
T

Since by Proposition h; is a solution to the KPZ Equation one has that:
dsc(w, t,hy, hY) = J;&x(hl—hQ)ax(hﬁhz)(a), t,x)dx. (V.28)
Now, (i) of Theorem [V.5.3|implies that:
lim sup% log||dyhy — dxhsllee <O,

n—-oo

. 1
hmsup;logH&xth00 +|19d4h3]le < 0.

n—-oo

Hence we find that: .
limsup— sup log|d;c(w,t, hé,hﬁ)l <0.

n—oco N te[n,n+1]
In particular this implies that there exists a constant ¢(w, h(l), h%) = lim;_, o c(w, t, h(l),h%)
and in addition

[E(w, hy, h3)—c(w, t, by, h3)] < J |0sc(w, s, hd, h3)|ds < e,
t

for some 6 > 0, which proves the required result.

V.6.2 KPZ driven by space-time white noise

In this section we consider the random force # in (V.1) to be space-time white noise & in
one spatial dimension. That is, a Gaussian processes indexed by functions in L>(R x T)
such that:

Elein)eo)] = | fngtndrx (v.29)

RxT
For the next result recall the definition of HY (R x T) from (V.4).

Lemma V.6.7. Fix any a < -1 and a > %. Let & be a Gaussian process as defied in (V.29).
Then, almost surely & takes values in HY (R x T). In particular

IE”E”[Z_[g(RxT) < ©oo.
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Next, define Oy, = Hi (RxT), # = Z(H; (RxT)) and let IP be the law of & on Q. Further-
more, let {9%},c7 be the integer translation group, which acts on smooth functions ¢ € .(RxT)

by:
Sp(t,x)=@(t+zx), VY (t,x)eRxT,

and which is extended by duality to all distributions w € Qyp,:
*w, @) =(w,9*p), Y pe.S(RxT).
Then the space (Qyp,, F, P, 9) forms an ergodic IDS.

Proof. We start by showing that £ takes values in HY (R x T) almost surely. By definition:

Bl = ) 2°TEIA;EC ) iz,

j=-1
and for the latter one has:

a2 | — 1 2 2
E{IIAE()/¢) ||Lz] = jm Wm[mg(t,xn |dtdx <, (t’;ggﬂm[mjé(t,x» ]

= J | Zroer0;l* (£, x)dt dx ~ ZJ 07 (k, v)dt 5 2%,
RxT kez VR

where we used that 2a > 1 and that for j > 0 g;(-) = 0(277-) for a function p with support
in an annulus. We can conclude that

IE”é“[z{g(RXT) < oo.

The last step in the proof is to show ergodicity of the IDS. Here we apply Proposi-
tion so we have to check that condition (V.36). We have proven that IE||£||12LI;, < 00,
and (as in the proof of Lemma let us note that (HY(R x T))* = H,%(R x T) and
< (RxT) is dense in Hbﬁ(R x T) for every g € R,b > 0. Hence we can deduce ergodicity
from the simplified criterion (V.37), namely we have to prove that for ¢, ¢’ € /(R x T):

lim Cov({&, @), {(8"&,¢")) = lim p(t,x)@'(t—n,x)dtdx =0,
n—oo n—oo RxT
which is true because of the rapid decay at infinity of ¢, ¢’. This concludes the proof. [

Now we will consider h,u the respective solutions to the KPZ and stochastic heat
equation driven by space-time white noise:

(0=0%)h = (I h)*+E—c0, h(0,x) = ho(x),  (t,x) eR, xT, (V.30)
(0—0%)u = u(E-o), u(0,x) =up(x),  (t,x)€eR, xT, (V.31)

in the sense of [GP17, Theorem 6.15]. Here the presence of the infinity “co” indicates
the necessity of renormalisation to make sense of the solution. Well posedness of the
stochastic heat equation can be proven also with martingale techniques, which
do not provide a solution theory for the KPZ equation, though. Instead, here we make
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use of pathwise approaches to solving the above equations [Hail3| [Hail4) [GIP15]], that
require tools such as regularity structures or paracontrolled distributions. The main
reference for us will be [GP17]], which provides both a comprehensible introduction (see
for example Chapter 3) to the tools available in paracontrolled analysis. Such theories
consider smooth approximations &, of the noise &, for which the equations are well-
posed, and study the convergence of the solutions as ¢ — 0. The renormalisation can then
be understood as a Stratonovich-Ito correction term. We refer to the mentioned works as
pathwise approaches, since they are completely deterministic, given the realization of the
noise and some functionals thereof. These functionals are collected in a random variable
called the enhanced noise Y(w).

In Lemmal[V.8.3|we recall the construction of the enhanced noise and record its trans-
formation under 9%. Lemma|V.8.3|together with the existing solution theory for the equa-
tion guarantee that the solution map forms a random dynamical system. This is the con-
tent of the following result, which stands in analogy to Lemma|[V.6.4|for fractional noise.

Lemma V.6.8. Consider (Qyp,,-#,P) as in Lemma Then for every w € Qyp, and
uy € C(T) there exists a unique solution u to Equation in the sense of [GP17, Theorem
6.15], associated to the enhanced noise Y(w) as in Lemma In addition, the solution map
@i(w)ug = uy defines a continuous linear RDS on C(T).

Proof. Fix w € Q. The existence result [GP17, Theorem 6.15] builds a unique solution
that depends continuously on the initial condition and the enhanced noise Y(w), and is
linear with respect to the initial condition. What is left to show is that the solution map
satisfies the cocycle property: @,,,+(w)ug = @;(9"w) o @, (w)uy. From [GP17, Theorem 4.5]
(see the arguments that precede the theorem for a proof), the solution ¢;,,(w)uy can be
represented as:

v X
(Pt+n(w)u0 = er+"(“’)+Yt+n(w)+2Yt+n (a))wP,

where the terms inside the exponential are recalled in Lemma and with w” solving
(9,-9)wP = zx[(at—a,%)(yYy Y @YY 0 Y 00 xT) (V.32)
1A YA Y Y (2, )2 (w)wh + 20,(Y YT +Y ) (w)dw?,
wh(0) = e V(@)
in the paracontrolled sense of [GP17, Theorem 6.15]. Now one can use Equation

of Lemma to obtain:

n 2 n Y/ n,o\__
Y YT (@027, (") ()

(Pt+n(a)) =
where

— v G
wf(w) = ePtYn (w)+2PtYn (w)wf+71(w)'

Snw)

In turn, W' (w) satisfies wg(a)) = ¢ "0 ®) g (w)uy and a formal calculation that can be

made rigorous using the solution theory of [GP17, Theorem 6.15] can be seen to satisfy
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Equation (V.32) with @ replaced be 8"w and initial condition e~ 0" ® ¢, (w)uy. So the
cocycle property is satisfied and the proof concluded. O]

The RDS ¢ introduced in the previous lemma falls into the framework of Section[V.5]
To prove this, we follow the same approach of Proposition which addresses the
fractional noise case. First, we will construct the random kernel K(w, t,x,y) for the solu-
tion map ¢,(w). Here the key point is to use results from [GP17] to start Equation
in ug(x) = d,(x). Then points (i) - (iii) of Assumptionfollow by treating as a
pathwise perturbation of the heat equation: these results have been already established,
see e.g. [CFG17]. The most challenging part of the proof is to prove the moments bounds
of point (iv) of Assumption As in Proposition the proof of these bounds re-

2@y, (w), where Z, is a functional of

lies on an appropriate decomposition ¢;(w)ug = e
the noise, together with a lower bound on w; (first established in [PR19a]), which is the

consequence of a comparison principle.

Proposition V.6.9. The RDS ¢ be defined as in Lemma satisfies Assumption |V.5.2| for
any p < % In particular, the results of Theorem apply.

Proof. Fix w € Qyp,. Let us start by checking the first property of Assumption We
can define the kernel by K(w, t,x,9) = ¢;(w)(6,)(x), where 9, indicates a Dirac 6 centered
at y. Here @y(w)(d,) is the solution to with 1y = 6,. This solution exists in view
of [GP17, Theorem 6.15]: in fact, this result shows that for any 0 < ,C < %, and any
p €[1, 0] the solution map ¢(w) can be extended to a map

@(®) € Cloe((0,00);.Z(By o3 Bh o0)),

where we used that, in the language of [GP17], the space 9:;:5’5 of paracontrolled distri-

butions, in which the solution lives, embeds in Cloc((O,oo);Bg,oo), for suitable values of 6

as described in the quoted theorem. Near ¢ = 0 one expects that [|¢;(w)uoll,s blows up,
p,00

if ug e B;EX,. The exact speed of this blow-up is provided as well in the theorem, but since
we are not interested in quantifying the blow-up, we can exploit the result we wrote to
deduce the apparently stronger:

P(@) € Cloc((0, 00);Z(Bya; CF)). (V.33)

(1-4)

—d
This follows by Besov embedding: for p < g: B“’oo(Td) c BZ,OO (T?). Assuming without

loss of generality that 8,C > %, uniformly over 0 < S <t < T < oo one can bound:

llpruollcs < llsouollc-c Sll@ssatollgs < llpssauollg-c < llsamollys < Muollgc -
BZ,oo 2,00 Bl,oo p,co
So overall we obtain (V.33), and in particular:

sup ||g(@)ugllcs < C(w, B,C,p, S, T)HMOHB;EO’ forany 0<S<T < co. (V.34)
S<t<T ’

Now since {0, }yer C BIC for any C > 0, as proven in Lemma the kernel K(w, t,x,7v)
is well-defined. The continuity in t,x follows from the previous estimates, while the

continuity in y follows from (V.34) together with Lemma



176 V. SYNCHRONIZATION FOR KPZ

We can pass to the second property of Assumption The upper bound 6(w, S, T)
is a consequence of the continuity of the kernel K. The lower bound y(w, S, T) is instead
a consequence of a strong maximum principle which, implies that K(w,t,x,v) > 0,Vt >
0,x,y € T. In this pathwise setting, the strong maximum principle is proven in [CFG17,
Theorem 5.1] (it was previously established in [Mue91] with probabilistic techniques).

The third property is a consequence of Equation (V.34), by defining C(w,f,S,T) :=
Clw, B, %,oo,S, T), so we are left with only the last property to check. We start with the
fact that

[ElogC(B,S,T) < co.
To see this, observe that there exists some deterministic A(8,S,T),q > 1 such that:
A(B,S,T)1+|IY(w

sup [l (w)fllg<e

Moo ") £11 (V.35)
te[S,T] ¢t

that is we can choose C(w,8,S,T):

Clw, B, S, T) = ST, )1

Inequality is implicit in the proof of [GP17, Theorem 6.15], since the proof relies
on a Picard iteration and a Gronwall argument. The bound can be found explicitly in
[PR19al Theorem 5.5 and Section 5.2]: here the equation in set on the entire line R,
which is a more general setting, since one can always extend the noise periodically. Thus
we have ElogC(B,S,T) <gs,r 1+ IE[llYllZ%(PZ , so that the result is proven if one shows that
for any g > 0: 1E||Y||Zykpz < 00, which is the content of [GP17|, Theorem 9.3].

We then pass to the second bound. Since by the triangle inequality the bound does
not depend on the choice of f, set f = 1. It is thus enough to prove that:

E sup |log (;(@)1)]l < co.
S<t<T

We proceed as in the proof of Proposition On one side one has the upper bound:

10g<(Pt(a))1) < log”(Pt<w)1”OO < logc(w: ﬁ; Sr T);

which is integrable by the arguments we just presented. As for the lower bound, the
approach of Proposition has to be adapted to the present singular setting. One
way to perform a similar calculation has been already developed [PR19a, Lemma 3.10].
We sketch again the argument here for clarity, assuming that the elements of Y(w) are
smooth. We will eventually refer to the appropriate well posedness results to complete

\;
the proof. Recall that ¢;(w)ug = eYr(@)+Y)T (@)+2Y, (@)yP where w? solves Equation (V.32).
Then define:

BY) = 2(0,Y + .Y +9,Y")
c(Y) = 4[(9t—9,2c)(YY<’ YY) 10,2, Y -0, Y 00, Y )+ 9, Y 9, Y (9, Y 7)2].
Assuming that b(Y),c(Y) are smooth one sees that h” = logw?” solves:

(9,=02)hY = b(Y)dhE +c(Y)+ (d.hF)%,  KhP(0) =logw?(0).
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By comparison, h” > —h", with the latter solving:
(9,-92)h" = b(Y)dh' —c(Y) + (9,h7)%,  KP(0) = —logw”(0).

In particular

W’ > ~logw" > ~log|[w” |,

where w! solves:

(0,02 W’ = b(Y)d,w' —c(Y)w', @' (0)=

Note that with respect to the equation in the proof of [PR19a, Lemma 3.10] some factors
2 are out of place: this is because here we consider the operator 2 instead of %8,2( The
equation for w’ is almost identical to the one for w” and admits a paracontrolled solution
as an application of [PR19al, Proposition 5.6]. In particular the quoted result implies that:

— C(S,T)(1+[Yll; )T
Sup ||wt||oo <e ( )( +|| ||’7/kpz) ,

S<t<T

for some C,7 > 1. Since ||Vl + V¥ llo + 1Y ¥ lloo < [1Yll5,, one has overall that:

log @y (w)1 25,7 =1 = IIYIl} .

Together with the previous results and the moment bound on E||Y||9 we already recalled,
this proves that:

E sup dy(p;-f,f) <oo.
S<t<T

Hence the proof is complete.
O

Remark V.6.10. As an alternative to our proof of a lower bound to h; = log @,(w)uy, it seems
possible to use an optimal control representation of h, see [GP17, Theorem 7.13]. Both ap-
proaches rely crucially on the pathwise solution theory for the KPZ equation.

Remark V.6.11. In the previous proposition we have proven that we can apply Theorem
The latter guarantees synchronization up to subtracting time-dependent constants c(w,t). In
fact it seems possible to choose c(w,t) = ¢(w) for a time-independent ¢(w). For fractional noise
we could show this in Remark[V.6.6} but in the argument we made use of the spatial smoothness
of the noise to write an ODE for the constant c(w, t): Equation (V.28).

It seems reasonable to expect that the approach of Remark[V.6.6|can be lifted to the space-
time white noise setting by defining the product which appears in the ODE for example in a
paracontrolled way. To complete the argument one would need to control the paracontrolled,
and not only the Holder norms in the convergences of Theorem This appears feasible,
but falls beyond the aims of the present paper.
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V.7 Mixing of Gaussian fields

Let us state a general criterion which ensures that a possibly infinite-dimensional Gaus-
sian field is mixing (and hence ergodic). This is a generalization of a classical result for
one-dimensional processes, cf. [[CES82, Chapter 14]. We indicate with B* the dual of a
Banach space B and write (., -) for the dual pairing.

Proposition V.7.1. Let B be a separable Banach space. Let y be a Gaussian measure on
(B,#(B)) and 9: Ng x B — B a dynamical system which leaves y invariant. Let & be any
random variable with values in B and law p. The condition

lim Cov({&, @), (8"&,¢")) =0, Yo,p’ €B* (V.36)
n—-oo
implies that the system is mixing, that is for all A,B € %(B):
lim u(AN37"B) = u(A)u(B).
n—oo

If in addition y satisfies that

E[[I£][5] < oo,
and S C B* is a dense subset then
lim Cov({&, @), (3", ¢)) =0, Yo,p' €8S (V.37)
n—o00

implies condition (V.36).

Proof. First, we reduce ourselves to the finite-dimensional case. Indeed, note that the
sequence {9"&}, N is tight in B, because 9 leaves y invariant. Tightness implies that the
sequence is flatly concentrated (cf. [dA70, Theorem 2.1 and Definition 2.1]), that is for
every ¢ > 0 there exists a finite-dimensional linear space S¢ C B such that:

P(8"E €S )21-¢,  VneN,
which in turn implies that
P((£,9"8) €S xS) 2 1-2¢,  VneN.

Hence, it is sufficient to check the mixing property for all A, B € #(S¢) and € > 0. In fact,
assuming the property holds in S¢, then for general A, B € #(B) we have for any € > 0

[WANST"B)—u((ANS)N(S"BNSY)| < ¢
[W(ANST) —pA)l < e,

so that for any € > 0 and some C > 0:

| lim u(AN 87"B) - u(A)u(B) < Ce,

n—00

which proves the claim.
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This means that there exists an n € N and ¢; € B* for i = 1,...,n such that we have to
check the mixing property for the vector:

(& Pi))i=1,.n ((8"E @i))iz1,..n)-

In this setting and in view of our assumptions the result on the mixing property follows
from [FS13| Theorem 2.3].

Finally, we have to prove that if E||&||2 < co, then it suffices to check condition
for ¢, ¢’ € S. Indeed take any 1,1p" € B*. Since S is dense, consider for any ¢ € (0,1) a pair
Qe, @, € S such that

1 = @ellg: + 114" - @l <.
Then define M > 0 by

M = sup ([l@ellp- + ll¢ll) < co.
€€(0,1)

We can bound, for every n € N:

[Cov({&, ), ("E, 9")—Cov({E, @e), (3"E, o))
< IEKé’ 110 - (P€> : <8n51 11[/’>| + 1E|<(E, (PS>’ <‘9né—’ l)b’ - (Pé>)|
elly’llg-EllE sl EllB + ellpells-EllE s 19" Ellp

<
<e-2M-E|E|3.

In particular, since by assumption ¢,, ¢, satisfy condition (V.37), we have proven that:

limsup|Cov((E, ), (8", ")) < e - 2M - E||E||3.

n—-oo

As ¢ is arbitrary this proves that condition (V.36) is true. O

V.8 Some analytic results

Lemma V.8.1. Let P, be the heat semigroup. One can estimate, for « € R, €[0,2),p € [1,00]
and any T > 0:

B
sup t2[|Pf || pasp gy S 1 fllBa (e)-
0<t<T f B0 (T4) B0 (T)

If one additionally chooses b € L®([0, T]; Blo,oo(T%;R%)), c € L™([0, T]; Bl 0o(T%)), such that:
C=yANa+p, y+C-1>0, p=1
there exists a unique mild solution w to:
(di = A)w(t,x) = b(t,x) - Vw(t,x) + c(t, x)w(t, x), w(0,x) = wo(x),

meaning that
t

w(t,x) = Pwo(x) + J P,_s[b(s) - Vw(s) + c(s)w(s)](x)ds.
0

Moreover, there exists a ¢ > 0 and C(T) > 0 such that:

£ C(T)A+1bl oo p1.57 el oo o r157. )
sup tz”“’t”Bﬁ,w S||wo||B;;,me L([0,T];BLo,00) L[0T B c0)

0<t<T
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Proof. The estimate regarding the heat kernel is classical. For a reference from the field
of singular SPDEs see [GIP15, Lemma A.7]. Let us pass to the PDE. Here consider

B
any w such that M := sup, ;.7 t2[[wllzz < oo, and let N := Sup0<t<T{”bt”B7’ o
- p,e = = 00,00 >
||Ct||3gm(1~d)}. Then consider:

t

,ﬂ(w)t = thO + f

Pt_s[bs -Vw; + csws] ds.
0

It follows from the smoothing effect of the heat kernel that:

t
B B _B
sup (1.7 (w)lly < lwollgy. + sup tZJ (t—s) z(||bs-ws||3<c,m,+||c5w5||BcAy) ds
0<t<T P 0<t<T 0 pre proo

Now from our condition on the coefficient and estimates on products of distributions (see
[BCD11), Theorem 2.82 and 2.85]) the latter term can in turn be bounded by:

t
B B B _B
sup tfll,ﬂ(w)tlchm < |w0||33m +MN sup tZJ (t—s)"2s 2ds
0<t<T b 0<t<T 0

B
S llwollg,, + MNT' "2,

It follows that for small T > 0 the map .# is a contraction providing the existence of
solutions for small times. By linearity and a Gronwall-type argument, this estimate also
provides the required a-priori bound. O]

Lemma V.8.2. For any y > 0, the inclusion {0y} ere C BIZO holds. Moreover, there exists an
L > 0 such that:
6= 3yll5 < Llx =31

Proof. We divide the proof in two steps. Recall that by definition we have to bound
supjs_ 2’7’j||A]-(6x—6y)||L1. Hence we choose jj as the smallest integer such that 2700 < |x—
y|. We first look at small scales j > j, and then at large scales j < j,. For small scales, by the
Poisson summation formula, since p;(k) = 00(277k), and by defining Kj(x) = ﬂ’ﬁlp]-(x) =
2/K(2/x) for some K € .(R) (the space of tempered distributions):

2771|885 = 8y)| 1 < |x—yIVJ 2K (2 (z - x)) - K(2/(z - v))|dz
R
<|x —Wj 2K (2/z)|dz < |x —v)?.
R

While for large scales, since we have |2/(x—y)| < 1, applying the Poisson summation for-
mula, by the mean value theorem and since K € .(R) (the Schwartz space of functions):

27| (8, = 8,)||,, <277 f IK(2) - K(z+2/ (x-p))|dz
K(&)-K(2)

<lx-v|” | max ————=dz<|x—v|".
e g2 g

The result follows.
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Lemma V.8.3. Fix any a < 5. Consider the space
@kpz C CIOC([OIOO); CD( % CZO( % Ca+1 % CZDH—l x CZOH—] % C2a—1)’

with the norm ”'”o]kpz as in [GP17, Definition 4.1]. There exists a random variable Y: Qyp,, —
Phepz which coincides almost surely with the random variable constructed in [GP17, Theorem

9.3] and is given by:
V(@) = (V@) Y7 (@), Y (@), Y (@), Y7 (0),0,2 © 0,V (@)
where the latter solve (formally):
(9= 3)Y =TL&,
(9= 9" = (9,Y)* oo,
(0, - )Y =a9,Ya,Y",
@, - " 2a.¥" ©a,Y —co,
(=Y =(9,Y" )2~ oo
(0, -3 P =0,Y.

HereIl, f = f—ff(x) dxand f©g =) ji_j<1 AifA;g is the resonant product between two dis-
tributions (which is a-priori ill-defined). Finally, the presence of infinity indicates the necessity
of Wick renormalisation, in the sense of [GP17, Theorem 9.3]. Y is started in invariance, that

1S:

t
Yt = j Pt_snxé dS,

(ee]

while all other elements are started in Y*(0) = 0. In particular Y changes as follows under the
action of 9", for n € No,t > 0, w € Oy,

Y(8"0) = (Yo Vi P Y, Y, - BY,,
(V.38)

Yf—ifn_PtY\% Y;Yn_PtYy’ax(yﬁn_Pt@n)@ax(YHn_PtYn))(w)'

n ’
Proof. The only point that requires a proof is the action of the translation operator. By
taking into account the initial conditions and using [GP17), Theorem 9.3], Equation (V.38)
holds for fixed n, for all w ¢ N,, and all t > 0, for a given null-set N,, (since the random
variables are constructed in Lz(QkpZ; Ppz))- Considering N = (J,,en N, and setting Y(w) =
0 for w € N, one obtains the result for all w € Qyp,. O

Lemma V.8.4. Consider a sequence {ay}ren of positive (ax > 0) real numbers. Suppose that

n

Sn= %Zak

k=1

converges. Namely, there exists a o € [0, c0) such that

lim S, =o.
n—-oo

Then .
lim —a, = 0.

n—oo 1
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Proof. Since S,, is convergent fix any ¢ > 0 and let n(¢) € N be such that
IS, —Sml<e, Vn,m>n(e).

We can assume, up to taking a larger n(e), that n(e) > £, Now consider n > n(e) + 1. We

can compute

a, 1
MU

non

a, S,.1_4a, o+¢
>__ —_

n n n o+¢

which implies that 2 < 2¢ for all # > n(¢) + 1. Since ¢ is arbitrary this completes the
proof. O

Lemma V.8.5. Consider any p € (0,00), a € (0,B) and let 6 = S € (0,1). Then there exists a
constant C(a, B) > 0 such that for every f € CP:

[fla < Cla PIFISLf ]G

Proof. We start by recalling, for k € {1,...,d}, the one-dimensional Landau-Kolmogorov

=|

inequality (see for example [Kol| or many online resources):

195, lleo < 1flloo ”||9 flloo,

Iterating this inequality one obtains that for any n,/ e Nand k; € {1,...,d}, Vi=1,...,[:

1

1--L 1
||axk1 "'axklf”oo < ||axk2 "'axklf”oo m [f],z:l

I (1_4) v 411(1_4)
i=1 n+i i=1 n+i 11j=1 n
< lflleo U o

Since (both identities can be proven by induction over [):

l
[ 1 1 /
l-——|=1- 1 - . 1- —|=

]_[( n+1) n+l Zn+z, ( n+]) n+l

i=1 i=1 j=1
we have proven that
1-L L

[fli<CLn+Dlfllee ™ [f 15 (V.39)

which is the desired inequality for integer «, . To pass to the fractional case we will first
prove that for § > n,n e N:

l n

a1l [f15- (V.40)
We can further simplify this by considering € (1,2) and proving:

1

194, flle < 211 111
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To obtain this let ¢, be the unit vector in the k—th direction, and consider for h > 0,x € T4,

9, flx)= L7 he}’l‘) SO R, ).

Since

£+ heg) = £ () _
O =0, f ()

for some & € [x,x + hey ] (were [x, x + he] is the line between x and x + hey), we can bound

the rest term by:

IR h)| < sup |0y, f(x) = 9y f(EN <K [f]g.
E€lx,x+hey]
Hence we have

19 flloo < B Iflleo + B[ f 1

1

<2157 1£1]

by setting h = (||f||oo/[f]/3)%. Next, we deduce (V.40) for any > 1 and n = []. Using all
the estimates we already derived:

[Flu S UFlt & [f15 o

(-5 )(1-55r)
— el ﬂﬂﬁ“,
B p—n n-—1 B B

C_l_(ﬁ—n+1)( n )_n(ﬁ—n+1)'

so that the last estimate implies (V.40) for the chosen p and n. To conclude the proof
of (V.40) we have to consider the case > 1,1 <|]. We find that:

1
( ﬂn+1) n

< 1 fllo [f1n 1 i

for

£l sl A1,
_n -8 LB
<Al (071 "1 )"

n

<Ilflle [£1)-

At this point, we can collect all our results to complete the proof. Consider k,n € N such
that @ € [k,k+1) and g € [n,n+1). Of course n > k. Furthermore, define

a' =a-k, g =p-n

Step 1: n = k. Note that one can bound

oFf(x)—o
o= Y sup L2101

e el



184 V. SYNCHRONIZATION FOR KPZ

In fact,if n > 1, f € C%, for every p with |u| = n there exists an x( € T such that 9 f(x) =
0, so that

9 (3) = )

’

10" flloo < sU
f x::g lx —pl@

Hence, using (V.40) we can compute (defining [f ]y = ||f || if 7 = 0):

101 f (x) - O F ()] \
lx —ylF’

1-4
s Y (suplots-ansinl) " (sup
i\ X%V x#Y

’ ’
_a
7

1
SR

N s 07)
-3

<Ilflle 115,

hm\‘a

2

mvi‘

which is the required result.
Step 2: k < n. Here we compute, following the same steps as above:

[fla SUFIY IS

(1-a’) 1-% Ja’(1-K2L (1-a’)k 1okl
SHf”oo ( 13) ( B )[f]ﬁ B B
1-a¢ a
Sliflle " [£15
which completes the proof of the result. O

Lemma V.8.6. Consider a >0 and f € C% with f(x) >0, Vx € T? and def(x)dx =1. Then
defining m(f) = min, g« f(x) one can bound for some C(a) > 0:

la]+1
tog /). < Cle i)

Proof. First, observe that for any multiindex y with |y| = k € N and f sufficiently smooth
we have a decomposition of the form

<pm o i N
og(= Y. PN een )

(V.41)
1<p<k

where A( p.u) C N are finite sets of multiindices such that
A'p,wl<p,  and  AeAl(p,p) =A<

and C(i,p, #) € R are some coefficients (here |A’(p, #)| indicates the cardinality of the set).
One can check by hand that this decomposition holds true if [y| = 1. In addition, assum-



V.8. SOME ANALYTIC RESULTS 185

ing the decomposition holds true for some y € Nd, one has for any i € {1,...,d}

L1 €l ) Macasipuo(@ )0 f
dy, 0 log(f Z -p o

1<p<k

Cpopt) o ,
Zii’i M (i, p, p) Y veAi(pp) ( l_[/\eAf(p,/A)\{/\’}(8/\f))(axi oV f)
+ ’

fP

which is again of the required form. Hence by induction the decomposition holds true

for all p.

To conclude the proof of our result we will now need the following to inequalities. Fix
any a’ € (0,1), f,g € C(T%) as well as any smooth function ¢: % — R, where % C R is an
open set such that f(T¢) C % . Then:

[P(N)ler <suple’(fNflar  [f-8le <Ifllslglar + [flarllgllco- (V.42)

xeT4

Both inequalities are immediate consequences of the definition of the Holder seminorm.
For the first one:

lP(N)x) - eI sup |’ (f (0))I[f la

[¢(f)]ar = sup

x=yeTd |x -yl x€T4
while for the second
If (x) = f@)llg(x)] +]| IS (
gl < sup LSOO = 8GN ON ey o1+ [f1 gl
xzyeTd |x yl

Now we can complete the proof. We find via (V.41) that fora > 1,0’ =a —|a]:

’

C(p,
g /)] < Z Z Z [Maeaiq py (0*f) H [l_[AeA:W (* f]

lul=La)1<p<la] i=
C(ppe)

o

TV i
m(fP " m(fpT

<
lul=La)1<p<la] i=1

where in the last step we used (V.42). Now, since ff(x) dx =1 we have that m(f) < 1. In
addition we have that |A’(p, u)| < |a], so overall we have that:

1+[fla )L“J”
m(f)

which is the required inequality. The case a € (0,1) is much simpler and follows directly
from (V.42). O

J

llog ()] s(
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Appendix A

A.1 Construction of the BRWRE

This section is dedicated to a rigorous construction of the Branching Random Walk in
a Random Environment (BRWRE) of Chapter [[I} For simplicity and without loss of gen-
erality we will work with n = 1. Since the space N%d is harder to deal with and we do
not need it, we consider the countable subspace E = (N%d)o of functions 7: Z¢ — N
with #(x) = 0, except for finitely many x € Z?. We endow E with the distance d(n,n’) =
Y veza In(x)—1’(x)|, under which E is a discrete and hence locally compact separable met-
ric space. Recall the notations from Section Below we will construct the “semidirect
product measure” IP < P¥ on Q x ID([0,+00);E), by which we mean that there exists a
Markov kernel x such that for A ¢ .%#,B C Z(ID([0, +);E)):

P=<IPY(AxB)= f «(w, B)dIP(w). (A.1)
A

By "Markov kernel" we mean a map «: QO x Z(ID([0,00);E)) — [0,1] such that x(w,) is a
probability measure on ID([0, c0); E) for every w € () and

w > k(w,A)
is a measurable map for every A C #A(ID([0, o0); E)).

Lemma A.1.1. Assume that for any w € Q) the potential &(w) is uniformly bounded and
consider © € E. There exists a unique probability measure P! on O = Q x ID([0,+o0); E)
endowed with the product sigma algebra, such that P = P < PY, with PY being the unique
measure on ID([0, +00); E) under which the canonical process u is a Markov jump process with
u(0) = 1t whose generator is given by L% : P(L“) — Cy(E), with

ZLY(F)(n)
= Y e [AF)+ &, OAEF () + & (@, 0 F ()|
x€Z4
where the domain P( L) is the set of functions F € Cy,(E) such that the right-hand side lies in
Cy(E).

Proof. The construction for fixed w € Q) is classical. Indeed, the generator has the form

of [EK86), (4.2.1)], with A(17) = Y .cz4 1x(2d+|&|(w, x)), and we only need to rule out explo-

sions by verifying that almost surely } .y ﬁ = 400, where Y is the associated discrete

187
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time Markov chain. This is the case, since & is bounded and thus

1 1 1
LW LT > ek
with ¢ = ), t(x). It follows that .£“ is the generator associated to the process u. This
allows us to define for fixed w the law k(w,-) of our process on ID([0, +0); E). To construct
the measure P! we have to show that « is a Markov kernel, which amounts to proving
measurability in the w coordinate. But x depends continuously on &, which we can
verify by coupling the processes for & and & through a construction based on Poisson
jumps at rate K > [|€]|o, |I€]leo and then rejecting the jumps if an independent uniform
[0, K] variable is not in [0, |&(x)|] respectively in [0,|&(x)|]. Since £ is measurable in w, also
K is measurable in w. O

Next, we extend the construction to potentials of sub-polynomial growth:

Lemma A.1.2. Let &(w) € N0 L®(Z%;p(a)) for all w € Q and consider 7@ € E. There exists
a unique probability measure Pt = IP < P on Q x ID([0, +00); E) endowed with the product
sigma algebra, where PY is the unique measure on ID([0,+00); E) under which the canonical
process u is a Markov jump process with u(0) = 1 and with generator £ and 9(L®) defined
as in the previous lemma.

Proof. Let us fix w € Q). Consider the Markov jump processes u* started in 7t with gener-
ator 2% associated to £¥(x) = (&(x) Ak)V (=k) whose existence follows from the previous
result. The sequence {u*},cy is tight (this follows as in Lemmaand Corollary
keeping n fixed but letting k vary) and converges weakly to a Markov process u. Indeed,
for k,R € N let T£ be the first time with supp(uk(’[ﬁ)) Z Q(R), where Q(R) is the square of
radius R around the origin, and let 73 be the corresponding exit time for u. Then we get
for all k > max,cq(r)|E(x)|, for all T >0, and all F € Cy(ID([0, T]; E)):

]E%)[F((uk(t))te[o,ﬂ)l{T}gg}] = B [F((u(t))tefo, 7)) L {rp<T} )

where we used that the exit time 7 is continuous because E is a discrete space. Moreover,
from the tightness of {1%}cy it follows that for all £ > 0 and T > 0 there exists R € N with
sup; IP(TIIE < T) < &. This proves the uniqueness in law and that u is the limit (rather
than subsequential limit) of {u*}cn. Similarly we get the Markov property of u from the
Markov property of the {F)ren and from the convergence of the transition functions.

It remains to verify that £“ is the generator of u. But for large enough R we have
P (tg < h) = O(h?) as h — 0%, because on the event {Tz < h} at least two transitions must
have happened (recall that 7 is compactly supported). We can thus compute for any
Fe Cb(E):

B[ F(u(h)] = B2 [F(uf (k)] + O(h?).

The result on the generator then follows from the previous lemma. As before, we now
have constructed a collection of probability measures x(w,-) as the limit of the Markov
kernels x*(w, ). Since measurability is preserved when passing to the limit, this concludes
the proof. O
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A.2 Tightness criteria

We recall two classical tightness criteria.

Proposition A.2.1. [Jak86, Theorem 3.1] Let X be a separable metric space and fix T > 0.
Let F be a family of real, continuous functions on X which separates points and is closed
under addition. Then a sequence of probability measures {IP,},en on ID([0, T]; X) is tight if the
following two conditions are satisfied:

i For each € > 0 there exists a compact set K C X such that

inf IP,(X, €K, ¥t €[0,T]) > 1-¢,
neN
where X; is the canonical process on ID([0, T]; X).

ii For each f € F sequence P, o f~! is tight as a measure on D([0, T|;R).

In the next criterion, the space W*¢([0, T];Y) c L?([0, T]; Y) is defined by the Sobolev-
Slobodeckij norm

T eTlf) - fl%
||f||w2l([o,T];Y)=||f||L2([o,T];Y)+(L J; Wdtdr

Proposition A.2.2 (Corollary 5, [Sim87])). Let X,Y,Z be three Banach spaces such that X C
Y C Z with the embedding X C Y being compact and fix T > 0. Then the following embedding
is compact, for any s > 0:

1/2

LP([0, T]; X)NnW™P([0,T];Z) C LP([0, T]; Y).
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