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a b s t r a c t

Model reduction of large Markov chains is an essential step in a wide array of techniques for
understanding complex systems and for efficiently learning structures from high-dimensional data.
We present a novel aggregation algorithm for compressing such chains that exploits a specific low-
rank structure in the transition matrix which, e.g., is present in metastable systems, among others.
It enables the recovery of the aggregates from a vastly undersampled transition matrix which in
practical applications may gain a speedup of several orders of magnitude over methods that require
the full transition matrix. Moreover, we show that the new technique is robust under perturbation of
the transition matrix. The practical applicability of the new method is demonstrated by identifying a
reduced model for the large-scale traffic flow patterns from real-world taxi trip data.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Large-scale time- and space-discrete Markov chains are ubiq-
itous in many areas of quantitative science, where they arise
s discretizations of continuous models [1–4], as formalization of
etwork-based models [5–7], or as models of many other types
f complex dynamics. However, the number of states in these
arkov chains (denoted in the following by N) can be orders of
agnitude larger than what contemporary computer systems can
rocess, or sometimes even represent. Efficient model reduction
ethods are thus required to enable numerical analysis, predic-

ion and control of these systems, and to gain understanding of
he underlying mechanisms.

Luckily, the essential dynamics of these systems often indeed
ossesses an underlying less complex mechanism that operates
n a significantly smaller state space—one may argue this is
hat makes the system relevant to study in the first place. For
xample, Markov chains arising from discretized biomolecular
ystems often exhibit metastability, the phenomenon that on long
ime scales, the dynamics is determined by rare jumps between
lmost-invariant subsets of states [1,8,9]. Another example are
omplex traffic networks, whose transition matrices often exhibit
low-rank structure, which can be explained by patterns in the

arge-scale traffic flow between neighborhoods of a city [10,11].
The reduced models in these systems arise from the observa-

ion that states can be grouped into certain aggregates based on
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similarities in their dynamic behavior. Under certain conditions,
the reduced models can be shown to again be Markovian, which
is highly favorable due to their simplicity. The developments of
data-driven algorithms for the extraction of the reduced Markov
models is an area of intense activity ever since Markov chains
were studied computationally, a small selection is presented in
Section 2. The output of such algorithms is again a Markov chain,
whose states now correspond to the aggregates.

The identification of these aggregates is typically based on
the analysis of the original system’s transition matrix (denoted
by P in the following) and in most cases requires knowledge of
all entries of this matrix, i.e., global knowledge of the transition
probabilities. As the number of entries of P is N2, for large
ystems, analyzing or even storing P becomes nontrivial. An even
igger problem is that, for many systems, the entries of P must be
pproximated from expensive numerical computations. Typical
xamples are Markov chains arising from the Ulam discretiza-
ion method for space-continuous systems, where the continuous
tate space is partitioned into N discretization elements that form
he states of the Markov chain [12]. The transition probabilities
re then computed by starting many numerical simulations in
ach discretization element and counting the transitions to each
ther element. As the number of states N may depend exponen-
ially on the dimension of the continuous system (a phenomenon
nown as the curse of dimensionality [13]), and the simulation
ay require specialized hard- and software [14], this procedure
uickly becomes prohibitively expensive. Many of the aforemen-
ioned methods acknowledge the difficulty of globally sampling
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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he dynamics, and various solutions have been suggested, in-
luding adaptive sampling [15], accelerated dynamics [16,17] or
tatistical reweighting methods [18,19].
In this work however, we will take a different approach. In-

tead of improving the sampling of global data, we will instead
se the existence of an underlying reduced Markov chain in order
o show that extensive global sampling is not required in the first
lace. To be specific, we discuss two crucial properties that when
ombined guarantee the existence of a reduced Markov chain and
ake this chain recoverable from sparse, i.e., vastly incomplete
ynamical information. Informally, the properties can be written
s follows: (i) The probability to transition from any state to an
ggregate must depend only on the aggregate of the starting state,
nd (ii) the probability to transition from some starting to some
nding state must essentially depend only on the aggregate of the
nding state. Consequently, measuring the transition probabilities
rom and to all states of one aggregate would mostly generate
edundant information. In this case it suffices to measure the
ransition probabilities from only one state of each aggregate in
rder to capture the full dynamic behavior. Hence, the amount
f dynamical information required to describe the full model
epends only on the size of the reduced model, not of the full
odel.
The properties (i) and (ii), called lumpability and deflatability,

nduce a special form of low-rankedness in both the row and
he column space of P . This low-rank structure is robust, in that
mall violations of the two properties cause P to still be close
o a low-rank matrix, and the deviation is again independent of
he full system’s size. Also, lumpability and deflatability, which to
he best of our knowledge have not been investigated together
efore, appear to be the minimal requirement for the described
ow-rank structure. While there exist a number of related con-
epts in the literature, we will see that none of them imply this
tructure in the same generality.
The main contribution of this work is the development of a

robabilistic aggregation algorithm that exploits this low-rank
tructure. To be specific, the algorithm starts by randomly and
parsely sampling the column space of P in order to estimate
he range of P . It therefore is similar in spirit to probabilis-
ic low-rank approximation and matrix decomposition methods
rom randomized linear algebra [20,21]. The number of required
olumns of P hereby depends only on the expected number
f aggregates, as well as a certain ‘‘confidence parameter’’. In
articular, both of these quantities are independent of the size N
f the original model. The algorithm proceeds by computing the
ingular value decomposition (SVD) of the subsampled transition
atrix. This reveals the aggregates, similar to how the SVD of

he (full) transition matrix of a metastable system reveals the
etastable sets [22]. Finally, even the reduced transition matrix
an be computed from the subsampled transition matrix, using
nly elemental algebraic calculations.
In summary, due to its probabilistic nature, the algorithm

s able to exploit the low-rank structure of the full transition
atrix without detailed knowledge of it. This gives our method
computational advantage of several orders of magnitude over
ethods that require the full transition matrix. This advantage
rows with the size of the full Markov chain, as long as the size
f the underlying reduced Markov chain remains constant.
The paper is organized as follows: Section 2 introduces the

equirements of aggregatable Markov chains and discusses the
esulting low-rank structure. Section 3 contains the derivation
f the low-rank algorithm, with the method to identify the ag-
regates in Section 3.1, and the method to compute the reduced
ransition matrix in Section 3.2. In Section 4 the algorithm is
emonstrated by three numerical examples. These include a
eneric, randomly-generated aggregatable Markov chain, a
enchmark metastable system, as well as a traffic network de-
ived from real-world taxi trip data. Section 5 contains the con-
lusions and remarks on future work.
2

Notation

This article makes use of some special notation, mostly regard-
ing the entries of matrices. For N ∈ N, denote [N] := {1, . . . ,N}.
For a matrix A ∈ RM×N , denote by A[:,j] the jth column vector of
A. Likewise, denote by A[i,:] the ith row vector of A. For J ⊂ [N],
let AJ denote the column subsampled matrix with respect to J :(
AJ
)
[:,j] =

{
A[:,j], if j ∈ J
0, otherwise,

(1)

where 0 here denotes the zero-vector in RN . For R ∈ [N], the
matrix consisting of the leading R columns and all rows of P
is denoted by P[:,1:R]. Analogously, the matrix consisting of the
leading R rows and all columns of P is denoted by P[1:R,:]. As usual,
the entry of the ith row and jth column of A is denoted by Aij.

2. Aggregatable Markov chains

We consider an N-state time- and space-discrete Markov
chain (Xn)n∈N, or short (Xn). Without loss of generality, its state
space is [N]. Let Ω := {Ω1, . . . , ΩR}, Ωr ⊂ [N] be a partition of
[N]. Let ω : [N] → [R] be the function assigning the states to their
respective partition element: ω(i) = r if i ∈ Ωr . The number of
states in the rth partition element is denoted by mr := |Ωr |. The
time-evolution of probability distributions under (Xn) is described
by the transition matrix1 P ∈ RN×N of (Xn):

Pij = P[Xn+1 = i | Xn = j].

As the process (Xn) is homogeneous, P does not depend on the
step n. Similarly, we can describe the transition probabilities from
individual states to the partition elements by a matrix P̃ ∈ RR×N :

Prj = P[Xn+1 ∈ Ωr | Xn = j] =

∑
i∈Ωr

Pij.

Now, given (Xn) and Ω , we can define the aggregated stochas-
tic process (Yn)n∈N, or short (Yn), on state space [R] by

Yn = r :⇐⇒ Xn ∈ Ωr for n ∈ N.

In contrast to (Xn), the process (Yn) is in general non-
homogeneous, and furthermore depends on the initial distribu-
tion of (Xn). Hence, the transition matrix P̂ ∈ RR×R of (Yn), for
now only symbolically defined by

Prs = P[Xn+1 ∈ Ωr | Xn ∈ Ωs]

is not well-defined.
The purpose of this article is now essentially to answer the

following questions:

1. When is (Yn) again a Markov process, i.e., when is the
matrix P̂ well-defined?

2. Is (Yn) equivalent to the full process, i.e., can P be restored
from P̂ , and if so, how?

3. How much knowledge (data) about the full process is re-
quired to construct the reduced process, i.e., can P̂ and Ω

be computed from just a sparse sample of P?

The conditions on P and Ω under which all three questions can
be answered positively are presented in this section.

1 Note that we use the definition of the transition matrix from [9], hence P is
the transposed of what is more commonly known as the transition matrix (see,
e.g., [23]). This way, the space of accessible distributions of the Markov chain
coincides with the (column) span of P , and invariant distributions are (right)
eigenvectors of P .
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.1. Lumpability and deflatability

There are two central conditions a transition matrix P along
ith a partition Ω must fulfill in order to be sparsely compress-

ble into P̂ , called lumpability and deflatability. These conditions
mpose strong restrictions on the admissible transition probabil-
ties from and to the partition elements Ωi, and in this way on
he column- and row structure of P . We will show that these
wo conditions are fundamental for making P low rank and thus
or the construction of a sparse approximation algorithm. We
ill also see later (Section 2.3) that other common properties of
arkov chains related to model reduction are not equivalent in

nducing said low-rank structure.

efinition 2.1. Let Ω = {Ω1, . . . , ΩR} be a partition of [N] and
= {π1, . . . , πR} be a collection of distribution vectors over [N],
here πr has support in Ωr . Let Π be the matrix

=

[
| |

π1 · · · πR
| |

]
∈ RN×R.

We call the transition matrix P lumpable with respect to Ω if

[:,j] = P̃[:,k] if ω(j) = ω(k). (2)

We call P deflatable with respect to (Ω, π ) if for all j ∈ [N]

olds

[:,j] = Π · P̃[:,j]. (3)

We call P aggregatable with respect to (Ω, π ) if P is lumpable
and deflatable with respect to (Ω, π ). In this case we call the
partition elements Ω1, . . . , ΩR the aggregates of (Xn).

The two properties lumpability and deflatability have very
different historical backgrounds. While the former is well-
established and the basis for many model reduction techniques,
the latter, to the best of our knowledge, seems to be a new
concept and uninvestigated (the term ‘‘deflatability’’ is introduced
herein for the first time). Still, we prefer to see the two properties
complementary to each other, in the following way:

Lumpability means that the probability to transition into a cer-
tain partition element Ωr depends only on the partition element
ω(j) of the starting state j, not on the exact starting state:

Prj = P̃rk if ω(j) = ω(k).

Hence, lumpability describes a sort of ‘‘starting state similarity’’
of the transition probabilities within the aggregates.

In contrast to lumpability, deflatability describes a sort of ‘‘end
state similarity’’. By re-writing (3) as

Pij = P̃ω(i),j · πω(i)(i), (4)

one sees that deflatability means that the transition probabilities
between states essentially depend only on the aggregate of the
end state, up to factors that do not depend on the starting state:

Pijπr (k) = Pkjπr (i) if ω(i) = ω(k) = r.

Alternatively, we can describe deflatability as the property that
after a jump into a partition element, the selection of one spe-
cific next state from this partition element is, independent of
where the jump started, decided by randomly choosing from the
distribution πω(i) on that partition element.

Still, the lumpability property alone, first introduced by Ken-
emy and Snell in [23], already ensures that (Yn) is a Markov
process and independent of the initial distribution of (Xn):
3

Theorem 2.2 ([23], Theorem 6.3.2). The matrix P is lumpable
with respect to Ω if and only if the aggregated process (Yn) is
homogeneous and its transition probabilities

Psr = P[Xn+1 ∈ Ωs | Xn ∈ Ωr ]

are independent of the choice of the probability distribution on Ωr .

Question 1 from the beginning of this section can therefore
be answered by assuming lumpability of the underlying chain.
Since its inception in the 70s, there have been numerous nu-
merical algorithms that exploit lumpability for model reduction
[24–27], where recently the connection to metastability has come
more into focus [28,29]. All the cited algorithms are robust, in
the sense that under the assumption of an appropriate notion
of only approximate lumpability (such as weak lumpability [30]
or quasi-lumpability [31]), they allow for the recovery of ap-
proximate reduced models. In situations where not even ap-
proximate lumpability may be assumed, multilevel aggregation
methods [32–34] may be applicable, that do not require lumpa-
bility with respect to any predetermined collection of aggregates,
but successively construct the ‘‘best possible’’ lumping of states
on each level.

However, all the mentioned algorithms in general require
full knowledge of the transition matrix P , and indeed, without
further assumptions on P , a successful deduction of P̂ cannot
be performed without it. This is why the additional property of
deflatability is required.

Combining lumpability and deflatability immediately implies
that P admits a very simple structure:

Lemma 2.3. Let P be aggregatable with respect to (Ω, π ). Then

P[:,j] = P[:,k] if ω(j) = ω(k). (5)

Proof. For ω(j) = ω(k) we have

Pij
(4)
= P̃ω(i),j · πω(i)(i)

(2)
= P̃ω(i),k · πω(i)(i)

(4)
= Pik. □

In words, an aggregatable transition matrix P consists of
exactly R pairwise distinct columns, hence rank(P) = R. The
assumption of aggregability, which restricts P to matrices of
form (5), is therefore a very strong requirement. However, we
will argue in Section 2.3.1, as well as the example Section 4, that
many real-world Markov transition matrices indeed possess at
least an approximate form of this property.

Remark 2.4. We call the property (5) state-wise lumpability of
P with respect to Ω . Note that not every transition matrix of
rank R is state-wise lumpable, hence aggregatable. Moreover,
not every state-wise lumpable matrix is deflatable, so state-wise
lumpability is not equivalent to aggregability.

Another important consequence of aggregability is that the
transition probabilities from aggregates to states are independent
of the starting distribution:

Lemma 2.5. Let P be aggregatable with respect to (Ω, π ). Let
i ∈ [N], r ∈ [R], and ρ

(1)
r , ρ

(2)
r be two arbitrary distributions with

support on Ωr . Then

P[Xn+1 = i | Xn ∼ ρ(1)
r ] = P[Xn+1 = i | Xn ∼ ρ(2)

r ].

Proof. We have

P[Xn+1 = i | Xn ∼ ρ(1)
r ] =

∑
Pijρ(1)

r (j) =

∑
Pikρ(1)

r (j),

j∈Ωr j∈Ωr
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here the last identity holds for any k ∈ Ωr due to (5). Hence,

[Xn+1 = i | Xn ∼ ρ(1)
r ] = Pik

∑
j∈Ωr

ρ(1)
r (j)  

=1

= Pik
∑
j∈Ωr

ρ(2)
r (j)  

=1

=

∑
j∈Ωr

Pikρ(2)
r (j) =

∑
j∈Ωr

Pijρ(2)
r (j)

= P[Xn+1 = i | Xn ∼ ρ(2)
r ]. □

Note that Lemma 2.5 is stronger than Theorem 2.2. Hence, for
ggregatable Markov chains, the reduced transition matrix P̂ can
e defined by

rs :=

∑
i∈Ωr

P[Xn+1 = i | Xn ∼ ρs], (6)

here ρs is any distribution with support in Ωs. Clearly this P̂ is
tochastic and thus induces a Markov chain (Yn)n∈N whose states
re the aggregates Ω1, . . . , ΩR (or equivalently, [R]).
Finally, the following central result describes the exact relation

f P̂ to the original transition matrix P , hence can be seen as the
nswer to question 2 from the beginning of this section. It will
lso play a major role in the latter algorithmic procedure.

roposition 2.6. Let P be aggregatable with respect to (Ω, π ).
hen P admits the decomposition

= Π P̂Λ, (7)

here

=

⎡⎢⎣— 1Ω1—
...

— 1ΩR—

⎤⎥⎦ ∈ RR×N

nd 1Ωr ∈ RN is the indicator vector of Ωr .

roof. Condition (3) implies P = Π P̃ . On the other hand, we
ave

P̂Λ
)
ri =

R∑
s=1

P̂rsΛsi = P̂rω(i)

= P[Xn+1 ∈ Ωr | Xn ∈ Ωω(i)].

s by Lemma 2.5 this probability is independent of the starting
istribution on Ωω(i), we may assume Xn ∼ 1i, and hence

P̂Λ
)
ri = P[Xn+1 ∈ Ωr | Xn = i] = P̃ri. □

Thus, P can be restored under knowledge of Π, P̂ and Λ.

emark 2.7. We can interpret the decomposition (7) as follows:
or a distribution vector u ∈ RN over [N], Pu = Π P̂Λu describes
he pushforward of u under the dynamics. In a first step, Λu av-
rages u over the aggregates, i.e., Λu ∈ RR is a distribution vector
ver [R]. In a second step, this distribution is pushed forward by
he reduced transition matrix P̂ , i.e., transformed according to the
probabilities to transition between the aggregates. The result is
again a distribution vector over [R]. Finally, Π extends this vector
gain to a distribution vector over the individual states [N], by

multiplying each entry with the appropriate distribution πr . The
rocedure is illustrated in Fig. 1.

.2. Almost aggregability

Markov chains encountered in real-life applications rarely ful-
ill the lumpability and deflatability conditions exactly. We there-
ore introduce appropriate notions of ‘‘almost lumpability’’ and
 o

4

‘‘almost deflatability’’, and investigate in what sense such transi-
tion matrices are close to truly aggregatable matrices.

Definition 2.8. Let Ω = {Ω1, . . . , ΩR} be a partition of [N], let
π = {π1, . . . , π} be a collection of distribution vectors over [N],
where πr has support in Ωr , and let

Π =

[
| |

π1 · · · πR
| |

]
∈ RR×N .

For ε > 0, we call the transition matrix P ε-almost lumpable
with respect to Ω if for all r ∈ [R] holds̃P[:,j] − P̃[:,k]


1

≤ ε if ω(j) = ω(k) (8)

We call P ε-almost deflatable with respect to (Ω, π ) if for all
j ∈ [N] holdsP[:,j] − Π · P̃[:,j]


1

≤ ε (9)

We call P ε-almost aggregatable with respect to (Ω, π ) if P is
ε-almost lumpable and ε-almost deflatable with respect to (Ω, π ).

Remark 2.9. A comment on the choice of the norm: Lumpa-
bility (2) is the equality of two columns of the matrix P̃ , which
are distribution vectors over [R]. A natural definition for ε-almost
lumpability is therefore the ε-closeness of these distribution vec-
tors, for which the natural distance measure is the L1-norm in
RR.

Likewise, deflatability (3) is the equality of a column of the
matrix P and a specific vector in RN . These are both distribution
vectors over [N], and thus a natural definition for ε-almost de-
flatability is the ε-closeness of these vectors in the L1-norm in
RN .

Almost aggregability now implies that P is close to an aggre-
gatable transition matrix in the L1 norm:

Theorem 2.10. Let P be ε-almost aggregatable with respect to
(Ω, π ). Then there exist an aggregatable transition matrix P ∈ RN×N

nd a matrix E ∈ RN×N with ∥E∥1 ≤ 4ε such that

P = P + E. (10)

roof. See the Appendix. □

Note that ∥E∥1 ≤ 4ε implies |Eij| ≤ 4ε for all i, j ∈ [N]. We
rom now on assume that the perturbation matrix E = E(ε) is
lement-wise analytic in ε. Then P admits a Taylor expansion

= P + εE(1)(0) +
ε2

2
E(2)(0) + · · · , (11)

where E(k) denotes the kth element-wise derivative of E with
respect to ε. We shorthand write (11) as

P = P + εL + O(ε2), (12)

here for L := E(1)(0) ∈ RN×N holds ∥L∥1 ≤ 4. Although the
lement-wise perturbation result (12) is somewhat weaker than
he perturbation with respect to the ∥ · ∥1-norm (10), it will
rove more useful when performing perturbation analysis on the
pectrum of P (Section 3.1.3).

.3. Comparison to other properties of compressible Markov chains

(Almost) lumpability and (almost) deflatability should be seen
s fundamental, abstract properties that Markov chains from
ifferent areas of applications may or may not have. To the best
f our knowledge, there exists no concept in the literature that is
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Fig. 1. (a) Illustration of the distribution transport under an aggregatable matrix P for N = 7 and R = 3. The distribution vector u gets first averaged over the
ggregates {Ω1, . . . , ΩR} by the matrix Λ, subsequently pushed forward by the reduced transition matrix P̂ , and finally ‘‘inflated’’ again to a distribution vector
ver the states by the matrix Π . (b) Illustration of the distribution vectors π1, . . . , πR used in the last step. For r = 1, . . . , R, the rth entry of the vector P̂Λu gets
ultiplied by πr to form the vector Pu = Π P̂Λu.
I

p

(

(

quivalent to our definition of (almost) aggregability. In this sec-
ion, we compare almost aggregability to two other properties of
arkov chains that are commonly investigated for the purpose of
odel compression, namely metastability and near completely-
ecomposability, and show that they are indeed not equivalent
o our definition of almost aggregability.

.3.1. Metastable Markov chains
Metastable Markov chains are almost aggregatable. We show

his for the special case of reversible Markov chains.
For a subset of states M ⊂ [N] consider the first exit time

rom M

M := inf{n ∈ N, Xn /∈ M},

hich is a random variable in N. Let πM be the quasi-stationary
ensity (QSD) of M, defined as the long-time limit of the law of
Xn) conditioned to stay on M:

πM := lim
n→∞

Law(Xn | τM > n). (13)

ollowing [35], we now call the set M metastable if the time
o observe almost-convergence in (13) is small compared to the
ean exit time E[τM]. This definition can be made precise by

relating the convergence rate of (13) and the rate of exit events
to the dominant eigenvalues of the infinitesimal generator of the
process [35].

Based on the above understanding of metastability, we can
assume that for the unrestricted process (Xn), at the time when
the first exit event from M happens, Law(Xn) is already close
to πM, without loss of generality in the 1-norm. Hence, if M is
metastable, there exists a step count η ≪ E[τM], and a small
number ε > 0 such that(Pη) − π

 ≤ ε for all j ∈ M, (14)
[:,j] M 1

5

where Pη denotes the ηth power of P . The lag time η in (14)
should be thought of as being long enough to observe local
equilibration to the QSD, but not long enough to likely experience
exit events and observe global equilibration to the stationary
density.

Now suppose that Ω = {Ω1, . . . , ΩR} is a metastable partition
of [N], and that there exist an η > 0 and a small ε > 0
such that (14) holds for all M = Ωr . Under this assumption,
we can now show that the η-step transition matrix Pη is almost
aggregatable:

Proposition 2.11. Let Ω be a partition of [N] and let (14) hold
with parameters η, ε for all Ωr ∈ Ω . Let πr denote the QSD of
Ωr , r = 1, . . . , R. Then Pη is 2ε-almost aggregatable with respect
to (Ω, π ), where π = {π1, . . . , πR}.

Proof. The matrix Pη is state-wise 2ε-almost lumpable: for
ω(i) = ω(j) = r we have(Pη)[:,i] − (Pη)[:,j]


1 ≤

(Pη)[:,i] − πr

1 +

(Pη)[:,j] − πr

1 ≤ 2ε.

n particular Pη is 2ε-almost lumpable.
Now let er be the rth unit vector in RR. Because the transition

robability into other aggregates is low, the jth column of P̃η is
ε-close to eω(j):(P̃η

)
[:,j] − eω(j)


1

=

∑
r∈[R]

⏐⏐⏐(P̃η
)
rj − eω(j)(r)

⏐⏐⏐ =: (⋆).

As πω(j) is a distribution with support in Ωω(j), we have
∑

i∈Ωr
πω(j)

i) = eω(j)(r). Thus,

⋆) =

∑
r∈[R]

⏐⏐⏐∑
i∈Ωr

(
Pη
)
ij −

∑
i∈Ωr

πω(j)(i)
⏐⏐⏐

≤

∑∑⏐⏐(Pη
)
ij − πω(j)(i)

⏐⏐

r∈[R] i∈Ωr
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∑
i∈[N]

⏐⏐(Pη
)
ij − πω(j)(i)

⏐⏐
=

(Pη
)
[:,j] − πω(j)


1

(14)
≤ ε.

Using this and (14), we can show 2ε-almost deflatability:(Pη
)
[:,j] − Π ·

(
P̃η
)
[:,j]


1

≤

(Pη
)
[:,j] − Π · eω(j)


1

+

Π · eω(j) − Π ·
(
P̃η
)
[:,j]


1

≤

(Pη
)
[:,j] − πω(j)


1  

≤ε

+
Π1  

=1

×

eω(j) −
(
P̃η
)
[:,j]


1  

≤ε

. □

emark 2.12. On the other hand, not every almost aggregatable
arkov chain is metastable, hence the two concepts are not
quivalent. See Section 4.1 for a counterexample. Loosely speak-
ng, an almost aggregatable transition matrix P is metastable if its
educed transition matrix P̂ is almost diagonal.

.3.2. Nearly completely decomposable Markov chains
Nearly completely decomposable Markov chains [36,37], also

alled nearly uncoupled [38], in general are not almost aggre-
atable. To be specific, they do not fulfill the almost deflatability
roperty (9).
Let Ω = {Ω1, . . . , ΩR} again be a partition of state space [N],

nd assume the states are ordered by partition element, i.e.,

r, s ∈ [R], ∀ i ∈ Ωr , j ∈ Ωs : r < s ⇒ i < j.

A transition matrix P is then called completely decomposable (CD)
with respect to Ω , if it has block-diagonal form, i.e., if there exist
matrices D1 ∈ Rm1×m1 , . . . ,DR ∈ RmR×mR , such that [31]

P =

⎡⎢⎢⎣
D1 0 · · · 0
0 D2 · · · 0
...

...
...

0 0 · · · DR

⎤⎥⎥⎦ .

A transition matrix P is called nearly completely decomposable
(NCD), if P = P + E for an uncoupled matrix P , and small ε :=

E∥∞ [31].
Uncoupled matrices are in general not deflatable with respect

o Ω . One easily sees that all columns of the individual Di need
o be equal in order for P to be deflatable. Consider for example
he CD matrix

=

⎡⎢⎣0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤⎥⎦ (15)

with the two partition elements Ω1 = {1, 2}, Ω2 = {3, 4}
and the sub-matrices D1 = D2 =

(
0 1
1 0

)
. The matrices D1,D2

are themselves not CD, hence P cannot be decomposed further.
For (15), the transition probability matrix between the individual
states and the partition elements becomes

P =

[
1 1 0 0
0 0 1 1

]
In particular, the columns of P̃ in each partition element are equal
(this is a universal property of CD matrices). However, as the two
columns of P in each partition element are not equal, no matrix
Π ∈ RN×R can exist such that P = Π P̃ , as would be required by
the deflatability condition (3).
 k

6

The matrix (15) is not even ε-almost deflatable for a small ε,
as

argmin
P deflatable

∥P − P∥1 =

⎡⎢⎢⎢⎣
1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2

0 0 1/2 1/2

⎤⎥⎥⎥⎦ ,

hence minP deflatable ∥P − P∥1 = 1. As every CD matrix is NCD,
this demonstrates that NCD transition matrices in general are not
almost deflatable.

Remark 2.13. On the other hand, it is easy to see that every CD
matrix is lumpable. It also has been shown that NCD matrices are
quasi-lumpable [31], a slight relaxation of lumpability.

Finally, note that metastability is a special case of nearly
complete decomposability. Here, the internal homogeneity in the
sub-matrices Di that is required for deflatability is present due to
the rapid equilibration inside the metastable sets.

3. A probabilistic aggregation algorithm

Now let P be an ε-almost aggregatable matrix, which in par-
ticular implies

P = P + εL + O(ε2),

here P is aggregatable and ∥L∥1 ≤ 4. Our goal in this section
s to compute the aggregates Ω1, . . . , ΩR as well as the matrix
P of the aggregatable matrix P . We will derive an algorithm that
achieves this using only a vastly incomplete subset of the entries
of P . This algorithm will therefore be the answer to question 3
posed at the beginning of Section 2.

3.1. Sparse recovery of the aggregates

Assume for the moment that P is aggregatable, i.e., P = P .
et J ⊂ [N] be any index set in which all aggregates are ‘‘rep-
esented’’, i.e., ω(J ) = [R].2 Consider the column-subsampled
ransition matrix PJ , as defined in (1). As ω(J ) = [R] and P is
tate-wise lumpable, the vector spaces spanned by the columns
f P and PJ are identical. Furthermore, the R leading left singular
ectors of PJ are linear combinations of the πr , as shown by the
ollowing theorem. Note that this does not simply follow from
ange(PJ ) = span{π1, . . . , πR}.

heorem 3.1. Let P be an aggregatable matrix admitting the
ecomposition P = Π P̂Λ from Proposition 2.6, and let PJ as

defined in (1). For r ∈ [R], let

jr := |J ∩ Ωr |,

i.e., the number of indices in J that belong to Ωr . Define the diagonal
matrices

DΠ = diag
(
∥π1∥2, . . . , ∥πR∥2

)
, DΛJ = diag

(√
j1, . . . ,

√
jR
)
.

Let Û Ŝ V̂ be the singular value decomposition of DΠ P̂DΛJ . Then
there exists a singular value decomposition U SV of PJ , with

S[1:R,1:R] = Ŝ,

and

U[:,1:R] = ΠD−1
Π Û, V[1:R,:] = V̂D−1

Λ ΛJ .

2 We will describe later how to find such an index set without a priori
nowledge of the aggregates.
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roof. We can write the column-subsampling of P as PJ =

· IJ , where I is the N × N identity matrix. Plugging in the
ecomposition of P and the SVD of DΠ P̂DΛJ yields

J =
(
Π P̂Λ

)
IJ = ΠD−1

Π Û  
=:U (1)

Ŝ V̂D−1
ΛJ

ΛIJ  
=:V (1)

.

he columns of U (1) are orthonormal:
(1)⊺U (1)

=
(
ΠD−1

Π Û
)⊺(

ΠD−1
Π Û

)
= Û⊺D−1

Π Π⊺Π  
=(DΠ )2

D−1
Π Û

= Û⊺Û = I.

he rows of V (1) are also orthonormal:
(1)V (1)⊺

=
(
V̂DΛJ ΛIJ

)(
V̂DΛJ ΛIJ

)⊺
= V̂DΛJ ΛJ Λ

⊺
J  

=(DΛJ )2

DΛJ V̂ ⊺

= V̂ V̂ ⊺
= I.

Let U (2) be a completion of the columns of U (1) to an orthonor-
al basis of RN , and analogously V (2) be a completion of the rows
f V (1) to an orthonormal basis of RN . We then can write PJ as

=
[
U (1) U (2)

]  
=:U

[̂
S 0
0 0

]
  

=:S

[
V (1)

V (2)

]
  

=:V

,

which by definition is a singular value decomposition of PJ . □

The fact that the leading R left singular vectors {u1, . . . , uR} of
J are linear combinations of the columns of Π , i.e., the vectors
π1, . . . , πR}, now can be exploited to compute the aggregates
nder knowledge of only the matrix PJ . As the πr do not change
ign within the aggregates, neither do the ur . Furthermore, there
xist no two aggregates on which the sign structure of all ur , r ∈

R], is identical:

emma 3.2. Let P be aggregatable with respect to (Ω, π ). Let
1, . . . , uR be the leading orthonormal left singular vectors of PJ ,
nd let σ : [N] → {−1, 0, 1}N be given by

(i) :=
[
sgn
(
u1(i)

)
, . . . , sgn

(
uR(i)

)]
, i = 1, . . . ,N

here sgn : R → {−1, 0, 1} denotes the sign function. Then for any
wo i, j with ω(i) ̸= ω(j) holds

(i) ̸= σ (j) and σ (i) ̸= −σ (j).

roof. The proof is identical to that of [22, Theorem 3.1], where
nstead of aggregatable matrices, block stochastic matrices were
onsidered. We repeat the short argument for completeness’ sake.
Since the ur do not change sign within the aggregates, we may

ssume that each aggregate consists of only one state, i.e., N =

. Then U = [u1, . . . , uR] ∈ RR×R is a square matrix with
rthonormal columns, the rows of U are also orthogonal. Hence,
o two row vectors, which are the vectors

(
u1(i), . . . , uR(i)

)
, can

ave the same sign structure. □

Thus, once the left singular vectors of PJ have been computed,
he aggregates can be recovered by grouping the states according
o the values of the vectors σ (i), i ∈ [N], i.e.,

(i) !
= ω(j) if σ (i) = σ (j).

emark 3.3. The technique of grouping states via the sign
tructure of eigen- or singular vectors of some propagator matrix
s not new, and in general is known as spectral clustering. In
articular, similar to us, Fritzsche et al. [22] find the metastable
7

ets of a metastable system by analyzing the dominant singular
ectors of the transition matrix P . The fundamental idea however
oes back to Dellnitz, Junge, Deuflhard, Schütte and coworkers
8,38], who originally identified metastable sets from the
ominant eigenvectors of discretizations of transfer operators.
ritzsche et al. state as the main reason to compute the singular-
ver the eigendecomposition of P the applicability to non-
eversible systems. Similarly, Froyland [39] computes metastable
ets via eigenvectors of a certain ‘‘reversibilized’’ transition matrix
f a in general non-reversible Markov chain. Compared to all
hese methods, the innovation of our method is that only aggre-
ability of the system must be assumed (of which metastability is
special case), and, crucially, only the vastly incomplete matrix
J instead of the full matrix P is required.
Also note that the sign structure of eigen- or singular vec-

ors is in general unstable under perturbation of the underlying
atrix [40] (see also Section 3.1.3). Therefore, the assignment

o the aggregates based purely on the sign structure is unsta-
le as well. However, there exist advanced and robust spectral
lustering techniques, for example PCCA+ [40,41] and SEBA [42],
hat consider not only the signs, but also the magnitude of the
igenvector entries and are less susceptible to these instabilities.
hese methods are fully compatible with our setting.

.1.1. Probabilistic column sampling
While there exist minimal index sets J with |J | = R and

(J ) = [R], it is in general impossible to select such a set without
priori knowledge of the aggregates, or analyzing all columns
f P . Our algorithmic strategy will therefore rely on randomly
ampling the column space of P . We will show that under a
ensible assumption regarding the sizes of the aggregates, the
umber of samples required to fulfill the condition ω(J ) = [R]
ith a certain high probability does not depend on N .
Let J = |J | denote the number of indices. When drawing the

ndices from [N] uniformly and independently, the probability to
‘hit’’ all aggregates is[

ω(J ) = [R]
]

= P
[
1 ∈ ω(J ) ∧ · · · ∧ R ∈ ω(J )

]
.

ote that in general, assuming that R − 1 aggregates are hit will
ecrease the probability to hit the remaining aggregate, as there
re now at most J −R+1 chances for the remaining aggregate to
e hit. However, if we choose J much bigger than R, this effect is
egligible, as then the probability to hit an individual aggregate
ith J draws is close to the probability to hit it with J − R + 1

draws. The probabilities P
[
r ∈ ω(J )

]
then are approximately

independent, and we have

P
[
ω(J ) = [R]

]
≈

R∏
r=1

P
[
r ∈ ω(J )

]
=

R∏
r=1

(
1 −

(N−mr
J

)(N
J

) )
,

where, as a reminder, mr = |Ωr |.
In the last equation, the factor P

[
r ∈ ω(J )

]
can be thought

of as the probability to draw at least one red ball from an urn
with mr red and N − mr black balls within J draws without
replacement. If J ≪ N , as we would require in practical appli-
ations, drawing with replacement results in approximately the
ame probability. Hence in that case, we get

[
ω(J ) = [R]

]
≈

R∏
r=1

P
[
r ∈ ω(J )

]
≈

R∏
r=1

(
1 −

(
1 −

mr

N

)J)
.

(16)
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Now let p ∈ (0, 1) be a ‘‘confidence parameter’’, i.e., minimal
probability for which we want to find the smallest J such that

P
[
ω(J ) = [R]

]
≥ p. (17)

From Formula (16), we see that if there exists only a single lowly-
populated aggregate Ωr , i.e., one with mr/N ≈ 0, then a large J is
required to achieve (17) for any satisfactory p. On the other hand,
he best case scenario is when all R aggregates are approximately
venly populated, i.e., mr ≈ N/R for all r ∈ [R], as this maximizes
he right hand side of (16). In this case, (16) approximately takes
he form

[
ω(J ) = [R]

]
≈

(
1 −

(
1 −

1
R

)J
)R

. (18)

rucially, this probability does not depend on the number of
tates N , and hence the number of draws J required to achieve
17) also does not depend on N . For reasonable values of p and
mall R, J can thus be chosen much smaller than N , which means
hat only a small subset of the columns of P has to be computed.
Referring to question 3 from the beginning of Section 2, it is
therefore indeed possible to compute P̂ from a vastly undersam-
pled data matrix P , if one is willing to accept the (qualitative)
uncertainty (17) of the result.

We will from now on always assume that all aggregates are of
approximately equal size in order to use the simple formula (18)
to estimate the required number of column draws. However, this
assumption is actually not strictly required to achieve (17) with a
low number of draws J . Denoting the ratio of the smallest to the
largest aggregate by θ ∈ (0, 1), i.e.,

θ :=
minr mr

maxr mr
,

one gets

P
[
ω(J ) = [R]

]
⪆

(
1 −

(
1 −

θ

R

)J
)R

. (19)

or moderate values of θ that do not depend on N (say, θ = 0.5),
19) still allows one to choose moderate values of J in order to
uarantee (17) for a sensible p.

emark 3.4. As a side remark, in the case where all mr are
perfectly equal, the described problem is equal to the so-called
coupon collector’s problem [43, Section 3.6]. It estimates the ex-
pectation of the number of randomly drawn columns in order to
hit all aggregates as

E
[

|J |
⏐⏐ ω(J ) = [R]

]
= R log R + Θ(R),

and its variance as

Var
[

|J |
⏐⏐ ω(J ) = [R]

]
=

π2

6
R2

+ Θ(R log R),

here Θ is the Landau symbol for asymptotically equal growth.
he expectation and variance are again independent of N . Thus,
or large N , the expected number of columns of P that has to
e computed in order to hit all aggregates is again much smaller
han N .

.1.2. The probabilistic aggregation algorithm
In summary, the random column sampling strategy, combined

ith the singular value decomposition and spectral clustering
ethod leads to our main algorithm:
8

Algorithm 3.1 Probabilistic aggregation of large Markov chains.

Input: Ability to compute individual columns of the transition
matrix P ,
Upper bound of the number R of aggregates,
Confidence parameter p ∈ (0, 1)

1: Using Eq. (18), randomly draw an index set J ⊂ [N], so that

P
[
ω(J ) = [R]

]
≥ p.

2: Compute the columns of P with indices in J and assemble
the matrix PJ .

3: Compute the singular value decomposition PJ = U SV . Let
the leading R left singular vectors be denoted by u1, . . . , uR.

4: Apply a spectral clustering algorithm such as PCCA+ or SEBA
to u1, . . . , uR

utput: Aggregates Ω1, . . . , ΩR of P .

Multiple remarks are in order:

Remark 3.5. The main attractiveness of this aggregation algo-
rithm is that only J columns of the N×N transition matrix P need
to be computed. As we have discussed in Section 3.1.1, J depends
only on R and p, thus for large N this represents enormous savings
in numerical effort. The actual method of computing the columns
varies from case to case, but typically they need to be computed
individually by expensive Monte Carlo sampling methods, see the
example in Section 4.2 for details.

Remark 3.6. The requirement of an upper bound of the number
R of expected aggregates is not as harsh as it may seem. For one,
a ballpark estimate of R is often available in practice. One knows
for example that in Markov chains that describe the folding of
small proteins, the number of metastable conformations (which
here represent the aggregates) typically is in the order of 101

to 102. For the other, overestimating R does not degrade the
quality of the end result, but only leads to additional numerical
effort. However, in many practical applications with thousands or
millions of states but only a handful of aggregates, even overes-
timating R by one or two orders of magnitude still leads to vastly
improved performance over computing the full transition matrix
P . A detailed error analysis of Algorithm 3.1 with respect to R will
be subject of future research.

Step 1 of the Algorithm 3.1 again requires that all aggregates
are approximately equal-size. In case where this is not a rea-
sonable assumption, we can conduct a different strategy: For
aggregatable matrices, ω(J ) is equivalent to rank(PJ ) = R, hence
σR > 0, where σR is the Rth largest singular value of PJ . For
almost aggregatable matrices, this condition becomes σR ≫ σR+1,
i.e., the existence of a spectral gap after σR. The computational
strategy is therefore to randomly add columns to PJ and compute
its SVD until such a gap appears.

Remark 3.7. Algorithm 3.1 is related to a class of probabilistic al-
gorithms designed to compute an orthonormal basis of the range
of a generic rank-R matrix A ∈ RN×N , see for example [20, p. 224].
These algorithms are based on ‘‘measuring’’ A by a randomly-
drawn test matrix T ∈ RN×R, i.e. the product Y = A · T is
computed. As the R randomly-drawn columns of T are almost
surely linearly independent, and almost surely do not fall into
ker(A), the columns of Y are also almost surely linearly indepen-
dent, and it holds range(Y ) = range(A). The leading left singular
vectors of Y hence form an orthonormal basis of range(A). Note
however that the computation of Y here requires the full matrix
A.

In Algorithm 3.1, the selection of the columns J from P is
equivalent to the multiplication to P with the matrix I (see the
J
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roof of Theorem 3.1), i.e., PJ = P ·IJ , thus IJ can be considered a
est matrix in the above context. Crucially however, although the
olumns of IJ have not been randomly drawn and contain only
ne non-zero element, we still have range(PJ ) = range(P), due
o the equality of the columns due to state-wise lumpability (5).

.1.3. Applicability to almost aggregatable Markov chains
We now shift our focus to Markov chains that are only al-

ost instead of exactly aggregatable. Assume that P is ε-almost
aggregatable with respect to (Ω, π ), which by (12) implies

P = P + εL + O(ε2), ∥L∥1 ≤ 4.

ur goal is to recover the aggregates of the exactly aggregatable
ut unknown matrix P , and we again assume that the com-
utation of individual columns of P is possible. Our strategy is
o apply Algorithm 3.1 to the perturbed matrix P , in the hope
hat the above ε-perturbation will only result in an error for the
ggregates of order of magnitude ε. We will illuminate under
hich conditions this holds true, and for this perform a pertur-
ation analysis of the singular vectors of P . In particular, we will
nvestigate how the sign structure of the individual components
f the singular vectors respond to perturbation, as they are used
or the aggregate assignments.

It turns out that the same techniques that have been used
y Fritzsche et al. [22] in the analysis of almost block-stochastic
ransition matrices can also be applied to our setting of almost
ggregatable transition matrices. Most of the following arguments
ave therefore been borrowed from [22, Section 4.1].
Let J ⊂ [N] be again an index set with ω(J ) = [R]. Define

he matrix

(ε) := PJ P⊺
J .

We will study how the eigenvectors of T (ε) depend on ε, as they
re identical to the left singular vectors of PJ . The matrix T (ε)
dmits a Taylor expansion in ε,

(ε) = T + εT (1)
+ O(ε2), (20)

ith T = PJ P
⊺

J and T (1)
= PJ L⊺J + LJ P

⊺

J . Therefore, T (ε)
s analytic in ε, and also symmetric. By applying the perturba-
ion theory for symmetric matrices from [44, Section 6.2], we
et that T (ε) possesses an orthonormal basis of eigenvectors
1(ε), . . . , ϕN (ε) that are also analytic in ε and thus admit a Taylor
xpansion in ε:

ϕk(ε) = ϕk + εϕ
(1)
k + O(ε2). (21)

ere the ϕk are the eigenvectors of the unperturbed matrix T ,
.e., the left singular vectors of PJ (the singular vectors used for
he aggregate assignments). The first order perturbation error of
he kth left singular vector is therefore given by ϕ

(1)
k , for which

an expression is given by the following theorem:

Theorem 3.8. Let λk(ε) be the kth largest eigenvalue of the
perturbed operator T (ε), counting multiplicity. Let Q1,...,R : RN

→
N denote the orthogonal projection onto span(ϕ1, . . . , ϕR), and let
kj be coefficients such that

1,...,Rϕ
(1)
k =

R∑
j=1

βkjπj.

Then, for k = 1, . . . , R, the eigenvector ϕk(ε) corresponding to
λk(ε) is of the form

ϕk(ε) = ϕk + ε

(
R∑

j=1

βkjπj +

N∑
j=R+1

⟨
ϕj, ϕ

(1)
k

⟩
ϕj

)
+ O(ε2). (22)
9

Proof. The proof of this theorem is very similar to that of
[22, Theorem 4.7].

For k = 1, . . . , R, let Qk be projection onto the eigenspace of
T corresponding to the eigenvalue λk. Note that this eigenspace
may be multi-dimensional. Under perturbation, the eigenvalue λk
will in general split into multiple eigenvalues of T (ε), which we
call the λk-group of eigenvalues (see [44, Sec. II.1.8]). According
to [44, Sec. II.2.1], the perturbed projection operator Qk(ε) onto
the combined eigenspaces of T (ε) corresponding to the λk-group
is analytic in ε and admits the Taylor expansion

Qk(ε) = Qk + εQ (1)
k + O(ε2).

According to [44, Sec. II.2.1 (2.14)], the first order error coefficient
can be written as

Q (1)
k =

∑
j∈{1,...,N}

j̸=k

1
λk − λj

(
QkT (1)Qj + QjT (1)Qk

)
, k = 1, . . . , R.

Let Q1,...,R be the orthogonal projection onto the eigenspace of T
to the distinct eigenvalues λ1, . . . , λR. Then for the corresponding
perturbed projection holds

Q1,...,R(ε) =

R∑
i=1

Qi(ε)

=

R∑
i=1

Qi + ε

R∑
i=1

∑
j∈{1,...,N}

j̸=i

1
λi − λj

(
QiT (1)Qj + QjT (1)Qi

)
+ O(ε2)

= Q1,...,R + ε

R∑
i=1

N∑
j=R+1

1
λi

(
QiT (1)Qj + QjT (1)Qi

)
+ O(ε2),

(23)

here in the last line we used that the terms for j ≤ R cancel
ut, and λj = 0, j = R + 1, . . . ,N . For the eigenvectors
1(ε), . . . , ϕR(ε) of T (ε), we have that

k(ε) = Q1,...,R(ε)ϕk(ε), k = 1, . . . , R. (24)

ombining (21), (23) and (24) and using Qjϕk = 0 for j = R +

, . . . ,N , we obtain

ϕk(ε) = Q1,...,R
(
ϕk + εϕ

(1)
k

)
+ ε

N∑
j=R+1

1
λk

QjT (1)ϕk + O(ε2).

ince Q1,...,Rϕk = ϕk, and

1,...,Rϕ
(1)
k =

R∑
j=1

β̃kjϕj =

R∑
j=1

βkjπj,

or some coefficients β̃kj, βkj ∈ R, we can write the perturbed
igenvector as

k(ε) =

R∑
j=1

(
γkj + εβkj

)
πj + ε

N∑
j=R+1

1
λk

QjT (1)ϕk + O(ε2).

his confirms the first sum in (22). The second summand, we can
ewrite using the Euclidean inner product as
N∑

j=R+1

1
λk

QjT (1)ϕk + O(ε2) =

N∑
j=R+1

1
λk

⟨
ϕj, T (1)ϕk

⟩
ϕj. (25)

o derive an expression for
⟨
ϕj, T (1)ϕk

⟩
, we combine the pertur-

bation expansions (20) of T (ε), (21) of ϕ(ε), and the expansion of
the eigenvalue λk(ε),

λ (ε) = λ + ελ
(1)

+ O(ε2). (26)
k k k
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ogether, we obtain

T + εT (1)
+ O(ε)

)(
ϕk + εϕ

(1)
k + O(ε)

)
=
(
λk + ελ(1)

+ O(ε2)
)(

ϕk + εϕ
(1)
k + O(ε)

)
. (27)

omparing the zero-th and first order terms in (27) yields

Tϕk = λkϕk,

(1)ϕk = (λkI − T )ϕ(1)
k + λ

(1)
k ϕk.

lugged into the above scalar product we get

ϕj, T (1)ϕk
⟩
=
⟨
ϕj, (λkI − T )ϕ(1)

k + λ
(1)
k ϕk

⟩
=
⟨
ϕj, (λkI − T )ϕ(1)

k

⟩
+ λ

(1)
k ⟨ϕj, ϕk⟩  

=0

,

where the last term vanishes due to the ϕ being orthonormal as
eigenvectors of a symmetric operator. Since (λkI − T ) is symmet-
ric, we can rewrite the first term as⟨
ϕj, (λkI − T )ϕ(1)

k

⟩
=
⟨
(λkI − T )ϕj, ϕ

(1)
k

⟩
= (λk − λj)

⟨
ϕj, ϕ

(1)
k

⟩
.

Plugged into (25) and using λj = 0 for j > R, this finally yields

ϕk(ε) =

R∑
j=1

(γkj + εβkj)πj + ε

N∑
j=R+1

⟨
ϕj, ϕ

(1)
k

⟩
ϕj + O(ε). □

We will now further investigate the individual summands
of Eq. (22) in order to better understand their significance for the
sign structure perturbation of the ϕk. As ϕk ∈ span(π1, . . . , πR),
we can write

ϕk =

R∑
j=1

γkjπj

for some coefficients γkj ∈ R. With that (22) can be written as

ϕk(ε) =

R∑
j=1

(γkj + εβkj)πj + ε

N∑
j=R+1

⟨
ϕj, ϕ

(1)
k

⟩
ϕj + O(ε2). (28)

Hence, the βkj represent the perturbation in the coefficients γkj of
the unperturbed eigenvector ϕk. As the βkj are independent of ε,
this perturbation is small for small enough ε.

In any case however, even for large ε, the first summand
in (28) is a linear combination of the πj. Hence, as the πj are
non-negative and have support on the respective Ωj, the first
summand does again not change sign within the aggregates (al-
though the particular sign structure may differ from that of ϕk
if γkj and βkj have different signs and ε|βkj| > |γkj|.) Also, the
perturbed eigenvectors ϕk(ε) again form an orthonormal system.
Hence, upon neglecting the remaining two summands in (28),
the ϕ1(ε), . . . , ϕR(ε) fulfill the same prerequisites as the singular
vectors u1, . . . , uR in Lemma 3.2 (which are the unperturbed
eigenvectors ϕ1, . . . , ϕR). Therefore, if we could expect the second
and the third summand in (28) to not perturb the sign structure
of the first summand, applying a spectral clustering algorithm
to the perturbed eigenvectors ϕ1(ε), . . . , ϕR(ε) would reveal the
aggregates perfectly as per Remark 3.3.

However, the second sum in (22) potentially does perturb
the sign structure within the individual aggregates, as the non-
dominant eigenfunctions ϕj, j = R + 1, . . . ,N are in general
not linear combinations of the πi. To be precise, the second sum
induces a sign change at position i ∈ [N], if at that position the
second sum has a different sign than the first sum, and

ε

⏐⏐⏐⏐⏐[
N∑ ⟨

ϕj, ϕ
(1)
k

⟩
ϕj

]
i

⏐⏐⏐⏐⏐ >

⏐⏐⏐⏐⏐[
R∑(

γkj + εβkj
)
πj

]
i

⏐⏐⏐⏐⏐ (29)

j=R+1 j=1
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Again, (29) cannot hold true if ε is small enough, hence in this
situation the sign structure of the ϕk(ε) is again equal to that
of the ϕk. For only moderately small ε, however, (29) needs to
be checked on a case-by-case basis. Unfortunately, as the unper-
turbed eigenvectors ϕj and hence the coefficients γkj, βkj are un-
known, this condition cannot be checked numerically in practice.
We are however able to state two easily-interpretable circum-
stances under which (29) is fulfilled, and argue that these circum-
stances are avoided automatically in many practically relevant
systems:

1. A first condition that implies (29) is if the singular value λk
is close to zero, because, due to (25),

N∑
j=R+1

⟨
ϕj, ϕ

(1)
k

⟩
ϕj =

N∑
j=R+1

1
λk

QjT (1)ϕk,

where Qj is the orthogonal projection onto the jth distinct
eigenspace of T . In many real-world settings, however, for
example if the aggregates correspond to metastable sets,
a spectral gap after the last dominant singular value is
present, which then implies λk ≫ λR+1 = 0.

2. A second condition that implies (29) is if all πj are approx-
imately zero at position i, as[ R∑

j=1

(
γkj + εβkj

)
πj

]
i
=

R∑
j=1

(
γkj + εβkj

)
πj(i).

For metastable systems, the πj are the quasi-stationary
densities on the Ωj (see Section 2.3.1). These take near-zero
values only in the statistically irrelevant border regions
of the aggregates. For i in the ‘‘core aggregates’’, it holds
πj(i) ≫ 0, hence no sign change will occur in these regions.

f course, other circumstances such as particular combinations of
kj and βkj with opposite sign may lead to (29) being fulfilled and
ave to be examined on a case-by-case basis. Overall, however,
e can expect reasonable stability of Algorithm 3.1 with respect
o perturbation of the transition matrix of form (12) if ε is small.

.2. Recovery of the reduced transition matrix

Assume once more that P is an exactly aggregatable matrix,
.e., P = Π P̂Λ. Also assume that we now have knowledge of the
ggregates Ω1, . . . , ΩR, typically obtained by applying Algorithm
.1 to P . We now explain how to compute the reduced transition

matrix P̂ , again using only a sparse, randomly-selected subset of
the columns of P .

Knowing the index sets Ωk ⊂ [N], we first assemble the
aggregation matrix Λ via

Λri :=

{
1 if i ∈ Ωr

0 otherwise,

as well as the diagonal matrix M ∈ RR×R of aggregate cardinali-
ties:

M := diag(m1, . . . ,mR), mr = |Ωr |.

Note that ΛΠ = I ∈ RR×R, and ΛΛ⊺
= M . Hence, if the full

transition matrix P were known, one could recover P̂ by applying
Λ and Λ⊺M−1 from left and right to P:

ΛPΛ⊺M−1 (7)
= ΛΠ

=I

P̂ ΛΛ⊺
=M

M−1
= P̂ . (30)

Alternatively, P̂ can also be recovered by column-normalizing the
matrix ΛPΛ⊺.
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.2.1. Probabilistic matrix recovery
Now suppose that we are again in the situation where assem-

ling the whole matrix P is numerically infeasible, i.e., only a
mall subset of the columns of P can be computed. Let K ⊂ [N]

e an index set with ω(K) = [R] and let the column-subsampled
atrices PK and ΛK be defined as in (1). While K does not need

o coincide with J from Section 3.1 and can trivially be chosen
o fulfill ω(K) = [R] if the Ωr are known, choosing K = J has the
dvantage that no additional computations need to be performed
o compute PK. Applying Λ from the left and Λ

⊺
K from the right

o the column-sparse matrix PK instead of P also recovers P̂:

roposition 3.9. Let kr be number of indices in K that belong to
ggregate Ωr , i.e.,

r = |K ∩ Ωr |.

efine the diagonal matrix K := diag(k1, . . . , kR). Then

PKΛ
⊺
KK−1

= P̂ . (31)

roof. Consider the identity matrix I ∈ RN×N , and IK as defined
y (1). The column-sampled matrix PK can then be written as
K = P · IK. With that and (7), the product in (31) becomes

PKΛ
⊺
KK−1

= ΛΠ
=I

P̂ΛIKΛ
⊺
KK−1.

The assertion follows from the identity ΛIKΛ
⊺
K = diag(k1, . . . ,

kr ). □

Thus, if kr ̸= 0 for all r ∈ [R], then P̂ can be recovered from PK.
gain, in the case where the numerical effort is dominated by the
omputation of the entries of P , being able to restore P̂ from (31)
nstead of (30) provides a computational speedup of factor N/|K|,
as to assemble PK, only |K| columns of P have to be computed.

This leads to the following algorithm for the recovery of P̂:

Algorithm 3.2 Recovery of the reduced transition matrix P̂ .
Input: Aggregates Ω1, . . . , ΩR of P ,

Ability to compute individual columns of the transition matrix
P

1: Choose an index set K ⊂ [N], so that ω(K) = [R].
2: Compute the columns of P with indices in K and assemble the

matrix PK.
3: Assemble the matrices Λ, ΛK and K via

Λri :=

{
1 if i ∈ Ωr

0 otherwise,
(
ΛK

)
ri :=

{
1 if i ∈ Ωr and r ∈ K
0 otherwise,

and
K := diag(k1, . . . , kR), kr := |K ∩ Ωr |.

4: Compute P̂ := ΛPKΛ
⊺
KK−1.

Output: Aggregated transition matrix P̂

3.2.2. Applicability to almost aggregatable Markov chains
We now again consider the case where P is only ε-almost

ggregatable, i.e.,

= P + E, ∥E∥1 ≤ 4ε

here P is aggregatable with P = Π P̂Λ. Like for the recovery
f the aggregates, we want to compute an approximation to the
atrix P̂ by applying Algorithm 3.2 to the perturbed matrix P

(or rather, the column-subsampled matrix PK). The error in that
approximation, dependent on the perturbation ε, is investigated
in this section.
11
We limit the investigation to the situation where the aggre-
gates, hence the matrices ΛK and K , are known exactly. In this
situation, the difference between the computed and the true
reduced transition matrix is given byΛPKΛ

⊺
KK−1

− P̂

1 =

ΛEKΛ
⊺
KK−1


1 ≤

Λ1  
=1

EK1
×
Λ⊺

KK−1
.

For the second factor on the right hand side holds
EK1 ≤E1 ≤ 4ε. The rth column of the matrix Λ

⊺
KK−1 contains kr -

times the value 1
kr
, and only zeros otherwise, hence

Λ⊺
KK−1


1 =

. Overall, we get

ΛPKΛ
⊺
KK−1

− P̂

1 ≤ 4ε.

ence, by applying Algorithm 3.2 to an ε-almost aggregatable P ,
e can expect an L1-error in P̂ of order ε. Notably, this error is
gain independent of the typically large size N of the original
odel.

. Numerical experiments

.1. A generic almost aggregatable process

We consider a 500-state Markov jump process with transition
atrix P that we explicitly construct to be almost aggregatable,

.e., that is close to an aggregatable transition matrix. To this end,
e choose the matrices Λ, Π, P̂ and E so that P := Π P̂Λ is
ggregatable (see Proposition 2.6), E is a matrix with column-sum
ero and ∥E∥1 ≤ ε := 0.1, and P := P + E is a stochastic matrix.
We first subdivide the state space {1, . . . , 500} randomly into

10 aggregates of equal size 50. This defines the matrix Λ. For the
distribution vectors πr ∈ R500, r = 1, . . . , 10, we choose random
distributions with support on the respective Ωr using the method
detailed in [45]. However, in order to avoid the perturbation
effects discussed in Section 3.1.3, we prohibit entries of πr that
re too small and whose signs are thus perturbed too easily.
pecifically, we enforce πr (i) ≥ 0.01 for i ∈ Ωr . This defines the
atrix Π .
The reduced transition matrix P̂ is constructed by randomly

rawing a stochastic 10 × 10 matrix. We make sure here that
he smallest non-zero singular value σ10 of P := Π P̂Λ is not
too small, specifically σ10 ≥ 0.1. The reason is again to avoid
the perturbation effects discussed in Section 3.1.3. The matrix is
shown in Fig. 4(a).

Finally, we randomly draw a matrix E with row-sum zero and
scale it such that ∥E∥1 = 0.1. As E contains negative entries, the
matrix P := Π P̂Λ + E may not be positive, hence no stochastic
matrix. We correct this fact by shifting the entries of P into the
interval [0, 1] and re-normalizing the columns.

The final transition matrix P used for our computations can
be seen in Fig. 2(a). On close inspection, one can see that certain
columns are equal. Indeed, upon sorting the rows and columns
by aggregate number i.e., permuting P such that states of one
aggregate appear in consecutive order, a block pattern becomes
visible (Fig. 2(b)). This pattern bears similarity to the reduced
transition matrix P̂ (Fig. 4(a)). Note that the sorted transition
matrix serves only illustratory purposes, and will not be used in
the following computations.

Computation of the aggregates. We employ Algorithm 3.1 in order
to compute the aggregates of the (unpermuted) transition matrix
P . For this we assume that the number R = 10 of aggregates is
known in advance. We randomly choose an index set J ⊂ [500]
with |J | = 50 (Step 1 of the algorithm). Formula (18) then

predicts a probability of 95% that at least one column from each
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Fig. 2. (a) Full transition matrix P of the almost aggregatable process. (b) Full transition matrix P permuted so that each 50 consecutive columns and rows
orrespond to one aggregate. (c) Subsampled transition matrix PJ . (d) Leading singular values of P and PJ . The spectral gaps after σ10 indicate that both matrices
are approximately of rank 10.
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of the 10 aggregates is included in J . Indeed, the gap after the
singular value σ10 of PJ indicates that all ten aggregates have
been hit.

Next, we assemble the matrix PJ (Step 2 of the algorithm). As
in this example P is fully known in advance its columns do not
have to be computed individually, and we can simply extract the
columns with indices in J from P . The matrix PJ can be seen
in Fig. 2(c). Note that in practical applications, each column of
the transition matrix typically has to be computed individually,
often from costly numerical simulations. In the present example,
the ability to compute the aggregates based on PJ , consisting of
50 non-zero columns instead of P , which consists of 500 non-zero
columns, would therefore yield a computational speedup of factor
10.

Next we compute the leading R = 10 left singular vectors
u1, . . . , u10 of PJ (Step 3 of the algorithm). These vectors, with
the entries sorted again by aggregate number for illustration
purposes, are shown in Fig. 3(a). We observe sharp transitions be-
tween the aggregates, indicating that the singular vectors can in-
deed distinguish the individual aggregates. The irregular pattern
within the individual aggregates is due to the randomly-chosen
distributions πr , and not (primarily) an effect of the random
perturbation E.

Finally, we apply the SEBA spectral clustering algorithm to
u1, . . . , u10 (Step 4 of the algorithm). The output of SEBA are
indicator vectors s1, . . . , s10 ∈ RN , where sr (i) = 1 indicates that
i ∈ Ωr . We see that SEBA is able to correctly identify the aggre-
gate affiliation of all states (Fig. 3(b)), despite the perturbation
E.

Computation of the reduced transition matrix. Once we have com-
puted the aggregates Ω1, . . . , Ω10, Algorithm 3.2 lets us compute
the reduced transition matrix P̂ .

In the first step of the algorithm, we use as the index set K
the same index set that was used for the computation of the
12
aggregates, i.e., K = J . The reason is that this way the already-
computed matrix PJ can be re-used and, due to the success of
Algorithm 3.1 in recovering the aggregates, we can be sure that
ω(J ) = [R]. Hence, the second step of the algorithm, computation
f the non-zero columns of PK, is performed by simply setting
K = PJ .
In the third step, the matrices Λ, ΛK ∈ R10×500 and K ∈

10×10 are assembled, which is trivial under knowledge of the ag-
regates. Finally, in the fourth step, the reduced transition matrix
s computed via the matrix product P̂restored := ΛPKΛ

⊺
KK−1. This

atrix is shown in Fig. 4(b). We observe excellent quantitative
greement with the original reduced transition matrix (Fig. 4(a)).

.2. A discretized metastable Langevin process

As shown in Section 2.3.1, metastable Markov processes repre-
ent an important special case of almost aggregatable processes.
he associated coarse graining procedure is demonstrated by the
ollowing example.

We first consider the time- and space-continuous overdamped
angevin dynamics following the SDE

Xt = −∇V (Xt )dt +

√
2
β
dWt ,

with inverse temperature β , Brownian motion dWt , and the two-
dimensional potential energy function V depicted in Fig. 5(a).
The system’s unique stationary density is the Boltzmann den-
sity π (x) =

1
Z e

−βV (x), where Z is a normalization constant. We
consider the system in the region [−2, 2]2.

The potential has five local ‘‘energy wells’’, and at low enough
temperature every point except those very close to the saddle
points are attracted by exactly one of the wells. Typical trajecto-
ries are ‘‘trapped’’ in these wells for long times before eventually
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Fig. 3. (a) Leading 10 left singular vectors u1, . . . , u10 of the matrix PJ , sorted by aggregate. We see a characteristic jumping pattern between the aggregates. (b)
utput vectors s1, . . . , s10 of the SEBA algorithm applied to u1, . . . , u10 , sorted by aggregate number. We see that they correspond to the indicator functions of the
ggregates, albeit in no particular order. Hence, SEBA is able to correctly identify the aggregates.
Fig. 4. (a) Original reduced transition matrix P̂ that was used to construct the generic almost aggregatable transition matrix P . (b) Reduced transition matrix recovered
from the subsampled transition matrix PJ via Formula (31).
receiving enough energy through the stochastic part of the dy-
namics to jump out. The five segments shown in Fig. 5(a) are thus
metastable.3

To make this system accessible to our framework, we dis-
cretize it in time and space. We first fix an inverse temperature
β and a lag time τ > 0 that is long enough to observe local
equilibration for each starting point (except the saddle points).
Specifically, we choose β = 1, τ = 0.5. Furthermore, we
ubdivide the state space X = [−2, 2]2 into N = 32 · 32 = 1024
oxes B1, . . . , BN of equal size and consider the transition matrix

3 Note that it is in fact debatable here whether the full segments or only the
egions directly around the wells, the so-called core metastable sets [9], should
e considered metastable. While our (see Section 2.3.1) and the original [8]
efinition of metastable systems requires a strict partition of the state space
nto metastable sets, other approaches accept the existence of so-called transition
tates that do not belong to any metastable set and that may possess significant
tatistical weight [40,46].
13
P ∈ RN×N

Pij = P
[
Xτ ∈ Bi

⏐⏐ X0 ∼ 1Bj

]
.

The Markov jump process induced by P is called the Ulam dis-
cretization of Xt . For a discussion on how well it approximates
the original process, see [47]. We expect the metastable sets of
this Markov chain to correspond to the metastable sets of the
continuous process that have been ‘‘discretized’’ over the boxes
(shown in Fig. 5(c)).

We approximate the full transition matrix P column-wise, by
starting M = 105 numerical simulations of length τ in each box
Bj, and counting the transitions to each other box Bi. This is known
as Ulam’s method [12]. To be precise, the (i, j)th entry of P is
approximated by

Pij ≈
1
M

M∑
1Bi

(
Φτ

(m)

(
x(m)
j

))
, (32)
m=1
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Fig. 5. (a) Potential energy function V with five local minima. The dashed lines indicate the borders of the five metastable sets. (b) Leading singular values of the full
transition matrix P . We see a spectral gap after the fifth singular value, indicating that P is approximately of rank 5. (c) Discretization boxes, forming the states of
he discrete Markov process, along with the discrete metastable sets (colored background). The boxes marked in black correspond to the randomly-selected indices
used to generate the column-sparse matrix PJ .
here the x(m)
j , m = 1, . . . ,M are starting points that are

niformly randomly distributed in Bj, and Φτ
(m)(x) is the endpoint

f a numerically-realized trajectory with starting point x, length τ
and random seed m. Of course, the full matrix P is only computed
for comparison and benchmark purposes. For the computation
of the aggregates via Algorithm 3.1, only a sparse subset of the
columns needs to be computed (see below).

The leading singular values of P are shown in Fig. 5(b). The
spectral gap after σ5 indicates that P is approximately of rank 5,
i.e. approximated well by a matrix of rank 5. This is expected, as
the columns of P should consist only of approximations to the
five quasi-stationary densities of the discretized metastable sets.

Computation of the aggregates. We again use Algorithm 3.1 to
approximate the aggregates of P . For the number of randomly
drawn column indices J , we choose J = 25. By Formula (16), this
will guarantee a probability of 95% to sample all five metastable
sets, i.e., ensure span(PJ ) ≈ span(P). The boxes corresponding to
our randomly-drawn indices are illustrated in Fig. 5(c).

The leading five left singular vectors u1, . . . , u5 of PJ are
shown in Fig. 6(a). Applying the SEBA spectral clustering algo-
rithm to u1, . . . , u5 identifies aggregates that correspond very
well to the core metastable sets of the original continuous process
(Fig. 6(b)).

Note however that the outer and the transition regions have
not been included in the metastable sets. This is an effect of
the singular vectors being almost zero in these regions, and the
SEBA algorithm omitting such regions for stability reasons. These
almost-zero regions are of little statistical importance, and we
will see in the next section that omitting them has practically
no consequence when recovering the reduced transition matrix.
Moreover, the recovery of only the core metastable sets can also
be seen as advantageous, due to the aforementioned ambiguity
in the definition of metastability.

Computation of the reduced transition matrix. As a benchmark,
we first compute the exact reduced transition matrix P̂ via For-
mula (30), i.e., using the full transition matrix P , and an aggrega-
tion matrix Λ that was assembled using the analytically-known
metastable sets from Fig. 5(c). The result is shown in Fig. 7(a).

We compare it to P̂ computed via Formula (31). For this we
use only the column-subsampled transition matrix PK (where we
again choose K = J ). Furthermore, the aggregation matrix Λ

was assembled using the aggregates that were computed in the
previous section. The resulting matrix is shown in Fig. 7(b). We
observe good element-wise agreement. Likewise, a comparison of
the eigenvalues of the two matrices (Fig. 7(c)) shows very good
quantitative agreement.
14
Computational effort. For Algorithm 3.1, only the J non-zero
columns of the matrix PJ are required, thus MJ simulations have
to be performed. As we have chosen K = J no additional simu-
lations have to be performed for the computation of the reduced
transition matrix. Compared to the MN simulations necessary to
assemble and analyze the full transition matrix P , this represents
a speedup of factor N/J , or about 41 in our example.

4.3. Aggregation of Manhattan taxi trips

We now demonstrate that the method can be successfully
applied to real-life data sets that only loosely fulfill the analytic
requirements of aggregability. For this, we analyze a record of
1.1 · 107 taxi trips performed in and around Manhattan island in
January 2016. The data was released by the NYC Taxi & Limousine
Commission and is freely available under [48]. In particular, the
data contains the start- and end time of trips, as well as the
geographical coordinates of the entry and exit points. We investi-
gate whether our method can aggregate Manhattan into disjoint
regions based on patterns in the destination of trips taken in the
morning. The same data set was analyzed in [49] with the same
goal but using a different methodology.

We divide the relevant region into a square grid of a total of
3150 boxes and sort the data points into the boxes according to
the trip starting location. Hereby, only trips beginning between
6:00 AM and 11:59 AM are considered. Subsequently, boxes with
less than 1000 points are discarded for stability reasons. On
the remaining 601 boxes, we assemble a transition matrix P ∈

R601×601. The duration of the individual trips is ignored, i.e., in
our model, each trip takes one unit of time to complete.

Following the argumentation of Liu et al. [10], we assume that
the Markov chain induced by P is a good model for the under-
lying ‘‘taxi commuter dynamics’’ of Manhattan. Furthermore, we
conjecture that this dynamics indeed fulfills the lumpability and
deflatability prerequisites of our method, at least approximately,
and we will give speculative justifications below. Note however
that we will neither analytically nor empirically verify the justi-
fications; rather, they should only provide a sufficient reason for
heuristically applying our new method.

For one, it is plausible that for two starting boxes inside a
sufficiently homogeneous district, the probabilities to journey
to another district are almost identical. For example, for start-
ing boxes from a specific residential district, the probabilities
to journey to a nearby commercial district may be uniformly
high, whereas the probabilities to journey to some other resi-
dential district may be uniformly low. This would imply (almost)
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Fig. 6. (a) Leading five singular vectors of PJ . (b) Output vectors of SEBA clustering applied to the singular vectors. The cores of the metastable sets are clearly
recognizable.
Fig. 7. (a) Exact reduced transition matrix P̂ , computed with exactly-known aggregates and the full transition matrix P via (30). (b) Our approximation to P̂ , computed
via (31) with aggregates approximated via Algorithm 3.1 and with the sparse transition matrix PK . (c) Leading five eigenvalues of the full transition matrix, the
exactly-computed reduced transition matrix, and our approximation to the reduced transition matrix.
lumpability of the Markov chain, with the aggregates being the
respective districts.

At the same time, one can conjecture that the probability to
journey to a specific box inside a destination district is deter-
mined mainly by some distribution on the destination district
itself, and not so much be the exact starting box. Again using
the example of a morning commute from a residential to a
commercial district, workers from each starting box (which at
our resolution covers multiple blocks) may ‘‘spread out’’ over the
entire commercial district according to a certain distribution that
reflects the density of businesses inside the commercial district.
Hence the probability to journey from box i in the residential dis-
trict to box j in the commercial district is given by the probability
to journey from i to the commercial district in general, multiplied
by the value of the aforementioned distribution at j. This is the
alternate definition of (almost) deflatability (4), again with the
districts as the aggregates.

Note that metastability on the other hand is not necessarily
a reasonable assumption here, as very short trips within districts
could be covered by other means of transportation, such as walk-
ing or biking. Fig. 8(a) shows the leading singular values of P .
While P is far from low-rank, we do observe a spectral gap after
σ4, indicating the existence of four aggregates. We thus choose
R = 4 for the following aggregation procedure. Note however,
since this estimation is based on the SVD of the full transition
matrix, we essentially require R = 4 to be known in advance.

Computation of the aggregates. We now employ Algorithm 3.1
in order to compute the leading singular vectors of P based
on a sparse column sampling. Subsequently, we apply the SEBA
algorithm to the sign structure of the four leading singular vectors
in order to extract the aggregates. Application of SEBA to the
15
sign structure instead of the raw singular vectors counteracts
the tendency of SEBA to omit the border regions of aggregates.
However, it also results in slightly more noisy aggregates, as
boxes with low singular vector absolute value, i.e., high potential
for erroneous assignment, are ‘‘forced’’ an assignment.

For the column sample size, we choose J = 50, which by (18)
results in a near 100% chance to hit all aggregates (p > 0.99).
However, in this practical example it is somewhat questionable
whether the a-priori assumption that all aggregates have ex-
actly the same size really holds. Hence, a comparatively large
value of J was used here to compensate for possible inaccuracies
of Eq. (18). The boxes corresponding to the uniformly randomly-
selected columns J are shown in Fig. 8(b). Fig. 9(a) shows the
result of the algorithm. The individual aggregates are (for the
most part) connected and approximately correspond to Lower
Manhattan (Aggregate 1), Midtown Manhattan (Aggregate 2),
Upper West Side (Aggregate 3) and Upper East Side (Aggregate
4). The former two consist of mostly commercial and manufactur-
ing districts, but also contain smaller residential neighborhoods,
whereas the latter two contain mainly residential districts [50].
Despite being based on less that one-tenth of the data, our results
are in excellent qualitative agreement with the analysis of Zhu
et al. [49, Figure 3]. We also observe good agreement with the
aggregates computed from the full transition matrix P (Figure),
although there appears to be one systematic difference (Aggre-
gate 4 seems to have ‘‘shifted down’’ into Aggregate 2). This may
however again be an artifact of the unconventional application
of SEBA, as the difference disappears when applying SEBA to the
singular vectors directly.

Computation of the reduced transition matrix. We proceed to com-
pute the reduced transition matrix P̂ using the method detailed in
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Fig. 8. (a) Leading singular values of the full transition matrix P and the subsampled matrix PJ . Note that the slight spectral gap of P after σ4 essentially vanished
under subsampling. (b) Boxes of the discretization with more than 1000 trips, forming the states of our Markov chain. Boxes selected for the aggregation algorithm
are marked in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. (a) Aggregates identified by Algorithm 3.1. Note that the SEBA algorithm may fail to assign a state to an aggregate, so the aggregates do not form a full
partition. (b) Aggregates identified by spectral clustering of the singular vectors of the full transition matrix P .
ection 3.2, where we use the same randomly-selected columns
f P as for the aggregate computation, i.e., K = J . The transition
atrix, shown in Fig. 10(a), confirms the suspected roles of the

dentified zones: We see that taxi trips from commercial areas
Aggregates 1 & 2) to the residential areas (Aggregates 3 & 4) are
ery rare in the morning. Midtown on the other hand appears to
e the primary destination for commuters from Lower Manhattan
nd Upper East Side, which is explained by its status as the
entral business district of the city. The only surprise here is that
pper East Side seems to be a (slightly) more popular commuting
estination than Midtown for residents of Upper West Side. One
ossible explanation is that the commercial north eastern parts
16
of Midtown were assigned to the Upper East Side aggregate by
our algorithm, and that Upper West Side residents might be
commuting to this area. The reader should also be aware that this
interpretation describes taxi commuters only, which may follow
different and possibly unintuitive dynamics compared to general
commuters.

Moreover, we observe moderately high metastability of all the
aggregates (i.e., many trips begin and end in the same aggregate)
which indicates that in Manhattan, even short journeys are often
performed by taxi.

Finally, the comparison of the leading four eigenvalues of the
full (i.e., 601 × 601) and the reduced (i.e., 4 × 4) transition
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Fig. 10. (a) Reduced transition matrix computed via (31). (b) Leading eigenvalues of the full vs. the reduced transition matrix.
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atrices confirms that the reduced Markov chain captures the
ominant processes of the full chain very well (Fig. 10(b)).

. Conclusions

In this article, we derived a data-driven model reduction al-
orithm for large-scale Markov chains. Crucially, the number
f columns of the transition matrix required by the algorithm,
.e., the number of states for which the outgoing transition prob-
bilities have to be known, depends only on the size of the
educed model, not the full model. We have demonstrated that in
pplications where the computation of the transition matrix is the
omputational bottleneck, this can easily lead to a speedup of fac-
or 10 or more over conventional model reduction algorithms. In
certain sense, the new method is able to circumvent the curse of
imensionality in model reduction in a similar way that methods
rom compressed sensing can circumvent the Nyquist–Shannon
ampling theorem in signal processing and -compression.
In order to achieve this, the algorithm exploits a specific low-

ank structure in the system’s transition matrix. This low-rank
tructure has been shown to be induced by two natural similarity
onditions in the inflow and outflow probabilities of the states.
e have argued that these conditions are readily justifiable for
broad range of Markov chains for which the existence of a re-
uced chain can be expected. Importantly, the class of metastable
arkov chains fulfills these conditions. Moreover, in case where

he formal conditions are only approximately fulfilled, we have
hown that the error in the reduced model is of the same order
f magnitude as the perturbation, and again is independent of the
ize of the full chain.

uture work. We expect the new method to be applicable to
wide variety of Markov chains that are suspected to possess
n underlying low-rank structure. Moreover, the central require-
ents of our method, lumpability and deflatability, seem to be

eadily transferable to time- or space-continuous Markov models.
or example, the recently-introduced class of continuous dy-
amical systems that possess a so-called transition manifold is
haracterized by the fact that its transition probability functions
luster around a low-dimensional manifold in a certain function
pace [51]. We expect this defining property to be connectable to
continuous version of lumpability and deflatability.
One tempting application of the new method is the conforma-

ion analysis of large biomolecules. However, as the dimension of
he underlying continuous system ranges in the order of 102 to
05, the simple box-based Ulam discretization from Section 4.2
eads to difficulties. The first hurdle is to represent and address
he sheer amount of boxes numerically, which however can be
vercome by clever indexing. A bigger problem is that in this

cenario, the number of boxes forming even the core metastable t
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sets is higher than any practicable number M of numerical sim-
lations one would be able to perform. Thus, the simple Monte
arlo procedure detailed in (32) is unsuited to accurately ap-
roximate the transition distributions P[:,j], as many boxes of the
ore metastable sets would not get hit by trajectories. A possible
olution would be to utilize smooth ansatz functions with global
upport instead of characteristic functions over boxes in (32), for
xample, via a meshfree Galerkin approximation method [52].
his way, each performed simulation contributes to estimating
he prefactor of multiple (or possibly all) ansatz functions. It is
owever unclear if the Markov chain arising as discretization on
uch ansatz functions still exhibits lumpability and deflatability.
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ppendix. Proof of Theorem 2.10

In order to show that almost aggregatable matrices are close
o aggregatable matrices in the L1 matrix norm, we proceed as
ollows: first, we show that almost aggregatable matrices fulfill an
pproximate version of state-wise lumpability. We then proceed

o show that P is indeed close to a lumpable matrix L(P), and
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lose to a deflatable matrix D(P). The final part of the proof then
onsists of showing that the matrix D

(
L(P)

)
is both lumpable and

deflatable, and ε-close to P .

Lemma A.1. Let P be ε-almost aggregatable with respect to (Ω, π ).
ThenP[:,j] − P[:,k]


1 ≤ 3ε for all j, k ∈ [N] with ω(j) = ω(k). (33)

Proof. We have∑
i∈[N]

⏐⏐Pij − Pik
⏐⏐ ≤

∑
i∈[N]

⏐⏐⏐Pij − πω(i)(i)
∑

l∈Ωω(i)

Plj
⏐⏐⏐

+

∑
i∈[N]

⏐⏐⏐πω(i)(i)
∑

l∈Ωω(i)

Plj − πω(i)(i)
∑

l∈Ωω(i)

Plk
⏐⏐⏐ (⋆)

+

∑
i∈[N]

⏐⏐⏐πω(i)(i)
∑

l∈Ωω(i)

Plk − Pik
⏐⏐⏐

The first and third summands are each less than ε, due to P being
ε-almost deflatable. For the second summand we get, by splitting
the outer sum into the sums over the individual aggregates,

(⋆) =

∑
r∈[R]

∑
p∈Ωr

⏐⏐⏐πω(p)(p)
∑

l∈Ωω(p)

(
Plj − Plk

)⏐⏐⏐
=

∑
r∈[R]

∑
p∈Ωr

(
πr (p)

⏐⏐⏐∑
l∈Ωr

(
Plj − Plk

)⏐⏐⏐)
=

∑
r∈[R]

⏐⏐⏐∑
l∈Ωr

(
Plj − Plk

)⏐⏐⏐ · ∑
p∈Ωr

πr (p)  
=1

≤

∑
i∈[N]

⏐⏐Pij − Pik
⏐⏐ ≤ ε,

where the last inequality holds due to P being ε-almost
lumpable. □

We call condition (33) 3ε-almost state-wise lumpability of P
with respect to Ω .

Lemma A.2. Let P be ε-almost state-wise lumpable with respect
to Ω . Define the lumping operator L : RN×N

→ RN×N by

L(A)ij :=
1

mω(j)

∑
l∈Ωω(j)

Ail.

hen L(P) is a transition matrix that is state-wise lumpable with
respect to Ω and it holds

P − L(P)

1 ≤ ε.

roof. All columns of L(P) that belong to one aggregate are
identical, hence L(P) is state-wise lumpable.

Moreover, L(P) is a column-stochastic matrix:∑
∈[N]

L(P)ij =

∑
i∈[N]

1
mω(j)

∑
l∈Ωω(j)

Pil =
1

mω(j)

∑
l∈Ωω(j)

∑
i∈[N]

Pil  
=1

=
1

mω(j)

∑
l∈Ωω(j)

1 = 1.

Finally, it holds for all j ∈ [N]

P[:,j] − L(P)[:,j]

1 =

∑⏐⏐⏐Pij − 1
mω(j)

∑
Pil
⏐⏐⏐
i∈[N] l∈Ωω(j)
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=

∑
i∈[N]

⏐⏐⏐ 1
mω(j)

∑
l∈Ωω(j)

(
Pij − Pil

)⏐⏐⏐
≤ max

l∈Ωω(j)

∑
i∈[N]

⏐⏐Pij − Pil
⏐⏐

≤ ε.

n the last inequality we used the definition of ε-almost state-
ise lumpability. This implies ∥P − L(P)∥1 ≤ ε. □

emma A.3. Let P be ε-almost deflatable with respect to (Ω, π ).
efine the deflating operator D : RN×N

→ RN×N by

(A)ij :=

( ∑
l∈Ωω(i)

Alj

)
· πω(i)(i).

hen D(P) is a transition matrix that is deflatable respect to (Ω, π ),
nd it holds

P − D(P)

1 ≤ ε.

roof. By construction, D(P) fulfills condition (4), hence is de-
latable. Further, as condition (9) holds for P , we have

P[:,j] − D(P)[:,j]

1 ≤ ε for all j ∈ [N].

his in turn implies
P − D(P)


1 ≤ ε.

It remains to show that D(P) is indeed a column stochastic
atrix. This follows from∑

∈[N]

D(P)ij =

∑
i∈[N]

( ∑
l∈Ωω(i)

Plj
)

· πω(i)(i)

=

∑
r∈[R]

∑
k∈Ωr

( ∑
l∈Ωω(k)

Plj
)

· πω(k)(k)

=

∑
r∈[R]

∑
k∈Ωr

(∑
l∈Ωr

Plj
)

· πr (k)

=

∑
r∈[R]

(∑
l∈Ωr

Plj
)∑

k∈Ωr

πr (k)  
=1

=

∑
i∈[N]

Plj = 1. □

Combining these three auxiliary results allows us to show
Theorem 2.10:

Proof of Theorem 2.10.
Because P is ε-almost aggregatable, P is 3ε-almost state-wise

lumpable (Lemma A.1). Thus, due to Lemma A.2, L(P) is a 3ε-
lmost state-wise lumpable transition matrix, and

P − L(P)

1 ≤ 3ε.

oreover, L(P) is ε-almost deflatable, i.e., (9) is fulfilled for L(P):∑
∈[N]

⏐⏐⏐L(P)ij − ( ∑
l∈Ωω(i)

L(P)lj
)
πω(i)(i)

⏐⏐⏐
=

∑
i∈[N]

⏐⏐⏐ 1
mω(j)

∑
k∈Ωω(j)

Pik −

( ∑
l∈Ωω(i)

1
mω(j)

∑
k∈Ωω(j)

Plk
)
πω(i)(i)

⏐⏐⏐
=

∑
i∈[N]

⏐⏐⏐ 1
mω(j)

∑
k∈Ωω(j)

Pik −
1

mω(j)

∑
k∈Ωω(j)

( ∑
l∈Ωω(i)

Plk
)
πω(i)(i)

⏐⏐⏐
≤

1
mω(j)

∑
i∈[N]

∑
k∈Ωω(j)

⏐⏐⏐Pik −

( ∑
l∈Ωω(i)

Plk
)
πω(i)(i)

⏐⏐⏐
=

1
mω(j)

∑
k∈Ωω(j)

∑
i∈[N]

⏐⏐⏐Pik −

( ∑
k∈Ωω(i)

Plk
)
πω(i)(i)

⏐⏐⏐
  

= (⋆).
=:(⋆⋆)
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B

(

∥

ecause P is ε-almost deflatable, we have (⋆⋆) ≤ ε, hence

⋆) ≤
ε

mω(j)

∑
k∈Ωω(j)

1 = ε.

Therefore, due to Lemma A.3, D
(
L(P)

)
is a ε-almost deflatable

transition matrix, and it holdsL(P) − D
(
L(P)

)
1 ≤ ε.

Define P := D
(
L(P)

)
and E := P − P . Then

E∥1 =
P − D

(
L(P)

)
1 ≤

P − L(P)

1  

≤3ε

+
L(P) − D

(
L(P)

)
1  

≤ε

≤ 4ε. □
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