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1 Introduction 
 

1.1   Motivation: Cellular Delivery of Proteins  

 

Proteins offer an incredible diversity in form and function. Enzymes, nature’s biological 

catalysts, enable life itself. Today, proteins can even be created de novo with entirely new 

functions1. Unlike drugs and drug-like molecules however, proteins are somewhat limited in 

their potential by their large size and hydrophilicity, two properties which generally render them 

cell impermeable. What is, under normal circumstances, an important feature in the 

compartmentalization of living organisms into cells and subcellular organelles, can become a 

problem when a protein is dysregulated, dysfunctional or missing entirely.  

 

In these cases, the delivery of functional proteins into cells has immediate therapeutic 

potential2, for example in the treatment of protein deficiencies like Rett syndrome3. The advent 

of protein-based DNA-editing approaches such as CRISPR-Cas4 holds promise for ex vivo cell-

based therapies, in vivo genome-editing, and a limitless array of research applications5 – if the 

biomolecules involved can be delivered. Antibodies, a class of proteins that has become crucial 

in fundamental biological research, are also typically limited to extracellular applications6,7. The 

delivery of antibodies, which can be raised against virtually any target and are therefore reliable 

targeting agents and inhibitors, has tremendous potential for therapeutic and research 

applications8,9. 

 

Several methods already exist for the cellular delivery of biomolecules, each with their own 

advantages and disadvantages10,11. A particular challenge in the delivery of proteins is also the 

delivery to the correct subcellular compartment. During delivery proteins can become trapped 

in endosomes or lysosomes, which will lead to their degradation12.  

 

The ideal method of protein delivery would therefore: 

o be simple to use and scalable 

o be applicable to any given cargo and cell system 

o be specific to a certain type of cell or target 

o be traceless such that the protein is restored to its original state once delivered 

o not be harmful to the cell or organism 

o lead to delivery of the protein to its intended location10,11,13,14. 
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1.2  The Cell Membrane 

 

In general, when considering the delivery of proteins into mammalian cells, the obstacle to 

overcome is the cell membrane. The cell membrane, or plasma membrane, consists of a 

phospholipid bilayer made up out of three major classes of lipids: glycerophospholipids, 

sphingolipids and cholesterol15. The formation of this bilayer is a direct consequence of the 

structures of lipids that possess a hydrophobic and hydrophilic moiety, which will arrange 

spontaneously into bilayers in aqueous medium16. The plasma membrane has a width of 

approximately 5 nanometers. Lipids are distributed asymmetrically and are in constant motion, 

both laterally as well as trans-bilayer. Because of this motility, the original model of plasma 

membranes pioneered by Singer and Nicolson is called the “fluid mosaic” model17.  

 

Since their original model, the general understanding of the structure of membranes has 

changed much, although the changes were mostly focused not on lipids, but rather on the 

protein components of membranes18. In the original model, transmembrane proteins played a 

minor role, but more recent research has shown that they occur rather frequently, with a 

protein:lipid ratio of approximately 1:4019. Moreover, transmembrane and membrane-anchored 

proteins often have very bulky protein domains on the surface of the cell. Proteins have also 

been found to attach to membranes transiently20. They can also themselves reorganize the 

bilayer through protein-protein and protein-lipid interactions21 and several specific interactions 

of proteins with lipids have been described22. 

 

Additionally, many membrane proteins are proteoglycans, meaning they carry complex 

carbohydrate chains such as heparan sulfate, which also shape the surface of the plasma 

membrane23. These carbohydrate chains mediate cell-cell recognition and many other 

intercellular activities including infection by bacteria and viruses24. The negative charge of 

many proteoglycans is also often made responsible for the effective binding of positively 

charged molecules to the surface of the cell25-27. 

 

The basic function of the cell membrane is to physically separate intracellular components 

from extracellular environment. However, it is evident that for cells to function, transport of 

molecules across the cell membrane must occur. Various types of molecules cross the 

membrane in different ways. Typically, smaller and more hydrophobic molecules can diffuse 

across the cell membrane passively, driven by electric and concentration gradient of the 
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solute28. As it is of great significance in pharmacology and drug development, much research 

has been done into understanding and predicting the membrane permeability of given 

molecules29. Several parameters that are important for cellular permeability have been 

determined, famously summarized in Lipinski’s “rule of 5” and other rulesets, although not all 

compounds comply with these parameters and behave as predicted30.  

 

The cellular entry of molecules that do not permeate passively is accomplished through active 

transport, mediated by membrane transporters. It is estimated that around 10% of human 

genes are related to transporters, which shows how significant these proteins are31. Active 

transport is complex, and there are many pathways into the cell32,33. For larger molecules, 

active transport generally results in the inclusion of a transported cargo into a vesicle, and the 

eventual delivery of the cargo into lysosomes for degradation34. Because of this, successful 

delivery of proteins into the cytosol of cells requires specialized methods11,14,35,36. 

 

 

1.3  Methods for the Cellular Delivery of Proteins 

 

A variety of methods has been established to transport cargoes across the cell membrane. 

They can be broadly divided into five categories: physical methods, nanocarriers, endosomal 

escape, cell-penetrating peptides, and other methods.  

 

1.3.1 Physical Methods 

 

Physical methods of biomolecule delivery generally rely on the temporary disruption of the cell 

membrane, after which the cellular uptake of biomolecules into the cell can occur through 

simple diffusion. Ideally, the uptake of the biomolecule of interest is followed by the quick 

recovery of the cell membrane before the cell is damaged. Over the years, many methods for 

the disruption of biomembranes have been developed13,37.  

 

Being over 100 years old, microinjection is likely the first ever method to provide intracellular 

delivery of biomolecules38. Conceptually, microinjection is very simple: a capillary is inserted 

into the cytosol or nucleus of a cell, and a biomolecule is injected through it (figure 1a). In 

practice however, microinjection is very laborious, as only one cell at a time can be injected, 

which typically limits the scale of experiments to a few hundred cells39. Because of this, the 
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most important development in the field of microinjections has been the automation and 

standardization of the cell preparation and injection processes, which can greatly improve the 

throughput of the method40-42. Nevertheless, microinjection also requires very specialized 

equipment.  

 

 

Figure 1. Selected physical methods for protein delivery into cells. a, For microinjection, a 

capillary is inserted into the cytosol or nucleus of the cell and the cargo is injected. b, In 

electroporation an electric field is applied to a cell suspension, leading to the formation of pores 

in the cell membrane. c, Cells are squeezed through a constriction using an applied flow, 

leading to the deformation of the membrane.  

 

The most popular physical method to ensure protein delivery is electroporation. The physical 

principle underlying electroporation is that cell membranes maintain an electrical potential 

between the cytosol and the extracellular environment. By applying a potential difference 

across that membrane, the membrane forms small openings (pores) to compensate. The cargo 

that one wants to deliver can then diffuse through these openings into the cell (figure 1b). An 

inherent problem with electroporation-type approaches is the heterogeneity of 

permeabilization, making it difficult to control the amount of cargo delivered43. Miniaturized 

electroporation approaches such as microelectroporation and nanoelectroporation promise to 

improve on this by performing electroporation in smaller scales. These approaches have a 

much higher level of control of the membrane disruption; however the throughput of the 

methods is reduced in turn, although recent methods try to overcome this using 

microfluidics44,45. 

 

A more modern, physical approach to cargo delivery is cell squeezing46. This is a microfluidic 

approach that relies on the deformation of cells as they pass through a constriction (figure 1c). 

The shear forces result in deformation of the membrane, generating transient holes into the 

cytosol46. In contrast to the aforementioned methods, cell squeezing is both high throughput 

(1’000’000 cells per second) and can be used to deliver well defined concentrations of cargo47. 
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While cell squeezing also promises to be less harmful to cells than electroporation48, it is still a 

relatively new method that requires specialized equipment and has yet to establish itself as a 

contender.  

 

There are also many other physical methods to disrupt the lipid bilayer, such as scrape 

loading49, sonoporation50 and chemical detergents51. The inherent problem with nearly all 

physical delivery methods is that that membrane disruption can lead to toxicity and leakage of 

the cellular interior. Also, physical delivery methods are limited to in vitro or ex vivo 

applications13. However, when it comes to throughput and reliability, these methods have made 

tremendous progress and there is still much potential for this field to grow and develop further.  

 

 

1.3.2 Nanocarrier-mediated Delivery 

 

There are many kinds of nanocarriers that have been developed for various kinds of 

applications in science and therapy52,53. The great potential of nanocarrier-mediated delivery 

lies in the tunability of their properties for their applications in different fields14,54. Proteins can 

be loaded onto nanocarriers in many ways, and the nanocarriers can enter cells through 

different pathways as well55. 

 

Liposomes are perhaps the most widely used nanocarriers in the delivery of therapeutic 

proteins and antibodies56,57. Liposomes consist of a lipid bilayer that is often positively charged 

on the surface, thereby binds to cell-membranes and is endocytosed. An advantage of using 

liposomes is that the lipid bilayer will shield the cargo from extracellular proteases, making it a 

promising approach for in vivo applications. Proteins can be loaded into these cationic 

particles, for example through fusion to a super-negatively charged protein domain (figure 

2a)58. The uptake into cells then typically occurs through endocytosis, and liposomes can fuse 

or destabilize the endosomal membrane to release the cargo into the cytosol58. Despite this 

straightforward concept, this process can be inefficient, and cargo can remain trapped in 

endosomes. Still, approaches which improve upon this endosomal escape exist59.  

 

To circumvent endosomal entrapment entirely, fusogenic liposomes were developed. These 

liposomes can fuse with the cellular plasma membrane and deliver the liposomal content 

directly into the cytoplasm60,61. While quite efficient, it was originally only possible to load 
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negatively charged cargoes into the cationic liposomes, as electrostatic repulsion would 

prevent cationic cargoes from being loaded. To overcome this, it was shown that it is possible 

to incorporate mesoporous silica nanoparticles that bind to proteins into fusogenic liposomes62. 

 

 

Figure 2. Selected nanocarrier-based methods for protein delivery. a, Delivery based on 
cationic liposomes with negatively charged cargo loaded into the liposome. b, Gold 
nanoparticle functionalized with cationic headgroups in the delivery of an anionic protein cargo. 
c, Cargo delivery by encapsulation into a virus-like-particle.   
 

Exosomes are naturally occurring, secreted vesicles that can transport macromolecules 

between cells63. Because they are a naturally occurring mechanism, they are a promising 

avenue to protein delivery in vivo64,65. However, loading exosomes with a protein of interest has 

proven difficult. A chosen protein cargo can be fused to a protein that naturally occurs in 

exosomes to generate exosomes with the cargo inside it, but this limits the breadth of proteins 

that can be loaded66. A more sophisticated approach uses a light-triggered protein interaction 

to recruit proteins into exosomes, at which point the interaction can be removed again for 

cargo release67. It is also possible to load isolated exosomes with exogenous cargo, although 

this process seems to be inefficient68. 

 

Completely synthetic polymer species can also be used to deliver proteins into cells. For 

example, polysaccharides and nanogels have been used for this purpose69,70. However, the 

cellular uptake of polymers is mostly through endocytosis, and cargo will thus generally remain 

trapped in endosomes71. One notable exception to this are cell-penetrating-polydisulfides 

(CPDs), which contain positively charged guanidinium head groups like polyarginine peptides 

but in which the backbone linkage consists of disulfides. These polymers can reportedly deliver 

a cargo directly in the cytosol and are de-polymerized by reduction with intracellular 

glutathione. Since it was not possible to generate the polymer directly on a protein cargo, 

conjugation of the cargo to the polymer had to be done using affinity tags such as biotin and 

streptavidin72. In a new approach these tags could be removed once inside the cell, improving 

the method somewhat73. 
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Alternatively protein cargoes can be conjugated to carbon nanotubes for cellular delivery. By 

using biotin-conjugated nanotubes, it was possible to deliver fluorescently labelled streptavidin 

into cells71. In this first report, however, cargoes were also trapped in endosomes after delivery, 

although other reports exist in which cargoes reach the cytosol74. More recent reports include 

light-cleavable protein-nanotube conjugates that can be used to deliver proteins into the 

nucleus of cells and can even be used in vivo75. 

 

Gold nanoparticles have been widely used in drug delivery approaches76. In protein delivery, 

the surface of the gold nanoparticles can be tailored to suit the cargo, such as cationic 

sequences binding to the enzyme β-galactosidase (figure 2b)77. The resulting delivery is then 

often a mixture of cytosolic and endosomal uptake. To improve upon this concept, gold 

particles can be incorporated into so-called nanoparticle-stabilized capsules (NPSCs) which 

contain a fatty acid interior that can fuse with cell membranes to deliver proteins directly into 

the cytosol78,79. 

 

Virus-like-particles (VLPs) are based on the self-assembly of viral coat proteins. From different 

viral origin exist different coat proteins with different structures and functionalities. The protein 

cargoes can usually be recombinantly expressed as fusions to a viral protein and thereby 

loaded into the viral capsid (figure 2c)80,81. A newer method in which the surface of the particle 

expresses an antibody-binding domain has even been used to deliver antibodies into cells82. 

All VLP-based approaches, like many other methods, show a mixture of cytosolic delivery and 

endosomal entrapment. 

 

In summary, nanoparticle-based delivery approaches often struggle with achieving cytosolic 

delivery without endosomal entrapment. Due to their flexibility and tunability however, these 

approaches can often be combined with triggers for efficient endosomal release83. 

 

 

1.3.3 Endosomal Escape 

 

A very attractive way to ensure the delivery of biomolecules into cells is endosomal escape. 

Endocytosis is the major way for cells to take up macromolecules and loading cargoes into 

endosomes is relatively straightforward84. For example, modification of proteins with folic acid 
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leads to their uptake into endosomes via receptor-mediated endocytosis85. Endosomes are, 

however, also loaded with proteases and acidify over time to digest any proteins within86, so 

escape of the cargo must be quick. 

 

Anthrax toxin is a secreted, multi-protein complex from the bacterium Bacillus anthracis. It 

contains the protective antigen (PA) protein, that can bind to cell-surface receptors, 

oligomerize and, after uptake into endosomes and acidification, form a channel through the 

endosomal membrane and release the lethal and edema factor proteins into the cytosol87. This 

is a promising system to hijack for intracellular protein delivery, since every step can be 

modified to suit the application88. For example, a linker on the protective antigen must be 

cleaved by the ubiquitous protease furin before binding to the cell membrane. By exchanging 

this linker to be cleavable by matrix metalloproteases that are overexpressed on cancer cells, 

specific cell killing could be achieved89. Exchanging the delivered lethal and edema factor 

proteins for a cargo of choice is simple and can be achieved by recombinant expression of the 

cargo of interest fused to the N-terminal domain of the lethal factor90. Small, linear peptide 

cargoes are easy to transport, although more bulky constructs cannot pass through the pore 

generated by the protective antigen91. Proteins such as antibody mimics have also been 

delivered into cells using anthrax toxin, although such uptake requires the unfolding and 

subsequent refolding of the proteins92. 

 

Instead of using a rather complex protein system, several peptide-based approaches to get 

cargoes from endosomes into the cytosol have been developed. GALA is a 30-mer peptide 

with a glutamic acid-alanine-leucine-alanine repeat. It was designed with two criteria in mind: 

enough length to span a lipid bilayer, and a low-pH mediated trigger where at neutral pH GALA 

does not bind membranes but does so at pH 593. GALA is unstructured at neutral pH but can 

take on an α-helical structure at the lower endosomal pH and insert into the membrane to form 

a channel. However, one major drawback of GALA is that due to its negative charge, efficient 

delivery requires complex formation with a cationic lipid that will bind to the cell94. The 

combination of GALA with a cationic lipid has been used to deliver proteins into the cytosol 

that were trapped in endosomes in absence of the peptide (figure 3)95. 
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Figure 3. Delivery of cargo-GALA conjugates in combination with cationic lipids. The conjugate 
forms complexes with the cationic lipid that are taken up into endosomes. Through acidification 
of the endosome, the GALA peptide is protonated and becomes helical (not shown), allowing 
insertion into the membrane, formation of a pore and release of the cargo into the cytosol.   
 

More recently, a 13 amino acid long peptide named aurein 1.2 was discovered that could also 

efficiently release proteins from proteins into the cytosol. To achieve efficient delivery, cargo 

proteins had to be fused to a supercharged mutant of GFP that contains a net 36 positive 

charges96. The peptide showed relatively high cytotoxicity but could be applied to the delivery 

of the gene-editing enzyme Cre recombinase in a mouse model.  

 

To circumvent the issues with negatively charged peptides, a new endosomolytic peptide was 

developed originating from a spider toxin. The peptide is named “L17E” after the mutation that 

sets it apart from the M-lycotoxin peptide that it is based on. It was designed with a helical 

structure, with a cationic face and an anionic face that contains a single negatively charged 

amino acid that would be protonated to be more hydrophobic in endosomes97. This protonation 

was proposed to lead to endosomal rupture. Indeed, it could successfully be used in the 

delivery of several cargoes, including intact IgG antibodies into cells by simple co-incubation 

of the cargo with the peptide. Recently, however, it was suggested that the peptide may in fact 

not lead to endosomal rupture at all, but instead induce membrane ruffling that leads to direct 

cytosolic uptake of cargoes98.  

 

Other endosomal escape peptides have also been obtained through rational design. Notably, 

cyclization of an amphipathic arginine-rich peptide conferred efficient endosomal escape 

activity to it99. It could later be shown that this cyclic peptide escapes from early endosomes 

and does not require endosome acidification100. The peptide was also able to transport EGFP 

and a phosphatase into the cytosol of HeLa cells. 
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An interesting finding in this context is that Tat, a cell-penetrating peptide with an affinity for 

biomembranes (see 1.3.4.1 for a detailed description of the peptide) was able to bring the 

fluorophore tetramethylrhodamine into contact with membranes and, upon irradiation, the 

fluorophore would lead to membrane leakage101. By making a dimer of the fluorescent Tat, 

named “dfTat”, it was possible to deliver cargoes into cells by simple co-incubation with a low 

concentration of the peptide. Amongst the delivered proteins were the fluorescent protein 

EGFP and an intact antibody102. A fluorescent Tat-trimer was also effective at delivering protein 

cargoes at a low concentration, but the peptide also showed noticeable cytotoxicity over a low 

concentration threshhold103. 

 

Through rational design and evaluation of various hydrophobic moieties fused to Tat, several 

candidates for endosomolytic peptides could also be evaluated in the delivery of a peptide 

fragment of EGFP. But these hydrophobic sequences also showed cytotoxicity at elevated 

concentrations104. 

 

The small molecule chloroquine, an anti-malarial drug that raises endosomal pH and stops 

fusion of endosomes with lysosomes105, has also been used to aid in endosomal escape104,106,107. 

Chloroquine is quite inefficient and has significant side effects and so research has been done 

into alternative small molecules for endosomal release. As a potential candidate, the small 

molecule UNC7938 was proposed, which is structurally similar but proved to be more potent 

than chloroquine in the release of molecules entrapped in endosomes108. The delivery of 

proteins was still quite ineffective with UNC7938 alone however, and had to be improved by 

the addition of an endosomal escape peptide109. 

 

In summary, endosomal escape is a promising route for cellular delivery, as it promises ease 

of use and has seen successful applications in vivo. However, efficient cytosolic localization of 

the cargo can for the most part only be achieved if the cargo is actively taken up into 

endosomes, and toxicity of endosomal escape agents is also often a problem110. 
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1.3.4 Cell-Penetrating Peptides 

 

1.3.4.1 Origin and Classification  

The first cell-penetrating peptides (CPPs) or “protein transduction domains” (PTDs) have been 

discovered a little over 30 years ago, when researchers found that the transactivator of 

transcription (TAT) protein of the human immunodeficiency virus 1 (HIV-1) could be efficiently 

taken up by simple co-incubation with cells111. What later turned out to be an important 

mechanism for HIV-triggered progression towards the acquired immune deficiency syndrome 

(AIDS)112,113, also had immediate implications for biotechnological applications. More close 

examinations of the sequence of TAT determined that a relatively short stretch of the protein, 

ranging from amino acids 37-62, was responsible for its transactivation activity, and the key 

sequence for passing cell membranes was identified as a strongly basic stretch from amino 

acids 48-60 (figure 4a)114,115. This 12 amino acid-long peptide (GRKKRRQRRRPPQ) became 

known as the TAT-peptide over the following years, developing into a focal point of research 

into this new class of peptides.  

 
Figure 4. Cartoon models of structures of the a: TAT (PDB: 1K5K) and b: pAntp (PDB: 9ANT) 
peptides. The sequences that are commonly used as cell-penetrating peptides are shown in 
red, with cationic residues highlighted as stick-models. 
 

Shortly after the original discovery of the properties of the TAT protein, a similar phenomenon 

was observed with the pAntp peptide, which is the DNA binding domain of the Drosophila 

antennapedia protein116. A fluorescently labelled version of the peptide was taken up into 

neurons, and could induce neural differentiation by itself117,118. Truncations of the peptide 

revealed that only 16 amino acids (43-58, figure 4b) were required for cellular uptake, and this 

uptake could also occur at 4°C, in conditions where classical endocytosis does not happen119. 

This peptide is now known as penetratin and is still one of the most used CPPs to date. It could 

also later be shown that a version of the peptide consisting only of D-amino acids was taken 

up into cells just as well, suggesting that recognition by a receptor on the surface of the cells 

is most likely not required in the uptake either120.  
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Since the discovery of these archetypical cell-penetrating peptides, much has been 

accomplished in the field. There are now thousands of experimentally validated cell-

penetrating peptide sequences121. Many CPPs come from viral or other biological origin, but 

there are also synthetic CPPs, and it is even possible to predict novel CPP sequences using 

machine learning algorithms122,123. 

 

Typically, CPPs are peptides ranging from 5-30 amino acids that can pass through cell 

membranes without interacting with specific receptors. Classification of cell-penetrating 

peptides is challenging, because CPPs have various origins and show little sequence 

homology. However, it is possible to classify CPPs by the prevalent type of amino acid within 

the peptide. There are cationic CPPs, like TAT and penetratin, but also amphipathic124, 

hydrophobic125 and even some anionic CPPs126. Most CPPs by far (>80%) have a net positive 

charge127. An overview of some cell-penetrating peptides of different types can be found in 

Table 1.  

 

Table 1: Select Cell-Penetrating Peptides and their sequences. 

Type Name Sequence Origin Ref. 

Cationic TAT GRKKRRQRRRPPQ HIV TAT protein 115 

 Penetratin RQIKIWFQNRRMKWKK Drosophila 

Melanogaster 

Antennapedia 

119 

 Polyarginines R7-R12 Synthetic 128,129 

 PPC3 KKYRGRKRHPR Synthetic 123 

 hPP3 KPKRKRRKKKGHGWSR Homo Sapiens 

SP140-like 

protein 

130 

 Cyclic 

W(RW)4 

Cyclic [W(RW)4] Synthetic 131 

Amphipathic SAP (VRLPPP)3 Zea Mays γ-Zein 

protein 

132 

 Transportan GWTLNSAGYLLGKINLKALAALAKKIL Chimeric of 

protein origin 

133 

 Pep-1 KETWWETWWTEWSQPKKKRKV Chimeric of 

protein and 

134 
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synthetic origin 

 MAP KLALKLALKALKAALKLA Synthetic 135 

Hydrophobic C105Y CSIPPEVKFNKPFVYLI Homo Sapiens 

α1-antitrypsin 

136 

 Pep7 SDLWEMMMVSLACQY Phage display 

library 

125 

Anionic SAP(E) (VELPPP)3 Synthetic, 

derived from SAP 

126 

 P28 LSTAADMQGVVTDGMASGLDKDYL 

KPDD 

Pseudomonas 

aeruginosa 

azurin 

137 

 

 

1.3.4.2 Structural Features of Cationic CPPs  

 

The first step in the membrane entry of cationic CPPs is generally accepted to be electrostatic 

interaction between the positively charged headgroups with negatively charged proteoglycans 

and phospholipids138,139. The importance of the positive charges for the ability of cationic CPPs 

to cross membranes has been proven several times. Replacement of charged residues within 

the Tat peptide by alanines strongly reduced uptake129, and this was also true for penetratin140. 

Interestingly, substituting lysine residues for arginine residues also increased the rates of 

cellular uptake129. Studies on the differences between oligoarginines and oligolysines have 

shown that the guanidinium group in arginine leads to higher affinity for membranes141 and 

more efficient clustering of peptides at the membrane interface142. Polyarginines also bind to 

membranes cooperatively, which polylysines do not do143. These effects have been attributed 

to the guanidinium groups’ ability to form bidentate hydrogen bonds with negatively charged 

phosphate, sulfate and carboxylate groups (fig. 5a), all of which can be present on the cell 

surface144. Lysine, on the other hand, can only donate one hydrogen bond (fig. 5b). To explore 

this further, symmetrical dimethylated arginine (SDMA) was also tested, which should retain 

the charge of typical arginine but can only donate one hydrogen bond as well (fig. 5c). The 

dimethylated arginine peptide was substantially worse in its uptake, suggesting that the 

bidentate hydrogen bonding of arginines is indeed a crucial feature for uptake145. Lysine that 

had been guadinylated to generate homoarginine (fig. 5d) showed similar uptake to arginine 

peptides146 and a recent study even suggested homoarginine may be more effective than 
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conventional arginine147. 

 

 
Figure 5. Structures at physiological pH of a: arginine in its bidentate interaction with 
phosphate, sulfate or carboxylate groups, b: lysine in its monodentate interaction with a 
carboxylate, c: symmetrical dimethylated arginine (SDMA) and d: homoarginine (also known 
as guanidyl-lysine).  
 

Hydrophobicity is another component that is often a part of cationic CPPs and a key factor in 

their interaction with the lipid bilayer148. Introducing a hydrophobic tryptophan residue into a 

Tat peptide increased vesicular leakage and altered the translocation mechanism149. Increasing 

hydrophobicity can also lead to a decrease in uptake efficiency, which may be due to peptides 

being “stuck” in the membrane150. Tryptophan may also play a role in CPPs beyond its 

hydrophobicity, as deletion of other hydrophobic acids in the peptide penetratin did not lead 

to a reduction in cellular uptake but the removal of tryptophan did140. Appending tryptophan 

residues to polyarginine peptides was also linked to an improvement in cellular uptake in 

several studies151,152. This effect may result from increased binding to proteoglycans on the 

surface of cells153. 

 

It is still not completely clear if there is a relationship between the secondary structure of cell-

penetrating peptides and their cellular uptake. Cell-penetrating peptides are often unstructured 

in aqueous environments, but adapt a secondary structure upon interaction with the lipid 

bilayer150,154. Interestingly, polyarginines and Tat seem to remain unstructured even when 

interacting with the membrane155. The peptide penetratin adopts a helical structure when 

interacting with cell membranes, but this may have a negative impact on cellular uptake156, and 

is not actually required for the uptake of the peptide157. Generally, flexibility seems to be an 

important structural feature for the uptake of CPPs158,159. 

 

1.3.4.3 Synthetic Derivatives of Cell-Penetrating Peptides  
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To improve upon the cellular uptake of naturally occurring cell-penetrating peptide sequences, 

several strategies have been explored160. Increasing stability towards proteolysis, adding 

hydrophobicity, and enhancing structure and/or rigidity are common goals in the engineering 

of synthetic CPPs. 

 

The replacement of the naturally occurring L-amino acids with D-amino acids is commonly 

done in the development of peptides for biological applications. The substitution can retain the 

activity of the parent peptide while making it more resistant to proteolysis161. This concept has 

also been applied to cell-penetrating peptides, increasing the amount of delivered peptide162. 

Interestingly, in some studies the substitution of L- to D-amino acids has also been linked to a 

decrease in uptake of cell-penetrating peptides in some cell types163. 

 

Peptoids are peptidomimetics in which the amino acid side chain is on the nitrogen atom 

instead of the α-carbon. They are resistant to proteolysis and have been used to improve 

conventional cell-penetrating peptide sequences164,165. 

 

Lipidation of cell-penetrating peptides allows tuning of the behaviour of the peptides while 

crossing the lipid bilayer166. Lipidation has also been shown to sometimes increase helical 

content in peptides through micelle formation167. This was also accomplished for a cell-

penetrating peptide, increasing its uptake into cells168. Using a long acyl chain (decyl), a very 

effective cell-penetrating peptide containing only four arginine residues could be generated169. 

 

To induce helicity in a peptide sequence, the unnatural amino acid α-aminoisobutyric acid can 

be used170. Cell-penetrating peptides incorporating this amino acid showed improved uptake 

into cells with increasing helicity171. Alternative strategies to induce helicity in cell-penetrating 

peptides were also successful172,173, suggesting that this may be a general strategy in improving 

uptake. 

 

To pre-arrange positive charges in defined distances, oligoproline peptides bearing 

guanidinium groups can be used174. Oligoprolines provide a rigid helical structure with a 

defined distance between individual residues. The rigid guanidinium-bearing oligoproline 

proved to be more effective at transporting a fluorophore into cells than an equivalent 

polyarginine peptide. The same oligoproline could recently be used to transport inositol 

phosphate into cells175. 
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Cyclization of peptide sequences can provide both structural rigidity as well as increased 

proteolytic stability176. When designing functional peptides, it also seems to be a general rule 

that cyclic peptides have increased cell-permeability over their linear counterparts177,178. 

Significant work has been put into understanding how cyclization affects the conformations of 

peptides and, in turn, their cell permeability179,180.  

 

The advantages of cyclic peptides over their linear counterparts also apply to CPPs181. Cyclic 

analogues of the Tat peptide and a decaarginine showed increased cellular uptake due to more 

rapid crossing of the cell membrane182. There are also several reports on improved delivery 

using cyclic variants of amphipathic CPPs183. The mode and site of cyclization also seems to 

impact the efficiency of the resulting uptake into cells184. Bicyclic cell-penetrating peptides have 

also been generated using different chemistries185,186. One approach makes use of cyclization 

of a CPP-cargo fusion through a disulfide bond that is reduced inside cells, making the 

cyclization reversible187. 

 

 

1.3.4.4 Cellular Uptake Mechanism  

 

The mechanism of uptake of CPPs has been a long-standing research objective in the field, 

but it is challenged by the fact that the variety in CPP sequences comes along with a variety in 

modes of uptake. A given CPP-cargo-conjugate can also take different roads into the cell 

depending factors other than the peptide sequence. The concentration of the CPP188, the size 

and nature of the cargo189, the linker between CPP and cargo190, type of lipid or cell191 and 

temperature192 all have effects on the mechanism that the CPP uses to get into the cell. 

Generally, the pathways into the cell can be divided into energy-dependent endocytosis and 

energy-independent membrane transduction. First however, the methods that can be used to 

study these mechanisms of entry will be discussed. 

 

 

1.3.4.4.1 Methods to Study Cellular Uptake  

 

No single method has emerged that would allow complete characterization of the cellular 

uptake mechanism and often a combination of methods is required to elucidate the mechanism 
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for a given system. Different methods each have their own biases, which also makes using 

multiple assays a requirement to avoid drawing false conclusions. 

Cellular uptake of peptides is often studied by using a coupled fluorophore to detect the 

peptide either by flow cytometry or microscopy. Flow cytometry allows high throughput 

screening of peptides in many cells but cannot discriminate peptides bound to the outside of 

the cell, peptide in endosomes or peptides in the cytosol. Through the application of the non-

permeant dye trypan blue, some fluorophores bound to the outside of the cell can be 

quenched, allowing quantification of only intracellular fluorescence193. Nevertheless. 

endosomal and cytosolic localization of the peptide could still not be distinguished. Using 

conventional fluorescence microscopy it can also be difficult to distinguish intracellular 

localization, although protocols have been developed to digest membrane-bound CPP with the 

enzyme trypsin to remove bias originating from it194. Confocal microscopy allows distinguishing 

intracellular compartments. Still, it is important to choose the right fluorophore for the 

experiment, as fluorophores that lose fluorescence at lower pH can appear cytosolic while in 

reality being mostly localized to endosomes195. Another important factor is the self-quenching 

of fluorophores. When the concentration of a given organic fluorophore in a compartment is 

too high, fluorescence can decrease. To avoid this, it is possible to use a mixture of 

fluorescently labelled and unlabelled cell-penetrating peptide. Contrary to expectations, this 

method could reveal that the majority of an arginine-rich CPP was localized to lysosomes 

instead of the cytosol in one experiment196. 

 

Electron microscopy presents an attractive method to study alterations of the plasma 

membrane caused by CPPs down to a few nanometres of resolution. For example, it could be 

shown that an R9-CPP could cause local deformations and multilamellarity of the membrane 

in areas where the peptide was particularly enriched197. 

 

As a qualitative measure of uptake, the delivery of functional molecules and proteins can be 

used. A common assay here is the delivery of the cre recombinase enzyme, that can be used 

in conjunction with a reporter cell line. When delivered, the enzyme will lead to expression of 

a fluorescent protein, which can be read out by flow cytometry or microscopy198. The 

advantage of this assay is that it requires an active enzyme in the correct subcellular 

compartment, but the amount of delivered enzyme is difficult to quantify. An alternative 

methodology relies on the delivery of D-cysteine. This unnatural amino acid can react with a 

cell-permeable building block to form D-luciferin, which serves as the substrate for a luciferase 

enzyme expressed within a reporter cell line. Thereby, luminescence is generated which is 
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proportional to the amount of D-cysteine delivered199. This method could even be used to 

quantify delivery of cell-penetrating peptides in a mouse model. 

An alternative method for quantification of delivered CPP and cargo is mass spectrometry. 

CPPs can be modified with an affinity tag such as biotin and, after pulldown of the tag, 

quantification can be done to compare different conditions during uptake. Subcellular 

fractionation may be able to help distinguish the intracellular fate of the CPP and cargo, but 

this has not been done so far200. 

 

To study the fundamental mechanism of the uptake, inhibiting certain pathways and monitoring 

the response is commonly done. Here, experiments can be performed at 4°C, conditions under 

which active transport should not occur201. Chemical inhibitors of active transport processes 

can also be used, but they are often not specific and have side effects202. 

 

Energy-independent uptake can also be studied with the help of model membrane systems 

such as giant unilamellar vesicles (GUVs). Uptake of peptides into these vesicles proves that 

the peptides can pass through model membranes without any active transport203. Model 

membrane systems can also be useful to gain knowledge about how CPPs interact with 

membranes of different composition204. 

 

Molecular dynamics can also assist in understanding the membrane interactions205 and cell 

entry of CPPs206. A recent study makes use of molecular dynamics simulations to show that 

translocation of CPPs across the membrane is driven by the electrostatic potential of the 

membrane207. These simulations are typically limited to model membranes as well, however. 

 

 

1.3.4.4.2 Energy-Independent Uptake  

 

Membrane transduction, also known as non-endocytic translocation or direct penetration, is a 

term coined to describe the energy- and receptor-independent membrane-crossing of proteins 

and peptides208. Although the process has been described in many individual reports, it is not 

without controversy11, also because membrane transduction and energy-dependent endocytic 

uptake often occur in parallel and it is difficult to separate them188.  

 

All the postulated energy-independent pathways into the cell involve some form of membrane 

interaction or disruption. The notable common ground between them is that uptake can occur 
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at low temperatures (e.g. 4°C) or in presence of endocytotic inhibitors209. Besides direct 

translocation through the membrane (figure 6a)210,211, a “carpet-like”-model was also proposed, 

in which the peptides alter the fluidity of the membrane through electrostatic interactions of 

positively charged peptides with negative charges on the cell surface (figure 6b) and then pass 

through the membrane212,213.   

 

 
Figure 6. Pathways into the cells for cell-penetrating peptides. a, Direct penetration through 
the membrane. b, “Carpet-like” alteration of membrane fluidity through interaction with 
peptides. c, Pore-formation of Cell-penetrating peptides. d, Inverted micelle formation followed 
by release of the peptide. e, Clathrin-mediated endocytosis. f, Caveolae-mediated endocytosis. 
g, macropinocytosis.  
 

Another current model postulates that CPPs form a pore through the membrane (figure 6c)214. 

Here, research has shown that at a higher, extracellular pH, fatty acids can bind to the 

guanidinium groups of cationic CPPs, at which point they form a toroidal pore and mediate the 

CPP transport into the cells. Once inside, the lower pH leads to the release of the CPPs and 

the reformation of the membrane215. Alternatively, the barrel-stave model of uptake suggests 

that the peptides can assume a helical structure within the membrane, where a hydrophobic 

side of the peptide faces towards the membrane and a hydrophilic side towards the inside of 

the pore216.  

 

An important finding in this context is that at a high concentration (20 µM), arginine rich, 

hydrophilic CPPs seem to form foci on the cell membrane where the peptides are highly 

enriched217. These “nucleation zones” seem to be crucial for the energy-independent uptake 

of this class of peptides. An enrichment of the sphingolipid ceramide on the outer leaflet of the 

plasma membrane was found to be crucial for this type of membrane transduction218. A recent 

study using combined confocal fluorescence and electron microscopy could show that at the 



Introduction 
 
 

20 
 

foci where CPPs are enriched, the peptides can induce changes in the membrane which likely 

lead to the formation of a pore into the cell197.  

 

Another proposed energy-independent pathway is the “inverted-micelle” mechanism (figure 

6d). In this mechanism, the lipid bilayer invaginates to accommodate the CPP and eventually 

forms a micelle that encapsulates the peptide. Through opening of the micelle towards the 

cytosol, the peptide is released into the cytosol219.  

 

1.3.4.4.3 Energy-Dependent Uptake  

 

Active transport can be broadly classified into two categories: phagocytosis and pinocytosis, 

with only specialized cell types (generally of the immune system) undergoing phagocytosis220. 

All cell types undergo pinocytosis on the other hand and the process can be further divided 

into several types. The great majority of active transport through endosomes arises through 

clathrin coated pits (figure 6e)221. As the main function of clathrin-coated pits is the 

internalization and recycling of membrane receptors, cargoes that go through this pathway are 

usually bound by a receptor and sorted into a pit.  Clathrin, a triskelion-shaped protein is 

recruited and induces a curvature of the membrane. The protein dynamin is then recruited 

and, through GTP hydrolysis, leads to membrane fusion and release of the vesicle into the 

cytosol222.  While many CPPs have been proven to enter cells without any type of specific 

receptor interaction119,128, others have been shown to enter through clathrin-coated pits223. 

 

Caveolae are invaginations of the cell membrane that are very rich in proteins, cholesterol and 

sphingolipids (figure 6f)224. They are especially relevant in signal transduction and 

mechanosensation, but also play a role in endocytosis225. The formation of caveolae is often 

accompanied by the protein caveolin, although recently the cavin-family proteins have been 

shown to be more important226. Caveolae-mediated uptake is important for the uptake of some 

CPPs. For example, the tat peptide was shown to colocalize with caveolin227, although other 

reports suggest that knocking down caveolin228 or inhibiting caveolae-mediated uptake229 did 

not affect the internalization of the peptide. 

 

Macropinocytosis is a lipid-raft-dependent but receptor-independent endocytic pathway 

(figure 6g). It is actin-dependent, and is initiated by ruffles on the membrane surface that 

produce large endocytic vacuoles230. Macropinocytosis has a major rule in immune 

surveillance, as well as virus and cancer pathologies, but also seems to play an important role 
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in the cellular delivery of various cargoes231,232. For cell-penetrating peptides, macropinocytosis 

has been shown to be important for the uptake of polyarginines and the Tat peptide233,234. 

Inhibiting macropinocytosis had a strong effect on the uptake of polyarginine peptides at low 

concentrations especially217. Interestingly, some findings suggest that the Tat peptide can 

induce its own uptake by macropinocytosis, with one report showing the peptide interacting 

with the actin cytoskeleton149 and another demonstrating the induction of the activity of the 

small GTPase Rac1235, both of which led to increased macropinocytosis. A recent study also 

showed that the Tat peptide is taken up via macropinocytosis, and that this is dependent on 

the presence of proteins on the cell surface236. 

 

1.3.4.5 Toxicity 

 

Several reports investigate the toxicity of CPPs. In vitro, cationic CPPs have been shown to be 

generally less toxic than more hydrophobic, amphipathic CPPs237. When investigating 

polyarginines of different length, it was found that cytotoxicity of polyarginines increases with 

chain length, where 9 arginines or fewer have only minor cytotoxicity162.  The cytotoxicity of 

cell-penetrating peptides also changed based on the cargo attached, but this may simply be a 

consequence of the altered mode of uptake due to the cargo238. A metabolic profiling analysis 

compared the alterations in the metabolome of cells treated by five different CPPs and found 

that penetratin as well as an R9-peptide only had a very minor effect on the cells239. 

 

There is only limited data on the toxicity of CPPs in vivo. In one study, the toxicity of an 

intravenously injected CPP was found to be concentration dependent in rats, with 

concentrations under 15 mg/kg being non-toxic240. Another study also found concentration-

dependent toxicity after intravenous injection of a polyarginine CPP into mice, and this toxicity 

could be strongly decreased when using a CPP with a caging group that would mask the 

positive charges until it reached the target tissue of the CPP241. In a long-term study, rats 

treated with multiple administrations of penetratin showed no change in the release of 

inflammatory or immunogenicity mediators242. Interestingly, there is research into applying 

CPPs to the delivery of antigens to trigger more effective immune responses243. 

 

 

1.3.4.6 Applications in Imaging 
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Imaging of subcellular compartments or specific cell types has potential both in research 

applications as well as in the detection of disease markers or tissue. CPPs have found many 

applications in the labelling of subcellular structures. Arginine-rich CPPs localize to the 

nucleolus, an RNA-rich compartment within the nucleus, and so can directly be used to image 

the nucleolus in living cells when fluorescently labelled244. Using a fluorescent fusion of the Tat 

peptide to the N-terminal 15 amino acids of the human ventricular MLC-1 protein led to staining 

of sarcomers in primary cells245. Similarly, the actin-binding peptide lifeact can be fluorescently 

labelled and fused to a cell-penetrating peptide via an intracellularly cleavable disulfide bond 

to generate a live-cell actin marker246. Conjugates of the Tat peptide with the radioactive 

isotope (99m)Tc have also been used in the delivery of the isotope into the nuclei of cancer 

cells, where it could be used for imaging as well as radiotherapy247,248. 

 

CPPs can also be used for imaging in vivo, for example by loading nanoparticle-CPP 

conjugates into cells ex vivo and then injecting the cells intravenously, which allowed tracking 

of the injected cells249. CPPs have also been used to transport luciferin, the substrate of 

luciferases, into transgenic mice expressing luciferase250. A fluorescently labelled, caged cell-

penetrating peptide that is uncaged and becomes active when exposed to matrix 

metalloproteases overexpressed in cancerous tissue was also used to label cells within that 

tissue251 (figure 7). This could then later also be applied to imaging cells producing hydrogen 

peroxide, by utilizing a linker cleaved by the reactive oxygen species252. Quantum dots are 

semiconductor particles with advantageous photoluminescent properties when compared to 

conventional fluorophores253. Tat-conjugates with quantum dots were taken up into cells in 

culture254, and cells loaded with quantum dots could also be injected into live mice to track the 

movement of the quantum dot-loaded cells within the mice using fluorescence microscopy255. 

 

 

Figure 7. Application of a fluorescent, “caged” CPP conjugate. The polycationic CPP is initially 
inactive as the positive charges are blocked by an anion through a cleavable linker. Upon 
cleavage by matrix metalloproteases which are overexpressed in some cancers, the CPP is 
released and can enter cells251.  

 



Introduction 
 
 

23 
 

 

1.3.4.7 Applications in Drug Delivery 

 

As CPPs are very versatile when it comes to the cargo being delivered, there are many drug 

delivery approaches using various payloads in the treatment of several diseases under clinical 

or pre-clinical development.  

 

In many drug delivery applications, the special ability of some CPPs to cross the blood-brain 

barrier is of interest. Brain ischemia is caused by insufficient blood flow to the brain, which can 

lead to cell death, infarction, and ischemic stroke. The anti-apoptotic protein Bcl-XL has been 

associated with improved resistance to ischemia in mice256. Based on this finding, a fusion of 

the Tat peptide with the Bcl-XL protein was administered to a mouse ischemia model prior to 

the induction of ischemia. The mice treated with the protein-CPP conjugate showed increased 

protection to ischemia and improved neurological performance when compared to the 

control257. Even after the ischemic event, administration of the CPP conjugate still led to an 

improvement. Similar effects were later also reported with a mutant of Bcl-XL
258. A fusion of the 

Tat peptide fused to the Bcl-2 homology domain 4 (BH4) of Bcl-XL could also prevent the death 

of neurons caused by amyotrophic lateral sclerosis (ALS)259. A fusion of Tat with a peptide-

inhibitor of the Jun N-terminal Kinase (JNK), a mediator of cell death during ischemia, could 

also reduce the impact of ischemic events in a mouse model260. This same fusion peptide could 

also be shown to reduce neuron death in an Alzheimer’s disease model261 and is now under 

clinical development as a drug for hearing loss262 and intraocular pain263. Taken together, these 

findings demonstrate the significant potential of CPPs in the treatment of neurological diseases. 

 

CPPs are an attractive option for drug delivery in chemotherapy as they can strongly increase 

cellular uptake of the. The cytostatic agent methotrexate is hindered by the fact that many 

tumorous diseases show resistance toward it. Coupling methotrexate to the CPP penetratin 

increased its efficacy, especially in resistant cells264. Very similar effects could also be observed 

when coupling several cationic CPPs to the cytotoxic drug doxorubicin265-267.  A recent 

approach with a novel CPP-doxorubicin conjugate could show that the conjugate was also 

more effective in reaching cancerous tissue as compared to the free drug. Once there, it 

effectively killed cancer cells in a mouse xenograft model268. The protein p53 is a pro-apoptotic 

protein that acts as a tumour suppressor and prevents cancer formation. Dysregulation of p53 

is involved in many cancers, and reactivation of the protein can in some cases be used in 

cancer therapy269. Interestingly, a peptide derived from the C-terminus of p53 is sufficient to 



Introduction 
 
 

24 
 

activate wild-type p53 and cause cell death in cancer cells. A fusion of this C-terminal peptide 

to the Tat CPP was an effective treatment option in peritoneal cancer models270. 

 

CPPs have also found an application in the treatment of inflammation. The transcription factor 

nuclear factor kappa B (NF-κB) regulates transcription of several genes related to inflammation 

and suppressing it is likely a viable therapeutic avenue in the treatment of inflammatory 

diseases271. A fusion of a peptide inhibitor of NF-κB with penetratin was cell-permeable and 

could prevent NF-κB activation and inflammatory response in cell culture272. This was later also 

confirmed to be effective in a mouse model of the inflammatory disease Duchenne muscular 

dystrophy273. A similar anti-inflammatory effect could also be observed with a novel cell-

penetrating peptide designed from a peptide inhibitor of NF-κB274. 

 

Because of the similarity of cell-penetrating peptide sequences to antimicrobial peptides 

(AMPs), the antimicrobial activity of several CPPs has also been investigated275. Derivatives of 

the Tat and Pep-1 CPPs were shown to be potent antimicrobials276-278. It is also possible to 

combine CPPs with AMPs to make them more efficient antimicrobials279.  

 

 

1.3.4.8 Protein Delivery 

 

Due to the natural ability of the Tat and penetratin peptides to transport the Tat and pAntp 

proteins into cells, CPPs are obvious candidates for delivery of various proteins. Many studies 

employ recombinantly expressed fusion proteins with the 11-amino acid Tat peptide. An early 

example of this is a cyclin-dependent kinase inhibitor protein (p27Kip1) that could induce cell 

motility after delivery in cell culture280. The enzyme β-galactosidase was also expressed as a 

Tat fusion and could be delivered to cells in vitro and in a mouse model281. Cre recombinase is 

a DNA-editing enzyme that can carry out site-specific recombination events and has been a 

useful tool in research282. Fusions of Tat to cre recombinase were initially ineffective in gene 

editing, but this could be improved upon by adding a fusogenic HA2 peptide (derived from the 

influenza virus) to the fusion protein198. Further research into the delivery of a Tat-cre fusion 

showed that the protein was overwhelmingly confined to cytoplasmic vesicles, while fusions of 

Tat to a fluorophore were broadly distributed in the cytosol and nucleus283. This finding led to 

the conclusion that fusions of CPPs to large peptides or proteins are generally taken up via 

active transport and confined to endosomes, which was confirmed in several additional 

studies151,284. 
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The chemical conjugation of CPPs to proteins allows the usage of CPPs with unnatural building 

blocks and the attachment via different linkages and different ratios of peptide to protein. 

Through chemical crosslinking of antibody fragments to Tat, they could be delivered into cells 

and had some inhibitory activity285. In another study, the chemical conjugation of transportan 

to several proteins of sizes between 30-150 kDa could be used to transport them into cells286. 

As noted previously, however, most of the delivered protein was confined to vesicular 

structures. One study used disulfide-linked conjugates of isotopically labelled proteins with the 

Tat CPP in conjunction with pyrenebutyrate287. This additive has been shown to assist in the 

cytosolic delivery of CPP-bearing cargoes288. The authors could then record NMR spectra of 

the isotopically labelled proteins within living cells. Recently, the conjugation of an arginine-

rich CPP to the DNA editing enzyme Cas9 has been used for site-specific genome engineering 

in vitro289. In an attempt to achieve energy-independent uptake of a protein, a cyclic derivative 

of the tat peptide was conjugated to EGFP290. The cyclization of Tat had previously been shown 

to greatly increase the kinetics of energy-independent uptake (see section 1.3.4.3)182. Indeed, 

the conjugate of the cyclic tat with EGFP showed cytosolic localization and could enter cells at 

4°C, while a conjugate of EGFP with a linear CPP could not. 

 

 

1.3.5 Other Methods of Protein Delivery 

 

One rather laborious option to improve the cellular uptake of a given protein is cationic protein 

resurfacing i.e. increasing the number of positively charged amino acids on the surface of a 

protein. Initially, it could be shown that replacing five surface-exposed acidic amino acids on 

GFP with arginines conferred some cellular uptake to the protein291, although the protein was 

mostly localized to punctae within the cell, suggesting endosomal uptake without reaching the 

cytosol. In a second approach, GFP was resurfaced again to generate a mutant with a net +36 

charge. This “supercharged” GFP could be used to transport fusion proteins into a variety of 

cell types292. A similar resurfacing strategy could then later also be applied to a single-domain 

antibody (nanobody)293. The process of resurfacing a protein is however very laborious, and 

generally seems to lead to endosomal entrapment, for the most part. 

 

Generally, to improve passive membrane crossing of small molecule drugs, adding 

hydrophobicity is a viable option294. A very common approach in the design of small molecule 
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drugs is the esterification of alcohols and carboxylic acids to mask these hydrophilic groups295. 

Esters can be removed when the drugs are internalized into cells by unspecific esterases, 

making the modification bio-reversible and restoring the drug to its original state. Only very 

recently has this now been applied to proteins as well296. Chemoselective esterification in 

aqueous solvents is not easy, but with a sophisticated diazo-reagent it was possible to 

efficiently modify most solvent-exposed aspartic and glutamic acids on EGFP. Through this 

modification, the protein could then pass through cell membranes at 37°C and 4°C, indicating 

that transport through the membrane does indeed occur in an energy-independent process. 

The esters were also removed after internalisation on the protein level, returning the protein to 

its native state296. In a first follow-up study, the authors could also modify and deliver RNAse 1, 

which efficiently killed cells after delivery, showing that the enzyme was still active297. While this 

is a highly promising approach, it has only been demonstrated on two proteins so far, and more 

research is needed into the wider applicability of the method. 

 

 

1.4  Synthesis of CPPs and CPP-Protein conjugates  

 

As the recombinant expression of proteins fused to cell-penetrating peptides can be difficult284 

and as more complex (e.g. cyclic) peptides can generally not be obtained through recombinant 

expression at all, synthetic approaches are required. 

 

 

1.4.1 Peptide Synthesis 

 

For over 100 years, the chemical synthesis of peptides has been an important subject in 

organic synthesis, protein chemistry and in many research and clinical applications. Originally, 

peptide synthesis was done in solution and, by protecting the amine functionality and 

deprotecting it after attaching an unprotected amino acid to the carboxylic acid, small, 

functional peptides could be produced298. Pioneered by Bruce Merrifield, solid-phase peptide 

synthesis, in which the growing peptide chain is immobilized on an insoluble resin, would 

change the field forever and won the Nobel prize in 1984299,300. The main advantages of 

synthesizing peptides on a solid support is the ease of purification by filtration, as well as the 

simplicity of performing all reaction steps in the same reaction vessel. Many advances have 
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succeeded in improving yield, purity, and scalability of the method, such as microwave-assisted 

peptide synthesis301. Nevertheless, the basic process of peptide synthesis on the solid phase 

remains the same. Peptides are synthesized from the C-terminus to the N-terminus. The first 

amino acid is loaded on the resin with a protecting group on the amine functionality. The 

protecting group is removed, the next protected amino acid is coupled, and these last two 

steps are repeated until the peptide synthesis is completed, after which the peptide is cleaved 

from the resin (figure 8). 

 

Figure 8. Peptide synthesis on the solid phase. The resin is first loaded by coupling the first 

amino acid to the solid support (resin). Cleavage of the protecting group is followed by coupling 

of the next amino acid, and these two steps are repeated until the peptide is complete. After 

deprotection and cleavage from the resin, the mature, unprotected peptide is obtained. 

 

The tert-butoxy-carbonyl (Boc) and fluoren-9-ylmethyloxycarbonyl (Fmoc) groups are the most 

widely used protecting groups for N-terminal amines300,302. The side-chain functionalities of 

amino acids must also be protected during synthesis, and this protection must be orthogonal 

to the protection on the N-terminus i.e. the side chain protecting groups should not be removed 

under the same conditions as the N-terminal protection303.  

 

The great advantage of peptide synthesis over recombinant production of peptides and 

proteins is the ability to produce many unnatural peptide structures and incorporate unnatural 

building blocks, within the limitations of acidic deprotection. The incorporation of post-

translational modifications from proteins into synthetic peptides has been given much attention, 

and lipidation304, glycosylation305,306 and phosphorylation307-309 can all be achieved on synthetic 

peptides. It is also possible to use D-amino acids161, peptidomimetics such as depsipeptides310 

and even nucleic acid analogues in peptide-nucleic acids311. Chemical handles for further 

functionalization, as well as fluorescent or other chemical probes can be easily 
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incorporated303,312,313. It is also possible to synthesize cyclic peptides, which is much more 

difficult using recombinant expression314,315.  

 

A major limitation of peptide synthesis is still the length of peptides that can be synthesized. 

The consequence of yields under 100% means that with an increasing number of steps, the 

amount of truncation products increases and consequentially the maximum length of a peptide 

synthesized by standard SPPS is around 60 amino acids298,316. For that reason, ligation 

strategies have been developed to enable the synthesis of peptides beyond this limitation. 

 

1.4.1.1 Peptide Ligation 

 

To facilitate the synthesis of large peptides, several strategies for the assembly of individual 

peptide fragments have been developed. The most prominent example of these is the native 

chemical ligation (NCL). In NCL, a peptide with an N-terminal cysteine reacts with another 

peptide that contains a C-terminal thioester (figure 9). The cysteine thiol generates a new 

thioester in the trans-thioesterification reaction, which results in a native amide bond after the 

S,N-acyl shift. The advantage of NCL is that due to the reversibility of the thioester formation, 

but irreversibility of the final amide-bond forming step it can be used on unprotected peptides 

and in the presence of other thiols317. Cysteine is now no longer required at the ligation site, 

serine and threonine can also be used in ligations318. Through desulfurization reactions, 

cysteine can also be converted to alanine after the ligation319, and desulfurization can also be 

applied in ligations using unnatural, thiol-containing amino acids to convert them back into 

natural building blocks320. Several NCL steps can also be done sequentially to assemble even 

larger fragments321, and NCL can also be done on solid support322. 

 

Figure 9. The native chemical ligation (NCL) reaction begins with the transthioesterification 

step in which a peptide with a C-terminal thioester (peptide 1) reacts with a second peptide 
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containing an N-terminal cysteine (peptide 2) to generate a new thioester. In the S,N-acyl shift 

the peptides rearrange to form a native amide bond.  

 

An alternative ligation strategy to NCL exists in the traceless staudinger ligation. It allows the 

assembly of a native peptide bond from a C-terminal thioester and an N-terminal azide323. While 

the Staudinger ligation is promising and has been used in the assembly of entire unprotected 

proteins324, it has not yet found widespread use in peptide assembly. If a native peptide bond 

is not required at the ligation site, other chemistries such as click reactions can also be used 

to assemble peptides325. 

 

 

1.4.2 Protein Conjugation Techniques 

 

The conjugation of peptides to proteins can still be more challenging than of two peptides, as 

proteins generally are only folded correctly in aqueous conditions, and so water-free organic 

solvents cannot be used. Nevertheless, many techniques for the modification of proteins have 

been developed326-329 and most can be applied to the ligation of peptides and proteins. 

 

 

1.4.2.1 Expressed Protein Ligation and Protein Trans-splicing 

 

Applying native chemical ligation to proteins requires the generation of an N-terminal cysteine 

or C-terminal thioester. N-terminal cysteine residues can be generated by expressing the 

protein recombinantly with a cleavage site for a specific protease that tolerates a cysteine in 

the P1 position immediately after the cleaved bond330,331. Other methods for the generation of 

N-terminal cysteines have also been developed332-334. By using a peptide with a C-terminal 

thioester, the two fragments can then be ligated via an NCL reaction. 

 

For the generation of C-terminal thioesters on proteins, the natural protein-splicing mechanism 

of inteins can be used. During protein-splicing, an internal protein domain excises itself out of 

a polypeptide, resulting in an amide bond between the flanking peptide sequences (figure 

10a)335. During this process, the intein enzymes proceed through a thioester stage. By using 

mutated inteins, it is possible to express proteins in which the intein is not spliced out, but can 

be used to generate a reactive thioester on the C-terminus of the protein336. This can then be 
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followed up with a native chemical ligation reaction in which any peptide containing an N-

terminal cysteine can be ligated (figure 10b). This process is known as expressed protein 

ligation (EPL). 

 

 

Figure 10. a, In protein splicing, the enzymatic activity of an intein causes it to be cleaved out, 

leaving behind ligated N- and C-extein fragments. b, In expressed protein ligation, a protein of 

interest (POI) is expressed with a mutated intein, and often a purification tag. The construct 

can be immobilized on a solid support, and the intein is then cleaved off by an excess of thiol, 

followed by transthioesterification with a synthetic peptide. After native chemical ligation, the 

protein of interest and peptide are connected via a native amide bond. c, In intein trans-splicing, 

two fragments of an intein recombine in solution to form a native bond between connected 

exteins.  

 

To make this process more efficient, a purification tag can be appended on the C-terminus of 

the intein in these constructs (often a chitin-binding domain as in a commercially available 

kit)337. Thereby, intein cleavage and NCL can then be done on the resin, which will free up the 

reaction product after the reaction while the cleaved intein will remain bound to the solid 

support (figure 10b).  



Introduction 
 
 

31 
 

 

Alternatively, if generating a thioester is not desired, protein trans-splicing can also be used. In 

this methodology a split intein, with one part on each of the two fragments to be ligated, 

recombines upon mixing of the two parts, and splices itself out, leaving behind a ligated peptide 

(figure 10c). There are naturally occurring split inteins338,339, but also inteins that were split 

artificially340. Very small split-intein constructs exist for both the N-intein and C-intein parts341,342, 

which are easily accessible by SPPS or recombinant expression. 

 

 

1.4.2.2 Chemoenzymatic Methods 

 

Enzymes are a popular choice for the modification of proteins as they naturally have a high 

substrate specificity and thus promise a homogenously modified product343,344. Subtiligase is 

an enzyme that catalyses the formation of an amide bond starting from a C-terminal activated 

thioester together with the N-terminus of a given protein or peptide345. The thioesters can also 

be generated on proteins using inteins (see 1.4.2.1), but subtiligase labelling suffers from low 

specificity on the amino termini that it accepts. 

 

Sortase A is a transpeptidase originally found in Staphylococcus aureus. The enzyme 

recognizes an LPXTG (X = any amino acid) peptide motif, cleaves the peptide after threonine 

and forms a thioester which can then be displaced by an amine nucleophile, typically an N-

terminal polyglycine sequence346. The enzyme can be used to modify proteins on either 

terminus, and synthesizing a counterpart by SPPS is trivial because of the small size of the 

recognition motif. While the “sortagging” can suffer from poor yield, much work has been done 

to make more reliable and efficient sortase mutants347.  

 

Transglutaminase enzymes catalyse the formation of an isopeptide bond between lysine and 

glutamic acid side chains348. Initially, because of the low specificity of this reaction, the enzyme 

could not be used for site-specific modification of proteins, but several recognition peptides 

were developed that can provide additional specificity for a certain glutamic acid349. Some 

variants of the enzyme even have naturally higher specificity for certain peptide sequences350. 

 

Other enzymes can be used to generate handles that can then be addressed using 

biorthogonal chemistry. The tubulin-tyrosine ligase, for instance, appends a tyrosine residue to 

the C-terminus of a peptide tag. The enzyme also accepts tyrosine derivatives that contain 
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various chemical handles that can be functionalized in a second step351. The enzyme can even 

be used to append some small modifications in a single step352. Similarly, the lipoic acid ligase 

recognises a peptide tag and can conjugate derivatives of lipoic acid containing biorthogonal 

reaction handles353. A special case is the formylglycine-generating enzyme (FGE) that can 

oxidize a specific cysteine within a peptide motif, generating formylglycine. This aldehyde can 

then also be functionalized in a second step354. 

 

 

1.4.2.3 Chemoselective Reactions for Protein Modification 

 

Chemoenzymatic methods and expressed protein ligation mostly require expression of the 

protein with a peptide tag and can often leave a scar after labelling. These methods are also 

mostly able to modify the termini of the protein. Reactions that use the reactivity of naturally 

occurring amino acids355 or biorthogonal handles356 can get around these limitations.  

 

 

1.4.2.3.1 Reactions on Natural Amino Acids 

 

Reactions on naturally occurring amino acids in proteins typically rely on the specific reactivity 

of a certain type of amino acid side chain. The ε-amine of lysine residues is nucleophilic, and 

can be addressed with activated esters to form stable amide linkages357. Other types of amine-

specific reactions for protein labelling also exist, such as reductive amination358 or 

isothiocyanates359. The N-termini of proteins have a slightly lower pKa and so they can in theory 

be addressed specifically. Lysine has a high abundance in proteins (~6%360), which is a double-

edged sword, as it means lysine-reactive chemistry can be used to reliably label most proteins, 

but usually not site-specifically.  

 

To achieve more selective protein modification, cysteine-specific labelling can be employed 

instead. Cysteines are the most nucleophilic amino acid and can be addressed with a variety 

of reagents361. Cysteines are less abundant than lysines, and many cysteines are also 

inaccessible because they are oxidized in disulfide bonds. This means that the labelling of 

cysteines will usually be more selective but can require reduction of disulfides. The labelling of 

cysteine residues that are naturally in disulfides can mean disruption of protein fold and 

function362. For this reason, introducing an additional cysteine via protein engineering can be 
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an option, although introducing additional cysteines can itself have detrimental effects on 

protein stability363. Maleimides are the archetypical cysteine-selective probes. They react with 

thiols in thio-michael additions and have been used in a variety of applications (figure 11a)364. 

Maleimide-cysteine linkages have recently been shown to have problematic stability in 

presence of other thiols, prompting several investigations into improving their stability365,366. 

Alternatively, reagents can be used that form more stable bonds (figure 11b)367,368. For the 

modification of disulfides, rebridging agents have been developed that can react with two thiols 

and can improve stability of the conjugates369.  

 

 Figure 11. Select 

cysteine-selective reactions. a, Labelling of a cysteine residue with a maleimide. b, Labelling 

of a cysteine residue with an alkyne phosphonamidite, leading to a more stable bond. c, 

Labelling of a cysteine residue with a disulfide in two steps by first activating the nucleophilic 

thiol by converting it into an electrophilic disulfide using Ellman’s reagent.  

 

A special type of cysteine-selective reactions are reactions that will generate a disulfide bond 

between label and protein370. This is typically accomplished by first activating one of the two 

thiols (on the label or on the protein) with a reagent to form an electrophilic disulfide that will 

subsequently react with any free thiol (figure 11c). Activated thiols include sulfenyl halides371 

and pyridyl disulfides372. These disulfide conjugates are reversible in presence of thiols, which 

also means that they are cleavable within cells, as the cellular interior is a reducing 

environment373,374. 
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Reactions selective for other amino acid side chains including methionines375, tyrosines376, 

histidines377 and acidic amino acids296 have also been developed and are still a topic of current 

research, but are less commonly used so far. 

 

 

1.4.2.3.2 Bioorthogonal Reactions 

 

Site-specificity in the modification of proteins can be achieved by using bioorthogonal reaction 

handles incorporated into the protein. Aside from the enzymatic methods (see 1.4.2.2), these 

handles can also be introduced in the form of unnatural amino acids. The simplest way to 

incorporate unnatural amino acids is through metabolic labelling, by replacing a naturally 

occurring amino acid with a structural analogue. For example, methionine can be replaced in 

growth medium by azidohomoalanine to introduce an azide handle at positions where 

methionine normally occurs in proteins378. As methionine is a particularly rare amino acid, this 

can sometimes be enough for the labelling to be site-specific. For more control of incorporation 

of unnatural amino acids, genetic code expansion can also be used. In amber suppression, the 

amber stop codon (UAG) is overridden by the overexpression of a tRNA/tRNA synthetase  pair 

that recognizes the codon and incorporates an unnatural amino acid379. tRNA synthetases have 

been evolved to incorporate a large variety of amino acids with many biorthogonal handles 

such as azides380, strained alkynes381 and trans-cyclooctenes382.   

 

To address these handles specifically, biorthogonal reactions have been developed that do not 

react with naturally occurring moieties in proteins or biological environments383. The 

Staudinger ligation is a modification of the Staudinger reduction of azides by 

triphenylphosphine. By employing triarylphosphine derivatives with ester groups, the azide is 

reduced and forms an amide bond under hydrolysis of the ester323. Special phosphines can 

also undergo the “traceless” Staudinger ligation in which the phosphine is removed after the 

reaction323,384. On peptides, the ligation can also be triggered by using a protected phosphine, 

which has been used to generate N- to C- cyclized peptides chemoselectively385. 

 

Alternatively, azides can also react bioorthogonally with alkyne derivaties. The reaction 

between azides and alkynes is normally slow but can be sped up using copper catalysis 

(copper catalyzed azide-alkyne cycloaddition (CuAAC, mechanism in figure 12)) or by using 

more reactive, strained alkynes (strain promoted azide-alkyne cycloaddition (SPAAC)). The 

copper catalyzed click reaction is very quick, and can be further accelerated in water by the 
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usage of ligands that stabilize the reactive Cu(I) species386, but copper is toxic and generally 

not compatible with living systems387. The strain-promoted reaction requires bulky alkynes, but 

can be used in living systems388. 

 

 

Figure 12. The proposed mechanism of the copper catalysed click reaction. 

 

Aldehydes are another chemical entity that do not occur naturally on proteins. They can be 

addressed selectively with aldehydes under acidic conditions389. The reaction can also be 

performed at neutral pH using aniline or aniline derivatives as catalysts390. The inverse-eletron 

demand Diels-Alder (IEDDA) reaction between a tetrazine and a trans-cyclooctene is also 

biorthogonal and has been used to label proteins391. The IEDDA reaction has the potential to 

be the fastest biorthogonal reaction to date, which makes it a good candidate for reactions at 

very low concentrations392. It also does not use toxic metal species and can be used in living 

cells393 and in vivo394. Reactions using cross-metathesis395, and photoclick reactions using 

tetrazoles396 have also found their way into protein labelling, amongst others. 
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1.5  Antigen-Binding Proteins and their cellular delivery  

 

1.5.1 Antibodies 

 

Antibodies are large glycoproteins secreted by B cells and a major part of the adaptive immune 

system397. The immunoglobulin G (IgG) type of antibody is the most common type and makes 

up over 10% of plasma protein in humans (figure 13)398. IgG antibodies consist of four amino 

acid chains, two heavy (~50 kDa) and two light (~25 kDa) that are interlinked by disulfide bonds. 

The antigen binding (Fab) fragment of the antibody is joined to the other fragment (Fc, with no 

antigen-binding activity) through a hinge region. The amino-terminal regions of all chains make 

up the variable regions that are responsible for antigen binding (VH and VL).In the adaptive 

immune response, this “hypervariable region” of an antibody is mutated through random 

recombination events, generating antibodies against pathogens399,400. The large diversity in 

sequences leads to a wide variety of antigens that can be bound by antibodies. Because 

antibodies can be generated against virtually any antigen, they have been important tools in 

cell biology for decades401. Modern applications often employ conjugates of the antibodies with 

enzymes or small molecules for highly sensitive detection of antigens402,403. It is important to 

note that the conjugation of these molecules to antibodies can severely disturb the function of 

the antibody, which must be taken into consideration when generating novel conjugates404,405. 

The function of antibodies has also been shown to be dependent on their glycosylation, which 

can make the production of antibodies in large scales difficult406.  

 

Figure 13. Crystal structure of an IgG 

antibody. Labelled are the Fc and Fab 

regions, as well as the antigen binding VL 

and VH domains. PDB: 1IGT 
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Because antibodies are large and bulky, they are often natural inhibitors of their antigens. They 

can also often inhibit interactions of proteins with large binding interfaces, which small 

molecule drugs cannot. This means that antibodies have inherent therapeutic potential, and 

many antibody-based therapeutics have already been approved407. Classically, however, 

antibodies are limited to extracellular applications, which greatly limits their potential and 

highlights the need for antibody delivery methods408. 

 

As antibodies are complex, large, and sensitive to modification, their intracellular delivery is 

challenging9. In the past, successful antibody delivery was often done through microinjection, 

which is simple but low in throughput409,410. More recently, other physical methods such as 

electroporation411 and microfluidics46 have also been successfully used in the delivery of 

antibodies. As an alternative, antibodies can also be expressed directly in the cell, which are 

then called intrabodies412. This can even be applied in vivo413, but comes with the typical 

downsides of transfections such as cytotoxicity and low efficiency, and, when using viral 

vectors, the danger of genome integration of viral DNA414.  

 

Many conjugates of antibodies with cell-penetrating peptides have been generated. They have 

been used in live-cell immunofluorescence415,416, and as inhibitors of their intracellular 

antigens417,418. A major limitation of CPP-based antibody delivery is endosomal entrapment of 

the antibody. For antibodies specifically, this has been improved upon using light-triggered 

endosomal lysis419, and with an endosomolytic peptide97. 

 

Conjugates of antibodies with nanocarriers have also been generated, for example using 

cationic polymers420, cationic lipids421, virus-like particles82, or silica nanoparticles422. Like the 

approaches with cell-penetrating peptides however, the nanocarrier-mediated antibody 

delivery is often inefficient as antibodies can be trapped in endosomes.  

 

1.5.2 Other Antigen-Binding Proteins 

 

The sometimes-problematic complexity and size (~150 kDa) of antibodies have led to the 

development of smaller alternatives (figure 14a)423. Fragments of IgG antibodies such as Fab 

(~50 kDa), or the scFv (~25 kDa), unnatural fusion of the two variable regions of an antibody) 

promise to deliver higher expression yields and lower complexity, but they still contain complex 

disulfides like full length antibodies424. Also, the assembly of the two domains required for 
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antigen binding is usually mediated only by hydrophobic, non-covalent interactions, which can 

be problematic when isolated425. These problems can be even more severe when only a single 

antigen-binding domain of a conventional IgG antibody is expressed by itself (VH or VL, ~13 

kDa), as the hydrophobic amino acids are then solvent exposed426.  

 

 

Figure 14. a, Schematic showing the structure of an IgG antibody and of commonly used IgG-

derived fragments. b, Heavy chain antibody and the hcAb derived VHH (nanobody).  

 

 

An interesting solution to these problems comes from a special class of antibody called heavy-

chain antibodies (hcAb), which only occur in few species and do not contain a light chain (figure 

14b)427. The functional consequence of this is that these antibodies bind their antigen with a 

single domain. By isolating this domain, a nanobody (or VHH, ~13 kDa) is obtained. Compared 

to isolated antigen-binding domains from conventional IgG antibodies (VH or VL), nanobodies 

have enlarged antigen-binding CDR loops428 and are more hydrophilic and thus easier to 

express recombinantly429,430. Because of their advantageous properties, several nanobody 

candidates are being evaluated for their therapeutic potential431.  

 

Aside from antibody-derived proteins, binders can also come in the form of designed ankyrin 

repeat proteins (DARPins), which consist of ankyrin repeats, a naturally-occuring protein motif 

important in mediating protein-protein interactions432. DARPins are an engineered variant of 

ankyrin repeats consisting of 4-5 repeats (~14-18 kDa) and are usually generated through 

display methods such as ribosome433 or phage display434. Monobodies are binders designed 

on the human fibronectin type III domain (~10 kDa), which has an immunoglobulin-like fold but 

lacks disulfide bonds, making it easier to use435. New monobodies are typically generated 

against novel antigens using display methods such as phage or yeast display436. Affibodies are 

similarly generated from display methods, but based on the scaffold of the B-domain of the 
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Staphylococcus aureus protein A437. With only ~60 amino acids they are some of the smallest 

recombinant binders (~6 kDa)423. 

 

Functionalization of these proteins is often easier than with full-length antibodies438. For 

instance, nanobodies can be expressed with an additional unpaired cysteine, which can then 

be addressed using cysteine-selective chemistry439. Because of the easier recombinant 

expression of these binders, chemoenzymatic labelling methods are also commonly used in 

their modification351,440,441.  

 

Delivery of recombinant antigen-binding proteins is promising, as through their high stability 

and lower complexity they may be better suited for intracellular applications than full length 

antibodies. Antibody fragments can, like full-length antibodies, be delivered through physical 

methods such as electroporation442 and cell-squeezing443. Nanobodies have also been 

delivered into cells by cationic resurfacing, which entails exchanging surface-exposed amino 

acids to basic residues. Nanobodies with net +14 and +15 charges could thus be delivered into 

cells and could still bind their antigen (GFP)293. Cationic resurfacing is laborious however, and 

the high net charge could in principle affect properties of the protein. Alternatively, mesoporous 

silica nanoparticles have been used to deliver a chromobody (fusion of a nanobody with a 

fluorescent protein) into cells422. The delivery resulted mostly in endosomal entrapment, 

however. A delivery approach using a cationic polymer was more effective, but endosomal 

entrapment was still a bottleneck444. Using the anthrax lethal factor, a monobody, an affibody, 

and a DARPin could be delivered into cells92, showing the versatility of the method. Delivery 

using the lethal factor does, however, require unfolding and subsequent refolding of the protein 

cargo while passing through the generated pore into the cytosol.  
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2 Research Objective 

 

Protein delivery into mammalian cells has been a long-standing research objective. Many 

methods are very potent in specific applications, but the ideal method of protein delivery for 

every situation does not exist. The main weaknesses of existing methods lie in their limited 

applicability (e.g. physical methods) or in their inefficiency, often because of endosomal 

entrapment (in the case of nanocarrier or cell-penetrating peptide-based methods). While cell-

penetrating peptides have been applied in various settings, it is still not completely clear why 

some reports show energy-independent uptake into the cytosol while others report endosomal 

uptake. Especially protein delivery (in contrast to small molecule or peptide cargoes) with cell-

penetrating peptides is still relatively poorly studied and understood. 

 

The research objective of this work is the delivery of a variety of protein cargoes using cell-

penetrating peptides to both improve understanding of the underlying mechanisms as well as 

enhancing the delivery method thus enabling delivery of entirely new, functional cargoes that 

can then be used for cell-based assays. This overarching goal can be divided into three 

separate objectives. 

 
Objective 1: Cytosolic Delivery of Antigen-Binding Proteins 
 
As highlighted in section 1.5, antigen-binding proteins are of tremendous importance for nearly 

all areas of biomedical research. Aside from few previous examples their usage is generally 

restricted to in vitro and extracellular applications. The modification and cellular delivery of full-

length IgG antibodies is challenging. Antibody fragments can be modified more easily, and it is 

much more achievable to generate highly defined protein conjugates that allow detailed 

characterization of cellular uptake. Some examples of cytosolic delivery of antibody fragments 

exist, but they require laborious protein engineering or suffer from low efficiency. A major 

objective is thus the generation of a nanobody fused to a potent cell-penetrating peptide and 

the subsequent detailed characterization of the conjugate and its uptake into cells. 

 
 
Objective 2: Targeting of Proteins to Subcellular Compartments 
 
As the fate of cargoes delivered with cell-penetrating peptides is not completely clear, it is 

interesting to investigate whether it is possible to not only deliver a protein to the cytosol, but 

to discreet locations within the cell. This may be achieved using naturally occurring peptidic 
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targeting sequences in combination with the CPP-mediated delivery. For this, it is required to 

efficiently produce fusion proteins containing mammalian targeting sequences recombinantly. 

It is also important to distinguish attachment of the cell-penetrating peptide via a non-cleavable 

or cleavable linker to the protein, as this may greatly influence the intracellular fate of the cargo.  

 

Objective 3: Improving Cell-Penetrating Peptide-Mediated Delivery to Allow Delivery of 
Large Cargoes 
 
The mode of cellular entry of cargoes using cell-penetrating peptides is thought to depend on 

the attached cargo. Past literature suggests that the delivery of large cargoes can be inefficient 

or even impossible. This is perhaps the key limitation in the CPP-based delivery of large protein 

cargoes. To overcome the problem of endosomal entrapment, it is important to first understand 

why the issues occurs. A strategy can then be developed to overcome or circumvent the issue. 

This could then be applied to the delivery of larger, and more complex cargoes, with one goal 

being the cytosolic delivery of IgG antibodies using cell-penetrating peptides.   
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3 RESULTS AND DISCUSSION 
 
3.1 Cellular Delivery of Semi-Synthetic Antigen-Binding Domains 
and Applications Thereof  
 
This chapter was published as follows: 

H. D. Herce*, D. Schumacher*, A. F. L. Schneider, A. K. Ludwig, F. A. Mann, M. Fillies, M. A. 

Kasper, S. Reinke, E. Krause, H. Leonhardt, M. C. Cardoso*, and C. P. R. Hackenberger* 

Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living 

cells. Nat. Chem., 2017, 9, 762-771. 

https://doi.org/10.1038/nchem.2811 
 
 
Abstract: 

The previously developed cyclic cell-penetrating peptides cTat and cR10 were applied to the 

delivery of nanobodies into mammalian cells. A key difficulty was the efficient generation of 

recombinant nanobodies, site-specifically modified with a single CPP to avoid disturbing folding 

and binding to their antigen. Two different GFP-binding nanobodies were modified with the 

cyclic peptides using expressed protein ligation, which required some protein engineering. 

Purification of the CPP-conjugated nanobodies was possible using immobilized heparin, an 

anionic polysaccharide. The nanobodies could then be applied to cells. After cellular uptake, 

they could relocalize GFP-fusion proteins to the nucleoli, which CPPs have an affinity for. This 

relocalization could be used to quantify cellular uptake and allowed the detection of protein-

protein interactions within cells.  

 
Responsibility assignment 

H. D. Herce and D. Schumacher contributed equally. M. C. Cardoso, H. Leonhardt and C. P. R. 

Hackenberger designed and conceived the project. H.D.H. conceived and performed the 

cellular uptake experiments, the relocalization-based visualization assay, the uptake of 

recombinant GFP and Mecp2–GFP, PCNA relocalization and the modified F3H assay and 

microscale thermophoresis measurements to determine the binding constant of functionalized 

nanobodies. D.S. designed and optimized the cell-permeable nanobody synthesis, cloned and 

expressed GBP–intein–CBD fusions, established the refolding protocol, performed the EPL and 

analysed all the constructs (MS, CD, binding to GFP), synthesized the linear, cyclic and 

cleavable CPPs, generated double-functionalized nanobodies and performed eGFP expression 

and purification. A. F. L. Schneider generated the GBP11-117A3–intein–CBD fusion, 

established a purification strategy, performed EPLs and synthesized cCPPs. A. K. Ludwig 



Results and Discussion 
 
 

43 
 

purified recombinant proteins and performed some cellular uptake experiments as well as RNA 

isolation and RNA-binding assays. F. A. Mann optimized the EPL conditions and synthesized 

cCPPs. M. Filies generated and characterized the cell lines with the permanent expression of 

GFP and its fusions. M.-A. Kasper synthesized Cy5. S. Reinke performed the cloning and initial 

testing of the GBP–intein–CBD fusions. E. Krause contributed to the matrix-assisted laser 

desorption ionization measurements. H. Leonhardt provided the nanobodies. H. D. H. and D. 

S. wrote the manuscript supported by M. C. C., C. P. R. H., F. A. M., A. F. L. S., and A. K. L. 

 
Summary of author contribution 

A previously published GFP-binding nanobody that had previously been published, GBP1, was 

used in the attempt to generate cell-penetrating peptide conjugates445. The nanobody has very 

stable binding to GFP and can be expressed recombinantly in bacteria, making it a good 

candidate for this approach. As cell-penetrating peptides, previously employed cyclic variants 

of the commonly used Tat and R10 peptides (cTat and cR10) were to be used182,290. Using 

cyclic peptides, the nanobody-CPP fusions could not be generated through recombinant 

expression, and so a semi-synthetic strategy had to be employed. Expressed protein ligation 

was chosen as a strategy to generate the constructs. For this, cysteine-modified versions of 

the CPPs were first synthesized. Cyclization was accomplished by using orthogonal protecting 

groups on a lysine and glutamic acid residue, which could be removed, and cyclization was 

then done using a simple amide coupling. Optimization of the EPL conditions was required in 

order to obtain the nanobody-CPP conjugates in high yield, especially as purification of the 

conjugates from the unconjugated protein was difficult. After optimization, yields of up to 73% 

were achieved. A purification strategy for CPP-conjugates using the anionic polymer heparin 

was devised. The purification yielded very pure proteins in moderate yields.  

 

Summary of content provided by other authors 

As an alternative nanobody, the GFP-binding nanobody GBP4 was also used to generate 

nanobody-CPP conjugates. The conjugates were analysed using high resolution mass 

spectrometry and circular dichroism to ensure proper conjugation of the peptide without 

compromising the structure of the protein. Additionally, binding to GFP was also tested for the 

CPP conjugates to ensure they could still bind their antigen after modification.  

 

The cellular uptake of the conjugates was first tested on a HeLa cell line expressing a fusion 

protein of the DNA repair protein PCNA (proliferating cell nuclear antigen) with GFP (GFP-

PCNA). Arginine-rich Cell-penetrating peptides localize to the nucleoli after cellular uptake244, 
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and this property can be used by observing the relocalization of the GFP fusion protein from 

the nucleus to the nucleolus upon binding of the nanobody. Using this property, cellular uptake 

could be easily quantified for all the synthesized conjugates. For the best conjugate, the 

nanobody GBP1 as a fusion with the cylic R10 peptide, more than 95% of cells showed 

relocalization of GFP after application of 10 μM of the nanobody. The cyclic peptides proved 

to be more effective than their linear counterparts, and the R10 peptide was more effective 

than the Tat peptide. The cellular uptake was also temperature independent and could be done 

at 4°C, suggesting that energy-dependent uptake is not required. Other proteins could also be 

relocalized by the nanobody, and it was even possible to co-transport the nanobody and a 

GFP-fusion of the Mecp2 protein into cells together. The nanobody-CPP conjugate could be 

used in a cell-based assay to detect protein-protein interactions by observing if the interaction 

partner would show the CPP-based relocalization to the nucleoli or not. 

 

In many cases relocalization of the nanobody-CPP conjugate or the antigen may not be wanted, 

for example in immunofluorescence experiments. For this case, a fluorescent peptide was 

attached to the nanobody in the EPL reaction instead of the CPP. In a second conjugation, the 

nanobody can then first be activated with Ellman’s reagent before addition of the cysteine-

modified cyclic R10 peptide. This led to the formation of a disulfide bond between the 

fluorescent nanobody and the CPP, which could be cleaved by the addition of reducing agents. 

As the cellular interior is a reductive environment, the CPP should be cleavable after cellular 

uptake. Indeed, incubation of cells with the cleavable nanobody-CPP conjugate led to 

colocalization of the nanobody with GFP-PCNA without relocalization to the nucleolus, making 

this a useful tool for live-cell immunofluorescence of GFP fusion proteins. 

 

Outlook 

This work shows the potential of cell-penetrating peptides in the delivery of antibody fragments. 

The delivery of nanobodies has applications in immunofluorescence microscopy and other 

cellular assays. The delivery at 4°C implies that entire proteins can be delivered into cells in an 

energy-independent manner. More research is still required into the general applicability of 

CPP-mediated protein delivery and the intracellular fate of the CPP-conjugates.  
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3.2 Subcellular Targeting of Cleavable and Uncleavable Cell-
Penetrating Peptide Conjugates  
 
This chapter was published as follows: 

A. F. L. Schneider, A. L. D. Wallabregue, L. Franz, and C. P. R. Hackenberger* 

Targeted Subcellular Protein Delivery Using Cleavable Cyclic Cell-Penetrating Peptides. 

Bioconj. Chem., 2019, 30, 400-404. 

https://doi.org/10.1021/acs.bioconjchem.8b00855 
 
 
Abstract: 

With the fluorescent protein mCherry as a model cargo, the targeting of delivered proteins to 

different subcellular compartments is evaluated. mCherry is generated recombinantly with an 

additional cysteine that can be modified with cyclic R10 peptides either via a cleavable 

disulphide bond or via an uncleavable thioether. The two different constructs show markedly 

different localization within cells as the uncleavable conjugate drives localization of the protein 

to nucleoli. By appending peptidic targeting sequences to the recombinant protein, it is 

possible to achieve localization of the proteins to nuclei or to the actin cytoskeleton after 

delivery. However, flawless localization to the target compartment is only achieved with the 

cleavable cell-penetrating peptide. 

 
Responsibility assignment 

A. F. L. Schneider and C. P. R. Hackenberger conceived the experiments and wrote the 

manuscript. A.F.L.S. cloned, expressed, purified, and characterized proteins, synthesized and 

characterized peptides and protein-peptide conjugates and performed uptake and microscopy 

experiments. A. L. D. Wallabregue performed uptake experiments. L. Franz cloned, expressed, 

and purified the Lifeact-mCherry construct.  

 
Summary of content 

To evaluate successful delivery of a protein to subcellular compartments, mCherry was chosen 

as the protein candidate. Because it is a fluorescent protein, mCherry fluorescence indicates 

that the protein is still intact. mCherry also does not contain any cysteines, which makes it easy 

to introduce an additional cysteine that can later be used as a handle to attach the cell-

penetrating peptide. The fluorescence of the protein is also less dependent on the pH value 

than in the case of GFP, which may help distinguish endosomal entrapment from cytosolic 

delivery. To establish the method, an mCherry construct with an additional cysteine on the C-

terminus was cloned and expressed in bacteria. After purification, the protein could be 
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modified with a cell-penetrating peptide. Two peptides were synthesized for this purpose: a 

maleimide-functionalized cyclic R10446 peptide which would generate an uncleavable bond, 

and a cysteine-functionalized equivalent that can be used to furnish a disulfide-conjugate. Both 

peptides could be used to make mCherry-CPP conjugates, which could be analyzed by high 

resolution mass spectrometry and gel electrophoresis. The disulfide-linked CPP could be 

removed under reducing conditions as expected.  

 

In the cellular uptake experiment, several concentrations of the mCherry-CPP conjugates were 

tested on HeLa cells. Low concentrations seemed to lead to endosomal entrapment, but the 

protein could be successfully delivered into the cytosol at 50 μM. When comparing the 

maleimide and disulfide constructs, the non-cleavable maleimide showed clear mCherry signal 

in the nucleoli, whereas the cleavable construct was excluded.  

 

As a first peptidic targeting sequence the nuclear localization signal (NLS) from the human c-

Myc protein447 was used, which had previously been shown to be highly effective at nuclear 

import79. Recombinant expression of the NLS-mCherry with the C-terminal cysteine worked as 

before, as did the modification with the cyclic cell-penetrating peptides. Delivery was also 

effective only at 50 μM. Again, the maleimide-construct showed very clear nucleolar staining 

while the cleavable construct was broadly distributed throughout the nucleus. 

 

To challenge the system further, an actin-targeting sequence was employed next. Lifeact is a 

well-established, non-toxic actin targeting sequence448. However, the sequence is also 

relatively hydrophobic. To compensate, the lifeact-mCherry fusion was expressed with 

maltose-binding protein (MBP) as a solubility tag, which was removed after purification. 

Conjugation and delivery of the cell-penetrating peptide could be achieved as before. The 

construct with the cleavable cell-penetrating peptide showed actin staining, which could be 

confirmed through colocalization with a known actin marker (SiR-actin). 

 

Outlook 

This study demonstrates that after delivery, conjugates of proteins with cell-penetrating 

peptides can reach subcellular compartments effectively, but only when the attached peptide 

can be cleaved off. The high required concentration to achieve successful uptake also 

highlights the biggest flaw of this method. Applying high concentrations of conjugates to cells 

can be difficult and potentially toxic, and this needs to be improved further.
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3.2.1 Attempted Mitochondrial Targeting of mCherry after Delivery 
using Cell-Penetrating Peptides  
 
Introduction: 

Mitochondria are a membrane-bound cellular compartment involved in many cellular 

processes such as energy metabolism and regulation of the cell cycle449. Mitochondria contain 

their own genome, and proteins encoded in the mitochondrial DNA can be translated within 

mitochondria450. However, most proteins that are important for the function of mitochondria are 

encoded within the nuclear DNA and are imported into mitochondria451. Import of proteins into 

mitochondria membrane is a complex, regulated process and is generally accomplished 

through protein translocases on the outer and inner membranes452. Some proteins have been 

shown to be imported into mitochondria post-translationally, although co-translational import 

may also exist453. Proteins do seem to be unfolded while passing through the membrane 

however454.  

 

Delivering cargoes into mitochondria is interesting because it may allow alteration of 

mitochondrial functions. There are also many diseases associated with mitochondrial 

dysfunction455, which could potentially be treated through mitochondrial delivery 

approaches456. Because mitochondrial import may require unfolding, the delivery of 

exogenously folded proteins into mitochondria may be difficult. Nevertheless, it is an important 

goal to pursue. 

 

Results and Discussion: 

As before, the fluorescent protein mCherry was the cargo of choice to be delivered. As a 

mitochondrial targeting sequence, the signal sequence of the cytochrome c oxidase, subunit 

8a (COX8A) was chosen. At first, a plasmid for the expression of a histidine-tagged version of 

the mCherry protein with the mitochondrial targeting sequence was cloned. Recombinant 

expression in e. coli did not yield any protein (data not shown). The mitochondrial targeting 

sequence is hydrophobic, which may result in an insoluble protein after expression. To 

overcome this, the construct was cloned into an expression vector with maltose-binding protein 

(MBP) as a solubility tag. Expression in e. coli then yielded protein which could also be purified 

(Supplementary figure 1, in section 6, appendix). After removal of the MBP through cleavage 

with the TEV protease, protein aggregation was observed. This suggests that the protein can 

still aggregate even after folding. Nevertheless, several milligrams of pure protein could be 

isolated. 
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The conjugation of the cyclic R10 CPP was done as before457, either by incubating the protein 

with a maleimide-functionalized cR10 peptide or by activating the protein with an excess of 

Ellman’s reagent, removing the excess by dialysis, and then incubating the protein with the 

cysteine-containing cR10 (figure 1a). Conjugation was successful in both cases as confirmed 

by gel electrophoresis (figure 1b).  

 

 

Figure 1. a, Schematic showing the semi-synthetic mCherry constructs bearing the 

mitochondrial localization signal of Cox8A as well as cR10 CPPs. b, Coomassie-stained SDS-

PAGE gel showing the successful conjugation of mCherry to the CPPs and reduction of the 

disulfide. * = remaining maltose binding protein after purification. c,d, Confocal microscopy 

images of the maleimide- and disulfide linked mCherry-CPP conjugates after cellular uptake. 

Both constructs show localization within the cell, but no colocalization with the mitochondrial 

marker. 

 

Cellular delivery was then tested in HeLa cells. 50 μM of either conjugate was added to the 

cells in HEPES buffer for 1 hour at 37°C. Colocalization was tested by co-treating the cells with 
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a mitochondrial marker (MitoTracker green FM). Unfortunately, while some of the fluorescence 

signal originating from the mCherry looked colocalized with mitochondria, the majority by far 

was not colocalized for either of the constructs (figure 1c-d). While much of the protein shows 

punctate staining indicating endosomal entrapment, a substantial amount of the disulfide-linked 

mCherry is also broadly distributed in the cytosol and should be able to be recruited to the 

mitochondria.  

 

It is not completely clear why mitochondrial localization does not occur, as the targeting 

sequence can lead to mitochondrial localization of fluorescent proteins expressed within the 

cell458. One possible explanation is that mitochondrial import fails, as it may require unfolding 

of the mCherry protein. This constitutes a major hurdle which will have to be addressed if highly 

efficient mitochondrial delivery of proteins is desired. 

 

Materials and Methods: 

Cloning: 

The previously published MBP-TEV-Lifeact-mCherry plasmid was used as a template. The 

Cox8A mitochondrial targeting sequence was amplified via PCR along with the backbone and 

they were combined using Gibson assembly. 

 

Protein expression and purification: 

The MBP-Cox8A-mCherry-Cysteine construct was expressed by inoculating a 5 mL starter 

culture in LB medium with a single colony from an agar plate of BL21 DE3 Lemo cells 

transformed with the corresponding plasmid DNA. The starter culture was incubated overnight 

at 37°C. 1 mL of the starter culture was used to inoculate a 250 mL culture in LB medium 

containing Kanamycin. The culture was incubated for ~6 hours at 37°C until it reached an 

OD600 value of 0.6. Expression was induced with 0.5 mM isopropyl-b-D-1-

thiogalactopyranoside (IPTG) and incubated at 18 °C for 18 h.  

 

Cells were spun down at 8000xg for 15 minutes. The cell pellets were washed once with PBS. 

The pellets were then resuspended in PBS containing, then lysed using sonication (3x 2 min, 

30% Amplitude), followed by debris centrifugation at 25.000xg for 30 min. The proteins were 

purified on amylose resin, eluting with 100 mM maltose in PBS. 

 

The MBP-Cox8A-mCherry-Cysteine construct was treated with TEV protease (1:20 w/w) while 

dialyzing against PBS at room temperature overnight for 18 hours. The protein was then 
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passed through the amylose resin again to remove the maltose-binding protein. The protein 

was further purified using size-exclusion chromatography. 

 

Conjugation of the cell-penetrating peptide: 

The previously published maleimide- and cysteine-functionalized cR10 peptides were used457. 

For the maleimide, 10 equivalents of peptide were added to the protein and it was incubated 

overnight at room temperature. For the disulfide-linkage, the protein was incubated with 10 

equivalents of Ellman’s reagent (5,5′-Dithiobis(2-nitrobenzoic acid)) for 1 hour at room 

temperature. The excess reagent was removed by dialysis overnight against 5 mM HEPES at 

pH 9.0, 140 mM NaCl, 2.5 mM KCL, 5 mM Glycine. The next day, 10 equivalents of the cysteine-

modified cR10 peptide were added to the protein and it was incubated overnight. For both 

peptides, the excess peptide was removed by desalting in a spin column into hepes buffer (5 

mM HEPES at pH 7.5, 140 mM NaCl, 2.5 mM KCL, 5 mM Glycin). 

 

Cellular uptake and microscopy: 

The day before the experiment, 30’000 HeLa cells were seeded in each well of an 8-well glass 

bottom microscopy slide. The cells were left to adhere overnight at 37°C and 5% CO2. The next 

day, the cells were washed twice with HEPES buffer (5 mM HEPES at pH 7.5, 140 mM NaCl, 

2.5 mM KCL, 5 mM Glycin). The buffer was then replaced with 50 µM protein in Hepes buffer, 

also containing 200 nM mitotracker green FM, and the cells were incubated for 1 hour at 37°C. 

The cells were then washed with cell medium containing 10% FCS with 5 μg/mL Hoechst 

33342 and left in the medium for imaging. 

 

Confocal microscopy images were acquired on a Zeiss laser scanning microscope. All images 

shown in this work were acquired using a PlanApo 100x oil objective (Zeiss). Brightfield images 

were aquired along with fluorescence images. Standard laser, a quad Dicroic (400-410,486-

491, 560-570, AHF) and Emission filters were used in the acquisition of confocal fluorescence 

images (Hoechst 33342, ex.: 405 nm em.:450/50:, MitoTracker Green FM, ex.: 488 em.: 525/50, 

mCherry, ex.: 561 em.: 600/50 nm.  
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3.2.2 Membrane Targeting of mCherry after Delivery using Cell-
Penetrating Peptides  
 
Introduction: 

Proteins are the component of membranes that are responsible for most of the specific 

functions of cell membranes. The association of proteins with membranes can happen in 

various ways. Proteins can be integral membrane proteins that contain transmembrane 

sequences that are integrated into the plasma membrane459. Peripheral membrane proteins 

are temporarily attached to the membrane either by amphipathic helices that associate with 

the membrane460, or they can be modified co- or post-translationally with fatty acid chains or 

prenyl groups that will integrate into the membrane461.  

 

Lipid-anchored proteins can be attached to the cell membrane via various types of anchors 

including palmitoylation, myristoylation, farnesylation, geranylgeranylation and modification 

with cholesterol462. Protein lipidation occurs at specific motifs within the protein sequence and 

is a tightly regulated process463. Because it occurs on many disease-relevant proteins, it is also 

itself implicated in many diseases, from cardiovascular disease462 to cancer464. The process of 

lipidation can be difficult to study, and exogenously delivered proteins that are lipidated within 

the cell can be an additional avenue for research into this type of modification.  

 

Results and Discussion: 

Different lipidation motifs were explored in the context of this approach. The palmitoylation 

motif of the Lyn tyrosine kinase protein was chosen, alongside the CaaX (where a = aliphatic 

amino acid and X = one of several amino acids) motifs of two GTPases, HRas and KRas. 

Interestingly, as all three sequences contain a cysteine that is later lapidated, this cysteine 

could also be used in the reversible modification of the protein with the cell-penetrating peptide 

for delivery. The peptide would then be removed inside of the cell, restoring the cysteine, and 

the lipid anchor could then be attached. The fluorescent protein mCherry was used as a model 

cargo. Plasmids encoding mCherry with the targeting sequences were cloned (plasmid 

schematics in figure 1a). The proteins were then recombinantly expressed in E. coli and 

purified using immobilized metal affinity chromatography (Supplementary figure 2, in section 

6, appendix).  

 

As the CPP has to be removed inside the cell to allow attachment of the lipid anchor, only 

disulfide conjugates of the cyclic R10 CPP were generated. This was accomplished as 
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published previously457, by activating the protein with an excess of ellman’s reagent, removing 

the excess by dialysis, and then incubating the protein with the cysteine-containing cR10. The 

attachment of the CPP was successful for all three fusion proteins, as confirmed by gel 

electrophoresis and high-resolution mass spectrometry (figure 1b and supplementary figure 

3).  

 

 Figure 1. a, 

Schematic showing the fusion protein sequences of mCherry fused to the Lyn, HRas and KRas 

membrane localization sequences. b, Coomassie-stain and in-gel fluorescence of an SDS-

PAGE gel showing the successful conversion of the mCherry constructs to the CPP-

conjugates. Note that because the HRas construct contains several cysteines it leads to a 

complex disulfide bonding pattern. Nevertheless, conversion can be seen especially on the 

fluorescence image. c, Confocal microscopy images of the disulfide linked mCherry-CPP 

conjugates after cellular uptake. All constructs show fluorescence within the cell, with the lyn11 

and KRas constructs showing membrane staining. 
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Cellular delivery was then tested in HeLa Kyoto cells using 50 μM of the conjugates in cell 

medium. The cytosolic delivery of all conjugates was successful, although some endosomal 

entrapment is also apparent. However, only two of the conjugates, the Lyn11 and KRas 

constructs show membrane staining (figure 1c, top and bottom rows). The HRas construct 

does not show membrane staining despite being delivered into the cytosol.  

 

A possible reason for the unsuccessful plasma membrane localization of the HRas-fusion 

protein is that the intracellular localization of HRas changes between endomembranes and the 

plasma membrane depending on the number and character of the lipid modifications, as HRas 

(in contrast to the other two constructs) can be farnesylated and palmitoylated multiple times465. 

Nevertheless, the Lyn- and KRas constructs containing the cR10 peptide can be useful models 

to study regulation of membrane anchoring and could be used in conjunction with small 

molecule inhibitors of these processes to gain further understanding into the matter.  

 

Materials and Methods: 

Cloning: 

The previously published mCherry-cysteine plasmid was used as a template. The Lyn 

palmitoylation motif (the 11 N-terminal amino acids (Lyn11)) was amplified via PCR along with 

the backbone and was introduced on the N-terminal side of the protein using Gibson assembly. 

The HRas and KRas CaaX motifs were also amplified via PCR and introduced on the C-terminus 

of the mCherry protein using Gibson assembly. 

 

Protein expression and purification: 

The protein constructs were expressed by inoculating a 5 mL starter culture in LB medium with 

a single colony from an agar plate of BL21 DE3 cells transformed with the corresponding 

plasmid DNA. The starter cultures were incubated overnight at 37°C. 1 mL of each starter 

culture was used to inoculate a 250 mL culture in LB medium containing Kanamycin. The 

cultures were incubated for ~6 hours at 37°C until they reached an OD600 value of 0.6. 

Expression was induced with 0.5 mM isopropyl-b-D-1-thiogalactopyranoside (IPTG) and 

incubated at 18 °C for 18 h.  

 

Cells were spun down at 8000xg for 15 minutes. The cell pellets were washed once with PBS. 

The pellets were then resuspended in PBS containing 25 mM imidazole, then lysed using 

sonication (3x 2 min, 30% Amplitude), followed by debris centrifugation at 25.000xg for 30 min. 
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The proteins were purified on Nickel-NTA agarose and eluted with 500 mM imidazole in PBS. 

The proteins were then further purified using size-exclusion chromatography. 

 

Conjugation of the cell-penetrating peptide: 

The previously published cysteine-functionalized cR10 peptides was used457. To generate a 

disulfide-linkage, the proteins were incubated with 10 equivalents of ellman’s reagent (5,5′-

Dithiobis(2-nitrobenzoic acid)) for 1 hour at room temperature. The excess reagent was 

removed by dialysis overnight against 5 mM HEPES at pH 9.0, 140 mM NaCl, 2.5 mM KCL, 5 

mM Glycine. The next day, 10 equivalents of the cysteine-modified cR10 peptide were added 

to the protein and it was incubated overnight. Excess peptide was removed by desalting in a 

spin column into hepes buffer (5 mM HEPES at pH 7.5, 140 mM NaCl, 2.5 mM KCL, 5 mM 

Glycin). 

 

Cellular uptake and microscopy: 

The day before the experiment, 10’000 HeLa Kyoto cells were seeded in each well of a 96-well 

glass bottom black plate. The cells were left to adhere overnight at 37°C and 5% CO2. The next 

day, the cells were washed twice with HEPES buffer (5 mM HEPES at pH 7.5, 140 mM NaCl, 

2.5 mM KCL, 5 mM Glycin). The buffer was then replaced with 50 µM protein in Hepes buffer 

and the cells were incubated for 1 hour at 37°C. The cells were then washed with cell medium 

containing 10% FCS with 5 μg/mL Hoechst 33342 and left in the medium for imaging. 

 

Confocal microscopy images were acquired on a Nikon-CSU spinning disc microscope with 

an CSU-X1 (Andor) and a live cell incubation chamber (OKOlab). All images shown in this work 

were acquired using a PlanApo 60x NA 1.4 oil objective (Nikon) and an EMCCD (AU888, 

Andor). Brightfield images were aquired along with fluorescence images. Standard laser, a 

quad Dicroic (400-410,486-491, 560-570, 633-647, AHF) and Emission filters were used in the 

acquisition of confocal fluorescence images (BFP(Hoechst 33342), ex.: 405 nm em.:450/50: 

and RFP (mCherry) ex.: 561 em.:600/50 nm.   
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3.3 Improving Cell-Penetrating Peptide-Mediated Delivery to Allow 
Delivery of Large Cargoes 
 
This chapter was accepted for publication as follows: 

A. F. L. Schneider, M. Kithil, M. C. Cardoso, M. Lehmann and C. P. R. Hackenberger* 

Cellular uptake of Large Biomolecules Enabled by Cell-Surface-Reactive Cell-Penetrating 

Peptide Additives. Nat. Chem., 2021, accepted. DOI-link not yet available. 

 
 
Abstract: 

A major bottleneck of the delivery of proteins using cell-penetrating peptides are the high 

concentrations that need to be applied to cells to achieve cytosolic delivery instead of 

endosomal entrapment. To circumvent this issue, a low μM concentration of cargo-CPP 

conjugate is applied to the cells along with low μM free CPP. Different CPP-additives are 

evaluated, and the most effective additives are CPPs that can react with the cell-surface 

through cysteine-selective chemistry. This delivery approach is effective for several different 

proteins at low concentrations and also works at 4°C, where active transport should not occur. 

The protocol can also be applied to the delivery of full-length IgG antibodies, which then 

colocalize with their antigen inside living cells. 

 

Responsibility assignment 

A. F. L. Schneider, M. Lehmann, M. C. Cardoso and C. P. R. Hackenberger conceived the 

experiments and wrote the manuscript. A.F.L.S. cloned, expressed, purified and characterized 

proteins, synthesized and characterized peptides and protein-peptide conjugates, performed 

uptake, cell viability, microscopy and flow cytometry experiments. M.L. performed microscopy 

experiments and wrote the quantification script together with A.F.L.S.. M. K. performed the 

Calcein AM staining. 

 
Summary of content 

To address the high concentrations required to achieve cytosolic delivery of cargoes with cell-

penetrating peptides, several model cargoes were synthesized. A small molecule fluorophore 

(~500 Da), a fluorescent nanobody (~13 kDa) and the fluorescent protein mCherry (~30 kDa) 

were all connected to a cyclic R10 peptide. The constructs were then applied to HeLa cells at 

various concentrations (1-50 μM) and confocal microscopy images were recorded. Uptake 

experiments revealed that while the fluorophore could reach the cytosol even at 1 μM 

concentration, the other cargoes were trapped in endosomes unless much higher 
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concentrations were used (10 μM and 50 μM for the nanobody and mCherry, respectively). As 

a potential solution to this, the protein-CPP conjugates were applied to the cells at a 1 μM 

concentration in combination with 5 μM of free, unbound cell-penetrating peptide. It was 

expected that this could rescue the cytosolic delivery with the combined effect of the CPPs. 

Indeed, the application of 1 μM of either of the two proteins with 5 μM of the previously 

published cysteine-functionalized cyclic R10 peptide led to cytosolic delivery in both cases. 

The total concentration of cell-penetrating peptide was only 6 μM, much lower than the 

previously required amounts. Interestingly, the same effect could be achieved when a linear 

R10 peptide was used as the unbound additive, implying that the more challenging synthesis 

of the cyclic variant is not necessarily required. 

 

To further characterize the mode of delivery, several other CPPs were synthesized, with a focus 

on the N-terminal cysteine residue that was initially included serendipitously. The cysteine thiol 

proved to be very important for the observed effect, since blocking it by alkylation with 

iodoacetamide strongly reduced the efficiency of the protocol. Interestingly, activating the thiol 

using Ellman’s reagent, thereby making it more prone to form disulfide bonds, strongly 

increased the efficiency of delivery. Fluorescent versions of the cysteine-containing R10 

peptides were then synthesized and the cellular uptake of these peptides was monitored in 

time-lapse confocal microscopy experiments. The Ellman’s reagent activated fluorescent R10 

peptide showed very quick cellular uptake, with nucleolar staining occurring in all cells within 

90 seconds after addition. The peptide also showed very prominent “nucleation zones”, i.e. 

very brightly fluorescent spots on the surface of the cell appearing immediately before uptake. 

The peptide with the blocked thiol showed no uptake at all under the same timeframe. We 

hypothesized that cysteine-selective chemistry can be used to covalently label certain spots 

on the membrane through which cellular uptake then occurs. To put this to the test, a 

maleimide-functionalized, fluorescent R10 peptide was synthesized. The maleimide-containing 

peptide also showed very rapid uptake comparable to the Ellman’s reagent-activated peptide. 

The two peptides labelled the same regions on the cell membrane when added to cells 

together. Finally, through co-incubation of cells with the fluorescent maleimide-R10 peptide 

and an mCherry-CPP conjugate it was possible to observe the transduction of mCherry into 

the cell, which indeed seemed to occur through areas of the membrane that the maleimide-

R10 peptide had previously labelled.  

 

As an alternative way to anchor a CPP on the surface of cells, a chloroalkane-containing R10 

peptide was synthesized. A plasmid was cloned that would lead to the expression of a halotag 
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protein on the cell-surface along with an EGFP reporter within the cell. After transfection of the 

plasmid into HeLa cells, the chloroalkane-R10 was added to the cells along with an mCherry-

CPP conjugate, and cytosolic delivery could be observed predominantly into cells that 

expressed the halotag. This suggests that CPP-anchoring on the cell membrane is a generally 

applicable way to efficiently deliver proteins into cells. 

 

The protocol was also successful in four other cancer cell lines of different tissue origin and 

could be applied in presence of low concentrations of serum. It was also possible to deliver the 

DNA editing enzyme cre recombinase. The best additive in the delivery protocol, the Ellman’s 

reagent-activated R10 peptide, could also be used to deliver a cysteine-containing mCherry 

by simple co-incubation with an excess of peptide.  

 

Lastly, the delivery of full-length IgG antibodies was tested using the new additive protocol. 

The antibodies first had to be thiolated using Traut’s reagent, as they contain no unpaired 

cysteines. When the antibodies were then mixed with an excess of the Ellman’s reagent-

activated R10 peptide, they could be delivered into the cytosol of HeLa cells, and showed 

colocalization with their antigen. For example, an antibody against the Tomm20 mitochondrial 

receptor showed colocalization with a mitochondrial marker. 

 

Outlook 

The newly developed CPP-additive protocol in the delivery of proteins allowed the delivery of 

various protein conjugates into several cell lines. The labelling of cell membranes with CPPs 

and subsequent delivery could allow cell-specific delivery using CPPs, if one can only label a 

certain kind of cell. This is a long-sought goal in the field of CPP research. The delivery of full-

length IgG antibodies also has much potential and can, in future work, be applied to the delivery 

of inhibitory antibodies for cell-based assays. 
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Abstract 

Enabling the cellular delivery and cytosolic bioavailability of functional proteins constitutes a 

major challenge for the life sciences. The conjugation with cell-penetrating peptides (CPPs) is 

frequently used to mediate the cellular uptake of various protein cargoes. At low µM-

concentrations, protein-CPP conjugates can undergo endosomal uptake, which necessitates 

endosomal escape to avoid entrapment in endosomes, whereas at higher concentrations they 

can cross cell membranes directly and reach the cytosol via a non-endosomal delivery 

pathway.  

In the current study, we demonstrate that thiol-reactive arginine-rich peptide additives can 

enhance the cellular uptake of protein-CPP conjugates in a non-endocytic mode even at low 

µM concentration. We show that such thiol- or halotag-reactive additives can result in 

covalently-anchored CPPs on the cell surface, which are highly effective at co-delivering 

protein cargoes. Taking advantage of the thiol-reactivity of our most effective CPP-additive we 

show that Cys-containing proteins can be readily delivered into the cytosol by simple co-
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addition of a slight excess of this CPP. Furthermore, we demonstrate the application of our 

“CPP-additive technique” in the delivery of functional enzymes, nanobodies and full-length IgG 

antibodies. This new cellular uptake protocol greatly simplifies both the accessibility and 

efficiency of protein and antibody delivery with minimal chemical or genetic engineering.  

 

Introduction 

Proteins offer a tremendous structural and functional diversity, which makes them 

indispensable tools for biological and pharmacological applications. However, proteins are 

large and hydrophilic, and thus usually not cell-permeable, which severely limits their potential 

in both research and therapy. Consequently, the intracellular delivery of functional proteins 

remains one of the biggest challenges in the molecular life sciences, although considerable 

progress has been made recently1,2. Amongst other methods, cell-penetrating peptides (CPPs) 

have established themselves as potent tools in the delivery of a variety of cargoes3. 

The first cell-penetrating peptides or “protein transduction domains” (PTDs) have been 

discovered about 30 years ago originating from the transactivator of transcription (TAT) protein 

of the human immunodeficiency virus (HIV)4 and the Drosophila antennapedia homeodomain 

(penetratin)5,6. Since then, many CPPs have been described, both from natural and synthetic 

origin. Several studies have investigated their mechanism of action and used them in various 

applications in biology7,8; nevertheless, how exactly CPPs enter cells is still often 

controversially discussed. Much effort has been devoted to cationic CPPs, which can bind to 

cell membranes through ionic interactions before being endocytosed.9,10 Equally, many reports 

describe CPP-mediated uptake at cold temperatures, where active uptake processes should 

not occur, or in the presence of endocytosis inhibitors11,12. The latter process, commonly 

referred to as “transduction”, is reported to be dependent on the concentration13,14 and also on 

the cargo attached to the peptide15. This can be seen when using linear CPPs to transport 

small cargoes such as fluorophores and peptides, which typically leads to localization in the 

cytosol, whereas larger protein cargoes are often trapped in endosomes16,17. 
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To further improve the delivery of CPP-linked cargoes researchers have implemented 

additional modules into uptake protocols. For instance, the addition of the enzyme 

sphingomyelinase resulted in an increased uptake of cationic CPPs by generating ceramide 

on the cell surface18. Alternatively, the addition of pyrenebutyrate as a hydrophobic counterion 

to cells before adding the CPP-conjugate led to an improved uptake19. Finally, the addition of 

peptides or small molecules has been pursued to mediate endosomal leakage for the release 

of cargoes into the cytosol 20-24. 

An important element in the design of effective CPPs for the transport of cargo to the cytosol 

is cyclization25,26. It was demonstrated that cyclization leads to a remarkable increase in both 

efficiency and speed of membrane transduction27, which likely stems from the presentation of 

the positive charges on the peptide. We have previously shown that cyclization and 

subsequent conjugation of a single TAT-peptide can be used to transport GFP into the cytosol 

of cells, which was impossible with the linear variant28. Since then, we have been able to apply 

this methodology to the cytosolic transport of nanobodies as well as the intracellular targeting 

of fluorescent proteins29,30. Still, to achieve transduction of proteins into the cytosol, rather high 

concentrations of the cargo protein must be applied, ranging from 10 µM of a small antibody 

fragment (nanobody) to up to over 100 µM of EGFP. These concentrations are much higher 

than required for the transduction of small cargoes27 and suggest that there is a size-

dependence of the cargo on transduction. Consequently, it might not be possible at all to 

deliver even larger molecules in an energy-independent manner. 

 

Encouraged by previous findings, which report the cooperative interaction of arginine-rich 

CPPs with physiological membranes in a concentration-dependent manner31-34, we probed the 

impact of CPPs that were added to cells in addition to protein-CPP cargoes. Starting with 

simple  cysteine-containing, unbound CPPs as additives, we find that thiol-reactivity plays an 

important role in this additive-approach, which is consistent with previous reports using thiol-

reactive cargoes35,36. In particular, we show that electrophilic thiol-reactive CPP-additives are 

highly effective at creating nucleation zones on the cell-surface, which enable efficient 
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transduction of protein-CPP conjugates. Our protocol proves to be highly effective, simple, and 

not harmful to the cell. Importantly, we show that we enable the transduction of recombinant 

CPP-containing proteins as well as a 150 kDa IgG antibody into living cells via a non-

endosomal uptake mechanism. 

 

Results 

Improved cellular uptake of cargoes mediated by cell-penetrating peptide additives   

To evaluate the concentration, temperature and cargo-size dependency of added arginine-rich 

peptides to mediate cytosolic delivery, we chose three distinct cargoes to transport: the organic 

fluorophore Tetramethylrhodamine (TAMRA, ~450 Da), the camelid-derived anti-GFP 

nanobody GBP1 (~14 kDa) and the fluorescent protein mCherry with a nuclear localization 

signal (NLS-mCherry, ~28 kDa). We attached each of the cargoes to a synthetic cyclic R10 

(cR10) peptide yielding an intracellularly non-cleavable conjugate, either via an amide bond in 

the case of TAMRA or using maleimide chemistry for the proteins (analytical data for peptides 

in SI Fig.1, characterization of GBP1 and mCherry and their CPP conjugates in SI Figs. 2-3), 

following our previous reports29,30.  In all cases, successful cytosolic delivery would lead to 

staining of the cytosol and of the nucleolus, an RNA-rich membrane-less compartment inside 

the nucleus (red area in the nucleus, Fig. 1a), for which cationic CPPs have an 

affinity29,37,38.The cR10 peptide, consisting of ten arginines with alternating L- and D-

configurations, has previously been shown to be effective in the delivery of functional proteins, 

albeit only at relatively high concentrations29,30.  We then applied all of the synthesized cargoes 

to HeLa Kyoto cells (expressing nuclear GFP-PCNA39,40 as antigen for the nanobody), at both 

37 and 4°C (Figs. 1b-d and individual channels in SI Fig. 4). At 37°C, the CPP-bearing cargoes 

can reach the cytosol either via endocytosis and endosomal escape (Fig. 1 a) or directly 

transduce the membrane, circumventing the energy-dependent transport. At 4°C however, 

active transport should not occur, and cellular fluorescence would be the result of 

transduction41,42.  
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Upon incubation of the cells with TAMRA-cR10 for 1 hour in cell culture medium, we found 

cytosolic (and nucleolar) localization of the red fluorophore at only 1 µM both when the 

incubation was done at 4 and 37°C (Fig. 1b). These experiments show that successful 

cytosolic delivery for this small fluorophore can be achieved under conditions without 

endosomal uptake.  

 

 

Fig. 1 Concentration dependent delivery of CPP-bearing red fluorescent cargoes into HeLa Kyoto 

cells at 37 and 4°C. a, Different modes of uptake at 37 and 4°C. b, Cellular uptake of TAMRA-cR10 at 

37 and 4°C and 1 µM concentration. c, Cellular uptake of fluorescently-labelled GBP1 nanobody 

(Structure: 3K1K) with cR10 peptide at 37 and 4°C and 1 and 10 µM concentration, and at 1 µM 

concentration with 5 µM additional cR10 1. Here, the nuclear GFP fluorescence of the GFP-PCNA fusion 
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protein is shown instead of the Hoechst staining. d, Cellular uptake of cR10-modified NLS-mCherry I 

(Structure: 2H5Q) at 37 and 4°C and 10, 30 and 50 µM concentration, and at 5 µM concentration with 

5 µM additional cR10. e, Cellular uptake of linear R10-modified NLS-mCherry II with added 5 µM linear 

R10 2. Scale bars 20 µm. Uppercase R is L-arginine while lower case R is D-arginine. Split channel 

images and additional concentrations in SI Fig. 4. 

 

For the nanobody-CPP conjugate, 1 µM concentration results in predominantly punctate 

endosomal fluorescence at 37°C while at 4°C the nanobody is excluded from the cell (Fig. 1c). 

At 5 µM concentration, endosomal uptake is less prominent, and uptake also works to some 

extent at the cold temperature (SI Fig. 4b). At 10 µM concentration, all cells show cytosolic 

(and nucleolar) staining at 37°C and 4°C (Fig. 1c) Interestingly, for all proteins we tested the 

nucleolar staining is more evident at 37°C whereas cytosolic staining is more pronounced at 

4°C, which may be because active nuclear import is also an energy independent process43.  

 

Following our proposal, we thought it may be possible to rescue the cytosolic delivery of the 

protein at low concentrations by addition of unbound CPP. Indeed, when we co-incubated 5 

µM of a cysteine-containing cR10 peptide (Cys-cR10, 1), which we previously used for the 

semi-synthesis of nanobodies by expressed protein ligation30, with 1 µM of the nanobody-cR10 

conjugate for 1 hour on HeLa cells, the nanobody showed efficient cytosolic and nucleolar 

staining at both temperatures (Fig. 1c and SI Fig. 4b).  

 

For the NLS-mCherry-cR10 conjugate (I), the required concentration to achieve cytosolic 

uptake is even more restrictive, with anything below 50 µM leading to dominant endosomal 

uptake without nucleolar localization at 37°C and no uptake at all at 4°C (Fig. 1d). Analogous 

to the nanobody experiments, the addition of 5 µM peptide 1 allowed energy-independent 

transduction of mCherry at a low concentration of 5 µM (Fig. 1d). Delivery could even be 

achieved at 1 µM protein and 5 µM peptide (SI Fig. 4c), although under these conditions the 

fluorescence of the mCherry was faint and difficult to detect.  
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Encouraged by these findings, we subsequently probed the performance of linear CPP 

sequences in the cargo-conjugates and additives. Although CPP cyclization is known to 

improve cell permeability,27,28 we now also observed efficient nucleolar delivery of 5 µM NLS-

mCherry linked to a linear R10-peptide (conjugate II) with 5 µM of a linear CPP-additive (Cys-

R10 2), in which both sequences consist of ten L-arginine residues. (Fig. 1e). With the CPP-

additive 2, nucleolar red fluorescence could be detected in more than 90% of cells, but in less 

than 5% without the additive (SI Fig. 5b). As comparison, we tested the delivery of mCherry-

R10 II in presence of 10 or 150 µM of the endosomolytic peptide ppTG2144,45. Neither 

concentration led to efficient endosomal release, but instead to the formation of large, 

fluorescent aggregates in cells (SI Fig. 5c). 

 

Finally, we performed uptake at 37°C with NLS-mCherry-R10 II and the CPP-additive 2 in 

presence of Alexa647-labelled Transferrin (which undergoes receptor-mediated 

endocytosis46,47) and endocytosis inhibitors (sodium azide, dynasore and pitstop 2). While we 

could see inhibition of the endocytosis of transferrin, we could detect nucleolar mCherry 

regardless of the inhibitor used (SI Fig. 6). 

 

 

A thiol-reactive deca-arginine is a highly effective additive for delivering CPP-

conjugated proteins  

To further evaluate the high efficiency of the CPP-peptide additives 1 and 2 in our additive 

protocol and to probe the impact of the N-terminal thiol functionality, we synthesized additional 

linear CPPs 3-5 with different thiol derivatives (Fig. 2a). We then co-delivered 5 µM of CPP-

conjugates of mCherry either linked to a linear (II) or cyclic R10 (I) (as above in Fig. 1 d-e) 

together with the newly synthesized peptides 1-5 into HeLa Kyoto cells and used microscopy 

to measure both nuclear and total fluorescence (representative pictures for all tested 

conditions in SI Fig. 7). Thereby, we quantified the desirable delivery to the nucleus and 

nucleoli (Fig. 2a), and also the amount of unwanted endosomal entrapment (SI Fig. 8, see 
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methods for details). Using unconjugated mCherry as a cargo did not result into any detectable 

intracellular florescence, while using mCherry-R10 conjugate II in combination with additive 

R10 peptide 2 led to nuclear/nucleolar staining as before (Fig. 2a, first two bars).  

 

To exclude thiol-based interactions of the peptide, we capped the N-terminal Cys-residue with 

iodoacetamide in CPP 3. Using 3, we observed a sharp decrease in efficiency of the nuclear 

protein delivery in comparison to additive 2, (Fig. 2a, grey and mint bars). To probe a potential 

dimerization of the CPP, following the previous observation of using disulfide-linked TAT 

dimers21, we employed the dimer of Cys-R10 (4, red bar); however, no increase in efficiency 

over using the monomer 2 was visible in our case.  
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Fig. 2 TNB-R10 and its performance in delivering CPP-bearing cargoes into cells. a, Quantitative 

microscopy data showing the mean fluorescence intensity in the nucleus of mCherry-R10 conjugates I 

and II with R10-peptides 1-5 with representative microscopy images (pictures of at least 150 cells were 

taken in triplicates for each condition). Shown are individual values and mean ± standard deviation. 

Unpaired t-test, *** = P<0.0005, ** = P< 0.005, n.s. = not significant. b, Time-lapse experiments showing 

the cellular uptake of fluorescent R10 peptides with different head groups. Yellow arrowheads indicate 

nucleation zones where fluorescence is enriched before uptake into the cell. Scale bars 20 µm. 
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Based on these observations we hypothesized  that the better delivery using peptide-additive 

2 is due to the formation of disulfide bridges on the cell-surface.48,49 Therefore, we synthesized 

a thio-nitro-benzoic acid activated R10-peptide (TNB-R10, 5), which carries an electrophilic 

disulfide to accelerate the disulfide formation. Indeed, we observed more than 50% increase 

in nuclear mCherry fluorescence intensity as compared to the Cys-variant 2 (blue bar, Fig. 2a), 

and a significant increase in the fraction of nuclear fluorescence (SI Fig. 8).  

 

Using the cyclic R10-peptide 1 as co-delivery agent decreased the uptake efficiency (Fig. 2a, 

brown bar), but using the mCherry-conjugate with the cyclic-R10 (I) made the delivery with 

additive 2 even more efficient (Fig. 2a, orange bar).  

 

By far the highest nuclear fluorescence was observed with conjugate (I) in combination with 

the electrophilic disulfide additive 5 (Fig. 2a, green bar), although endosomal fluorescence was 

also increased under these conditions (SI Fig. 8).  

 

Another clear advantage of using an additive to control the cytosolic delivery of cargoes is that 

it may allow more control over the delivered cargo concentration. To test this proposal, we 

added various amounts of NLS-mCherry-R10 to cells together with a constant concentration 

of peptide additive 5. We could see a linear relationship between the amount of mCherry added 

to the cells and the resulting nucleolar fluorescence, indicating that it is possible to titrate a 

cargo into cells precisely (SI Fig. 9). 

 

To obtain a better understanding of how the cysteine- and TNB-containing peptide additives 

perform better in cargo delivery, we synthesized fluorescent variants 6-8 of peptides 2, 3 and 

5. We performed time-lapse uptake experiments of the peptides alone at 5, 10 and 20 µM 

concentration (Fig. 2b and complete data set in SI Fig. 10). All peptides showed rapid uptake 

into cells at 20 µM concentration, immediately after the appearance of bright spots on the 

membrane, which were previously described as “nucleation zones”13,50. At 10 µM 
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concentration, the acetylated peptide 7 did not show any uptake during the first 3 minutes, 

whereas the uptake was already complete for 6 and 8 (Fig. 2b). Notably, the TNB-modified 

peptide 8 (Fig 2b, bottom row) showed very quick uptake and very frequent formation of 

nucleation zones (yellow arrowheads, enlarged insets in SI Fig. 10). Similar observations could 

also be made with 5 µM peptide, although uptake was slower (SI Fig. 10). These findings 

suggest that the thiol-reactive head groups assist the peptide in forming these zones and 

crossing the membrane. 

 

To ensure that this effect is due to the thiol-reactivity of the TNB-group, we pre-treated cells 

with a thiol-reactive maleimide that should at least partially block accessible cell-surface thiols. 

After this pre-treatment, the uptake of the TNB-R10 8 was indeed slowed down considerably 

(SI Fig. 11b). The peptide was also not taken up at all in presence of the anionic polysaccharide 

heparin (SI Fig. 11c), showing that the electrostatic interactions between the polyarginine and 

cell are also crucial for uptake. We also investigated the addition of free, reduced cysteine into 

the cell medium during uptake51. Addition of cysteine neither sped up the uptake of the 

acetylated peptide 7 (SI Fig. 12) nor slowed down the uptake of the cysteine containing peptide 

6 (SI Fig. 13). 

 

To verify that these effects are independent of the position of the cysteine within the peptide, 

we also synthesized two additional cysteine-containing, fluorescent R10 peptides in which the 

cysteine was in a different position (within the polyarginine sequence or at the C-terminus). 

These peptides showed comparable rates of uptake to the previous peptide and they were 

also much faster than their acetylated counterparts (peptides 9-12, SI Fig. 14).  

 

Covalent immobilization of CPPs on the cell-surface allows delivery of large cargoes 

through the membrane 

Next, we wanted to explore other cysteine-selective reactions in this context. Maleimides are 

also thiol-selective and form more stable bonds (under biological conditions) than disulfides, 
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which makes characterization easier. We first wanted to confirm that there are addressable, 

surface-exposed thiols on cells. To that end, we labelled cells with a cell-impermeable, 

maleimide-functionalized fluorophore (SI Fig. 15). The fluorophore showed effective 

membrane staining, which could be strongly reduced by first blocking thiols on the cells with 

Ellman’s reagent (SI Fig. 15). 

 

We then synthesized a fluorescent, maleimide-functionalized linear R10 (Maleimide-R10-Cy5) 

13, which can be traced separately by fluorescent microscopy. First, we wanted to confirm that 

this peptide shows similar uptake behavior as the fluorescent TAMRA-labeled TNB-activated 

R10 peptide 8. Indeed, when the two fluorescent peptides are incubated with cells 

simultaneously, they stain the same nucleation zones and are taken up at similar rates (Fig. 

3a and SI Fig. 16a), and peptide 13 also shows staining of nucleation zones alone (SI Fig. 

16b).  
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 Fig. 3 Protein 

transduction into cells through CPP-labelled cell membranes. a, Time-lapse experiment of the 

simultaneous uptake of the TNB-R10-TAMRA 8 and Maleimide-R10-Cy5 13 peptides into cells in cell 

medium. Yellow arrowheads indicate nucleation zones stained by both peptides. b, Time-lapse of the 

co-delivery of NLS-mCherry-R10 II together with the Maleimide-R10-Cy5 peptide 13 on HeLa Kyoto 

cells in cell medium. Yellow arrowheads indicate nucleation zones and blue arrowheads the appearance 

of nucleolar staining of the mCherry. c, Cellular uptake of NLS-mCherry-cR10 I in presence of 

chloroalkane-modified “Halo-R10” 17 on HeLa Kyoto cells transfected with EGFP-transmembrane-

Halotag plasmid, 1 hour at 37°C in cell medium. SP: Signal peptide, TM: transmembrane sequence. 

Blue arrowheads show mCherry in the nucleoli of EGFP-positive cells. Uptake experiments with 

peptides 16 and 18-20 in SI Fig. 21. Scale bars 20 µm. 
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We then co-delivered R10-modified mCherry II together with the newly synthesized Maleimide-

R10-Cy5 peptide 13 (Fig. 3b and SI Fig. 16c). We observed that the protein was localized at 

the same nucleation zones and is subsequently taken up into cells, although the protein 

requires more time to reach the nucleolus (note the longer steps in the time-lapse experiment). 

This observation supports the assumption that the protein crosses nucleation zones, which are 

“pre-labelled” by the reactive peptide additives.  

 

As additional evidence for the covalent modification of a membrane component with 13, we 

treated cells with the peptide and subsequently washed the cells with either medium or 50 µM 

Triton X-100 to remove unbound peptide. The peptide stained membranes even after washing 

with the detergent (SI Fig. 17). We also treated cells with 13 and delivered NLS-mCherry-R10 

II into these cells after washing with 25 µg/mL heparin (SI Fig. 18). Washing with heparin 

should remove cell-penetrating peptides that are non-covalently bound to the cell membrane20. 

The successful delivery of mCherry II suggests that the covalently bound peptide can be 

sufficient for protein delivery. 

 

To explore this concept further, we treated cells with peptides 2, 3, 5 or with a non-fluorescent 

maleimide-R10 peptide 14 in a first step. After certain time points, we removed the peptide 

solution and added the R10-conjugated mCherry II (SI Fig. 19). For the maleimide- and TNB-

R10 peptides 5 and 12, we could still observe nuclear delivery after 5 minutes of “pre-labelling” 

with the peptide, and successful, albeit reduced, delivery of mCherry II after 30 minutes. 

 

To identify potential reaction partners of the cysteine-reactive peptides, we synthesized a 

biotinylated version of the maleimide-R10 peptide (15) and applied it to cells followed by a 

streptavidin pulldown, tryptic digestion, and protein identification by mass spectrometry. Label-

free-quantification of identified proteins revealed several membrane proteins enriched by the 

R10-peptide over untreated cells and a biotin-maleimide control (SI Fig. 20). This suggests 

that there is no single target but rather several proteins that the peptides can react with. 
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To investigate changes in the membrane at nucleation zones, we performed uptake of CPPs 

in the presence of the phosphatidylserine-binding protein annexin V. It had previously been 

suggested that the accumulation of CPPs at nucleation zones leads to a local membrane 

inversion, facilitating cargo uptake52. We could not detect any enrichment of 

phosphatidylserine (SI Fig. 21); however, we employed Flipper-TR, a fluorescent membrane 

tension probe53 and could observe a reduction of membrane tension at nucleation zones, 

which points to a local deformation of the membrane (SI Fig. 22). 

 

Taken together, our results support that thiol-reactive CPPs increase cellular delivery of 

cargoes through the covalent linking of peptides to the cell membrane. To elaborate this further 

we generated a plasmid that would lead to expression of an EGFP reporter inside transfected 

cells along with a Halotag54 on the cell surface (simplified plasmid map in Fig. 3c, validation of 

the plasmid and additional controls in SI Fig. 23). We then synthesized a series of 

chloroalkane-modified R10 peptides 16-20 with varying polyethylene glycol linker lengths for 

covalent labeling of the expressed halotag. We then added the “Halo-R10” peptides 16-20 to 

the cells together with NLS-mCherry-cR10 I. We observed no nucleolar staining for the peptide 

with no ethylene glycol between the chloroalkane and the R10 peptide (SI Fig. 23c). For all 

peptides containing a linker, we saw nucleolar mCherry staining in transfected cells (Fig. 3c, 

blue arrows, cells showing EGFP signal and SI Fig. 23c peptides 18-20), but not in 

untransfected cells. However, all cells showed significant endosomal uptake and 20 µM of the 

Halo-R10 were needed to achieve nucleolar staining. This lower efficiency may be due to the 

limited amount and reactivity of the halotag protein on the cell surface. 

 

Cargo delivery using TNB-R10 is robust in various cell lines and accepts recombinant 

CPPs and cysteine-containing proteins 

To test if membrane transduction of proteins can be achieved in different cell lines, we tested 

our protocol in four additional cancer cell lines from different tissue origin (A549, MDCK2, 

SJSA-1 and SKBR3). We recorded uptake and nucleolar staining of 5 µM mCherry-R10 II in 
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presence of 10 µM TNB-R10 5 in all tested cell lines at 37°C (Fig. 4a-b and SI Fig. 24) and 

4°C (SI Fig. 25). 

 

Fig. 4 Co-delivery with cysteine-reactive R10 peptides in different cell lines and with different 
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cargoes. a, Confocal microscopy images of four cancer cell lines treated with mCherry-R10 II and TNB-

R10 5, for 1 hour at 37°C. b, Quantification of cells showing nucleolar fluorescence. At least 150 cells 

were counted over three biological replicates. Unpaired t-test, **** = P<0.0001, *** = P< 0.0005. c, 

Cellular uptake of K10-modified mCherry with or without TNB-R10 5 at 37°C leads to endosomal staining 

and no nucleolar fluorescence. d, Cellular uptake of mCherry with recombinant R10 (exR10) shows 

endosomal or nucleolar staining in absence and presence of TNB-R10 5, respectively. e, Scheme 

showing the cre stoplight reporter plasmid and flow cytometry data of HeLa CCL-2 cells transfected with 

it and subsequently treated with Cre-exR8 with or without Cys-R10 (2). f, Disulfide CPP modification of 

mCherry and in situ cellular uptake. Scale bars 20 µm. 

 

Most of our findings point to an energy-independent mode of uptake, but to probe whether 

TNB-R10 5 can also lead to endosomal leakage of an entrapped cargo, we used peptide 5 on 

cells in combination with an mCherry variant (NLS-mCherry-K10 III) that had been modified 

with a K10 peptide (via maleimide chemistry, see SI Fig. 3). The K10 peptide should be 

sufficient to bring the protein in contact to the cell membrane and deliver it into endosomes 

through active transport, but should not transduce, as lysine-rich peptides do not share the 

crucial characteristics of arginine-rich peptides in membrane interaction33,55. Indeed, 

incubation of 5 µM mCherry-K10 alone or in combination with 20 µM peptide 5 did not lead to 

nuclear localization but only punctate fluorescence indicative of endosomal entrapment (Fig. 

4c and SI Fig. 26).  

 

Additionally, peptide 5 showed no signs of cytotoxicity or decreased cell viability up to 50 µM 

peptide (SI Fig. 27a). Cells that took up mCherry with or without 5 showed staining with Calcein 

AM, a cell-permeable caged fluorophore that shows intracellular fluorescence in cells with 

active metabolism (SI Fig. 27b). Performing the uptake in presence of the dead cell stain Sytox 

blue did also not lead to nuclear staining with the dye (SI Fig. 27c). Taken together, these 

experiments suggest that TNB-R10 peptide 5 does not lead to disruption of the endosomal or 

cellular membrane. 
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Methods of cargo delivery that rely on endosomal escape are often susceptible to the presence 

of serum, as they require effective endocytosis of both the cargo and the endosomolytic 

agent21. We hypothesized that peptide 5 would likely react with thiols in the serum, but the co-

delivery with 2 (Cys-R10) should still function. While the presence of serum did lead to reduced 

efficiency at 10% serum, 5% serum or lower had a negligible effect on uptake (SI Figs. 28a, 

b). Interestingly, even in presence of serum the thiol-containing peptide 2 performed 

significantly better than the alkylated variant 3 (SI Fig 28a, b). Reduction in efficiency in 

presence of large amounts of serum may be due to the thiols in serum or the unspecific binding 

of CPPs to serum proteins27. 

 

We also tested if recombinantly expressed CPP-fusion proteins can be delivered, as these 

require much less equipment and effort to produce. To test this, we expressed and purified 

mCherry with a C-terminal R10 peptide (NLS-mCherry-exR10 IV, characterization in SI Fig. 

29). mCherry-exR10 showed similar behavior to the semi-synthetic variant, showing 

predominantly endosomal uptake alone at a low, 5 µM concentration, which can be efficiently 

rescued by addition of peptide 5 (Fig. 4d and SI Fig. 30). This mCherry variant does not contain 

any cysteines, meaning it cannot form a disulfide with 5, thus demonstrating that the 

recombinant polyarginine is enough for co-transport.  

 

In the same vein, we also made mCherry variants modified with R5 and R8 peptides and co-

delivered them into cells with TNB-R10 5 (SI Figs. 31-32). The R8 peptide showed comparable 

results to the R10 peptide, while we saw a clear drop in efficiency with the R5 peptide.  

 

Since peptide 5 can readily react with thiols, we tested if applying a labeling mixture of a protein 

containing a free thiol and CPP-additive 5 without intermediate work-up would facilitate the 

uptake protocol. Upon mixing 5 µM mCherry with a free cysteine were mixed with 15 µM 

peptide 5, cell-permeability of the mCherry was already visible after ten minutes, which further 

improved after a 30-minute incubation (Fig. 4e). This same protocol also worked well for a 
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cysteine containing fluorescent nanobody (SI Fig. 33). It should be noted that here, the CPP 

is linked to both protein cargoes via an intracellularly cleavable disulfide, which results in broad 

nuclear staining (because of a nuclear antigen for the nanobody) as opposed to the nucleolar 

localization observed before29,30. 

 

To challenge our delivery protocol, we expressed and purified Cre recombinase fused to a C-

terminal R8 peptide (Cre-exR8, characterization in SI Fig. 34). Fusions of Cre recombinase 

with the arginine-rich HIV TAT peptide have been previously reported to aid in cell uptake56. 

We transfected HeLa cells with a Cre activity reporter plasmid (Cre Stoplight 2.457) that leads 

to a change in fluorescence from green to red when the enzyme is present within cells (Fig. 

4f). We then treated cells with 1 µM Cre-exR8 alone or with added 10 µM Cys-R10 2 in 

presence of 5% serum and then monitored expression of the reporter gene by flow cytometry 

and microscopy. As expected, the addition of peptide led to a strong increase in expression of 

the Cre reporter, indicating successful delivery of active Cre into the nucleus (Fig. 4f and 

microscopy in SI Fig. 35). 

 

The TNB-R10 CPP-additive allows cytosolic delivery of functional IgG-antibodies  

Antibodies are exceptionally useful proteins in molecular biology and pharmacology, targeting 

most of the human proteome. Nevertheless, the cellular delivery of full-length antibodies is 

particularly challenging due to the complex and quite large architecture with a molecular weight 

of 150 kDa and a length of 15 nanometers, approximately. Some methods to deliver full length 

antibodies into cells already exist, although they mostly rely on endosomal escape21,23. To test 

whether we can deliver a full-length IgG antibody into cells at 4°C, we first used the 

fluorescently labeled therapeutic antibody Brentuximab. Thiolation was performed with 2-

iminothiolane58. As before, by addition of peptide 5, the antibody can be modified with the cell-

penetrating peptide via a disulfide bond, while the excess cell-penetrating peptide should 

simultaneously aid in the cellular uptake (Fig. 5a). Indeed, treatment of cells with the antibody 

led to cellular delivery at 37°C, but not in the absence of CPP-additive 5 (Fig. 5b). A fluorescent 
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signal could not be observed in the nucleus (counterstained with Hoechst), which is likely due 

to the size of the antibody excluding it from permeation through nuclear pores. Even at 4°C, 

antibody uptake could also be observed in most cells demonstrating energy-independent 

membrane transduction of an antibody (Fig. 5b).  

 

 

Fig. 5 The application of TNB-R10 in IgG antibody delivery. a, Method of delivering antibodies into 

cells using TNB-R10. b, Cellular uptake of 500 nM Atto488-labelled Brentuximab into HeLa CCL-2 cells 

in presence and absence of TNB-R10 5 and at 37 and 4°C. Cells counterstained with Hoechst 33342 to 

demonstrate exclusion of the antibody from the nucleus. c, Cellular uptake of 500 nM Alexa594-labelled 

anti-GFP antibody into HeLa CCL-2 cells transfected with Lifeact-mVenus. d, Cellular uptake of 500 nM 

Atto488-labelled anti-TOMM20 antibody into HeLa CCL-2 cells, simultaneously treated with MitoTracker 

Red CMXROS. Scale bars 20 µm. 

 

To validate that the delivered antibodies are still intact and functional after cellular uptake, we 

subsequently tested two additional commercial antibodies in our protocols. Here, we first 

transfected a plasmid encoding a GFP mutant (Lifeact-mVenus) into HeLa cells and 

functionalized a fluorescently labelled (Alexa 594) anti-GFP antibody as before. Incubation of 
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cells with the antibody showed uptake of the antibody into cells and colocalization of the 

antibody and mVenus signals within the cell (Fig. 5c, pearson correlation coefficient (PCC) in 

shown inset = 0.80). 

 

Finally, we also tested an antibody against the endogenous mitochondrial receptor TOMM20. 

As with Brentuximab, we first fluorescently labelled the antibody, followed by thiolation and 

mixing with CPP-additive 5. Incubation of HeLa cells with the mixture and a mitochondrial 

marker (MitoTracker Red CMXRos) led to noticeable endosomal entrapment, but also visible 

colocalization of the two components (Fig. 5d, PCC in shown inset = 0.58). 

 

Discussion 

Over the past years, a diverse array of methods for the delivery of biomolecules into cells has 

been developed2. Still, we believe that cell-penetrating-peptide-mediated delivery is among the 

top methodologies, particularly with respect to synthetic flexibility. Nevertheless, advancing the 

delivery of CPP-protein and –antibody conjugates with even better uptake properties remains 

challenging and requires often laborious chemical protein engineering.  

 

Through our work, we have shown delivery of various cargoes with both synthetic and 

recombinant CPPs using thiol-reactive R10 peptides. This uptake seems to be independent of 

active transport and is not harmful to the cell. Cysteine, as well as thiol-reactive species have 

been described in the context of cellular uptake before35,36. The thiol-reactivity of the CPPs we 

describe seems to be a crucial factor in our additive protocol and in investigating it further we 

find that we can co-valently label cell-surfaces through which we can then deliver cargoes. We 

believe that this may develop into a valuable tool in achieving cell-specific delivery of cargoes, 

if one can only modify cells of a certain type. This could have great therapeutic potential, for 

example in gene editing, and should be pursued further.  
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As the TNB-R10 5 also quickly reacts with thiol residues on biomolecules to form bio-reversible 

disulfide bonds, it allows a “covalent transfection” that is immediately applicable to many 

protein substrates. Importantly, no purification is required after addition of the peptide, since 

the excess directly acts as the CPP-additive, thereby strongly enhancing uptake of the protein 

cargo. Furthermore, we show that even IgG antibodies without any free cysteines can be 

thiolated to allow usage of peptide 5, whereas the thiolation could, in principle, also be done 

in a reversible manner.  

 

An essential benefit in our protocol is the possibility to perform uptake at 4°C. Thereby, no 

active endosomal uptake occurs, which allows the delivery of compounds that are sensitive to 

endosomal degradation or toxic for the cell upon prolonged exposure. Another key advantage 

in our findings is the ability to employ proteins from standard recombinant expression, in which 

the protein cargo is genetically fused to an oligo-Arg tag, and use them in non-endocytic 

uptake. Using these, our protocol allows a straightforward evaluation of CPP-additives to 

enhance uptake. Using this co-delivery strategy, we could deliver active Cre recombinase into 

cells without any necessary conjugation chemistry. We achieve efficient gene editing, which 

could easily be applied to the delivery of other functional enzymes. We have demonstrated the 

cytosolic delivery of three different antibodies using CPP-additives, resulting in the expected 

intracellular localization. Because of their high efficiency and lack of measurable cellular 

toxicity, we envision our CPP-additives to become important tools in cell biology.  

 

This work is an important step in advancing the field biomolecule delivery with applications 

ranging from the intracellular immunostaining demonstrated here to the design of next 

generation biopharmaceuticals. Our future work will be directed at making use of this technique 

in going beyond cell culture to tissue culture and even simple model organisms.  
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Data Availability 

Additional data and methodologies are found in the supplementary information. All plasmids 

used in this study and their sequence information are available from the authors upon request. 
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SI Fig. 1 Structures and UV-purity of peptides used in this study. a, TAMRA-cR10, HRMS: Calc.: 
372.7257 [M+5H]. exp.: 372.7282. b, Cys-TAMRA, HRMS: Calc.: 504.7284 [M+2H], exp.: 504.7448. c, Cys-
cR10 1, HRMS: Calc.: 553.8385 [M+4H], exp.: 553.9105. d, Maleimide-cR10, HRMS: Calc.: 449.8720 
[M+5H], exp.: 449.8819. e, Cys-R10 2, HRMS: Calc.: 494.0568[M+4H], exp.: 494.0788. f, Maleimide-R10 
(14), HRMS: Calc.: 402.2473 [M+5H], exp.: 402.2525. g, AA-R10 3, HRMS: Calc.: 508.3121 [M+4H], exp.: 
508.3181. h, di-R10 4, HRMS: Calc.: 395.2453 [M+10H], exp.: 395.2491. i, TNB-R10 5, HRMS: Calc.: 
543.3013 [M+4H], exp.: 543.3025. j, Maleimide-K10, HRMS: Calc.: 346.0343 [M+5H], exp.: 346.0502. k, 
Cys-R10-TAMRA 6, HRMS: Calc.: 419.7465 [M+5H], exp.: 419.7466. l, AA-R10-TAMRA 7, HRMS: Calc.: 
367.9292 [M+6H], exp.: 367.9271. m, TNB-R10-TAMRA 8, HRMS: Calc.: 452.5769 [M+6H], exp.: 452.5703. 
n, TAMRA-R5-Cys-R5 9, HRMS: Calc.: 419.8458 [M+5H], exp.: 419.8387. o, TAMRA-R5-AA-R5 10, HRMS: 
Calc.: 431.2501 [M+5H], exp.: 431.2468. p, TAMRA-R10-Cys 11, HRMS: Calc.: 419.6451 [M+5H], exp.: 
419.6376. q, TAMRA-R10-AA 12, HRMS: Calc.: 431.2501 [M+5H], exp.: 431.2383. r, Maleimide-R10-Cy5 
13, HRMS: Calc.: 434.1036 [M+6H], exp.: 434.0886. s, Maleimide-R10-Biotin 15, HRMS: Calc.: 472.8811 
[M+5H], exp.: 472.8772. t, Halo-R10 16, HRMS: Calc.: 428.5252 [M+4H], exp.: 428.5278. u, Halo-R10 17, 
HRMS: Calc.: 334.5444 [M+6H], exp.: 334.5357. v, Halo-R10 18, HRMS: Calc.: 573.8500 [M+4H], exp.: 
573.8497. w, Halo-R10 19, HRMS: Calc.: 646.3869 [M+4H], exp.: 646.3752. x, Halo-R10 20, HRMS: Calc.: 
718.9239 [M+4H], exp.: 718.9248. y, Maleimide-R5, HRMS: Calc.: 613.8546 [M+2H], exp.: 613.8481. z, 
Maleimide-R8, HRMS: Calc.: 424.2559 [M+4H], exp.: 424.2505. 
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SI Fig. 2 Characterization of anti-GFP-nanobody GBP1 and its CPP conjugate. a, Strategy for the 
semi-synthesis of thiol- and fluorophore modified GBP1 nanobody via expressed protein ligation. b, SDS-
PAGE gel, stained with Coomassie and fluorescence imaging of TAMRA on the bottom, of GBP1-TAMRA 
after expressed protein ligation (1) and after conjugation to the Maleimide-cR10 (2). Synthetic details in 
supplementary methods. c, High resolution mass spectrum of GBP1-TAMRA after EPL. Calc.: 13977 
[M+H]; Exp.: 13975. d, High resolution mass spectrum of GBP1-TAMRA-cR10, Calc.: 16222 [M+H], 
16240 [M+H2O+H] (Maleimide ring opening hydrolysis); Exp.: 16240. 
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SI Fig. 3 Characterization of NLS-mCherry and its CPP conjugates. For synthetic details, see Pro-
tein-CPP conjugation section in the supplementary methods. a, SDS-PAGE gel showing the purity and 
conversion of NLS-mCherry (lane 1) and the linear R10, cyclic R10 and K10 peptide conjugates (lanes 
2-4). The protein shows two lower molecular weight bands, which are an artefact of the sample prepara-
tion (boiling) for SDS-PAGE1. b, High resolution mass spectrum of NLS-mCherry, Calc.: 28339 [M+H]; 
Exp.: 28338. c, High resolution mass spectrum of NLS-mCherry-R10 II, Calc.: 30344 [M+H], 30362 
[M+H2O+H]; Exp.: 30362. d, High resolution mass spectrum of NLS-mCherry-cR10 I, Calc.: 30583 
[M+H], 30601 [M+H2O+H]; Exp.: 30602. e, High resolution mass spectrum of NLS-mCherry-K10 III, 
Calc.: 30064 [M+H], 30082 [M+H2O+H]; Exp.: 30064, 30082. 
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SI Fig. 4 Full set of confocal microscopy pictures after cellular uptake of R10-bearing cargoes 
into HeLa cells at 37 and 4°C. a, Uptake of TAMRA-cR10 at 1 µM, at 37 and 4°C. b, Uptake of 1-10 
µM GBP1-TAMRA-cR10 (with additional Cys-cR10 1) at 37 and 4°C. c, Uptake of 1-50 µM NLS-mCherry-
cR10 I and NLS-mCherry-R10 II (with additional Cys-cR10 1 or Cys-R10 2) at 37 and 4°C. Scale bars 
20 µm. 
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SI Fig. 5 Additional experiments in the uptake of TAMRA-cR10 and NLS-mCherry. a, Uptake of 1 
µM TAMRA-cR10 at 37°C, followed by washing with 25 µg/mL heparin to remove residual CPP bound 
to the cell membrane. b, Counted cells with nuclear or nucleolar fluorescence after uptake of 5 µM NLS-
mCherry-R10 II with added Cys-R10 CPP 2. Over 150 cells were counted manually in three independent 
replicates. Shown are individual values with mean and standard deviation. c, Uptake of 5 µM NLS-
mCherry-R10 II with added endosomolytic peptide ppTG21 at 37°C for 1 hour. At the higher concentra-
tion, large aggregates are formed that persist after washing and are highly fluorescent. Scale bars 20 
µm. 
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SI Fig. 6 Uptake of NLS-mCherry-R10 and Alexa647-Transferrin with endocytosis inhibitors. NLS-
mCherry-R10 II at a 5 µM concentration was added to cells in combination with 25 µg/mL Alexa647-
Transferrin (Invitrogen) as endocytosis control. Where indicated, 5 µM of the Cys-R10 peptide 2 were 
added to induce nucleolar delivery of the mCherry. For the incubation with sodium azide and Dynasore, 
the cells were pre-incubated with the inhibitors for 30 minutes, for pitstop 2 for 15 minutes, the inhibitors 
were then also added to the solution of mCherry and Transferrin. Nucleolar mCherry was seen anytime 
the Cys-R10 was present. In contrast, uptake of transferrin was strongly reduced in presence of azide 
and almost completely blocked in presence of pitstop 2, indicating that the inhibitors block endocytic 
uptake. Scale bars 20 µm. 
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SI Fig. 7 Representative images used in quantitative microscopy experiments. NLS-mCherry de-
rivatives were added in the indicated concentration and with the indicated CPPs to HeLa CCL-2 cells for 
1 hour at 37°C, and they were counterstained with Hoechst 33342. The cells were fixed after thorough 
washing to prevent an effect of the long microscopy time required. Confocal microscopy pictures were 
then taken, of at least 100 cells in independent triplicates at a 60x magnification to allow proper spatial 
separation of the nuclei and the endosomes. Scale bars 20 µm. 
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SI Fig. 8 Full graphs of relative and absolute quantification of cellular uptake. a, Absolute quantifi-
cation of red fluorescence originating from the mCherry protein within the nucleus of HeLa cells. Images 
of at least 100 cells were taken in independent triplicates. Shown are individual values and mean ± sd. 
b, Ratio of red fluorescence in the nucleus of cells divided by the total measured fluorescence in each 
frame. This is a measure of the efficiency of delivery to the nucleus and nucleolus relative to mCherry 
outside of the nucleus, predominantly a result of endosomal entrapment. Individual values and mean ± 
sd. n.s. = not significant, * = P < 0.05, ** = P < 0.005, *** = P < 0.0005, **** = P < 0.0001. 

  

SI Fig. 9 Titration of NLS-mCherry-R10 II into cells with constant concentration of additive CPP. 
a, Microscopy pictures of the uptake of different concentrations of NLS-mCherry-R10 II in presence of 
constant 10 µM TNB-R10 (5). b, Quantification of the fluorescence intensity of a 20x20 pixel ROI in the 
nucleoli of 10 different cells per condition. Shown is the mean ± SD for each concentration. A linear fit 
shows the linear relationship between applied concentration and resulting fluorescence (R2 = 0.92.)  
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SI Fig. 10 Montage of timelapse experiments of the cellular uptake of TAMRA-labelled R10 pep-
tides with different N-terminal head groups. a, Uptake at 20 µM concentration. b, Uptake at 10 µM 
concentration. Insets show the appearance of nucleation zones (bright spots, immediately followed by 
uptake). c, Uptake at 5 µM concentration. Yellow arrowheads show nucleation zones. Scale bars 20 µm.  
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SI Fig. 11 Montage of timelapse experiments of the cellular uptake of TNB-R10-TAMRA 8 in cells 
pre-treated with a small-molecule maleimide. a, Control uptake of the peptide without pre-treatment 
at 10 µM concentration. b, Uptake into cells that were treated first for 10 minutes with 1 mM of N,N-
maleoyl glycine, followed by removal of the maleimide solution and addition of the peptide. c, Uptake 
into cells in presence of the anionic polysaccharide heparin. Scale bars 20 µm. 
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SI Fig. 12 Montage of timelapse experiments of the cellular uptake of AA-R10-TAMRA in cells co-
incubated with cysteine. a, Control uptake of the peptide without cysteine at 10 µM concentration. b, 
Uptake into cells in presence of 10 µM L-cysteine. Scale bars 20 µm. 

  

SI Fig. 13 Montage of timelapse experiments of the cellular uptake of Cys-R10-TAMRA with com-
petition with free cysteine. a,b, Cellular uptake of the peptide with 10 (a) or 100 (b) µM L-cysteine. 
Scale bars 20 µm. 
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SI Fig. 14 Montage of timelapse experiments of the cellular uptake of R10-TAMRA peptides with 
cysteine at different positions, in comparison with acetylated variants. a, Cellular uptake of 10 µM 
cysteine-containing TAMRA-R5-Cys-R5 peptide. b, Uptake of the acetylated variant of a. c, Uptake of 
the cysteine containing TAMRA-R10-Cys peptide. d, Uptake of the acetylated variant of c. Scale bars 20 
µm. 
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SI Fig. 15. Fluorescent labelling of accessible cell-surface thiols using cell-impermeable fluoro-
phore. a, Labelling of accessible cell surface thiols with 10 µM of the membrane impermeant (sulfated) 
fluorophore atto 4882 functionalized with a maleimide. b, To confirm that Ellman’s reagent and the fluor-
ophore label the same thiols, cells were first treated with 50 µM Ellman’s reagent for 10 minutes, then 
washed once and then treated with 10 µM of the fluorophore. Labelling is dramatically reduced. Scale 
bars 20 µm. 

 

 
SI Fig. 16 Montage of timelapse experiments of the cellular uptake of the Maleimide-R10-Cy5 pep-
tide 13 alone or in combination with TNB-R10-TAMRA 8 and NLS-mCherry-R10 II. a, Full dataset of 
uptake of 5 µM TNB-R10-TAMRA 8 with 5 µM Maleimide-R10-Cy5 13. b, Uptake of 10 µM Maleimide-
R10-Cy5 13. c, Uptake of 5 µM NLS-mCherry-R10 II into cells in presence of 10 µM Maleimide-R10-Cy5 
13. Scale bars 20 µm. 
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SI Fig. 17 Treatment of cells with maleimide-R10-Cy5 peptide 13 followed by washing reveals 
membrane bound peptide. a, Washing with cell medium. b, Washing with 50 µM Triton X-100 in PBS3. 
In both cases, cells also show mitochondrial staining of the Cy5. Cy5 has an affinity for mitochondria4, 
and the labelling of mitochondria may indicate partial degradation of the peptide. Proteolytic degradation 
of CPPs can occur within minutes5. Enlarged are areas where two cells are in contact. The membrane 
staining is more apparent at these interfaces due to the nature of the confocal images. Scale bars 20 
µm. 

 

 
SI Fig. 18 Treatment of cells with maleimide-R10-Cy5 peptide 13 followed by washing and subse-
quent delivery of mCherry. a, Washing with cell medium. b, Washing with 25 µg/mL heparin in PBS. 
In both cases, cells show nucleolar mCherry fluorescence. As shown in SI Fig. 19a, an unreactive CPP 
additive does not deliver mCherry into nucleoli even without washing with heparin. Scale bars 20 µm. 
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SI Fig. 19 ”Pre-loading” of CPPs on cells followed by cellular uptake of NLS-mCherry-R10 II. a, 5 
µM NLS-mCherry-R10 II together with 10 µM AA-R10 (3). b, 5 µM NLS-mCherry-R10 II together with 10 
µM Cys-R10 (3). c, 5 µM NLS-mCherry-R10 II together with 10 µM TNB-R10 (2). d, 5 µM NLS-mCherry-
R10 together with 10 µM Maleimide-R10. Scale bars 20 µm. 
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SI Fig. 20 Volcano plots of label-free quantification after protein identification of streptavidin pull-
down samples by mass spectrometry. a, Cells were either untreated or treated with 20 µM of the 
Maleimide-R10-Biotin peptide. b, Cells were treated either with 20 µM of commercially available Biotin-
Maleimide or with the Maleimide-R10-Biotin peptide. In both cases, several membrane bound proteins 
were highly enriched by the cell-penetrating peptide. Amongst those are two membrane-bound metallo-
proteases (NRD1 and MMP15), an amino acid transporter (SLC7A5) and a caveolae-associated protein 
(PTRF). See Methods section for experimental details. 
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SI Fig. 21 Cellular uptake of thiol-reactive CPPs in presence of Annexin V. a, HeLa Kyoto cells were 
treated with 10 µM TNB-R10-TAMRA 8 in presence of Annexin V – Atto 488 conjugate (1:50) in annexin 
V buffer (10 mM Hepes (pH 7.4), 140 mM NaCl, 2.5 mM CaCl2). b, HeLa Kyoto cells were treated with 
10 µM Maleimide-R10-Cy5 13 in presence of Annexin V – Atto 488 conjugate (1:50) in annexin V buffer 
(10 mM Hepes (pH 7.4), 140 mM NaCl, 2.5 mM CaCl2). c, As a positive control for binding of annexin V 
to apoptotic cells under the same conditions, HeLa Kyoto cells were incubated for 5 minutes at 37°C with 
Annexin V – Atto 488 in annexin V buffer with 50 µM Triton-X 100. Scale bars 20 µm. 
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SI Fig. 22 Cellular uptake of Maleimide-R10-Cy5 peptide 13 in presence of Flipper-TR membrane 
tension probe. a, HeLa Kyoto cells were pre-incubated in DMEM with 2 µM Flipper-TR (Spirochrome). 
Afterwards, DMEM or 10 µM Maleimide-R10-Cy5 13 in DMEM were added to the cells. Fluorescence 
lifetime images were acquired every 15 seconds for 60 seconds. Shown are the Cy5 photon count and 
the FastFLIM images. The arrows indicate a site where the CPP is enriched (Cy5 channel) and where 
the lifetime of the Flipper-TR probe decreases. c, Four ROIs in membrane regions for each time-lapse 
were chosen. A double exponential fit was applied to the fluorescence decay, and the weighted average 
lifetime was calculated for each ROI. This value was then plotted over time. Shown are individual values 
and the mean as a line. At nucleation zones, the membrane tension decreases throughout the experi-
ment. Scale bars 20 µm. 
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SI Fig. 23 Halotag-tethering of CPP and delivery of NLS-mCherry-cR10 I into Halotag-expressing 
cells. a, Cells transfected with the Halotag-EGFP reporter plasmid express EGFP inside the cell and 
Halotag on the cell surface. Transfected cells were treated with 1 µM JF646-Halotag-ligand (Promega). 
The fluorophore shows staining of the cell membrane (and secretory pathway) in EGFP-expressing cells 
only. b, Delivery of 5 µM NLS-mCherry-cR10 I on cells transfected with the reporter plasmid. c, Delivery 
of 5 µM NLS-mCherry-cR10 I in presence of 20 µM “Halo-R10” variants on cells transfected with the 
reporter plasmid. Blue arrowheads show nucleoli with mCherry fluorescence. See also main text figure 
3. Scale bars 20 µm. 
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SI Fig. 24 Confocal microscopy images from all channels from the screen of different cell lines in 
the co-delivery of NLS-mCherry-R10 II with TNB-R10 5. Scale bars 20 µm. 

 

  

SI Fig. 25 Cellular uptake of NLS-mCherry-R10 II with or without added TNB-R10 5 at 4°C in vari-
ous cell lines. Scale bars 20 µm. 
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SI Fig. 26 Confocal microscopy images of cellular uptake of NLS-mCherry-K10 III with or without 
TNB-R10 5. Scale bars 20 µm. 

 

 

SI Fig. 27 Cell viability assays of cells treated with TNB-R10 5. a, WST-1 assay of HeLa CLL-2 cells. 
Absorbance at 440 nm is indicative of cellular metabolic activity in the processing of WST-1 to the ab-
sorbing Formazan. TNB-R10 had no effect on metabolism up to 50 µM peptide, while the positive control 
staurosporine had a significant, detrimental effect at a 10 µM concentration under the same treatment 
conditions. n.s. = not significant, *** = P<0.0005. b, Calcein AM cell viability assay of HeLa Kyoto cells. 
The cells were treated with either 5 µM NLS-mCherry-R10 II in DMEM alone (lower panel) or with 10 µM 
TNB-R10 5 in DMEM (upper panel). After one-hour incubation, cells were washed again in DMEM and 
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treated with 5 µM Calcein AM in DMEM. The morphology of the cells as shown in the differential inter-
ference contrast (DIC) images is also unaffected. Scale bars 50 µm. c, Co-delivery of NLS-mCherry-R10 
II in presence of Sytox Blue dead cell stain with or without added TNB-R10 5. Scale bars 20 µm. 

 

 

SI Fig. 28 Uptake of NLS-mCherry-R10 II in presence of additional Cys-R10 2 or AA-R10 3 and 
serum. a, Microscopy pictures showing the fluorescence of NLS-mCherry-R10 II after uptake with addi-
tional CPP in varying amounts of serum, at 37°C. Scale bars 20 µm. b, Quantification of relative nuclear 
fluorescence intensities from microscopy pictures. n.s. = not significant, *** = P<0.0005. 
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SI Fig. 29 Characterization of NLS-mCherry-exR10 IV. a, SDS-PAGE gel showing the purity of 
mCherry-exR10 IV. b, High resolution mass spectrum of NLS-mCherry-exR10 IV, Calc.: 31883 [M+H], 
32060 [M+Gluconoylation+H]6; Exp.: 31883, 32060.  

 

 

SI Fig. 30 Confocal microscopy images of cellular uptake of NLS-mCherry-exR10 IV with or with-
out TNB-R10 5. Scale bars 20 µm. 
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SI Fig. 31 Characterization of NLS-mCherry-R5 and -R8. a, SDS-PAGE gel showing the purity and 
conversion of NLS-mCherry (lane 1) to the R5 and R8 conjugates (lanes 2-3). b, High resolution mass 
spectrum of NLS-mCherry-5, Calc.: 29564 [M+H]; Exp.: 29563. c, High resolution mass spectrum of 
NLS-mCherry-R8, Calc.: 30033 [M+H]; Exp.: 30033.  
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SI Fig. 32 Confocal microscopy images of cellular uptake of NLS-mCherry-R5 and -R8. a, Cellular 
uptake of NLS-mCherry-R5 with or without additive TNB-R10 5. b, Cellular uptake of NLS-mCherry-R8 
with or without additive TNB-R10 5. Scale bars 20 µm. 

 

 

SI Fig. 33 In situ uptake of TAMRA-labelled GBP1 nanobody after 30-minute incubation with TNB-
R10. The GBP1 nanobody with a free cysteine (after expressed protein ligation and size-exclusion chro-
matography (see supplementary methods and scheme in SI Fig. 2) was incubated with TNB-R10 (5) for 
30 minutes at room temperature. The mixture was then added to HeLa Kyoto cells expressing GFP-
PCNA. After 1 hour at 37°C, the cells were washed, counterstained with Hoechst 33342 and imaged. 
Scale bar 20 µm. 
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SI Fig. 34 Characterization of Cre-exR8. a, SDS-PAGE gel showing the purity of Cre-exR8. b, High 
resolution mass spectrum of Cre-exR8, Calc.: 42876 [M+H], 43054 [M+Gluconoylation+H]; Exp.: 42877, 
43055.  

 

SI Fig. 35 Epifluorescence microscopy pictures of HeLa CCL-2 cells transiently transfected with 
Cre-Stoplight 2.4 and treatment with Cre-exR8. Cells treated with Cre-exR8 in presence of additional 
Cys-R10 show higher incidence of red fluorescence.  
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Supporting Methods 
 

General materials and methods 

 

Solvents and chemicals 

Solvents (DMF, DCM) were purchased from Thermo Fisher Scientific (USA). Amino acids, rink amide 
resin and coupling reagents were purchased from Iris Biotech (Germany). 5(6)-Carboxytetramethylrho-
damine (TAMRA) was purchased from Merck (Germany). HATU was purchased from Bachem (Switzer-
land). DIEA and TFA were purchased from Carl Roth (Germany).  

Salts, LB medium, antibiotics and other buffer components were purchased from Carl Roth (Germany). 

Mammalian cell culture media and fetal bovine serum were purchased from VWR (USA). 

Analytical UPLC-MS 

UPLC-UV traces were obtained on a Waters H-class instrument equipped with a Quaternary Solvent 
Manager, a Waters autosampler and a Waters TUV detector with an Acquity UPLC-BEH C18 1.7 μm, 
2.1x 50 mm RP column. The following gradient was used: A = H2O + 0.1% TFA, B = MeCN + 0.1% TFA 
5-95% B 0-5 min, flow rate 0.6 mL/min. UPLC-UV chromatograms were recorded at 220 nm. 

Preparative HPLC 

Preparative HPLC of peptides was done on a Gilson PLC 2020 system using a Nucleodur C18 Htec 
Spum column (Macherey-Nagel, 100 A, 5 m, 250 mm x 32 mm, 30 mL/min). The following gradient was 
used in all purifications: A = H2O + 0.1% TFA, B = MeCN + 0.1% TFA 5% B 0-10 min, 5-50% B 10-60 
min, 50-99% 60-80 min. 

High resolution mass spectrometry (HRMS) 

High resolution mass spectra were measured on a Xevo G2-XS QTof (Waters) mass spectrometer cou-
pled to an acquity UPLC system running on water and acetonitrile, both with 0.01% formic acid. Protein 
spectra were devonvoluted using the MaxEnt 1 tool. 

Size exclusion chromatography of proteins 

Size exclusion chromatography was done on an AKTA Purifier system (GE Healthcare) on a Superdex 
S75 increase 16/600 column (GE Healthcare) for all proteins except antibodies, which were purified after 
fluorescent labelling on a Superose 6 16/600 column (GE Healthcare).  

SDS-PAGE 

Proteins were mixed with 4x reducing Laemmli buffer (Bio-Rad) and boiled at 95° C for 5 minutes before 
separation on 15% SDS-PAGE gels. In-gel fluorescence was imaged first, followed by Coomassie stain-
ing and imaging. Gels were imaged on a ChemiDoc XRS+ system (Bio-Rad). 

Software 

Microscopy pictures were processed with ImageJ including the FIJI package. Graphing and statistics 
were done using Graphpad Prism 8. Flow cytometry data was processed and analyzed using FlowJo. 
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Peptide synthesis  

All peptides were synthesized by standard Fluorenylmethoxycarbonyl (Fmoc)-solid-phase peptide syn-
thesis (SPPS) on Rink amide resin (0.05 mmol scale, 0.22 mmol/g). Amino acid couplings were done 
using five equivalents of amino acid with five equivalents of HCTU (O-(1H-6-Chlorobenzotriazole-1-yl)-
1,1,3,3-tetramethyluronium hexafluorophosphate) and four equivalents of Oxyma (Ethyl cyanohydroxy-
iminoacetate) with ten equivalents of DIEA (N,N-Diisopropylethylamine) in DMF (Dimethylformamide). 
Fmoc removal was accomplished by incubating the resin three times for five minutes with a 20% solution 
of piperidine in DMF.  

Cyclization of the cyclic R10 peptides was done by incorporation of a lysine and glutamic acid residue 
flanking the CPP sequence, orthogonally protected by N-Allyloxycarbonyl (Alloc) and allyl, respectively. 
The orthogonal protecting groups were removed using palladium tetrakis (Pd(PPh3)4 (0.1 equivalents) 
with phenylsilane (25 equivalents) in dry dichloromethane (DCM) for 30 min at ambient temperature 
under argon atmosphere. To remove the Pd catalyst afterwards, the resin was washed additionally with 
0.2 M DIEA in DMF. Cyclization followed with one equivalent of 1-[Bis(dimethylamino)methylene]-1H-
1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU) and two equivalents of DIEA in DMF 
for two hours at room temperature.  

Arginine was incorporated with Pbf protection, cysteine was incorporated on the N-termini with Boc and 
Trityl protection. In the K10 peptide, Lysine with Boc protection on the side chain was used.  

In the synthesis of the fluorescent peptides bearing a TAMRA- or Cy5- fluorophore on the side-chain of 
a lysine, the linear synthesis was completed first with a lysine that was orthogonally protected with N-
methyltrityl (Mtt). After completion of the linear synthesis, Mtt was removed using 2% TFA with 2% TIS 
in DCM, five times for two minutes and the fluorophore was subsequently coupled with one equivalent 
of fluorophore and one equivalent of HATU and four equivalents of DIEA. 

For the synthesis of the peptides with an N-terminal TAMRA fluorophore, the N-terminal Fmoc protection 
was removed as above and the fluorophore was coupled using one equivalent of the fluorophore with 
one equivalent of HATU and four equivalents of DIEA. 

The linear sequences of all peptides used in this study is found in supplementary table 1, the final struc-
ture and analytical data in supplementary figure 1. 

Supplementary table 1 Linear sequences of peptides used in this study. PEG* corresponds to two 
consecutively coupled units of 8-amino-3,6-dioxaoctanoic acid. Uppercase letters are L-amino acids 
while lower case letters are D-amino acids. 

Peptide Sequence 

TAMRA-cR10 TAMRA-K(Alloc)RrRrRrRrRrE(Allyl)-Amide 

Cys-TAMRA C-PEG*-K(Mtt)-G-Amide 

Maleimide-cR10 Maleimidoacetic acid-PEG*-K(Alloc)RrRrRrRrRrE(Allyl)-Amide 

Cys-cR10 C-PEG*-K(Alloc)RrRrRrRrRrE(Allyl)-Amide 

Maleimide-R10 Maleimidoacetic acid-PEG*-RRRRRRRRRR-Amide 

Cys-R10 C-PEG*-RRRRRRRRRR-Amide 

Maleimide-K10 Maleimidoacetic acid-PEG*-KKKKKKKKKK-Amide 

Cys-R10-TAMRA C-PEG*-RRRRRRRRRR-K(Mtt)-Amide 

TAMRA-R5-Cys-R5 RRRRRCRRRRR-Amide 
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TAMRA-R10-Cys RRRRRRRRRRC-Amide 

Maleimide-R10-
Cy5/Biotin 

Maleimidoacetic acid-PEG*-RRRRRRRRRRK(Mtt)-Amide 

Halo-R10 6-chlorohexanoic acid-PEG*-RRRRRRRRRR-Amide 

Maleimide-R5 Maleimidoacetic acid-PEG*-RRRRR-Amide 

Maleimide-R8 Maleimidoacetic acid-PEG*-RRRRRRRR-Amide 

 

For the synthesis of the alkylated peptides in which the cysteine is modified with iodoacetamide, the 
cysteine equivalent was taken up in water at a 5 mM concentration and 5 equivalents of iodoacetamide 
were added for 1 hour at RT. The resulting peptide was immediately purified using reverse phase HPLC 
to prevent overalkylation. The di-R10 dimer was generated by incubating the Cys-R10 peptide in oxy-
genated 5 mM HEPES buffer at pH 7.5 for 3 days at room temperature. The Ellman’s reagent (thionitro-
benzoic acid, TNB) peptides were generated by reacting the cysteine variants at a 5 mM concentration 
with 10 equivalents of Ellman’s reagent (5,5'-dithiobis-(2-nitrobenzoic acid)) and the resulting peptides 
were purified by reverse phase HPLC.  

 

Protein-CPP conjugation 

To conjugate the maleimide-functionalized R10, cR10 and K10 peptides to the thiol containing proteins, 
the proteins were diluted to 50 µM concentration in 5 mM HEPES at pH 7.5, 140 mM NaCl, 2.5 mM KCL, 
5 mM Glycin. 5 equivalents of the maleimide-peptide were added, and the solution was incubated over-
night at room temperature. Excess cell-penetrating peptide was removed by desalting in a spin column.  

For the in situ CPP conjugation and cell uptake, proteins were diluted to 5 or 25 µM in HEPES buffer (5 
mM HEPES at pH 7.5, 140 mM NaCl, 2.5 mM KCL, 5 mM Glycin) and 25 or 75 µM TNB-R10 (for the 
nanobody and mCherry, respectively) were added for the indicated times. The proteins were then diluted 
to 1 or 5 µM with DMEM and immediately used in cell experiments. 

 

Cellular uptake experiments 

Cell culturing is described in the supplementary methods, along with a list of cell lines used in this study. 
For microscopy experiments, 20´000 cells (10´000 in the case of the GFP-PCNA HeLa Kyoto cell line7) 
were seeded into the wells of a 96-well glass bottom plate. The cells were left to adhere and grow for 24 
hours at 37°C with 5% CO2. For 37°C experiments, the cells were washed once with DMEM before 
addition of the protein samples in DMEM. The cells were incubated for 1 hour at 37°C. The cells were 
then washed three times with DMEM with 10% fetal bovine serum (FBS). Cells were generally imaged 
live with incubation at 37°C and 5% CO2. For the quantitative microscopy experiments, the cells were 
fixed using 4% PFA in PBS for 30 minutes at room temperature after washing.  

For 4°C experiments, the cells were pre-chilled at 4°C for 1 hour. The cells were then washed with cold 
DMEM and the proteins were added in cold DMEM to the cells. The cells were incubated at 4°C for 1 
hour. Afterwards, the cells were washed thrice with cold DMEM with 10% FBS, before fixation with 4% 
PFA in PBS for 30 minutes at room temperature.  

For uptake experiments with live data acquisition, cells on a 96-well plate (seeded as above) were placed 
into the microscope covered with 100 µl DMEM containing Hoechst stain. The nuclear stain was used to 
find the center of the nuclei. The autofocus was then turned on and 100 µl of the peptide solution at twice 
the final concentration were added to the well (to give the final concentration on the cells). Recording of 
images was started 30 seconds after addition of the peptide solution. 
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For the experiment with the anti-GFP antibody, cells were seeded as above and after 24 hours the cells 
were transfected with the GFP-mutant-plasmid (Lifeact-mVenus), using Lipofectamine 2000. The cells 
were then incubated for another 24 hours before treatment with the CPP-conjugate. For the TOMM20 
antibody uptake, 200 nM MitoTracker were added to the antibody-CPP mixture before addition to the 
cells. 

 

Microscopy 

Confocal microscopy images were acquired on a Nikon-CSU spinning disc microscope with an CSU-X1 
(Andor) and a live cell incubation chamber (OKOlab). All images shown in this work were acquired using 
a PlanApo 60x NA 1.4 oil objective (Nikon) and an EMCCD (AU888, Andor). Brightfield images were 
aquired along with fluorescence images. Standard laser, a quad Dicroic (400-410,486-491, 560-570, 
633-647, AHF) and Emission filters were used in the acquisition of confocal fluorescence images (BFP 
(Hoechst 33342), ex.: 405 nm em.:450/50:, GFP (Atto488, mVenus), ex.: 488 em.:525/50, RFP (TAMRA, 
mCherry, Alexa 594, MitoTracker Red CMXRos), ex.: 561 em.:600/50 nm and iRFP (Cy5, SiR-Hoechst), 
ex.: 640 em.:685/50 nm. The microscopy images of cells treated with Cre recombinase were acquired 
on a Nikon Eclipse Ti2 epifluorescence microscope using the GFP and RFP filter sets. The microscopy 
pictures of the anti-TOMM20 antibody uptake were taken using an additional 1.5x optical magnification. 

Quantification of cellular uptake was done using a script for FIJI, see section “Quantification Script”. 
Briefly, the Hoechst stain was used as a mask for the nuclei. The red fluorescence channel was back-
ground subtracted and the red fluorescence within the nuclear mask and outside of it was quantified. 
Nuclear fluorescence was either normalized to the nuclear area (absolute fluorescence graph in Fig. 2) 
or to the sum of nuclear and outside fluorescence (relative fluorescence graph in SI Fig. 6). Pearson’s 
correlation coefficient was calculated using the Coloc2 tool in Fiji. 

 

Antibody modification and uptake 

A list of antibodies can be found in table 2. Antibodies were used at a 0.5 mg/mL concentration (~6.7 
µM). The anti-GFP antibody was purchased as a fluorophore conjugate. The Brentuximab and anti-
TOMM20 antibody were first labelled fluorescently using 8 equivalents of NHS-Atto488 (Atto-Tec GmbH) 
for 1 hour at room temperature before purification via gel filtration on a superpose 6 column. All antibodies 
were then modified with 25 equivalents of Traut’s reagent (2-Iminothiolane) for 1 hour at room tempera-
ture. Excess reagent was removed using a desalting column. Then, 20 equivalents of TNB-R10 were 
added immediately and the antibodies were incubated in the fridge until use. The antibodies were diluted 
to 500 nM in DMEM before cell experiments.  

 

Table 2 Antibodies used in this study. 

Antibody Source 

Brentuximab Ludwig-Maximilians-Universität (LMU) 
München, Germany 

Alexa Fluor 594 anti-GFP Antibody, Clone 
1GFP63 

BioLegend (USA) 

Anti-Tom20/Tomm20, clone 2F8.1 Merck (Germany) 

 

 

 



 

 

39

Cloning, protein expression and purification 

GBP1 Nanobody: 

The GBP1 nanobody was expressed and labelled through expressed protein ligation (EPL), similarly to 
a previously published protocol8. Briefly, the nanobody was expressed in BL21 DE3 cells as a fusion 
protein with the DnaE intein and a chitin binding domain (pTXB1 vector system). Protein sequence 
(Nanobody sequence after intein cleavage underlined): 

MADVQLVESGGALVQPGGSLRLSCAASGFPVNRYSMRWYRQAPGKEREWVAGMSSAGDRSSYED
SVKGRFTISRDDARNTVYLQMNSLKPEDTAVYYCNVNVGFEYWGQGTQVTVSSAAACITGDALVALP
EGESVRIADIVPGARPNSDNAIDLKVLDRHGNPVLADRLFHSGEHPVYTVRTVEGLRVTGTANHPLLCL
VDVAGVPTLLWKLIDEIKPGDYAVIQRSAFSVDCAGFARGKPEFAPTTYTVGVPGLVRFLEAHHRDPDA
QAIADELTDGRFYYAKVASVTDAGVQPVYSLRVDTADHAFITNGFVSHATGLTGLNSGLTTNPGVSAW
QVNTAYTAGQLVTYNGKTYKCLQPHTSLAGWEPSNVPALWQLQ* 

For the expression, T7 express cells (New England Biolabs) were transformed with the plasmid and 
grown overnight at 37°C in 5 mL of LB medium with 100 µg/mL ampicillin. The next day, the expression 
culture in 250 mL LB medium with ampicillin was inoculated with 1 mL of the starter culture. The culture 
was incubated at 37°C until it reached an OD600 of 0.6. Protein expression was then induced using 1 
mM IPTG and the culture was incubated for 16 hours at 18°C. Cells were collected by centrifugation at 
4000xg for 15 minutes. The cells were washed once in PBS, then resuspended in lysis buffer (20 mM 
Tris-HCl, pH 8.5, 500 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 100 µg/mL lysozyme and 25 µg/mL 
DNAse I), lysed using sonication (3x 2 min, 30% Amplitude), followed by debris centrifugation at 25’000xg 
for 30 min.  

For the purification, the clear lysate was loaded on 2 mL of chitin-agarose, equilibrated in EPL buffer (20 
mM Tris-HCl pH 8.5, 500 mM NaCl). The agarose beads were washed with 20 column volumes of EPL 
buffer. Then, a TAMRA- and cysteine-functionalized peptide (see SI Fig. 1b) was coupled to the C-ter-
minus of the protein using EPL. For this, the protein was reacted on the chitin column with 1 mM peptide 
in 20 mM Tris-HCl pH 8.5, 500 mM NaCl and 100 mM sodium 2-mercaptoethanesulfonate for 16 hours 
while shaking at room temperature. The next day, the protein was washed off the column using 5 mL of 
EPL buffer. The protein was further purified from the reaction mixture using size exclusion chromatog-
raphy on a Superdex 75 16/60 column in 5 mM HEPES at pH 7.5, 140 mM NaCl, 2.5 mM KCL, 5 mM 
Glycin. Peak fractions were pooled, and protein aliquots were shock-frozen and stored at -80 °C.  

 
NLS-mCherry-Cysteine: 
The protein was expressed as published previously9. Protein sequence (Sequence after thrombin cleav-
age underlined, chromophore in red, cysteine in blue): 
 
MGSSHHHHHHSSGLVPRGSHMPAAKRVKLDMVSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEG
EGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMN
FEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGALKGEIKQRL
KLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYKAC
A* 
 
For the expression, BL21 DE3 cells were transformed with the plasmid. A single colony from an agar 
plate was picked and grown for 24 hours at 37°C in 250 mL of LB medium with 40 µg/mL Kanamycin. 
Induction was not necessary. Cells were collected by centrifugation at 4000xg for 15 minutes. The cells 
were washed once in PBS, then resuspended in lysis buffer and lysed using sonication (3x 2 min, 30% 
Amplitude), followed by debris centrifugation at 25’000xg for 30 min. 
 
For the purification, the clear lysate was loaded on 2 mL of Ni-NTA agarose. The beads were washed 
with 20 column volumes of PBS with 20 mM imidazole. The protein was then eluted using 2 mL of PBS 
containing 500 mM imidazole. The purification tag was removed by the addition of thrombin (1:1000 v/v), 
overnight at 37°C for 18 hours. The protein was further purified by size exclusion chromatography using 
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a Superdex 75 16/60 column in 5 mM HEPES at pH 7.5, 140 mM NaCl, 2.5 mM KCL, 5 mM Glycine. 
Peak fractions were pooled, and protein aliquots were shock-frozen and stored at -80 °C. 
 

NLS-mCherry-exR10 IV: 

The NLS-mCherry-exR10 construct was cloned from the NLS-mCherry plasmid using Gibson assem-
bly10. A 7 amino acid long linker and 10 arginines were introduced at the C-terminus using overlap ex-
tension PCR, and the thrombin cleavage site was exchanged for a TEV protease cleavage site in the 
same PCR reaction. The construct was cloned back into the pET28a(+) bacterial expression plasmid in 
the assembly reaction. 
 
Protein sequence (NLS in green, Chromophore in red, R10 sequence in blue): 
 
MGSSHHHHHHSSGENLYFQGPAAKRVKLDMVSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGE
GEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNF
EDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGALKGEIKQRL
KLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYKAS
GSGSGRRRRRRRRRR* 
 
NLS-mCherry-exR10 was expressed in BL21 DE3 cells transformed with the plasmid. The cells were 
grown overnight at 37°C in 5 mL of LB medium with 40 µg/mL kanamycin. The next day, the expression 
culture in 250 mL LB medium with kanamycin was inoculated with 1 mL of the starter culture. After 
incubation at 37°C, when the culture reached an OD600 of 0.6, expression was induced with 0.5 mM 
IPTG, and the culture was incubated for 16 hours at 18°C. The cells were first harvested by centrifugation 
at 4000xg for 15 minutes, washed once with PBS, then resuspended in lysis buffer and lysed using 
sonication (3x 2 min, 30% Amplitude), followed by debris centrifugation at 25’000xg for 30 min.  
 
For the purification, the clear lysate was loaded on 2 mL of Ni-NTA agarose. The beads were washed 
with 20 column volumes of PBS with 20 mM imidazole. The protein was then eluted with 2 mL of PBS 
containing 500 mM imidazole. The purification tag was not removed as it led to unexpected degradation, 
possibly of the C-terminal R10 peptide. The protein was further purified by size exclusion chromatog-
raphy using a Superdex 75 16/60 column in 5 mM HEPES at pH 7.5, 140 mM NaCl, 2.5 mM KCL, 5 mM 
Glycine. Peak fractions were pooled, and protein aliquots were shock-frozen and stored at -80 °C. 
 
 

NLS-Cre-exR8: 

A plasmid encoding NLS-Cre recombinase was obtained from addgene (Plasmid #62730). The Cre-exR8 
construct was cloned using overlap extension PCR from the original plasmid by appending 8 arginines 
to the C-terminus of the protein and by appending a TEV protease cleavage site on the N-terminus of 
the protein. The PCR product was inserted into the pET28a vector using Gibson assembly.  
 
Protein sequence (NLS in green, R8 peptide in blue): 
 
MGSSHHHHHHSSGENLYFQGPKKKRKVSNLLTVHQNLPALPVDATSDEVRKNLMDMFRDRQAFSEH
TWKMLLSVCRSWAAWCKLNNRKWFPAEPEDVRDYLLYLQARGLAVKTIQQHLGQLNMLHRRSGLPR
PSDSNAVSLVMRRIRKENVDAGERAKQALAFERTDFDQVRSLMENSDRCQDIRNLAFLGIAYNTLLRIA
EIARIRVKDISRTDGGRMLIHIGRTKTLVSTAGVEKALSLGVTKLVERWISVSGVADDPNNYLFCRVRKN
GVAAPSATSQLSTRALEGIFEATHRLIYGAKDDSGQRYLAWSGHSARVGAARDMARAGVSIPEIMQAG
GWTNVNIVMNYIRNLDSETGAMVRLLEDGDASGRRRRRRRR* 
 
NLS-Cre-exR8 was expressed by transforming the corresponding plasmid into BL21 DE3 cells, which 
were grown overnight at 37°C in 5mL of LB medium with 40 µg/mL kanamycin. The next day, a culture 
in 250 mL LB medium containing kanamycin was inoculated with 1 mL of the starter culture and grown 
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at 37°C until the OD600 reached 0.6. Expression was induced with 0.5 mM IPTG and the cells were 
incubated for another 16 hours at 18°C. The cells were harvested using centrifugation at 4000xg for 15 
minutes, washed with PBS once, then taken up in 100 mM NaH2PO4 with 10 mM Tris pH 8.0, 300 mM 
NaCl, 10 mM imidazole and lysed using sonication (3x 2 min, 30% Amplitude), followed by debris cen-
trifugation at 25’000xg for 30 min.  
 
For the purification, the clear lysate was loaded on 2 mL of Ni-NTA agarose equilibrated in phosphate 
buffer (100 mM NaH2PO4 with 10 mM Tris pH 8.0, 300 mM NaCl, 10 mM imidazole). The protein was 
washed with 20 column volumes of the same buffer and subsequently eluted with the same buffer con-
taining 250 mM imidazole. The protein was further purified on a Superdex 75 16/60 column in 100 mM 
NaH2PO4 with 10 mM Tris pH 8.0, 300 mM NaCl. Peak fractions were combined, frozen in liquid nitrogen 
and stored at -80°C until use. 
 
 
Cloning of plasmids for transfection: 
 
The Cre Stoplight 2.4 plasmid11 was obtained from addgene (Plasmid #37402). 

For the cell-surface halotag-reporter plasmid, a dual cytomegalovirus (CMV)-reporter plasmid that led to 
expression of EGFP within the cell along with a peroxidase on the cell surface (addgene plasmid #31156) 
was used as a starting point. A sequence encoding the halotag was generated by PCR from the pHTN 
vector (Promega). The peroxidase sequence was then replaced with the halotag sequence using Gibson 
cloning.  

 

Mammalian cell culture 

Cell lines were grown at 37° C in a humidified atmosphere with 5% CO2. A list of cell lines with their 
corresponding media can be found in supplementary table 1.  

Supplementary Table 1 Cell lines used in this study. 

Cell line Medium 

HeLa CCL-2 DMEM 4.5 g/L Glucose + 10% fetal bovine serum (FBS), 
1% Penicillin-Streptomycin (PS) 

HeLa Kyoto DMEM 4.5 g/L Glucose + 10% FBS, 1% PS 

HeLa Kyoto GFP-
PCNA7,12 

DMEM 4.5 g/L Glucose + 10% FBS, 1% PS 

SKBR-3 DMEM/Ham's F-12 + 10% FBS, 1% PS 

A549 DMEM/Ham's F-12 + 10% FBS, 1% PS 

MDCK-2 DMEM 1 g/L Glucose + 10% FBS, 1% PS 

SJSA-1 RPMI 1640 + 10% FBS, 1% PS 

 

For the Calcein AM cell viability assay, 20´000 HeLa Kyoto cells were seeded on ibidi slides. The cells 
were left to adhere and grow for 24 hours at 37 °C and 5% CO2. The cells were washed once with DMEM 
before addition of either 5 µM NLS-mCherry-R10 in DMEM alone or 5 µM NLS-mCherry-R10 with 10 µM 
TNB-R10 in DMEM. After one hour incubation at 37 °C and 5% CO2 cells were washed three times with 
DMEM before treatment with 5 µM Calcein AM (Sigma; diluted from a 500 mM stock solution of Calcein 
AM in dimethyl sulfoxide (DMSO)) in DMEM. Microscopy images were collected three and six hours after 
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addition of Calcein AM. Confocal microscopic images were acquired on a Leica SP5II equipped with an 
oil immersion ACS APO 63x / 1.3 NA objective with laser line at 561 nm and 488 nm using similar settings 
for the same fluorophores.  

 

On-cell biotinylation, pulldown and proteomics 

Each treatment and pulldown was performed in quadruplicate to obtain reliable label-free quantification 
(LFQ) data. 500‘000 HeLa Kyoto cells were seeded in each well of a 6-well plate. The cells were incu-
bated for 48 hours at 37°C and 5% CO2 to adhere and grow to near-confluency. The cells were then 
washed three times with PBS, then incubated for 30 minutes at room temperature with either PBS only, 
or 20 µM of commercially available Biotin-Maleimide (Sigma-Aldrich) or the Maleimide-R10-biotin pep-
tide. Cells were then washed twice with PBS.  

For cell lysis 500 µl of lysis buffer (2% NP-40, 1% Triton X-100, 10% glycerol, EDTA free protease inhib-
itor tablet in PBS) was added to the cells. Cells were scraped off the plates and transferred to a reaction 
tube followed by incubation on ice on a shaker for 30 min. The cell extracts were centrifuged for 20 min 
(20800×g, at 4°C) to pellet the insoluble material.  

The supernatants were mixed with 100 µl of Streptavidin-agarose beads and the beads were incubated 
for 1 hour at 4°C. Beads were washed twice with lysis buffer, then another two times times with 300 mM 
NaCl in lysis buffer. 

Then, 50 µl of 4x Laemmli buffer containing beta-mercaptoethanol were added to the beads and they 
were boiled at 75°C for 15 minutes to denature proteins and disturb the streptavidin-biotin interaction. 

20 µl for each condition were loaded on a 10% SDS-PAGE gel. The samples were only run until approx-
imately 1 cm into the separating gel. This part was cut out and used for the in-gel tryptic digest. Samples 
in the gel were reduced, alkylated and digested with trypsin followed by extraction from the gel as de-
scribed previously13. 

MS-spectra were input into MaxQuant to identify proteins from the Uniprot Homo Sapiens database. All 
cysteines were specified with a static modification for carbamidomethylation (+57.02146). Perseus was 
used to process the data (two-tailed t-tests, false discovery rate = 0.1) and generate the sample matrix 
and volcano plots. 

 

Flow Cytometry 

For the Cre recombinase experiments, 200’000 cells were seeded in each well of a 12-well plate. The 
cells were incubated for 24 hours at 37°C to settle, then transfected with the reporter plasmid (Cre Stop-
light 2.4) using Lipofectamine 2000. The cells were incubated for another 24 hours, then treated with Cre 
recombinase (or medium) in DMEM with 5% FCS and incubated for 24 more hours. Microscopy pictures 
were then taken, and the cells were detached with accutase, dead cells stained with DAPI and all cells 
measured on a LSRFortessa (BD Biosciences, USA) flow cytometer. Dead cells and multiplets were 
removed in the analysis through gating, followed by untransfected cells that showed no fluorescence in 
either the green or red channel. At least 10’000 cells were counted for each condition. The gating strategy 
is illustrated in supplementary figure 36. 
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SI Fig. 36 Gating strategy for flow cytometry data.  

Quantification script 

The following quantification macro for FIJI opens files in a chosen directory, then identifies nuclei in the 
Hoechst channel (channel 1) through thresholding, fills holes and erodes once to ensure separation of 
nuclear from endosomal fluorescence. After that, the selected nuclear area is set as a region of interest 
(ROI) together with the inverse selection (area outside of the nuclei) and, after background subtraction, 
the fluorescence of the mCherry (in channel 2) is quantified in both ROIs. 
 
//this Macro analyses NLS-mCherry in aquired images on Nikon_CSU 60x oil 
//ch1=Hoechst, ch2=NLS-mCherry uptake ch3-... not used  
 
setBatchMode(true);  
dir=getDirectory("Choose Source Directory "); 
list = getFileList(dir); 
for(i=0; i<list.length; i++) { 
 file=list[i]; 
 run("Bio-Formats Importer", "open=["+dir+"/"+file+"] autoscale color_mode=Default concate-
nate_series open_all_series rois_import=[ROI manager] view=Hyperstack stack_order=XYCZT"); 
 getDimensions(width, height, channels, slices, frames); 
 
 { 
  run("Bio-Formats Importer", "open=["+dir+"/"+file+"] autoscale color_mode=Default 
rois_import=[ROI manager] view=Hyperstack stack_order=XYCZT"); 
  name=getTitle; 
  print(name); 
  run("Duplicate...", "duplicate channels=1"); 
  run("Median...", "radius=5"); 
  run("Auto Threshold", "method=Default white"); 
  run("Fill Holes"); 
  run("Erode"); 
  run("Invert"); 
  run("Create Selection"); 
  roiManager("Add"); 
  run("Create Selection"); 
  run("Make Inverse"); 
  roiManager("Add"); 
   
  run("Set Measurements...", "area mean modal integrated display redirect=None deci-
mal=0"); 
  selectWindow(name); 
  run("Duplicate...", "duplicate channels=2"); 
  run("Subtract Background...", "rolling=100"); 
  run("Subtract Background...", "rolling=100"); 
  roiManager("Select", 0); 
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  run("Measure"); 
  roiManager("Select", 1); 
  run("Measure"); 
  roiManager("Deselect"); 
  roiManager("Delete"); 
  run("Close All"); 
      
} 
} 
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4 Summary 
 
Since their first discovery a little over 30 years ago, cell-penetrating peptides have been the 

subject of intensive research. Nevertheless, there is much less work, and much more 

controversy, when it comes to the delivery of entire proteins using CPPs. Early reports claim 

that while small molecules and peptides can be taken up in a non-endocytic manner, protein-

CPP conjugates would enter cells exclusively through endocytosis – and often remain trapped 

in endosomes. In this thesis, the delivery of proteins using cell-penetrating peptides is at the 

centre-stage. In several different contexts, protein delivery could in fact be achieved in an 

energy-independent manner.  

Initially, a pair of GFP-nanobodies were chosen as an easily applicable cargo. The small 

antibody fragments were engineered to allow modification of at the C-termini using expressed 

protein ligation. Cyclic CPPs (Tat and R10) were attached, and the conjugates could be purified 

by affinity chromatography using an immobilized form of the anionic polymer heparin. The 

conjugates could then enter cells and could be used in downstream intracellular applications. 

To explore the intracellular fate and targetability of CPP conjugates, the fluorescent protein 

mCherry was recombinantly expressed as a fusion protein with several peptidic targeting 

sequences and conjugated to a cyclic R10 CPP through either a cleavable disulfide, or non-

cleavable thioether linkage. The cytosolic delivery of the protein was successful in either case, 

though it required elevated concentrations. Interestingly, the non-cleavable conjugate showed 

accumulation in the nucleoli due to the CPP, while the disulfide-linked conjugate showed clean 

localization to the target structure or compartment. Localization of the protein to mitochondria 

after delivery could not be achieved. 

Finally, it was possible to devise a methodology that allows circumventing the harsh 

concentration dependence of CPP-mediated transport of large protein cargoes. Through 

usage of a low μM concentration of both the protein-CPP conjugate along with unbound, free 

CPP, highly efficient delivery can be achieved. The best CPP additives proved to be thiol-

reactive peptides, that can label specific loci on the cell membrane through which the protein 

cargo can transduce. This was effective in several cell lines, as well as with many protein 

cargoes, amongst others full-length IgG antibodies. In future research, these findings could be 

used in cell-type specific delivery approaches, by labelling only specific cells with CPPs, and 

in applications with functional antibodies.
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5 Zusammenfassung 
 
Seit ihrer ersten Entdeckung vor etwas mehr als 30 Jahren waren zellpenetrierende Peptide 

bereits im Fokus zahlreicher Forschungsarbeiten. Der zelluläre Import ganzer Proteine mit Hilfe 

von CPPs ist hingegen noch weitaus weniger erforscht. Frühe Berichte behaupten, dass kleine 

Moleküle und Peptide zwar auf nicht-endozytotische Weise aufgenommen werden können, 

Protein-CPP-Konjugate jedoch ausschließlich durch Endozytose in die Zellen gelangen würden 

und oft in den Endosomen verbleiben. In dieser Arbeit steht die Einschleusung von Proteinen 

in das Cytosol mittels zellpenetrierender Peptide im Mittelpunkt. In verschiedenen Kontexten 

konnte der Import tatsächlich energieunabhängig erfolgen.  

Ursprünglich wurde ein Paar GFP-Nanobodies als Modellsystem gewählt. Die kleinen 

Antikörperfragmente wurden so konstruiert, dass sie am C-Terminus durch die Expressed 

Protein Ligation modifiziert werden konnten. Zyklische CPPs (Tat und R10) wurden angehängt, 

und die Konjugate konnten durch Affinitätschromatographie unter Verwendung einer 

immobilisierten Form des anionischen Polymeres Heparin aufgereinigt werden. Die Konjugate 

konnten dann in die Zellen gelangen und in nachfolgenden intrazellulären Anwendungen 

verwendet werden. 

Es wurde das intrazelluläre Schicksal von CPP-Konjugaten untersucht, auch um zu evaluieren, 

ob es möglich ist, ein CPP-Konjugat nach zellulärem Import in ein spezifisches Kompartiment 

zu leiten. Dafür wurde das fluoreszierende Protein mCherry rekombinant als Fusionsprotein 

mit mehreren peptidischen Zielsequenzen exprimiert. Das Protein wurde entweder über eine 

spaltbare Disulfid- oder eine nicht spaltbare Thioetherbindung an ein zyklisches R10-CPP 

konjugiert. Die Einschleusung des Proteins in das Cytosol war in beiden Fällen erfolgreich. 

Allerdings waren erhöhte Proteinkonzentrationen erforderlich. Interessanterweise zeigte das 

nicht spaltbare Konjugat aufgrund des CPP eine Akkumulation in den Nucleoli, während das 

disulfidgebundene Konjugat eine saubere Lokalisierung in der Zielstruktur oder dem 

Zielkompartiment zeigte. Eine Lokalisierung des Proteins in den Mitochondrien nach Import in 

die Zellen konnte nicht erreicht werden. 

Schließlich war es möglich, eine neue Methodik zu entwickeln, die es erlaubt, die starke 

Konzentrationsabhängigkeit des CPP-vermittelten Transports großer Proteine zu umgehen. 

Durch die Verwendung einer niedrigen μM Konzentration sowohl des Protein-CPP-Konjugats 

als auch eines ungebundenen, freien CPP kann ein hocheffizienter Transport in das Cytosol 

erreicht werden. Die besten CPP-Additive erwiesen sich als thiolreaktive Peptide, die 

spezifische Loci auf der Zellmembran markieren können. Durch diese Loci können Protein-
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CPP-Konjugate dann transduzieren. Dies war bei mehreren Zelllinien und einigen 

unterschiedlichen Proteinen, unter anderem bei IgG-Antikörpern wirksam. In zukünftiger 

Forschung könnten diese Erkenntnisse in CPP-basierten, zelltypspezifischen 

Transportansätzen genutzt werden, indem nur bestimmte Zellen mit CPPs markiert werden. 

Weiterhin sind auch Anwendungen mit funktionellen Antikörpern möglich. 
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6 Appendix 
 

 
Supplementary Figure 1. a, Coomassie stained SDS-PAGE gel from the expression and 
purification of Cox8A-mCherry on amylose resin. b, Coomassie stained SDS-PAGE gel from 
the size-exclusion chromatography of the TEV-protease treated MBP-Cox8a-mCherry protein. 
Stars indicate cleavage products of the mCherry occurring during SDS-Page sample 
preparation466.  

 Supplementary Figure 2. Coomassie 
stained SDS-PAGE gel from the expression and purification of Lyn11, HRas and KRas 
membrane targeting sequences fused to mCherry. The purification was accomplished on 
nickel-NTA agarose resin.  
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Supplementary Figure 3. High resolution mass spectra of mCherry proteins fused to 
membrane targeting sequences. Shown are raw spectra with deconvoluted spectra inset. a, 
Lyn11-mCherry: Calc.: 30048 [M+H]; Exp.: 30043.  b, mCherry-HRas: Calc.: 30434 [M+H]; Exp.: 
30428.  c, mCherry-KRas: Calc.: 31228 [M+H]; Exp.: 31223.   
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