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Summary

This dissertation is concerned with model uncertainty and model selection in macroe-

conometric time series analysis, covering model choice in both reduced-form as well

as structural models. The former deals with lag selection, whereas the latter focuses

on the appropriate speci�cation of contemporaneous interactions between variables.

In both areas, quantifying and limiting the degree to which model uncertainty a�ects

conclusions in applied work is important in safeguarding science from `data snooping'

or making bad model choices.

Chapter 1 compares and evaluates a range of model selection methods in the context

of univariate autoregressive processes. Among these methods are the model con�dence

set, model averaging techniques, shrinkage estimators, and standard information crite-

ria. It is found that for forecasting and impulse response analysis, incorporating model

uncertainty through model averaging o�ers substantial reductions in mean square error

when model uncertainty is high. When this uncertainty is low, standard approaches

that pick a single model outperform other competitors.

Chapters 2 and 3 turn to structural time series analysis. Both chapters address the

use of causal graphs in structural vector autoregressive (SVAR) analysis, which serves

two purposes. Graphs succinctly summarise key modelling assumptions and, secondly,

formalise the search for assumptions that are likely to be in accord with the data.

Chapter 2 elaborates speci�c properties of these graphs in the context of SVAR models.

In particular, it clari�es when a graph represents a SVAR model identi�ed through

short-run exclusion restrictions and highlights caveats when using causal graphs to

learn about suitable restrictions from the data.

Chapter 3 showcases the usefulness of combining causal graphs with sign restrictions

to identify SVAR models for the global crude oil market. Such a combination yields

economically interpretable and meaningful results. The restrictions inspired by causal

graph analysis replace a set of rather ad hoc assumptions in the literature. The results

therefore add robustness to the �nding that demand shocks play a more signi�cant role

for oil price movements than supply shocks.
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Zusammenfassung

Diese Dissertation beschäftigt sich mit Modellunsicherheit und Modellauswahl in der

makroökonomischen Zeitreihenanalyse. Die Arbeit befasst sich sowohl mit der Wahl

von Modellen in reduzierter Form als auch in strukturellen Modellen. Erstere Form be-

steht aus der Wahl der inkludierten vergangenen Beobachtungen (engl. lags), letztere

betri�t die geeignete Spezi�kation der zeitgleichen Interaktionen zwischen den Modell-

variablen. In beiden Bereichen ist die Quanti�zierung und Limitierung der E�ekte auf

die Ergebnisse angewandter Arbeit, die durch Modellunsicherheit entstehen, von Be-

deutung. So gilt es, irreführende Ergebnisse aufgrund von Überspezi�zierung sowie die

Wahl schlechter Modelle im Allgemeinein zu verhindern oder zu begrenzen.

Das erste Kapitel vergleicht und evaluiert eine Reihe an Modellselektionsverfahren im

Kontext univariater autoregressiver Prozesse. Zu diesen Methoden gehören das Model

Con�dence Set, Modellmittelungsverfahren, sowie Shrinkage und Informationskriteri-

en. Für die Prognose und Impulsantwortanalyse wird festgestellt, dass die Berück-

sichtigung von Modellunsicherheit durch Modellmittelung zur Reduzierung quadrier-

ter Fehler beiträgt, wenn diese Unsicherheit hoch ist. Bei geringerer Unsicherheit sind

Standardverfahren, die ein einzelnes Modell wählen, von Vorteil.

Kapitel 2 und 3 wenden sich der strukturellen Zeitreihenanalyse zu. Beide Kapitel

beschäftigen sich mit Kausalgraphen für strukturelle vektorautoregressive (SVAR) Mo-

delle. Kausalgraphen veranschaulichen wichtige Modellierungsannahmen und können

darüber hinaus die Suche nach Annahmen formalisieren, so dass diese den Daten-

eigenschaften Rechnung tragen. Kapitel 2 eruiert Eigenschaften dieser Graphen im

Zusammenhang mit SVAR-Modellen. Insbesondere erörtert das Kapitel inwiefern ein

Graph ein identi�ziertes VAR-Modell widerspiegelt. Es zeigt auch Probleme bei der

datengetriebenen Suche nach Restriktionen auf.

Kapitel 3 veranschaulicht die Vorzüge einer Kombination von Kausalgraphen mit

Vorzeichenrestriktionen zur Identi�zierung von SVAR-Modellen. Eine solche Kombi-

nation liefert sowohl ökonomisch interpretierbare als auch aussagekräftige Ergebnisse.

Die durch Kausalgraphen inspirierten Restriktionen ersetzen ad-hoc Restriktionen aus

der Literatur. Mit dieser Veränderungen kann die Robustheit von Ergebnissen, die die
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Zusammenfassung

Bedeutsamkeit von Nachfrageschocks auf dem globalen Rohölmarkt gegenüber Ange-

botsschocks hervorheben, bekräftigt werden.
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Introduction and Overview

For most empirical work in macroeconomics, modelling choices have to be made. But

as with any choice that is based on limited information or knowledge, this choice

has to be made under uncertainty. There is, therefore, always the possibility that a

suboptimal model has been chosen, which could adversely e�ect subsequent analyses

and possibly even broader conclusions about the state of the economy or its inner

workings. In macroeconomics, such limited information can come about because only

sampled data from a larger population is available, because of competing theories about

the nature of economic phenomena, or because the relevant processes are too complex

to be accurately represented by simplifying model assumptions. Acknowledging, and

possibly incorporating, the uncertainty about model choice is thus an important step

in scienti�c discovery.

This thesis contributes to the �eld of model selection and model uncertainty by as-

sessing the merits of a number of statistical methods in time series analysis in o�ering

robust model choices. Many quantities in macroeconomics are repeatedly and regularly

observed over time. Incorporating the speci�c characteristics of such data is the domain

of time series analysis. In macroeconomics, one particular tool that has proven infor-

mative and adaptable in explaining the development of multiple economic variables are

vector autoregressive (VAR) models. This thesis will focus on this type of model, and

its simpli�ed version for univariate processes. An introduction to time series and VAR

analysis can be found in Stock and Watson (2007, ch. 14�16). A more detailed and

advanced treatment is given by Lütkepohl (2005) and Kilian and Lütkepohl (2017).

General topics in time series analysis are covered by Brockwell and Davis (2002) at an

introductory level and by Hamilton (1994) and Brockwell and Davis (1991) at a more

advanced stage.

Vector autoregressive models are useful as a forecasting tool, but they can also

provide substantive insight on economic mechanisms. In both areas, model choice

is important. The thesis will evaluate the properties of model selection methods in

both types of exercises: reduced-form, non-structural models which are suitable for

forecasting on the one hand, and structural models capable of informing theory on the
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Introduction and Overview

other hand. Speci�cally, Chapter 1, which is joint work with Rolf Tschernig, compares

the performance of a range of methods that select the lag structure of simple, non-

structural univariate autoregressive models. The performance is judged with respect

to forecasting, but also to impulse response estimates (that lack structural meaning in

this case). Chapters 2 and 3, in turn, are concerned with model choices in structural

vector autoregressive (SVAR) analysis. In both these chapters so-called causal graphs

are discussed in relation to adequately forming and evaluating SVAR models.

The methods in Chapter 1 include model con�dence sets, frequentist model averag-

ing estimators, frequentist shrinkage methods, and standard information criteria. All

of these methods allow to select one or more model(s) which are judged most suit-

able among a whole range of candidate models. The methods have been developed

and applied in the econometric and statistical literature. Some, like information cri-

teria, have existed for almost half a century. Others, such as model averaging and

model con�dence sets, are more recent. Their relative merits in safeguarding empirical

analyses from making bad model choices are therefore less well studied in comparison.

The chapter addresses this point by comparing the di�erent approaches in a controlled

environment, where arti�cial data is created by simulating speci�c time series.

A major di�erence between the scrutinised methods is that model con�dence sets

and model averaging techniques speci�cally allow for the possibility of many equally

good models to exist and be used, whereas information criteria and shrinkage methods

typically select one model for further analysis. The latter procedures disregard the

possibility that other models might be equally well suited to �t the data, but with

di�ering implications for subsequent analyses, or even that an inferior model has been

chosen due to noise. Whether this disregard makes a di�erence in analysing certain time

series is the focus of Chapter 1. As so often, the answer is `it depends.' When the data

is noisy, uncertainty is high and separating the wheat form the cha� is di�cult. Under

such circumstances, there are substantial advantages in hedging model choice and to

allow several models to in�uence subsequent outcomes, such as forecasts. When the

data is more informative, accounting for model uncertainty is too costly. Researchers

would be better o� picking a single model in that instance.

The crux in practice is how to obtain knowledge of whether the data is informative or

not in the �rst place. Preliminary analyses using in-sample or out-of-sample goodness

of �t measures may be indicative and thus lead to a �rst rough, heuristic assessment.

In general, however, more research on the e�cacy and feasibility of choosing among

di�erent weighting or selection schemes in applied work would be advantageous.

Chapters 2 and 3 turn to structural analysis and combine SVAR models with causal

graphs. The latter are just like usual directed graphs, consisting of nodes and directed
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Introduction and Overview

edges, but infused with causal meaning. Thus, the nodes represent the same variables

as in the SVAR model and the edges represent relations between cause and e�ect.

A distinct requirement for conducting structural analysis is that we can tell certain

cause-e�ect relations apart. That is often di�cult in a macroeconomic setting, where

variables are highly interrelated and endogenous. In this regard, causal graphs can be

helpful by succinctly summarising and visualising the essential restrictions that have

been placed on the data to identify the model at large.

A key question is under what conditions a graph represents a model that has been

successfully identi�ed. Or, putting it the other way round, what restrictions have to be

placed on the associated graph such that the underlying model becomes identi�ed. As

causal graphs are a fairly uncommon tool to be used in combination with SVAR models,

this question has been rarely studied in the literature. Chapter 2 addresses the issue

of causal graphs and SVAR identi�cation, clari�es other properties of causal graphs in

relation to SVAR models, and provides an introduction to the topic by reviewing the

current state of research.

Causal graphs have been largely developed by computer scientists in the literature on

machine learning and arti�cial intelligence. That is why causal graphs have also been

used in a di�erent way, and in SVAR models predominantly so, to inductively infer

causal relations in the data without prior subject-matter knowledge. These methods

can therefore help to identify SVAR models by relating a set of statistical independence

relations that were inferred from the data with causal relations. However, the statistical

properties of such an approach, as with machine learning tools in general, are still being

studied, improved, and evaluated. In the case of causal graphs there are important

statistical caveats that researchers should be aware of when applying them for causal

discovery. These caveats are also discussed in Chapter 2.

Chapter 3 highlights a new use case of causal discovery. The chapter combines

causal (machine) learning with the more conventional method of identifying SVARs

through sign restrictions. One weakness of identi�cation through causal learning is that

economic interpretation of the results may still be di�cult as there is no information

on the precise mechanisms at play. Sign restrictions, on the other hand, are usually

motived by economic theory (or conventional wisdoms) and provide this intuition. On

the downside, the results of sign identi�ed SVAR analysis are frequently to loose to

meaningfully inform researchers. Chapter 3 shows that a combination of both methods

can provide interpretable and sharpened results. As a case study, the focus is on

disentangling supply and demand in the global market for crude oil.

In summary, causal graphs are an exciting and fairly new tool that can improve com-

munication of modelling assumptions and systematise discovery of those assumptions
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Introduction and Overview

which are likely supported by the data. It is not, however, a panacea to solve model

uncertainty in structural VAR analysis. While it does o�er a new way to relate key

modelling assumptions to the data, it is accompanied by its own problems. First and

foremost is the lack of an appropriate measure of uncertainty. This measure is hard to

come by due to the procedure's inductive nature.

Nonetheless, the procedures outlined in this dissertation may help to formalise the of-

ten rather informal process of model choice and model discovery in macroeconometrics

for both reduced-form and structural time series analysis. Consequently, the methods

may guard researchers from falling into `data snooping' (White, 2000) and improve the

reproducibility of applied research, which after all is a hallmark of the scienti�c method

and which has lately received renewed and critical attention across many disciplines.

One area that is not directly touched upon in this thesis is post-model-selection infer-

ence. Incorporating the process of model choice in evaluating the sampling properties

of parameter estimators is an important yet arduous topic. Nonetheless, the impos-

sibility results stated in Leeb and Pötscher (2005) and related studies have nurtured

e�orts to still conduct valid inference post-model-selection under speci�c circumstances

and with regard to speci�c objects. These e�orts have borne fruit for reduced-form

modelling in classic low-dimensional settings (e.g. Charkhi and Claeskens, 2018) as well

as for more policy-oriented targets, like treatment e�ects, in high-dimensional models

(e.g. Chernozhukov et al., 2018). Incorporating these developments for additional ro-

bustness into applied macroeconometric research may be a worthwhile task for future

research.
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CHAPTER 1

How to Use Model Con�dence Sets for Forecasting and

Impulse Response Estimation and the Value of Model

Averaging1

1.1 Introduction

We explore the merits of using model con�dence sets (MCS) to handle model uncer-

tainty in forecasting exercises and impulse response analysis. We do so by comparing

those con�dence sets to several other model selection procedures in the framework of

a Monte Carlo simulation study. The study therefore sheds light on how practition-

ers may address the detrimental impact that model uncertainty can have on empirical

�ndings.

Model selection, and its impact on estimation and inference, has been a long standing

topic in econometric modelling (see Theil, 1957; Leamer, 1978). The reason being that

the most parsimonious model containing the data generating process (DGP) is generally

unknown in empirical work. This so-called true model therefore has to be selected

from a collection of models that the econometrician has initially chosen. Frequently,

the true model is too complex for reliable estimation in �nite samples. In this case, a

more parsimonious model has to be selected that approximates the DGP reasonably

well. This selection automatically implies a trade-o� between the approximation error

and estimation uncertainty.

In applied work, the current standard approach to address this trade-o� is to select

a single model that minimizes a selection criterion such as the Akaike information cri-

terion (AIC), Hannan-Quinn criterion (HQC) or Schwarz information criterion (SIC).

While popular and straightforward to apply, this simple approach has its drawbacks.

First, di�erent model selection criteria may select di�erently. Second, by selecting a

1This chapter is based on joint work with Rolf Tschernig.
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Chapter 1 Model Con�dence Sets and the Value of Model Averaging

single model, the practitioner ignores models that are ranked close to the preferred

one. Such models may be equally good or even better but were not selected due to

noise. In such a case, any subsequent analysis may bene�t from also considering closely

ranked models. Third, classic frequentist inference conditions on a given model and will

therefore su�er from size distortions if models were actually selected beforehand. This

result has been established theoretically (Leeb and Pötscher, 2005) and empirically

(Demetrescu, Hassler, and Kuzin, 2011).

While we do not focus on inference, we do address the �rst two concerns by us-

ing procedures that avoid a binary selection and instead broaden the model choice.

Foremost among the procedures to relax the all-or-nothing approach of standard in-

formation criteria is the model con�dence set. The MCS was suggested by Hansen,

Lunde, and Nason (2011) to estimate a set of superior models from an initially given

set, where superiority is de�ned by a user-speci�ed loss function. Importantly, the esti-

mation procedure developed by Hansen, Lunde, and Nason (2011) confers the property

that the estimated set will (asymptotically) cover all superior models at a pre-speci�ed

signi�cance level. A key challenge in achieving this property is to control the family-

wise error rate (FWER) of a large set of hypothesis tests. Over the past two decades,

methods for controlling the FWER have become available that can e�ectively take into

account dependence among the tests by using bootstrap methods (e.g. Romano and

Wolf, 2005). Hansen, Lunde, and Nason (2011) succeeded in adapting this framework

to the model selection problem.

In practical work, however, it is unclear how best to continue with an empirical

analysis if the estimated MCS contains more than one model. In this paper, we focus

on h-step ahead forecasts and impulse responses as the relevant quantities of interest,

but similar issues would arise if the focus lies on parameter estimates or other quantities.

With di�erent models describing the data equally well, we suggest averaging as one

solution to reduce the plurality of models to a �nal answer. Averaging raises two further

issues: what quantities to average and which weights to use. One may average cross

model parameters or, alternatively, across (non-linear) functions of those parameters.

It is not clear ex-ante which of these actions will yield better results, and we therefore

study model averaging, by which we describe functions of averages of model parameters,

and forecast combinations, which denote averages of functions of parameters.

Both model averaging and forecast combinations have been intensively studied in

the literature on (frequentist) averaging. Claeskens and Hjort (2008) provide the �rst

comprehensive book on frequentist model averaging and Moral-Benito (2015) provides

a recent survey. Creating forecast combinations is a very active �eld of research by

itself and relevant surveys are provided by Aiol�, Capistrán, and Timmermann (2011)

2



Chapter 1 Model Con�dence Sets and the Value of Model Averaging

and Timmermann (2006). A recent comprehensive treatment is found in the book by

Elliot and Timmermann (2016).

It may be noted that in Bayesian econometrics, model averaging has a much longer

tradition. However, in this paper our aim is to shed light on a speci�c set of frequentist

methods, most of which have been designed with the explicit issue of model uncertainty

in mind. We compare these to standard approaches that may serve as reference points

for many di�erent methods. Moreover, we evaluate the performance of methods in

terms of point forecast accuracy. Focusing on point predictors instead of distributional

aspects may also be less meaningful to Bayesians. For an empirical comparison of

methods in the context of autoregressive processes that includes Bayesian approaches,

see Kascha and Trenkler (2015).

As regards weights, we investigate the following schemes. First, we average all mod-

els in the MCS with equal weights, taking the null hypothesis of equal performance

seriously. Alternatively, we estimate weights using jackknife model averaging (JMA)

and apply it to the initial model set as well as to the models contained in the estimated

MCS. JMA has the advantage that the weights are asymptotically optimal in various

situations, as shown by Hansen and Racine (2012) and Zhang, Wan, and Zou (2013).

In the simulation, we further apply a range of competitive procedures to identify

suitable autoregressive speci�cations within a larger pool of candidate speci�cations.

Among them are lasso, post-lasso, and ridge regression. Taking into account all the

di�erent approaches, including the di�erences between model averaging and forecast

combinations, we thus explore and compare the merits of 18 selection procedures.

The task in the simulation is to compute h-step ahead forecasts up to horizon 15

and impulse responses up to 20 periods ahead. As data generating processes (DGPs)

we take three di�erent univariate autoregressive processes of order eight with some of

the parameters set to zero. The AR(8) processes di�er in terms of their signal-to-noise

ratios, frequency characteristics and degrees of persistence. We focus on univariate

processes to keep the analysis as simple as possible and to focus on the relative merits

of the methods that we compare in a basic setting. Building on the baseline results in

this study, further investigations may explore to what extent the results change for more

complex model classes. There are six sample sizes ranging from 40 to 500 observations.

The initial set of models, from which suitable speci�cations will be selected, includes

a total of 256 autoregressive processes based on all lag combinations up to lag eight.

We use this particular setup to conduct a full subset speci�cation search.

Based on mean squared error, the results suggest that using the Schwarz criterion

works well for model selection in larger samples and across DGPs, but may perform

poorly in small samples, in particular for impulse response estimation. In the latter
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case, applying JMA to the models inside the MCS turns out to be a robust strategy.

This combination is found among the best strategies in small samples and performs

comparable to the best competitors besides Schwarz in larger samples. For comput-

ing impulse responses, model averaging is found to be superior to combining impulse

responses of each model in the MCS.

The paper is organized as follows. Section 1.2 describes all relevant methods with a

particular emphasis on model averaging and model con�dence sets. The setup of the

Monte Carlo simulation is laid out in Section 1.3. Section 1.4 reports the results and

Section 1.5 brie�y summarizes.

1.2 Methods for Model Selection and Model Averaging

In this section we brie�y describe all methods used in our simulation study. We �rst

outline the general setup of model averaging and forecast combination. Then we de-

scribe Jackknife model averaging in more detail and show how to use the MCS for

model averaging. Next we sketch shrinkage methods, in particular ridge and lasso

estimation. Finally we propose two new combinations of existing methods.

1.2.1 Setup

We only consider dynamic regression models for a scalar dependent variable yt, where

the number of regressors is smaller than the sample size. All approaches considered in

this paper aim at estimating one or several quantities of interest such as the conditional

mean, marginal e�ects, h-step ahead predictions or impulse response functions. They

all require the user to specify an initial collection of models for further consideration.

Denote this set of models by M0 and index all models in the set by i = 1, . . . ,m0.

To some extent we follow the notation of Hansen, Lunde, and Nason (2011), hereafter

HLN. To facilitate the presentation, consider the estimation of the conditional mean

µt ≡ E[yt|xt] based on an observed sample (yt,xt), t = 1, 2, . . . , n, where the (1×kmax)
vector xt denotes all explanatory variables available in the sample and may include

lagged yt's. We assume that xt belongs to the information set Ωt which includes all

potential explanatory variables that are predetermined w.r.t. the error term of the data-

generating process (DGP) of yt. Note that at this point we allow for the possibility that

µt is misspeci�ed and that there are further relevant, possibly unobserved, variables

in Ωt. In that case, there exists a vector of explanatory variables x+
t ∈ Ωt such that

µt = E[yt|xt] 6= E[yt|xt,x+
t ] and µt exhibits an approximation error.
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We have by de�nition

yt = µt + ut, (1.1)

E[ut|xt] = 0. (1.2)

The conditional variance is denoted by σ2
t ≡ E[u2t |xt].

If the set of available regressors xt contains irrelevant ones, then estimation e�ciency

can be increased by excluding them. The subset of regressors is one dimension in which

the m0 models in M0 may vary and on which we focus in this paper. In the case of

linear models one may write a subset model as

yt = xt,iβi + ut,i, (1.3)

where the (1 × ki) vector xt,i and the (ki × 1) vector βi denote the regressors and

the parameters of model i. Note that we index the error term also by the model to

explicitly indicate that its properties depend on the selected model. For example, if

relevant regressors are omitted from xt,i, then ut,i contains ut and the omitted regressor.

In matrix notation we have

y = Xiβi + ui, i = 1, 2, . . . ,m0, (1.4)

where y = (y1, y2, . . . , yn)′ and Xi denote the sample vector of the dependent variable

and the (n×ki) sample matrix of explanatory observations used in model i, respectively.

The (n× 1) sample error vector is denoted by ui.

The set of modelsM0 may not contain all possible combinations of regressors based

on xt. We denote this complete set of possible models by Mall, indexed by s =

1, 2, . . . ,mall, where mall = 2kmax denotes the model which includes all available kmax
regressors X = (x′1,x

′
2, . . . ,x

′
n)′. The model

y = Xβmall + u (1.5)

can therefore be called the encompassing model. Note that in this setupM0 ⊆ Mall

holds. That also means that the encompassing model may not be included in the

initial model setM0. In general, we assume that the elements ofM0 are indexed with

increasing complexity. The model indexed by m0 therefore has more or equally many

regressors than any other model in M0. For a generic set of models we simply write

M. We assume that kmax < n holds, that X ′iXi is invertible for every i, and thus that

all βi are identi�able.
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For each of the m0 models (1.4) in the initial model set M0, one can produce an

estimate µ̂t,i of the conditional expectation µt, e. g. by OLS, and therefore also of the

observation yt. In order to have a common notation we will use ŷt,i in place of µ̂t,i
and h-step ahead forecasts, if available, will be denoted by ŷt+h|t,i, h = 1, . . . , H, where

(sample) information up to time t is used.

Model selection corresponds to making some choice out of them0 available estimated

models for µt. If the models allow for computing h-step ahead predictions, as for

example in case of autoregressive models of �nite order, then model selection also

implies a choice from the h-step ahead predictions for yt+h, h = 1, . . . , H, given by the

set {ŷt+h|t,1, ŷt+h|t,2, . . . , ŷt+h|t,m0}.
All methods for model selection are in one way or another based on an expected loss.

For predictions, the loss caused by the deviation of ŷt+h|t,i from the observation yt+h
is measured by the user-speci�ed loss function L̂t,h,i = L(yt+h, ŷt+h|t,i). In principle,

splitting the available sample into an estimation and evaluation part n = nest + nevl

allows to obtain for each horizon h and each model i a range of values for L̂t,h,i,

t = nest, . . . , n − h. More relevant is the expected loss or risk for model i de�ned as

E[L̂t,h,i], where the expectation is taken over the estimation and the evaluation sample

both w.r.t. the DGP. Most frequent is the mean squared error (of prediction) (MSEP)

based on quadratic loss,

MSEP (yt+h, i) ≡ E
[
(yt+h − ŷt+h|t,i)2

]
. (1.6)

Optimally, one would like to choose the model(s) with the lowest risk. For an arbitrary

loss function Lt,h,i and �xed h, Hansen, Lunde, and Nason (2011) suggest to evaluate

di�erences between models in terms of their expected loss di�erences ∆ij ≡ E[Lt,h,i −
Lt,h,j] for all i, j ∈M0, where it is assumed that all expected loss di�erences are �nite

and independent of t such that a ranking of models is possible. Furthermore, we will

suppose for the moment that the ordering of loss di�erences is una�ected by h to

simplify notation. Note that a time-varying expected value of each loss function is still

allowed for. Hansen, Lunde, and Nason (2011, De�nition 1) de�ne a set of superior

modelsM∗ as

M∗ ≡ {i ∈M0 : ∆ij ≤ 0 for all j ∈M0}. (1.7)

Note that M∗ may depend on sample size. For example, when using the MSEP, the

best model(s) show the optimal trade-o� between squared bias and estimation variance.

In practice, the MSEPs of each model are unknown and have to be estimated. Due

to the estimation error, the model exhibiting minimal MSEP may not be chosen. In
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the Monte Carlo simulations in Section 1.4 where we consider h-step ahead forecasts,

we compare procedures based on model selection, model averaging, forecast combina-

tions, shrinkage estimation, and combinations thereof. Some of these approaches have

optimality properties under certain conditions, and all are frequently used in empir-

ical work to weed out bad models. It is unclear, however, which approach excels at

accounting for model uncertainty and to what degree the results in forecasting and

impulse response analysis are a�ected by competing procedures. Furthermore, it is

unclear how di�erent these approaches are when model uncertainty is either large or

small and whether any approach is dominating regardless of sample properties. With

our simulation, we hope to shed more light on this issue. Before we evaluate di�er-

ences between methods, the remainder of this section will brie�y present each of the

considered procedures.

1.2.2 Model Selection

After estimating the MSEP it is common in practice to select a single model by choos-

ing the one with the lowest estimated MSEP. The MSEP for h = 1 can be estimated by

AIC (Akaike, 1973, 1974) or cross-validation. While not exactly estimating the MSEP,

the Hannan-Quinn criterion (HQC) by Hannan and Quinn (1979) or the Schwarz in-

formation criterion (SIC or BIC) by Schwarz (1978) are equally common for choosing

the model dimension. All three approaches are based on minimising a criterion that

trades o� model �t with model dimension. In our regression context, the criteria can be

expressed as Cr q = log σ̂2
u,i + cq(n)ki, where σ̂2

u,i = 1
n

∑n
t=1 û

2
t,i is the estimated residual

variance after �tting (1.4), ki is the dimension of model i, and the weight function

cq(n) varies with q = AIC,HQC, SIC. With usual sample sizes, AIC penalises model

dimension the least with cAIC(n) = 2
n
; HQC increases the weight to cHQC(n) = 2 log logn

n
;

�nally, SIC uses cSIC(n) = logn
n
. In Section 1.4 we use AIC, HQC, and SIC to estimate

the conditional mean

ŷt,̂iq = Xîq
β̂îq , q = AIC,HQC, SIC, îq ∈M0, (1.8)

and related quantities, such as the h-step ahead forecasts ŷt+h|t,̂iq , if the models inM0

allow for this.

Instead of explicitly selecting a model in M0 one may use shrinkage estimation.

Depending on the type of the regularization term, shrinkage implicitly does model

selection (lasso, post-lasso) or does not (ridge). In the latter case, the largest model m0

is always used albeit with reduced �exibility due to the shrinkage parameter. Shrinkage
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methods require a proper choice of the shrinkage parameter. All shrinkage methods

used in Section 1.4 are brie�y presented in Section 1.2.7.

If the set of superior models M∗ given by (1.7) contains more than one model, all

procedures selecting a single model fail to estimate M∗. The more general case is

allowed for by the MCS model selection procedure described in Section 1.2.6. The

MCS procedure also allows to control the size in the underlying sequence of tests.

1.2.3 Model Averaging

Selecting models always implies a discrete choice which can be avoided if all models of

M0 are considered by properly averaging across all of them. Using continuous weights,

a continuous model choice is available.

We will adopt the following notation. Let bi denote (kmax × 1) parameter vectors

with constant length regardless of model dimension. The vector bi contains the entries

of βi at those rows where the explanatory variables in Xi correspond to the columns

in X. All other entries in bi are zero. For the encompassing model (1.5) one has

bmall = βmall . LetM = {1, 2, . . . ,m} be a generic set of models.

Model averaging computes the weighted parameter average across all models inM

b̂ma(w) ≡
m∑
i=1

b̂iwi, (1.9)

where the index ma indicates model averaging and w = (w1, w2, . . . , wm)′ denotes

the vector of weights which sum to unity,
∑m

i=1wi = 1 (Claeskens and Hjort, 2008,

Section 7). In this paper we follow Hansen and Racine (2012) and impose the stronger

condition of non-negative weights bounded by one, wi ∈ [0, 1]. We denote the set of

possible weight vectors by

Hn = {w ∈ [0, 1]m :
m∑
i=1

wi = 1}. (1.10)

When applied to M0, the averaging estimator (1.9) can be viewed as a restricted

estimator of βmall of the encompassing model of M0. In this sense, model averag-

ing can be viewed as an estimator of the single model mall with a particular way of

regularization.
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Due to the linearity in parameters of the regression setup, averaging across parame-

ters is equivalent to averaging across estimated conditional means

ŷma(w) ≡
m∑
i=1

Xb̂iwi = X

m∑
i=1

b̂iwi = Xb̂ma(w). (1.11)

The equivalence between averaging across parameters or across the quantity of inter-

est no longer holds if the latter is a nonlinear function of the parameters. A prominent

case are h-step ahead predictions and impulse responses for h > 1. If the models inM0

allow for computing h-step ahead forecasts, applying model averaging leads to comput-

ing a single h-step ahead forecast using the averaged parameter estimate b̂ma(w) given

by (1.9). We denote this forecast by ŷt+h|t,ma(b̂ma(w)). An alternative is discussed in

the next section.

Note that the model selection procedures mentioned in Section 1.2.2 are a special

form of model averaging with weight 1 assigned to that model which is selected and

weight 0 to all other models. We denote the corresponding weight vectors as ŵAIC ,

ŵHQC , and ŵSIC , etc.

1.2.4 Forecast Combinations and Combinations of Impulse Responses

An alternative to computing h-step ahead forecasts ŷt+h|t,ma(b̂ma(w)) by model aver-

aging is to compute the h-step ahead forecasts for each of the m models in M using

β̂i and then average across all m individual h-step forecasts

ŷt+h|t,fc(w) ≡
m∑
i=1

wiŷt+h|t,i =
∑
i∈M

wiŷt+h|t,i. (1.12)

The procedure (1.12) is called forecast averaging which is indicated by the index fc.

This approach can also be used in more general settings where various forecasts are

available but not the data underlying some of the forecasts (e.g. Aiol�, Capistrán, and

Timmermann, 2011).

Analogously to combining forecasts, one may combine estimated impulse responses

φ̂h,i computed for each of the m models delivering

φ̂h,fc(w) ≡
∑
i∈M

wiφ̂h,i. (1.13)

One important question is whether forecast combinations are superior to forecasts

that are computed with averaged parameters and similarly for impulse response esti-

mation. We will investigate these issues in our Monte Carlo study in Section 1.4. For
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both model averaging and forecast combinations it is crucial to select the weights w in

some sense optimally. One approach, also applicable to time series, is presented next.

1.2.5 Jackknife Model Averaging

Initially, as Hansen and Racine (2012) mention, Wolpert (1992) and Breiman (1996)

introduced the idea of jackknife model averaging (JMA), which uses leave-one-out

cross-validation to choose the weights w. Hastie, Tibshirani, and Friedman (2009,

Section 8.8) call this procedure stacking. However, only recently Hansen and Racine

(2012) showed the asymptotic optimality of JMA �in the sense of achieving the lowest

possible expected squared error over the class of linear estimators constructed from a

countable set of weights� (Hansen and Racine, 2012, p. 36). Their procedure requires

independent observations, but in contrast to alternative procedures allows for �bounded

heteroscedasticity of unknown form� and an unbounded number of models. Zhang,

Wan, and Zou (2013) showed the asymptotic optimality for a wider class of data

generating processes including stochastic processes. It is for these reasons that we

have chosen JMA for representing model averaging. As a side remark, Zhang, Wan,

and Zou (2013) do no longer require the weights to be taken from a discrete grid of

points.

Next, we brie�y describe the algorithm of JMA. Hansen and Racine (2012), hereafter

HR, consider linear estimators for which µ̂i = Piy holds and where the n × n matrix

Pi does not depend on y. For least-squares estimation Pi = Xi (X
′
iXi)

−1X ′i is a pro-

jection matrix. Using this notation, the model averaging estimator for the conditional

mean given by (1.11) for a given weight vector w is

ŷma(w) =
m∑
i=1

wiPiy = P (w)y, P (w) ≡
m∑
i=1

wiPi. (1.14)

In order to estimate the weight vector w, HR use jackknife estimation by applying

leave-one-out cross-validation or n-fold cross-validation (Hastie, Tibshirani, and Fried-

man, 2009, Section 7.10.1). This estimator, denoted by ỹt,i, estimates the conditional

mean µt without using the observation (yt,xt). As noted by HR, and others, the

projection matrix P̃i corresponding to leave-one-out cross-validation is identical to Pi
except for zeros on the diagonal. For a given weight vector w, the Jackknife estimator

is then given by

ỹma(w) =
m∑
i=1

wiP̃iy = P̃ (w)y, P̃ (w) ≡
m∑
i=1

wiP̃i. (1.15)
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In order to determine w, HR estimate the MSEP by

CVn(w) = ||y − ỹma(w)||2/n (1.16)

and minimize it w.r.t. the weight vector w

ŵjma = arg min
w∈Hn

CVn(w), (1.17)

where the set of possible weight vectors Hn is given by (1.10). Note that (1.16) is a

quadratic function in w since CVn(w) = wT ŨT Ũw/n with Ũ = (ũ1, . . . , ũm) and

the jackknife residuals ũi = y − P̃iy. Due to the inequality constraints on Hn this

is a quadratic programming problem, which in the R language may be solved by the

quadprog package (see Turlach, Weingessel, and Moler, 2019).

Zhang, Wan, and Zou (2013, Section 3) derive conditions for dependent processes

that guarantee the optimality of the JMA procedure where optimality is de�ned as

Ln(ŵjma)

infw∈Hn Ln(w)

p−→ 1, (1.18)

and the quadratic loss is given by Ln(w) = (µ − ŷma(w))T (µ − ŷma(w)). These

conditions include stationary homoskedastic �nite-order AR processes.

Due to the quadratic nature of the loss function, no single weight will be estimated as

exactly zero and therefore jackknife model averaging is not designed for model selection.

This is in contrast to the approach of the next subsection.

1.2.6 MCS-Based Model Selection

The original aim of the MCS procedure is to estimate the set of superior modelsM∗

given by (1.7) and thus to eliminate all inferior models from M0. In contrast to

standard model selection procedures, it additionally allows to asymptotically control

the family-wise error rate in the sequence of tests constituting the MCS procedure, and

thus to estimate the setM∗ with a certain level of con�dence, at least asymptotically.

With large enough samples and under repeated sampling, the MCS procedure allows

the conclusion that all superior models are part of the estimated set M̂∗ in at least

(1− α)× 100 % of cases, where α was �xed in advance.
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To eliminate inferior objects from the setM0, a sequential testing procedure is used

based on (1.7) with the following pair of hypotheses2

H0,M : ∆ij ≤ 0 for all i, j ∈M,M⊆M0, (1.19)

HA,M : ∆ij > 0 for some i, j ∈M,M⊆M0. (1.20)

The hypotheses in (1.19) and (1.20) are indexed byM which emphasises the fact that

both hypotheses refer to some generic setM that is a subset ofM0 and may have been

obtained by previous applications of the MCS testing procedure. The hypothesis H0,M

is true whenM =M∗. The alternative is true when inferior models, as measured by

expected loss di�erences, are still members ofM. These two hypotheses can be used to

�nd an estimate ofM∗ in a sequential manner: if H0,M can be rejected, then remove a

model fromM and apply the hypothesis test again to the remaining models until the

null hypothesis can no longer be rejected. The remaining set of models estimatesM∗

and is called a model con�dence set (MCS) and denoted by M̂∗
1−α.

The algorithm to obtain the MCS is a sequential testing procedure in which two

alternating tests are carried out. Let δM be a binary variable that is associated with

a suitable test for the null hypothesis (1.19) and which equals 1 if H0,M is rejected

and 0 if it is not rejected. Further, let eM be the model that is removed if δM = 1.

Hansen, Lunde, and Nason (2011) call δM �equivalence test� and eM �elimination rule�.

Equipped with these tools the model con�dence set (MCS) procedure can be stated as

follows.

Algorithm 1.2.1. (MCS procedure)

0. Start withM =M0.

1. Test H0,M using δM at level α.

2. If δM = 0, set M̂∗
1−α =M and stop.

If δM = 1, use eM to remove a model and repeat from step 1.

For establishing that M̂∗
1−α has an asymptotic coverage probability of 1−α, Hansen,

Lunde, and Nason (2011, Assumption 1) state the following requirements. The equiva-

lence test and elimination rule must be `well behaved' in the sense that, asymptotically,

(a) H0,M is only rejected with probability less than or equal to α when it is true, (b)

H0,M is rejected with probability converging to one when it is false and (c) the probabil-

ity of eliminating a superior model when H0,M is false converges to zero. Assumptions

2Hansen, Lunde, and Nason (2011) specify the hypothesis slightly di�erently with ∆ij = 0 versus
∆ij 6= 0. If the di�erences are symmetric, this amounts to the same since ∆ij ≤ 0 for all i, j ∈ M
implies ∆ij = 0.
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(a) and (b) are relatively standard for conventional statistical hypothesis tests. As-

sumption (c) needs to be con�rmed for any elimination rule that will be considered.

Theorem 1 in Hansen, Lunde, and Nason (2011) shows that the coverage property of

the MCS algorithm is asymptotically guaranteed as well as that the probability of the

selected set to contain any inferior model approaches zero asymptotically. In other

words, M̂∗
1−α asymptotically includes all superior but no inferior models at the given

con�dence level.

Note that in this setting there is no allowance for the type I error to accumulate

because asymptotically the sequential testing procedure ensures that the ��rst time a

superior model is questioned by the elimination rule is when the equivalence test is

applied to M∗� (Hansen, Lunde, and Nason, 2011, p. 460). Thus, the family-wise

error rate (FWER) is asymptotically controlled at α. In the special case when M∗

contains only a single model, Corollary 1 in Hansen, Lunde, and Nason (2011) states

that the probability that M̂∗
1−α =M∗ converges to one.

Since all stated assumptions concern asymptotic behavior, the MCS procedure may

well be oversized in �nite samples. HLN devise a formal concept (HLN, De�nition

3) which they call `coherency' between the equivalence test and elimination rule. It

requires that as long as there are inferior models in the set, the probability of removing

a superior model must not be larger than in the case when there is no inferior model in

the set. In practice the assumption restricts the space of possible δM, eM combinations

to those where a rejection implies enough evidence that a speci�c model is inferior and

can be eliminated. While the coherency requirement cannot assure that the family-wise

error rate is controlled at α in �nite samples, it contains the probability of removing

superior models to an acceptable degree.

Next we state the speci�c equivalence and elimination rules used in Section 1.4.

They are based on estimating the expected di�erence in losses ∆ij = E[dt,ij] with

dt,ij ≡ Lt,i−Lt,j underlying the set of superior models (1.7). Hansen, Lunde, and Nason

(2011, Assumption 2) assume that the loss di�erences dt,ij are strictly stationary, α-

mixing and ful�ll some moment condition. This assumption will be met by our DGPs

in our Monte Carlo study.

To estimate the expected loss ∆ij, the original sample (yt,xt), t = 1, 2, . . . , n, is

split into an estimation sample, t = 1, 2, . . . , nest, and an evaluation sample, t =

nest + 1, . . . , n. The former is used to obtain β̂i and the latter allows to estimate ∆ij

by the relative sample loss statistic d̄ij ≡ L̄i − L̄j with L̄i = (n− nest)−1
∑n

t=nest+1 Lt,i

where we de�ne Lt,i by the quadratic loss of the one-step ahead prediction error Lt,i =

(yt − ŷt|t−1,i)
2. In our study we apply the T-max and the T-min statistic as two

alternatives for the equivalence test. Both are based on the relative sample loss statistic
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d̄i· ≡ L̄i − L̄· with L̄· ≡ m−1
∑

i∈M L̄i and the following t-statistic

ti· ≡
d̄i·√
v̂ar(d̄i·)

, (1.21)

and are given by

Tmax,M ≡ max
i∈M

ti·, (1.22)

Tmin,M ≡ min
i∈M

ti·. (1.23)

The T-max statistic (1.22) ful�lls the coherency rule and is recommended by Hansen,

Lunde, and Nason (2011) for empirical work on the basis of their simulation results.

However, by redoing their simulations, Aka (2014) found that their simulation results

were actually based on the T-min statistic (1.23). While the latter has good power, it

violates the coherency condition stated above.3 For the former reason we include it in

our simulation setup.

The corresponding elimination rules are given by

eM,Tmax = arg max
i∈M

ti·, (1.24)

eM,Tmin = arg min
i∈M

ti· (1.25)

Both test statistics exhibit nonstandard distributions under the null hypothesis H0,M

which HLN approximate using a circular block bootstrap which also allows to compute

V̂ ar(d̄i·). Details are given in the supplement of Hansen, Lunde, and Nason (2011).

This completes the MCS procedure. In sum, the MCS procedure requires to choose

a signi�cance level α, an equivalence and elimination rule, the ratio r = nest/n of

dividing the sample into the estimation and evaluation sample, the number of bootstrap

replications and the block size for the bootstrap.

Once the MCS M̂∗
1−α is estimated and contains more than one model, which is

typically the case, one has to decide how to proceed. Since according to the null

hypothesis H0,M all models exhibit the identical lowest risk, one can argue to use all

models contained in M̂∗
1−α in an identical way. This suggests to do model averaging

and compute b̂ma(ŵTmcs), Tmcs ∈ {Tmax, Tmin}, using a weight vector ŵTmcs that assigns

3We thank Peter Hansen and Asger Lunde for providing us with the source code of their Ox package.
When redoing the simulations with the maximum statistic, the power turned out to be worse than for
the maximum range statistic TR,M which was also suggested by Hansen, Lunde, and Nason (2011)
but requires m(m− 1)/2 instead of m− 1 comparisons and is even more computationally intensive.
Details can be found in Aka (2014, Section 4.1).
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equal weights to models in M̂∗
1−α and zero weights to all other models:

ŵTmcs,i ≡

|M̂∗
1−α|−1 if i ∈ M̂∗

1−α,

0 otherwise,
(1.26)

i = 1, 2, . . . ,m0, where | · | denotes the number of elements.

1.2.7 Shrinkage Methods

Shrinkage methods can also be called penalized estimation or estimation with a regu-

larization term. The regularization limits the �exibility of the parameters and therefore

allows to estimate models with a large number of parameters such as, for example, the

largest models inM0 orMall. Speci�c shrinkage methods di�er w.r.t. the basic esti-

mator and the regularization term. Often, the degree of regularization is controlled by

the regularization parameter λ which has to be estimated. In the following we consider

regularization of the OLS estimator.

The ridge estimator β̂i,ridge is obtained by summing over squared parameter values

(except for the constant possibly) and is available in matrix form as

β̂i,ridge(λ) = arg min
βi

(
||y −Xiβi||2 + λ

ki∑
j=1

β2
i,j

)
(1.27)

= (X ′iXi + λI)
−1
X ′iy. (1.28)

Here, || · || denotes the Euclidean norm. Increasing the regularization parameters λ

implies a more restrictive estimator which may lead to larger bias and smaller variance.

Since the estimated β̂m0,j are di�erent from zero with probability one, independently

of the value of the regularization parameter λ, no model selection is conducted and all

parameters of model i are estimated. Therefore the ridge estimator may be viewed as

a constrained estimator of the encompassing model (1.5) if βi = βmall .

The lasso estimator, in contrast, is de�ned by summing over absolute values of the

parameter values

β̂i,lasso(λ) = arg min
βi

(
1

2
||y −Xiβi||2 + λ

ki∑
j=1

|βi,j|

)
. (1.29)

Using absolute values allows for the possibility that some elements of β̂i,lasso can be

estimated to be exactly zero which implies model selection. How many and which

parameters are set to zero depends on the regularization parameter λ, among other
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things. The larger λ, the more zeros may occur. Note that the selected model may

not be included inM0 except ifM0 coincides with the complete set of possible models

Mall = {1, 2, . . . ,mall}, see Section 1.2.1. Let λ = (λ1, λ2, . . . , λl, . . . , λg) denote a

(g × 1) vector of increasing λ-values. Then we denote the model selected by λl by

îλl ∈Mall and the corresponding lasso estimator by β̂î,lasso(λl) or b̂îλl ,lasso
. It may well

happen that di�erent λl select the same model. Thus the number of di�erent models

selected îλl , l = 1, 2, . . . , g may be smaller than g. We denote the set of di�erent models

implied by the vector of regularization vectors λ by

M̂lasso(λ) ≡ {i ∈Mall : i = îλl , l = 1, 2 . . . , g}. (1.30)

In order to select λ from λ we follow Hansen (2016, Section 4.1) and use 5-fold

cross-validation with the R package glmnet (Friedman, Hastie, and Tibshirani, 2010).

See also Hastie, Tibshirani, and Friedman (2009, Section 7.10) for an introduction

to K-fold cross-validation. We therefore obtain the lasso estimate exhibiting lowest

estimated risk given λ by β̂îλ̂,lasso(λ̂) or b̂îλ̂,lasso. The same procedure for estimating λ

is used for the ridge estimator (1.27) which delivers β̂i,ridge(λ̂). If a constant is included,

we will not shrink its coe�cient using either lasso or ridge. In that case, (1.27) and

(1.29) have to be appropriately modi�ed, e.g. by adjusting the indexation.

We further follow Hansen (2016) and include the post-lasso estimator of Belloni

and Chernozhukov (2013). This estimator simply re-estimates β̂ĵλ̂,lasso(λ̂) for the same

model as identi�ed by lasso but using OLS, and thus with less or no bias. We denote

this parameter estimate by β̂ĵλ̂,postlasso. Note that all estimators of this section estimate

a single model but di�er in the e�ect of the regularization.

1.2.8 Two New Suggestions

In this section we propose to apply jackknife model averaging described in Section 1.2.5

to speci�c subsets of either the initial model setM0 or the complete model setMall

in order to combine the advantages of jackknife model averaging with the methods

delivering the subsets.

First, we suggest to apply JMA to model con�dence sets described in Section 1.2.6.

There, we proposed to use equal weights to all models in M̂∗
1−α in order to re�ect the

idea of the underlying null hypothesis. In light of the property of the estimator ofM∗

to possibly include inferior models when there is insu�cient information in the data,

using equal weights may give inferior models too large a weight. As JMA may perform

quite well also if inferior models are in the model setM0, we propose to apply it to all
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models contained in M̂∗
1−α, which delivers the MCS-based model averaging estimator

b̂ma(ŵjma,Tmcs) ≡
∑

i∈M̂∗1−α

b̂iŵi,jma,Tmcs , Tmcs ∈ {Tmax, Tmin} (1.31)

and MCS-based forecast combinations

ŷt+h|t,fc(ŵjma,Tmcs) ≡
∑

i∈M̂∗1−α

ŷt+h|t,iŵi,jma,Tmcs , Tmcs ∈ {Tmax, Tmin}. (1.32)

The same idea can be applied to the set of models M̂0
lasso implied by a vector λ of

regularization parameters when using lasso estimation. This estimated set de�ned by

(1.30) typically contains models with di�ering bias-variance trade-o�s. So instead of

picking a single model using K-fold cross-validation as in Section 1.2.7, one can apply

JMA to the estimated initial set M̂0
lasso from which one obtains the lasso-based model

averaging estimator

b̂ma(ŵjma,lasso) ≡
∑

i∈M̂0
lasso

b̂iŵi,jma,lasso (1.33)

and lasso-based forecast combinations

ŷt+h|t,fc(ŵjma,lasso) ≡
∑

i∈M̂0
lasso

ŷt+h|t,iŵi,jma,lasso, (1.34)

where the indexation of all models is given by i ∈ Mall and therefore M̂0
lasso ∈ Mall.

Considering all these methods and the possible di�erences between model averaging

and forecast combinations, Section 1.2 described and suggested 18 di�erent possibilities

to compute h-step ahead predictions and impulse responses. Their performance will

be compared in Section 1.4 based on the setup described in the following section.

1.3 Design of Monte Carlo Simulation

1.3.1 Data Generation

This section describes the way we generate the arti�cial data which is used in the

Monte Carlo simulation. For simplicity, we focus on univariate linear autoregressive
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processes as the data generating process (DGP):

α0(L)yt = ν0 + ut, ut|yt−1, yt−2, . . . ∼ N(0, σ2
0), t = 1, 2, . . . , n, (1.35)

α0(L) = αj1,0L
j1 + αj2,0L

j2 + · · ·αp0,0Lp0 , (1.36)

where α0(L) denotes the p0-order lag polynomial with the speci�c set of lags of the

DGP. All models which are considered for �tting the data are �nite-order autoregressive

models with di�erent lag polynomials αi(L) = αi1,iL
i1 + αi2,iL

i2 + · · ·αpi,iLpi and a

constant νi.

One objective of our simulation exercise is to gauge the ability of the various methods

to identify not just a maximum lag order p, but to recover a DGP with a strict subset

of lags up to order p. To this end, we proceed as follows. We pick DGPs from the set

of processes that have non-zero coe�cients for lags one, six, and seven, and zero coe�-

cients for all others. To obtain DGPs that may be comparable to those found in applied

work, we take into account three properties of any given process: the signal-to-noise

ratio, the roots of the autoregressive polynomial α(L), and the frequency properties

of the process. Denote the variance of yt as σ2
y and the variance of the error term as

σ2
u. The precision (i.e. the inverse of the variance) of the OLS estimator is increasing

in σ2
y/σ

2
u, which we call the signal-to-noise ratio (SNR). More customary is the usual

goodness-of-�t measure R2 = 1− σ2
u/σ

2
y, which we �x in our simulations to control the

�nite sample estimation precision. We constrain the roots of the autoregressive poly-

nomial to be greater than some value η > 1 in absolute value to ensure stationarity.

We further analyse the spectral density of any candidate process and disregard those

that derive the majority of their variance from extremely high or low frequencies.

For �nding speci�c processes that ful�ll these properties, we use a constrained opti-

misation algorithm. The objective function is given by the absolute deviation between

current R2 and target R2, while the roots provide an inequality constraint. Since this

problem is over-determined, we further �lter out processes that do not possess the

desired frequency properties. From the remaining processes we pick one at random.

In the simulation, we let R2 vary between 0.2, 0.5 and 0.8 and set η = 1.1, σ2
u = 1

and ν0 = 0 throughout. We thereby obtain processes as shown in Table 1.1. Each row

presents one autoregressive process. The columns indicate the corresponding R2, the

length of the smallest root of the autoregressive lag polynomial and the values of the

autoregressive coe�cients at lags one, six and seven. The last three columns show the

proportion of the variance attributable to frequencies below or equal to 1
4
π, 2

4
π and

3
4
π. As the table shows, the inequality constraint is never binding as all three processes
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have their smallest root fairly close to, yet above, 1.1. The spectral densities indicate

that as the R2 increases there is also a shift in weight to lower frequencies.

These processes are decidedly simple to keep the focus on the e�ects of model uncer-

tainty inherent even in the most basic settings. Further investigations could explore to

what extent the relative merits of the compared methods change when more complex,

and more realistic, features are allowed for, including seasonality, trends, regime shifts,

or higher dimensional systems. Preliminary experiments by the authors using GARCH

processes suggested, though, that including conditionally heteroskedastic AR processes

is unlikely to change the conclusions drawn from the current setting. Since we focus

on point predictions, changes in residual variance will have little e�ect on the relative

merits of the considered methods.

Table 1.1: Characteristics of the three chosen data-generating processes.

R2 Smallest Root Coe�cients Spectral Density

α1 α6 α7
1
4
π 2

4
π 3

4
π

0.2 1.105 0.214 -0.265 0.380 0.33 0.55 0.78
0.5 1.138 0.671 -0.422 0.342 0.73 0.85 0.93
0.8 1.131 0.855 0.338 -0.310 0.89 0.96 0.99

Notes: R2 denotes the probability limit of R2 for the cor-
responding correct model. The last three columns show the
proportion of the variance attributable to frequencies below
or equal to 1

4
π, 2

4
π and 3

4
π. Values are rounded to third or

second decimal place.

1.3.2 Choice of Initial Model Set and Auxiliary Parameters

The encompassing model of the initial collection of models M0 is an AR(8) model

with a constant. The initial model setM0 contains all subset AR models obtained by

considering all possible combinations of zero restrictions on the lagged variables. This

provides m0 = mall = 28 = 256 models in M0 (a constant is always included). We

consider six small to medium-sized samples with n = 40, 60, 80, 100, 250, 500 each with

50 burn-in observations. While sample sizes below 100 are smaller than typical macroe-

conomic time series, a more relevant measure is the ratio of observations to parameter

estimates. Since the largest model has eight slope parameters and a constant, the lower

bound of this ratio ranges from about 4.5 to 55.6 for sample sizes between 40 and 500.

A ratio of �ve observations per parameter is representative of many real-world VAR

applications and smaller sample sizes of 40 to 100 observations may therefore be more

informative about the e�ect of model uncertainty in medium or large-scale models. For
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each model, h-step ahead forecasts are computed iteratively for h = 1, 2, . . . , 15 and

the impulse response coe�cients for h = 1, 2, . . . , 20. The number of replications is set

to R = 5000.

Further auxiliary parameters are set as follows. For the MCS algorithm, the signif-

icance level is set to α = 0.2. This may seem rather high but ensures decent power

to eliminate inferior models in smaller samples. The default block length in the circu-

lar block bootstrap is set to l = 20 and then estimated by the function b.star in the

R package np (Hay�eld and Racine, 2008). The number of bootstrap replications is

set to B = 1000. The length of the estimation sample is set to nest = dn4/5e, such
that bn−n4/5c observations remain for evaluating the relative loss di�erences between

models. The two functions de and bc round to the next larger and smaller integer

respectively. This formula re�ects preliminary investigations by the authors that with

increasing sample size a larger fraction of the data should be used for estimating out-

of-sample losses. Finally, both the T-max (1.22) and the T-min statistic (1.23) are

used for testing equivalence. For the MCS, the equal weights as well as the JMA based

weights are used for model averaging and forecast combinations.

The choice of the grid of regularization parameters follows the default behavior of

the glmnet package and is as follows. The grid spans 100 values between λ = 0.001

and the smallest λ that will lead to all coe�cients being set to zero.4 The 100 values

are then evenly distributed on a log scale between these two extremes. The choice of

λ from this grid is described in Section 1.2.7.

1.3.3 Summary Statistics

For evaluating and comparing all 18 methods we use the following summary measures.

They are all based on estimating the MSEP for h-step ahead predictions of yn+h and

the root mean square error (RMSE) for impulse response functions φh by averaging

across all r = 1, 2, . . . , R simulation runs

M̂SEP (yn+h, h, s) =
R∑
r=1

(
ŷn+h|n,r,s − yn+h,r

)2
, (1.37)

R̂MSE(φh, h, s) =

√√√√ R∑
r=1

(
φ̂h,r,s − φh

)2
, (1.38)

where s denotes one of the methods listed in the �rst column of Table 1.2. To succinctly

summarize the results, we average across all H horizons. To avoid scale e�ects, we

4For ridge the smallest λ would be in�nity. A suitable proxy is therefore chosen. See the package
documentation of Friedman, Hastie, and Tibshirani (2010) for details.
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average over relative MSEPs by relating the MSEP for method s and horizon h to the

corresponding MSEP when the DGP is known

̂RelMSEP (yt+h, h, s) ≡
M̂SEP (yt+h, h, s)− M̂SEP (yt+h, h,DGP )

M̂SEP (yt+h, h,DGP )
, (1.39)

̂AvRelMSEP (yt+h, H, s) ≡ H−1
H∑
h=1

̂RelMSEP (yt+h, h, s). (1.40)

Since there is no uncertainty about the impulse responses of the DGP, we use the

RMSE of estimating the impulse response values based on the correct model iDGP ,

which only includes the lags of the DGP, to obtain relative quantities

̂RelRMSE(φh, h, s) ≡
R̂MSE(φh, h, s)− R̂MSE(φh, h, iDGP )

R̂MSE(φh, h, iDGP )
, (1.41)

̂AverRelRMSE(φh, H, s) ≡ H−1
H∑
h=1

̂RelRMSE(φh, h, s). (1.42)

Table 1.2: Description of all methods used in simulation study.

Group Method
Model

Averaging
Forecast

Combination
Descriptions

1 AIC β̂îAIC Section 1.2.2
1 HQ β̂îHQ Section 1.2.2

1 SIC/BIC β̂îSC Section 1.2.2
1 lasso β̂ĵλ̂,lasso

(λ̂) Section 1.2.7

1 post-lasso β̂ĵλ̂,postlasso
Section 1.2.7

1 ridge β̂m0,ridge(λ̂) Section 1.2.7
2 JMA b̂ma(ŵjma) Eq. (1.9), (1.17)
2 lasso-JMA b̂ma(ŵJMA) Eq. (1.33)
2 MCS t.max b̂ma(ŵTmax) Eq. (1.9), (1.26)
2 MCS t.min b̂ma(ŵTmin) Eq. (1.9), (1.26)
2 MCS-JMA t.max b̂ma(ŵTmax,jma) Eq. (1.31)
2 MCS-JMA t.min b̂ma(ŵTmin,jma) Eq. (1.31)
3 JMA ŷt+h|t,fc(ŵjma) Eq. (1.12), (1.17)
3 lasso-JMA ŷt+h|t,fc(ŵJMA) Eq. (1.34)
3 MCS t.max ŷt+h|t,fc(ŵTmax) Eq. (1.12), (1.26)
3 MCS t.min ŷt+h|t,fc(ŵTmin) Eq. (1.12), (1.26)
3 MCS-JMA t.max ŷt+h|t,fc(ŵTmax,jma) Eq. (1.32)
3 MCS-JMA t.min ŷt+h|t,fc(ŵTmin,jma) Eq. (1.32)
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For comparing all 18 methods we adopt a two-stage procedure. First, we categorize

the methods into three groups and look at each group individually. At the second

stage we pool together the best performing methods from each group and judge their

overall merits. The �rst group consists of those methods that perform model selection

by placing all weight on a single model. For this group model averaging and forecast

combinations are identical. The members of this group are listed in the top third

of Table 1.2. The other two groups consist of those methods that place weight on

more than one model and apply either model averaging (second group) or forecast

combinations (third group). At the second stage we choose two methods from each

group and compare the �nal set of methods again.

The criteria for choosing the second-stage methods are as follows. A method should

deliver the best results for either large or small sample sizes for at least two out of the

three DGPs. A method can be among the worst for a particular sample size or DPG

as long as it shows merits for other constellations. However, if the performance of a

method is dramatically worse, we will eliminate that method as a suitable contender,

even if it shows merits in other regards. We also reserve some discretion in selecting

methods for further comparison by considering the respective type of method. If three

methods present themselves as good candidates, but two are of a similar type and with

similar performance�both are shrinkage estimators for example�then only one of

them will be chosen for the next round. This is to guarantee that the �nal comparison

is informative on as broad a range of selection schemes as possible.

1.4 Results

In this section we summarize the main �ndings from our Monte Carlo simulation study

using the setup described in Section 1.3. Having suitable measures and a structured

procedure for comparison at hand, we look at the results for h-step-ahead predictions

and for impulse response analysis in turn.

1.4.1 Forecasts

We illustrate the results by plotting the averaged relative MSEPs (1.40) for all sample

sizes and DGPs. Figures 1.1 to 1.3 contain the �rst-stage results for each of the three

groups. The three panels in each graph correspond to one of the three DGPs. Our

performance measure, the averaged relative MSEPs, is plotted on the y-axis against the

sample size on the x-axis. In all three graphs we see a clear trend towards zero as the

sample size increases. This is as expected, because estimation and model uncertainty
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is reduced as n→∞. The relative di�erences between the estimated forecasts and the

DGP forecasts therefore start to vanish.

Looking at Figure 1.1 for the single-model methods, a clear pattern emerges. Lasso

and ridge have an advantage at small sample sizes and perform between 5 and 15

percentage points better than post-lasso or ordinary information criteria. For larger

sample sizes, the di�erences generally diminish, as noted above. However, the Schwarz

criterion now has a slight edge over the other methods at large sample sizes and ridge is

slightly inferior to lasso. Thus, for this group we pick lasso and Schwarz as the winners.

For the model-averaging group, Figure 1.2 reveals a similarly clear pattern. For

smaller sample sizes and across DGPs, MCS with the T-max statistic has an advantage.

Yet, with increasing R2 and/or sample size, JMA starts to dominate MCS and the other

methods. When the sample size is large and the signal is low, MCS based on equal

weighting and the T-max statistic su�ers from low power and is not able to remove or

downweight inferior models as accurately as the other methods are capable of. This in

turn leads to inferior forecasting performance. For small sample sizes and low R2, the

estimated MCS using the T-max statistic is almost equivalent to averaging across the

initial model set M0. Apparently, it is better to average across almost all models in

those situations than to apply one of the other averaging techniques.

Besides the MCS using equal weights, all other methods result from applying �rst

a model selection tool and subsequently weighting with JMA the remaining (smaller)

group of models. For forecasting purposes, forming these combinations does not yield

an advantage over simply applying JMA toM0 in the present context. The combina-

tions are either inferior or equivalent to JMA itself but never superior. Thus, for the

second group we pick MCS based on the T-max-statistic and JMA as winners.

For the DGPs that we have chosen, model averaging and forecast combinations show

only very slight di�erences with respect to forecasting, as can be seen when comparing

Figures 1.2 and 1.3. The ordering of the third group is therefore the same as in the

second group and we pick again MCS based on the T-max-statistic and JMA for the

next stage.

Figure 1.4 depicts the key results, where all six winners of the �rst stage compete

against each other. Now, some of the methods appear as their forecast combination

(fc) version and as their model averaging (ma) version at the same time. However,

as noted before, the respective versions do not make a large di�erence for the chosen

DGPs.

Particularly noteworthy is the large di�erence between selection and averaging

schemes. The two best model selection procedures, SIC and lasso, are the two worst

performing methods when only few observations per parameter are available. Even at
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n = 100 SIC is still among the worst methods across all three DGPs. When more

observations become available, however, SIC begins to prevail. Another noteworthy

feature is that model averaging has a slight advantage over forecast combinations, at

least when evaluated over all H = 15 horizons.

Finally, JMA shows a promising performance, being among the best methods for

n > 80, and only being beaten by simple MCS averaging when very little information

is available (few observations per parameter, low/medium signal-to-noise). Thus, the

overall results for forecasting indicate that using simple MCS averaging is useful for low

information content, and otherwise relying on JMA will on average lead to generally

good results. Surprisingly, the increasingly popular lasso and standard criteria such as

SIC cannot be recommended from this analysis.

1.4.2 Impulse Response Analysis

The results for impulse response analysis are not as clear-cut as for forecasting. The

ranking of methods is more heterogeneous, depending to a greater extent on sample

size and signal-to-noise. The bottom line is, however, that for small samples MCS

with the T-max statistic and using JMA weights performs fairly well. With su�ciently

many observations, on the other hand, the Schwarz criterion is the best choice across

DGPs. Another prominent feature is that several measures increase with sample size,

in contrast to the previous section. The denominator of the current measure (1.41)

approaches zero as n → ∞ while the denominator of the previous measure (1.39)

converges to a constant. Depending on the speed of convergence of the numerator and

denominator of (1.41), this ratio may therefore behave more erratically.

The group of single-model methods in Figure 1.5 indicates a more dispersed yet still

similar performance pattern as in the prediction exercise. In small samples, lasso and

ridge do well. In larger samples, Schwarz outperforms all others. This is consistent

across DGPs. AIC, HQC, and post-lasso perform between 20 and 200 percentage points

worse in larger samples than Schwarz does, and are therefore markedly inferior by our

measure. The RMSE of ridge seems to converge at a completely di�erent rate than

that of the true model. We therefore rank it lower than lasso and choose lasso and

Schwarz as winners.

When it comes to model averaging (Figure 1.6), every method is at some point

best performing and there is therefore no clear ordering. MCS based on the T-max

statistic performs well in small samples for R2 = 0.2 and 0.5 but shows very poor

performance for R2 = 0.8. Lasso-JMA and simple JMA do well for high signal-to-noise

ratios, but not for R = 0.2. Methods without large performance losses, on the other

hand, are given by the MCS using the T-min statistic and by combining MCS and
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JMA with either T-max or T-min, even though they do not sizeably outperform other

methods. These three methods are therefore fairly robust tools, which we pick for later

comparison.

Comparing model averaging and impulse response combinations yields some di�er-

ence, especially for smaller sample sizes. The overall strengths and weaknesses, how-

ever, are again the same. That means every method is again at some point the best.

The following points stand out. For R2 = 0.8 one has a substantially worse perfor-

mance of those methods that include the most models, such as JMA or MCSJMA with

the T-max-statistic. This can be attributed to the fact that we cannot weight models

optimally for combining impulse responses, in contrast to out-of-sample predictions.

Nonetheless, the ranking between the methods remains similar. We have, therefore,

heterogeneous results across DGPs and sample sizes for all methods except the combi-

nation of MCS and JMA, which is again fairly robust across DGPs and we therefore

pick both versions for the next round.

Overall, we see in Figure 1.8 that when the sample size is relatively large, using

the Schwarz criterion for selecting models in the context of impulse response analysis

dominates all other methods. Especially when faced with a low-signal stochastic pro-

cess and when the observation-to-parameter ratio is above 25 (n ≥ 250) does Schwarz

outperform other approaches by 20 to 200 percentage points. In contrast, when the

observation-to-parameter ratio is small, so between 4 and 12, then Schwarz is dom-

inated by essentially all other methods. Our results indicate that relying on model

averaging via MCSJMA using the T-max-statistic is the most robust method across

DGPs. This method also performs slightly better than simple JMA for R = 0.8 and

many observations per parameter. Very relevant for applied work is also the weak

performance of lasso, since it is increasingly popular with practitioners. This weak

performance is not remedied by relying on unbiased or less biased parameter estimates

via post-lasso.
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Multi−step ahead forecasts using model averaging

Figure 1.1: Averaged relative MSEPs for h-step ahead predictions for methods selecting
and estimating a single model.

Notes: Each line shows the average relative mean squared error of prediction (1.40)
and is based on R = 5000 replications. The DGPs are AR(8) processes with zero
restrictions and di�er w.r.t. their signal-to-noise ratio. Their speci�cation is given in
Table 1.1. References for the methods used are given in Table 1.2. The various auxiliary
parameters chosen for some methods are described in Section 1.3.2. All simulations
are carried out in the R programming language.
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Figure 1.2: Averaged relative MSEPs for h-step ahead predictions for methods using
model averaging.

Notes: see Figure 1.1.
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Figure 1.3: Averaged relative MSEPs for h-step ahead predictions for methods using
forecast combinations.

Notes: see Figure 1.1.
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Figure 1.4: Averaged relative MSEPs for h-step ahead predictions for the best perform-
ing methods.

Notes: see Figure 1.1.
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Impulse responses using model averaging

Figure 1.5: Relative RMSEs averaged over H = 20 impulse response estimates for
methods selecting and estimating a single model.

Notes: Each line shows the average relative root mean squared error (1.42) and is based
on R = 5000 replications. The DGPs are AR(8) processes with zero restrictions and
di�er w.r.t. their signal-to-noise ratio. Their speci�cation is given in Table 1.1. Refer-
ences for the methods used are given in Table 1.2. The various auxiliary parameters
chosen for some methods are contained in Section 1.3.2. All simulations are carried
out in the R programming language.
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Figure 1.6: Relative RMSEs averaged over H = 20 impulse response estimates for
methods using model averaging.

Notes: see Figure 1.5.
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Figure 1.7: Relative RMSEs averaged over H = 20 impulse response estimates for
methods using forecast combinations.

Notes: see Figure 1.5.
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Figure 1.8: Relative RMSEs averaged over H = 20 impulse response estimates for the
best performing methods.

Notes: see Figure 1.5.
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1.5 Conclusion

In a Monte Carlo simulation, we have studied the e�ects of model selection on point

forecasts and impulse response estimates in the context of simple autoregressions. More

speci�cally, we have looked at the e�ectiveness of di�erent selection and weighting

schemes when accounting for model uncertainty in subset regressions. E�ectiveness

is measured in our study by reductions in mean square error (relative to the data-

generating process and averaged over multiple horizons). These reductions can be

considerable, amounting up to 40% for forecasting and up to 70% for impulse response

estimates.

The methods that we compare include standard information criteria, the model

con�dence set (MCS), jackknife model averaging (JMA), and penalized regression via

lasso and ridge. We have paid particular attention to model con�dence sets, since

they speci�cally address the issue of multiple testing in the context of model selection

and may therefore be bene�cial. For forecasting and impulse response analysis it can,

however, be unclear how to proceed with the analysis once a (potentially large) set of

models has been estimated via the MCS.

One possibility to deal with many models is to average across all of them. We study

equally weighted MCS averages as well as JMA-weighted MCS averages. We further

contrast model averaging, in which parameters are averaged, and forecast combinations,

in which non-linear functions of parameters are averaged.

We draw important lessons for applied work. When evaluating a large number of

models, 256 in our case, standard information criteria only perform well when model

uncertainty is fairly low. In that case they are among the best performing methods

for both forecasting and impulse response analysis. In case uncertainty is high, there

are meaningful advantages in adopting averaging schemes, either based on simple MCS

averages or JMA-weighted averages. Importantly, standard shrinkage methods such

as lasso and ridge underperform in most situations. One may therefore speculate

that they excel in high-dimensional settings, e.g. when there are more variables than

observations, but not in our case.

According to our Monte Carlo results, the Schwarz criterion is particularly e�ective

in selecting a good model when su�ciently many observations are available (per pa-

rameter) for both forecasting and impulse response analysis. For forecasting, weighting

all models via JMA works almost as well in large samples. With few observations it

is much better than Schwarz. JMA is therefore a robust choice for forecasting. This

is in contrast to impulse response estimates where JMA fares relatively poorly and

may be improved by �rst removing inferior models via the MCS. We further �nd that

averaging parameters (model averaging) is more e�ective than averaging functions of
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parameters (forecast combinations), with larger gains in impulse response analysis than

in forecasting.

Subsequent research could investigate the potential of the proposed methods for lag

selection in multivariate time series models and compare them to other relevant tools

such as stepwise subset selection.
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CHAPTER 2

Connecting the Dots: Structural VARs and Causal

Graphs

2.1 Introduction

Measuring and uncovering causal relations is key for many scienti�c endeavours, yet

often fraught with conceptual and practical ambiguity. Over the last two decades,

graphs have become an increasingly useful tool for operationalising causal concepts.

They facilitate reasoning about causal relations and, given a set of speci�c assump-

tions, they also facilitate identi�cation of causal relations between several variables.

In macroeconomics, these causal graphs have also been applied as a means to identify

SVAR models.

Causal graphs and structural VARmodelling are two distinct �elds with di�erent, but

related, concepts. While some authors in macroeconomics have elaborated on graphical

concepts in passing, the precise relationship between graphs and VARs has not always

been made quite clear. The current study addresses some of these shortcomings by

explicating the relationship more thoroughly. What kind of VAR models, for example,

can be identi�ed by exploratory causal graph procedures? Can we tell from a graph

whether a VAR is identi�ed? Answering these questions, and others, is the main

contribution of this paper.

Since causal graphs may be unfamiliar to most macroeconomic researchers, I will �rst

take a step back and establish context in Section 2.2. In particular, I contribute by

reviewing the literature on causal graphs in macroeconomic analysis in more depth. I

then discuss the main method underlying graph-causal search procedures and highlight

some pitfalls that researchers should be aware of.

Merging graphs into macroeconomic analysis may be worthwhile for the following

reasons. Graphs have a precise de�nition in terms of sets, being constructed from

vertices and edges that connect these vertices. They thus lend themselves to formalisa-
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tion, while preserving a great deal of intuition through ease of visualisation and some

abstraction. SVAR analysis investigates economically meaningful structures, usually

involving interpretations of cause and e�ect. Merging causal graphs into the existing

SVAR toolset may thus allow another kind of formalisation and to facilitate inter-

pretation. This kind of graphical formalisation further opens the door to exploratory

analysis of causal relations. On the upside, such an exploratory approach based on

graphs could formalise existing, but informal, practices of exploratory data analysis.

On the downside, it is easy to grow overcon�dent with the results provided by such

data-driven causal insights.

Data-driven causal search procedures, while potentially informative, should be ap-

plied with caution since they may lead researchers astray, as I highlight below. As

with other search procedures, they inductively infer properties about the data gener-

ating process (DGP) from statistical test decisions. With causal search, fairly strong

claims about the DGP may result from a negative test decision, a failure to reject,

without any quanti�cation of uncertainty surrounding this decision. Investigators usu-

ally con�ne themselves to deduction with good reason, relying only on positive test

outcomes�especially on matters as delicate as cause and e�ect. Faced with uncertain

circumstances, how does one verify whether an e�ect is indeed absent or whether it is

simply too elusive due to the sample being too short or the data too noisy? There is

an unquanti�ed potential for severe misclassi�cations. Thus, resting on exploratory,

inductive causal data analysis warrants great caution. A small simulation exercise will

illustrate this point.

Nonetheless, causal graphs can prove insightful, in particular as a formal language to

reason about identifying assumptions. The identi�cation of economically meaningful

shocks is a core concern in the SVAR literature and a multitude of methods exist to

achieve identi�cation. While the necessary and su�cient conditions for identi�cation

via zero restrictions are well known in their algebraic form, causal graph theory may aid

practitioners by translating these algebraic conditions into more easily digestible visual

conditions. Graphs thus o�er a communication device that may further pedagogical or

presentational purposes. In this context, this study makes properties of graphs explicit

that have so far only been implicitly acknowledged, if at all. A more detailed account of

causal graphs, causality and macroeconomics is also provided while avoiding too many

technicalities. The study thus also �lls the gap of an introductory review of existing

causal graph methods and studies in the context of SVAR models.

In sum, while pure data exploration is most likely ill-suited to inform the researcher

on the true causal structure that generated the data, the insights provided by causal
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graph theory may be used to improve presentation, to provide graphical criteria for

ascertaining identi�cation, and, possibly, to carefully explore properties of the data.

Section 2.2 reviews the literature on causality and causal graphs with a focus on

macroeconomics. Section 2.3 describes the main exploratory approach that has been

used to identify structural VARs and illuminates some of the required assumptions.

Section 2.4 illustrates how causal search can go wrong. Finally, Section 2.5 clari�es the

properties of causal graphs in the context of structural VAR analysis. Section 2.6 will

conclude and point to questions for further research. Appendix 2.A.1 summarises key

concepts in probabilistic graph and causal graph theory.

2.2 Literature Review

This section reviews the nexus of causality, macroeconometrics, and causal graphs.

Concepts of causality are implicit in most applied economic and statistical research but

are only occasionally made precise and may vary depending on context and method.

Nevertheless, there is a rich history in econometrics as to what constitutes a causal e�ect

and how to measure it. I will start by shortly reviewing these past discussions in Section

2.2.1. Next, Section 2.2.2 will discuss the literature on causal graphs. The section

highlights two distinct ways in which causal graphs have been applied, one exploratory,

the other con�rmatory. Finally, Section 2.2.3 will focus on how causal graphs have

been integrated into macroeconomic research, concluding that the dominant approach

is exploratory, not con�rmatory.

2.2.1 A Few Notes on Causality

A universal de�nition of causality is not within the scope of this paper. It is a topic

of similar breadth and complexity as answering `what is truth?' Nonetheless, I will

brie�y mention some features that are frequently attributed to causality (at least as it

pertains to economic systems) in order to have some idea of what we are talking about.

First and foremost, causality describes a stable and autonomous relation between two

entities across space or time. The insight of such an abstract characterisation is as

follows. Stability suggests that we can identify a reliable mechanism that connects both

entities. A mechanism that can be exploited for predicting the state of one entity after

observing or changing the state of the other. Autonomy guarantees that this mechanism

is una�ected by outside alterations. These two features together are very useful because

they make a causal relation susceptible to controlled manipulation and independent of

context. A third feature that would be convenient is asymmetry. With asymmetry we

would be in a better position to preclude some relations from being causal. If they
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are not causal, we know that the relations would not necessarily hold up if transferred

to another context. If asymmetry is a given, then we could, for example, expect that

any cause happens before its e�ect materialises or that directionality prevents an e�ect

from simultaneously causing its cause. Causal feedback loops would therefore not be

present. However, whether asymmetry is indeed a feature of all causal relations is a

more debated issue. For in-depth discussions of causality, including its historical and

various philosophical aspects, the Oxford Handbook of Causation (Beebee, Hitchcock,

and Menzies, 2009) is a plentiful source.

Economists and econometricians are concerned with measurement. So when it comes

to causality we need to be a good deal more pragmatic if we want to identify and esti-

mate such an abstract notion as a causal e�ect. But �nding the right balance between

pragmatism and rigour has proven di�cult. Statisticians, for example, rigorously ad-

vise to distinguish between causality and other purely associational concepts relating

two or more random variables to each other, such as correlation. While they have been

con�dent in their handling of these associational measures, there has usually been some

weariness, discomfort or even outright rejection of causal analyses. Pearl (2009, Epi-

logue) gives a detailed, while slightly one-sided account of this attitude in the statistics

profession. The weariness towards causality is also exempli�ed by Cox and Wermuth

(1996) in their multivariate statistics textbook. Even though they concede that �statis-

ticians concerned with the interpretation of their analyses have implicitly always been

interested in causality�, they state that they �have not in this book used the words

causal or causality� since �rm conclusions about causality would be rare, at least from

a single study (p. 285). While the latter statement is certainly a helpful warning, it

is also seldom spelt out under which circumstances and to what degree a study could

support causal conclusions, �rm or otherwise.

In response to such neglect, Angrist and Pischke (2017, p. 126) lament that �newer

and widely-used tools for causal analysis [...] get cursory textbook treatment if they're

mentioned at all.� They further document that causal e�ects, including the causal

interpretation of regression estimates and possible pitfalls, cover around 3% of (hand-

picked) contemporary econometric textbooks, up from 0.7% in the 1970s. They claim

that this low coverage is at odds with actual research practice. In fact, econometricians

do have a range of tools at hand to study causal e�ects in well-de�ned frameworks.

In macroeconometrics, matters of causality take centre stage in structural equation

modelling. In this kind of modelling a set of equations is arranged such that each

equation re�ects a speci�c, self-contained component of the economy. There is a clear

understanding that each equation contains a variable, usually on the left-hand side,

whose value is determined, up to some random noise, by an economic process that
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accepts all right-hand side variables as its input. This kind of modelling and its the-

oretical foundation originates from the econometrics literature of the 1950s and 60s

(Wold, 1954; Strotz and Wold, 1960; Basmann, 1963, 1965) and especially from work

associated with the Cowles Comission (Simon, 1954; Koopmans, 1949). The notion

that in�uence runs in a certain direction, is self-contained and stable is decidedly a

causal notion. Coming up with causal relations between the variables under scrutiny

is therefore a necessary requirement for structural analysis. A major question is how

to come up with them. Can we deduce causal relations from higher-order principles

or do we need to generalise from properties of the data at hand? Whether both or

none of these approaches are legitimate touches upon age-old debates about the na-

ture of scienti�c inquiry and knowledge. See Keuzenkamp (2004) for a perspective on

these philosophical aspects in the context of econometric modelling. Meanwhile, the

predominant approach in the econometrics profession seems to be that causal relations

are in large part informed by theoretical considerations and open to falsi�cation by

testing whether theoretical expectations hold in the data. Sims (1977), for example,

suggests to �test whether a system is structural by using it to predict the e�ects of an

intervention� and notes that �we may prove the system is not structural, but there can

be no guarantee [that it's structural]� (p. 28). A further point of debate is whether

a structural system is always recursive, which would preclude instantaneous feedback

loops between variables. Of course, if one subscribes to the view that causal relations

are always asymmetric, then recursiveness is a natural way of modelling the economy

(Strotz and Wold, 1960).

A particular class of structural models is the focus of this paper. In structural vector

autoregressive (SVAR) models (Sims, 1980), structure is imposed in such a way that

the causal e�ect of a very particular kind of intervention can be studied, while keeping

a priori restrictions to a minimum. This intervention takes the form of an innovation

to each of the equations of the system. An innovation that has a speci�c economic

interpretation and whose dynamic, causal e�ect can be traced through the system

and over time. A review of SVAR models in the context of causality and structural

modelling is given by Kilian and Lütkepohl (2017, chap. 7).

The discussion on causality in econometrics has many more facets. Others who

have contributed to this discussion besides those already cited include Granger (1969),

Sims (1972), and Lucas (1976). Zellner (1979, 1988) and Leamer (1983, 1985) o�er

interesting perspectives on previous developments. More recently, White and Lu (2010)

and White and Pettenuzzo (2014) develop a unifying framework connecting previous

notions of causality in structural and reduced-form equation models. For recent reviews

41



Chapter 2 Connecting the Dots: Structural VARs and Causal Graphs

of philosophical aspects regarding causality in macroeconomics, see Henschen (2018)

and Maziarz and Mróz (2019).

Microeconometricians, too, have a well-de�ned framework at their disposal to study

and measure causality. Their framework is born from an experimental mindset, proba-

bly since controlled manipulation is far easier and more frequent than in macroeconomic

systems. Holland (1986) sets out three constituent marks of this framework. First, any

causal analysis should investigate the e�ect of causes instead of the causes of e�ects.

We can, for example, investigate the e�ect of smoking on lung health and at least hope

to gain a de�nitive answer as the question sets out an action and its consequence, a

beginning and an end. Finding out the cause of lung cancer, on the other hand, is

open-ended and subject to revisions of the current state of research. This may seem

trivial, but in everyday conversations just as in academic discussions it is not uncom-

mon to ask �what caused the great recession?� Second, a causal e�ect is always a

relative measure. There needs to be a baseline scenario, for which the cause is absent,

for comparison to when the cause is present. This naturally gives rise to creating a

treatment and a control group. Holland (1986) emphasises that it must be possible to

expose every unit of study in principle to both treatment and non-treatment. Thus,

the third constituent mark is that not everything can be a cause in this framework.

Gender, for example, generally cannot be controlled by an experimenter. Therefore,

studying the causal e�ect of being male or female on labour income is a question that

is ill-posed for empiricists since, if it cannot be changed at random, it can also not

be identi�ed by empirical means (although one may vary it on paper, for example on

written application forms). This attitude is sometimes summarised under the heading

of analysing `potential outcomes' as opposed to more generic counterfactuals. A similar

slogan is `no causation without manipulation.'

These three characteristics give rise to a well-de�ned causal e�ect (or `treatment

e�ect') which centres on the average di�erence between treatment outcome and control

outcome. Estimating these averages consistently is, of course, a whole other matter

and dealt with in a large body of literature. Imbens and Rubin (2015) o�er a classic

introduction while Hernán and Robins (2020) merge recent developments including

graphical models; the contributions in Morgan (2013) provide a critical assessment of

the potential outcome framework. As these books demonstrate, the concept of the

average treatment e�ect (ATE) and related measures are nowadays well established

in the microeconomic literature. Nonetheless, the estimation of these statistics is still

developing, especially with new methods from the machine learning literature arriving

to econometrics. See Athey and Imbens (2019) for a recent review.
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A recent comparison of the potential outcome framework and the graphical approach

to causality is given by Imbens (2019). The author suggests that the two approaches

may complement each other. He also �nds that the graphical approach merits more

attention than it has received in the econometrics literature so far. In particular, he

praises graphical tools for their pedagogic value and for their ability to answer complex

causal queries in a systematic fashion. Though he also highlights drawbacks. One of

them is the lack of convincing graphical applications which would be essential for

showcasing the value added: insights that are less intuitive, di�cult or impossible to

gain within the predominant potential outcome framework. Without examples that

go beyond simple toy models there is little reason for researchers to be convinced of

the graphical toolset's practical merits. A further blind spot pointed out by Imbens

(2019) is the lack of attention that topics besides identi�cation receive. Con�rmatory

causal graph analysis is mainly concerned with deciding whether certain causal e�ects

are identi�able or not, given the joint probability distribution of the variables under

investigation and some structural assumptions. Causal graph analysis therefore only

rarely touches upon topics such as data collection, modelling, estimation, or inference.

2.2.2 Causal Graphs

The literature on causal graphs broadly falls into two categories. One branch develops

and applies methods that search for causal relations in any given data set, the other

seeks to e�ciently verify whether assumptions made for a speci�c causal analysis hold

in the data. The �rst branch is quite aptly called causal search or causal discovery, the

other I will call causal validation. I will discuss both in turn.

The causal search endeavour is very much embedded in the machine learning liter-

ature where attempts are made at �nding (causal) relations in the data without the

need for subject-speci�c background knowledge (see Peters, Janzing, and Schölkopf,

2017). Retrieving causal relations from data by means of graph theory was in partic-

ular popularised by Spirtes, Glymour, and Scheines (2000) and Pearl (2009). Spirtes,

Glymour, and Scheines (2000) develop and collect algorithms that automate the search

for causal e�ects without the need for domain speci�c background knowledge or ex-

perimental setups involving counterfactuals such as randomised control trials. They

proceed as follows. Initially, they assume the stochastic dependence relations between

variables known. Given certain axioms that relate graphical models to the underlying

probability distribution of the data generating process, they show how graphs can guide

the identi�cation of causal e�ects. Of particular importance are patterns of conditional

and unconditional independence which preclude the existence of certain causal relations

and which can be directly inferred from the graph. In practice, these stochastic inde-
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pendence relations are not observed, of course, and what researchers are left with are

empirical moments of the data. Some of the criticism that graphical search algorithms

have drawn originates here. In the end, claiming that causality can be inferred from

purely observational data hinges to a great extent on how well independence between

variables can be inferred from the data.

Robins and Wasserman (1999), for example, criticise the claim of Spirtes, Glymour,

and Scheines (2000) that identi�cation of causality is possible without subject-speci�c

background knowledge. They argue, in a Bayesian setting, that Spirtes, Glymour, and

Scheines (2000) implicitly assume a bound on the growth of the number of unmea-

sured confounders in their asymptotics. If the bound is exceeded, then the probability

of assigning causality between two variables approaches 1, independent of whether

such a causal link exists. The authors therefore caution against the use of such search

algorithms when confronted with purely observational data. In such instances, they

maintain, the number of unmeasured confounders will be di�cult to control and ar-

guably very large. Humphreys and Freedman (1996) heavily criticise the agenda of

Spirtes, Glymour, and Scheines (2000), too. They note that the authors do not de�ne

what they mean by causation and simply introduce an assumption that �arrows repre-

sent causation� (p. 114). Furthermore, Spirtes, Glymour, and Scheines (2000) do not

account for any statistical uncertainty faced by their algorithms and make unreason-

able assumptions about their data, such as i.i.d. normal or multinomial observations,

which cannot be taken for granted when attempting to automate the search for causal-

ity. They therefore conclude that �the whole development is only tangentially related

to long-standing philosophical questions about the meaning of causation, or to real

problems of statistical inference from imperfect data� (pp. 113-114). Besides these two

shortcomings, they also point out a lack of empirical evidence to support the claims of

Spirtes, Glymour, and Scheines (2000) about the e�cacy of their methods.

Further criticism is centred on a reversed burden of proof. In practice, causal links

will only be established when tests are su�ciently powerful and the data su�ciently

informative. If there is insu�cient information, then causality will not be assigned,

which is the opposite of what most (social science) researchers would default to if

in doubt. Instead, it is common to start with the assumption that most variables are

causally intertwined and to reverse this judgement only if there is indeed clear evidence

indicating the opposite. While taking a single insigni�cant correlation as indicative of

non-causality is not too far fetched, problems emerge when this insigni�cant result

serves as the basis for further causal reasoning. For example, it could happen that the

direction of causality between two variables A and B is found by way of an insigni�cant
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correlation between variables C and D. Thus, a rather strong claim is potentially

supported by rather weak evidence.

A �nal, statistical criticism relates to the use of repeated hypothesis testing to un-

cover dependency patterns. When rejecting the null hypothesis of no correlation, the

overall probability of making an erroneous decision is not bounded by the nominal sig-

ni�cance level of the individual test. As is usual in multiple testing situations, the type

I errors can accumulate and the overall probability of making at least one false rejection

is not controlled for. The use of repeated testing is one reason why Kilian and Lütkepohl

(2017, p. 235) argue that in the context of VAR analysis �this data-driven identi�ca-

tion approach is not well suited for uncovering economically meaningful structures.�

A second reason for their scepticism is that structural errors need not correspond to

speci�c variables in a VAR setting. They therefore view it as problematic to relate zero

restrictions in the mapping between structural and reduced-form errors to causal links

between variables. The methods have nonetheless been applied in empirical work, most

prominently by Swanson and Granger (1997); Demiralp and Hoover (2003); Moneta

(2008).

The other branch of the literature that seeks to validate or falsify an assumed causal

structure proceeds as follows. An assumed structure gives rise to a graph and is vali-

dated by deriving a set of testable implications from that graph. It can then be veri�ed

whether these implications hold in the data. If they do not hold, the assumptions were

successfully falsi�ed. Similarly to causal discovery, the testable implications are pro-

vided by conditional dependence and independence relations that should hold in the

data if the assumed causal structure is true. Causal graphs are useful in this regard

because an investigator can easily inspect a graph visually and read the dependence

relations o� the graph using certain criteria (Pearl, 2009). Thus, the value added by

causal validation is twofold. First, graphs lend themselves to easy visual interpreta-

tion and can summarise and simplify communication of key identifying assumptions.

Second, they ease deduction of conditional dependence relations implied by those iden-

tifying assumptions and thus guide empirical veri�cation of those assumptions.

Using causal graphs in such a con�rmatory manner or as a guiding tool for the

identi�cation of causal e�ects is increasingly popular in the social, behavioural, and

health sciences. Steiner et al. (2017) provide an overview of causal graphs in the

context of treatment e�ect analysis and experimental and quasi-experimental research

designs. These include randomised control trials (RCTs), regression discontinuity de-

signs (RDDs), instrumental variables (IVs), and propensity score matching (PSM).

They emphasise how practitioners can use graphical identi�cation criteria to falsify
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unbiased estimation of causal e�ects when adopting a particular research design, for

example one of the four designs just mentioned.

Elwert (2013) applauds graphical causal models for their ability to translate statis-

tical frameworks into more accessible graphs. As also mentioned above, researchers

can more easily falsify identi�ability of causal e�ects and derive testable implications

of the hypothesised causal structure. The author o�ers an overview of graphical causal

methods with a focus on identi�cation of causal e�ects in quasi-experimental setups.

He covers three di�erent relationships between variables that give rise to an association

between variables. These three relationships correspond to three basic graphical com-

ponents that are the building blocks of causal graphs. Importantly, only one of these

relationships is causal, while the other two imply spurious correlations. One important

insight of this perspective is that �conditioning on variables [...] can induce as well as

remove bias� (p. 245), which is not necessarily as often stressed in standard regres-

sion frameworks. Elwert (2013) further elaborates how a concept called d-separation

formalises the analysis of whether a sequence of variables, called a path, transmits as-

sociation (see Appendix 2.A.1). If a path transmits association, it is called `unblocked',

otherwise it is `blocked.' Finally, graphical identi�cation criteria exploit the insights of

d-separation by establishing visual rules for determining identi�cation of causal e�ects.

Such criteria can also be applied to SVAR models, which is the focus of Section 2.5

and for which the next section will lay more groundwork.

2.2.3 Causal Graphs and Structural Vector Autoregressions

This section will discuss causal reasoning for the identi�cation of structural VAR mod-

els. All papers in this section focus on SVAR models that are identi�ed via short-run

zero restrictions. These restrictions are always imposed in the context of an A-type

model

A0yt = A1yt−1 + · · ·+APyt−P + εt, (2.1)

where A0 captures the contemporaneous e�ects between the K endogenous variables

contained in the vector yt and the error term εt is serially and contemporaneously

uncorrelated. System (2.1) is underdetermined and the matrix A0 therefore not iden-

ti�ed unless K(K + 1)/2 restrictions are placed on its elements.1 These restrictions

are usually motivated by economic theory (for an overview see Kilian and Lütkepohl,

2017), but there have also been attempts to motivate short-run zero restrictions empir-

ically through causal reasoning. Among the �rst to do so were Swanson and Granger

(1997) who aim at reducing the �subjective nature of error orthogonalization in the

1This condition is necessary, but not su�cient. See Lütkepohl (2005) for details.
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y1 y2 y3 y4

Figure 2.1: An example of a Swanson and Granger (1997) chain graph where each
variable has a contemporaneous causal e�ect on at most one other variable
without feedback loops.

VAR methodology� (p. 364). Their ad hoc search procedure for viable restrictions

relies on the fact that imposing a particular set of over-identifying restrictions implies

speci�c conditional correlation patterns among the reduced-form residuals of a VAR.

Most importantly, some of these conditional correlations will be zero. Making use

of these patterns, they suggest forming a baseline model which will exhibit �at least

some features which are in accord with the data� (p. 362). As a second step, the

over-identifying restrictions are tested via t-tests. The baseline model they propose is

rather restrictive. It only considers chains of variables where one variable is able to af-

fect at most one other variable contemporaneously (see Figure 2.1). Furthermore, only

recursive models without feedback loops between variables are allowed for. The upside

is that, under these conditions, Swanson and Granger (1997) prove the consistency of

the least squares estimator and the asymptotic validity of t-tests used in the search

procedure.

The logic implied by patterns of partial correlations can be extended, however, to

models beyond simple unidirectional chains. For models where each variable may a�ect

multiple other variables contemporaneously, the patterns of zero partial correlations

become more involved. It turns out that graphs are a convenient tool for �nding out

which zero partial correlation patterns are implied by a given SVAR identi�cation

scheme. Under the assumption of normally distributed errors or linearity, zero cor-

relation is su�cient for independence and the results of the causal graph literature

apply. That is, one may test which partial correlations are indeed absent in the data

and whether they would thus corroborate the assumed structure on A0. Alternatively,

one may reverse this line of argument and ask what kind of identi�cation schemes

would be in agreement with an observed correlation pattern among the reduced-form

residuals, with the caveats mentioned above. The latter would constitute a graphical

search procedure. These graph-theoretical search procedures are part of the literature

on machine learning and arti�cial intelligence and are described in Spirtes, Glymour,

and Scheines (2000), Pearl (2009), Koller and Friedman (2009), and Peters, Janzing,

and Schölkopf (2017). The algorithm applied by most of the cited literature below uses
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the PC-1 algorithm outlined in Spirtes, Glymour, and Scheines (2000, pp. 84�85)2, or

variants thereof.

In the context of SVAR identi�cation, Demiralp and Hoover (2003) assess the ef-

�cacy of the PC-1 graphical search procedure through evidence from Monte Carlo

simulations. They �nd that the success of the algorithm in recovering a model that

nests the true structure depends heavily on the quality of the information contained

in the data. As might be expected, for low signal-to-noise ratios, the algorithm will

impose false restrictions quite frequently. With su�cient signal strength, on the other

hand, the algorithm testing for patterns of partial correlations will recover the true

(over-identi�ed and recursive) SVAR model in up to 80 % of cases and a model nesting

the true model in up to 97 % of cases.

Thus, while the graph-theoretical approach can recover the correct structural model

successfully in speci�c circumstances, the downside to this methodology is that it fails

to indicate when these circumstances apply. It may, for example, su�er from low power

and impose a fairly arbitrary structure simply out of the inability to reject a certain

set of null hypotheses. Furthermore, there is no account of the uncertainty that a set

of hypotheses was wrongly accepted. In practice, it is therefore di�cult to conclude

whether a graph-theoretical algorithm successfully recovered the correct structure or

whether the results are driven by uninformative data.

Demiralp, Hoover, and Perez (2008) address this issue of uncertainty by devising a

bootstrap method that may indicate the reliability of the algorithm's outcome. The

method could thus serve as an �e�ective tool for assessing our con�dence in causal orders

identi�ed by graph-theoretic search algorithms" (p. 509). The bootstrap is based on

�rst resampling reduced-form residuals, feeding these residuals to the original model

to create new time series data, re-estimating based on the new bootstrap data and

�nally applying the graphical search procedure to recover another set of A0 matrices.

Demiralp, Hoover, and Perez (2008) evaluate how often certain features of the original

structure emerge during the bootstrap. They do not provide any formal justi�cation

for why the original structure would be expected to re-emerge as part of the bootstrap,

but instead speculate that if the data is just noisy, the structure would change rather

frequently, whereas very informative data would show a stable pattern across bootstrap

samples. Demiralp, Hoover, and Perez (2008) compare the summary statistics of the

bootstrap method to Monte Carlo simulations and take similar rejection frequencies as

2The name `PC' apparently derives from the initials of the authors Peter Spirtes and Clark Glymour.
This naming convention is not standard throughout the literature, however. For sake of simplicity,
I will follow this partially adopted convention. In addition, since there are various incarnations of
the algorithm and to avoid confusion with principal component analysis, I adopt the convention to
call the speci�c algorithm outlined by Spirtes, Glymour, and Scheines (2000, pp. 84�85) the PC-1
algorithm.
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evidence that the bootstrap procedure mimics the Monte Carlo su�ciently well that

it can �provide useful guidance on the reliability of inference� (p. 528). However, the

authors note a slight misalignment between either the type I error rate or the type

II error rate and choose to match the type I error rate by using di�erent signi�cance

levels during the Monte Carlo simulation and the bootstrap procedure.

Two things remain unclear. First, since the procedure is purely heuristic, the degree

to which the results generalise to other settings remains uncertain. Second, it is unclear

whether the p-values of the individual hypothesis tests would already have signalled

the reliability of inference su�ciently well. Arguably, the test decisions that will shift

frequently will be those with p-values close to the nominal size of the test. On the other

hand, the fact that the residuals are estimated quantities might be better captured by

the bootstrap. In addition, an erroneous test decision can have rami�cations through-

out the graph, beyond the single decision at hand. This e�ect is neglected when just

considering p-values.

There is an important di�erence between the work of Swanson and Granger (1997)

and Demiralp and Hoover (2003). The former exclusively consider t-tests that are

asymptotically valid if the contemporaneous structure they assume is true. Demiralp

and Hoover (2003) do not form an a priori assumption. Hence, during the graph-

theoretic search procedure all kinds of hypothesis tests are performed, some of which

will su�er from endogeneity bias inherent in the search. In �nite samples this may

lead to problematic conclusions and will be further discussed in Section 2.4. Notwith-

standing the fact that some hypothesis tests are a�ected by bias, the graphical search

procedure has been applied by a number of researchers in macroeconomics and �nance.

It is not part, however, of the standard macroeconomic tool set.

Kwon and Bessler (2011) review the fundamentals of the graph-theoretical approach

to causal inference in a macroeconometric context. They also review some of the applied

literature and stress the assumptions�foremost the Markov and stability condition�

that are required to infer a causal structure from empirical regularities. They establish

context as regards previous approaches to causality in macroeconomics such as Granger

causality and structural equation modelling.

Noteworthy studies that have applied graphical modelling include Hoover, Demi-

ralp, and Perez (2009), Demiralp, Hoover, and Perez (2014), Fragetta and Melina

(2011, 2013), Moneta (2008) and Jinjarak and She�rin (2011). Hoover, Demiralp, and

Perez (2009) study the role of monetary aggregates in the transmission of monetary

policy shocks to output and in�ation. Their motivation lies with the Federal Reserve

judging conditions for aggregate demand through measures of liquidity. However, the

authors claim that little is known about the interplay of monetary aggregates with
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interest rates, in�ation, output and stock markets, apart from the quantity theory of

money that the Fed relies on. Hence, they apply the PC-1 algorithm to a VAR model of

11 monthly variables, including core in�ation, industrial production, the federal funds

rate, liquid deposits and various measures of money market and stock market condi-

tions. The algorithm returns a set of overidenti�ed SVAR models, which the authors

evaluate further via the bootstrap of Demiralp, Hoover, and Perez (2008). Having

settled on a contemporaneous structure, they account for non-stationarity of the data

by transforming the model to a vector error correction model (VECM) and further

restrict the speci�cation by applying a general-to-speci�c search on its lag structure.

From this rather data-driven speci�cation search they conclude that the quantity-

theoretic approach of the Fed is rejected by the data. While liquidity deposits have a

delayed e�ect on industrial production and core in�ation, its role in the transmission of

monetary policy to these two variables is �almost immeasurably small.� I will add that

the model is also at odds with conventional wisdom on monetary policy: the federal

funds rate does not react contemporaneously to any other variable in the system. Its

response to in�ation is only indirect through other variables and delayed by at least

one month. Furthermore, there is no direct or indirect contemporaneous e�ect at all

between the federal funds rate, industrial production and core in�ation. Indeed, core

in�ation does not interact with any other variable contemporaneously. While the data

do not reject the �nal model speci�cation, it would be worthwhile to study the robust-

ness of their �nal conclusions by contrasting their �ndings with more conventional and

less restrictive speci�cations.

Demiralp, Hoover, and Perez (2014) perform a similar study. Focusing on the price

puzzle in monetary policy, they empirically identify a SVAR model via the PC-1 algo-

rithm. The data covers 12 monthly US time series ranging from February 1959 to June

2007 and include consumer and commodity prices, industrial production, a measure

for the output gap, and various interest rates and monetary aggregates. The empirical

strategy is analogous to Hoover, Demiralp, and Perez (2009), evaluating the outcome

of the algorithm via the bootstrap and cutting down on the number of lag coe�cients

via a general-to-speci�c testing strategy. The signi�cance level used in the PC-1 algo-

rithm is again set at 10 % and the �nal model speci�cation cannot be rejected by a

likelihood ratio test at the 10 % signi�cance level either. With 53 out of the 66 possible

parameters set to zero, the A0 matrix is highly restricted.

With this speci�cation, the authors evaluate whether the inclusion of certain vari-

ables mitigates the price puzzle. They split the sample in a pre- and post-Volcker

period and �nd that results di�er between the two samples. Noticeably, for the later

period starting in 1990, the study concludes that excluding commodity prices or output
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gap measures mitigates the appearance of a price puzzle, yet overall the puzzle remains

unresolved. Here again, it would have been interesting to assess which features of the

model drive the results and how conventional speci�cations compare to the empirically

motivated model.

The idea of comparing competing models through the lens of partial correlations

is picked up by Fragetta and Melina (2011) and Fragetta and Melina (2013). Both

papers rely on conditional independence graphs (CIGs) instead of directed acyclical

graphs (DAGs) and therefore on a slightly di�erent variant of a causal search algo-

rithm, but the underlying principles remain the same. Fragetta and Melina (2013)

study di�erent recursive identi�cation schemes in the context of monetary policy SVAR

models. Authors such as Christiano, Eichenbaum, and Evans (2005) argue that the

inertia of macroeconomic developments warrants the restriction of zero immediate im-

pact of monetary policy on output, wages, productivity and the general price level.

Monetary aggregates and �nancial variables, on the other hand, are free to react on

impact to a monetary impulse. Christiano, Eichenbaum, and Evans (2005) also as-

sume that the central bank observes and considers contemporaneous macroeconomic

developments, except for monetary and �nancial variables. Sims and Zha (2006) doubt

the credibility of the last assumption. Instead, they propose that �nancial markets

are simultaneously observed by the central bank and free to immediately respond to

policy. Current values of prices and output, on the other hand, are usually only known

with a delay and are therefore not part of the central bank's information set when de-

ciding on policy. Fragetta and Melina (2013) pitch these two competing assumptions

regarding the central bank's information set against each other. They �nd that only

high-frequency data, such as commodity prices, enter the central bank's information

set in a VAR model identi�ed by empirical means. It should be noted, though, that

the study's data set covers just four variables�output, the federal funds rate, gen-

eral prices, and commodity prices�whereas the data used in the original studies cover

broader sets of eight to nine variables. It is unclear whether the conclusions also hold

in larger sized VAR models. What is more, Sims and Zha (2006) explicitly allow for

simultaneous e�ects between �nancial markets and the monetary authority within the

quarter. This cannot be re�ected in the empirically identi�ed model since the search

algorithm precludes the existence of feedback loops.

Fragetta and Melina (2011) carry out a similar exercise for �scal policy. Here, dis-

cussions revolve around the e�ect of a discretionary, de�cit-�nanced �scal spending

rise on investment, consumption, hours worked and wages. Classical models predict

that agents foresee and o�set future tax rises by decreasing current consumption and

increasing labour supply, which is associated with a fall in wages. From a Keynesian
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perspective, habit as well as rigidities in wage and price setting lead to an increase in

consumption and therefore a more pronounced response of output to a �scal spend-

ing shock. Fragetta and Melina (2011) identify a �scal policy VAR empirically and

�nd that a rise in spending a�ects output, consumption, hours worked and real wages

positively, while investment falls.

Moneta (2008) revisits the debate on the origins of business cycle �uctuations. The

study �nds that �uctuations in output, consumption and investment are driven by

disturbances to monetary and not just real variables in an empirically identi�ed VAR

model. The paper makes two further contributions. First, the methodology accounts

for the fact that the residuals used for estimating partial correlations are estimated

quantities. Second, the author argues that the results of the PC-1 algorithm will be

more robust against type II errors if a more complete set of partial correlations is tested.

These modi�cations may lead to fewer orientated edges in the graph, necessitating a

greater reliance on theory.

Jinjarak and She�rin (2011) employ the PC-1 algorithm in the context of the balance

of payments and real estate markets. They �nd, through the lens of an empirically

identi�ed VAR, that capital account surpluses in the US can impact real estate prices

indirectly by lowering mortgage interest rates. They do not �nd evidence for a pull

e�ect (bullish real estate markets driving up consumption and drawing in capital) and

only weak evidence for a direct push e�ect (capital in�ows push up real estate prices).

Bryant, Bessler, and Haigh (2006) exercise a form of causal validation by comparing

competing hypothesis debated in the literature on future markets. They draw on

work published as Bryant, Bessler, and Haigh (2009), where they demonstrate how

causal hypotheses can be disproved through inspection of speci�c patterns of partial

correlations. They argue that focusing on a speci�c causal hypothesis (instead of

learning the complete causal structure among multiple variables) requires less stringent

assumptions. They do not, however, avoid the problem of a reversed burden of proof.

A rejection of a causal hypothesis still requires acceptance of some null hypotheses and

may therefore be adversely a�ected by low power. But they do di�erentiate between

a weak and strong basis of rejection, arguing that more complex patterns are unlikely

to emerge by chance and therefore represent a stronger basis than simple patterns.

Bryant, Bessler, and Haigh (2006) use this framework for testing whether hedgers pay

a risk premium on commodity and currency future markets and whether price volatility

is (in part) driven by uninformed traders. They reject both of these hypotheses for

most of the markets they study.

Finally, Moneta et al. (2011) relax assumptions of normally distributed errors and

system linearity. For non-normality, they discuss the use of independent component
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analysis. For non-linearity, they rely on nonparametric kernel estimators. With these

they are able to test for (conditional) independence by checking whether the equality

between joint densities and the product of marginal densities holds. The authors

conduct a small simulation study where they compare the use of standard Fisher z-

statistics (which assume linearity) to nonparametric tests. In case of non-linear DGPs,

a particular test based on the Euclidean distance measure for densities seems to perform

well with respect to size and power. It is also reliable and comparable to the z-statistic

in the linear case. However, nonparametrics su�ers from the curse of dimensionality

and allows only a small conditioning set. Some properties of the DGP are also not

quite clear, for example its signal-to-noise ratio.

2.3 Methods for Causal Discovery

Probabilistic graph theory equates vertices in a graph with random variables. The

relation between two vertices is represented by an edge. In causal graph theory, the

focus lies on directed graphs for which the relations between vertices are interpreted as

being causal. The edges in a directed graph possess arrows and therefore a direction.

The vertices being pointed at from a particular vertex, say vertex A, are called the

children of A. Analogously, the vertices pointing towards A are called the parents of

A. These sets can be extended to descendants and ancestors to include the children of

children and parents of parents and so forth. While in principal the causal direction

between two vertices can run both ways, the methods discussed in this section are

restricted to directed acyclical graphs (DAGs), which have the de�ning characteristic

that vertices cannot be their own ancestors.3 This re�ects an assumption that causation

is asymmetric and necessarily one-directional. It implies that edges may only point in

one direction, otherwise two vertices would be parent and child to each other at the

same time. In other words, the system is restricted to be recursive.

The goal of the methods discussed in this section is the discovery of causal relations

among contemporaneous variables purely from the data itself. Such an undertaking

is fraught with di�culties. The very fact that the system is endogenous in the �rst

place implies the possibility of an endogeneity bias in any ad hoc speci�cation that is

not guided by theory. Nonetheless, the methods presented here suggest that it may

be possible to discover clues about speci�c, local aspects of a system under a suitable

set of assumptions. These assumptions will be discussed below. Retrieving causal

relations from observational data could be advantageous whenever (quasi) controlled

experiments are not available, too costly or unethical. In macroeconomics that is

3Sometimes, ancestry is de�ned to be re�exive. In that case every vertex is its own ancestor and
descendant, but still no loops are allowed in the graph.
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usually the case and the methods for causal discovery may therefore be especially

helpful.

In the literature on causal graphs, there are three particular types of methods for in-

ferring (aspects of) a graph from data. The �rst type is the `constraint-based' approach,

the second the `score-based', and the third a Bayesian approach. The constraint-

based approach exploits the fact that speci�c types of subgraphs, and therefore spe-

ci�c causal constellations, correspond to stochastic independence relations between

variables. Methods with this kind of approach systematically test and impose local

independence constraints, and thereby reach conclusions about the graph (see Verma

and Pearl, 1990; Spirtes, Glymour, and Scheines, 2000). The second class of methods

explores the space of graphs and assigns a score to each structure it encounters, such

that the highest scoring graph will serve as an estimate of the true structure (e.g.

Chickering, 2002). Standard information criteria such as AIC or BIC can serve as a

scoring function. Finally, a Bayesian approach with a prior over the space of DAGs can

equally explore graphs and assign posterior weights (see Madigan and Raftery, 1994).

An important feature of all three approaches is the fact that they identify equivalence

classes of observationally equivalent graphs. This re�ects the fact that, even with the

appropriate assumptions on the data, oftentimes it is only possible to uniquely iden-

tify part of the graph structure. Graphs are especially useful in this respect, because

they can easily be characterised as part of a certain equivalence class, and thus guide

search procedures in e�ectively exploring the space of observationally distinct struc-

tures, which leads to a reduction of the search space. In the more recent literature

there are also a number of hybrid approaches and further extensions of these three

approaches.

These search endeavours, in particular the constraint-based approach, are close in

spirit to attempts at automating model speci�cation in econometrics (e.g. Hendry and

Krolzig, 2004, 2005) and share some of the same di�culties encountered there. Both

these approaches conduct sequences of hypothesis tests and need to trade o� size vs.

power, especially since the acceptance of some null hypotheses has a major e�ect on

the outcome. Furthermore, the procedures are generally only point-wise consistent

(Robins et al., 2003; Leeb and Pötscher, 2005) and it is therefore hard to impossible to

consistently estimate moments of the post-selection distribution of parameters as well

as the overall sampling uncertainty of the estimated structural model.

We will now discuss the assumptions underlying causal discovery methods. An im-

portant assumption in working with causal graphs is the causal Markov condition. It

states that, conditional on its parents, a variable is statistically independent of any

other variable except of its descendants and parents. In many applications, this seems
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a reasonable assumption to make. Furthermore, it allows to construct convenient

factorisations of joint probability distributions by simply inspecting a graph. Take

vertices A,B,C. If there are no edges connecting these vertices in the true graph,

then they are quite evidently independent and P (A,B,C) = P (A)P (B)P (C). But

suppose the graph consists of a single path A → B → C such that A is ancestor

of B which is a parent of C, then by the Markov condition one valid factorisation

is P (A,B,C) = P (A)P (B|A)P (C|B). However, another valid factorisation would be

P (A,B,C) = P (C)P (B|C)P (A|B), which already hints at the fact that some graphs

are observationally equivalent to each other.

The Markov condition is key for deducing testable implications from a given graph,

as well as for the implementation of algorithms that inductively infer graphs from

observational data. However, the causal Markov condition only establishes a mapping

from graphs to classes of probability distributions. It implies that `no link between

vertices' is a su�cient condition for conditional independence of two variables. What

is needed in order to have any hope of uncovering properties of a causal graph from

the data is to make `no link' a necessary condition as well. If it were not a necessary

condition, we might observe that two variables seem completely unrelated, yet we

could not conclude that these two variables do not cause each other either directly or

indirectly. To preclude these cases, the `faithfulness' or `stability' condition is regularly

assumed. It states that no other conditional independence relations hold other than

those implied by the causal Markov condition. Amongst other things, this axiom

e�ectively excludes probability distributions in which variables depend on each other

in such a way that the overall e�ect between two dependent variables cancels out, and

they thus appear independent even in population.

The faithfulness assumption may seem innocuous at �rst. A number of commenta-

tors, for example, have observed that the distributions which contain cancelling e�ects,

and are therefore unfaithful, are of Lebesgue measure zero for continuously distributed

variables (e.g Robins and Wasserman, 1999). They may therefore seem little more than

a pathology. However, those distributions for which independence constraints hold are

equally of Lebesgue measure zero. Furthermore, in �nite samples, the share of dis-

tributions for which e�ects appear to `cancel out' simply due to sampling uncertainty

will very likely be a non-trivial proportion. This phenomenon is illustrated in more

depth in Section 2.4. These observations have led to the de�nition of `strong faithful-

ness,' which requires that the true probability distribution is su�ciently far away from

`pathological', unfaithful cases. Under such an assumption it is even possible to prove

uniform consistency of causal discovery methods (Zhang and Spirtes, 2003). See Uhler

et al. (2013) for a more elaborate discussion of strong faithfulness.
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Another frequently invoked assumption is `causal su�ciency', which is equally often

assumed in the econometric literature under the term `unconfoundedness' or `condi-

tional independence assumption.' It states that all variables a�ecting more than one of

the variables under investigation are observed; i.e. there are no unobserved confounders.

This assumption is sometimes relaxed by explicitly allowing for latent variables when

searching for valid causal graphs. For SVAR analysis, the absence of unobserved con-

founders may facilitate identi�cation, but it is not a necessary condition. B-type SVAR

models, for example, explicitly account for a set of latent variables a�ecting more than

one endogenous variable.

In the structural VAR literature, almost all applications using causal graph pro-

cedures have focused on one particular constraint-based method which will now be

elaborated.

PC-1 Algorithm

The PC-1 algorithm conducts a data-dependent sequence of independence tests. With

Gaussian data or linear systems, these tests are typically partial correlation tests. De-

pending on the correlation pattern found, it adds edges between variables and orientates

their direction. To provide an illustration of how correlation patterns are informative

about the causal structure, suppose again there are three variables A, B, and C. If

corr(A,B) 6= 0, corr(B,C) 6= 0 and corr(A,C) 6= 0, but corr(A,C|B) = 0, then edges

are added between variables A and B, and B and C. There will not be an edge be-

tween A and C because of the causal Markov and faithfulness conditions: Taking B

into account seems to eliminate the e�ect of A on C (or vice versa) and therefore sug-

gests that neither A nor C is parent to the other. The direction of causality remains

unresolved, however. This �rst example is shown on the left of Figure 2.2. On the right

there is a second example that shows the case when corr(A,B) 6= 0, corr(C,B) 6= 0,

corr(A,C|B) 6= 0, but corr(A,C) = 0. The only way to rationalise this �nding is to

have causation �ow from A to B and from C to B since otherwise we would observe

corr(A,C) 6= 0 as well. Here, the faithfulness condition is again relevant to preclude

cases in which the correlation between A and C cancels out due to other�possibly

unmeasured�e�ects.

Constraint-based discovery algorithms, of which the PC-1 algorithm is a prime ex-

ample, operate by the above logic. Important di�erences between algorithms depend

on whether the true graph is assumed to be acyclic and whether unconfoundedness is

assumed to hold. The PC-1 algorithm assumes both and proceeds as follows. First, it

explores all unconditional independencies, followed by conditioning on more and more

variables to see under which circumstances an e�ect vanishes. In case an e�ect does
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Figure 2.2: The left three causal graphs all imply the same correlation patterns. The
right graph corresponds to a unique pattern.

become statistically insigni�cant once a certain conditioning set is formed, the corre-

sponding edge is recorded as absent. It further relies on the fact that the independence

pattern leading to a (sub)graph as on the right of Figure 2.2 is unique. Therefore, if

such a pattern is found and if A and C share no edge, then the edges can be orientated

as shown in that �gure.

The output of the algorithm at this stage will in general be a graph with some

directed as well as undirected edges. Such a graph is called a partially directed acyclic

graph (PDAG). Since acyclicity was one of the main assumptions from the outset, the

PDAG actually re�ects an equivalence class of DAGs where each member ful�ls those

independence relations implied by the PDAG. It is often possible to identify edges that

are orientated the same way in every single member of the equivalence class. In that

case the PC-1 algorithm will orientate those edges in the PDAG as well. The outcome

of this last step is a so-called completed partially directed acyclic graph (CPDAG) and

the �nal output of the algorithm.

Further important di�erences between implementations of this kind of algorithm

exist. For one, di�erences emerge depending on how the conditioning set in testing for

conditional independence is formed. When testing the independence of A and B, it

would in theory be su�cient to consider only those variables in the conditioning set

which are adjacent to either A or B. However, in practice, due to sampling uncertainty

or violation of one of the assumptions, the results could di�er when a broader set of

conditioning variables is allowed for. In addition, there could be contradictory patterns

that cannot be resolved within the framework of causal DAGs. Thus, how conditioning

sets are formed and how contradictory results are dealt with play an important role in

determining the outcome, as well as more general properties of the algorithm such as

speed, error rate, and order dependence.

More detailed expositions of the PC-1 algorithm and discussions of its properties

can be found in Spirtes, Glymour, and Scheines (2000); Koller and Friedman (2009);
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Colombo and Maathuis (2014), amongst others. Due to the ability of constraint-based

algorithms to infer structure by examining only local properties, it is well suited for

being employed in sparse, high-dimensional settings (Kalisch and Bühlmann, 2007) and

has gained some popularity there.

A common theme among algorithms that construct causal graphs from observational

data is that they expect independence relations as input. In other words, they are silent

about how to assert independence in the �rst place. These test decisions are crucial,

however, for the success of causal graph algorithms in �nding the truth. There are sev-

eral options for testing independence. The simplest assume a parametric framework.

They are easy to implement and come at a low computational cost. Distributional

assumptions have to be made, though, usually assuming normally distributed vari-

ables. Non-parametric tests of independence, on the other hand, either estimate the

joint and marginal densities of the variables involved or rely on resampling schemes

such as permutation tests (e.g. DiCiccio and Romano, 2017). These tests are there-

fore less restrictive as regards distributional assumptions. The downside is the usual

curse of dimensionality, leading to less precise estimation in larger systems or with few

observations.

Among parametric tests for conditional independence, Fisher's z is frequently used.

Also, most structural VAR applications such as Demiralp and Hoover (2003), Hoover,

Demiralp, and Perez (2009) rely on Fisher's z to test whether sample correlation co-

e�cients are signi�cantly di�erent from zero. This test statistic is also implemented

in popular statistical software packages, like pcalg for the R language (Kalisch et al.,

2012). Fisher's z uses the inverse hyperbolic tangent transformation to map correlation

coe�cients to the real number line. Let ρ̂ be a sample partial correlation coe�cient

between A and B conditional on a collection of random variables Z. Then Fisher's z

is given by

z =
1

2
log

1 + ρ̂

1− ρ̂
. (2.2)

Let ζ be the population counterpart to z. By Theorem 4.2.5 of Anderson (2003), we

have
√
T (z − ζ)

a∼ N(0, 1), where T is the sample size. Suitable hypothesis tests of

H0 : ρ = 0 can be constructed using this asymptotic approximation. Alternatively, and

asymptotically equivalently, one may also test ρ = 0 by standard t-tests in a regression

framework where A is regressed on B and the conditioning variables have been added

as additional regressors.

A concern with any testing procedure is the likelihood of actually recovering, or at

least nesting, the true causal structure. Expressing this likelihood is unfortunately

rather di�cult. The previously mentioned di�culties with regards to post-model-

selection inference is one aspect. A related aspect is the mix of rejected and non-
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rejected hypotheses that give rise to a particular graph estimate. Both type I errors

and type II errors will a�ect the estimate unfavourably and may reverberate through

the graph beyond the locally tested property. This adds considerable complexity to

evaluating the e�ect of a false decision. A third issue is the use of multiple hypothesis

testing. This issue may be the easiest to remedy by relying on Bonferroni bounds or

techniques that address the family-wise error rate or false discovery ratio.

The next section will illustrate how graph estimates can be adversely a�ected by the

above issues if `strong faithfulness' does not hold.

2.4 Pitfalls in Causal Discovery

This section illustrates a particular weakness of graphical causal algorithms that has

not always been made explicit in the literature so far. One feature of the algorithms

discussed in this paper is their reliance on a sequence of hypothesis tests. This sequence

implies, amongst other things, a multiple testing problem that has been addressed

elsewhere. Apart from multiple testing, the sequential approach becomes problematic

when combined with another feature of these algorithms: placing a lot of structure

under the null hypothesis in order to inductively infer causal relations. That is, they

routinely test for e�ects βAC|Z between any two variables A and C conditional on the

set of variables Z by setting up the pair of hypotheses

H0 : βAC|Z = 0, (2.3)

H1 : βAC|Z 6= 0. (2.4)

If the null is not rejected, the algorithms will accept the fact that βAC|Z = 0 and

decisions based on tests further down the sequence of tests will be conditional on this

acceptance. But strictly speaking, a non-rejection is simply a failure to falsify the

null hypothesis and not an acceptance of the null. The test may have just su�ered

from low power due to the nature of the test or due to insu�ciently informative data.

Take, for example, the (rather typical) case where the data is noisy and a researcher

wishes to investigate causal relations. Without placing much structure on the data,

the researcher observes that most variables are signi�cantly correlated with each other,

while two variables A and C are not. Even though this does not directly provide

evidence that the two variables are unrelated, he or she concludes that any meaningful

direct causation between those two variables is unlikely. While this conclusion may

suggest itself quite naturally, it has further rami�cations on the causal relations between

other variables than those two. For instance, if it were the case that the correlation

between A and C is no longer insigni�cant when conditioning on the set Z, logical
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conclusions can be drawn about relations between members of Z and A or C. However,

what is no longer considered at this point by the usual graphical search algorithms is the

likelihood that the very �rst conclusion, the absent e�ect between A and C, was false.

Ideally, one would have to account for the probability of type II errors in previous test

decisions. Unfortunately that probability is unknown in practice. Accepting the null as

given is exacerbated by the numerous hypothesis testing conducted by the algorithm.

Thus, the researcher is not only confronted with an accumulation of type I errors, but

also of type II errors.

A related criticism is that in some disciplines, and especially in macroeconomics,

the default presumption is that all observables are contemporaneously causally re-

lated. Philosophically one may doubt whether two processes can causally impact each

other truly instantaneously, but with macroeconomic quantities typically observed at

monthly or quarterly frequency and aggregated over multiple agents, such contempo-

raneous e�ects are more plausible. Thus, if the data is noisy or there is insu�cient

evidence to identify a signi�cant e�ect, investigators may want to exercise caution be-

fore proclaiming the possibly very far-reaching conclusion that two variables are not

causing one another.

A related practice is the use of hypothesis testing for variable selection or the inter-

pretation of regression results. Here, a non-rejection is often taken as an acceptance

and some researchers act on the premise that the null hypothesis is in fact true, for

example by excluding variables which have no signi�cant e�ect. However, it is also

recognised that pruning models in this way will invalidate standard inference on the

parameters that remain (Leeb and Pötscher, 2005). A common feature with causal

search algorithms is to condition each decision on previous results, thus failing to ac-

count for the full degree of uncertainty about the �nal result. Again, the criticism

here is not so much about the acceptance of a single null hypothesis, but the repeated

acceptance of null hypotheses and their joint rami�cations for the search algorithm's

�nal output without any quanti�cation of uncertainty arising from false negatives.

A simple example will illustrate the kind of rami�cations a false acceptance of a null

hypothesis may have. Take a static stochastic system governed by three structural

equations

A = εa (2.5)

B = β1A+ εb (2.6)

C = β2B + (φ− β1β2)A+ εc, (2.7)
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where εk ∼ N(0, σε), for k = a, b, c, are three independently and normally distributed

unobserved innovations. The three random variables A,B,C are observable. Let any

set of observations be denoted as {at, bt, ct}t=1,...,T with T being the sample size. These

equations are structural because they describe the very process of how values of A,B,

and C are determined. If one were to experiment and intervene, say, on variable B in

(2.7) by manipulating its value, one could change the expectation of C without a�ecting

the remaining system. In other words, the innovations εk are strictly exogenous and

one can interpret the coe�cients as causal e�ects.

In this setting, the causal ordering is clear. Variable A is a cause of B, and A and

B are in turn causes of C. In practice, this ordering will not be known ex-ante, such

that a causal search algorithm may be applied. Of central importance for the success

of the search algorithm is the parameter φ. This parameter will be manipulated in

the simulation exercise to two e�ects. First, as any parameter, it will in�uence the

share of explainable variation in C and thus the prediction accuracy when forming an

expectation of C conditional on A and B. In a regression setting, φ will in�uence the

estimation precision for any given sample size and the power of standard Wald tests

to reject a wrong null hypothesis. Second, keeping β1 and β2 constant, φ controls the

magnitude of the omitted variable bias in the regression

C = φA+ β2εb + εc (2.8)

= β3A+ ε̃c. (2.9)

Equation (2.8) is easily obtained by substituting (2.6) into (2.7). Estimating regression

(2.9) with least squares will yield E[β̂3|A] = φ as there is an omitted variable bias

of size β1β2. Parameter φ may thus be used to control the estimation precision in

regression (2.9) and thus the likelihood of rejecting the hypothesis H0 : β3 = 0. For

values of φ close to zero, the two variables C and A will seem unconditionally unrelated.

Conditioning on B, however, a regression following (2.7) may be more likely to indicate

a relation of C to A and B, depending on the values of β1 and β2. Note that φ

must not be equal to 0 as this would violate the faithfulness assumption necessary for

the application of causal graph algorithms. Faithfulness states that the graph can in

principle be recovered. It is thus a kind of identi�ability assumption.

Certain parametrisations of φ, β1, and β2 will fool standard causal graph algorithms

into orientating edges in reverse order with high probability. This phenomenon is

illustrated in the following Monte Carlo simulation. In the simulation, data is cre-

ated according to the process outlined in (2.5) to (2.7) and fed to the PC-1 algo-

rithm. The DGPs are speci�ed as β1 = β2 = 2, σε = 1, φ = 0.1, 0.25, 0.5 and
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T = 100, 250, 500, 1000, 2000. Each DGP is repeated R = 10000 times such that R

outcomes of the PC-1 algorithm are available per parameter constellation.

The results focus on two particular outcomes shown in Figure 2.3 and 2.5. Figure

2.3 displays the skeleton of the structure (2.5)�(2.7). The skeleton contains precisely

those edges present in the true graph, but all edges lack orientation. This orientation is

displayed in the correct graph in Figure 2.4. Note that the correct graph in Figure 2.4

is nested in the skeleton correct graph in Figure 2.3. The latter is therefore not wrong

but overspeci�ed in the sense that the skeleton does not impose erroneous restrictions

on (2.5)�(2.7), but it is not the most parsimonious speci�cation either. Figure 2.5, on

the other hand, displays an incorrect graph revealing a reversed edge between node

B and C and an omitted edge between node A and C. The two graphs in Figures

2.3 and 2.5 are the two dominant outcomes obtained from applying the PC-1 causal

search procedure to the simulated data. The graph in Figure 2.4 cannot be recovered

by the algorithm because it does not imply any (un)conditional independencies. Thus,

in the best case, the algorithm will set-identify the correct equivalence class of graphs.

In this case, the skeleton in Figure 2.3 is the only correct outcome of the algorithm

as it represents the CPDAG associated with the class of Markov equivalent graphs

containing the correct graph.

Table 2.1 presents the results of the simulation exercise, with the relative number of

occurrences of correct and incorrect outcomes being tabulated. As just discussed, the

correct outcome of the PC-1 algorithm is the skeleton correct graph. The frequencies

at which the algorithm estimates this graph are tabulated in the upper panel of Table

2.1. The three rows correspond to di�erent values of φ, as indicated in the �rst column.

The remaining columns list the frequencies for di�erent sample sizes. The probability

of recovering a graph which nests the true graph increases both with φ and the sample

size. For φ = 0.5 and 2000 observations, this probability is approximately 1. The
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Table 2.1: Simulation results in relative frequencies.

Sample size T

φ 100 250 500 1000 2000

Skeleton Correct

0.10 0.25 0.31 0.39 0.55 0.76
0.25 0.45 0.68 0.89 0.99 1.00
0.50 0.82 0.99 1.00 1.00 1.00

Incorrect

0.10 0.75 0.69 0.61 0.45 0.24
0.25 0.55 0.32 0.11 0.01 0.00
0.50 0.18 0.01 0.00 0.00 0.00

The �rst column indicates the value of φ, all other columns contain the simulation
results for di�erent sample sizes. The upper panel indicates the relative frequency
at which the estimated graph is equal to the skeleton correct graph in Figure 2.3.
The lower panel indicates the frequency at which the incorrect graph in Figure 2.5 is
estimated.

picture changes, however, for lower values of φ. When φ = 0.1 and when there are

500 observations, the probability of recovering the correct outcome is roughly half. As

shown in the lower panel, the other 54% of the time, the incorrect graph in Figure 2.5

is estimated. The results in the lower panel exactly mirror those of the upper panel.

Thus, the skeleton correct graph in Figure 2.3 and the incorrect graph in Figure 2.5

are the exclusive outcomes of the PC-1 algorithm in this simulation exercise.

I will add three remarks. First, the frequencies tabulated in Table 2.1 may be

interpreted as lower bound probability estimates which are valid for certain intervals

of φ and T . Based on symmetry and monotonicity, the probability of choosing the

incorrect graph is at least 32 % if φ lies in the interval [−0.25, 0.25] and the sample size

is 250 or less. Second, it is natural to expect that the algorithm will fail to correctly

identify very weak e�ects for a certain fraction of cases. After all, if φ is close to zero

and observations are scarce, precise estimation and inference on whether the parameter

is di�erent from zero will be di�cult for any procedure. But what is more problematic is

the complete lack of an uncertainty measure for stating that variable C causes variable

B, which is the wrong conclusion. It is wrong because the correct causal direction is

from B to C, as noted above, and the correct outcome of the algorithm would be to

leave the edge undirected. As we have seen here, a wrong orientation can happen a

fair amount of the time if there are opposing forces at work that weaken each other

to some extent but do not cancel each other out completely (which would violate the

faithfulness assumption). In this application, it is the direct e�ect of A on C that
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negates its indirect e�ect via B. As a side-e�ect, the direction of causation between B

and C is reversed. To summarise, those causal search procedures that have formalised

the logical conclusions of conditional independences, like the PC-1 algorithm does, may

reach rather strong ontological claims by conditioning on a negative, a failure to reject

a null hypothesis. This non-rejection may be false, the probability of it happening is

not controlled for in standard correlation tests, and it has rami�cations throughout

the graph, like wrongly orientating other edges. Third, this phenomenon will likely be

even more problematic in higher dimensional systems. With more interaction terms,

there is a greater potential for such counteracting e�ects as exempli�ed here. With

more variables, the potential for wrongly orientated edges due to false negatives is also

greater.

To address these concerns, some authors have introduced the notion of `strong faith-

fulness.' In addition to usual faithfulness, this assumption also excludes e�ect sizes

that, while not precisely negating each other, are still `too close' in the sense that

they are unlikely to be distinguishable with typical sample sizes (see Section 2.3 and

Zhang and Spirtes (2003); Uhler et al. (2013)). For the above example, the parameter

constellations would have to be adjusted for strong faithfulness to hold, and results

would likely be less adverse. In practice, it may be just as di�cult to assess whether

the strong variant holds as it is for simple faithfulness.

Incidentally, this paper is not the �rst to take note of these e�ects. Spirtes, Gly-

mour, and Scheines (2000, p. 113�121) assess the reliability of the PC-1 algorithm by

conducting simulation exercises. They compare di�erent incarnations of the algorithm

and conclude that �none of the procedures are reliable on all dimensions when the

graphs are not sparse� (p. 115). This conclusion is reached by considering theoretical

aspects and simulation evidence. From a theoretical standpoint, the authors argue that

single mistakes during the elimination stage will propagate less easily to other parts of

the estimated graph with the so-called SGS algorithm than with the PC-1 algorithm

(p. 83�88). The former is therefore judged more stable, primarily because it consid-

ers more independence relations. However, both algorithms will be misled during the

orientation phase by mistakes made during the elimination phase.

In practice, independence needs to be tested for. Therefore, the authors run Monte

Carlo simulations, albeit of limited scope (p. 113�121). The simulations assess the

probability of making certain mistakes when recovering a graph from observational

data. These mistakes include the erroneous removal or addition of an edge and the er-

roneous omission or addition of an arrow. Finally, one may ask whether the true model

is nested in the estimated set of models or whether some alternative model is nested

in the estimated set. However, the simulation is of limited scope since each permu-

64



Chapter 2 Connecting the Dots: Structural VARs and Causal Graphs

tation is repeated only ten times, with di�erent parametrisation each time, rendering

the e�ective repetitions one per DGP. These are therefore rather imprecise probabil-

ity estimates without regard for any remaining simulation uncertainty. However, it

still o�ers the authors a chance to examine typical patterns across di�erent parameter

constellations.

They �nd that �at high average degree and low sample sizes the output of each of

the procedures tends to omit over 50% of the edges in the true graph� and �with high

average degree the percentage of edges omitted even at large sample sizes is signi�cant�

(p. 116). Addressing these issues, they suggest that using �higher signi�cance levels [...]

may improve performance at small sample sizes� (p. 116). However, they ignore the fact

that higher signi�cance levels may result in more erroneous edge additions. Moreover,

they fail to emphasise the risks involved in accepting the estimated graphs at face

value or the lack of uncertainty measures, even though they recognise the procedure's

fallibility.

Yet, elsewhere they document the detrimental impact of counteracting variables dis-

cussed above, while leaving its precise origins unclear. On pages 203�207, Spirtes,

Glymour, and Scheines (2000) observe that the PC-1 algorithm is susceptible to com-

mitting frequent type II errors in practice. They even cite an empirical example in-

volving a medical experiment on nineteen rats which seems to su�er from a similar

constellation as outlined above. An omitted variable bias (the authors do not identify

it as such) eradicates pair-wise correlations, yet when conditioned via multiple regres-

sion, the partial correlations are signi�cant. It seems this is driven by highly negatively

correlated and thus counteracting variables. The PC-1 algorithm will be misled at the

�rst elimination or second orientation stage, because of these unconditionally uncorre-

lated variables.

The authors point out on page 203 that �[e]rror probabilities for search procedures are

nearly impossible to obtain analytically� and instead rely on Monte Carlo simulations.

They generate data based on a graph estimated by the PC-1 algorithm from the rat

data. The original sample size was only 19, yet in the simulation they can adjust the

number of observations. Creating 100 simulation samples, they �nd that �[e]ven at

sample size 1,000 the search makes an error of type 2 [...] in 55% of the cases� (p.

206). They note that with highly correlated regressors, the model is �nearly unfaithful�

(p. 205). They conclude that �[i]n the absence of very strong prior causal knowledge,

multiple regression should not be used to select the variables that in�uence an outcome

[...] in data from uncontrolled studies� (p. 207). What they leave unmentioned is that

almost all implementations of the PC-1 algorithm, and other variants like the SGS
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algorithm, rely on a form of multiple regression for estimating partial correlations, and

thus for inferring stochastic dependence.

2.5 Properties of Causal Graphs in SVAR Analysis

We will now investigate the relation between causal graph theory and structural VAR

modelling in more depth. This section will highlight some of the properties inherent

to causal graph algorithms when applied to structural VAR models. We will �rst

formalise the relation between graphs and VARs in order to then characterise the

outcome space of causal graph algorithms in terms of SVAR models more precisely.

We will also discuss under what conditions a graph represents a (partially) identi�ed

SVAR model and shortly touch upon on how the most frequently applied algorithm

relates to standard likelihood ratio tests.

To formalise the discussion of structural VAR models and graphs, let us specify their

relation more closely. The basis for our discussion is an A-type SVAR model

A0yt =
P∑
p=1

Apyt−p + εt, (2.10)

where the contemporaneous e�ects between the K endogenous variables yt are given by

matrix A0, normalised to have a unit diagonal, and the reduced-form lag coe�cients

are given by A∗p = A−10 Ap. The error term is serially uncorrelated with E(εt) = 0

and diagonal covariance matrix var(εt) = Σε. The de�ning characteristic making this

model structural is that one or more elements of εt admit an economic interpretation.

The graph associated with this model is de�ned as follows.

De�nition 2.5.1. The directed graph GA associated with model (2.10) is de�ned by

Ξ := IK −A′0, where Ξ is the adjacency matrix of GA.

The adjacency matrix of a directed graph usually encodes a single arrow yi → yj

in G as Ξij = 1, but we will simply require that there is such an arrow whenever

Ξij 6= 0.4 As such, whenever zero restrictions are placed on A0, GA re�ects the

critical assumptions placed on (2.10). Since (2.10) will generally be underdetermined,

a necessary condition dictates that at least K(K−1)/2 restrictions are to be placed on

A0 for (2.10) to become identi�ed (assuming only restrictions on A0 are considered).

Most economically credible restrictions on A0 are in the form of zero restrictions and

may thus be conveniently visualised using GA. We will employ the stylised case of a

4Alternatively, for keeping with convention, the adjacency matrix may also be de�ned by Ξij =
1Iij 6=A′

ij,0
, where 1c is the indicator function evaluating to 1 whenever c is true and 0 otherwise.
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three-equation economy involving prices, output, and the interest rate to illustrate the

concept. Suppose our economy is governed by a supply, demand and monetary policy

equation such that the following representation holds 1 0 0

a21 1 0

a31 a32 1


πtyt
it

 = f(Zt−1) +

 es,t

ed,t

emp,t

 , (2.11)

where πt is a measure of in�ation in period t, yt is a measure of output growth, it is the

nominal interest rate, and Zt−1 is a set collecting information on these three variables

up to period t− 1. The function f is linear such that the system conforms to a VAR.

The three shocks es,t, ed,t, and emp,t represent a supply, demand, and monetary policy

shock. Applications with this simpli�ed model at their core are widespread across the

literature, even though such applications carry a number of limitations. See Christiano,

Eichenbaum, and Evans (1999) and Kilian and Lütkepohl (2017, Ch. 8) for details.

Here, the focus is on how SVAR models of this type relate to graphs.

The adjacency matrix in this case is given by

Ξ ′ =

 0 0 0

−a21 0 0

−a31 −a32 0

 , (2.12)

such that there are arrows going from the �rst node to the second and third and

from the second node to the third. Figure 2.6 displays the graph GA for the system of

equations (2.11). The graph summarises the (hypothesised) contemporaneous relations

between the endogenous variables. In�ation impacts both output and the interest rate

within period t, but not vice versa. Hence there are arrow heads pointing from πt

to yt and it, but not vice versa. Any missing arrow heads thus correspond to zero

restrictions placed on A0. Note that the temporal dynamics as well as the error terms

have been abstracted away in the graph. That is justi�ed as, under the assumptions

made above, they are inconsequential for the identi�cation of the SVAR model via

short-run exclusion restrictions on A0. This will be di�erent, however, if restrictions

are also placed either on lagged components or in the form of a B-type model or long-

run restrictions.

The main takeaway from the previous example is that identifying restrictions for

an A-type SVAR model can be suitably summarised in the form of directed graphs.

While this may improve communication of important assumptions, we will now turn

to other features of directed graphs in the context of VAR models. In essence, graphs

as in Figure 2.6 may also aid in assessing identi�cation schemes or, alternatively, in
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πt

yti t

Figure 2.6: The graph GA representing a highly stylised macroeconomic model.

discovering schemes supported by the data. For the latter, a number of algorithms

exist, as outlined in previous sections, that test for conditional independence relations

in the data and infer which kind of directed graphs adequately represent the DGP.

That is, under two key assumptions, they are able to infer structural, asymmetrical

relations between random variables.

Even though these algorithms have been applied for the discovery of structural VAR

models in the literature, their properties have not always been made explicit in the

context of SVAR models. The �rst set of properties are fairly straightforward and

re�ect the example discussed above. But to reiterate, while these results are often

implicitly recognised, they are not always explicitly mentioned. A starting point is the

following.

Lemma 2.5.1 (Recursive identi�cation). For an A-type SVAR model, a recursive iden-

ti�cation scheme is equivalent to GA being a DAG.

Proof. By recursiveness (Wold, 1954) the variables in yt may be reordered such that

A0 in (2.10) is upper triangular. More speci�cally, there always exists a permutation

matrix Q of dimension K ×K such that A†0 = QA0Q
′ is upper triangular and (2.10)

may be rewritten as A†0y
†
t = QA0Q

′Qyt =
∑P

p=1QApQ
′Qyt +Qεt. The adjacency

matrix of GA† is lower triangular since Ξ† = I −A†0
′
= QΞQ′. Hence, GA† is a DAG

and isomorphic to GA due to permutation similarity of the two adjacency matrices Ξ†

and Ξ, i.e. the orientation of edges and adjacencies of nodes are preserved. Therefore,

GA is also a DAG.

The latter result may aid in assessing whether a speci�c identi�cation scheme is

recursive, independent of the variable ordering in yt. Simply draw the associated

graph, which looks just the same across variable permutations, and check whether it is

acyclic. This perspective is so intuitive that Wold (1954) already employed a version of
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a DAG to communicate his ideas about recursiveness; though his arrangement di�ered

slightly, as it illustrates a repeating pattern of the dynamic development of variables

over time.

Sometimes the focus lies solely on the reaction of variables to one particular economic

shock ep,t. The remaining K − 1 shocks, and the dynamic response to them, is of less

importance. If the assumption of recursiveness is still viable, then in such a case the

set of variables may be split into three parts y1,t, y2,t, and y3,t. The split is such that

y2,t and y3,t may react contemporaneously to changes in y1,t and ep,t, but y2,t will react

to changes in y3,t only with a delay. A common case is monetary policy, where some

variables are inside the central bank's information set Ωt when forming a decision on

the policy stance at time t, while others are not immediately observed or considered

by the bank. Here, ep,t is a monetary policy shock, y1,t are the variables inside Ωt, y3,t
are outside of Ωt, and y2,t is the policy instrument. Importantly, there must not be

any instantaneous feedback from y3,t to y1,t; otherwise y2,t would also implicitly react

to y3,t via y1,t.

We can express such a setting quite naturally in graphical terms with the help of

a partially directed acyclic graph (PDAG). That's a DAG where some edges remain

undirected, but overall edge directions are still constrained in such a way that no cycles

are possible. A path vk � vl � vm� vk is a legitimate path of a PDAG, but cannot

be directed as vk → vl → vm → vk. The focus on one particular shock is re�ected in

Figure 2.7. The left panel summarises a recursive system of seven variables taken from

Christiano, Eichenbaum, and Evans (1999), where Pt is the price level, Yt is output,

PCOMt is a commodity price index, FFt is the federal funds rate, NBRt denotes non-

borrowed reserves, TRt denotes total reserves, andMt represents a monetary aggregate

in period t.

Note how the graph can be divided into three components such that edges within

each component are not directed. Furthermore, edges between any two components are

always orientated in the same direction. This is characteristic of a PDAG. In the left

panel of Figure 2.7, the component to the left y1,t = (Pt, Yt, PCOMt)
′ represents those

variables which the central bank observes and takes into account when formulating pol-

icy. The second component is y2,t = FFt, the policy instrument. The third component

y3,t = (NBRt, TRt,Mt)
′ comprises the remaining variables, which are assumed to be

a�ected by the policy change within period t, but do not impact variables in the �rst

or second components contemporaneously. Christiano, Eichenbaum, and Evans (1999)

do not take a stance on how the variables within each component a�ect each other; the

edges within components are therefore undirected. The system can equally be repre-
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Y t

P t

PCOM t

FF t

TR t

NBR t

M t

y1,t

FF t

y3,t

Figure 2.7: The left graph displays the semi-structural, seven variable system of Chris-
tiano, Eichenbaum, and Evans (2005) as a PDAG in which a shock to the
federal funds rate, interpreted as a money supply shock, is identi�ed. The
right graph summarises the block-recursive structure as a DAG.

sented by a DAG, such as on the right of Figure 2.7, where each component�instead

of each variable�is now represented by a single node.

For the identi�cation of shocks in PDAGs we have the following su�cient condition,

which is a variation of Proposition 4.1 in Christiano, Eichenbaum, and Evans (1999).

The main di�erence is that the proof explicitly takes into account overidenti�ed set-

tings, too. The concepts presented in Appendix 2.A.1 may be helpful in following the

proof.

Proposition 2.5.2. Let yt be a set of variables following a joint VAR process as

in (2.10) with A0 non-singular. Suppose the structural relations among yt can be

summarised as a PDAG G over yt, then a shock εst to variable yk,t is identi�ed if every

edge incident to yk,t is orientated, regardless of orientation.

Proof. We will show that there always exists a transformation that we can implicitly

apply through the Cholesky decomposition and that preserves the response to εst . To

that end, let z1,t = PA(yk,t, G), z2,t = yk,t and z3,t = CH(yk,t, G). All remaining nodes

can be divided into two further sets: those that are strict descendants of z3,t, denoted

as z4,t = DES(z3,t, G) \ z3,t, and those that are not, z5,t = V (G) \ {z1,t, z2,t, z3,t, z4,t}.
Let the number of elements in zi,t be Ki, and K1 + · · · + K5 = K. Arrange zt =

(z′1,t, . . . ,z
′
5,t)
′ such that we can write the system as A0zt =

∑P
p=1Apzt−p + εt, where

εt = (ε1t , ε
s
t , ε

3
t , ε

4
t , ε

5
t )
′, and it is assumed that E[εtε

′
t] = I. Observe that the matrix
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A0 can be partitioned as

A0 =


A11,0 0 O O A15,0

a′21,0 a22,0 0′ 0′ 0′

A31,0 a32,0 A33,0 A34,0 A35,0

A41,0 0 A43,0 A44,0 A45,0

A51,0 0 O O A55,0

 , (2.13)

where Aij,0 is of dimension Ki × Kj. Note that a42,0 = a52,0 = a24,0 = a25,0 = 0

because z2,t is by construction neither parent nor child to any node yi,t ∈ {z4,t, z5,t};
A53,0 = A54,0 = O because z5,t is by construction not descendant of z3,t or z4,t.5 The

remaining zero blocks follow from the fact that G is acyclic.

Suppose none of the zi,t are empty and A0 is therefore non-singular. In that case

construct a matrix Γ such that ΓA0 is a lower block-triangular matrix. Let Γ be

partitioned with block dimensions equivalent to those of A0, let Γ15 = −A15,0A
−1
55,0,

and all remaining blocks Γij = IKi if i = j and Γij = O otherwise, where IKi is the

identity matrix of dimension Ki. The matrix ΓA0 can be further shaped in lower

triangular form by proceeding in the same fashion as Christiano, Eichenbaum, and

Evans (1999). That is, compute the QR decomposition for the upper left K1 × K1

block (ΓA0)11 = Q11R11 and for the bottom right (K3 +K4 +K5)× (K3 +K4 +K5)

block (ΓA0)33 = Q33R33, where non-singularity of both Q11 and Q33 is implied by

non-singularity of A0, and R11 and R33 are lower triangular matrices with positive

diagonal elements.6 Form the matrix Q = diag(Q′11, 1,Q
′
33) and observe that QΓA0

is lower triangular with strictly positive diagonal elements.

Let ut be a vector of reduced-form residuals. Apply the above transformation to

ut =A−10 εt = A−10 Γ
−1Q′(QΓεt)

=Ã−10 ε̃t,

and note that the (K1 + 1)th column of Ã−10 , a.(K1+1), and the respective row of ε̃t are

una�ected by the transformation. The fact that the vector a.(K1+1) is uniquely pinned

down follows from the uniqueness of the Cholesky decomposition of Σu = E[utu
′
t].

Further note that the ordering of the �rst K1 variables and the last K3 + K4 + K5

variables do not matter. Let P11 and P33 be permutation matrices of order K1 and

5I beg for pardon for the slight abuse of notation. The objects aij,0 and Aij,0 may have di�erent
dimensions, of course. In that case strict equality would not hold and the dimension of the zero
elements would need to be appropriately adjusted.

6To obtain a lower triangular matrix from the QR decomposition of A, simply start with the last
column instead of the �rst in the Gram-Schmidt process.
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K3 +K4 +K5, form P = diag(P11, 1,P33), and observe that the (K1 + 1)th column of

ΓA0 is appropriately reordered in

PΓA0P
′Put =Ā0Put,

and Ā0 is still lower block-triangular. Apply the same transformation as above with

another two QR decompositions, take the inverse and note that the (K1 + 1)th column

is again una�ected.

If any of z1,t, z3,t, z4,t, z5,t are empty, the construction still goes through by omitting

the relevant entries in zt and A0, and adjusting Γ , Q, and P accordingly.

The fact that partial identi�cation is achieved under the conditions of Proposition

2.5.2 is quite intuitive, since all variables a�ecting yk,t are known and predetermined

with respect to εst . Since the PC-1 algorithm returns a PDAG, it may partially iden-

tify certain shocks in a statistical sense. Whether they possess a meaningful economic

interpretation is another question. In this regard it should be kept in mind that the

recursiveness assumption in applying the PC-1 algorithm is by default, not by consid-

eration of circumstance.

For non-recursive systems, graphs can be helpful in deciding whether certain causal

e�ects can be identi�ed using instrumental variables. The intuition is simple. Suppose

xi ↔ yj is an edge in graph G which we wish to identify and where both xi and yj are

observable; further, let εyj be the shock to yj and suppose there are no latent variables

present in G other than shocks. One way to identify the e�ect xi → yj is to use an

instrument zi for which E[ziε
yj ] = 0 and E[zixi] 6= 0 holds. In G, these two conditions

translate into zi not being a descendant of yj, though an ancestor of xi.

Proposition 2.5.3. Let G = (V,E) be a directed graph associated with an A-type

SVAR model. A node yj ∈ V is identi�ed if every parent xi ∈ PA(yj) is either identi�ed

itself or if there is an ancestor zi ∈ ANC(xj) such that zi 6∈ DES(yj) and zi 6= zl for

any other unidenti�ed parent xl of yj. The corresponding VAR is fully identi�ed if

every node is identi�ed.

A proof may be sketched as follows. For the jth equation of an A-type SVAR model,

regressors fall into two categories: those whose data-generating equation has previously

been identi�ed and those that have not. For each of the already identi�ed variables,

construct an auxiliary variable by netting out any e�ect of yj. For each member of

the unidenti�ed group, we know by Proposition 2.5.3 that there is a unique and valid

instrument. Every structural parameter can now be consistently estimated by replacing

identi�ed endogenous variables with auxiliary variables and employing IV estimation

for the resulting set of regressors.
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These considerations may be helpful for, �rst, ascertaining whether IV is a suitable

method for estimating causal e�ects and, second, to construct appropriate instrument

sets from a given graph. It should be noted, however, that the criterion above is suf-

�cient but not necessary, as are many others. For example, under some circumstances

it may be possible to construct a suitable instrument zi by conditioning on another set

of variables W that block e�ects of εyj on zi. In that case zi can be a descendant of yj
and such cases would therefore not be covered by Proposition 2.5.3. In other cases the

VAR may be identi�able, but no instruments are available, such as in a three variable

system with a graph y1 → y2 → y3 → y1.

Deciding whether a graph admits IV estimation and building algorithms that con-

struct sets of valid instruments is not a trivial task. Finding criteria and building

e�cient algorithms for instrumental variables in directed graphs or directed acyclical

graphs with latent confounders is subject to an active �eld of research in arti�cial intel-

ligence (Kumor, Chen, and Bareinboim, 2019; van der Zander, Textor, and Li±kiewicz,

2015; Weihs et al., 2018).

For structural VAR analysis, these methods for constructing instrumental variable

sets support e�ciency and ease of computation. In contrast to maximum likelihood,

IV estimation always o�ers a closed-form solution if the system is just-identi�ed. In

addition, constructing the IV set can be automated for generic applications once the

corresponding graph is known. That is useful for implementing the sign identi�cation

scheme of Ouliaris and Pagan (2016) in an automated fashion, for example. Details of

that scheme are deferred to Chapter 3.

In a similar fashion, Are�ev (2014, 2016a,b) ventures towards a fusion of causal

graphs and structural VARs by unifying results from both strands of literature. The

two later working papers are essentially split-ups of the earlier one. In particular

Are�ev (2016a) translates algebraic rank conditions necessary for identi�cation of an

SVAR model to graphical conditions and obtains results similar to Proposition 2.5.3.

A major di�erence is that Are�ev (2016a) considers dynamic simultaneous equation

models (SEMs) in which identifying restrictions are also placed on coe�cients of lagged

endogenous or exogenous variables. The graphs in those papers also take these addi-

tional variables into account.

To shed light on the properties of SVAR systems identi�ed through graph-causal

means, we have another helpful equivalence. This one involves exact identi�cation

schemes.

Lemma 2.5.4 (Exact identi�cation). For an A-type SVAR model with zero restrictions

and K variables, an exact identi�cation scheme is equivalent to GA being connected

and having K(K − 1)/2 arrow heads.
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Proof. Let C be a selection matrix consisting of zeros and ones. The maximum number

of arrow heads in a directed polygraph of dimension K is K2. Thus, if precisely
K(K−1)

2
arrow heads are allowed, we have C vec(Ξ ′) = 0 with rk(C) = K(K+1)

2
. Since

Ξ ′ = I −A0, we also have

C vec(A0) = C vec(I) ≡ c (2.14)

and the necessary rank condition for identi�cation is therefore just ful�lled.

Now supposeGA is not connected. Then without loss of generality, theK vertices can

be split into two disconnected groups {1, . . . , K1} and {K1+1, . . . , K2}, withK1+K2 =

K. Each group forms a subsystem that itself needs Kj(Kj − 1)/2 zero restrictions,

j = 1, 2, in order to be just-identi�ed. Together they imply K(K − 1)/2−K1K2 zero

restrictions, while the disconnect implies 2K1K2 zero restrictions. In total we have

K(K − 1)/2 +K1K2 restrictions altogether and therefore either K1 = 0 or K2 = 0.

A corollary to Lemma 2.5.4 is that a complete directed graph, complete in the sense

that there is exactly one edge between any two vertices, represents an exact identi-

�cation scheme. That is because a simple counting exercise reveals that a complete

graph of dimension K has precisely K(K− 1)/2 edges. If K = 2, there is a single edge

in a complete graph. Adding a node to a complete graph of size k will increase the

number of edges by k. Thus the number of edges in a complete graph with K nodes is∑K−1
k=1 k = K(K − 1)/2.

But note that the converse to the above assertion is not necessarily true: an exact

identi�cation scheme need not form a complete graph. Take Figure 2.8 as a case in

point. The �gure shows a multigraph, a graph where more than one edge between

two vertices is allowed. There are 3 restrictions imposed on the graph, and if the

unrestricted elements of the coe�cient matrix A0 are drawn, say, from a normal dis-

tribution, the system will be identi�ed. Yet, variables U and W are not adjacent and

the graph is therefore not complete. In this instance, as in others, the value of A0 is

crucial for identi�cation. Suppose the contemporaneous e�ect of U on V is actually

zero, then the SVAR model implied by Figure 2.8 will no longer be identi�ed. Thus,

not only is it crucial that certain e�ects are absent, but also that other e�ects are

present (or do not counteract each other). As previously mentioned, in the probabilis-

tic graph literature this kind of mapping between distributions and graphs is called

`faithfulness' or `stability'. It is an assumption stating that only those conditional in-

dependence relations implied by the graph hold in the joint probability distribution of

the data and no other. For example, if U and V were in fact independent even though
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U

VW

Figure 2.8: Illustration of an incomplete graph that coincides with an exact identi�ca-
tion scheme.

the corresponding graph contains an edge between these two variables, the faithfulness

condition would be violated since that independence relation would not be implied by

the graph.

Another observation inspired by Lemma 2.5.4 and Figure 2.8 is that GA need not be

acyclic for (2.10) to be identi�ed. However, Lemma 2.5.1 and 2.5.4 together imply that

if the identifying restrictions can be summarised as a complete directed acyclic graph,

a necessary condition for identi�cation is ful�lled. In practice, a complete DAG will be

very likely to also su�ce for identi�cation and one may conjecture that together with

the faithfulness assumption it will even be guaranteed. Nonetheless, the graph does

not state numeric values and the necessary and su�cient rank condition should thus be

checked once parameter estimates are available (Lütkepohl, 2005, p. 361). The bottom

line is that a complete DAG is nothing else than a visual view of the usual recursive

Cholesky approach to short-run identi�cation.

This equivalence of complete DAGs to the Cholesky approach has implications for

the outcome space of causal search algorithms. In particular, a Cholesky ordering, or

indeed any other exact identi�cation scheme, will never be the outcome of algorithms

that test for patterns of conditional independence in the way the PC-1 algorithm does.

Lemma 2.5.5. All SVAR models discovered by the PC-1 algorithm will be recursive.

Proof. By Koller and Friedman (2009, Proposition 3.5) the output of the PC-1 algo-

rithm will be acyclic. In particular, the output will be a set of DAGs that are equivalent

up to the conditional independence relations implied by them. By Lemma 2.5.1 if GA
is a DAG, then the SVAR model is recursive. Hence, with every element returned by

the algorithm being a DAG, all of the implied SVAR models will be recursive.

The algorithm is speci�cally designed to recover a true graph G∗ that is assumed to

be a DAG. It is therefore hardly surprising that the output is acyclic, which maps to
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recursiveness in terms of SVAR terminology. For exact identi�cation schemes, this has

the following implication.

Proposition 2.5.6. None of the SVAR models discovered by the PC-1 algorithm will

be exactly identi�ed.

Proof. Suppose K > 2 and there is a unique SVAR model that is returned by the

PC-1 algorithm and that is just-identi�ed. By Lemma 2.5.4 the associated graph GA
is connected and has K(K − 1)/2 arrow heads. For the algorithm to impose any of

the necessary K(K − 1)/2 zero restrictions, some vertices need to be d-separated. Say

vertices i and j are d-separated by a set of vertices S, possibly an empty set. Since the

graph is connected, there is a path from i to j, but i and j cannot be adjacent. Since

the two vertices are not adjacent, yet we have K(K−1)/2 arrow heads, one arrowhead

needs to be placed elsewhere than between i and j. Iterating through the graph, there

are at least two vertices k and l such that k → l and k ← l. This contradicts Lemma

2.5.5.

If K = 2, then i and j are either adjacent or not. If they are adjacent, they cannot

be d-separated. If they are not adjacent, the system is over-identi�ed. In either case

the system will not be just-identi�ed.

A unique just-identi�ed SVAR system cannot be discovered by the PC-1 algorithm.

In fact, if the true system is just-identi�ed and correctly estimated, not a single edge

will be directed, such that the output is the set of all just-identi�ed systems. This

mirrors the well known fact that just-identi�ed systems are observationally equivalent.

However, if the system is over-identi�ed, the algorithm may recover the complete graph,

or partially identify nodes if the conditions of Proposition 2.5.2 are ful�lled. Moreover,

if an exact non-recursive system were the ground truth, then the PC-1 algorithm may,

even asymptotically, either force a loop like k ↔ l as k → l, thus imposing at least

one more restriction than necessary and over-identify the system, or it may leave the

complete graph undirected. The former case is clearly undesirable as it misspeci�es

the system.

If the PC-1 algorithm is only able to detect over-identi�ed systems, a natural ques-

tion is how this relates to standard likelihood ratio tests of overidentifying restrictions

that are frequently used in structural VAR analysis. Can a system estimated via the

PC-1 algorithm be rejected by a likelihood ratio test? Will the two coincide asymptot-

ically? Standard implementations of the PC-1 algorithm conduct sequences of partial

correlation tests that are, at least asymptotically, Wald tests. As is well known (Engle,

1984), Wald and likelihood ratio tests are asymptotically equivalent. Thus, if the size of

both testing procedures is appropriately corrected to take multiple testing into account,
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one may conjecture that asymptotically a system recovered by the PC-1 algorithm will

not be rejected by a likelihood ratio test. In �nite samples, however, all bets are o�.

The set of null hypotheses that were not rejected by the sequence of tests conducted

by the PC-1 algorithm may jointly be rejected by a likelihood ratio test. Equivalently,

a likelihood ratio test may not reject a joint hypothesis whereas the sequence of Wald

tests would.

Overall, even though the two testing regimes do not fully coincide, one can view the

PC-1 algorithm as being informative about what kind of over-identifying restrictions

are likely not to be rejected by the data. This feature of the algorithm may be used to

carefully explore data characteristics.

2.6 Conclusion

This paper has explored the nexus between structural vector autoregressive (SVAR)

models and causal graphs. There is a straightforward mapping between SVAR models

identi�ed via short-run restrictions and graphs which is convenient for visualising,

communicating and checking core identi�cation assumptions with the help of a graph.

Furthermore, the outcome space of the PC-1 algorithm for discovering graph structures

has been discussed in the context of SVAR models. The outcome of the algorithm is

always acyclic such that only recursive models can be discovered. Mirroring the well

known observational equivalence of just-identi�ed models, the algorithm will either

leave the complete graph undirected or impose some over-identifying restrictions. These

restrictions may partially identify shocks, fully identify the model or fail to identify

any shocks, depending on context. One may conjecture that these restrictions will

asymptotically not be rejected by a likelihood ratio test of comparable size.

There are three weaknesses of the algorithm. One is particular to SVAR models,

where non-recursive identi�cation schemes are usually not excluded a priori. Thus, if

the true structure is non-recursive, the algorithm will either not impose restrictions

at all or force through an over-identi�ed, recursive scheme. The latter is clearly un-

desirable as it may heavily misspecify the model. A second weakness is related to

uncertainty in �nite samples. An important assumption made by the algorithm is that

the joint distribution and the graph are strongly faithful to each other. This means

that the (conditional) independence relations between random variables implied by the

graph can reliably be recovered, and no other independencies will be found. But in

�nite samples there is always a range of outcomes where independence relations are

not rejected due to insu�ciently informative data. Thus, the mapping of independence

relations between distribution and graph is noisy. What is more, there is no measure

of uncertainty that could re�ect how reliable the outcome of the algorithm is. Once an
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independence relation has been attested, it is assumed as certain in all further steps.

The algorithm may therefore su�er from an accumulation of type II errors that would

distort the outcome. If there were some measure to indicate how severe this problem

is, this particular weakness may be alleviated. For the third weakness, that is the case:

The reliance on multiple hypothesis testing means that type I errors are also accumu-

lating. That may be addressed with standard procedures controlling the FWER or

false discovery rate (FDR). As it stands, causal discovery methods like the PC-1 algo-

rithm may serve as exploratory tools for assessing which over-identifying restrictions

could be supported by the data. But researchers should be cautious in accepting the

algorithm's outcome as given.

The �eld of causal discovery is growing. It particularly thrives on insights from the

machine learning literature. Thus, future research may address other forms of causal

discovery, for example by relying on other tests for conditional independence or on

methods that assess the direction of causality by other means than through conditional

independence tests. These could include score-based or Bayesian learning procedures

which have so far found little application to structural VARs with the noticeable ex-

ception of Ahelegbey, Billio, and Casarin (2016). In the context of the PC-1 algorithm

a straightforward extension would be to control the FWER or FDR. For SVAR anal-

ysis, representing identi�cation restrictions other than for A-type models may also be

a worthwhile endeavour. B-type models, for example, would rely on graphs and meth-

ods that are able to represent latent variables. Finally, graphical discovery algorithms

might supplement existing identi�cation schemes by carefully exploring properties of

the data and thereby improve modelling of data characteristics.
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2.A Appendix

2.A.1 Probabilistic Graph Theory

This appendix reviews concepts from probabilistic graph theory in a nutshell. As

graph theory is not a mainstream econometric tool, I believe reviewing the material

here is bene�cial for understanding results and discussions more thoroughly. More

detailed accounts of probabilistic graphs are available in textbooks by Pearl (2009),

Koller and Friedman (2009), and Spirtes, Glymour, and Scheines (2000). Among the

�rst to write on the subject of probabilistic graphs in textbook form is Pearl (1988).

Summaries with a similar econometric perspective are given by the papers of Demiralp

and Hoover (2003) and Kwon and Bessler (2011). For details on graph theory itself,

see the introductory textbooks by West (2001), Harts�eld and Ringel (2003) or the

graduate-level text by Diestel (2017).

A graph usually consists of two sets, a set of vertices and a set of edges. Vertices,

which are sometimes also called nodes, are the primitives of a graph and may represent

any kind of object: letters, numbers, points, variables, economic concepts, or tra�c

junctions. An edge is always based on two vertices, not necessarily distinct, and is

viewed as a connection between the two vertices. These in turn are called the endpoints

of the edge. In addition, there is an endmark specifying the nature of each endpoint.

De�nition 2.A.1 (Vertex). Let v1, . . . , vK be a �nite number of distinct objects of

interest. Call each one a vertex and all together a set of vertices V .

De�nition 2.A.2 (Edge). Letm be the set of possible endmarks and let V be the set of

available vertices. De�ne el = (Vl,ml) as an edge based on Vl = (vl1 , vl2) ∈ V ⊆ V × V
and ml = (ml1 ,ml2) ∈ m ⊆ m×m. Finally, denote E = {e1, . . . , eL} as a set of edges.

De�nition 2.A.3 (Graph). Let V be a set of vertices, m a set of marks, and E a set

of edges based on V and m. Then a graph is de�ned as the ordered pair G = (V,E).

Given a graph G, the set of vertices of that graph are given by V (G) and the set

of edges by E(G). Sometimes, graphs are alternatively de�ned as triples with a set of

vertices, a set of edges disjoint from the set of vertices, and a mapping between these

two sets. Either approach will su�ce for our purposes. For simplicity, in our case the

dependence of E on V and m is not further indicated. It does depend, however, on

these two sets and we can place restrictions on the implicit mapping from E to V and

m. In this way we can further de�ne certain classes of graphs either through these

restrictions or by directly setting up E and m in a suitable way.
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A

B

C
Figure 2.9: Example of a directed

graph.

A

B

C
Figure 2.10: Example of a DAG.

Example (Directed Graph). Let us assign V = {A,B,C} and m = {<,>,∅}. Then

the graph shown in Figure 2.9 is a member of the class of directed graphs in which

the set of marks of each edge is restricted to be either ml = (<,∅) or ml = (∅, >).

The symbols constituting m can be conveniently interpreted in this case as arrowheads

pointing left (<), right (>) and as an empty head (∅).

Directed graphs re�ect a hierarchical structure between vertices. Usually, this also

implies an asymmetry in that some vertices are being pointed at while others are the

source of pointers. It is customary to characterise these relations in terms akin to family

relations. From now on we will also shorten the notation and indicate the presence of

an edge el = ((vl1 , vl2), (∅, >)) in G as vl1 → vl2 .

De�nition 2.A.4 (Kinship). For a generic directed edge vl1 → vl2 , vl1 is the parent

vertex and vl2 is the child vertex. Recursing through the graph, any parent, parent's

parent, and so forth, of a particular vertex vk is called an ancestor of that vertex.

Likewise, any child, children's child, and so forth, of vk is called a descendant of vk.

For a vertex vk, the sets of parents, ancestors, children, and descendants are denoted

as PA(vk), ANC(vk), CH(vk), DES(vk).7

A graph can be further characterised as complete or connected. A complete graph is

one where there is an edge between any two vertices. A connected graph is one where

there is a path between any two vertices that one may traverse along. Figure 2.8 is a

7In some parts of the literature, vk itself is a member of DES(vk) and ANC(vk) by default for de�ni-
tional or practical reasons. That usage is not followed here.
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connected graph, for example, but it is not complete since the edge U�W is missing.

If the edge U → V were absent as well, Figure 2.8 would not be connected either.

De�nition 2.A.5 (Path). A path in graph G refers to a sequence of edges ep1 , . . . , epJ
such that every element epi ∈ E(G) is unique and for any two consecutive edges epi
and epj we have that vi2 = vj1 , with j = i + 1. If there are no two edges, then a path

is simply an edge. A directed path is a path where in addition all edges are either →
or ←.

In a directed graph, a single vertex may be its own parent and child, as for example

vertex A in Figure 2.9 is. Two di�erent vertices may be parent and child to each other

at the same time. Or, indeed, a single vertex may be its own ancestor and descendant

if one can cycle through vertices, as is for example the case for every vertex in Figure

2.9. We will use another class of graphs to prevent such cycles.

Example (DAG). Let V = {A,B,C} and m = {<,>,∅} again. Then the graph in

Figure 2.10 is a member of the class of directed acyclical graphs (DAGs) in which the

mapping from E to V and m is restricted in such a way that no vertex may be its own

descendant.

DAGs are especially convenient for causal analysis because every DAG with one

or more edges has at least one vertex that is only a receiver of pointers and at least

one vertex that is only a source of pointers. Moreover, there exists an ordering of

vertices vs1 , . . . , vsK , not necessarily unique, such that if vsl is a descendant of vsk ,

then l > k, and if vsl is an ancestor of vsk , then l < k. This property adequately

mirrors the approach taken in many econometric analyses, where identi�cation of causal

e�ects relies on the assumption that for each target of interest there is some form

of exogenous variation available that remains una�ected by alterations further down

the line. In addition, in economic theory there is usually an understanding of the

speci�c directionality from right-hand-side to left-hand-side variables within each of

the isolated equations that give rise to a full model. Either of these considerations

could be summarised in a directed graph by equating variables with vertices and the

structural relations between them as directed edges, though whether they comprise a

DAG depends on the application at hand.

Nonetheless, if researchers are willing to assume that the system under scrutiny

complies with a DAG, then a number of useful results from probabilistic graph theory

can be applied. For these results to hold, a few other key assumptions are necessary.

First, for every variable vk, we will assume that we can �nd a set of variables that

shield vk from the in�uence of all others, except from those on which vk has a direct

or indirect in�uence itself.
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De�nition 2.A.6 (Markov Condition). Let y = (y1, . . . , yK)′ be a vector of random

variables with joint probability distribution fy. The distribution fy and a DAG Gy

with vertex set V = {y1, . . . , yK} and edge set E are said to ful�l the Markov condition

if

yk ⊥⊥
(
V \DES(yk) ∪ PA(yk) ∪ yk

) ∣∣∣ PA(yk) (2.15)

holds for k = 1, . . . , K.

The condition is sometimes also called the local or parental Markov condition. The

condition is the �rst to establish a relation between the properties of a set of random

variables and the elements of a graph. The symbol yk now represents both a random

variable and a vertex. The usefulness of the Markov condition stems from the fact that

it o�ers a straightforward decomposition of the joint probability distribution

fy(ω) =
K∏
k=1

fyk
(
ωk
∣∣ωPA(yk)

)
, (2.16)

where ωk represents a realisation of yk and ωPA(yk) a realisation of the vector of random

variables corresponding to PA(yk). This decomposition has the potential to reduce the

complexity of the process at hand since the number of interactions between variables

and thus also the number of parameters governing the process may be lowered. How-

ever, its usefulness in encapsulating structural information is limited by the fact that

Gy need not be unique. In fact, for a given probability distribution, a trivial graph

ful�lling the Markov condition is any complete DAG of appropriate order. In a com-

plete DAG, every vertex is either parent or child to every other vertex and there are

therefore no independence relations, either conditional or unconditional, implied by the

graph under the Markov condition.

To make the use of graphs more fruitful, we will require that existing edges actually

re�ect a direct interaction between variables.

De�nition 2.A.7 (Minimality Condition). For a probability distribution f and a

graph G ful�lling the Markov condition, the graph G is said to ful�l the minimality

condition if the Markov condition is violated after removing any edge from G.

The minimality condition places more stringent requirements on the graph represent-

ing our joint probability distribution. Nonetheless, there may still be a multiplicity of

graphs ful�lling the condition. But with both conditions in place, we will give such

combinations of distribution and graph a name to refer to.

De�nition 2.A.8 (Bayesian Network). Let fy and Gy be a distribution and a graph

ful�lling the Markov and minimality condition. Then the pair By = (Gy, fy) is said to

be a Bayesian network over y.
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The term alludes to Bayes because of the subjectivity that is often entailed in setting

up the pair of distribution and graph. The other reason is that the graph may also

serve as a guide, in accordance with Bayes Law, for updating beliefs about states of

variables once information about their ancestors or descendants become available.

Equipped with these concepts, we are ready to infer, by simple inspection of a graph,

that certain variables are not related to each other. If there is no path between two

variables yi and yj, for example, we know that they must be independent of each

other. Less clear are relations between variables that do have a path connecting them.

They may or may not be independent depending on the nature of the path(s) between

them. A further concern is whether we can make yi and yj become independent by

conditioning on a third set of variables Z. It will turn out that such conditioning is

possible whenever the two variables are directionally separated or d-separated by Z in

a graph Gy associated with a Bayesian network over y.

D-separation applies to graphs, but its purpose is to facilitate reasoning about inter-

actions between random variables. Let us leave the precise nature of this interaction

open for the moment and instead adopt a more intuitive language. Suppose there is

some kind of transmission occurring between adjacent vertices in a directed graph Gd.

The transmission may refer to messages or signals, or some other form of asymmetric

interaction that travels along consecutive edges. The asymmetry is again re�ected in

the directionality of the graph. A directed edge vk → vl will only transmit from vk to

vl but not vice versa. A path vk → vl � vm transmits from vk to vl and perhaps from

vl to vm or vm to vl or both, but not from vm to vk. Because of this asymmetry, the

occurrence of so-called colliders or v-structures is central to analysing the directional

separation of vertices.

De�nition 2.A.9 (Collider). Let B = (G, f) be a Bayesian network and let P =

ep1 , . . . , epJ be a path in G and y1, . . . , yI the sequence of vertices on path P . A vertex

yi on P is called a collider if two arrows collide yi−1 → yi ← yi+1 on P .

This notion is central to separation because a collider does not transmit any changes

occurring in yi−1 to yi+1 along path P . More generally, we can inspect every path

between two vertices yk and yl and ask ourselves for each path whether it would transmit

any changes occurring in one variable to the other if information can �ow freely from

vertex to vertex. We can also ask ourselves if this transmission is broken once a certain

set of vertices is interfered with. Let us call a path that transmits unblocked and a

non-transmitting path blocked. Perhaps it is blocked by controlling an intermediate

vertex vl, or perhaps it is naturally blocked by a collider. The insight of d-separation

is that two vertices are separated whenever every path between them is blocked.
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De�nition 2.A.10 (Blocked Path). A path P between two vertices vk and vl in di-

rected graph Gd is blocked by a set of vertices Z if Z is such that

i) P contains at least one collider that is not included in Z and none of its descen-

dants are included in Z or in {vk, vl}, or

ii) at least one other vertex on P that is not a collider is included in Z.

If neither of these conditions apply, then P is unblocked.

In the graph U → V → W , the path from U to W would be blocked by Z = {V }.
The path would be unblocked by Z = ∅. In Figure 2.8, on the other hand, we have

U → V ↔ W . Here, the path from U to W cannot be blocked by either Z = {V } or
Z = ∅ since V is a collider and its child is W .

We can now de�ne separation not just between two nodes, but between sets of

vertices as well.

De�nition 2.A.11 (D-Separation). Let X, Y and Z be distinct sets of vertices in

directed graph Gd. The sets X and Y are d-separated by Z, denoted d-sep(X, Y |Z),

if for any two vertices vk ∈ X and vl ∈ Y every path between vk and vl is blocked by

elements in Z.

D-separation considers all paths running between X and Y and determines for each

path whether it is blocked or unblocked by Z. If all paths are blocked, then X and

Y are d-separated. The great insight of d-separation is that colliders block paths

by their very nature, whereas paths without colliders are unblocked by default and

must be blocked by a shielding vertex. The value of d-separation lies in the fact

that, when applied to a Bayesian network, it describes every independence relation

that is present in the network over and beyond those which are given by the Markov

condition. We will denote the set of independence relations implied by d-separation

as I(G) = {X ⊥⊥ Y |Z : d-sep(X, Y |Z)}. Similarly, for a probability distribution f ,

denote the set of independence relations that hold for f as I(f).

Theorem 2.A.1 (Meek (1995)). Let By = (Gy, fy) be a Bayesian network. Then for

almost all discrete or normal probability distributions fy, we have that I(fy) = I(Gy).

The noteworthy feature about d-separation is that it extends the set of local Markov

independence relations that we started with to a global set that holds in the underlying

distribution and that we can �nd by scrutinising a graph. The proof of Theorem 7

and 8 in Meek (1995) apply for discrete and normal distributions, though one may

conjecture that it holds for other type of distributions, too. The result holds for every

probability distribution except for a set of distributions with Lebesgue measure zero,

as the following example illustrates.
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Example. Let By be a Bayesian network over y = (y1, y2, y3)
′ with a graph equivalent

to Figure 2.10. Now suppose its data generating process is described by the following

three equations

y1 = u1, (2.17)

y2 = ay1 + u2, (2.18)

y3 = by2 + cy1 + u3, (2.19)

where u1, u2, u3 are exogenous random variables following a normal distribution and

are excluded from the graph. If b = 1/a and c = −1, then y1 ⊥⊥ y3 even though I(Gy)

is empty.

In this example, there is an independence in fy which is not found by the d-separation

criterion and thus I(fy) ⊃ I(Gy). The independence arises due to a rather pathological

parameter constellation where two e�ects cancel each other out; a constellation that

occurs with probability zero if the parameters a, b, c were drawn at random from a

continuous distribution. Nevertheless, it is a caveat that should be kept in mind when

analysing the properties of probabilistic graphs.

Sometimes a slightly stronger assumption is made that precludes concerns about

inconvenient parameter constellations. This is especially helpful when testing statistical

properties implied by the graph or when learning structure from data.

De�nition 2.A.12 (Faithfulness). A distribution f is faithful to graph G if I(f) ⊂
I(G).

The faithfulness assumption and the Markov condition together imply that I(f) =

I(G). In such a case, graph G is also called a perfect map of f . A perfect map may not

always be available for every application. Apart from parameter regularities, there are

other settings which are inappropriately modelled by Bayesian networks. For example,

when independence relations shift in response to which values certain variables take,

then the faithfulness assumption may not be warranted (see Koller and Friedman, 2009,

p. 81 for details). If it does exist, a perfect map need not be unique, either. Think of

a complete DAG again, where the set I(G) is empty. A complete DAG is isomorphic

to any other complete DAG. Therefore, a distribution represented by a complete DAG

would have many valid perfect maps. For this reason, the set of graphs Gy that may

serve as components of a Bayesian network By is usually described by its equivalence

class.

De�nition 2.A.13 (Equivalence Class). Two graphs Gi and Gj belong to the same

equivalence class G whenever I(Gi) = I(Gj).
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Colliders are important for characterising an equivalence class, because they are the

only pattern associated with a distinct independence relation. A path vk � vl � vm is

unconditionally blocked if and only if the middle vertex is a collider. However, they can

only be unconditionally d-separated, and thus unconditionally independent, if there is

no edge between vk and vm. Since lack of such an edge is a necessary (but not su�cient)

condition for d-separation, this structure is given a special name. Whenever the vertex

vl is a collider and there is no edge between vk and vm, then vl is called an unshielded

collider. A second important structure for analysing equivalence classes is a skeleton.

For a directed graph G, the skeleton of G is an undirected graph H such that every edge

in G is replaced by an undirected edge in H. We can now characterise the equivalence

class associated with a distribution.

Theorem 2.A.2 (Koller and Friedman (2009, Theorem 3.8)). Let f be a probability

distribution with at least one perfect map Gi. A graph Gj is in the same equivalence

class as Gi, and thus also represents f , if and only if Gj has the same skeleton and the

same unshielded colliders as Gi.
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CHAPTER 3

Sign Restrictions and Causal Learning in Structural

VARs: A First Case Study Using Oil Market Data

3.1 Introduction

By now, a whole array of identi�cation routines for SVAR models exist, some relying

on subject matter considerations, some on features of the data, and others on a com-

bination of both. This article seeks to expand this arsenal further by combining two

hitherto unrelated identi�cation routines: sign restrictions on structural parameters on

the one hand and graphical modelling of features of the data on the other hand. This

combination is applied to the global crude oil market, where it successfully replicates

previous �ndings.

Combining these routines may be advantageous as it addresses drawbacks that either

routine, on its own, su�ers from. Sign restrictions usually impose mild conditions that

are acceptable to a wide audience, at the cost of lower identi�cation and estimation

precision. The resulting set of identi�ed structural models may be so large that only

few economic conclusions can be reached safely. On the upside, identi�cation via

sign restrictions is a widely accepted method, is likely to pin down economic concepts

coherently and is under constant development by an active research community.

Graphical modelling, on the other hand, is a rarely used tool among economists. It

represents one particular type of reasoning in the literature on causality that seeks to

represent causal relations in the data through graphs comprised of nodes and edges.

The logic underlying this reasoning is not bound to graphs, but it o�ers a convenient

framework.

This kind of causal modelling stems from considerations mainly entertained by com-

puter scientists to inductively infer structure among a set of variables without the

necessity of prior causal knowledge. As such, it is not guaranteed to recover anything

that lends itself to intuitive economic interpretation. Rather, graphical algorithms
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formalise a search for independence patterns among variables. One common imple-

mentation of this is to conduct a sequence of hypothesis tests with little regard for the

overall sampling uncertainty. Accepting the outcome of this search as given might place

subsequent conclusions on thin ice. In addition, assumptions such as recursiveness are

frequently invoked to ease the search task.

For these reasons, graphical modelling has remained on the fringes of structural time

series analysis. Yet, ignoring new methodological insights from the causal search liter-

ature altogether may prove a missed opportunity. I therefore propose to combine the

best of both worlds: the economic intuition provided by sign restrictions, while limit-

ing, in a conservative enough fashion such as not to jeopardise any �nal conclusions,

the scope for admissible models via features of the data. More speci�cally, I propose to

run a `graphical' pre-analysis, the results of which are incorporated in the subsequent

sign-identi�ed VAR analysis. In the spirit of a recent push to break away from separat-

ing test results into `signi�cant' and `non-signi�cant' outcomes (Wasserstein, Schirm,

and Lazar, 2019), I suggest that researchers carefully review the properties highlighted

by graphical procedures and decide which aspects are safe to build upon. In this paper,

the pre-analysis consists of simple partial correlation patterns that will indicate, under

suitable statistical assumptions, whether any two variables are not directly causing

each other. In principle, the pre-analysis may also include other recent causal methods

that relax some of the invoked assumptions.

The advantages of not just relying on the graphical approach for identi�cation of

the VAR are threefold. First, depending on the application at hand, and possibly

on the degree to which the data are `tortured', the method will either produce an

over-identi�ed or unidenti�ed system. In the unidenti�ed case the system may still

be partially identi�ed, such that a subset of structural shocks can be recovered. This

variability of success is irrelevant in the present context, because identi�cation is always

achieved via sign restrictions. Second, the unknown statistical uncertainty surrounding

graphical modelling is reduced by focusing on those patterns that seem most prevalent.

Third, the graphical procedure most often used for structural VARs relies in part on

sample characteristics and in part on logical conclusions that arise from the assumption

of recursiveness. That assumption can be weakened by leaving those logical conclusions

aside.1

One challenge in incorporating the results from this prior graphical screening is that

most algorithms implementing sign restrictions sample the impact matrix of structural

1The logical conclusions arise because the graph associated with a recursive VAR is a directed acyclical
graph (DAG). In a DAG some edges may be orientated simply because any other orientation would
violate the assumption of acyclicity. Their orientation therefore does not immediately rely on sample
information.
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innovations, whereas graphical tools focus on the contemporaneous e�ects between

endogenous variables. In this paper, the sign restriction algorithm of Ouliaris and

Pagan (2016) is used which allows sampling the contemporaneous e�ects of endogenous

variables and thus to easily incorporate the graphical insights. An alternative remedy

would be the Bayesian framework of Baumeister and Hamilton (2015) or to map the

prior restrictions from contemporaneous e�ects to the structural impact matrix.

I apply the method in a case study using the oil market model of Kilian and Murphy

(2012). The original study points out the lack of meaningful identi�cation when relying

exclusively on impact sign restrictions. The authors therefore also rely on extraneous

information to shrink the set of admissible models. Ignoring that additional informa-

tion, the method I apply successfully replicates the �ndings of the original study by

relying on features of the data instead. This suggests that the proposed identi�ca-

tion strategy is a viable option whenever such extraneous information is unavailable or

disputed.

The remainder of this paper is organised as follows. Section 3.2 reviews the literature

on sign-identi�ed VAR models as well as causal graphs. Section 3.3 discusses the

details of these two methodologies. The practical use of combining them is illustrated

in Section 3.4, with an example taken from the literature on oil market VARs. Finally,

Section 3.5 concludes.

3.2 Literature

Sign restrictions in structural VAR models have been pioneered in particular by Uhlig

(2005), Faust (1998), and Canova and De Nicoló (2002). Since then the approach has

been widely adopted. It has also seen further methodological improvements, which are

discussed in greater detail by Kilian and Lütkepohl (2017, chap. 13) and Uhlig (2017).

There are several challenges for sign-identi�ed VAR models. One challenge is to

e�ectively sample the space of admissible models. Since the restrictions usually do not

pin down structural parameters uniquely, it becomes necessary to explore the prop-

erties of all models that ful�l the sign restrictions. Of particular interest is the type

of economic conclusions that are supported by the set of valid parametrisations. To

explore the model space, a popular choice is to orthogonalise the reduced-form errors

and then to sample certain linear combinations of these errors such that they ful�l the

restrictions (Rubio-Ramírez, Waggoner, and Zha, 2010). Ouliaris and Pagan (2016)

have proposed another algorithm that I will adopt in this article. They suggest drawing

a speci�c number of structural parameters at random, estimating the structural form

conditional on these draws via instrumental variables and retaining those parametrisa-
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tions which meet the sign restrictions. A more detailed discussion is deferred to Section

3.3.

Another challenge is inference. Most studies adopt a Bayesian framework for infer-

ence in which set identi�cation can be seamlessly incorporated. But even in a Bayesian

setting, one issue of contention is how to formulate prior knowledge in the most convinc-

ing way (Baumeister and Hamilton, 2015; Bruns and Pi�er, 2019). In frequentist set-

tings, di�erent avenues are beginning to bear fruit (Granziera, Moon, and Schorfheide,

2018; Gafarov, Meier, and Montiel Olea, 2018), but are not yet always applicable.

Another debate revolves around how best to summarise inference across a set of sign-

identi�ed models (Fry and Pagan, 2011; Inoue and Kilian, 2013) or across multiple

forecast horizons or response variables (Inoue and Kilian, 2016, 2020). As Inoue and

Kilian (2016) and Uhlig (2017) note, the extent to which this kind of joint inference is

important very much depends on the question at hand. But what certainly remains a

concern for any kind of inquiry is general estimation precision. The latter can be low

when only set identifying assumptions such as sign restrictions are imposed.

Due to this lack of precision in sign-identi�ed VARs, many authors complement

sign restrictions with additional identifying assumptions. Baumeister and Hamilton

(2020) provide an overview of studies with sign-identi�ed VARs in this regard. They

stress the need for including additional information since otherwise the sign-identi�ed

analysis is often either meaningless or misleading. A selection of additional means

of identi�cation beyond impact sign restrictions include restricting the sign of cross-

correlations between impulse response sequences at di�erent horizons (e.g. Canova

and De Nicoló, 2002), restricting the sign of impulse response functions over multiple

horizons (e.g. Uhlig, 2005), penalising impulse response functions (again Uhlig, 2005),

bounds on the magnitude of certain transformations of structural parameters (e.g.

Kilian and Murphy, 2012), short-run exclusion restrictions (e.g. Arias, Rubio-Ramírez,

and Waggoner, 2018), and using instrumental variables in addition to sign restrictions

(e.g. Nguyen, 2019). Many of these additional restrictions are motivated by subject

matter considerations.

There are, however, also studies that achieve identi�cation through statistical means,

independent of sign restrictions. Most widespread among them are methods that ex-

ploit changes in volatility (see Lütkepohl and Net²unajev, 2017) or non-Gaussianity of

the error terms (Lanne, Meitz, and Saikkonen, 2017). These methods usually achieve

full identi�cation and therefore render any other economic restrictions overidentifying.

Graphical modelling of contemporaneous dependencies, while also a data-driven ap-

proach, will either overidentify a VAR or fail to achieve full identi�cation, depending

on the data. In addition, overidenti�cation is usually only possible with an unknown,
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and therefore potentially large, margin of error. Nonetheless, this approach has been

used by a number of researchers in macroeconomics and outside. Graphical path rep-

resentations of statistical dependence have been used informally as early as Wright

(1921) and Wold (1954). Researchers such as Pearl (1988, 2009) and Spirtes, Glymour,

and Scheines (2000) have subsequently formalised earlier notions by building a theory

that relates graphs to probabilistic concepts. Sometimes, these probabilistic concepts

are infused with causal ideas, though they need not be. Such causal graph analyses

have gained some critical attention in parts of the microeconometric literature (Im-

bens, 2019). In macroeconometric VAR analysis, algorithms and ideas born out of

causal graph theory have been applied by Swanson and Granger (1997); Demiralp

and Hoover (2003); Demiralp, Hoover, and Perez (2008); Hoover, Demiralp, and Perez

(2009); Demiralp, Hoover, and Perez (2014); Moneta (2008); Moneta et al. (2011);

Fragetta and Melina (2011, 2013), amongst others.

These studies all identify VARs using insights from graph theory that equate certain

forms of conditional statistical independence among the set of endogenous variables

with causal relations. However, the studies fall short of supplying insights for policy

as structural shocks are never identi�ed. This is predominantly so because a meaning-

ful economic interpretation of those structural shocks is often di�cult without some

economic bearing in the �rst place.

In practice, independence needs to be tested for. The studies cited above employ a

sequence of classical hypothesis tests to detect correlation patterns from which they in-

fer dependence. There is also a vibrant Bayesian literature that has developed certain

ways to sample graphs. Ahelegbey, Billio, and Casarin (2016), for instance, imple-

ment a Bayesian estimation technique that samples DAGs in the context of structural

VAR models. By imposing an acyclicity constraint on both the lag structure and the

contemporaneous relations between variables, they achieve two goals: identi�cation of

the VAR model and a more parsimonious autoregressive part. The Bayesian graphical

VAR (BGVAR) compares favourably to Bayesian VARs and stochastic search variable

selection in simulation and forecasting exercises. However, the authors again cannot

demonstrate what kind of results the method would provide in structural impulse re-

sponse analysis and in how far they would di�er from other approaches to identi�cation.

The reason is again a lack of economic identi�cation.

Augmenting these graphical approaches with sign restrictions will help to overcome

this lack of policy-relevant insight. The two approaches are therefore complementary.

Graphical identi�cation often lacks structural economic insight, which can more easily

be accomplished by relying on sign restrictions. Conversely, sign restrictions neatly

pin down economic concepts, but lack precise identi�cation. Improving that precision
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may be achieved by adding exclusion restrictions gleaned from a statistical analysis of

dependence patterns among the data. By relying on statistically motivated restrictions

instead of purely conceptual ones, researchers may reduce the risk of imposing the

answer that is sought in the �rst place. After all, as Uhlig (2005, p. 384) notes, �the

answer to the key question [...] is often already substantially narrowed down by a priori

theorizing.�

3.3 Methods

In this section, I will brie�y outline the two approaches used for identi�cation. The

�rst, sign restrictions, is well established in the literature. While the approach has been

frequently applied, it is still under active discussion and development. The second part

of this section will review the causal learning approach that will later be used for

re�ning identi�cation. It has seen few adoptions in the structural VAR literature and

may therefore be less widely known. I will shortly discuss its foundations and build

intuition.

Throughout, the focus lies on a standard structural VAR model

A0yt =
P∑
p=1

Apyt−p + εt (3.1)

which in reduced-form becomes

yt =
P∑
p=1

A∗pyt−p + ut, (3.2)

where yt is a vector ofK endogenous variables and the matrixA0 carries the contempo-

raneous e�ects between those variables and is normalised to have a unit diagonal. The

ijth element of A0 is denoted as −aij for i 6= j. The vector εt contains K independent

structural errors with diagonal covariance matrix Σε and the reduced-form residuals

are given by ut = A−10 εt such that its covariance matrix is Σu = A−10 ΣεA
−1′
0 .

3.3.1 Sign Restrictions

Most of the literature by now follows Rubio-Ramírez, Waggoner, and Zha (2010) in

drawing and imposing sign restrictions in structural VAR models. They focus on

creating draws of the impact matrix A−10 via repeated rotations of the Cholesky de-

composition of the reduced-form residual covariance matrix. This approach may be
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implemented in a frequentist or Bayesian setting, but most authors opt for the latter,

not least as inference in a Bayesian framework is easier to conduct.

In this study, the focus lies on imposing additional restrictions on elements of the

contemporaneous e�ects matrix A0 as that is the object causal learning is informative

about. The restrictions can be implemented in at least three ways. First, one may use

the Bayesian methods of Baumeister and Hamilton (2015) to impose prior knowledge

on A0 directly. Second, one may translate between the two speci�cations by working

out any implications of restrictions on A0 for A
−1
0 . Third, Ouliaris and Pagan (2016)

recently proposed a �exible frequentist framework for imposing sign restrictions on A0,

while also allowing for restrictions on any transformations f(A0,A1, . . . ,AP ,Ωε) . For

simplicity, I adopt the latter framework in this study.

The framework of Ouliaris and Pagan (2016) is inspired by the following observa-

tion. Without further restrictions on (3.1), the equation is underdetermined given any

sample {yt}. The usual order condition states that at least K(K − 1)/2 restrictions

must be imposed for a unique solution. Ouliaris and Pagan (2016) suggest imposing

the required number and the required kind of restrictions by drawing su�ciently many

elements of A0 at random. Conditional on these draws, the remaining parameters can

be estimated via instrumental variables and checked against the imposed sign restric-

tions on non-linear transformations of A0. Whenever the signs match, the draws are

retained and discarded otherwise. The advantage of this approach is its simplicity, both

conceptionally and computationally. However, as of now there are also two important

downsides to this approach. One is the lack of proper inference, the other is a lack of

attention to the implications of the sampling mechanism. Depending on how initial

draws for the parameters are created, the �nal results of impulse response analysis may

change. In the extreme case, if initial draws are too concentrated on one particular

region, the algorithm may fail to e�ectively sample any valid parametrisations. In a

less extreme case, it might discover admissible models but overweight some of them.

This would come to bear on any attempt to summarise the results in a point estimator,

since any measure of centrality will be a�ected by di�erent sampling schemes. These

drawbacks may be addressed in principle, but are not the focus of the present study.

Nevertheless, the method is useful in the present context for illustrating the bene�ts of

relying on additional identifying restrictions motivated through causal graph theory.

3.3.2 Causal Learning

To build intuition, imagine the following scenario. A large number of geographic land

locations from around the globe is sampled at random. Each unit of observation carries
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three measurements: latitude2, altitude, and average temperature. With this setting, a

discernible pattern between latitude and altitude is unlikely to emerge. That is because

there is no mechanism or theory that would predict that altitude is likely to be very

di�erent because of a di�erent latitude, or vice-versa. In this instance, the lack of

causation is likely to coincide with a lack of correlation as well. Thus, knowing one

measurement carries little information and therefore few implications for the other.

But now condition on temperature. Knowing temperature, altitude does suddenly tell

a whole lot about which latitude to expect. If it is on average 20◦ C and we are at

2000 m above sea level, it won't be close to either of the two poles. Why does knowing

temperature suddenly shift expectations? In this case we have a clear understanding

that both altitude and latitude have a causal impact on temperature, whereas the

reverse does not hold: cooling the interior of an aircraft does not lift that aircraft to

30,000 ft above ground; �ying to 30,000 ft does cool down the aircraft considerably.

This phenomenon can be paraphrased as conditioning on a collider connects. A

collider is a node in a directed graph with two directed edges pointing towards that

node. The edges essentially collide at that node. In the example above, temperature

is a collider:

latitude → temperature ← altitude.

Here, we have encoded our understanding of the causal relations between the three

variables with directed edges going from cause to e�ect. If the two causes�the two

variables corresponding to the nodes without incoming edges�are not directly or in-

directly linked in any other way, we observe the above pattern. Two independent

variables become dependent on each other when conditioning on one of their joint ef-

fects. The causal learning technique employed later turns this logic on its head. It

infers the direction of causation whenever two variables are uncorrelated, but become

correlated once the relation is conditioned on a third variable.

Using graphical terminology is not essential for applying this logic, but it eases

keeping track of structural implications and facilitates a non-technical summary. The

same logic can also be illustrated in a regression framework, which might be more

familiar to economists. Let us abstract from any dynamic e�ects for the moment and

just consider three variables yt = (y1,t, y2,t, y3,t)
′ for t = 1, . . . , T , where we do not know

the structural relations among them. Then it is unclear whether we could interpret

regression coe�cients from regressing y1,t on y2,t as the e�ect an intervention in y2,t

would have on y1,t since we do not know if there is any autonomous mechanism in

place which would serve as a transfer of such an intervention. But we do know the

following. First and foremost, estimating the full system yt = (I −A0)yt + νt will not

2suitably scaled to re�ect symmetry from the equator
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be consistent because of a lack of identi�cation, unless some elements of A0 are zero

or otherwise restricted.

But suppose we postulate the DGP as being

y1,t = ε1,t (3.3)

y2,t = a21y1,t + a23y3,t + ε2,t (3.4)

y3,t = ε3,t, (3.5)

where a21 and a23 are both �xed parameters unequal to zero and εi,t, i = 1, 2, 3, are

uncorrelated white noise error terms, each following a normal distribution with variance

σ2
i . Just as above, this process can be summarised graphically as y1,t → y2,t ← y3,t.

We can now run a sequence of regressions that will help falsify this null model. Let

α̂ij be the regression coe�cient from regressing yi,t on yj,t and β̂ij the coe�cient from

regressing yi,t on yj,t while conditioning on yk,t, k 6= i, j. First, if regressing y1,t on y3,t
yields a coe�cient estimate α̂13 signi�cantly di�erent from zero, the model is likely not

true. Second, if either a21 = 0 or a23 = 0 is found, the system would not appear to

be true either. If we are willing to assume that there is no endogeneity bias towards

zero that may explain results from the previous two steps, then we can suppose that

running regression (3.4) would deliver consistent results.

Can these simple steps be validated any further? Can we, for example, delineate the

above case from the case that

y1,t = a12y2,t + ε1,t (3.6)

y2,t = ε2,t (3.7)

y3,t = a32y2,t + ε3,t, (3.8)

where a32 and a12 are such as to introduce an endogeneity bias towards zero that was

previously assumed away in the aforementioned sequence of regressions? It appears

there is a way to discriminate the latter case from the former. If regressing y1,t on y3,t
while conditioning on y2,t,

y1,t = β13y3,t + β12y2,t + u1,t (3.9)

does not yield coe�cient estimates β̂13 signi�cantly di�erent from zero, the model (3.3)

to (3.5) is unlikely to be true. That is because adding y2,t will introduce an endogeneity

bias under the null model since cov(y2,t, u1,t) 6= 0 and cov(y2,t, y3,t) 6= 0 under equations

(3.3)�(3.5), but it will not introduce such a bias under (3.6)�(3.8). This latter case is

precisely the `collider connects' case described above.
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Figure 3.1: Average regression results for (3.9). Even though y1,t and y3,t are not di-
rectly related, conditioning on y2,t introduces an endogeneity bias such that
E[β̂13] 6= 0 whenever a23 6= 0 (left panel). For symmetry, the relation be-
tween y1,t and y2,t is better judged using the correlation coe�cient while
conditioning on y2,t (middle panel). The p-value of a Fisher z-test of that
partial correlation is to the right.

The phenomenon is illustrated in Figure 3.1. Letting (3.3)�(3.5) hold, setting σ2
1 =

σ2
2 = σ2

3 = 1, a21 = −1 and letting a23 range from 0 to 1, the e�ect of di�erent values

of a23 on E[β̂13] is shown in the �rst plot to the left. Here, the expectation is E[β̂13] =

a23/2. In general, regression coe�cients are dependent on scale and interchanging

regressand and regressor will typically yield di�erent regression coe�cients. Since the

direction with which to run the regression is not known ex-ante, the partial correlation

ρ13,2 between y1,t and y3,t conditional on y2,t is a more natural measure in practice. The

expected value E[ρ̂13,2] is plotted in the middle of Figure 3.1. The partial correlation

coe�cient is just an appropriate rescaling of β̂13 and in the present context will converge

to 1/
√

2 as T →∞ and a23 →∞.

In the following we will denote the unconditional correlation between yi,t and yj,t as

ρij and conditional on set {yk,t}, k ∈ κ ⊆ K \ {i, j}, as ρij,κ. Testing a null hypothesis

of zero correlation H0 : ρ = 0 is conveniently done using Fisher's z = 1
2

log
(

1+ρ
1−ρ

)
.

Under the null, and under suitable conditions on the data,
√
T (ẑ − z)

d−→ N(0, 1) as

T → ∞ (see Anderson, 2003, ch. 4). The p-value of testing the null hypothesis that

ρ13,2 = 0 using Fisher's z is shown in the right most panel of Figure 3.1. As can be

seen, the probability quickly diminishes to zero as a23 increases, but for small values

of a23 of up to 0.1 the data is still in large agreement with ρ13,2 = 0.

But suppose we are able to reject ρ13,2 = 0, ρ12 = 0, and ρ23 = 0 in favour of ρ13,2 6= 0,

ρ12 6= 0, ρ23 6= 0 with su�ciently strong evidence, while willing to accept ρ13 = 0,

then the conclusion that (3.3)�(3.5) hold would seem to be supported by the data. In
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contrast, if we found that none of the conditional or unconditional correlations between

y1,t, y2,t, and y3,t are zero, no information about the structural relations between these

variables would be gained, except that they all seem directly related to each other.

However, if some partial correlations turn out to be zero, say ρ13,2 = 0 while ρ13 6= 0,

ρ12 6= 0, and ρ23 6= 0, then we may conclude that any of these structural forms hold

y1,t → y2,t → y3,t or y1,t ← y2,t ← y3,t or y1,t ← y2,t → y3,t.

These considerations lie at the heart of the algorithm developed by Spirtes, Glymour,

and Scheines (2000) and will be used to shed light on VARs in Section 3.4 by inferring

structural relations among a set of endogenous variables. Note that only one of these

correlation patterns implies a unique structure: the `collider' case discussed above.

That is the only instance in which a relation between two variables can be orientated

in one direction. In other cases a direct connection between two variables may be

removed, but no information on edge orientation is obtained.

These test decisions necessitate a set of assumptions. First among these assumptions

is the causal Markov condition. This condition is ful�lled if e�ect zt does in fact become

independent of any `deeper' causes xt when conditioned on its direct cause(s) Yt. In

more formal terms, xt ⊥⊥ zt | Yt whenever for every yt for which xt → · · · → yt → zt or

xt ← · · · ← yt → zt, we have yt ∈ Yt, and there are no other (direct) paths from xt to

zt that do not involve an element of Yt.3 Second, it is assumed that the system under

scrutiny is causally su�cient. That is, there is no latent variable that a�ects more

than one variable at the same time. Third, the `stability' or `faithfulness' condition

is ful�lled, which demands that an edge is absent xt 6− zt only if xt ⊥⊥ zt | Yt for
some set of nodes Yt that are in graph G, possibly an empty set. In particular, this

assumption excludes counteracting e�ects such that xt → yt → zt and xt → zt will

produce a zero net e�ect of xt on zt. It rules out an endogeneity bias in population

precisely towards zero. Fourth, the system is linear such that stochastic dependence

may actually be measured by correlation coe�cients. Fifth, it is often assumed that

the system is recursive. Assuming recursiveness is helpful for orientating edges as some

logical conclusions about edge direction can be drawn from certain statistical test

decisions. However, for structural VAR analysis that may already be too strong an

assumption. The recursiveness assumption can be weakened if the stability condition

mentioned above still holds in non-recursive systems, i.e. feedback loops do not cancel

each other out completely. Although even that assumption will be contentious in

certain cases. Take, for example, quantity and price. It is easily imagined that the

correlation between these two variables is close to zero, simply because changes in

3Note that Yt may contain other variables besides direct causes of zt for this result to hold. However,
speci�c variables, for example certain colliders or descendants thereof, must not be part of Yt.
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quantity and price are driven by a series of demand and supply shifters in such a way

that, overall, an evenly scattered cloud of measurement points is produced.

Another contentious issue is the way that causal graph methods rely on null hypoth-

esis signi�cance testing. For causal graph algorithms to work, some null hypotheses

need to be accepted even though the reason the hypothesis was not rejected may just

have been low power or bad luck. Chance is of course always at play in test decisions.

But basing structural inferences on a few non-rejections may be too shaky a ground.

In addition, most inference algorithms set a �xed threshold for the signi�cance level

and automate the search. It is di�cult to see why a hypothesis that can be rejected

with p = 0.099 establishes a direct causal link between two variables, whereas an-

other hypothesis with p = 0.11 does not. For that reason this paper will not set a

�xed threshold, but instead judge the evidence the data provides in conjunction with

domain knowledge about possible structural relations.

3.4 Results From a Small-Scale Crude Oil Market VAR

This section will discuss details on the identi�cation of oil market VARs and showcase

the advantage of including graphically inspired sample information in a VAR analysis.

Starting with Kilian (2009), several studies have explored the macroeconomic dynamics

of the global oil market through vector autoregressions. Kilian (2009) and Kilian

and Murphy (2012), for instance, estimate a three-variable oil market VAR covering

monthly measures of global real activity, global crude oil production, and the global

real price of crude oil. Both papers identify three types of structural shocks: an oil

supply shock, an aggregate demand shock, and an oil-speci�c demand shock. The

di�erence between the two papers is that Kilian (2009) identi�es the structural model

using short-run exclusion restrictions, whereas Kilian and Murphy (2012) employ sign

restrictions. While the latter approach has the advantage of imposing less stringent

assumptions, the authors stress that sign restrictions by themselves are insu�cient to

reach meaningful conclusions about the economic response to structural innovations.

Instead, Kilian and Murphy (2012) emphasise that identi�cation can be sharpened if

additional identifying information is taken into account. This additional information

takes the form of a bound ξs < 0.0258 on the price elasticity of oil supply. With

this addition, the identi�ed set of models imply economic dynamics similar to those

identi�ed in Kilian (2009). Kilian and Murphy (2014) extend the approach further

by including a fourth variable on oil inventories. This allows them to investigate the

e�ects of another type of oil demand shock born out of forward-looking, speculative

motives.
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The work of Kilian and Murphy has been fundamental to the study of oil markets

and has sparked further debate among economists. It has also served several papers

promoting methodological innovations in SVAR analysis as a case study. Among them

are Lütkepohl and Net²unajev (2014) and Herwartz and Plödt (2016), who propose two

distinct ways of exploiting statistical properties of the data for identi�cation. Lütke-

pohl and Net²unajev (2014) identify their structural VAR oil market model through

changes in the volatility of the reduced-form residuals. Equipped with an identi�-

cation scheme that re�ects properties of the data by construction, they are able to

con�rm the validity of the exclusion restrictions of Kilian (2009) and to a large extent

also the validity of the sign restrictions of Kilian and Murphy (2012). Herwartz and

Plödt (2016) take a slightly di�erent approach and focus on the non-Gaussianity of the

reduced-form residuals. With the residuals being non-normally distributed, there is,

in principle, at most one possible rotation of the error vector that will make its ele-

ments stochastically independent. The authors use this fact and search for the linear

combination of reduced-form errors for which the null hypothesis of independence is

hardest to reject by an independence test. That linear combination is their estimate

of the structural errors. Even though the data set is somewhat di�erent, the qualita-

tive results of the original study are largely con�rmed also by this approach. Demand

shocks, for instance, emerge as the main driver of oil price changes.

More recently, Baumeister and Hamilton (2019) and Zhou (2020) review and re�ne

the global oil market model of Kilian and Murphy (2014), largely corroborating the

original results though with important quali�cations. Baumeister and Hamilton (2019)

impose a Bayesian setting in which `dogmatic priors' with strict exclusion and inequal-

ity restrictions may be relaxed. When the short-run price elasticity of oil supply is

allowed to exceed 0.0258, for instance, the authors �nd that the elasticity is `consider-

ably larger' with a posterior median of 0.15. With these less restrictive bounds and a

few other modi�cations, Baumeister and Hamilton (2019) �nd that supply shocks were

more important in certain historical episodes, in contrast to �ndings in Kilian (2009)

and Kilian and Murphy (2012), but largely in agreement with Kilian and Murphy

(2014). Zhou (2020) studies the robustness of Kilian and Murphy (2014) to another

range of modi�cations. Amongst other things, the author relaxes the elasticity bound

to 0.04, which exceeds point estimates from the literature �by about four standard

errors,� extends the sample length and addresses an earlier error in constructing the

index of global real economic activity. Extending the data to 2018 yields a greater role

for oil supply shocks in explaining movements of the real price of oil, but conclusions by

Kilian and Murphy (2014) about earlier historical episodes remain largely una�ected.
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Since this is such a well studied case, I will follow suit by replicating the �ndings

of Kilian and Murphy and by comparing the di�erence in outcomes when including

statistical information prompted by causal graph theory as a means of identi�cation.

I use the data set of Kilian and Murphy (2014) for comparability. However, as a �rst

step I focus on the three-variable VAR model of Kilian and Murphy (2012). They

collect data on global crude oil production (in log-di�erences), global real economic

activity (de-trended level), and the real price of crude oil (log-level) in the vector yt
and estimate via ordinary least squares (OLS) a VAR(24) model

yt = ν +
24∑
p=1

A∗pyt−p + ut. (3.10)

Furthermore, ut = A−10 εt where εt is assumed to be a white-noise error term with

diagonal covariance matrix and the signs of the elements of A−10 are restricted as in

Table 3.1. With these impact sign restrictions in place, the elements of εt can be

interpreted as a supply shock, an aggregate demand and an oil-speci�c demand shock.

They use the algorithm of Rubio-Ramírez, Waggoner, and Zha (2010) for implementing

these restrictions. The structural models produced by the algorithm are ex-ante equally

likely, yet still imply a range of di�erent economic dynamics. Therefore, Kilian and

Murphy (2012) put forward a number of economic arguments for restricting the model

set further. They impose the upper bound of 0.0258 on the short-run price elasticity of

oil supply and a lower bound of −1.5 on the immediate reaction of economic activity

to an oil-speci�c demand shock.

In the following I will estimate the same reduced-form VAR model using a lag length

of 24 but drawing the structural models with a di�erent algorithm. As a baseline,

no additional restrictions are imposed besides the sign restrictions listed in Table 3.1.

As such, the model is not uniquely identi�ed. However, following Ouliaris and Pagan

(2016), we may identify the model repeatedly as described in Section 3.3 by drawing a

su�cient number of parameters at random such that at each iteration the model can

be solved conditional on these parameter draws. With su�ciently many draws, this

approach will explore the range of parametrisations that satisfy the sign restrictions.

In the baseline case K(K − 1)/2 = 3 parameters need to be drawn at random. Let

−aij again be the ijth element of A0 in (3.1). Then the values of a12, a13 and a21

are obtained in the following way. For each parameter, θij ∼ U(−1, 1) is drawn and

transformed via aij = θij/(1 − |θij|). The distribution function of aij thus obtained

has support ranging from −∞ to +∞, is symmetric, has its mode at zero and displays

considerably thicker tails than even the Cauchy distribution does. The probability

of drawing values below −10 or above +10, for instance, is roughly 10 %. Widening
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Table 3.1: Sign restrictions of structural impact e�ects as used by Kilian and Murphy
(2012).

aggregate oil-speci�c
supply demand demand

oil production − + +
global activity − + −

oil price + + +

those thresholds by a factor of ten will lower that probability by the same factor.

Thus, on average, one aij draw in a million will be above one million in absolute

terms. Whether this distribution is an e�ective way to explore the parameter space for

admissible parametrisations depends very much on the data. Standardising the mean

and variance of the data may improve the e�ectiveness and in some cases the signs of aij
may also be inferred from sign restrictions on the elements of A−10 . Conditional on the

draws for a12, a13, and a21, the remaining coe�cients are estimated using instrumental

variables. For details see Ouliaris and Pagan (2016). Whilst IV estimation does not

account for the heteroskedasticity and non-normality of the residuals which has been

documented by Lütkepohl and Net²unajev (2014) and Herwartz and Plödt (2016), it

can be seen as approximating the DGP well enough, just as least squares commonly

does in estimating the reduced-form VAR.

A �rst glimpse of the results is given in Figure 3.2. The �gure shows impulse response

functions of 2000 models that ful�l the sign restrictions of Kilian and Murphy (2012)

listed in Table 3.1. As the �gure vividly illustrates, little can be concluded about the

interplay of oil markets and economic activity apart from the fact that every variable

responds on impact to each of the shocks in line with the previously imposed sign. The

�rst column displays the response of oil production, activity, and oil price to an oil

supply shock. That type of shock is assumed to disrupt production and therefore has

by construction a negative on impact e�ect on production and activity, while increasing

prices. An aggregate demand shock (middle column), on the other hand, increases all

three variables on impact. Finally, a demand shock that is speci�c to oil markets (right

column) is assumed to drive up production, but to lower economic activity on impact

through an adverse oil price increase. For every impulse response function, there seems

to be a bound on the range of admissible parametrisations, which is either implied

by the data or due to the fact that the algorithm has sampled a limited number of

models. Further increasing the number of model draws does not change this conclusion,

however. Another visible feature is that some response functions cross the zero line,

while others don't. However, whether those functions that are far away from the zero
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Figure 3.2: Impulse response functions of 2000 models ful�lling the sign restrictions of
Kilian and Murphy (2012) and sampled with the algorithm of Ouliaris and
Pagan (2016).

line or those which cross zero actually resemble the facts cannot be concluded from

this analysis. All model draws are equally admissible.

The results are far more telling if we include information gained during the graphical

pre-analysis. This pre-analysis is summarised in Figure 3.3, which indicates that the

contemporaneous link between oil production and global economic activity is very weak.

Both graphs in Figure 3.3 have three nodes that correspond to the three reduced-form

residuals of oil production (prd), oil price (prc), and global activity (act). The edges

of the left graph correspond to unconditional correlations, whereas the edges of the

right graph correspond to correlation coe�cients when conditioning on the remaining

variable. The width of the edges have been weighted with the corresponding (partial)

correlation coe�cient. The higher the correlation in absolute value, the wider is the

edge. The colour of each edge re�ects the corresponding p-value, which has also been

printed as an edge label. Edges with p-values equal to one are white, whereas those

with p-values equal to zero are black.
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0.790.43

0.00

prd

actprc

Uncondit ional

0.620.37

0.00

prd
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Condit ional

Figure 3.3: Association between reduced-form residuals of a VAR(24) using the Kil-
ian and Murphy (2014) data set. The nodes correspond to oil production
(prd), oil prices (prc) and global economic activity (act), which have all
been �ltered of autocorrelation. The edges represent contemporaneous cor-
relations between nodes. The edge width is proportional to the absolute
value of the correlation coe�cient. Both the edge colour and the edge la-
bel indicate p-values (rounded to two decimal places). Edges in the left
graph represent those unconditional correlations. Edges in the right graph
represent conditional correlations.

As discussed in Section 3.3, the null hypotheses of zero correlation have been tested

using Fisher's z-transformation. To account for the heteroskedasticity of the data,

the p-values of those tests have been bootstrapped using the residual-based moving

block bootstrap. Amongst other things, Brüggemann, Jentsch, and Trenkler (2016)

show that this kind of block bootstrap is capable of estimating the variance of the

unconditional residual covariance matrix of a VAR consistently even if the residuals

are conditionally heteroskedastic. The bootstrap therefore also allows valid asymptotic

inference on elements of the covariance matrix under these conditions. The results

extend to continuously di�erentiable functions of the covariance matrix and therefore

also apply to partial correlations and Fisher's z. This technique seems appropriate since

models of conditional heteroskedasticity have been shown to �t data on oil markets

rather well (see Lütkepohl and Net²unajev, 2014).

Let R be the number of bootstrap samples and let ẑ∗r denote the rth bootstrap

replicate of Fisher's z. In the bootstrap world, the null hypothesis of zero correlation

is imposed by a level shift ẑ∗r − ẑ. This is analogous to the construction of Hall's

percentile interval4 that is commonly used in impulse response analysis. A particular

condition required for this approach to work is `translational invariance' of the null

4sometimes also know as the `basic bootstrap con�dence interval'
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distribution, i.e. the distribution is not a�ected beyond the �rst moment by a level

shift (see Efron and Tibshirani, 1993, chap. 16). The p-value is then estimated as

p = 1
R

∑R
r=1 I(|ẑ| ≤ |ẑ∗r − ẑ|), where I() is the indicator function.

Equipped with these p-values, the graphs in Figure 3.3 succinctly illustrate how the

contemporaneous association between oil price and economic activity is fairly strong,

while the correlation measures for quantity vs. price and quantity vs. activity are

rather low. As previously discussed, a low correlation between quantity and price need

not come as a surprise since supply and demand shocks could have negating e�ects.

The low correlation with a p-value of 0.79 between quantity and activity, on the other

hand, may indeed re�ect the absence of any direct contemporaneous causal e�ects as

both entities are prone to sluggish behaviour. Conditioning on a third variable reduces

the p-values slightly, as can be seen on the right of Figure 3.3. However, the reduction

is not large enough to justify the orientation of any edges. All in all, the impulse

response analysis will be repeated with the additional quali�cation that the quantity

of oil production and global activity cannot in�uence each other directly within the

month. Now, the values of a12 and a21 are both set to zero and only a13 is drawn at

random to explore the model space. These two restrictions are the gain from bringing

in insights from causal learning.

Figure 3.4 shows the impulse response functions after imposing these zero short-run

restrictions motivated by the inspection of (conditional) correlations between reduced-

form residuals. Again 2000 models ful�lling the sign restrictions were drawn and their

impulse response functions computed. With two zeros imposed on the contempora-

neous e�ects matrix A0, there are now four unknown parameters left. While the

structural model is therefore still not uniquely identi�ed, only one parameter, in this

case a13, needs to be drawn at random.

With this truncation of the sampling space, the dynamics are now much more clear-

cut. The level of oil production shows a pronounced and lasting decline in response

to an oil supply disruption, but hardly any response to either of the two demand

shocks. The second row of Figure 3.4 indicates a short-lived, negative response of

global economic activity to an oil supply disruption after one quarter and a strong

and fairly persistent response to an aggregate demand shock. The development of

real activity induced by an oil-speci�c demand shock is unclear, with many response

functions straddling the zero line. Finally, the oil price seems to react positively and

persistently to all three shocks.

While these �gures do not indicate the sampling uncertainty that is due to a �nite

sample size and therefore do not allow proper inference, the results are remarkably sim-

ilar to the �ndings of Kilian (2009) and Kilian and Murphy (2012). This may not be
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Figure 3.4: Impulse response functions of 2000 models ful�lling the sign restrictions of
Kilian and Murphy (2012) and two additional short-run exclusion restric-
tions between oil production and economic activity.

that surprising, since the imposed restrictions almost combine a strict subset of both

studies. Nonetheless, these results are insofar reassuring as they promise an avenue

for more precise identi�cation in the absence of widely accepted economic informa-

tion that may sharpen otherwise loose sign restrictions. In this case, combining some

of the implied zeros derived from a graph-theoretical analysis with widely accepted

sign restrictions therefore proves to be a viable approach to recover informative and

economically meaningful structures.

3.5 Conclusion

This study has explored the potential for structural VAR analysis that combines sign

restrictions with a causal graph perspective. The graphical approach rests on insights

from the literature on causal learning and infers structural relations among a set of

variables inductively, based on a set of assumptions and on properties of the data.

In this study, these properties are simple correlation patterns. The data-dependent
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approach is of particular interest if other identifying information is either not available

or contentious.

Applying this combination to an oil market VAR illustrates how identi�cation can

be considerably sharpened. Without the additional short-run exclusion restrictions

motivated by correlation patterns, the sign restrictions by themselves are far too loose

for any meaningful conclusions. What is more, the identi�ed set of impulse response

functions explicitly agrees with VARs identi�ed by other means. The results also

enhance usual graphical modelling approaches, for structural shocks would not have

been clearly identi�ed in a purely graphical analysis. Moreover, full identi�cation is

not guaranteed with the graphical causal learning approach.

These �ndings encourage more research. In particular, the method may prove espe-

cially helpful in larger systems, where meaningful identi�cation through sign restric-

tions can be even more challenging, even if other prior domain knowledge is available.

Secondly, this article has not touched upon inference. Inferential procedures for set-

identi�ed VARs estimated with frequentist methods are only beginning to bear fruit.

The methods developed by Granziera, Moon, and Schorfheide (2018) are particularly

relevant in this regard. Ideally, these inferential methods would also include the uncer-

tainty present in the graphical pre-analysis. Alternatively, one may adopt a Bayesian

framework and use the results in Ahelegbey, Billio, and Casarin (2016) in combination

with sign restrictions for sharper identi�cation and proper inference. One drawback

of that method is, however, that only recursive systems are allowed, whereas this as-

sumption has not been made here. Third, there is a host of other parametric and

nonparametric independence tests that relax some of the assumptions required for

simple correlation tests. Fourth, advancements in the literature on causal learning

include methods that allow for latent variables or feedback loops more explicitly. See

Heinze-Deml, Maathuis, and Meinshausen (2018) for a review. These developments

may also be worthwhile to incorporate in structural VAR analysis.
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