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Abstract 

Myoblast differentiation and fusion are essential for the formation of multinucleated 

myofibers during skeletal muscle development and regeneration. An elaborate signaling 

network, including the action of various ion channels and transporters, is involved in 

myogenesis. Multiple studies have demonstrated the roles of K+ and Ca2+ channels in 

skeletal myogenesis, but the involvement of Cl− channels is poorly understood. In this 

thesis, I determine that the volume-regulated anion channel (VRAC)/leucine-rich repeat 

containing family 8 (LRRC8) promotes mouse myoblast differentiation. 

Immunoblotting showed the expression of all five LRRC8 subunits of heteromeric 

VRAC during myotube formation of murine C2C12 myoblasts. siRNA-mediated 

knockdown of the essential VRAC subunit LRRC8A did not affect myoblast proliferation 

but significantly reduced the expression of the myogenic transcription factor myogenin 

and inhibited myoblast fusion. Suppression of VRAC activity by either pharmacological 

VRAC inhibitors or overexpression of LRRC8A also effectively reduced myoblast 

differentiation and fusion. VRAC inhibition blocked plasma membrane hyperpolarization 

of myoblasts early during differentiation and prevented the steady-state increase of 

intracellular Ca2+ levels that normally occurs during myogenesis. Consistently, I could 

show temporary activation of VRAC within the first 2 h of myoblast differentiation by a 

non-invasive FRET-based sensor, demonstrating that VRAC acts upstream of K+ channel 

activation. Myoblast differentiation resulted in a significant decrease in intracellular Cl− 

that was abolished by the VRAC inhibitor carbenoxolone. However, as judged by the 

expression of myogenin in C2C12 cells, lowering the cytosolic Cl− level by extracellular 

Cl− depletion did not enhance differentiation. Instead, it suppressed myosin expression 

and myotube formation. 

This work provides a possible mechanism for the thinning of skeletal muscle bundles 

observed in LRRC8A-deficient mice and emphasizes the importance of volume-regulated 

LRRC8 anion channels in cell differentiation. 
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Zusammenfassung 

Die Differenzierung und Fusion von Myoblasten ist für die Bildung mehrkerniger 

Myofasern während der Entwicklung und Regeneration der Skelettmuskulatur wesentlich. 

Ein ausgeklügeltes Signalnetzwerk, einschließlich der Wirkung verschiedener 

Ionenkanäle und Transporter, ist an der Myogenese beteiligt. Mehrere Studien haben die 

Rolle von K+- und Ca2+-Kanälen bei der Skelettmyogenese gezeigt, aber die Beteiligung 

von Cl−-Kanälen ist kaum bekannt. In dieser Arbeit stelle ich fest, dass der 

volumenregulierte Anionenkanal (VRAC) / Leucin-reiche Wiederholung, der Familie 8 

(LRRC8) enthält, die Differenzierung von Maus-Myoblasten fördert. 

Immunblotting zeigte die Expression aller fünf LRRC8-Untereinheiten von 

heteromerem VRAC während der Myotubebildung von murinen C2C12-Myoblasten. 

siRNA-vermittelter Abbau der essentiellen VRAC-Untereinheit LRRC8A beeinflusste 

die Myoblastenproliferation nicht, reduzierte jedoch die Expression des myogenen 

Transkriptionsfaktors Myogenin signifikant und inhibierte die Myoblastenfusion. Die 

Unterdrückung der VRAC-Aktivität durch entweder pharmakologische VRAC-

Inhibitoren oder die Überexpression von LRRC8A reduzierte auch wirksam die 

Differenzierung und Fusion von Myoblasten. Die VRAC-Hemmung blockierte die 

Plasmamembran-Hyperpolarisation von Myoblasten früh während der Differenzierung 

und verhinderte den stationären Anstieg der intrazellulären Ca2+-Spiegel, der 

normalerweise während der Myogenese auftritt. Konsistent konnte ich eine 

vorübergehende Aktivierung von VRAC innerhalb der ersten 2 Stunden nach der 

Myoblastendifferenzierung durch einen nicht-invasiven FRET-basierten Sensor zeigen, 

was zeigt, dass VRAC vor der K+-Kanalaktivierung wirkt. Die Differenzierung von 

Myoblasten führte zu einer signifikanten Abnahme des intrazellulären Cl−, das durch den 

VRAC-Inhibitor Carbenoxolon aufgehoben wurde. Gemessen an der Expression von 

Myogenin in C2C12-Zellen verbesserte eine Verringerung des cytosolischen Cl− Spiegels 

durch extrazelluläre Cl− Depletion jedoch nicht die Differenzierung. Stattdessen 

unterdrückte es die Myosinexpression und die Myotubebildung. 

Diese Arbeit bietet einen möglichen Mechanismus für die Ausdünnung von 

Skelettmuskelbündeln, die bei Mäusen mit LRRC8A-Mangel beobachtet wurden, und 

betont die Bedeutung volumenregulierter LRRC8-Anionenkanäle für die 

Zelldifferenzierung. 
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1.  Introduction 

1.1  Ion channels and transporters in skeletal myogenesis 

According to differences in morphology, function, and distribution, vertebrate muscle 

tissue is divided into three types, namely smooth muscle, cardiac muscle, and skeletal 

muscle. Skeletal muscle formation occurs during the entire lifespan of vertebrates, 

including embryonic development, postnatal growth and damage repair in the adult 

(Bentzinger et al, 2012; Chal & Pourquié, 2017). The transcriptional mechanisms 

controlling skeletal muscle development have been studied extensively (Figure 1.1). 

Among these, the muscle-specific transcription factor myogenin is essential for terminal 

differentiation of myogenic precursor cells (myoblasts) (Bentzinger et al., 2012; Braun & 

Gautel, 2011; Buckingham & Rigby, 2014; Chal & Pourquié, 2017; Kang & Krauss, 

2010). Myogenin belongs to the basic helix-loop-helix (bHLH) myogenic transcription 

factor family, which also includes myoblast determination protein (MyoD), myogenic 

factor 5 (Myf5) and myogenic regulatory factor 4 (MRF4) (Bentzinger et al., 2012; Braun 

& Gautel, 2011). Myogenesis is generally described to begin with cell cycle withdrawal, 

followed by myogenin expression and subsequent fusion (Figure 1.1) (Sampath et al, 

2018; Walsh & Perlman, 1997). Until recently, two muscle-specific fusion factors, 

Myomaker (Millay et al, 2013) and Myomerger–Minion–Myomixer (Bi et al, 2017; 

Quinn et al, 2017; Zhang et al, 2017a), have been found to govern the fusion of 

differentiated mononucleated myoblasts (myocytes) either with each other to create new 

myotubes or with existing multinucleated myotubes (Sampath et al., 2018). 

  Skeletal myogenesis also involves a complex regulatory system of proteins and 

signaling molecules (Hindi et al, 2013). Myotube formation starts with plasma membrane 

hyperpolarization of myoblasts, followed by a series of cytosolic Ca2+ signals (Figure 1.2) 

(Fennelly & Soker, 2019; Konig et al, 2006). These processes occur through the action of 

ion transport proteins, such as Kir2.1 K+ channels and voltage-gated T-type Ca2+ channels 

(Bernheim & Bader, 2002; Fennelly & Soker, 2019). 
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Figure 1.1: Schematic diagram of the development of pluripotent stem cells into skeletal 
muscle. From left to right, the intermediate cell types and their marker genes are noted along the 
bottom. Myog, myogenin. Major molecular mechanisms recruiting the action of ion channels and 
transporters during myoblast differentiation and fusion are depicted along the top. 

1.1.1 Membrane hyperpolarization 

Hyperpolarization of the resting membrane potential is a prerequisite for myoblast 

differentiation. Primary muscle progenitor cells derived from single satellite cells 

maintain their stem cell identity rather than express transcription factors of terminal 

differentiation when hyperpolarization is impaired with high external K+ or sodium-

potassium pump inhibitor ouabain (Fennelly et al, 2016; Konig et al., 2006; Konig et al, 

2004). More specifically, when human myoblasts are induced to differentiate, the 

activation of an ether-à-go-go (EAG) K+ channel rapidly hyperpolarizes myoblasts from 

as low as approximately −8 mV to approximately −32 mV (Bernheim et al, 1996; Bijlenga 

et al, 1998; Liu et al, 1998). Shortly thereafter, the resting membrane potential of 

myoblasts drops further to approximately −74 mV, due to the activation of the inward-

rectifying K+ channel Kir2.1 (Fischer-Lougheed et al, 2001; Liu et al., 1998; Liu et al, 

2003). The human EAG K+ current density is low in proliferating myoblasts, increases in 

fusion-competent myoblasts and declines in myotubes (Liu et al., 1998). By contrast, the 

Kir2.1 current has been found to be expressed in 40-50% of differentiating myoblasts and 

in all myotubes (Konig et al., 2004; Liu et al., 1998). Notably, Kir2.1 channels that are 

already present at the plasma membrane during human myoblast proliferation (Fischer-

Lougheed et al., 2001) are activated by dephosphorylation of Kir2.1 at tyrosine 242 

within the first 6 hours of differentiation, which is several hours earlier than the 

expression of two myogenic transcription factors, myogenin and myocyte enhancer factor 
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2 (MEF2) (Hinard et al, 2008; Konig et al., 2004). Thus, plasma membrane 

hyperpolarization is considered to be the earliest detectable event during myoblast 

differentiation. 

In addition to these contributors of hyperpolarization, ether-à-go-go related gene (ERG) 

K+ channels (Liu et al., 2003) and store-operated Ca2+ entry (SOCE) channels (Darbellay 

et al, 2009) have been shown to regulate the resting membrane potential of fusion-

competent myoblasts. Inhibition of the human ERG K+ channel activity depolarized 

myoblasts by approximately 10 mV (Liu et al., 2003), whereas knockdown of stromal 

interaction molecule 1 (STIM1) or Orai1 reduced SOCE amplitude, impaired 

hyperpolarization and consequently inhibited myoblast differentiation (Darbellay et al., 

2009). Furthermore, it has been reported that by activating the intermediate-conductance 

Ca2+-activated K+ channel (IKCa), extracellular 5'-guanosine-triphosphate (GTP) 

hyperpolarizes C2C12 (a mouse skeletal muscle myoblast cell line) cells from a mean 

value of −15 mV to approximately −75 mV and increases myosin heavy chain (MyHC) 

expression (Fioretti et al, 2005; Pietrangelo et al, 2006; Tanaka et al, 2017). 

1.1.2 Ca2+ signals during myoblast differentiation and fusion 

Ca2+ acts as an intracellular second messenger, triggering responses in various cell types 

in response to extracellular stimuli. A good example comes from skeletal muscle, where 

Ca2+ signaling plays a fundamental role in many cellular processes from cell growth to 

muscle fiber excitation-contraction coupling and metabolism (Choi et al, 2020; Stiber & 

Rosenberg, 2011; Tu et al, 2016). In terms of skeletal myogenesis, a cytoplasmic free 

Ca2+ increase is essential for the expression of myogenic transcription factors and the 

formation of normal-sized myotubes (Bijlenga et al, 2000; Constantin et al, 1996; Konig 

et al., 2006; Przybylski et al, 1989; Przybylski et al, 1994). More specifically, the 

hyperpolarization of human myoblasts induced by the sequential activation of EAG and 

Kir2.1 triggers a small but sustained influx of Ca2+ through α1H T-type voltage-gated 

Ca2+ channels (VGCCs), sufficient to cause a significant increase in resting intracellular 

Ca2+ concentration (Bijlenga et al., 2000; Liu et al., 2003). This cytosolic Ca2+ signal 
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activates the calcineurin/NFAT pathway, thereby inducing the expression of myogenin 

and MEF2 (Konig et al., 2006). Another well-known Ca2+-dependent pathway, Ca2+-

calmodulin-dependent kinase (CaMK), is required for intact myogenin expression (Xu et 

al, 2002) but does not link to Kir2.1-induced hyperpolarization (Konig et al., 2006). 

Interestingly, a 10-mV depolarization of the resting potential increased the T-type Ca2+ 

current and raised the intracellular free Ca2+ concentration, thus triggering a ten-fold 

acceleration of human myoblast fusion (Liu et al., 2003). However, the involvement of 

T-type VGCCs as a primary Ca2+ entry mechanism in myoblast differentiation seems to 

be species-dependent, as it was shown that L-type rather than T-type Ca2+ currents can 

regulate the expression of myogenin and MyHC in C2C12 cells (Bidaud et al, 2006; 

Porter et al, 2002). A link between L-type VGCCs and calcineurin activity has also been 

suggested (Spangenburg et al, 2004). 

 

 

 
Figure 1.2: Chronological illustration of the roles of membrane hyperpolarization and Ca2+ 
signals during myoblast differentiation. The expression profile of ion channels and transporters 
involved at different stages of differentiation is depicted. IKCa, intermediate-conductance Ca2+-
activated K+ channels; MAPK, mitogen-activated protein kinase; PI3K, phosphoinositide 3-
kinase. Figure modified from (Konig et al., 2006). 
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Another Ca2+ source of intracellular Ca2+ elevation upon myoblast differentiation is 

Ca2+ release from the endoplasmic reticulum (ER) through inositol 1,4,5 tris-phosphate 

receptors (IP3Rs), followed by Ca2+ entry through SOCE channels (Araya et al, 2004; 

Arnaudeau et al, 2006; Nakanishi et al, 2015; Seigneurin-Venin et al, 1996). Knockdown 

of IP3R1 in human myoblasts impaired both endogenous spontaneous Ca2+ oscillations 

and SOCE, which in turn greatly reduced the activity of two key enzymes of muscle 

differentiation, calcineurin and CamKII (Antigny et al, 2014). In contrast, the 

overexpression of IP3R1 not only rescued normal differentiation of IP3R1-silenced 

myoblasts, but also increased the percentage of MEF2-positive nuclei after one day of 

differentiation (Antigny et al., 2014). Upon Ca2+ store depletion, STIM1 (an ER Ca2+ 

sensor) forms cluster and triggers a Ca2+ influx (also called SOCE) through SOCE-

mediating channels located at the ER-plasma membrane junction, thereby efficiently 

restoring the ER Ca2+ content (Jousset et al, 2007; Luik et al, 2006; Wu et al, 2006). 

SOCE-mediating channels are divided into two groups (Choi et al., 2020): Orai channels 

(Luik et al., 2006; Xu et al, 2006) and transient receptor potential canonical channels 

(TRPCs) (López et al, 2006; Yuan et al, 2007). The important roles of STIM1 (Darbellay 

et al, 2010; Darbellay et al., 2009; Li et al, 2012; Stiber et al, 2008), Orai1 (Darbellay et 

al., 2009; Wei-Lapierre et al, 2013), TRPC1 (Formigli et al, 2009; Louis et al, 2008; 

Meacci et al, 2010; Zanou et al, 2012), and TRPC4 (Antigny et al, 2013; Antigny et al, 

2017) during myogenesis in mouse and human have been established. Silencing any of 

them reduced SOCE and myoblast differentiation, whereas forced expression of STIM1 

with Orai1, TRPC1 or TRPC4 in human myoblasts increased SOCE, accelerated 

myoblast fusion, and produced hypertrophic myotubes (Antigny et al., 2013; Darbellay 

et al., 2009). 

Furthermore, the N-methyl-D-aspartate (NMDA) receptor, a subtype of ionotropic 

glutamate receptor, was shown to mediate Ca2+ influx and promote C2C12 myoblast 

fusion (Lee et al, 2004). It is worth recalling that the graded Ca2+ signal involved in 

skeletal muscle formation depends on Ca2+ release from intracellular stores as well as on 

Ca2+ influx from extracellular medium (Arnaudeau et al., 2006; Liu et al., 2003). 

However, all these Ca2+ signals are inhibited when the hyperpolarization process that 
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increases the driving force for Ca2+ is blocked (Constantin et al., 1996; Konig et al., 2006; 

Pietrangelo et al., 2006). 

1.1.3 Further molecular mechanisms of myogenesis 

The failure of myoblasts to exit the cell cycle leads to defective myotube formation 

(Timchenko et al, 2001; Walsh & Perlman, 1997). It has been shown that blocking the 

Ca2+- and voltage-dependent K+ channel KCa1.1 in human primary myoblasts induces 

increased levels of cytosolic Ca2+ and of active NFκB, resulting in enhanced proliferation 

and reduced fusion (Tajhya et al, 2016). Interestingly, KCa1.1 expression in myotonic 

dystrophy type 1 (DM1) (Meola & Cardani, 2015) myoblasts was found to be 

significantly decreased, whereas introducing functional KCa1.1 α-subunits into DM1 

myoblasts reduced their proliferation to normal levels and rescued expression of MEF2 

and myogenin (Tajhya et al., 2016). Similarly, constitutive overexpression of the chloride 

intracellular channel 5 (CLIC5) partly shifted C2C12 cells from G2/M phase to G0/G1 

phase, resulting in decreased cell proliferation and increased expression levels of 

myogenin and MyHC (Li et al, 2010). Activation of Kv7 channels in C2C12 myoblasts 

reduced proliferation and stimulated differentiation (Iannotti et al, 2010). In particular, it 

was reported that the endocannabinoid 2-arachidonoylglycerol inhibits skeletal muscle 

differentiation via cannabinoid type 1 receptor-mediated inhibition of Kv7.4 channels 

(Iannotti et al, 2014). Knockdown of Kv7.4 reduced the expression levels of several 

differentiation markers, but overexpression of Kv7.4 did not enhance myoblast 

differentiation (Iannotti et al, 2013). 

  Inhibition of mechanosensitive (or stretch-activated) cation channels by 

pharmacological blockers leads to impaired phenotypic maturation of C2C12 myoblasts, 

including reduced expression of sarcomeric proteins and MyHC and decreased creatine 

kinase activity (Formigli et al, 2007; Wedhas et al, 2005), with contradicting findings on 

the inhibitory effect on myogenin expression. Several further ion transport proteins have 

been implicated in skeletal myogenesis, including TRPC3 (Woo et al, 2010), Pannexin1 

and Pannexin3 (Langlois et al, 2014), connexin43 (Araya et al, 2005; Araya et al, 2003; 
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Meacci et al., 2010), two-pore domain potassium channels TASK2 and TREK1 (Afzali 

et al, 2016), nicotinic acetylcholine receptors (Constantin et al., 1996; Krause et al, 1995), 

transient receptor potential vanilloid 1 (Kurosaka et al, 2016; Obi et al, 2019) and Na+-

K+-2Cl− cotransporter 1 (Mandai et al, 2017). However, the specific working mechanism 

of these proteins has not been elucidated yet. 

1.2  The volume-regulated anion channel (VRAC) 

Vertebrate cells adjust their volume in response to external osmolarity changes or during 

the execution of various cellular functions (Hoffmann et al, 2009). Cell volume regulation 

usually involves the transport of Cl−, K+, Na+ and small organic osmolytes, which is 

carried out by various ion channels and transporters in the plasma membrane (Hoffmann 

et al., 2009; Jentsch, 2016). Osmotic gradients generated from this process subsequently 

drive water in and out of cells. Specifically, the volume-regulated anion channel (VRAC) 

opens upon osmotic cell swelling and facilitates regulatory volume decrease (RVD) by 

mediating the efflux of Cl− and organic substances (Chen et al, 2019b; Jentsch, 2016; 

Jentsch et al, 2016; Osei-Owusu et al, 2018; Pedersen et al, 2015; Pedersen et al, 2016; 

Stauber, 2015; Strange et al, 2019). VRAC-mediated Cl− currents were first reported in 

the 1980s (Grinstein et al, 1982; Hazama & Okada, 1988; Hoffmann et al, 1984). Since 

then, the biophysical properties and cell physiology of VRAC have been extensively 

studied (Nilius et al, 1997; Okada, 1997; Okada et al, 2009; Pedersen et al., 2015). The 

channel was also referred to as VSOR (the volume expansion-sensing outwardly 

rectifying anion channel) (Okada, 1997) or VSOAC (the volume-stimulated organic 

osmolyte and anion channel) (Jackson et al, 1994). Many molecular candidates, including 

P-glycoprotein, pICln, and ClC-3, were proposed to form VRAC, but all were disproved 

(Okada, 1997; Pedersen et al., 2015). In 2014, two independent studies simultaneously 

identified leucine-rich repeat-containing 8A (LRRC8A) as an essential component of 

VRAC (Qiu et al, 2014; Voss et al, 2014). 
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1.2.1 LRRC8 proteins and VRAC structure 

VRAC is a heteromeric channel formed by LRRC8 family proteins, which consist of five 

members, LRRC8A-E (Abascal & Zardoya, 2012; Kubota et al, 2004). LRRC8A is the 

only obligatory subunit (Qiu et al., 2014; Voss et al., 2014) and requires conjugation with 

at least one other LRRC8 isoform (LRRC8B, C, D or E) to reconstitute physiological 

VRAC activity (Voss et al., 2014). Whereas LRRC8A is targeted to the plasma membrane 

both in native cells and when overexpressed on its own (Qiu et al., 2014; Voss et al., 

2014), LRRC8B-LRRC8E must be co-expressed with LRRC8A to reach the plasma 

membrane (Voss et al., 2014). However, heterologous co-expression of LRRC8 proteins 

did not significantly increase VRAC currents above endogenous levels (Voss et al., 2014). 

Conversely, overexpression of LRRC8A alone was found to suppress endogenous VRAC 

currents, which may be due to a stoichiometric imbalance in the heteromeric channel (Qiu 

et al., 2014; Voss et al., 2014). 

  The LRRC8 paralogs consist of approximately 800 amino acid residues, with an 

average sequence similarity of 45.92% and a molecular weight of approximately 95 kDa 

(Abascal & Zardoya, 2012; Kubota et al., 2004). Four groups recently described the 

structure of LRRC8A homomeric complex determined by cryo-electron microscopy 

(Deneka et al, 2018; Kasuya et al, 2018; Kefauver et al, 2018; Kern et al, 2019). As 

shown in Figure 1.3A, LRRC8A comprises four transmembrane domains, with its N- and 

C-termini located in the cytoplasm. The cytosolic amino terminal stretch is 23 amino 

acids long and it seems to have essentially no fixed structure (Deneka et al., 2018; Kasuya 

et al., 2018; Kefauver et al., 2018) except for a short N-terminal coil that protrudes into 

the channel pore (Kefauver et al., 2018). The carboxyl terminal half contains 15-16 

leucine-rich repeats (LRRs), forming a crescent-shaped structure common to many LRR-

containing proteins (Abascal & Zardoya, 2012; Bella et al, 2008). 
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Figure 1.3: Structure of VRAC. A, Schematic diagram of the structure of a single LRRC8 
subunit within a hexamer. B, Ribbon representation of the hexameric LRRC8A channel structure 
(PDB 5ZSU (Kasuya et al., 2018)) viewed from within the plasma membrane (two subunits in 
the back not shown for clarity, left) and from the intracellular side (right). Loop regions of 
unsolved structure are depicted as dashed lines. Figure from (Chen et al., 2019b). 

 

LRRC8A homomers, although not exhibiting normal VRAC properties (Deneka et al., 

2018; Kasuya et al., 2018; Kefauver et al., 2018; Syeda et al, 2016), show a pore-forming 

hexameric structure (Figure 1.3B). Importantly, the hexameric structure was also 

observed for LRRC8A/C heteromers (Deneka et al., 2018), which confirms that VRACs 

share topology and channel structure with pannexins/innexins and connexins (Abascal & 

Zardoya, 2012). However, the precise arrangement of the six LRRC8 subunits is still a 

matter of debate. For the extracellular, transmembrane, and intracellular loop regions, 

three studies described a six-fold rotational symmetry (i.e. C6 symmetry) (Deneka et al., 

2018; Kefauver et al., 2018; Kern et al., 2019) while one showed a C3 symmetry (Figure 

1.3B) (Kasuya et al., 2018). Regarding the LRR regions, both C3 symmetry (a trimer of 

dimers) (Figure 1.3B) (Deneka et al., 2018; Kasuya et al., 2018; Kefauver et al., 2018) 

and disordered heterogeneous arrangement (Kern et al., 2019) have been proposed. The 

pore structure of LRRC8A homo-hexamer consists of a central transmembrane domain 

and two flanking subdomains which protrude from the membrane towards the 

extracellular and the cytoplasmic side. Hydrophilic and positively charged residues are 

distributed along the pore (Deneka et al., 2018; Kasuya et al., 2018; Kefauver et al., 2018; 

Kern et al., 2019). During permeation, the extracellular constriction containing a ring of 

six positively charged arginine residues, R103, acts as a size and charge selectivity filter 
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(Deneka et al., 2018; Kefauver et al., 2018; Kern et al., 2019). Notably, the equivalent 

position (R103) in LRRC8C or LRRC8E is a leucine residue, and in LRRC8D is a 

phenylalanine residue. 

1.2.2 LRRC8 subunit composition and VRAC properties 

The biophysical characteristics of VRAC have been described in multiple vertebrate cell 

types (Akita & Okada, 2014; Nilius et al., 1997; Nilius et al, 1994; Strange et al., 2019). 

Upon extracellular osmolarity reduction, VRAC-mediated currents develop over a few 

minutes and exhibit moderate outward rectification (larger currents at inside-positive than 

at inside-negative voltages, and hence the alternative name the volume expansion-sensing 

outwardly rectifying anion channel, VSOR (Okada, 1997)), with the relative anion 

selectivity as follow: I− > NO3− > Br− > Cl− > F−. In addition, VRAC exhibits channel 

inactivation at high positive voltages (currents decrease with time at a constant voltage). 

Importantly, differences in the LRRC8 subunit composition give rise to the variability 

of functional VRAC properties (Jentsch, 2016; Strange et al., 2019; Syeda et al., 2016; 

Voss et al., 2014). For instance, constitutive currents of LRRC8A/E heteromers were 

dramatically potentiated by intracellular oxidizing agents, while that of LRRC8A/C and 

LRRC8A/D were inhibited by oxidation (Gradogna et al, 2017b). On the other hand, 

LRRC8A/E heteromers exhibit faster inactivation at less positive membrane potentials 

than LRRC8A/C and LRRC8A/D (Lutter et al, 2017; Voss et al., 2014). Moreover, 

LRRC8D increases the permeability of cells to all organic substrates such as glutamate, 

myo-inositol, taurine, and γ-aminobutyric acid (Gaitán-Peñas et al, 2016; Lutter et al., 

2017; Schober et al, 2017), which probably explains the existence of VRACs as 

“VSOACs” (volume-stimulated organic osmolyte and anion channels) (Jackson et al., 

1994). LRRC8D was also crucial for the transport of the anticancer drug cisplatin 

(Planells-Cases et al, 2015) and the antibiotic blasticidin (Lee et al, 2014). Interestingly, 

the increased permeability of LRRC8A/D heteromers to large organic solutes may be due 

to the bulky phenylalanine residue in LRRC8D that may widen the channel pore (Deneka 

et al., 2018). LRRC8E rather specifically makes VRAC more permeable to negatively 
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charged glutamate and aspartate (Lutter et al., 2017) and cyclic dinucleotide 2'3'-cGAMP 

(Zhou et al, 2020). These observations strongly suggest that cell- and tissue-specific 

LRRC8 subunit composition correlates with the physiological roles of VRAC in these 

tissues (Gradogna et al., 2017b; Stuhlmann et al, 2018; Voss et al., 2014). 

  The mechanism by which cell swelling activates VRAC remains obscure. A widely 

studied but still controversial activation pathway is the reduction of intracellular ionic 

strength (Best & Brown, 2009; Cannon et al, 1998; Emma et al, 1997; König et al, 2019; 

Sabirov et al, 2000; Syeda et al., 2016; Voets et al, 1999; Zhang & Lieberman, 1996). 

Multiple parameters altered by changes in cell volume have been proposed to activate 

VRAC, such as membrane tension, alterations in cytoskeleton or plasma membrane 

domains, and changes in macromolecule crowding (Akita & Okada, 2014; Chen et al., 

2019b; Hoffmann et al., 2009; Mongin & Orlov, 2001). Moreover, there are many 

contradictory reports on the involvement of second-messenger pathways, including 

kinases and phosphatases (Hoffmann et al., 2009; König et al., 2019; Pedersen et al., 

2015). On the other hand, VRAC can be opened iso-volumetrically in various contexts. 

For instance, VRAC can be activated without cell swelling by pro-apoptotic drugs 

(involving apoptotic volume decrease) (Gradogna et al, 2017a; Ise et al, 2005; Planells-

Cases et al., 2015; Shimizu et al, 2004) in cancer cells, ATP (involving Ca2+ signaling 

and protein phosphorylation events) (Akita et al, 2011; Hyzinski-García et al, 2014; 

Rudkouskaya et al, 2008; Yang et al, 2019) in astrocytes, sphingosine-1-phosphate 

(Burow et al, 2015) in macrophages, and reactive oxygen species generated by the 

stimulation of certain plasma membrane receptors (Deng et al, 2010; Friard et al, 2019; 

Liu et al, 2009; Shimizu et al., 2004; Varela et al, 2004; Wang et al, 2017) in several cell 

types. Furthermore, VRAC activity was reported to be modulated by diverse G-proteins, 

G-protein-coupled receptors, phosphatidylinositol-3,4,5-trisphosphate, intracellular ATP 

levels, Ca2+ concentrations, tumor necrosis factor-α, and PI3K-AKT signaling among 

others (Akita & Okada, 2014; Chen et al., 2019b; Okada et al, 2019; Pedersen et al., 2015; 

Pedersen et al., 2016). As mentioned above, the diverse and confusing data regarding 

VRAC activation and/or regulation may also be attributed to cell- and tissue-specific 

LRRC8 subunit composition. 



12 

1.2.3 Assessment of VRAC activity 

There are several techniques commonly used to study VRAC activation. As the gold 

standard for evaluating ion channel activity, electrophysiology has been extensively used 

to measure VRAC currents at the single-channel level or the whole-cell level (Akita & 

Okada, 2014; Nilius et al., 1997; Nilius et al., 1994; Strange et al., 2019). Generally, there 

are three main steps to set up a whole-cell patch-clamp configuration (Liem et al, 1995). 

First, approach an isolated cell attached to a coverslip with a polished glass pipette 

containing an electrode. Second, establish a tight seal with the cell membrane via negative 

pressure of the pipette solution. Third, rupture the sealed membrane patch by a further 

suction pulse, thereby establishing electrical access to the cell interior. 

Fluorescence resonance energy transfer (FRET) is a physical process in which energy 

is transferred from an excited fluorophore (the donor) to another molecular fluorophore 

(the acceptor) in a non-radiative manner (Sekar & Periasamy, 2003). FRET only occurs 

between closely spaced fluorophores (< 10 nm) and has been used to study various 

biological phenomena, such as protein-protein interactions and conformational changes 

of proteins (Bykova et al, 2006; Miranda et al, 2013; Sekar & Periasamy, 2003; 

Zachariassen et al, 2016). The Stauber lab has recently developed a FRET sensor of C-

terminal rearrangement to monitor VRAC activity in living cells (König et al., 2019). The 

FRET efficiency between fluorophores fused to the C-termini of LRRC8 subunits 

decreased upon osmotic swelling-induced VRAC activation; and patch-clamp 

fluorometry further confirmed that FRET changes reflect channel gating (König et al., 

2019). This novel optical sensor for VRAC activity has several advantages over 

electrophysiological methods: 1) it enables subcellular monitoring of VRAC activity; 2) 

it provides spatio-temporal information about the channels; 3) it is non-invasive and thus 

allows long-term live-cell experiments (König et al., 2019). 

  Since VRAC is activated upon osmotic swelling and contributes to subsequent RVD, a 

direct way to assess its action is to measure cell volume. Various methods have been 

developed for cell volume measurements (Model, 2018). Currently, Coulter electronic 

sizing of cell suspensions is considered to be the most reliable method (Model, 2018) and 
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was used to determine the role of VRAC in RVD (Qiu et al., 2014). The influence of 

VRAC on RVD was also evaluated by the calcein fluorescence method (Capó-Aponte et 

al, 2005; Planells-Cases et al., 2015; Stuhlmann et al., 2018; Voss et al., 2014), optical 

bright field cross-sectioning (Kang et al, 2018), and flow cytometry (by measuring cell 

size-dependent light scattering) (Sirianant et al, 2016). 

  The radiotracer assay is usually applied to determine the permeability of VRAC to 

various organic substances (Hyzinski-García et al., 2014; Lutter et al., 2017; Planells-

Cases et al., 2015; Qiu et al., 2014; Schober et al., 2017; Voss et al., 2014; Wilson et al, 

2019). 3H and 14C are two commonly used radioactive elements. Additionally, the high 

permeability of VRAC to I− was exploited in the determination of its molecular correlate 

(the LRRC8 protein family) (Qiu et al., 2014; Voss et al., 2014). The application of high 

extracellular I− causes I− to flow into cells expressing the halide-sensitive yellow-

fluorescent protein (YFP) (Galietta et al, 2001) through activated VRAC, thereby 

quenching the fluorescence of YFP (Ghosh et al, 2017; Planells-Cases et al., 2015; Qiu 

et al., 2014; Voss et al., 2014). Furthermore, cellular uptake of the anticancer drug 

cisplatin through VRAC can be measured by inductively coupled plasma mass 

spectrometry (ICP-MS) (Brouwers et al, 2006; Planells-Cases et al., 2015). 

1.2.4 Physiological roles of VRAC in volume regulation and beyond 

Generally, VRAC can fulfill its proposed functions by three distinct basic mechanisms 

(Figure 1.4) (Chen et al., 2019b). First of all, VRAC is a well-known key player in RVD 

by its extrusion of Cl− and osmolytes (Hoffmann et al., 2009; Jentsch, 2016). Consistently, 

RVD was strongly reduced in HeLa cells (Qiu et al., 2014) and astrocytes (Formaggio et 

al, 2019) upon knockdown of the essential VRAC subunit LRRC8A and a complete loss 

of RVD was seen in LRRC8A−/− or LRRC8(B/C/D/E) −/− HEK cells (Planells-Cases et al., 

2015; Voss et al., 2014). 
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Figure 1.4: Schematic overview of three distinct mechanisms by which VRAC can exert its 
proposed physiological tasks. A, The release of chloride and organic osmolytes leads to osmotic 
efflux of water, resulting in a volume decrease. B, Opening of VRAC shifts the plasma membrane 
potential (Vm) towards the equilibrium potential of chloride, affecting the activity of other ion 
channels. C, Substances conducted by VRAC can act as signaling molecules. Figure modified 
from (Chen et al., 2019b). 
 

During spermatogenesis, male germ cells encounter large alterations in extracellular 

osmolarity from ~350 mOsm in the seminiferous tubules to ~290 mOsm in the rete testis, 

and finally up to ~410 mOsm in the cauda epididymis (Cooper et al, 2004; Petrunkina et 

al, 2004; Yeung et al, 2006). Therefore, the ability of male germ cells to maintain a near-

constant cell volume is particularly important for their proper development and 

maturation (Yeung et al., 2006). Indeed, the spontaneous mouse mutant ébouriffé 

(Lalouette et al, 1996), which was found to carry a mutation that truncates the C-terminal 

LRRs of LRRC8A and markedly diminishes VRAC activity (Platt et al, 2017), and mice 

lacking LRRC8A specifically in germ cells both exhibit abnormal sperm development 

and male infertility (Bao et al, 2018; Lück et al, 2018). Consistent with impaired volume 

regulation, late-stage spermatids (in testis) from these mice present round, swollen 

cytoplasm. Further developed spermatozoa (in epididymis) display enlarged cytoplasm, 

disorganized mitochondrial sheaths, and flagellar coiling, resulting in reduced motility 

(Bao et al., 2018; Lück et al., 2018). Additionally, a heterozygous R545H missense point 

mutation in LRRC8A was identified in a male patient with fertility disorder termed Sertoli 

cell-only syndrome (Bao et al., 2018). However, when co-expressed with LRRC8C or 
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LRRC8D in Xenopus oocytes, the mutation only decreased VRAC currents by 25-30% 

(Bao et al., 2018), while heterozygous Lrrc8a+/− mice showed normal fertility (Kumar et 

al, 2014). Therefore, it is still doubtful whether the mutation causes infertility. 

  A hallmark of programmed cell death is the reduction of cellular volume (apoptotic 

volume decrease, AVD) (Bortner & Cidlowski, 1998; Lang & Hoffmann, 2012). Similar 

to RVD, VRAC was proposed to be involved in AVD (Akita & Okada, 2014; Kunzelmann, 

2016; Okada et al, 2006). As noted earlier, apoptosis inducers such as staurosporine and 

Fas ligand (Okada et al., 2006; Planells-Cases et al., 2015; Shimizu et al., 2004) or 

platinum-based anticancer drugs such as cisplatin (Gradogna et al., 2017a; Ise et al., 2005; 

Planells-Cases et al., 2015) can induce VRAC currents independent of cell swelling. 

Disruption of LRRC8A in HCT116 cells suppressed cisplatin- or staurosporine-induced 

transport of anion and taurine and activation of caspase-3 (Planells-Cases et al., 2015). It 

is notable that LRRC8A and LRRC8D were identified in a genome-wide screen for 

carboplatin resistance (Planells-Cases et al., 2015). Disruption of LRRC8A or LRRC8D 

strongly reduced cellular uptake of cisplatin and carboplatin under isotonic conditions, 

whereas cell swelling enhanced LRRC8 subunit-dependent cisplatin uptake (Planells-

Cases et al., 2015). Importantly, low expression of LRRC8D correlated with a significant 

reduction in the survival rate of ovarian cancer patients treated with platinum-based drugs 

(Planells-Cases et al., 2015). Thus, it has been suggested that VRAC contributes to 

cellular drug response by both mediating cisplatin uptake and promoting AVD-dependent 

apoptosis. 

  VRAC has also been implicated in cell proliferation and migration, fundamental 

physiological processes that are directly related to cell volume regulation (Hoffmann et 

al., 2009; Schwab et al, 2012; Stroka et al, 2014). Various non-specific blockers of VRAC 

were reported to inhibit the proliferation and migration of diverse cell types (Klausen et 

al, 2007; Liang et al, 2014; Nilius et al., 1997; Wondergem et al, 2001; Wong et al, 2018; 

Xue et al, 2018). However, LRRC8A deficiency did not affect normal proliferation or 

migration of HeLa cells (Sirianant et al., 2016), vascular smooth muscle cells (Choi et al, 

2016), C2C12 myoblasts and HCT116 cells (Liu & Stauber, 2019). siRNA against 

LRRC8A was reported to inhibit proliferation of glioblastoma cells in one study (Rubino 
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et al, 2018) but not in another (Liu & Stauber, 2019). On the other hand, knockdown of 

LRRC8A was shown to suppress the growth and metastasis of hepatocellular carcinoma 

cells (Lu et al, 2019) and the tumorigenesis of human colon cancer HCT116 cells (Zhang 

et al, 2018) in vivo. Overall, the role of VRAC in cell proliferation and migration is at 

present questionable. 

As mentioned above, VRAC can be activated under isovolumetric conditions and is 

permeable not only to Cl– but also to various organic osmolytes, for which the central 

nervous system provides good examples (Akita & Okada, 2014; Elorza-Vidal et al, 2019; 

Mongin, 2016). During normal brain functioning, astrocytes release excitatory amino 

acids (EAAs), such as glutamate, and regulate astrocyte-neuron communication, 

including neuronal excitability, synaptic transmission and plasticity. However, excessive 

release of EAAs from swollen astrocytes during ischemic brain injury leads to excitotoxic 

neuronal death. VRAC has long been suggested as a major pathway for EAA release in 

the brain based on non-specific pharmacological hints (Akita & Okada, 2014; Elorza-

Vidal et al., 2019; Mongin, 2016). Indeed, the role of the essential VRAC subunit 

LRRC8A in swelling- and ATP-activated EAA release from astrocytes has been 

confirmed (Hyzinski-García et al., 2014; Schober et al., 2017; Yang et al., 2019). 

Combined siRNA knockdown of LRRC8C and LRRC8E also suppressed release of 

aspartate and glutamate (Schober et al., 2017). Importantly, due to impaired glutamatergic 

transmission, mice with astrocyte-specific LRRC8A deletion exhibited hippocampal-

dependent learning and memory deficits (Yang et al., 2019). During pathological cell 

swelling, the loss of astrocytic LRRC8A attenuated glutamate-dependent neuronal 

excitability, thus providing neuroprotection after ischemic stroke (Yang et al., 2019). 

Notably, a recent study presented both pharmacological and molecular biological 

evidence that cerebellar granule neurons conduct hypotonicity-induced ATP release 

through LRRC8/VRAC channels (Dunn et al, 2020). 

  A further role has been shown for VRAC in pancreatic insulin secretion. Pancreatic β-

cells secrete insulin in response to serum glucose stimulation. Cellular uptake and 

metabolism of glucose raises intracellular ATP levels and thereby inhibits ATP-sensitive 

K+ channels, resulting in cell membrane depolarization and activation of voltage-
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dependent Ca2+ channels. Transient Ca2+ influx in turn triggers exocytosis of insulin-

containing granules (Ashcroft & Rorsman, 2013; Rorsman & Braun, 2013; Yang et al, 

2014). Consistent with a longstanding hypothesis (Best et al, 2010), two independent 

studies simultaneously showed that glucose-induced cell swelling (intracellular 

hypertonicity) in pancreatic β-cells activates LRRC8A-dependent VRAC currents (Kang 

et al., 2018; Stuhlmann et al., 2018). VRAC mediates the efflux of Cl–, leading to 

membrane potential depolarization and subsequent electrical excitation (Kang et al., 2018; 

Stuhlmann et al., 2018). Nevertheless, β-cell-specific LRRC8A knock-out mice exhibited 

normal resting serum glucose levels but reduced glucose tolerance in both studies (Kang 

et al., 2018; Stuhlmann et al., 2018). 

  Both LRRC8A protein expression and VRAC currents were found to be increased in 

hypertrophic adipocytes from obese mice and humans (Xie et al, 2017; Zhang et al, 

2017b). Even though Lrrc8a ablation reduced lipogenesis of 3T3-F442A cells and 

primary adipocytes in vitro, postnatal adipocyte development under basal conditions in 

vivo was not affected by adipocyte-restricted Lrrc8a deletion (Zhang et al., 2017b). On 

the other hand, adipocyte-specific Lrrc8a-knockout reduced adipocyte size, adiposity, 

and body weight whereas increased systemic glucose intolerance and insulin resistance 

in obese mice (Zhang et al., 2017b). Notably, it was also shown that LRRC8C (also named 

factor of adipocyte differentiation 158, FAD158) is required for adipocyte differentiation 

(Tominaga et al, 2004) and high-fat diet-induced obesity (Hayashi et al, 2011). 

Interestingly, the role of LRRC8A in adipocyte glucose uptake and lipogenesis was 

ascribed to the regulation of insulin-PI3K-AKT2 signaling through physical interactions 

between C-terminal LRR domain and growth factor receptor-bound 2 (GRB2, an adaptor 

protein) and caveolin-1 (Zhang et al., 2017b). It remains unclear what the role of VRAC 

channel function itself is and what the mechanism of VRAC activation may be. 

  Besides the physiological roles discussed above, the overall biological importance of 

LRRC8/VRAC channels is demonstrated by the severe phenotypes of Lrrc8a−/− mice 

(Kumar et al., 2014). They showed high prenatal and postnatal lethality with a maximum 

life span of approximately 100 days. Born Lrrc8a−/− mice exhibited severe growth 

retardation and defective developments in many organs, such as thinning of skeletal 
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muscle bundles and impairment of T-cell expansion and function (Kumar et al., 2014). 

Owing to the ubiquitous expression of VRAC in vertebrate cells and its diverse 

composition and function, many discoveries regarding the cellular and systemic roles of 

VRAC and individual LRRC8 subunits may emerge in the future. 

 
  



19 

2.  Aim of this work 

Skeletal muscle arises from the differentiation and fusion of myoblasts into large 

multinucleated myotubes. Various ion channels and transporters play a pivotal role in 

skeletal myogenesis. For example, the action of potassium channels causes membrane 

hyperpolarization of differentiating myoblasts, thereby promoting the activation of 

intracellular calcium signals. Correspondingly, a tightly regulated transmembrane 

movement of the cations K+ and Ca2+ is involved. Whilst the role of K+ and Ca2+ ions and 

their channels/transporters during skeletal myogenesis have been extensively studied, 

little is known about the functions of the anion Cl− and Cl− channels in this process. 

  The volume-regulated anion channel (VRAC) formed by LRRC8 hetero-hexamers is a 

plasma membrane channel that conducts Cl− and organic osmolytes when activated. 

Besides a key role in regulatory volume decrease, numerous physiological functions of 

VRAC have been described, including apoptosis, insulin secretion, and auto/paracrine 

signaling. Importantly, the thinned skeletal muscle bundles observed in mice lacking the 

essential VRAC subunit LRRC8A implicate LRRC8/VRAC channels in muscle 

formation. 

  Therefore, in this thesis I aim to investigate the role of LRRC8/VRAC channels in 

skeletal myogenesis by using mouse C2C12 myoblasts. First, I test the significance of 

both the essential subunit LRRC8A and VRAC channel function itself in myoblast 

differentiation and fusion. I next explore the mechanism by which VRAC participates in 

myoblast differentiation. Finally, I determine the timing of VRAC activity during 

myogenesis and the osmolytes it conducts upon activation. In addition, I test the possible 

role of VRAC in osteoblast and adipocyte differentiation. 
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3.  Materials and Methods 

3.1  Materials 

3.1.1 Cell lines 

Table 3.1: Cell lines 

Name Cell types Source 

C2C12 mouse myoblast ATCC: CRL-1772; Kindly provided by P. 

Knaus (Freie Universität Berlin, Germany) 

HeLa human cervix epithelioid 

carcinoma 

RRID: CVCL_0030; Obtained from Leibniz 

Forschungsinstitut DSMZ, Germany 

3T3-L1 mouse embryonic 

fibroblast 

ATCC: CL-173; Kindly provided by P. 

Knaus (Freie Universität Berlin, Germany) 

3.1.2 Cell culture media and reagents 

Table 3.2: Cell culture media and reagents 

Name Company Product number 

Dulbecco's modified eagle medium 

(DMEM) 

PAN-Biotech P04-03550 

Chloride-reduced DMEM (w/o: KCl 

or NaCl; w: potassium gluconate and 

sodium gluconate) 

PAN-Biotech Customer’s formula 

Opti-MEM Gibco 31985070 

Fetal bovine serum (FBS) PAN-Biotech P30-3302 

Horse serum PAN-Biotech P30-0712 

Recombinant human bone 

morphogenetic protein-2 (BMP-2) 

Kindly provided by P. Knaus (Freie 

Universität Berlin, Germany) 

Recombinant insulin 
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Dexamethasone Sigma-Aldrich D4902 

3-isobutyl-1-methylxanthine (IBMX) Sigma-Aldrich I7018 

Penicillin-Streptomycin PAN-Biotech P06-07100 

Trypsin/EDTA PAN-Biotech P10-029500 

Dulbecco's phosphate-buffered saline 

(DPBS) 

PAN-Biotech P04-36500 

3.1.3 Chemicals and drugs 

All chemicals used in this thesis were purchased from Sigma-Aldrich or Carl Roth, unless 

stated otherwise. The drugs shown in Table 3.3 are pharmacological inhibitors of VRAC. 

Table 3.3: Drugs and chemicals 

Name Company Product number 

Carbenoxolone (CBX) Sigma-Aldrich C4790 

Niflumic acid (NFA) Sigma-Aldrich N0630 

5-nitro-2-(3-phenylpropylamino)benzoic 

acid (NPPB) 

Tocris Bioscience 0593 

4-(2-butyl-6,7-dichloro-2-cyclopentyl-

indan-1-on-5-yl)oxybutyric acid (DCPIB) 

Tocris Bioscience 1540 

Dimethyl sulfoxide (DMSO) PAN-Biotech P60-36720100 

3.1.4 siRNAs 

Table 3.4: siRNAs 

Name Species Sequence Company and 

Product number 

Lrrc8a 

siRNA1 

mouse sense-

CCUUGUAAGUGGGUCACCATT 

Thermo Fisher 

Scientific (s109501) 

antisense-

UGGUGACCCACUUACAAGGTA 

Lrrc8a mouse sense- Thermo Fisher 
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siRNA2 GAUCGACACCAGUACAACUTT Scientific (s109502) 

antisense- 

AGUUGUACUGGUGUCGAUCTA 

scrambled 

siRNA 

 a non-targeting negative control 

siRNA 

Thermo Fisher 

Scientific (4390844) 

3.1.5 Plasmids 

Table 3.5: Plasmids 

Name Number in 

internal database 

Expression 

vector 

Supplier/Reference 

pEGFP-N1 23  Clontech 

pmRFP-N1 45  Clontech 

LRRC8A-GFP 103 pEGFP-N1 Kindly provided by T.J. 

Jentsch (FMP and MDC, 

Berlin, Germany) (Voss 

et al., 2014) 

LRRC8A-RFP 104 pmRFP-N1 

LRRC8A-Cerulean 105 pECFP-N1 (König et al., 2019) 

LRRC8E-Venus 106 pEYFP-N1 (König et al., 2019) 

3.1.6 Primers 

Table 3.6: qRT-PCR Primers 

Name Species Sequence 

Lrrc8c forward Mouse 5'-TCC TTT TCT GCG GAT ACC CT-3' 

Lrrc8c reverse Mouse 5'-AAC TCG GTC ACC GGA ATC AT-3' 

Myogenin forward Mouse 5'-CCA AGG TCT CCT GTG CTG ATG-3' 

Myogenin reverse Mouse 5'-TTG GCA AAA CCA CAC AAT GC-3' 

Gapdh forward Mouse 5'-TGC GAC TTC AAC AGC AAC TC-3' 

Gapdh reverse Mouse 5'-GCC TCT CTT GCT CAG TGT CC-3' 
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3.1.7 Antibodies 

Table 3.7: Antibodies 

Name Company/Supplier Product number/Reference 

Rabbit anti-LRRC8A (5a) Kindly provided by T.J. 

Jentsch (FMP and 

MDC, Berlin, 

Germany) 

(Planells-Cases et al., 2015; 

Voss et al., 2014) Rabbit anti-LRRC8B (5b) 

Rabbit anti-LRRC8C (ct) 

Rabbit anti-LRRC8D (ct) 

Rabbit anti-LRRC8E (ct) 

Mouse anti-myosin Developmental Studies 

Hybridoma Bank 

clone MF20 

Mouse anti-myogenin Developmental Studies 

Hybridoma Bank 

clone F5D 

Rabbit anti-GAPDH Cell Signaling 

Technology 

clone 14C10 

Horseradish peroxidase 

(HRP)-conjugated goat 

anti-rabbit 

Jackson 

ImmunoResearch 

 

HRP-conjugated goat anti-

mouse 

Jackson 

ImmunoResearch 

 

Alexa Fluor 555-labeled 

goat anti-mouse 

Molecular Probes  

3.2  Methods 

3.2.1 Cell culture 

In general, cells (see Table 3.1) were maintained in growth medium (DMEM 

supplemented with 10% FBS, 100 units/ml penicillin and 100 μg/ml streptomycin) at 

37°C under a humidified atmosphere with 5% CO2. 
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3.2.2 Cell differentiation and drug treatment 

To induce C2C12 myogenic differentiation, cells at 90-100% confluency were rinsed with 

DPBS and then switched to differentiation medium (DMEM supplemented with 2% horse 

serum, 100 units/ml penicillin, and 100 μg/ml streptomycin). Upon induction of 

differentiation, medium containing drugs or vehicle if applicable was replaced daily. For 

stock solutions, NFA, NPPB, and DCPIB were dissolved in DMSO, CBX in water. 

To induce C2C12 osteogenic differentiation, cells at 90-100% confluency were rinsed 

with DPBS and then switched to differentiation medium (DMEM supplemented with 2% 

FBS, 100 units/ml penicillin, 100 μg/ml streptomycin, and 30 nM BMP-2). Upon 

induction of differentiation, medium containing drugs or vehicle if applicable was 

replaced every other day. 

  For induction of adipogenesis, 3T3-L1 preadipocytes at 2 days post-confluence were 

sequentially incubated with the following media: growth medium supplemented with 250 

μM IBMX, 1 μM dexamethasone, and 1 μM insulin (for 2 days); growth medium 

supplemented with 1 μM insulin (for 2 days) and growth medium (for 4 days). Medium 

containing drugs or vehicle if applicable was replaced daily during the first 4 days after 

induction of differentiation. 

3.2.3 Cell transfection 

For siRNA experiments, C2C12 myoblasts were transfected with 15 nM siRNA using 

Lipofectamine RNAiMAX (Invitrogen) according to the manufacturer’s instructions. 

For overexpression, 2 μg/ml of plasmid DNA of pEGFP-N1-LRRC8A, pmRFP-N1-

LRRC8A or expression vectors pEGFP-N1, pmRFP-N1 (see Table 3.5) was transfected 

into C2C12 cells using FuGENE 6 (Promega) according to the manufacturer’s 

instructions. Cells were incubated with transfection complex for 6 h and induced to 

differentiate one day after transfection. 

  For co-expression, plasmid constructs of LRRC8A-Cerulean and LRRC8E-Venus (see 

Table 3.5) were co-transfected into cells plated in 35 mm glass-bottom dishes (MatTek) 

using FuGENE 6 (Promega) according to the manufacturer’s instructions. 500 ng and 2 
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μg of each plasmid DNA were used on HeLa and C2C12 cells, respectively. C2C12 cells 

were incubated with transfection complex for 6 h. Both cells were used for FRET 

experiments one day after transfection. 

3.2.4 Cell proliferation assay 

C2C12 myoblasts were seeded at a density of 5,000 cells per well in 96-well plates and 

transfected with siRNA the next day. Cell viability was evaluated with the Cell Counting 

Kit-8 (Sigma-Aldrich) at 24- and 48-hours post transfection. The absorbance of the water-

soluble formazan dye produced from tetrazolium salt WST-8 by cellular dehydrogenase 

activity was measured at 450 nm using a microplate reader (Biochrom). 

3.2.5 Immunofluorescence staining 

After the indicated time in myogenic differentiation medium, C2C12 cells growing on 

coverslips were rinsed with PBS and fixed in 4% paraformaldehyde (PFA)/PBS for 15 

min at room temperature. Cells were subsequently permeabilized in 0.2% Triton X-

100/PBS for 20 min and blocked in 3% bovine serum albumin/PBS for 1 h. Then, cells 

were incubated overnight at 4°C with a mouse monoclonal anti-myosin (0.28 μg/ml) or 

anti-myogenin (1 μg/ml) antibody in blocking buffer. After washing with PBS, cells were 

incubated with Alexa Fluor 555-labeled anti-mouse Ig (1:1,000) for 1 h at room 

temperature, stained with DAPI (1:1,000; Sigma-Aldrich) for 10 min, and mounted with 

Roti-Mount Fluocare (Carl Roth). Images were acquired with a DMi8 fluorescence 

microscope using a 20× or 40× objective (Leica Microsystems). 

3.2.6 Alizarin red S assay 

At day 0 or day 8 in osteogenic differentiation medium, C2C12 cells were rinsed with 

DPBS and fixed in ice-cold 70% ethanol for 1 h. Cellular monolayers were then washed 

with distilled water and incubated with 2% Alizarin red S (ARS) (Sigma-Aldrich) staining 

solution (pH 4.2) for 1 h in the dark at room temperature with gentle shaking. After 
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aspiration of the staining solution, cells were washed five times with distilled water. 

Quantification of ARS staining was performed as previously described (Gregory et al, 

2004; Stanford et al, 1995). ARS was extracted by incubation of the cellular monolayers 

with 10% cetylpyridinium chloride (Sigma-Aldrich) in 10 mM Na2PO4 (pH 7.0) for 1 h 

with shaking. Equal aliquots of the extracts were then transferred into a 96-well plate 

followed by measuring the absorbance at 550 nm on a microplate reader (Biochrom). 

3.2.7 Oil red O staining and quantification 

At the indicated time after adipogenic induction, 3T3-L1 cells were rinsed with PBS and 

fixed in 4% PFA/PBS for 30 min at room temperature. Cells were stained with a mixture 

of 1.5 volumes of oil red O (ORO) (Sigma-Aldrich) stock solution (0.6% in 2-propanol) 

and 1 volume of distilled water for 15 min at room temperature and subsequently washed 

five times with distilled water. Differential interference contrast images of ORO staining 

were acquired with a DMi8 microscope (Leica Microsystems). To quantify ORO staining 

(Donzelli et al, 2011; Martella et al, 2014), the dye within stained cells was extracted by 

incubation with 100% 2-propanol for 15 min at room temperature with shaking. Then, 

equal aliquots of the extracts were transferred into a 96-well plate and the absorbance at 

500 nm was measured using a microplate reader (Biochrom). 

3.2.8 Western blotting 

C2C12 cells were collected with a cell scraper on ice and lysed in precooled RIPA buffer 

(150 mM NaCl, 50 mM Tris pH 8.0, 5 mM EDTA pH 8.0, 1% NP-40, 0.5% sodium 

deoxycholate, 0.1% SDS) containing protease inhibitor cocktails (Roche). Total protein 

amount was determined using the Pierce BCA Protein Assay Kit (Thermo Fisher 

Scientific). Equal amounts of protein (20 μg per lane) were separated by 10% SDS-PAGE 

and transferred onto nitrocellulose membrane (Macherey-Nagel). Blotted membranes 

were subsequently blocked in 5% skim milk in TBS-T (20 mM Tris pH 7.6, 150 mM 

NaCl and 0.02% Tween-20) for 1 h at room temperature, incubated with primary 

antibodies overnight at 4°C, and stained with HRP-conjugated secondary antibodies for 
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40 min at room temperature. Primary antibodies (see Table 3.7): rabbit anti-LRRC8A-E 

subunits (1 μg/ml), mouse anti-myogenin (1 μg/ml), mouse anti-myosin (0.28 μg/ml), 

rabbit anti-GAPDH (1:2,500). Secondary antibodies: goat anti-mouse and goat anti-rabbit 

(1:5,000). Signals were visualized using an enhanced chemiluminescence reagent (HRP 

juice; PJK GmbH) and a ChemiSmart5000 digital imaging system (Vilber-Lourmat). 

Densitometrical quantification was performed with the Fiji software (Schindelin et al, 

2012). 

3.2.9 Quantitative real-time PCR 

Total RNA was isolated from C2C12 cells with a NucleoSpin RNA Kit (Macherey-Nagel). 

SuperScript II Reverse Transcriptase (Invitrogen), Oligo (dT)20 Primer (Invitrogen) and 

1 μg of total RNA as template were used for cDNA synthesis. To assess gene expression, 

standard quantitative PCR was conducted with Power SYBR Green PCR Master Mix 

(Applied Biosystems) on SteponePlus Real-Time PCR System (Applied Biosystems). 

Results were analyzed with the comparative cycle threshold CT (ΔΔCT) method by using 

Gapdh as the reference gene. The primer pairs are listed in Table 3.6. 

3.2.10  Measurement of plasma membrane potential 

Membrane potential measurements using the fluorescent bis-oxonol type plasma 

membrane potential indicator DiBAC4(3) were performed as previously described 

(Dall'Asta et al, 1997; Konig et al., 2004). C2C12 myoblasts growing in 8-well chambers 

(Sarstedt) were washed twice and then incubated at 37°C in imaging buffer (containing 

in mM: 144 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 glucose, 10 HEPES pH 7.4) with 

DiBAC4(3) (1 μM; Molecular Probes) for 30 min. After incubation, measurements were 

performed at room temperature on a DMi8 fluorescence microscope (Leica Microsystems) 

with a 63×/1.40 NA oil-immersion objective. DiBAC4(3) fluorescence images were 

acquired at 16-bit, 4×4 binning and 50-msec exposure with a FITC filter set (Ex: 480/40, 

Dc: 505, Em: 527/30) and an OcraFlash 4.0 camera (Hamamatsu). Calibration for each 

experiment was performed by adding gramicidin (20 μg/ml; Sigma-Aldrich) to isotonic 



28 

imaging buffer containing varying ratios of Na+ and N-methyl-D-glucamine, maintaining 

[Na+] + [N-methyl-D-glucamine] = 144 mM, in individual wells of 8-well chambers. 

DCPIB or NPPB was included for calibration of DCPIB or NPPB-treated samples. The 

membrane potential (Em) was calculated with the Nernst equation: 

 

𝐸𝐸𝑚𝑚 =
𝑅𝑅𝑅𝑅
𝑧𝑧𝑧𝑧

× 𝑙𝑙𝑙𝑙
[𝑁𝑁𝑁𝑁+]𝑜𝑜 + [𝐾𝐾+]𝑜𝑜
[𝑁𝑁𝑁𝑁+]𝑖𝑖 + [𝐾𝐾+]𝑖𝑖

 

 

where R is the universal gas constant, T = 298 K, z = 1, F is the Faraday constant, [K+]o 

= 5 mM; ([Na+]i + [K+]i) is assumed to be 150 mM. 

Whole-cell patch-clamp recordings of the resting membrane potential were performed 

at room temperature with a MultiClamp 700B (Axon Instruments, Molecular Devices) 

and electrodes with an average resistance of 4 MΩ (range: 3.3-4.8 MΩ) in a submerged 

chamber containing the external solution containing (in mM): 144 NaCl, 5 KCl, 2 CaCl2, 

1 MgCl2, 10 glucose, 10 HEPES, pH 7.4 with NaOH, 329 mOsm. C2C12 myoblasts were 

visualized using infrared differential interference contrast optics and an infrared video 

camera (PIKE F-145B; Allied Vision). Recordings were filtered at 10 kHz and sampled 

at 20 kHz with a Digidata 1550A (Axon Instruments, Molecular Devices). The internal 

solution consisted of (in mM): 125 K-gluconate, 5 KCl, 1 EGTA, 2 Na2ATP, 2 MgATP, 

0.3 Na2GTP, 10 Na-phosphocreatine, 10 HEPES, pH 7.25 with KOH, 280 mOsm. 

Recorded traces were corrected for liquid junction potential. The resting membrane 

potential was determined from the first 15 s of each recorded trace to avoid membrane 

potential changes due to cytosol washout. The electrophysiological measurements were 

performed by Thorsten M. Becker from the AG Koch, FU Berlin. 

3.2.11  Sensitized-emission FRET measurements 

FRET experiments were in principle performed as previously described (König et al., 

2019). 50-70% confluent C2C12 cells were used in experiments with changes in tonicity. 

Isotonic (340 mOsm) imaging buffer contained (in mM): 150 NaCl, 6 KCl, 1 MgCl2, 1.5 

CaCl2, 10 glucose, 10 HEPES, pH 7.4. Hypotonic (250 mOsm) buffer had a decreased 
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NaCl concentration of 105 mM. 80-100% confluent C2C12 cells were used to measure 

FRET changes during myogenic differentiation in isotonic differentiation buffer (329 

mOsm, containing in mM: 144 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 glucose, 10 HEPES, 

pH 7.4). 80-100% confluent HeLa cells were used as control. All FRET experiments were 

performed at room temperature on a Dmi6000B microscope (Leica Microsystems) 

equipped with a 63×/1.4 objective and a DFC360 FX camera. Samples were excited with 

EL6000 light source; emission was recorded with high-speed external Leica filter wheels 

with Leica FRET set filters (11522073). seFRET images were acquired with the same 

settings for donor, acceptor and FRET channels (8×8 binning, 100 m-sec exposure, gain 

1) every 10 s (for buffer change experiments) or 1 min (for differentiation experiments) 

with the LAS AF software. Corrected FRET (cFRET) values were calculated according 

to the following equation (Jiang & Sorkin, 2002): 

 

𝑐𝑐𝑧𝑧𝑅𝑅𝐸𝐸𝑅𝑅 =
𝐵𝐵 − 𝐴𝐴 × 𝛽𝛽 − 𝐶𝐶 × 𝛾𝛾

𝐶𝐶
 

 

where A, B and C correspond to the emission intensities of the donor, FRET and acceptor 

channels, respectively; β and γ are the correction factors (β = bleed-through of donor 

emission; γ = cross excitation of acceptor by donor excitation) generated by acceptor- and 

donor-only references. 

3.2.12  Measurement of intracellular Cl− 

Intracellular Cl− concentration ([Cl−]i) measurements using the fluorescent indicator 6-

methoxy-N-(3-sulfopropyl)quinolinium (SPQ; Invitrogen) were performed as previously 

described (Diaz et al, 2010; Pilas & Durack, 1997). C2C12 myoblasts growing in 8-well 

chambers (Sarstedt) were washed once with Hank’s balanced salt solution (HBSS) and 

then incubated at 37°C in a hypotonic solution (HBSS:H2O = 1:1) with 5 mM SPQ for 15 

min. After that, cells were incubated in HBSS for a further 15 min to allow recovery from 

the hypotonic shock. For cells cultured in Cl−-reduced medium, an isotonic buffer with 0 

mM Cl− was used (gluconate was used as a substitute for Cl−). Measurements were 
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performed at room temperature on a DMi8 microscope (Leica Microsystems) equipped 

with a 63×/1.40 NA oil-immersion objective and an OcraFlash 4.0 camera (Hamamatsu). 

SPQ fluorescence images were recorded at 16-bit, 4×4 binning and 100 m-sec exposure 

with a DAPI filter set (Ex: 360/40, Dc: 400, Em: 425 lp). Calibration for each experiment 

was achieved using 4 µM nigericin (Sigma-Aldrich) and 5 µM tributyltin (Sigma-Aldrich) 

to equilibrate intracellular and extracellular Cl− concentrations ranging from 0 to 100 mM 

Cl− in individual wells of 8-well chambers. To set the Cl− concentrations in the calibration 

solution, equal molar KNO3 substituted KCl in the original solution (in mM): 150 KCl, 2 

CaCl2, 10 glucose, 10 HEPES, pH 7.2. Ionophores nigericin and tributyltin were added 

freshly, and CBX was included for calibration of CBX-treated samples. The relationship 

between fluorescence of SPQ and Cl− concentration is described by the Stern-Volmer 

equation: 

 

�
𝑧𝑧0
𝑧𝑧 �

− 1 = 𝐾𝐾𝑠𝑠𝑣𝑣[𝑄𝑄] 

 

where F0 is the fluorescence intensity without Cl−, F is the fluorescence intensity in the 

presence of various concentrations of Cl−, [Q] is the concentration of Cl−, and Ksv is the 

Stern-Volmer constant. 

3.2.13  Cytosolic Ca2+ imaging 

C2C12 cells growing on 35 mm glass-bottom dishes (MatTek) were loaded with mix of 

Fura-2 AM (5 μM; Invitrogen) and Pluronic F-127 (0.02%; Invitrogen) in culture medium 

at 37°C for 30 min and then washed with imaging buffer containing (in mM): 145 NaCl, 

5 KCl, 1 CaCl2, 1 MgCl2, 10 glucose, 10 HEPES, pH 7.4. Imaging was performed at room 

temperature on a DMi8 microscope (Leica Microsystems) equipped with a 63×/1.40 NA 

oil-immersion objective and an OcraFlash 4.0 camera (Hamamatsu). Samples were 

excited with an Optoscan monochromator (Cairn Research) at 340 nm or 380 nm (300 m-

sec exposure); emission was recorded using a Fura-2 filter set (Dc: 410, Em: 510/84; 16-

bit, 4×4 binning; AHF Analysentechnik) with the Winfluor software. At the end of each 
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experiment, Rmax was achieved by the addition of 1 μM ionomycin. No significant 

variation of Rmax was observed between experiments. 

3.2.14  Image processing and quantitative analysis 

For DiBAC4(3) and SPQ fluorescence images and Fura-2 ratiometric images, the 

measurement of mean fluorescence intensities of regions of interest (ROIs) was carried 

out with the Fiji software (Schindelin et al., 2012). The mean fluorescence intensity of 

background near the ROI was subtracted. Images of five random fields were analyzed for 

each sample per experiment. The membrane potential, [Cl−]i or 340/380 ratio (Ca2+ 

imaging) from each field per sample were compiled and depicted as mean of n (number 

of independent experiments) ± standard deviation (S.D.). 

  cFRET maps were generated using PixFRET plugin (Feige et al, 2005) (threshold set 

to 1, Gaussian blur to 2) with a self-written macro to process movies and were measured 

by manually drawn ROIs. Since absolute FRET values varied between individual cells, 

cFRET values of individual cells were normalized to their mean cFRET in isotonic buffer 

(for buffer change experiments) or their mean cFRET of recorded first 10 min (for 

differentiation experiments). Normalized cFRET values are depicted as mean of n 

(number of individual cells) ± S.D. 

3.2.15  Statistical analysis 

All data are presented as mean ± S.D. p values between two groups were determined by 

a two-tailed Student’s t-test. For three or more groups, a one-way analysis of variance 

(ANOVA) with Bonferroni’s post-hoc test was performed. p values are indicated in all 

figures according to convention: *, p < 0.05; **, p < 0.01; ***, p < 0.001; and n.s. = not 

significant. 
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4.  Results 

4.1  Pharmacological inhibition of VRAC impairs the 

differentiation and fusion of C2C12 myoblasts 

C2C12 is a mouse myoblastic cell line that can differentiate and fuse into multinucleated 

myotubes under low-serum conditions (Kubo, 1991). To investigate the putative 

involvement of VRAC in myogenesis, I first tested the effects of several pharmacological 

VRAC blockers on myoblast fusion: carbenoxolone (CBX), an effective blocker of 

VRAC, pannexins and gap junction-forming connexins (Benfenati et al, 2009; Ye et al, 

2009); 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), a conventional Cl− channel 

blocker (Okada et al., 2019); 4-(2-butyl-6,7-dichloro-2-cyclopentyl-indan-1-on-5-yl) 

oxybutyric acid (DCPIB), currently the most effective and selective VRAC antagonist 

with high sensitivity at micromolar concentrations (Decher et al, 2001; Okada et al., 

2019). Notably, DCPIB was also reported to block some K+ channels (Deng et al, 2016; 

Lv et al, 2019). Moreover, we included niflumic acid (NFA), a potent blocker of Ca2+-

activated Cl− channels (CaCCs) with moderate to low sensitivity to VRAC, which may 

only partially inhibit VRAC at the concentrations used (Friard et al, 2017; Okada et al., 

2019; Sato-Numata et al, 2016). C2C12 cells were incubated with various concentrations 

of drugs in a differentiation medium containing 2% horse serum for 4 days and then 

stained for nuclei and myosin (a marker of differentiated cells). I used an antibody against 

myosin that recognizes all myosin heavy chain isoforms. As shown in Figure 4.1, 

compared to vehicle-treated cultures, the VRAC inhibitors CBX, NPPB, and DCPIB 

significantly reduced the differentiation and fusion of C2C12 myoblasts in a dose-

dependent manner, whereas the CaCC inhibitor NFA did not show any effect. These visual 

impressions were confirmed when the myotube formation of C2C12 cells was quantified 

using a fusion index (Figure 4.1). 
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Figure 4.1: VRAC inhibitors impair C2C12 myoblast fusion. Cells were stained with an 
antibody against myosin (red) and DAPI (nuclei, blue) after 4 days in differentiation medium with 
indicated concentrations of drugs. The fusion index was calculated as the percentage of nuclei in 
myotubes (with ≥ 2 nuclei) among all nuclei. Data are presented as mean ± S.D. from three 
independent experiments. *, p < 0.05; **, p < 0.01; and ***, p < 0.001 compared with the 
respective controls using one-way ANOVA. Scale bar, 100 µm. 

4.2  The expression of LRRC8/VRAC subunits is not upregulated 

during C2C12 cell differentiation 

Since pharmacological data indicate that VRAC plays a role in myoblast differentiation 

and/or fusion, the next goal was to study its involvement in myogenesis at the molecular 

biological level. To this end, I first examined the expression profile of the VRAC subunits 

during myotube formation by Western blotting. This revealed that undifferentiated C2C12 
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myoblasts expressed all five LRRC8 isoforms (Figure 4.2, A and B). The expression 

levels of LRRC8A and LRRC8D did not change during the first 4 days of C2C12 cell 

differentiation. LRRC8B levels tended to decrease, while LRRC8E levels strongly 

declined already after 2 days of myoblast exposure to differentiation medium (Figure 

4.2A). LRRC8C protein seemed to be reduced as well (Figure 4.2B), but because the 

immunodetection was not explicit, I performed quantitative PCR and the results showed 

that Lrrc8c mRNA expression was significantly downregulated after 2 days of cell 

differentiation (Figure 4.2C). 

 

 
Figure 4.2: Expression profile of LRRC8/VRAC subunits during C2C12 cell differentiation. 
A, Western blot analysis (left) and quantification (right) of LRRC8A, LRRC8B, LRRC8D and 
LRRC8E protein levels. B, Western blot analysis of LRRC8C. Arrows in (A) and (B) indicate 
specific bands as deduced from published knockout controls. C, Quantitative PCR analysis of 
Lrrc8c mRNA, shown as fold changes compared to Day 0. All data are presented as mean ± S.D. 
from at least three independent experiments. *, p < 0.05 compared with Day 0 using one-way 
ANOVA. DM, differentiation medium. 
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4.3  LRRC8A is dispensable for myoblast proliferation but 

required for normal differentiation 

I next used a strategy of inducing post-transcriptional gene silencing through siRNA 

sequences to clarify the role of the essential VRAC subunit LRRC8A during myotube 

formation. Two individual siRNAs designed against LRRC8A were transfected into 

C2C12 myoblasts, while a scrambled siRNA was used as control. Western blotting 

confirmed a robust knockdown of LRRC8A protein, and siRNA2 was more efficient than 

siRNA1 (Figure 4.3A). Notably, LRRC8A silencing did not impede C2C12 cell growth 

or viability, as shown by the unaffected dehydrogenase activity (Figure 4.3B). Besides, 

scrambled control for the siRNA did not affect C2C12 differentiation (Figure 4.4) or 

myotube formation (data not shown). Therefore, I could assess the effect of LRRC8A 

knockdown on myoblast differentiation and fusion. 

 

 

 
Figure 4.3: LRRC8A knockdown does not affect myoblast proliferation. A, Western blot 
analysis of LRRC8A expression after siRNA transfection. B, Quantitative analysis of C2C12 cell 
proliferation by measuring dehydrogenase activity at the indicated time points after siRNA 
transfection. Cells were plated at the same initial intensities and incubated overnight before 
transfection. Data are presented as mean ± S.D. from three independent experiments. 
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Figure 4.4: Scrambled control for siRNA does not affect C2C12 differentiation. Western blot 
analysis of LRRC8A, myogenin and myosin. DM, differentiation medium. 
 

Starting 1 day after siRNA transfection, C2C12 cells were induced to differentiate for 

3 days. At the beginning of differentiation induction, the amount of LRRC8A protein 

detected by Western blotting was reduced by ~40 and ~70% in cells treated with siRNA1 

and siRNA2, respectively, and further decreased within the observed time of 

differentiation (Figure 4.5, A and B). Myogenin is an essential myogenic transcription 

factor, and we observed its expected upregulation during differentiation. Analysis by 

quantitative PCR and immunoblotting showed that knockdown of LRRC8A significantly 

reduced myogenin expression compared with scrambled siRNA (Figure 4.5, A, C and E). 

Similar results were obtained with the expression of myosin (Figure 4.5, A and D and 

Figure 4.6). Furthermore, myotube formation was drastically diminished by LRRC8A 

silencing (Figure 4.6). The inhibitory effects of siRNA1 and siRNA2 on myoblast 

differentiation and fusion correlated with their knockdown efficiencies. For example, 

after 3 days of differentiation, the fusion index reached 34 ± 3% in control cells but only 

19 ± 4% in siRNA1-treated cells and 13 ± 3% in siRNA2-treated cells (Figure 4.6). 

Collectively, these results indicate that LRRC8A is dispensable for myoblast proliferation 

but critically involved in myogenic commitment. 
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Figure 4.5: LRRC8A knockdown impairs myoblast differentiation. A, Western blot analysis 
of LRRC8A, myogenin and myosin. DM, differentiation medium. B-D, Quantification of Western 
blot analysis. Fold changes of LRRC8A (B) and myogenin (C) expression are normalized to Day 
0 with scrambled control. Fold changes of myosin (D) expression are normalized to Day 1 with 
scrambled control. E, Quantitative PCR analysis of Myogenin (Myog) mRNA on the indicated 
day of differentiation. Fold changes of Myog expression are normalized to Day 0 with scrambled 
control. All data are presented as mean ± S.D. from at least three independent experiments. *, p < 
0.05; **, p < 0.01; and ***, p < 0.001 compared with the respective controls using one-way 
ANOVA. 
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Figure 4.6: LRRC8A knockdown impairs myoblast fusion. C2C12 cells were stained with an 
anti-myosin antibody (red) and DAPI (nuclei, blue) on the indicated day of differentiation. The 
fusion index was calculated as the percentage of nuclei in myotubes (with ≥ 2 nuclei) among all 
nuclei. Data are presented as mean ± S.D. from three independent experiments. *, p < 0.05 and 
**, p < 0.01 compared with the respective controls using one-way ANOVA. Scale bars, 100 µm. 

4.4  VRAC channel function promotes myoblast differentiation 

To further determine the role played by VRAC channel itself during myogenesis, I 

transiently overexpressed LRRC8A in C2C12 cells. Overexpression of LRRC8A alone, 

without another LRRC8 isoform, has been shown to rather decrease endogenous VRAC 

currents (Qiu et al., 2014; Voss et al., 2014). C2C12 myoblasts were incubated for 6 h 

with plasmid DNA encoding LRRC8A fused to green-fluorescent protein (LRRC8A-GFP) 
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or GFP alone. When expression of LRRC8A-GFP was already observable 1 day after 

transfection (Figure 4.7A), the cells were induced to differentiate for 2 days and then 

stained for nuclei and myosin. Quantification of differentiation revealed that more than 

20% of GFP-expressing control cells were positive for myosin, while in LRRC8A-GFP-

expressing cells, this ratio was significantly reduced to only ~7% (Figure 4.7, A and B). 

The inhibitory effect of LRRC8A overexpression on C2C12 myoblast differentiation 

corroborates the notion that the role of LRRC8A in myogenic commitment indeed lies in 

its requirement for VRAC activity. Furthermore, the potent VRAC inhibitor DCPIB has 

recently been shown to bind in the extracellular selectivity filter of VRAC and sterically 

occlude ion conduction (Kern et al., 2019). Consistent with an important role of VRAC 

channel function, DCPIB significantly reduced the expression of Myogenin mRNA 

(Myog) after 3 days of cell differentiation (Figure 4.7C), which is also consistent with its 

inhibitory effect on myoblast fusion (Figure 4.1). 

4.5  VRAC is required for myoblast hyperpolarization and the 

subsequent increase of intracellular Ca2+ 

It is well-established that upon induction of differentiation, myoblasts sequentially 

hyperpolarize due to the activation of two distinct K+ channels, ether-à-go-go (Bijlenga 

et al., 1998) and Kir2.1 (Fischer-Lougheed et al., 2001; Konig et al., 2004; Liu et al., 

1998). This hyperpolarization is completed within the first 6 hours of differentiation 

(Hinard et al., 2008; Konig et al., 2004) and enhances the driving force for Ca2+ 

(Arnaudeau et al., 2006; Konig et al., 2006), leading to a detectable steady-state increase 

in intracellular Ca2+ concentration ([Ca2+]i) (Bijlenga et al., 2000; Liu et al., 2003). To 

investigate the mechanism of VRAC involving in myogenic differentiation, I first tested 

whether VRAC influences the plasma membrane potential. C2C12 myoblasts were 

loaded with the potentiometric fluorescent probe DiBAC4(3) (Dall'Asta et al., 1997; 

Konig et al., 2004) to analyze membrane potential changes. This anionic bis-oxonol dye 

enters depolarized cells where it binds to intracellular proteins or membranes, thereby 

exhibiting enhanced fluorescence (Epps et al, 1994). Conversely, hyperpolarization is 
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Figure 4.7: Decreased VRAC activity inhibits myoblast differentiation. A, C2C12 cells 
transfected with plasmid DNA for GFP or LRRC8A-GFP expression (green) were stained with 
an anti-myosin antibody (red) and DAPI (nuclei, blue) on the indicated day of differentiation. 
Scale bar, 100 µm. B, The differentiation index was calculated as the percentage of myosin+ cells 
among GFP+ cells. More than 300 GFP+ cells were calculated for each group. C, Quantitative 
PCR analysis of myogenin (Myog) after 3 days of cell differentiation in the presence of 20 µM 
DCPIB or of vehicle (DMSO) alone. Fold changes of Myog expression are relative to Day 0. All 
data are presented as mean ± S.D. from three independent experiments. *, p < 0.05 compared with 
the respective controls using a two-tailed unpaired t-test. 

 

indicated by decreased fluorescence. Calibration of DiBAC4(3) fluorescence versus 

plasma membrane potential for each sample was performed using solutions with different 

Na+ concentrations and gramicidin (Figure 4.8A). After 6-8 h in differentiation medium, 

C2C12 myoblasts possessed the normal average resting membrane potential of −80 mV 

in the presence of vehicle (0.1% DMSO) but only −50 mV and −47 mV in the presence 

of 20 µM DCPIB and 100 µM NPPB, respectively (Figure 4.8B). I also tried to use siRNA. 
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Figure 4.8: VRAC contributes to myoblast hyperpolarization. A, a representative calibration 
for measuring the resting membrane potential with the fluorescence probe DiBAC4(3). Left, 
images of C2C12 cells stained with DiBAC4(3) after differentiation for 6-8 h with DCPIB. 
Different external sodium concentrations and gramicidin were used to set the membrane potential. 
Fluorescence intensities are depicted in color code, as indicated by the calibration bar. Scale bar, 
50 µm. Right, logarithm of the mean fluorescence intensity plotted against calculated membrane 
potential from the Nernst equation (see “Methods”) and the best linear regression fit, which was 
used to calculate the membrane potentials in (B). B, Average resting membrane potentials of 
C2C12 myoblasts measured after 6-8 h in differentiation medium (blank) supplemented with 20 
µM DCPIB, 100 µM NPPB or vehicle (DMSO) only; or DCPIB was added after 6 h. C, Resting 
membrane potentials of C2C12 cells measured after 20-24 h of differentiation in the presence or 
absence of 100 µM CBX by whole-cell patch-clamp recording (performed by Thorsten M. Becker 
from the AG Koch, FU Berlin). Symbols represent values of individual cells. All data are 
presented as mean ± S.D. from three independent experiments. *, p < 0.05; **, p < 0.01; and ***, 
p < 0.001 compared with the respective controls using one-way ANOVA (B) or a two-tailed 
unpaired t-test (C). 
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Unfortunately, fluorescent aggregates due to the transfection process prevented reliable 

membrane potential measurements with siRNA-treated cells. Then I collaborated with Dr. 

Thorsten M. Becker from the lab of Prof. Ursula Koch at the FU to perform whole-cell 

patch-clamp recording. Consistently, electrophysiological recordings of C2C12 cells after 

20-24 h of differentiation showed an average resting membrane potential of −75 mV, 

which was found to be −34 mV in the presence of 100 µM CBX (Figure 4.8C). These 

data suggest that VRAC inhibition impaired the normal hyperpolarization. 

  I next determined whether this impinges on the changes of resting [Ca2+]i during 

myoblast differentiation. Cytosolic free Ca2+ fluctuations were assessed using the 

ratiometric fluorescent Ca2+ indicator Fura-2. As expected, I observed the steady-state 

increase of [Ca2+]i in differentiating C2C12 cells (Figure 4.9A). In the presence of 20 µM 

DCPIB, but not of the vehicle DMSO, this increase was abolished (Figure 4.9A). It is 

worth mentioning that the strong effect of DCPIB on the changes of [Ca2+]i is not due to 

toxicity, because when DCPIB was removed from the differentiation medium after 24 h, 

Ca2+ levels increased (Figure 4.9A), and myotube formation proceeded normally (Figure 

4.9B). Consistently, VRAC suppression by overexpression of red-fluorescent protein-

labelled LRRC8A (LRRC8A-RFP) prevented the increase of [Ca2+]i (Figure 4.9C). 

To define more accurately the timing of VRAC activity involved in myoblast 

differentiation, I applied DCPIB 6 h after induction of differentiation. The addition of 

DCPIB at this point did not affect the resting membrane potential of C2C12 cells (Figure 

4.8B) or their differentiation (Figure 4.10). Hence, VRAC activity seemed to be required 

predominantly during the first 6 h of myoblast differentiation. It is worth recalling that 

DCPIB was also shown to potently suppress certain K+ channels that may play a role in 

maintaining the cellular resting membrane potential (Deng et al., 2016; Lv et al., 2019). 

The absence of effect of DCPIB added after 6 h excludes the possibility that DCPIB 

depolarized the membrane through inhibition of these K+ channels. 

Taken together, the results presented so far suggest that the initiation of VRAC activity 

contributes to the hyperpolarization of myoblasts and the rise in cytosolic Ca2+, thereby 

supporting myoblast differentiation and fusion. 
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Figure 4.9: VRAC contributes to increased resting [Ca2+]i. A, Fura-2 ratios in C2C12 cells 
measured on the indicated day of differentiation in the presence or absence of DCPIB. For DCPIB 
washout, DCPIB-containing medium was replaced by DCPIB-free medium after 24 h. B, 
Differential interference contrast images of C2C12 cells after 3 days in differentiation medium in 
the presence of DCPIB (for the complete time or only for 24 h in the case of washout) or vehicle 
(DMSO) only. Scale bar, 200 µm. C, Fura-2 ratios in C2C12 cells expressing RFP or LRRC8A-
RFP on the indicated day of differentiation. Numbers in bars indicate the total number of cells for 
each group. All data are presented as mean ± S.D. from three independent experiments. **, p < 
0.01 compared with the respective controls using a two-tailed unpaired t-test. 
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Figure 4.10: Late inhibition of VRAC does not impede myoblast differentiation. C2C12 cells 
were stained with an anti-myosin antibody (red) and DAPI (nuclei, blue) after 3 days in 
differentiation medium in the presence of 20 µM DCPIB, vehicle only, or with DCPIB added only 
6 h after start of cell differentiation. The differentiation index was calculated as the percentage of 
nuclei in myosin+ cells among all nuclei. Scale bar, 50 µm. Data are presented as mean ± S.D. 
from three independent experiments. n.s., not significant. *, p < 0.05 compared with control using 
one-way ANOVA. 

4.6  VRAC activation in the early stage of C2C12 myoblast 

differentiation 

Given that I did not detect any upregulation of LRRC8 proteins during myotube formation 

(Figure 4.2) and VRAC activity appeared to be only required during the first few hours 

of myoblast differentiation (Figure 4.10), I then aimed at providing direct evidence for 

transient VRAC activation at the onset of this process. To this end, I used a non-invasive 

fluorescence resonance energy transfer (FRET) sensor that was previously established in 

the Stauber lab (König et al., 2019) to monitor VRAC channel activity in C2C12 

myoblasts. FRET between two fluorophores is a highly sensitive reporter of changes in 

proximity and conformation of proteins or molecules (Bykova et al., 2006; Miranda et 

al., 2013; Zachariassen et al., 2016). Fluorescent proteins were fused to the cytosolic C-

terminus of LRRC8 subunits (König et al., 2019); and the proximity of the C-terminal 

domains within the pore-forming LRRC8 hexamers (Deneka et al., 2018; Kasuya et al., 

2018; Kefauver et al., 2018) allows for inter-subunit FRET. VRAC activation with the 

rearrangement of the C-terminal domains is reflected by a drop in FRET efficiency 

(König et al., 2019). At first, I co-expressed LRRC8A tagged with mCerulean3 (to serve 
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as FRET donor) and LRRC8E tagged with Venus (to serve as FRET acceptor) in C2C12 

cells and monitored FRET during hypotonic stimulation (by switching from extracellular 

340 mOsm to 250 mOsm). As expected, I observed a robust decrease of the corrected 

FRET (cFRET) value by ~10% within 60 s (Figure 4.11A). This indicates that osmotic 

swelling activates LRRC8A-Cerulean/LRRC8E-Venus-containing VRAC complexes in 

C2C12 myoblasts. 

Next, I tested for iso-osmotic VRAC activation at the onset of myoblast differentiation. 

Within 2.5 h in isotonic differentiation buffer, cFRET of LRRC8A-Cerulean/LRRC8E-

Venus remained almost constant in undifferentiable HeLa cells (Figure 4.11B). However, 

among 9 tested C2C12 myoblasts, 5 of them showed a steady cFRET decrease of ~10% 

within the first hour of differentiation (Figure 4.11C and Figure 4.12). Specifically, the 

recorded cFRET started to decrease at about 40 min after induction of differentiation and 

returned to baseline at about 120 min (Figure 4.11C and Figure 4.12). It is important to 

mention that cFRET at 55-64 min differed with p = 0.032 between the two populations 

with or without cFRET decrease. Besides, the presence of these two populations is 

consistent with the proportion of C2C12 cells typically undergoing differentiation. 

These results confirm that VRAC is activated upon induction of myoblast 

differentiation and its inactivation after 2 h is in agreement with the requirement of VRAC 

only early in differentiation. 
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Figure 4.11: VRAC activation at the onset of myoblast differentiation. A, normalized cFRET 
values during buffer exchange experiments with 50-70% confluent C2C12 cells (n = 3 dishes with 
13 cells). Data were acquired in 10 s intervals. Iso, isotonic; Hypo, hypotonic. B, normalized 
cFRET values during incubation of 80-100% confluent HeLa cells in isotonic differentiation 
buffer (n = 5, 14 cells). Data were acquired in 1 min intervals. C, normalized cFRET values during 
incubation of 80-100% confluent C2C12 cells in isotonic differentiation buffer (n = 7, 9 cells). 
Data were acquired in 1 min intervals. All data are presented as mean ± S.D. 

4.7  Myoblast differentiation results in an intracellular chloride 

decrease that is sensitive to VRAC inhibition 

The confirmation of temporary VRAC activation prompted me to explore what it 

conducts when activated. Depending on the subunit composition of LRRC8 heteromers, 

VRAC can conduct various organic substances (Lutter et al., 2017; Planells-Cases et al., 

2015; Zhou et al., 2020), but all combinations mediate Cl− conductance (Chen et al., 

2019b; Jentsch, 2016; Strange et al., 2019). Therefore, I examined whether VRAC 

activation during myoblast differentiation results in cytosolic Cl− changes. I loaded 

C2C12 cells with the chloride indicator 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ) 
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Figure 4.12: VRAC activation during the differentiation of individual myoblasts (the 5 cells 
in Figure 4.11C). Normalized cFRET values during incubation of 80-100% confluent C2C12 
cells in isotonic differentiation buffer. Data were acquired in 1 min intervals. 

 

(Diaz et al., 2010; Pilas & Durack, 1997) to analyze intracellular Cl− concentration ([Cl−]i) 

changes in a calibrated, quantitative manner (Figure 4.13A). The fluorescence of SPQ is 

quenched by increasing chloride concentrations. Proliferating, undifferentiated C2C12 

myoblasts displayed a high resting [Cl−]i of ~82 mM that reduced to ~50 mM after 2.5 h 

in differentiation medium and remained at 50-60 mM until 48 h (Figure 4.13B). This 

reduction of [Cl−]i was prevented when I treated the cells with 100 µM CBX (Fig. 4.13B), 

the VRAC inhibitor that impaired myoblast hyperpolarization (Figure 4.8C) and 

differentiation (Figure 4.1). This suggests that VRAC activity accounts for the release of 

cytosolic Cl− during myogenic commitment. 
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Figure 4.13: Myoblast differentiation is accompanied by an [Cl−]i decrease. A, representative 
calibration for measuring the resting [Cl−]i with the fluorescence probe SPQ. Left, images of 
C2C12 cells stained with SPQ after 6 h of differentiation. Nigericin and tributyltin were used to 
equilibrate intracellular and external Cl− concentrations. Fluorescence intensities are represented 
in color code, as shown in the calibration bar. Scale bar, 50 µm. Right, Stern-Volmer plot (see 
“Methods”) for the fluorescence of SPQ against Cl− concentration. The resulting best linear 
regression fit was used to calculate the [Cl−]i in (B). B, average [Cl−]i of C2C12 myoblasts 
measured at different time points after induction of differentiation in the presence or absence of 
100 µM CBX. DM, differentiation medium. Data are presented as mean ± S.D. from three 
independent experiments. **, p < 0.01 and ***, p < 0.001 compared with the respective controls 
using a two-tailed unpaired t-test. 

4.8  Intracellular chloride depletion impairs myoblast fusion 

To further study the role of an intracellular Cl− decrease in the process of myogenesis, I 

tested the effect of Cl− depletion on myoblast differentiation and/or fusion by using the 

chloride-reduced differentiation medium. In this medium, KCl and NaCl, which account 

for 99.5% of the total chloride content, were replaced with potassium gluconate and 

sodium gluconate. After 6 h in this medium, C2C12 cells possessed a significantly 

reduced [Cl−]i of only ~4 mM (Figure 4.14A), whereas the [Cl−]i of cells cultured in 
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normal differentiation medium showed the previously observed decrease (Figure 4.13B) 

to ~58 mM (Figure 4.14A). However, I did not observe any difference in either the 

percentage of myogenin-positive nuclei (Figure 4.14B) or total myogenin protein levels 

(Figure 4.14C) between C2C12 cells with normal or reduced [Cl−] during differentiation. 

Surprisingly, the expression of myosin was significantly suppressed in Cl−-reduced 

medium compared with normal medium (Figure 4.14C) (protein levels in medium with 

reduced Cl− were 51 ± 16 % of control, p = 1.8×10-4, data not shown). 

 

 

 
Figure 4.14: Reduced extracellular Cl− does not affect myoblast differentiation. A, resting 
[Cl−]i of C2C12 cells measured after 6 h of differentiation in normal medium or Cl−-reduced 
medium. B, C2C12 myoblasts were stained with an anti-myogenin antibody (red) and DAPI 
(nuclei, blue) at the indicated time of differentiation. DM, differentiation medium. Scale bar, 50 
µm. C, Western blot analysis of myogenin and myosin at the indicated time of differentiation. All 
data are presented as mean ± S.D. from three independent experiments. 
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Then, I induced C2C12 cells to differentiate for prolonged periods in either normal or 

Cl−-reduced differentiation medium. 4 days after induction of differentiation, extensive 

large myotubes were observed in normal medium. In Cl−-reduced medium, however, most 

C2C12 myoblasts remained elongated thin cells (Figure 4.15A). Immunoblot analysis 

revealed that the ability of myoblasts to express myogenin was not affected in both of the 

media; however, the expression of myosin was significantly inhibited in Cl−-reduced 

medium (Figure 4.15B). Notably, when I changed the Cl−-reduced medium to normal 

medium after 2 days of cell differentiation, C2C12 myoblasts were still able to form large 

myotubes (Figure 4.15A). This excludes the possible toxic effect of low external [Cl−]. 

Therefore, a drastic reduction in [Cl−]i does not potentiate myoblast differentiation but 

may rather hinder myoblast fusion. 

 

 
Figure 4.15: Reduced extracellular Cl− impairs myoblast fusion. A, differential interference 
contrast images of C2C12 cells on the indicated day of differentiation in normal or Cl−-reduced 
medium (for 4 days or only for 2 days in the case of washout). Scale bar, 200 µm. B, Western blot 
analysis and quantification of myogenin and myosin protein levels after 4 days of differentiation 
in normal or Cl−-reduced medium. Fold changes are relative to normal medium. Data are 
presented as mean ± S.D. from three independent experiments. **, p < 0.01 compared with control 
using a two-tailed paired t-test. 
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4.9  Effect of VRAC inhibition on osteoblast differentiation of 

C2C12 cells and 3T3-L1 adipocyte differentiation 

Lastly, I investigated whether VRAC plays a more general role in cell differentiation, by 

assessing the effect of pharmacological VRAC inhibition on two other types of 

differentiation: osteoblast and adipocyte differentiation. 

  Recombinant bone morphogenetic protein-2 (BMP-2) stimulation triggers a signaling 

cascade, which converts the differentiation of C2C12 myoblasts into that of osteoblasts 

(Katagiri et al, 1994; Rauch et al, 2002). I induced the osteogenic differentiation of 

C2C12 cells with 30 nM BMP-2 and stained for extracellular calcium deposits after 8 

days. Alizarin red S staining and quantitative analysis showed that compared with control 

culture, the VRAC inhibitors CBX and DCPIB greatly reduced matrix mineralization 

(Figure 4.16), indicating that VRAC may play an important role in osteoblast 

differentiation. 

 

 
Figure 4.16: VRAC inhibitors suppress osteoblast differentiation of C2C12 cells. Alizarin 
Red S staining (left) and quantification (right) of C2C12 cells after 8 days in osteogenic 
differentiation medium with or without drugs. Cetylpyridinium chloride (10%) was used for dye 
extraction. Data from one trial experiment. 

 

  On the other hand, whereas 100 µM CBX significantly reduced the accumulation of 

triglyceride-containing lipid droplets in 3T3-L1 cells, neither 30 µM DCPIB nor 100 µM 

NPPB showed any effect, as judged by qualitative and quantitative oil red O staining 

(Figure 4.17). Notably, DCPIB has been shown to block VRAC currents in adipocytes 

(Zhang et al., 2017b), while CBX inhibits Pannexin1 (Michalski & Kawate, 2016; 
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Willebrords et al, 2017), which has previously been shown to regulate adipose stromal 

cell differentiation and fat accumulation in vivo (Adamson et al, 2015; Lee et al, 2018). 

Therefore, it seems that under the experimental conditions, VRAC channel activity is 

dispensable for adipocyte differentiation of 3T3-L1 cells. 

 

 
Figure 4.17: Effect of VRAC inhibition on adipogenesis in 3T3-L1 cells. Oil red O staining 
(left) and quantification (right) after 3T3-L1 adipocyte differentiation experiments with or without 
drugs. Scale bar, 100 µm. Isopropanol was used for dye extraction. Data are presented as mean ± 
S.D. from three independent experiments. *, p < 0.05 compared with control using a two-tailed 
unpaired t-test. 
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5.  Discussion 

5.1  Functional VRAC is required for normal myoblast 

differentiation 

LRRC8A-deficient (Lrrc8a−/−) mice appear normal at birth, but histological examination 

revealed significantly thinned skeletal muscle bundles at later ages (Kumar et al., 2014), 

suggesting that lack of the essential VRAC subunit LRRC8A may lead to dysfunction of 

myoblast proliferation, differentiation, and/or fusion into multinucleated myotubes. Here, 

I found that LRRC8A deficiency does not impair the proliferation of C2C12 myoblasts, 

in agreement with a parallel study in the Stauber lab (Liu & Stauber, 2019). But I 

uncovered that inhibition of the LRRC8A-containing anion channel VRAC impairs the 

differentiation and fusion of C2C12 cells. A recently published study by Sah and 

coworkers (Kumar et al, 2020) confirmed my findings. Consistent with my results that 

knocking down LRRC8A inhibited C2C12 myoblast differentiation and fusion, they 

reported that LRRC8A (renamed “SWELL1”) depletion suppressed the expression of 

numerous muscle differentiation genes in C2C12 myoblasts and impaired myotube 

formation of both C2C12 myoblasts and primary satellite cells (Kumar et al., 2020). They 

also generated skeletal muscle-specific LRRC8A knockout mice by crossing Lrrc8alox/lox 

mice with Myf5-Cre mice. These skeletal muscle-targeted Lrrc8a knock-out mice 

displayed normal muscle mass but significantly decreased myofiber cross-sectional area 

(Kumar et al., 2020). However, Kumar et al. proposed that the role of LRRC8A in muscle 

development is due to non-conductive protein-protein interactions (Kumar et al., 2020), 

rather than VRAC channel activity as found by me. The suggested requirement of 

LRRC8A-GRB2 physical interaction within the insulin-PI3K-AKT-mTOR pathway, a 

well-known key regulator of muscle mass and metabolism (Sandri, 2008; Schiaffino et 

al, 2013; Yoon, 2017), is surprising given the normal total skeletal muscle mass of 

muscle-specific Lrrc8a−/− mice (Kumar et al., 2020). 

  In this work, three main lines of evidence indicate that VRAC conductance contributes 

to the process of skeletal myogenesis. First, not only pharmacological VRAC inhibitors, 
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but also VRAC current-suppressing overexpression of LRRC8A (Qiu et al., 2014; Voss 

et al., 2014), impaired C2C12 myoblast differentiation. Second, the drop in inter-subunit 

FRET, which mirrors channel opening (König et al., 2019), showed VRAC activity within 

first two hours of the differentiation process. Third, the observed decrease in [Cl−]i during 

the first hours of differentiation was prevented by the VRAC inhibitor CBX, indicating 

that the Cl− efflux is mediated by VRAC. Another clue to explain the discrepancy between 

studies by me and by Kumar et al. (Kumar et al., 2020) is from ébouriffé mice (Lalouette 

et al., 1996). The spontaneous mouse mutant ébouriffé was recently discovered to carry 

a mutation that truncates the last 15 cytosolic C-terminal leucine-rich repeats of LRRC8A 

(Platt et al., 2017). Most of the truncated LRRC8A mutants are retained in the ER, so they 

cannot carry the other LRRC8 subunits (LRRC8B-E) to the plasma membrane (Voss et 

al., 2014), resulting in drastically reduced, but not completely eliminated, VRAC currents 

(Platt et al., 2017). Importantly, unlike Lrrc8a−/− mice (Kumar et al., 2014) and mice 

lacking LRRC8A specifically in skeletal muscle (Kumar et al., 2020), ébouriffé mice 

displayed normal striated muscle histology (Platt et al., 2017). This contradicts the notion 

by Sah and coworkers that LRRC8A modulated insulin-PI3K-AKT signaling via a C-

terminal LRR domain-mediated interaction with GRB2 (Kumar et al., 2020; Zhang et al., 

2017b). The milder phenotype of ébouriffé mice is possibly due to a small residual VRAC 

current (Behe et al, 2017; Platt et al., 2017). In any case, it will be interesting to see how 

LRRC8A performs both VRAC channel function and protein-protein interactions (if any) 

during skeletal muscle development. 

  The molecular mechanism of VRAC activation is still unclear. Experimentally, VRAC 

is often activated by cell swelling induced by hypotonic stimulation. As cells rarely 

experience major changes in extracellular osmolarity under normal physiological 

conditions, cell swelling can be caused by increased intracellular tonicity, such as during 

transepithelial transport or macromolecular catabolism (Hoffmann et al., 2009; Kang et 

al., 2018; Lang et al, 1998; Stuhlmann et al., 2018). However, multiple pathways seem 

to exist that can open this channel under isotonic conditions (outlined in section 1.2.2). 

Furthermore, various intra- and extracellular signaling pathways have been proposed to 

modulate VRAC activity (Akita & Okada, 2014; Chen et al., 2019b; Okada et al., 2019; 
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Pedersen et al., 2015; Pedersen et al., 2016). These include the involvement of signaling 

by integrins (Neveux et al, 2010), RhoA (Carton et al, 2002), and Ca2+ (Hazama & Okada, 

1990; Lemonnier et al, 2002; Wu et al, 1997), which also play important roles in 

myogenesis (Hindi et al., 2013). Since I uncovered that VRAC is transiently activated 

within the first hours of myogenic differentiation, a regulatory mechanism of VRAC 

activity should occur in the very early stage of this process. Intriguingly, the RhoA 

GTPase is required for the initial myogenic commitment (Wei et al, 1998) and must be 

deactivated before myoblast fusion (Charrasse et al, 2006). Store-operated Ca2+ channels, 

key molecules for the hyperpolarization of myoblasts (Darbellay et al., 2009), were 

shown to strongly regulate VRAC currents in epithelial cells (Lemonnier et al., 2002). 

The precise mechanism underlying the activation and/or modulation of VRAC during 

myoblast differentiation remains to be explored. 

5.2  LRRC8 proteins may have roles independent of VRAC 

channel function 

VRAC is a plasma membrane channel formed by LRRC8 hetero-hexamers (König & 

Stauber, 2019; Qiu et al., 2014; Strange et al., 2019; Voss et al., 2014). But as mentioned 

above, whether LRRC8 proteins carry out functions independent of VRAC deserves 

further discussion. The LRRC8A protein was first identified in a 17-year-old patient 

suffering from congenital absence of serum γ-globulins and defective B cell development 

(Sawada et al, 2003). A chromosomal translocation found in this patient led to the 

heterozygous truncation of LRRC8A (LRRC8AΔ91/+35), in which the last 91 C-terminal 

amino acids of LRRC8A were replaced by 35 amino acids encoded by an intron sequence 

(Sawada et al., 2003). However, the overexpression of LRRC8AΔ91/+35 had neither 

dominant-negative nor gain-of-function effect on VRAC currents (Qiu et al., 2014). On 

the other hand, Lrrc8a−/− mice showed only modestly impaired B cell development and 

B cell function was normal (Kumar et al., 2014). Thus, even if LRRC8AΔ91/+35 is indeed 

the cause of the patient’s phenotype (Sawada et al., 2003), it does not seem to be related 

to VRAC channel function. 
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  Before knowing its role as a VRAC subunit, LRRC8C had been identified as a factor 

for adipocyte differentiation (Tominaga et al., 2004). Its knockdown in 3T3-L1 cells 

impaired adipocyte differentiation, while its overexpression in NIH-3T3 cells, a cell type 

that does not usually differentiate into adipocytes, promoted adipogenesis (Tominaga et 

al., 2004). Consistent with a crucial role in adipogenesis, LRRC8C-deficient mice gained 

lower body weight and fat content than wild-type mice under a high-fat diet (Hayashi et 

al., 2011). However, it has been shown that LRRC8C disruption does not reduce VRAC 

currents (Lutter et al., 2017; Voss et al., 2014). Besides, LRRC8C localizes to the ER 

when expressed alone (Tominaga et al., 2004; Voss et al., 2014), so it seems unlikely that 

the enhancement of adipocyte differentiation by LRRC8C overexpression is due to its 

modulation on VRAC properties, such as permeability to organic osmolytes (Lutter et al., 

2017; Schober et al., 2017). On the other hand, LRRC8A knockout inhibited adipocyte 

differentiation of 3T3-F442A cells; and decreased weight gain and lipid content were also 

observed in mice with adipocyte-specific LRRC8A depletion (Zhang et al., 2017b). These 

observations indicate that although LRRC8A and LRRC8C are required for adipocyte 

expansion in the setting of obesity, VRAC channel activity is dispensable. This is in 

agreement with my data that the VRAC inhibitors DCPIB and NPPB did not affect 3T3-

L1 adipocyte differentiation. Furthermore, it was shown that knockdown of LRRC8A 

inhibits the proliferation and migration of hepatocellular carcinoma cells, while 

overexpression of LRRC8A significantly induces cell proliferation and migration (Lu et 

al., 2019). But overexpression of LRRC8A rather decreases VRAC currents like its 

knockdown (Qiu et al., 2014; Voss et al., 2014). Therefore, it seems that LRRC8 proteins 

do have roles independent of VRAC channel function. 

  Intriguingly, two different − mutually exclusive − ways in which the LRRC8A protein 

participates in PI3K-AKT signaling have been proposed (Kumar et al., 2014; Zhang et 

al., 2017b). Although it has been established that both the amino and carboxyl termini of 

LRRC8 proteins are cytoplasmic (Abascal & Zardoya, 2012; Lee et al., 2014; Qiu et al., 

2014; Voss et al., 2014), Geha and coworkers suggested that a fraction of LRRC8A is 

present in the cell membrane with an opposite topology (Kumar et al., 2014; Platt et al., 

2017). They proposed that the putative LRRC8A ligand binds to the then extracellular C-
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terminal LRR domain, thereby activating the interaction between GRB2 and the proline-

rich region in an intracellular loop of LRRC8A, resulting in AKT phosphorylation and 

thymocyte survival (Kumar et al., 2014). In contrast, Sah and coworkers asserted that 

LRRC8A interacts with GRB2 through the cytoplasmic LRR domain to regulate insulin-

PI3K-AKT2 signaling during adipocyte expansion (Zhang et al., 2017b). Moreover, since 

its overexpression and siRNA-mediated knockdown led to changes in ER Ca2+ dynamics 

in HEK cells, LRRC8B was proposed to act as a Ca2+ release channel in the ER (Ghosh 

et al., 2017). However, it should be noted that in this study, endogenous LRRC8B was 

identified in the ER but not in the plasma membrane (Ghosh et al., 2017). This is in 

contrast with the reported plasma membrane localization of LRRC8B co-expressed with 

LRRC8A (Voss et al., 2014), which has been confirmed in a recent proteomics study 

(Orre et al, 2019). 

Obviously, a lot of extra work is needed to determine whether LRRC8 proteins play 

physiological and/or pathological roles independent of VRAC in different cells and 

tissues, and more importantly, to clarify the relationship between VRAC and VRAC-

independent functions. 

5.3  VRAC promotes myoblast hyperpolarization 

Proliferating, undifferentiated myoblasts are very depolarized cells. An early event in the 

differentiation process of human myoblasts is a hyperpolarization of the resting 

membrane potential, which involves a two-step mechanism. Firstly, an ether-à-go-go K+ 

current is expressed and rapidly drives the membrane potential of myoblasts from −8 mV 

to about −32 mV (Bernheim et al., 1996; Bijlenga et al., 1998; Liu et al., 1998), 

coinciding with a cell-cycle arrest (Timchenko et al., 2001; Walsh & Perlman, 1997). 

Subsequently, the activation of an inward-rectifying K+ channel Kir2.1 further 

hyperpolarizes myoblasts to approximately −74 mV (Fischer-Lougheed et al., 2001; Liu 

et al., 1998; Liu et al., 2003). It has been shown that the Kir2.1 current density of human 

myoblasts reaches its maximum already after six hours of cell differentiation (Hinard et 

al., 2008; Konig et al., 2004). The hyperpolarized resting membrane potential of about 
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−75 mV was reported for differentiating C2C12 myoblasts (Pietrangelo et al., 2006), as I 

also observed here both by a potentiometric fluorescent probe and by electrophysiological 

recordings (done by Dr. Thorsten M. Becker from the AG Koch, FU Berlin). I found that 

differentiating myoblasts treated with VRAC inhibitors does not fully hyperpolarize but 

remain at an intermediate resting potential. Besides, I was able to show temporary VRAC 

activation within the first two hours of myoblast differentiation. These data determine a 

function of VRAC before that of Kir2.1. Consistent with a role of VRAC in the early 

phase of myogenic differentiation, volume-activated Cl− currents have been shown to 

drastically decrease during myotube formation of C2C12 cells (Voets et al, 1997). I also 

observed significantly downregulated expression of LRRC8C and LRRC8E after two 

days of cell differentiation. Correspondingly, the combined disruption of LRRC8C and 

LRRC8E robustly reduces VRAC currents (Lutter et al., 2017; Voss et al., 2014). 

  The anion channel VRAC is associated with membrane depolarization in some familiar 

situations (Hoffmann et al., 2009; Jentsch, 2016; Nilius & Droogmans, 2001), for 

example, during pancreatic insulin secretion where its activity triggers the early opening 

of voltage-dependent Ca2+ channels (Kang et al., 2018; Stuhlmann et al., 2018). But I 

demonstrated here that VRAC contributes to membrane hyperpolarization. How could 

VRAC be linked with hyperpolarization? I found that proliferating, undifferentiated 

C2C12 myoblasts possess a surprisingly high, but actually not unprecedented (Kaneko et 

al, 2001; Kim et al, 2015), intracellular Cl− concentration of approximately 80 mM. 

Under cell culture conditions (external [Cl−] at around 120 mM), the reversal potential 

for Cl− calculated from the Nernst Equation is at approximately −10 mV. During the 

sequential hyperpolarization of myoblasts from about −10 mV to about −80 mV (Hinard 

et al., 2008; Konig et al., 2004; Liu et al., 1998; Liu et al., 2003) (myoblasts rested at an 

intermediate potential when VRAC was inhibited), VRAC will mediate the efflux of Cl− 

and cause the observed [Cl−]i decrease. Hence, Cl− conductance by VRAC cannot directly 

lead to myoblast hyperpolarization. Instead, VRAC may indirectly affect the membrane 

potential, most likely by regulating the activity of Kir2.1 K+ channels. It has been shown 

that Kir2.1 activation during initial myoblast differentiation is not due to new channel 

synthesis or transport to the plasma membrane, but a tyrosine dephosphorylation (Hinard 
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et al., 2008). Changes in cytosolic Cl− may thus control myogenesis by modulating (de)-

phosphorylation events. There are several examples where the activity of kinases or 

phosphatases is dependent on Cl− (Chen et al, 2019a; Hjörleifsson & Ásgeirsson, 2017; 

Pederson et al, 1998; Piala et al, 2014). Cytoplasmic Cl− has also been implicated in other 

intracellular processes related to cell differentiation, such as endocytic trafficking 

(Stauber & Jentsch, 2013) and plasma membrane remodeling (He et al, 2017). On the 

other hand, it is also possible that not the actual Cl− decrease, but the movement of Cl− is 

crucial for the hyperpolarization to proceed. In this case, “side-products” of VRAC 

activity, such as changes in intracellular osmolarity, intracellular pH, membrane tension, 

or plasma membrane voltage (Hoffmann et al., 2009; Jentsch, 2016), may be important 

signals. 

  Emerging evidence supports the necessary role of membrane hyperpolarization in stem 

cell differentiation (Levin et al, 2017; Sundelacruz et al, 2009; Vitali et al, 2018; Yang & 

Brackenbury, 2013). Consistent with the notion that VRAC may have a general role in 

the regulation of cell differentiation, I found that inhibition of VRAC impairs osteogenic 

differentiation, which also involves both cellular hyperpolarization (Sundelacruz et al, 

2008) and Kir2.1 activity (Sacco et al, 2015). However, as discussed in section 5.2, I 

conclude that VRAC activity is dispensable for 3T3-L1 adipocyte differentiation. It has 

been reported that human mesenchymal stem cells undergo hyperpolarization during 

adipogenic differentiation (Sundelacruz et al., 2008). But 3T3-L1 cells possess a similar 

plasma membrane potential to primary white fat adipocytes (Bentley et al, 2014). 

Therefore, even if VRAC is not important in “obesogenic” adipogenesis, it cannot be 

ruled out that VRAC may have functions in the process of cell fate determination from 

mesenchymal stem cells to adipocytes. It will be interesting to see whether and how 

VRAC plays a role in cell differentiation processes other than skeletal myogenesis. 

5.4  Possible role of intracellular chloride in myoblast fusion 

As the most abundant anion in nature, the chloride ion Cl− has been increasingly 

recognized as a signaling effector or second messenger in the regulation of various 
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cellular functions (Duran et al, 2010; Stauber & Jentsch, 2013; Valdivieso Á & Santa-

Coloma, 2019). I found that despite the significant [Cl−]i decrease accompanying 

myotube formation, an excessive reduction resulted from extracellular Cl− depletion does 

not accelerate myoblast differentiation but rather blocks fusion. This suggests that only a 

moderate decrease in intracellular Cl− facilitates all steps of myogenesis. Myoblast fusion 

involves a complex system of regulatory signaling pathways (Hindi et al., 2013; Sampath 

et al., 2018), which may require a proper intracellular Cl− content. Intriguingly, it was 

shown that the Na+-K+-2Cl− cotransporter NKCC1 (a protein that actively transports Na+, 

K+, and Cl− into cells) is upregulated during myotube formation; and inhibition of it 

suppresses myoblast fusion and exercise-induced muscle hypertrophy (Mandai et al., 

2017). The importance of an efficient Cl− homeostasis in skeletal muscle is also supported 

by a chloride channel disease (myotonia congenita) characterized by muscle paralysis and 

hyperexcitability (Imbrici et al, 2015; Tang & Chen, 2011). The role of cytoplasmic Cl− 

in different stages of skeletal myogenesis, if any, remains to be explored. 

5.5  Conclusions and outlook 

In summary, I uncovered an unexpected new role of LRRC8/VRAC channels in myogenic 

differentiation. I could show that LRRC8/VRAC channels facilitates myoblast 

differentiation by contributing to membrane hyperpolarization and intracellular Ca2+ 

signals. I identified the activation of VRAC as an early molecular event during myotube 

formation and an accompanied decrease in intracellular Cl−. Additionally, I clarified a 

correlation between [Cl−]i and myoblast fusion. My work provides a new perspective for 

understanding the signal transduction pathways in skeletal myogenesis and highlights the 

importance of a Cl− anion and osmolyte channel in cell differentiation. 

Future investigations should focus on elucidating the precise mechanism of VRAC 

activation/modulation and its contribution to membrane hyperpolarization. Furthermore, 

whether VRAC also transiently activates and promotes myogenic differentiation of 

satellite cells during muscle regeneration and whether it plays a role in other cell 

differentiation processes, such as osteogenic differentiation, deserve to be determined. 
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Apart from the essential subunit LRRC8A, particular attention should be paid to specific 

LRRC8 subunit compositions. Owing to the recent progress in the establishment of a non-

invasive FRET sensor for VRAC activity, it is now possible to monitor temporary 

activation of these ubiquitously expressed channels during cell physiological processes 

in situ. 
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