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Simple Summary: This study compares two different adapted grading systems for Canine digital
squamous cells carcinomas, taking into account the animals’ haircoat color and focusing on the
tumor’s invasive front. In general, dark-haired breeds develop more poorly differentiated DSCC
than their light-haired counterparts. Additionally, both grading systems challenged are in agreement
when grading well differentiated CDSCC in both populations but are discordant when assessing
tumors with poorly differentiated features. To our knowledge, this is the first study comparing
CDSCC in dogs by two histological grading systems, taking into account their phenotypical and
presumed genotypical haircoat color and demonstrating that digital squamous carcinomas are not
only more common in dark-haired dogs, but potentially more aggressive.

Abstract: Canine digital squamous cell carcinomas (CDSCC) are particularly aggressive when
compared to their occurrence in other locations. Although these neoplasms are more frequently seen
in dark-haired dogs, such as Giant Schnauzers, there are no data checking whether these tumors
are histologically different between breeds. We histologically evaluated DSCC from 94 dogs. These
were divided into two groups, namely, (1) dark-haired (N = 76) and (2) light-haired breeds (N = 18),
further subdividing Group 1 into three subgroups, (1a) black breeds (n = 11), (1b) Schnauzers (n = 34)
and (1c) black & tan breeds (n = 31). Adaptations from two different squamous cell carcinomas
grading schemes from human and veterinary literature were used. Both systems showed significant
differences when compared to Groups 1 and 2 in terms of final grade, invasive front keratinization,
degree of invasion, nuclear pleomorphism, tumor cell budding, smallest tumor nest size and amount
of tumor stroma. Group 2 was consistently better differentiated CDSCC than Group 1. However,
there were no significant differences among the dark-haired breeds in any of the features evaluated.
This study represents the first attempt to grade CDSCC while taking into account both phenotypical
and presumptive genotypical haircoat color. In conclusion, CDSCC are not only more common in
dark-haired dogs, they are also histologically more aggressive.

Keywords: digital squamous cell carcinoma; canine; cancer; tumor budding; digital; toe; squamous
cell carcinoma; grading; haircoat color; genotype

1. Introduction

Squamous cell carcinoma (SCC) is a fairly common, locally invasive and destructive
neoplasm arising from the epithelium with keratinocyte differentiation. This neoplasia is
known to metastasize in late stages of the disease, being variably prone to it depending
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on its anatomical location [1,2]. Some of them, especially those arising from the nail bed
or digits in dogs, are known to be particularly aggressive [1]. A number of factors are
associated with the development of these tumors in veterinary species, including papilloma-
induced neoplasms and chronic ultraviolet (UV)-damage, especially in poorly haired, light
skin [1]. In proposed nondigital, UV-induced SCC, precancerous, actinic changes are often
reported within the neighboring tissue [1,3]. This type of SCC is associated with slower
progression and overall longer survival [3].

Curiously enough, canine subungual/digital squamous cell carcinomas (CDSCC)
are most commonly seen in dark, large breeds such as Giant Schnauzers, black Labrador
Retrievers and standard Poodles [1,4]. Papilloma virus was thought to be associated with
CDSCC, but was not demonstrated by PCR positivity in affected digits [5].

Squamous cell carcinoma gradings are more widely explored in human medicine,
conducting different grading schemes based on their location, such as the esophagus [6],
uterine cervix [7], lung [8], larynx and hypopharynx [9], among others [10]. In veterinary
medicine, a standardized grading system is not well characterized given its unclear prog-
nostic value to date [11]. This is mainly because, in the toe, complete digit amputation is
considered the only treatment option and, often curative [12]. Currently, the most used
grading system is Broder’s system [13] in which canine SCC is characterized as “well
differentiated/I”, “moderately differentiated/II and III” and “poorly differentiated/IV”.
The grading is based on its general morphologic features and its resemblance to normal
squamous epithelium [14]. This, however, often ends up being the pathologist’s subjective
assessment (especially for tumors of grade II and III) and, with no proven prognostic
correlation, discourages SCC subtyping in a diagnostic setting. Also, newer canine SCC
gradings often focus on the oral cavity due to its more malignant behavior [15].

Recently, more research was conducted on the tumor invasive front and epithelial-
mesenchymal transition, both in human [7,9,15,16] and veterinary medicine [2]. These
features are associated with the pattern of invasion and, therefore, malignancy. The invasive
front, as its name infers, is the tumor–host interface, in which neoplastic cells invade the
surrounding stroma, spreading and infiltrating. The reason for studying invasive fronts in
SCC is that within the same tumor, different grades of differentiation can be found but the
invasive front consistently has more malignant features [2,11]. This suggests that it may
be imperative for neoplastic infiltration and expansion. Features that are associated with
more malignant behavior include tumor budding, which are small aggregates (less than
five cells) or single tumor cells that detach from the primary tumor and invade into the
surrounding stroma [2,7,9,10,14–16].

While CDSCC is the most common neoplasia in the canine digit (up to 47.4% of all
malignant digital tumors) [17], there is not much literature available [11]. Canine squamous
cell carcinoma, particularly that developing in dark-haired breeds, garnered special interest,
suggesting an underlying genetic predisposition [11]. Different canine haircoat colors and
distribution are due to eumelanin (dark) and pheomelanin (light) pigments, which are also
responsible for the claw coloration. Dark-haired animals, such as Giant Schnauzers, black
Labrador Retrievers and Poodles, normally have concurrent dark claws. However, light-
haired dogs with recessive genotype e/e on the E-locus do not incorporate eumelanine into
their hair or claws, hence the light appearance [18]. This presumably important gene locus
is homozygous recessive (e/e) for some breeds (e.g., Golden Retriever), while completely
absent and therefore homozygous wildtype (E/E) in others (e.g., black Russian Terrier).
Interestingly enough, Poodles, Labrador Retrievers and some Schnauzer variants have
individuals with either homozygous states (E/E or e/e) in their breed.

The KIT ligand (KITLG) locus, associated with postnatal cutaneous melanogenesis
and follicular epithelial melanocyte terminal differentiation (among other functions), was
shown to play a significant role in canine haircoat pigmentation [19]. One study identified
a copy number variant at the KITLG locus in animals with CDSCC, which may predispose
them to develop this neoplasia [20].
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The objective of this study was (1) to compare two adapted grading schemes from
both human and veterinary medicine for canine digital squamous cell carcinoma, and (2)
to evaluate if there are significant characteristic disparities between light and dark coated
dogs, based on the grading schemes discussed and taking into account their phenotypical
haircoat color.

2. Materials and Methods
2.1. Samples

Out of the 2983 toes submitted between 2014 and 2019 for routine diagnostics to
the pathology department of LABOKLIN GmbH and Co. KG, 53% (n = 1576) of them
contained a tumor, of which 49% (n = 771) were CDSCC. Out of these, 39% were found in
Schnauzer breeds and only 2.5% in Golden Retriever (unpublished data). Given that these
samples were from dogs subjected to regular routine diagnostics and not sampled for pure
research purposes, an Ethical Committee approval was not necessary before undertaking
the research.

Histological samples of CDSCC from 94 dogs with a clear neoplastic invasive front,
available breed and haircoat color were included in this study. All CDSCC from animals
of unclear haircoat color, unknown breed or only including neoplastic fragments with no
clear invasive front were excluded.

Dog grouping for this study followed the main color of their fur and claws (light/dark),
as well as the presumed underlying genetics for the color loci A, K and E, which are most
important in the distribution of light and dark pigment in hairs and claws.

In Group 1, the phenotypically “dark-haired breeds”, composed of 76 dogs, was
further divided into three subgroups: Group 1a (n = 11) was made by presumed genetically
entirely black breeds (presumed KB/KB) including seven Russian Terriers, two black
Briard, one black Giant Poodle, and one black Labrador Retriever. Group 1b (n = 34)
(presumed KB/KB and KB/KY) were represented by 27 Giant Schnauzers and seven black
standard Schnauzers. Group 1c (n = 31) consisted of genetically black & tan (presumed
KY/KY + at/*) breeds, represented by 22 Rottweilers and 10 Gordon Setters. Group 2
(n = 18) were the light-colored breeds (presumed e/e) including 15 Golden Retrievers and
three West Highland White Terriers. No genetic testing was performed to corroborate the
presumed genotype in any of the groups.

The ages of the dogs ranged from 6 to 14 years, with a median of 10 years, as one
animal’s age was unknown. Sex was either unknown (n = 7), female intact (n = 18), female
spayed (n = 18), male (n = 34) and male castrated (n = 18). Limb and toe affected, when
available, was noted. Signalment is summarized in Table 1 and individual cases with more
detailed information can be seen in Supplementary Table S1.

All digital samples were fixed in 10% phosphate-buffered formalin, routinely trimmed
following laboratory standard procedures and decalcified on a mixture of ≥10–<20%
hydrochloric acid (HCl) and formaldehyde (≥3%–<5%) (Osteomoll® rapid decalcifier solu-
tion for histology; catalogue no. 101736) over a period of 24–72 h, periodically assessing
tissue until it was ready to be further processed. Afterward, longitudinal and sagittal
sections were embedded in paraffin wax and cut at 4–5 µm thickness to then be stained
with Hematoxylin–Eosin (HE). All slides were reviewed, selecting the most representa-
tive section. This was based on a good histological quality and clear invasive front with
surrounding nonaffected stroma to evaluate the neoplastic–nonneoplastic transition. The
most representative slide was scanned and analyzed through specialized image analy-
sis software (NIS-elements software (Nikon, Tokyo, Japan); Aperio ImageScope (Leica,
Wetzlar, Germany)).
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Table 1. Dog signalment and affected region with digital squamous cell carcinoma (DSCC) in the present study.

Group
Assignment

Phenotypic
Haircoat

Color
Breed No. of Dogs Mean Age

(y.o.)
Sex Number of Dogs

with Affected Limb
RF/RH/LF/LH/UM MC F FS U

Group 1a (n = 11)
No. 1–11

Black

Russian
Terrier 7

9.5

2 0 1 2 2 1/0/3/0/3

Briard 2 0 1 1 0 0 0/0/2/0/0

Giant
Poodle 1 0 1 0 0 0 0/0/1/0/0

Labrador
Retriever 1 0 1 0 0 0 0/0/1/0/0

Group 1b (n = 34)
No. 12–45

Giant
Schnauzer 27

8.5
10 8 4 5 0 9/1/10/2/5

Standard
Schnauzer 7 3 1 1 2 0 0/3/2/2/0

Group 1c (n = 31)
No. 46–76 black & tan

Rottweiler 21

9.6

5 2 5 7 2 7/1/0/2/6

Gordon
Setter 10 6 1 2 1 0 3/2/0/0/5

Group 2 (n = 18)
No. 77–94

Light
Golden

Retriever 15
10.5

8 1 3 0 3 4/1/4/2/4

WHWT 3 2 0 1 0 0 0/0/2/0/1

Abbreviations: y.o.: years old; M: male intact; MC: male castrated; F: female intact; FS: female spayed; U: unknown; RF: right forelimb; RH:
right hindlimb; LF: left forelimb; LH: left hindlimb; U: unknown; WHWT: West Highland White Terrier.

2.2. Histological Grading

Two grading systems from human (Jesinghaus et al., (2018) [7] and Boxberg et al.,
(2019) [9]) and veterinary (Nagamine et al., (2017) [2]) medicine were adapted for the
present study. The samples were assessed by a blinded diplomat of the American College
of Veterinary Pathologists (ACVP) (AC), challenging the adapted systems.

2.2.1. Invasive front Grading System (IFGS)

An adaptation of Nagamine et al. (2017) grading system for canine oral SCC (OSCC)
was used [2], following criteria of degree of keratinization, pattern of invasion, host
response, nuclear pleomorphism and mitoses per high power field (HPF), as summarized
in Table 2. All features were assessed, focusing exclusively on the invasive front.

Table 2. Invasive front grading system (IFGS) used in the present study of canine digital squamous cell carcinoma (CDSCC)
(adapted from Nagamine et al., (2017) [2] for use in canine oral squamous cell carcinoma).

Morphological
Feature

Score Value

1 2 3 4

Degree of
keratinization

Highly keratinized
(>50% cells)

Moderately keratinized
(20–50% of cells)

Minimal keratinization
(5–20% of cells)

No keratinization
(0–5% of cells)

Pattern of invasion
(bone or dermis)

Pushing,
well-differentiated,
infiltrating borders

Infiltrating, solid cords,
bands and/or strands

Small groups/cords
of infiltrating cells

(n > 15)

Widespread cellular
dissociation in small

groups and/or in
single cells (n < 15)

Host response Marked Moderate Slight None

Nuclear pleomorphism Mild
(<25% anaplasia)

Moderate
(25–50% anaplasia)

Marked
(50–75% anaplasia)

Extreme
(75–100%
anaplasia)

Mitosis HPF (40×) 0–1 2–3 4–5 >5
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Histological gradings are illustrated in Figures 1–5. Degree of keratinization (Figure 1a,b)
was assessed from highly keratinized (>50% keratinization, 1 point) to no keratiniza-
tion (0–5% keratinization, 4 points). Pattern of invasion (Figure 2a,b) ranged from well-
differentiated, pushing and infiltrating borders (1 point) up to widespread dissociation
into small groups, less than 15 cells (4 points). Host response (Figure 3a,b) was evaluated
from a marked inflammatory reaction (1 point), to no inflammation (4 points). Nuclear
pleomorphism (Figure 4a,b) was assessed, ranging from little pleomorphism with less than
25% anaplastic cells (1 point) up to extreme nuclear pleomorphism with poor differentiation
(75–100% anaplastic cells) (4 points). Mitosis per high power field (HPF) (40×) (Figure 5a,b)
ranged from minimal mitotic activity (0–1) (1 point) up to more than 5 mitoses (4 points).
Mitosis per HPF was assessed in an overall area of 0.237 mm2. Therefore, when assessing
10 HPF (400×), an overall area of 2.37 mm2 was covered to guarantee standardization [21].
This procedure was decided for this study as challenged gradings often did not clarify the
area covered.
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The final addition of the score values of these five morphologic features resulted in a
total invasive front score value. Subsequently, the total score value was summarized into
four final grades according to Nagamine et al. (2017) [2]:

Total score value 6–10 = grade I (well differentiated);
Total score value 11–15 = grade II (moderately differentiated);
Total score value 16–20 = grade III (poorly differentiated).
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2.2.2. Tumor Cell Budding Grading System (TCBGS)

An adaptation from two similar human SCC gradings systems of Jesinghaus et al.
(2018) [7] and Boxberg et al. (2019) [9], designed for the uterine cervix and larynx/hypopharynx,
respectively, was used. Both systems focus on the invasive front. The features evaluated
within this adapted grading included tumor budding in 10 HPF (unspecified covered
area), smallest nest size within the invasive front and stromal response associated with the
neoplasm (see Figure 6).
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Figure 6. (O.M. 4×): Histological pictures (Hematoxylin–Eosin (HE) stain) illustrating tumor budding
in a canine digital squamous cell carcinoma: Only complexes of less than five cells were counted in
10 HPF (40×) in the area of biggest incidence (delineation) within the invasive front. O.M: original
magnification.

The smallest nest size was represented by the complex with least cells within that
invasive front (arrows), even if it was only one. In this case, there were single neoplastic
cells dissociated from main neoplasm (Giant Schnauzer, No. 33).

In this study, the tumor budding was defined as neoplastic aggregates/complexes of
less than five cells that dissociate from the main neoplasm and invade the surrounding
stroma. These “complexes” were counted in 10 HPF (40×) in the areas of higher incidence,
covering an overall area of 2.37 mm2. A numerical value between 1 (no tumor budding)
and 3 (≥15 budding foci) was then assigned. Tumor nests, in contrast, included both these
smaller (<5 cells) complexes as well as larger aggregates (up to >15 cells) dissociating from
the main neoplasm, invading the surrounding stroma. When assessing smallest tumor nest
size, a range between more than 15 cells (1 point) and single cell invasion (4 points) was
noted (Table 3).

Table 3. Tumor cell budding system used in our study to determine tumor grade based on tumor
budding activity and cell next size score adapted from human cervical squamous cell carcinoma
(SCC) (Jesinghaus et al., 2018) [7] and laryngeal/hypopharyngeal SCC (Boxberg et al., 2019) [8].

Tumor Budding Activity/10 HPF Score Value

No budding 1

<15 budding foci 2

≥15 budding foci 3

Smallest cell nest size

>15 cells 1

5–15 cells 2

2–4 cells 3

Single cell invasion 4



Vet. Sci. 2021, 8, 3 8 of 18

In this grading system, the two scores were added to the total score value. This total
score value divided the neoplasms into well differentiated/grade 1 (total score value: 2–3),
moderately differentiated/grade 2 (total score value: 4–5) and poorly differentiated/grade
3 (total score value: 6–7) DCSSC. Additionally, stromal reaction was evaluated, although it
was not included into the total score value or final grade.

2.3. Statistical Analysis

Statistical significance analyses were evaluated using IBM SPSS Statistics (version
25). Comparisons between the four genetically based groups (1a–c and 2) were performed
with the Kruskal–Wallis test, while the statistical significance between the black and
white dogs were analyzed using the Mann–Whitney U test. In the case of the Kruskal–
Wallis test, the p-values were adjusted according to Bonferroni. p < 0.05 was considered
statistically significant.

3. Results

Age and sex distribution across phenotypic groups (1a, 1b, 1c and 2) were not sig-
nificantly different. Similarly, there was no statistical difference between digital tumor
localization between limbs, toes and phenotypic group or the presence/absence of neo-
plastic bone invasion. Nevertheless, the forelimb was the main affected limb, representing
76% of the white-haired dogs and 79% of the dark-haired dogs, where localization was
available.

3.1. Invasive front Grading System (IFGS)

Grade I CDSCCs were characterized by well-differentiated, solid neoplastic cords
that pushed and infiltrated the surrounding stroma, with abundant keratinization, little
anaplasia and barely any mitotic activity, but marked associated inflammation.

Grade II and grade III, on the other hand, had increasingly poorer differentiation, with
multiple small buds that detached from the main neoplasm, with barely to no keratinization,
moderate to marked anaplasia and increased mitotic activity but little to no associated
inflammation from the host.

According to the IF grading system, 45% of DSSC of the dark-haired animals (Group
1) were grade I, 37.6% were grade II and 20.8% were grade III. In comparison, over three-
quarters of light-haired dogs (Group 2) were grade I (77.7%), while the remaining were
divided into grade II (16.6%) and grade III (5.5%) (Figure 7A).

Statistical analysis confirmed that the DSSCs of light-haired dogs (Group 2) were
better differentiated, with lower overall grading than the dark-haired dogs (Group 1)
(p < 0.01, Figure 7A). Therefore, the dark-haired dogs showed significantly less keratiniza-
tion (p < 0.05, Figure 7B), more invasive patterns (p < 0.001, Figure 7C) and more marked
nuclear pleomorphism (p < 0.001, Figure 7D) than their light-haired counterparts.
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0.05) (B), pattern of invasion (p < 0.001) (C) and degree of nuclear pleomorphism (p < 0.001) (D). Mitoses and inflammation 
were not included given that they were not statistically significant between groups. * p < 0.05; ** p < 0.01, *** p < 0.001. 
Abbreviations: m.c.: mature cells. 

When comparing the groups by their genetic haircoat color (see Figure 8), in all sta-
tistically significant features (invasive front grading, keratinization, pattern of invasion 
and nuclear pleomorphism), it was remarkable that the light-haired animals had less ma-
lignant characteristics than at least one dark-haired subgroup. Final invasive front grad-
ing between light-haired breeds (Group 2) and black & tan dogs (Group 1c), was signifi-
cantly lower (p < 0.05) (Figure 8A). Light-haired dogs had significant more keratinization 
than black dogs (Group 1a, p < 0.05) (Figure 8B). When assessing patterns of invasion, 
light-haired dogs showed more solid patterns of invasion within the invasive front than 
black dogs (Group 1a, p < 0.05), Schnauzers (Group 1b, p < 0.01) and tan and black dogs 
(Group 1c, p < 0.05) (Figure 8C). As far as nuclear pleomorphism within the cells forming 
the invasive front, the light-haired dogs had a less anaplastic population, with more ma-
ture cells than the black dogs (Group 1a, p < 0.05) and the Schnauzers (Group 1b, p < 0.05) 
(Figure 8D). However, host response and mitotic activity between groups were not signif-
icantly different.  

Figure 7. (A–D). Canine digital squamous cell carcinoma. Statistical differences between phenotypically dark-haired (Group
1) and light-haired (Group 2) dogs according to the invasive front system. There were statistical differences between Group
1 and 2 in final invasive front grading (p < 0.01) (A), amount of keratinization within the invasive front (p < 0.05) (B), pattern
of invasion (p < 0.001) (C) and degree of nuclear pleomorphism (p < 0.001) (D). Mitoses and inflammation were not included
given that they were not statistically significant between groups. * p < 0.05; ** p < 0.01, *** p < 0.001. Abbreviations: m.c.:
mature cells.

When comparing the groups by their genetic haircoat color (see Figure 8), in all statis-
tically significant features (invasive front grading, keratinization, pattern of invasion and
nuclear pleomorphism), it was remarkable that the light-haired animals had less malignant
characteristics than at least one dark-haired subgroup. Final invasive front grading between
light-haired breeds (Group 2) and black & tan dogs (Group 1c), was significantly lower
(p < 0.05) (Figure 8A). Light-haired dogs had significant more keratinization than black dogs
(Group 1a, p < 0.05) (Figure 8B). When assessing patterns of invasion, light-haired dogs
showed more solid patterns of invasion within the invasive front than black dogs (Group
1a, p < 0.05), Schnauzers (Group 1b, p < 0.01) and tan and black dogs (Group 1c, p < 0.05)
(Figure 8C). As far as nuclear pleomorphism within the cells forming the invasive front, the
light-haired dogs had a less anaplastic population, with more mature cells than the black
dogs (Group 1a, p < 0.05) and the Schnauzers (Group 1b, p < 0.05) (Figure 8D). However,
host response and mitotic activity between groups were not significantly different.
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(D). * p < 0.05; ** p < 0.01. Abbreviations: m.c.: mature cells. 
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and infiltrated through the invasive front, while exhibiting little associated tumor stroma 
(scirrhous reaction). On the other hand, grade 2 and 3 CDSCCs were less cohesive, form-
ing small neoplastic aggregates or even individual cells detaching from the main neo-
plasm and invading the surrounding tissue, which presented a moderate to marked tumor 
stroma.  

Within the TCB grading system, out of the 76 phenotypical dark-haired animals 
(Group 1); 45.5% were grade 1; 10.3% were grade 2 and 44.2% were grade 3. Out of the 18 
dogs with phenotypical light haircoat (Group 2), the vast majority (88.9%) were grade 1 
and 11.1% were grade 3 (Figure 9A).  

There were statistical differences between Groups 1 and 2 compared to the TCB total 
score (p = 0.001) and final grade (p < 0.01) (Figure 9). The light-haired dogs (Group 2) had 
significantly less tumor cell budding in 10 HPF (p < 0.001) than dark dogs (Group 1), with 
fewer buds detaching from the main neoplasia (Figure 9B). When comparing the smallest 
tumor nest, light-haired dogs had significantly larger nests than their dark counterparts 
(p < 0.001) (Figure 9C). Finally, light-haired animals had significantly less amount of 
stroma than dark dogs (p < 0.001) (Figure 9D). 

Figure 8. (A–D). Canine digital squamous cell carcinoma. Statistical differences between genetically defined subgroups
(1a–c) and Group 2 according to the invasive front grading system. Invasive front final grade (p < 0.05), with statistical
differences between Group 1c and 2 (A). Keratinization (p < 0.05) with differences between 1a and 2 (p < 0.05) (B). Invasion
(p < 0.01) with significant differences between 1a (p < 0.05), 1b (p < 0.01) and 1c (p < 0.05) when compared to 2. (C). Nuclear
pleomorphism (p < 0.05) with significant differences between 1a (p < 0.05) and 1c (p < 0.05) when compared with Group 2.
(D). * p < 0.05; ** p < 0.01. Abbreviations: m.c.: mature cells.

3.2. Tumor Cell Budding Grading System (TCBGS)

Grade 1 CDSCCs in this system were well delineated, with more or less keratinization,
either forming solid cords or large groups which detached from the main neoplasm and
infiltrated through the invasive front, while exhibiting little associated tumor stroma
(scirrhous reaction). On the other hand, grade 2 and 3 CDSCCs were less cohesive, forming
small neoplastic aggregates or even individual cells detaching from the main neoplasm and
invading the surrounding tissue, which presented a moderate to marked tumor stroma.

Within the TCB grading system, out of the 76 phenotypical dark-haired animals
(Group 1); 45.5% were grade 1; 10.3% were grade 2 and 44.2% were grade 3. Out of the
18 dogs with phenotypical light haircoat (Group 2), the vast majority (88.9%) were grade 1
and 11.1% were grade 3 (Figure 9A).
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front, the light-haired dogs had larger nest sizes than the black (1a, p < 0.05), Schnauzers 
(1b, p < 0.05) and black & tan dogs (1c, p < 0.01) (Figure 10C). Interestingly enough, even 
though the amount of tumor stroma was not a part of the numerical score for this system, 
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statistical difference between dark-haired Groups 1a–c in any of the evaluated features.  

Figure 9. (A–D). Canine digital squamous cell carcinoma. Statistical differences between phenotypically dark-haired
(Group 1) and light-haired (Group 2) dogs according to the tumor cell budding system. There were statistical differences
between Groups 1 and 2 in final grade (p < 0.01) (A), tumor cell budding in 10 HPF (p < 0.001) (B), smallest tumor nest size
(p < 0.001) (C) and amount of tumor stroma (p < 0.001) (D). ** p < 0.01; *** p < 0.001.

There were statistical differences between Groups 1 and 2 compared to the TCB total
score (p = 0.001) and final grade (p < 0.01) (Figure 9). The light-haired dogs (Group 2) had
significantly less tumor cell budding in 10 HPF (p < 0.001) than dark dogs (Group 1), with
fewer buds detaching from the main neoplasia (Figure 9B). When comparing the smallest
tumor nest, light-haired dogs had significantly larger nests than their dark counterparts
(p < 0.001) (Figure 9C). Finally, light-haired animals had significantly less amount of stroma
than dark dogs (p < 0.001) (Figure 9D).

When comparing each individual morphological feature with its phenotypic haircoat
color, depending on the feature evaluated (Figure 10), there were statistical differences
between the light-haired dogs (Group 2) and each dark-haired subgroup (1a-1c). The final
grade of light-haired dogs, for instance, was statistically lower than the black (Group 1a,
p < 0.05) and black & tan breeds (1c, p < 0.05) (Figure 10A). The number of tumor cell
budding foci in Group 2 was significantly lower than Groups 1a (p < 0.01), 1b (p < 0.05)
and 1c (p < 0.05) (Figure 10B). When looking at the size of the nests within the invasive
front, the light-haired dogs had larger nest sizes than the black (1a, p < 0.05), Schnauzers
(1b, p < 0.05) and black & tan dogs (1c, p < 0.01) (Figure 10C). Interestingly enough, even
though the amount of tumor stroma was not a part of the numerical score for this system, it
was significantly finer in light-haired animals (Group 2), when compared to the Schnauzers
(1b, p < 0.01) or to the black & tan breeds (1c, p < 0.05) (Figure 10D). There was no statistical
difference between dark-haired Groups 1a–c in any of the evaluated features.
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IFGS and TCBGS. Groups classified as “well differentiated” (grade I/1) by both systems, 
was composed of 14 light-haired and 28 dark-haired dogs (Table 4). 

  

Figure 10. (A–D). Statistical differences between genetically defined subgroups (1a–1c) and Group 2 according to the tumor
cell budding system. Cellular dissociation final grade (p < 0.01), with statistical differences in Group 1a (p < 0.05), and
1c (p < 0.05) when compared to Group 2 (A). Budding/10 HPF (p < 0.01) was different between Groups 1a (p < 0.01), 1b
(p < 0.05) and 1c (p < 0.05) when compared to Group 2 (B). Smallest tumor nest size (p < 0.01) was significantly different
between Groups 1a (p < 0.05), 1b (p < 0.05) and 1c (p < 0.01) when compared to Group 2 (C). The amount of tumor stroma
(p < 0.01) was statistically different between Groups 1b (p < 0.01) and 1c (p < 0.05) when compared to Group 2. There were
no statistical differences among dark breeds when compared to each other. (D) The amount of tumor stroma of Group 2
was statistically significant when compared to Group 1b (p < 0.01) and 1c (p < 0.05). * p < 0.05; ** p < 0.01.

3.3. Comparison of Invasive Front Grading System and Tumor Cell Budding System

Both grading systems available were evaluated and compared to each individual
factor to evaluate a significant difference between light- and dark-haired canine breeds.
There was a significant statistical difference between both phenotypical groups (dark- and
light-haired dogs) in these two systems at the final IF grading (p = 0.001) and their total
score (p < 0.01), as well as the degree of keratinization within the invasive front (p < 0.05),
invasion (p = 0.001) and nuclear pleomorphism (p < 0.01). Likewise, the different criteria of
the TCB system were also statistically significant between the two populations, including
tumor budding (p = 0.0001), smallest tumor nest (p < 0.001) and tumor stroma (p = 0.0001),
as well as the total cellular dissociation score (p = 0.0001) and final grade (p = 0.001).

An interesting point was the number of animals having a similar grading on both the
IFGS and TCBGS. Groups classified as “well differentiated” (grade I/1) by both systems,
was composed of 14 light-haired and 28 dark-haired dogs (Table 4).
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Table 4. Number of animals with digital squamous cell carcinoma in both invasive front grading system and tumor budding
system.

Invasive Front
Grading System

Tumor Cell Budding
Grading System

Number of Dogs with
Same Grading

by Both Systems

Light-Haired
n = 18

Dark-Haired
n = 76

Light-Haired
n = 18

Dark-Haired
n = 76

Light-
Haired
n = 15

Dark-
Haired
n = 45

Grade I
n = 47 15 32 Grade 1

n = 51 16 35
Well

differentiated
n = 42

14 28

Grade
II

n = 32
3 29 Grade 2

n = 8 0 8
Moderately

differentiated
n = 4

0 4

Grade
III

n = 17
1 16 Grade 3

n = 35 2 33
Poorly

differentiated
n = 14

1 13

When comparing light-haired animals classified as “moderately differentiated” (grade
II/2) by both systems, there was no overlap. Interestingly enough, within the dark-haired
animals, there were only four dogs graded as “moderately differentiated” by both systems.
Digital squamous cell carcinomas from 13 dark-haired animals and one Golden Retriever
(case No. 92) were graded as “poorly differentiated” (grade III/3) by both systems.

The CDSCC from three dark-haired dogs (case No. 5, 24 and 25) were graded as “well
differentiated” by IFGS, but as “poorly differentiated” by the TCB System. Furthermore,
there were CDSCCs from two dogs (case No. 74, a Rottweiler and No. 92, a WHWT)
which were graded as “poorly differentiated” by IFGS, while being considered as “well
differentiated” by the TCB System.

4. Discussion

There is currently no widely accepted grading system for canine SCC, although one of
the most widely used, Broder’s grading system [13], with a 1–4 grade based on the differen-
tiation features, is used to morphologically characterize this tumor [13]. Nonetheless, given
that there is no prognostic significance and often somewhat subjective assessment, many
pathologists fail to characterize it. Broder’s system was not included in this case since,
similar to what other studies showed [11], there can be different grades of differentiation
within the same tumor, making it hard when evaluating the sample. In this study, the
goal was to compare two different adapted grading schemes to ascertain that there was a
morphological disparity between light- and dark-colored animals with CDSCC and some
kind of grading congruence between both systems. This allows a better comprehension
of CDSCC and, hopefully, the development of a future grading system with prognostic
correlation.

Canine digital cell carcinomas (CDSCC) are known to be particularly aggressive when
compared to other cutaneous locations. Even though these neoplasms are more frequently
seen in classically dark-haired breeds, there is no literature available examining if these
tumors are morphologically different than their light-haired counterparts, suggesting
different, maybe more aggressive, behavior. Through the adaptation of both human
(Jesinghaus et al. (2018) [7] and Boxberg et al. (2019) [9]) and veterinary (Nagamine et al.,
(2017) [2]) SCC grading systems, we evaluated CDSCC from animals of both haircoat colors
and investigated if there was any statistical difference between the different morphological
features based on their presumed genetic and phenotypical haircoat color.

Skin pigmentation is a point of interest in human medicine regarding evaluating
susceptibility to certain skin neoplasias, such as cutaneous melanoma, or basal cell carci-
noma [22]. Additionally, some skin tumors, such as melanoma and nonmelanoma skin



Vet. Sci. 2021, 8, 3 14 of 18

cancers, are more often seen in white populations, believed to be closely associated with
skin color and UV-light exposure (among other factors) [23]. This is also postulated because
skin cancers are less common in People of Color than in Caucasians [23–25]. Nonetheless,
this has not been widely studied in veterinary medicine. In canine melanomas, postulated
to be a potential human model [26], several copy number alterations and low numbers
of single-nucleotide variations with non-UV-associated mutations were identified [26]. In
both dogs and humans, mitogen-activated protein kinase (MAPK) and phosphoinositide
3-kinase (PI3K) were associated with mucosal melanoma [26]. Nevertheless, there are
currently no detailed studies about comparing canine squamous cell carcinoma (digital and
nondigital) with haircoat color and taking into account the speculated genotypic haircoat.

Breeds represented in our study were mainly dark breeds, the most common being
Schnauzers and Rottweilers, and a markedly smaller light-haired population, similar to the
literature [11]. When comparing the localization of this tumor in each subgroup, either the
limb or toe, there were no statistical differences between groups (p < 0.05). Unfortunately,
there was a great number of animals with no information regarding location, therefore, the
interpretation of end results in this parameter must be taken with caution.

To follow the International Tumor Budding Consensus Conference (ITBCC), 2016,
of colorectal cancer [27], and other similar studies [9] with the objective to increase re-
producibility on a diagnostic setting, slides were assessed on HE alone. This approach
was taken because meta-analyses suggest that the prognostic evidence assessed on HE
vs. immunohistochemistry (IHC) is not significant, although IHC may allow a higher
interobserver agreement [27].

When looking at the light-haired dogs CDSCC, these were more frequently well
differentiated, with abundant keratinization, well-formed, pushing solid cords infiltrating
within the invasive front, little anaplasia and rare, if any, mitotic activity. On the other
hand, the darker breeds often had more “malignant” features, with frequent budding, less
keratinization and more anaplasia within the invasive front. This is particularly interesting
for Group 1b, the Schnauzers, which were the most homogenous with all the same breed
of animals, leading to speculation that, when encountering a more poorly differentiated
CDSCC, it is more likely to be from a dark-haired animal, although the underlying reason
for this is yet to be elucidated.

When comparing the two systems provided, within the dark-haired population, IFGS
showed 41.5% grade I, 37.6% grade II and 20.8% grade III. On the other hand, TCBGS in
the same population showed a proportion of 45.5% grade I 10.3% grade II and 44.2% grade
III. This illustrates that, for well-differentiated CDSCC, with a solid pattern of invasion,
well-keratinization and low mitotic activity tends to be engulfed as a low grade/grade I
by both systems. Nevertheless, when more malignant features are present, the IF grading
system tends to include it as grade II, while the TCB grading system would more likely
assign it to be grade III. Interestingly enough, out of all the animals, there were only
three cases that were graded as “well differentiated” by the IF system, while having a
“poorly differentiated” grade on the TCB System. On the other hand, there were two
cases characterized as “poorly differentiated” by the IF system, while being graded as
“well differentiated” by the TCB grading system. This apparent incongruence could be
explained by different features evaluated within the invasive front, which rarely overlap in
both systems. Also, it can be explained by the marked importance that the TCB grading
system gives to nest size and budding (2/3 features evaluated), while the IF grading system
only pays attention to this feature in one out of the five characteristics evaluated, hence
the grading disparity in some cases. It must be pointed out that, although the single cell
tumor nests are of great importance, the less cohesive these cells are, the more poorly
differentiated the neoplasm is likely to be; therefore, a more aggressive behavior can be
hypothesized.

Furthermore, the IF grading system pays special attention to additional features,
which are also theoretically associated with the pathogenesis of this neoplasm, such as host
response. An inflammatory reaction secondary to a tumor invasion, particularly in those
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tumors that produce extracellular keratin (and, therefore, presumably better differentiated),
is expected to elicit a profound immune response. On the other hand, neoplastic tactics of
immune-tolerance mechanisms and immune-response evasion were shown to modulate
the inflammatory response by attenuating it and allowing tumors to create a favorable
microenvironment for invasion [27–29]. Nonetheless, similar to another small study [28],
our results concluded that there was no significant difference between degree of host
response/inflammation between the groups. Additionally, it has to be pointed out that the
IFGS, even when used in CDSCC, is an adaptation of Nagamine et al.’s system [2] which, in
itself, is an adaptation from human medicine [30] and, henceforth, certain features cannot
be extrapolated. For instance, dogs with masses on toes (either inflammatory or neoplastic),
will tend to inflict self-trauma, either through chewing or licking, thus causing a secondary
inflammatory response. This would also explain why inflammation among groups may
not be significant, given that all animals may traumatize the area one way or another.

Additionally, other interesting features, such as stromal reaction, were evaluated
within the TCBGS, although did not play a role in the total score or final grading. This
fibrovascular scaffold, which includes fibroblasts, vasculature, extracellular matrix and
other extracellular molecules, set the tumor-microenvironment that favors tumor growth
and expansion through different mechanisms [31]. Taking into account this particular
morphological feature within the grading may be a representation of the tumor microenvi-
ronment, thus becoming more prominent in those less differentiated with, hypothetically,
more aggressive behavior.

When performing the gradings, there were statistical differences between the light-
and the dark-haired breeds (which were represented by phenotypically black & tan breeds,
black breeds and black Schnauzers) in both IF score and grading (p < 0.01 and p < 0.01,
respectively) and TCB score and grading (p < 0.01 and p < 0.01, respectively) systems.
Additionally, when comparing each individual morphologic feature, there were statistical
differences in degree of keratinization within the invasive front, pattern of invasion, nuclear
pleomorphism, tumor budding activity in 10 HPF, smallest nest size and amount of tumor
stroma. These features were consistently better differentiated in light-haired rather than
dark-haired breeds. Interestingly, there was not an overall significant difference between
the phenotypical dark-haired groups (presumed genotypes KB/KB, KB/Ky, ky/ky and
at/*) in any of the scoring systems or individual features. This finding highly suggests
that dark-haired breeds tend to have more morphologically poorly differentiated CDSCC
when compared to light-haired breeds, although different biological behavior cannot be
predicted, only hypothesized. It would be interesting to know the prognosis of these
tumors based on the histomorphological features of the invasive front. Sadly, no follow-up
information was available concerning the samples evaluated in our study.

As mentioned before, the colors of the haircoat and claws depend on the content/absence
and distribution of eumelanin in these structures. This pigment distribution and content
depend on simple genetic variants of the E-, K- and A-locus (among others) [18]. In our
study, all dogs had concordant color in both haircoat and claws, with black claws in dark-
haired animals (Group 1) and light claws in light-haired animals (Group 2). Altogether, it
could be inferred that the poor differentiation of CDSCC, which were associated with the
haircoat color (most obvious in dark-haired animals), is also similarly associated with the
claw pigmentation. In summary, this “poor differentiation” of CDSCC could potentially
be associated with the eumelanin biochemistry of processing and incorporation of this
pigment into the claw.

In general, when assessing adapted SCC grading systems, a few limitations have to be
taken into account. To begin with, the best/most malignant invasive front in each CDSCC
did not always match the deepest invasive front (as evaluated in other publications [2,6,7,9]),
as sometimes this was located within the bone, while others were within the dermis. This
allows us to speculate that, due to different cellularity and structure of the surrounding
normal stroma (either bone or dermis), the neoplastic cells may render different strategies
of invasion, making it inconsistent during the grading. Also, since the deep invasive
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front was not always the most malignant front, this may theoretically support the tumor
biological behavior and spread, infiltrating in all directions.

A further limitation encountered was the different grades of differentiation depending
on the area within the tumor, as reported in the literature [11]. Also, due to the morphologi-
cal overlap between certain digital squamous cell carcinomas and less malignant epithelial
neoplasms, such as subungual keratoacanthoma, some well-differentiated squamous cell
carcinomas within this location may be overlooked or misdiagnosed, thus underestimating
the prognosis. In this particular study, the light-haired population (N = 18) was much
smaller than the phenotypical dark-haired one (N = 76), which makes interpretation be-
tween phenotypical groups somewhat difficult. Nevertheless, this disparity is concordant
with previous literature [11], where dark dogs are prone to this neoplasm and, consequently,
are more numerous.

Additionally, when assessing tumor cell nesting, complete cellular dissociation of
the tumor aggregates from the main neoplasia has to be assumed. This can be somewhat
problematic given that this is a 2D assessment (a histological slide) of a 3D event, never
making sure that the small complexes might be connected to the primary mass in deeper
sections or when a different orientation is given. This dissociation, however, has to be
assumed when assessing the invasive front, given that there is currently no other available
system.

This study opens up interesting future research concerning CDSCC, such as the differ-
ent prognosis based on these neoplasms’ histomorphological features. Currently, there is
no available grading system for CDSCC that provides prognostic clinical insight. Addi-
tionally, the question regarding whether phenotypically dark breeds, with their presumed
genotypical haircoat color, are genetically predisposed to a more morphologically poorly
differentiated CDSCC or whether light-haired breeds have genetic protection against this
tumor still remains to be studied through future genetic analysis. Throughout this study,
no true genetic haircoat analysis was made. The assumption of the presumed genotype
was only based on the phenotypical color. Nevertheless, this may result in a scaffold for
future research studies in which true hair-coat genetic analysis can be performed.

5. Conclusions

To our knowledge, this is the first study comparing CDSCC in dogs by two histological
grading systems, taking into account their phenotypical and presumed genotypical haircoat
color and demonstrating that digital squamous carcinomas are not only more common
in dark-haired dogs, but potentially more aggressive. When comparing both challenged
TCB and IF grading systems, they often overlapped when grading well-differentiated
tumors. On the other hand, when more “malignant” features were present in the CDSCC,
the classification systems often placed them in different grade (II vs. III). With this study,
conclusions regarding the most accurate grading system for CDSCC cannot be drawn,
since no outcome was available in any of the cases.
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