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ABSTRACT: This study presents a meta-analysis of radiocarbon ages for the environs of Göbekli Tepe – one of the oldest monu-
mental structures worldwide – using cumulative probability functions to diachronically assess phases of geomorphodynamic activity
as controlled by natural or anthropogenic drivers. We employ sediment cascades as a heuristic framework to study the complex
responses of the geomorphological system to various triggers at local to supra-regional scales. Possible triggers include climatic
variability as documented by supra-regional hydroclimatic proxy data, regional demographic trends, and local to regional socioeco-
nomic developments such as the emergence of sedentism or the introduction and dispersal of livestock herding. Our results show
that phases of intensified geomorphodynamic activity occurred between ca. 7.4–7.0 and 5.8–3.3 ka BP. These phases roughly
coincide with phases of population growth in southern Turkey and climatic variations in Turkey and the Levant. The phase between
ca. 5.8–3.3 ka BP also corresponds to the time when organized agriculture and the seeder plough were introduced. Also, the
identified phases are in agreement with the general trend of varying geomorphodynamic activity in the Eastern Mediterranean as
driven by human impact and climatic change. However, neither the Younger Dryas–Holocene transition nor the development of
herding during the Pre-Pottery Neolithic left a clear signature. We demonstrate how the different depositional environments in the
studied landscape compartments vary with respect to their spatiotemporal coverage and discuss challenges when trying to under-
stand processes that once shaped landscapes of past societies. © 2020 The Authors. Earth Surface Processes and Landforms pub-
lished by John Wiley & Sons Ltd

KEYWORDS: Holocene geomorphodynamic activity; cumulative probability functions of 14C ages; human–environment interactions;
geoarchaeology; sediment connectivity

Introduction

Sediment cascades are a characterizing feature of geomorpho-
logical systems, illustrating the complex interplay between
erosion, transport, and accumulation (Bracken et al., 2015).
Such systems comprise a set of interlinked subsystems at
various scales and of varying complexity, forming a nested hier-
archy (Chorley and Kennedy, 1971; Harvey, 2002). External
forces controlling such systems include climatic variability,
(short-term) environmental changes, and human impact. These,
together with system-inherent geomorphological thresholds,
lead to complex system responses at different spatial and tem-
poral scales (Schumm, 1973; Lang and Hönscheidt, 1999;

Brierley et al., 2006; Fuchs et al., 2011; Houben et al., 2012;
Bracken et al., 2015). Due to the complexity of both geomor-
phological and cultural systems and their nonlinear relation-
ships, understanding landscape evolution is challenging
(Schumm, 1991; Poeppl et al., 2017).

Göbekli Tepe, located in Upper Mesopotamia (semi-arid
southeastern Turkey; Figure 1A), is one of the oldest known
monumental structures worldwide, dating from the mid-12th
to the end of the 10th millennium BP. Its occupation period
covers more than half of the so-called Pre-Pottery Neolithic
(PPN) period, more precisely its earlier phase, termed PPN A,
and the first half of its later phase, named PPN B (see Figure 3
for comparison of geochronological periods and cultural

EARTH SURFACE PROCESSES AND LANDFORMS
Earth Surf. Process. Landforms 46, 430–442 (2021)
© 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd
Published online 5 December 2020 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/esp.5035

https://orcid.org/0000-0003-2074-1511
https://orcid.org/0000-0001-6981-7164
https://orcid.org/0000-0002-1362-7270
https://orcid.org/0000-0003-3014-4497
https://orcid.org/0000-0003-0894-2628
mailto:m.nykamp@fu-berlin.de
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fesp.5035&domain=pdf&date_stamp=2020-12-05


epochs). Culturally speaking, the PPN in Upper Mesopotamia
witnessed the transition from hunter-gatherer to farming
communities. Further, cultural key developments, such as
sedentism, the process of cultivation and domestication of wild
cereals and pulses, and early management and domestication
of wild ungulates are locally documented (Peters et al., 1999,
2019; Neef, 2003; Tanno and Willcox, 2006; Clare
et al., 2019; Dietrich et al., 2019). In the millennia following
the PPN, significant socioeconomic developments occurred –
e.g., the introduction of the plough, organized agriculture,
and the seeder plough (Potts, 1997; Greenfield, 2010;
Steadman and McMahon, 2011; Jursa, 2013; Widell
et al., 2013) – and the study area continued to hold an impor-
tant position in the cultural processes of transformation
and adaption characterizing ancient Upper Mesopotamia.
Accordingly, the environs of Göbekli Tepe provide a unique
opportunity to evaluate phases of varying geomorphodynamic
activity driven by climatic change and human impact based
on the theoretical framework of complex sediment cascades.
We use published (Nykamp et al., 2020a, 2020b) and own

unpublished data from sediment sequences to conduct a
meta-analysis of varying geomorphodynamic activity by means
of cumulative probability functions of radiocarbon ages. The
sediment sequences are located in the environs of the hilltop
site Göbekli Tepe along a sediment cascade ranging from the

slope toes of the headwater catchments across the piedmont
zone of the Culap Suyu basin to the floodplain of the Culap
Suyu river as the receiving stream. A dataset synopsis (Figure 3)
of Holocene climatic (Finné et al., 2019), zooarchaeological
(Grupe and Peters, 2011; Peters et al., 2014), demographic
(Roberts et al., 2019a), and socioeconomic developments (see
Figure 3A for references) points to the potentials and challenges
of differentiating complex sediment cascade dynamics and
their connection to natural drivers or human impact.

Study Site

The monumental archaeological site of Göbekli Tepe is located
~12 km northeast of Şanlıurfa in southeastern Anatolia
(Figure 1A, B). The present-day climate is semi-arid, with hot
and dry summers and wet and mild to cold winters. Heavy
rainfall can occur between autumn and early spring
(Sörensen, 2007; Kuzucuoğlu et al., 2019). Dwarf scrubland
and herb-rich steppes characterize the present-day vegetation
on the plateaus, the foothills show an open steppe vegetation
with scattered oak and fruit trees, and the plains are intensively
used for arable farming made possible by the water of the
Atatürk Dam (Rosen, 1997; Özcan et al., 2018;
Kuzucuoğlu, 2019; Kuzucuoğlu et al., 2019).

Figure 1. (A) Overview map showing the study site in southeastern Turkey. (B) Regional overview. Locations sampled along the sediment cascade
within the Culap Suyu basin are illustrated in black; those located in the identified landscape compartments but situated beyond the catchment area
are illustrated in grey. 3D illustration is based on TanDEM-X elevation data with 12m × 12m pixel size, ©DLR 2017. (C) Conceptual visualization of
the three landscape compartments (indicated by 1–3) that form the studied sediment cascade. Grey colours indicate the characteristic deposits
observed in the three landscape compartments: colluvial deposits at the slope toes of the upland catchments, channel and overbank deposits in
the piedmont zone, and the floodplain deposits. (D) Kernel density estimates of the radiocarbon ages obtained from the three landscape compart-
ments as a measure of residence time of the sediments within them. The grey lines represent kernel density estimates of bootstrapped samples from
all samples in the respective compartment; the step-like line represents the number of sequences covering the respective time period. (E) Sketch of a
cascading system along a topographic gradient from the hillslopes of the headwater catchments to the floodplain of the receiving stream (SD = slope
deposits; CD = colluvial deposits; COD = channel bed and overbank deposits). [Colour figure can be viewed at wileyonlinelibrary.com]
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The archaeological deposits and architectural remains of
Göbekli Tepe rest on a limestone spur of the southern Germuş
mountain range, on the southwestern watershed of the Culap
Suyu basin, which extends into the wide low-lying Harran
plain in the south (Figures 1B and 2A). The flat-lying plateaus
consist of different limestone and marl formations of Upper
Cretaceous to Lower Miocene age. Locally, remaining patches
of Upper Miocene basalt rocks cover the plateaus, forming
isolated hills (Geological Research Department, 2014;
Kuzucuoğlu et al., 2019). Karstification occurs in areas that
are dominated by chalky limestones, whereas clayey

limestones show little karstic features. Surface water can
infiltrate and circulate through the cavities of the interlinked fis-
sure systems of the karst massifs and feed springs, e.g., the
Urfa-Harran springs (Eroskay, 1982; Elhatip, 1997; Eris and
Wittenberg, 2015). Such subsurface drainage systems can sub-
stantially reduce surface runoff and related erosion processes
(cf. Peng and Wang, 2012). Since the Plio-Pleistocene, com-
bined tectonic, lithological, and climatic effects resulted in val-
ley and floodplain development. The basins (Harran plain and
Culap Suyu basin) are filled with Quaternary alluvium derived
from reworked soils and slope debris of the surrounding

Figure 2. (A) Overview map showing the Culap Suyu basin, its watershed, and drainage network. (B) Map of the lower Culap Suyu basin showing
the location of Göbekli Tepe, the locations of the radiocarbon-dated sediment sequences (numbers refer to sequence IDs, cf. Table I) in its vicinity
(~12 km max. distance), and the locations of the topographic profiles (length profile = LP; cross profiles 3, 4, and 5 = CP03, CP04, and CP05). (C)
Map showing the sediment sequences and topographic profiles (cross-profiles 1 and 2 = CP01 and CP02) that are located in the headwater catch-
ments and the proximal piedmont zone. (D) Topographic length and cross profiles (A–C: spatial reference = WGS84 UTM37N; A–D: height =
TanDEM-X elevation data with 12m × 12m pixel size, ©DLR 2017). (E) Selected and simplified sediment sequences that are representative for the
general conditions in the three landscape compartments. [Colour figure can be viewed at wileyonlinelibrary.com]
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hillslopes (Wilkinson, 1990; Rosen, 1997; Geological Research
Department, 2014; Kuzucuoğlu et al., 2019). Expectedly, the
thickness of the deposits in the valleys and plains decreases
in an upslope direction (Wilkinson, 1990), ranging between
~190–240 cm thickness in the proximal piedmont zone and
decreasing to less than 100 cm thickness at the slope toes of
the headwater catchments; the upper slopes are usually devoid
of sediments (Nykamp et al., 2020a). Leptosols, Calcisols, and
Cambisols have developed in the carbonate-rich parent
material of the plateaus and slopes. The plains are character-
ized by Vertisols (Özcan et al., 2018; Akça et al., 2018a,
2018b). Recently published results regarding present-day land-
form characteristics (Knitter et al., 2019) and Holocene
relief-forming processes (Nykamp et al., 2020a) show that the
hillslopes of the headwater catchments are characterized by
periodic sheet flow and soil creep processes, forming colluvial
deposits at the slope toes of the valleys. Episodic torrential rains
cause concentrated runoff along the thalwegs of the confined
valleys in the headwater catchments, leading to erosion of the
colluvial deposits. The entrained sediments are transported
out of the valleys, forming channel bed and overbank
deposits in the adjacent piedmont zone. Phases of reduced
geomorphodynamic activity are documented by topsoil
horizons that formed in situ in the overbank deposits of
the proximal piedmont zone. Phases of reinforced
geomorphodynamic activity during the Bronze Age led to their
burial by channel bed and overbank sediments (Nykamp
et al., 2020a, 2020b).

Material and Methods

During two field campaigns, geomorphological mapping was
carried out and sediment sequences were recorded from out-
crops and corings. All sediments were described in the field
and sampled for subsequent sediment analyses and radiocar-
bon dating (for details see Nykamp et al., 2020a, 2020b). Our
sediment records are located within the three major landscape
compartments: (1) the upland; (2) the piedmont zone; and (3)
the floodplain of the receiving stream (Figure 1C), in the close
vicinity (~12 kmmax. distance) of Göbekli Tepe. For the upland
and the proximal part of the piedmont zone, results on sedi-
ment architecture, geochemical properties, and chronology
are presented by Nykamp et al. (2020a, 2020b). For the distal
part of the piedmont zone and the floodplain of the receiving
stream, sediment analyses are yet not finished. In this study

we focus on the radiocarbon chronology and include prelimi-
nary findings from field descriptions.

The three studied landscape compartments form a nested
hierarchy of interlinked subsystems (sensu Chorley and
Kennedy, 1971; cf. Figure 1C for visualization). The connectiv-
ity within (e.g., within-hillslope) and among them (e.g.,
hillslope-to-channel; cf. Figure 1E for visualization) occurs at
local and regional scales (sensu Fryirs et al., 2007). The transfer
of sediments on all three scales is a function of magnitude–
frequency characteristics of external forces, geomorphological
thresholds, and time (cf. Chorley and Kennedy, 1971;
Schumm, 1973). Each compartment is characterized by a set
of parameters – e.g., slope, valley confinement, and sediment
texture – that influence surface processes and lead to the devel-
opment or reworking of landforms (cf. Brierley et al., 2006).
The durability of the studied landforms and the residence times
of the sediments stored within them differ considerably
(Figure 1D; cf. Harvey, 2002).

The presented chronological dataset from the surroundings
of Göbekli Tepe totals 42 14C ages that were obtained from
14 sediment sequences (Table I; Figures 1B and 2B, C). We
used charcoal pieces and bulk samples containing organic mat-
ter from buried organic-rich topsoil horizons or reworked soil
sediments for radiocarbon dating. Compared to other studies
using cumulative probability functions as a proxy for phases
of varying geomorphodynamic activity, we use a rather small
number of radiocarbon ages. Therefore, a differentiation among
the different archives or a subdivision into ‘activity’ and ‘stabil-
ity’ ages (e.g., Hoffmann et al., 2008) is not meaningful. We
interpret the radiocarbon ages from charcoal as maximum
deposition ages since reworking cannot be excluded (Lang
and Hönscheidt, 1999; Chiverrell et al., 2007). Radiocarbon
ages obtained from organic matter of buried topsoil horizons
are interpreted as maximum age estimates for the time of burial
(Scharpenseel and Schiffmann, 1977). Radiocarbon ages
achieved from organic matter of buried reworked soil
sediments reflect the termination of fresh carbon input into
the sediment layer (Dreibrodt et al., 2013), but also include
allochthonous material (Scharpenseel and Schiffmann, 1977).

The formal subdivision of the Holocene is based on Walker
et al. (2019) and the boundary between the Younger Dryas
and the Early Holocene is set to 11.7 ka BP according to
Roberts et al. (2018).

For each sediment sequence, depth, and radiocarbon age of
the dated samples, the total thickness of the sequence and the
landscape compartment (Tables I and II) are recorded. All
radiocarbon ages were calibrated using the rcarbon package

Table I. Detailed information on the presented sediment sequences

Sequence
ID

UTM 37N
Elevation
(m a.s.l.)

Thickness
(cm b.g.s.)

Contributing
area (km2)

Landscape
compartment

Extraction
methodEasting Northing

GT03 493 656 4 118 322 661.4 74 0.003 Slope toe Outcrop
GT16 494 800 4 119 940 682.7 78 0.005 Slope toe Outcrop
GT15 494 912 4 119 993 679.9 60 0.006 Slope toe Outcrop
GT14 494 632 4 120 264 682.8 80 0.021 Slope toe Outcrop
GT11 494 922 4 120 378 670.9 224 0.523 Piedmont zone Outcrop
GT12 494 925 4 120 380 670.9 240 0.523 Piedmont zone Outcrop
GT06 493 946 4 117 785 641.3 238 1.962 Piedmont zone Outcrop
GT05 494 017 4 117 664 638.3 192 2.026 Piedmont zone Outcrop
GT18 501 015 4 120 596 565.9 600 14.55 Piedmont zone Coring
GT19 500 973 4 120 569 566.5 200 14.55 Piedmont zone Outcrop
GT22 501 202 4 121 326 557.0 655 21.64 Piedmont zone Coring
GT17 502 949 4 118 940 534.2 679 434.9 Floodplain Coring
GT20 503 214 4 118 629 530.8 800 436.2 Floodplain Coring
GT21 501 326 4 111 007 490.5 530 481.7 Floodplain Coring
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Table II. Results of the radiocarbon datings and their calibration

Sample ID Lab. ID Mat. 14C age
Uncertainty

(±)
cal. BP

(before 1950; 2σ)
cal. BCE/CE

(2σ)
Landscape
compartment Ref.

GT03 59-61 POZ-109741 OM 3 290 BP 40 3 613 to 3 408 �1 664 to �1 459 Slope toe 1
GT05 90-92 POZ-109743 OM 2 170 BP 35 2 310 to 2062 �361 to �113 Slope toe 1
GT05 120-
122 POZ-109744 OM 1760 BP 30 1 780 to 1 567 171 to 383 Piedmont zone 1

GT06 105-
108 POZ-109745 OM 3 400 BP 50 3 828 to 3 509 �1879 to �1 560 Piedmont zone 1

GT11 125-
130

TÜBİTAK-
0315 OM 3 808 BP 32 4 349 to 4 088 �2 400 to �2 139 Piedmont zone 1

GT12 167-
172

TÜBİTAK-
0316 OM 4 222 BP 32 4 856 to 4 643 �2 907 to �2 694 Piedmont zone 1

GT14 37-42 POZ-109747 OM 625 BP 30 661 to 551 1 290 to 1 399 Slope toe 1
GT15 29-34 POZ-109749 OM 1 130 BP 30 1 173 to 962 777 to 988 Slope toe 1
GT16 61-65 POZ-109750 OM 1 795 BP 30 1819 to 1 623 132 to 328 Slope toe 1
GT17 205-
213

TÜBİTAK-
0508 C 4 217 BP 29 4 853 to 4 645 �2 904 to �2 696 Floodplain 2

GT17 250
TÜBİTAK-
0509 C 6 158 BP 42 7 169 to 6 941 �5 220 to �4 992 Floodplain 2

GT17 367-
370

TÜBİTAK-
0510 OM

11 425
BP 44 13 379 to 13 145

�11 430 to �11
196 Floodplain 2

GT17 431
TÜBİTAK-
0511 C

11 700
BP 50 13 705 to 13 423

�11 756 to �11
474 Floodplain 2

GT18 134
TÜBİTAK-
0512 C 3 668 BP 35 4 090 to 3 894 �2 141 to �1 945 Piedmont zone 2

GT18 168
TÜBİTAK-
0513 C 5 977 BP 42 6 935 to 6 694 �4 986 to �4 745 Piedmont zone 2

GT18 183-
185

TÜBİTAK-
0514 OM 3 780 BP 31 4 247 to 4 006 �2 298 to �2 057 Piedmont zone 2

GT18 290-
292

TÜBİTAK-
0515 C 4 941 BP 30 5 727 to 5 603 �3 778 to �3 654 Piedmont zone 2

GT18 320-
322

TÜBİTAK-
0516 OM 4 626 BP 30 5 462 to 5 300 �3 513 to �3 351 Piedmont zone 2

GT18 327-
328

TÜBİTAK-
0517 C 6 499 BP 33 7 473 to 7 324 �5 524 to �5 375 Piedmont zone 2

GT18 553-
554

TÜBİTAK-
0518 C 7 763 BP 37 8 603 to 8 444 �6 654 to �6 495 Piedmont zone 2

GT19 35
TÜBİTAK-
0519 C 1 648 BP 34 1 688 to 1 416 263 to 535 Piedmont zone 2

GT19 51
TÜBİTAK-
0520 C 3 416 BP 28 3 817 to 3 581 �1 868 to �1 632 Piedmont zone 2

GT19 56-58
TÜBİTAK-
0521 OM 3 264 BP 28 3 565 to 3 408 �1 616 to �1 459 Piedmont zone 2

GT19 117-
119

TÜBİTAK-
0522 OM 4 307 BP 29 4 960 to 4 833 �3 011 to �2 884 Piedmont zone 2

GT19 170-
172

TÜBİTAK-
0523 OM 8 160 BP 37 9 253 to 9 011 �7 304 to �7 062 Piedmont zone 2

GT20 82-85
TÜBİTAK-
0524 C 1 687 BP 29 1 693 to 1 534 257 to 417 Floodplain 2

GT20 249
TÜBİTAK-
0525 C 3 571 BP 43 3 981 to 3 721 �2 032 to �1 772 Floodplain 2

GT20 375
TÜBİTAK-
0526 C 4 074 BP 32 4 806 to 4 440 �2 857 to �2 491 Floodplain 2

GT20 419-
422 Poz-110,446 C 4 130 BP 50 4 826 to 4 526 �2 877 to �2 577 Floodplain 2

GT20 446-
449

TÜBİTAK-
0527 C 6 068 BP 32 7 006 to 6 799 �5 057 to �4 850 Floodplain 2

GT20 564-
568

TÜBİTAK-
0528 C 9 772 BP 52 11 269 to 11 099 �9 320 to �9 150 Floodplain 2

GT21 164-
171

TÜBİTAK-
0529 C

10 098
BP 41 11 963 to 11 404

�10 014 to �9
455 Floodplain 2

GT21 190-
197

TÜBİTAK-
0530 C

13 873
BP 52 17 030 to 16 552

�15 081 to �14
603 Floodplain 2

GT21 332-
334

TÜBİTAK-
0531 C

17 170
BP 63 20 925 to 20 515

�18 976 to �18
566 Floodplain 2

GT22 87-88
TÜBİTAK-
0532 C 3 216 BP 28 3 547 to 3 374 �1 598 to �1 425 Piedmont zone 2

GT22 168 C 6 712 BP 42 7 661 to 7 507 �5 712 to �5 558 Piedmont zone 2

(Continues)
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(Bevan and Crema, 2018) and the IntCal13 calibration curve
(Reimer et al., 2013). We calculated a cumulative probability
function (CPF; spd function, rcarbon package; raw data and R
code: Supporting Information S1–S4) of all 14C ages assuming
that the cumulative likelihood is proportional to phases of
intensified geomorphodynamic activity reflected in the
sediment sequences (e.g., Chiverrell et al., 2011). The CPF
was normalized to unity and smoothed with a moving window
(size 1000) to avoid a dominance of peaks caused by single
isolated dates.
The relationship between age probability and phases of

intensified geomorphodynamic activity is not straightforward
and biased; e.g., steeper parts of the calibration curve result
in artificial peaks in the CPF (Hoffmann et al., 2008; Carleton
and Groucutt, 2019). Periods of enhanced fire activity result
in an increased availability of datable material, leading to
increased cumulative probability, although not directly linked
to phases of intensified sediment dynamics (Carleton and
Groucutt, 2019). Furthermore, radiocarbon dates from sedi-
ment sequences are not necessarily related to depositional
events, but can be reworked and redeposited (e.g., Chiverrell
et al., 2011). Consequently, the sample size of all available
radiocarbon ages is crucial, because single dates can have an
important influence on a CPF. Regarding palaeoenvironmental
archives, a major issue is a preservation bias. Reworking and
incompleteness of the record grows with increasing time differ-
ence between sampling and sedimentation (Lewin and
Macklin, 2003; Macklin et al., 2005; cf. Williams, 2012;
Carleton and Groucutt, 2019). To consider these biases, we
tested our observed CPF against simulated CPFs (cf. also Becker
et al., 2020).
Simulated CPFs were calculated from simulated random

radiocarbon ages over the time period covered by the observed
CPF. The probability that an age is sampled and used during a
simulation run is equal to the probability that the age is covered
by the available sediment sequences. Therefore, a potential
maximum age of each sediment sequence is estimated as a
function of the sedimentation rate, which is given by each
radiocarbon age and the depth from which the sample was
obtained (cf. Dusar et al., 2012). The estimated maximum age
covered by a sequence is assumed to be a function of the
sequences’ thickness and the median of all sedimentation rates
of a sequence. The number of samples in each simulation run is
equal to the given number of ages. This allows for a robust esti-
mate of the variability given by the number of observed ages.
As the simulated CPFs and the observed CPF are both subject

to the variability of the calibration curve, we did not standard-
ize the observed CPF by dividing it by the calibration curve (cf.
Hoffmann et al., 2008). Random ages were back-calibrated to
acquire uncalibrated radiocarbon ages of a randomly sampled
age (uncalibrate function, rcarbon package). Thereafter, these
radiocarbon ages were calibrated to calculate the CPFs. The
error of each back-calibrated age is estimated based on a linear
model of the observed 14C ages and their errors. We calculated
1000 different simulated CPFs.

Calculating the difference between the observed CPF and
each simulated CPF allows us to assess the likelihood of the
observed CPF being higher than the simulated CPFs. The pro-
portion of cases where a peak of the observed CPF is greater
than the respective part of a simulated CPF is assumed to be
equal to the likelihood that this peak of the observed CPF is
not random.

In addition to the observed CPF of all ages, we calculated
Gaussian kernel density estimates using a window of 1000
years (Supporting Information S2, S3). We interpret the number
of sequences covering a defined time period and their age den-
sity as an indicator for the residence time of sediments in the
archives.

Results

The upland (Figure 1C) comprises low-order catchments char-
acterized by narrow valleys with steep hillslopes and thalwegs
showing strongly concave length profiles (cf. LP and CP01 in
Figure 2D). The hillslopes of these headwater areas are usually
characterized by frequently outcropping bedrock and locally
occurring thin sediment covers. At the slope toes of the upland
catchments often colluvial deposits are formed (Figure 1E). The
colluvial deposits have short residence times (Figure 1D) and
the slope toes form transient landforms.

The strong flow convergence within these steep and
confined valleys (cf. LP and CP01 in Figure 2D) allows concen-
trated overland flow occurring after precipitation events of suf-
ficient intensity that erodes the colluvial deposits along the
thalwegs. At the transition between the upland and the
piedmont zone, the confinement and inclination of the valleys
decrease (cf. LP and CP02 in Figure 2D), and the reworked col-
luvial sediments are deposited in channel bed and overbank
settings (Figure 1E). Phases of geomorphodynamic stability
during the Holocene are documented by palaeosols that were
buried by gravel bed or overbank deposits during subsequent

Table II. (Continued)

Sample ID Lab. ID Mat. 14C age
Uncertainty

(±)
cal. BP

(before 1950; 2σ)
cal. BCE/CE

(2σ)
Landscape
compartment Ref.

TÜBİTAK-
0533

GT22 208
TÜBİTAK-
0534 C 4 669 BP 39 5 575 to 5 312 �3 626 to �3 363 Piedmont zone 2

GT22 279
TÜBİTAK-
0535 C 4 764 BP 31 5 589 to 5 333 �3 640 to �3 384 Piedmont zone 2

GT22 341-
343 Poz-110,500 C 4 730 BP 40 5 585 to 5 325 �3 636 to �3 376 Piedmont zone 2

GT22 375
TÜBİTAK-
0536 C 8 310 BP 36 9 444 to 9 143 �7 495 to �7 194 Piedmont zone 2

GT22 472-
474

TÜBİTAK-
0537 C

13 730
BP 56 16 850 to 16 330

�14 901 to �14
381 Piedmont zone 2

GT22 547
TÜBİTAK-
0538 C

14 612
BP 66 17 985 to 17 595

�16 036 to �15
646 Piedmont zone 2

Sample ID = combination of sediment sequence ID and sample depth in cm b.g.s.; Mat. = dated material; OM = bulk samples containing organic
matter; C = charcoal; Ref. = reference; 1 = Nykamp et al. (2020a); 2 = this study.
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phases of geomorphodynamic activity (cf. GT11 and GT19 in
Figure 2E).
The contributing area at the locations where the sediment

sequences were extracted increases substantially from a few
thousand square metres at the slope toes (0.003–0.021 km2)
to several square kilometres in the piedmont zone
(0.523–21.64 km2; Table I). Locally, the deposits in the pied-
mont zone are eroded by fluvial dynamics along the channels
of the tributaries and transported downstream to lower com-
partments of the cascade (Figure 1C, E). However, compared
to the slope toes, the piedmont zone has a substantial capacity
to buffer sediments, as indicated by the increased residence
time (Figure 1D). Another abrupt increase in the contributing
area at the locations of the sequences occurs after the tribu-
taries enter the floodplain of the receiving stream amounting
to several hundred square kilometres (434.9–481.7 km2;
Table I). The floodplain is characterized by a rather straight
and gently sloping length profile section compared to the
sections that run through the piedmont zone and the upland
showing increasing inclination and concavities in upslope
direction (cf. LP in Figure 2D). The floodplain sediments of
the Culap Suyu river are characterized by alternating layers of
gravel deposits related to channel bed dynamics and alluvial
loams related to overbank deposition (cf. GT20 in Figure 2E).
The residence time of these sediments is considerably longer
than in the other compartments (Figure 1D) due to the low con-
finement of the valley (cf. CP04 and CP05 in Figure 2D) and the
high buffer capacity of the floodplain.
The 42 radiocarbon ages cover the last part of the Late Pleis-

tocene from ~20.5 ka BP and the entire Holocene (Table II).
The separate evaluation of the three landscape compartments
clearly shows that sediment dynamics in the surroundings of
Göbekli Tepe are not equally reflected in each of the different
archives: the Late Pleistocene record is mainly preserved in
the floodplain, whereas the Early–Middle Holocene record is
reflected in the floodplain and piedmont zone, and the Late
Holocene record is preserved in all three archives (Figure 1D;
Table II).
Our cumulative probability analysis of the radiocarbon ages

shows that two main phases of intensified geomorphodynamic
activity during the Holocene can be reconstructed for the sur-
roundings of Göbekli Tepe. For both phases the probability of
the observed ages is clearly higher than the random variability
as expected from simulations. Phase I (ca. 7.4–7.0 ka BP)
occurs in the sediment sequences from the piedmont zone
and the floodplain. Phase II (ca. 5.8–3.3 ka BP) is represented
in the archives from all three compartments. The first phase of
intensified geomorphodynamic activity occurred at the transi-
tion from the Neolithic to the Chalcolithic and peaked at ca.
7.2 ka BP. The second phase of intensified geomorphodynamic
activity (ca. 5.8–3.3 ka BP) occurred during the Late
Chalcolithic and the Bronze Age and peaked at ca. 5.1, 4.4,
and 3.8 ka BP (Figure 3I).

Discussion

We compare our local CPF with available local to
supra-regional datasets of climatic, environmental, and socio-
economic change and diachronically discuss cause–effect rela-
tionships of possible triggers for phases of intensified
geomorphodynamic activity in the surroundings of Göbekli
Tepe. We employ sediment cascades as a heuristic tool to
interpret our fragmentary records. Such a heuristic approach
is necessary, because clear causal relationships between
phases of intensified geomorphodynamic activity and a certain

trigger such as climatic or human impact often cannot be
established from alluvial records (cf. Roberts et al., 2019b).

Possible triggers for phases of intensified
geomorphodynamic activity in the surroundings of
Göbekli Tepe

The curve of the summed probability density (SPD) of 14C dates
from archaeological sites in southern Turkey (Figure 3B) shows
an initially growing population at around 10.3 ka BP and a
peak shortly before 8.0 ka BP. The raw counts of sites from
archaeological surveys in southern Turkey indicate a slight
increase at around 8.0 ka BP, but mainly reflect the strong
population growth starting at the beginning of the Bronze Age
around 5.0 ka BP (Roberts et al., 2019a).

The consistency of the standardized hydroclimatic proxy
data for the Levant (Figure 3C) and Turkey (Figure 3D) partly
varies considerably. The proxy data for the Levant suggest wet-
ter conditions than at present for 10.0–6.1 ka BP and subse-
quently a generally more arid climate, with two periods of
wetter conditions centred at 4.7 and 3.7 ka BP. The proxy data
for Turkey show an aridization between 10.0 and 3.0 ka BP,
with wetter-than-modern conditions dominating between 10.0
and 4.5 ka BP, and distinct aridity between 3.0 and 1.9 ka BP
(Finné et al., 2019).

The δ18O record from Lake Nar (Figure 3E), central Anatolia,
shows dry hydroclimatic conditions for the period of the
Younger Dryas and a transition into the relatively wetter Early
Holocene (Dean et al., 2015). Also, other regional proxy data
consistently suggest highest levels of aridity for the Younger
Dryas (ca. 12.5–11.7 ka BP) and a rapid humidity increase at
the beginning of the Holocene (Fleitmann et al., 2009; Göktürk
et al., 2011; Eriş et al., 2018; Ön et al., 2018; Roberts
et al., 2018). Such a large-scale transition from dry to wet con-
ditions should have had an impact on sediment dynamics, as
has been suggested for the Eastern Mediterranean (Dusar
et al., 2011), but there is no significant increase in our 14C data
for this period (Figure 3I). Rather, and in agreement with our
observations, Roberts et al. (2019b) showed that influx of
clastic material into Lake Nar was minimal between ca. 13.8
and 9.3 ka BP despite the major changes in hydroclimate and
vegetation associated with the Late Pleistocene–Holocene
transition.

Major shifts in subsistence strategies are visible in the consid-
erable and rather sudden reduction of archaeobiodiversity
(Shannon entropy) and the synchronous increase of percentage
similarity. This trend started towards the end of the 9th millen-
nium BCE and became more pronounced in the first half of
the 8th millennium BCE (Peters et al., 2014; Figure 3F). Percent-
age similarity expresses the similarity of a bone assemblage
with that of a typical farming community and confirms the fast
shift in subsistence strategies in this region. Human nutrition
relied on hunting, fowling, and collecting a broad spectrum
of animals during the PPN A and early PPN B. This spectrum
became reduced and much more unbalanced in the course of
the middle PPN B, with few livestock species clearly dominat-
ing the assemblages (Peters et al., 2014).

In Early Holocene settlements located in the wider surround-
ings of Göbekli Tepe, gazelles dominated the faunal remains
until the early PPN B (90% at Göbekli Tepe to 70% at early
PPN B Nevali Çori). During the middle PPN B a complete
faunal turnover occurred at the advantage of domestic caprines
(sheep and goat), accounting for up to 97% of the medium
bovid assemblages, illustrating the relatively fast transition from
hunting to herding (Peters et al., 2014; Figure 3G).
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Figure 3. Synoptic illustration of cultural, demographic, climatic, faunal, and vegetational changes during the last 12 000 years in southwestern Asia
and the cumulative probability of 42 radiocarbon dates obtained from the vicinity of Göbekli Tepe (transition between Younger Dryas (YD) and Holo-
cene after Roberts et al. (2018); subdivision of Holocene according to Walker et al. (2019); archaeological chronology according to Anastasio
et al. (2004); Yardımcı (2004). (A) Societal and cultural key developments and innovations. The periodization of the corresponding cultural epochs
and the emergence of socioeconomic developments and innovations is presented in a simplified way. Supra-regional societal and cultural develop-
ments and innovations were compared with archaeological finds and evidence for the closer surroundings of Göbekli Tepe. The compilation is based
upon: *1 = Clare et al. (2019); *2 = Akkermans and Schwartz (2003), Tanno and Willcox (2006), Peters et al. (2013, 2014); *3 = Akkermans and
Schwartz (2003), Tanno and Willcox (2006), Steadman and McMahon (2011); *4 = Steadman and McMahon (2011), Peters et al. (2013), Hammer
and Arbuckle (2017); *5 = Greenfield (2010); *6 = Steadman and McMahon (2011); *7 = Potts (1997), Jursa (2013), Widell et al. (2013). (B) Demo-
graphic trend of Turkey according to the summed probability density (SPD) of 14C dates from archaeological excavations and based on settlement
numbers from archaeological site surveys (Roberts et al., 2019a). (C) Regional mean z-score and one standard deviation (shaded areas) showing
the hydroclimatic variability during the last 10 000 years for the Levant and (D) for Turkey. The z-scores were cut off at 10 000 years cal. BP to avoid
a possible masking of the more subtle Holocene variability as a consequence of substantial shifts at the Late Pleistocene–Early Holocene transition
(Finné et al., 2019). (E) δ18O record from central Anatolian Lake Nar showing a shift from dry to relatively wetter conditions at the Younger Dryas–
Holocene transition (Dean et al., 2015). (F) Major changes in human nutrition in southeast Turkey: the archaeobiodiversity index (Shannon entropy)
indicates a narrowing of the species spectrum in the meat diet of humans, while percent similarity points to a quick shifting from hunting to herding in
the late 9th–early 8th millennium BCE (Peters et al., 2014). (G) Replacement of Persian gazelle by sheep and goat during the second half of the 9th and
early 8th millennium BCE at PPN sites, indicating the beginning of caprine pastoralism in southeast Turkey (Peters et al., 2014). (H) Carbon isotope
analyses provide evidence for overgrazing of pasture grounds in the vicinity of PPN B settlements. (I) Cumulative probability function (CPF) of 42
radiocarbon dates obtained from the vicinity of Göbekli Tepe (for locations see Figures 1B and 2B, C). The observed CPF (black line) was calculated
based on the principles described in Hoffmann et al. (2008) and Jones et al. (2015), among others, and smoothed using a 1000-year running mean.
The grey line and the respective envelope show expected CPFs that were calculated based on Monte Carlo simulations of random samples from a
model fitted to the sampling density (estimated number of sequences covering a period: cf. Shennan et al., 2013; Bevan and Crema, 2018; see
Supporting Information S2 and S3 for further details); red backgrounds highlight periods with a high likelihood (>83%) that the observed CPF exceeds
the expected CPFs. [Colour figure can be viewed at wileyonlinelibrary.com]
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Carbon isotope analyses revealed a change in the plant diet
of humans and animals between the PPN A and late PPN B
(Grupe and Peters, 2011; Figure 3H). Wild ungulates, humans
and dogs show carbon values typical for a C3 plant diet at
Göbekli Tepe and Nevali Çori. At late PPN B Gürcütepe the
nutrition of humans and domestic animals contained signifi-
cantly more C4 plants, while the wild animals apparently con-
tinued exploiting a vegetation cover similar to their wild
counterparts in earlier times. This is strong evidence (1) for
overgrazing of pasture grounds around the Early Neolithic set-
tlement and (2) that the wild herbivores avoided vegetation
cover intensely frequented by domestic livestock (Grupe and
Peters, 2011).
Neither the Early Holocene societal, cultural, and land-use

changes, such as the emergence of sedentism (Clare
et al., 2019), the processing of wild cereals (Dietrich
et al., 2019), or the faunal turnover (Peters et al., 2014) causing
overgrazing with time (Grupe and Peters, 2011), nor the initial
demographic rise around 10.3 ka BP (Roberts et al., 2019a),
can be linked to intensified geomorphodynamic activity in
the surroundings of Göbekli Tepe (Figure 3A, B, F–I). This might
be due to an extensive erosional phase that has caused an ero-
sion discontinuity in the sediment records from the northern
Harran plain and the proximal piedmont zone of the Culap
Suyu basin (Rosen, 1997; Nykamp et al., 2020a). However,
while the results of Rosen (1997) suggest that this phase
occurred during the Late Pleistocene, the results of Nykamp
et al. (2020a) now suggest an Early–Middle Holocene timing.
The first phase of intensified geomorphodynamic activity

around Göbekli Tepe (ca. 7.4–7.0 ka BP; Figure 3I) followed
the population growth that occurred around 8.0 ka BP
(Figure 3B; Roberts et al., 2019a). Accompanying sociocultural
developments and land-use change may also have
contributed to intensified geomorphodynamic activity, as ani-
mal husbandry (Steadman and McMahon, 2011; Peters
et al., 2013; Hammer and Arbuckle, 2017), rainfed agriculture
(Akkermans and Schwartz, 2003; Tanno and Willcox, 2006;
Steadman and McMahon, 2011), and the use of the plough
(Greenfield, 2010), for example, were already well established
(Figure 3A). Such agricultural activities often cause intensified
geomorphodynamic activity (Fuchs and Zöller, 2006; Dreibrodt
et al., 2010; Notebaert et al., 2011; Houben et al., 2012). Thus
human impact can be assumed to represent one of the main
driving forces for this phase of intensified geomorphodynamic
activity. Climatically, this period was characterized by gener-
ally wetter-than-modern conditions in the Levant and Turkey.
However, aridization occurred in Turkey after ca. 7.3 ka BP
(Figure 3D; Finné et al., 2019) and, therefore, a climatic impact
on the intensified geomorphodynamic activity cannot be
excluded.
The second phase of intensified geomorphodynamic activity

(ca. 5.8–3.3 ka BP; Figure 3I) occurred simultaneously with a
phase of substantially increased sediment dynamics in the
entire Eastern Mediterranean region as a consequence of wide-
spread increased human impact (Dusar et al., 2011). During
this period several innovations and new land-use techniques
occurred (Figure 3A), such as the emergence of organized agri-
culture (Steadman and McMahon, 2011) and the use of the
seeder plough (Potts, 1997; Jursa, 2013; Widell et al., 2013).
Climatically, this period coincided with the final stage of
aridization in Turkey, with drier conditions than present day
after ca. 4.5 ka BP, and generally more arid conditions in the
Levant after ca. 6.1 ka BP (Figure 3C, D; Finné et al., 2019). This
phase of intensified geomorphodynamic activity peaked at 5.1,
4.4, and 3.8 ka BP.
The first peak of intensified geomorphodynamic activity at

ca. 5.1 ka BP preceded the substantial population growth at

the Chalcolithic–Bronze Age transition by about 100 years (cf.
Figure 3B, I; Roberts et al., 2019a) and is recorded in the sedi-
ments of the piedmont zone and floodplain (Figure 1D). This
temporal gap may result from the resolution of our CPF – CPFs
are usually not able to record short events – or the storage of
sediments in temporal sinks that were not captured by our
dataset. The second peak of intensified geomorphodynamic
activity at ca. 4.4 ka BP was recorded in the piedmont zone
and floodplain sequences and occurred after the Bronze
Age population growth after 5.0 ka BP. However, both
hydroclimatic proxy datasets consistently show a substantial
aridization between 4.7 and 4.1 ka BP coinciding with this sec-
ond peak. The third peak of intensified geomorphodynamic
activity at ca. 3.8 ka BP coincided with increasingly humid
conditions in Turkey and the Levant between 4.1 and 3.5 ka
BP (Figure 3B, C, I; Finné et al., 2019). Mainly the sediments
in the piedmont zone and floodplain, and to a lesser degree
the sequences from the upland, provide records for this peak
(Figure 1D).

At the time when the intensified geomorphodynamic activity
peaked at ca. 4.4 and 3.8 ka BP, conditions prevailed that often
correlate with geomorphological instability in semi-arid envi-
ronments (cf. Walsh et al., 2019), whereby the increasing and
lasting land-use pressure during the Bronze Age intensified
the effects of aridization on geomorphodynamic activity
between 4.7 and 4.1 ka BP. Aridization caused degradation of
the vegetation cover and resulted in amplified landscape sensi-
tivity to the increasing frequency of torrential rain events. As a
consequence of the degraded vegetation cover, the ongoing
exploitation of cultural landscapes presumably fostered soil
erosion during the return to wetter conditions between 4.1
and 3.5 ka BP. Finally, in our dataset, the phase of pronounced
aridity in Turkey between 3.0 and 1.9 ka BP (Finné et al., 2019)
shows a complete lack of 14C dates (cf. Figure 3D, I).

Phases of intensified geomorphodynamic activity
along the sediment cascade

Generally, the connectivity of sediments along a sediment cas-
cade depends on the presence and character of landform
impediments, i.e. buffers, barriers, and blankets. Buffers include
landforms such as alluvial fans, piedmont zones or low slope
alluvial floodplains disrupting lateral and longitudinal linkages
within a catchment (Fryirs et al., 2007). The deposits stored
within these buffers are used to study the palaeoenvironmental
evolution in relation to, for example, large-scale climate forcing
(e.g., Hoffmann et al., 2008; Wolf and Faust, 2015; Faust and
Wolf, 2017) or the extent of past local to regional human
impact (e.g., Lang and Hönscheidt, 1999; Chiverrell
et al., 2007; Hoffmann et al., 2008; Fuchs et al., 2011; Houben
et al., 2012). Thus the inherent characteristics of buffers, their
locations within the catchment, and the varying residence
times of sediments in these storage units (Fryirs et al., 2007;
Fryirs, 2013) are directly linked to peculiarities of the respective
archives. As stated by Lewin and Macklin (2003), floodplain
archives are more likely controlled by climate than by human
impact, or rather store regional trends of land-use change (cf.
Dotterweich, 2008). Archives that more directly reflect human
impact are often found in first-order catchments (Fuchs and
Zöller, 2006; Dotterweich, 2008), but these archives are usu-
ally characterized by comparably low residence times
(Harvey, 2002).

The varying preservation conditions among the different
compartments are a consequence of the markedly different
magnitude–frequency characteristics of perturbations – e.g.,
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rainstorm events, controlling sediment transport events on
slopes and in rivers (cf. Bracken et al., 2015) – and have impor-
tant implications for the understanding of early human impact.
In the surroundings of Göbekli Tepe, radiocarbon ages
obtained from colluvial deposits from the slope toes of the
headwater catchments only cover the Late Holocene, while
the Late Pleistocene until the Late Holocene is recorded in
the floodplain deposits of the Culap Suyu river (Figure 1D).
The tendency of observing younger sediments in the upland

and older sediments predominantly in the piedmont zone and
floodplain (Figure 1C) is not necessarily in accordance with lit-
erature that relates sediment dynamics and human occupation.
Fuchs et al. (2011) observed colluvial sediment sequences
related to Neolithic farming, which clearly pre-date sediments
from alluvial archives. Also, Fuchs and Zöller (2006), Dreibrodt
et al. (2010), Notebaert et al. (2011), and Houben et al. (2012)
observed similar age–archive relations (cf. also Lewin and
Macklin, 2003; Keen-Zebert et al., 2013). In all these studies
early agriculture was reflected in those archives that were
most directly linked to human activities, i.e. colluvial deposits
(Fuchs et al., 2004). This is not the case for the environs of
Göbekli Tepe.
We argue that poor preservation is one reason for the lacking

colluvial deposits that might have provided signals of early
human impact during the PPN at Göbekli Tepe. Here Neolithic
human impact started much earlier than in Europe; thus
possible colluvial deposits were longer exposed to erosion (cf.
Zolitschka et al., 2003) – e.g., during the Bronze Age, when
regional sediment dynamics increased dramatically (Dusar
et al., 2011). Another reason for the lack of PPN colluvial
deposits can also be the relatively low human impact during
the Early Holocene compared to later Holocene periods and
the generally low landscape sensitivity to erosion during this
time (Dusar et al., 2011). This, however, cannot explain the
observed lack of colluvial deposits from the Chalcolithic or
Early Bronze Age. Therefore, we assume that the colluvial
deposits in a semi-arid system such as the Culap Suyu basin
more likely reflect the time since the last high magnitude–low
frequency event that was effective enough to flush the sedi-
ments through the system (cf. Fryirs et al., 2007, and references
therein).

Limitations for the identification of clear
cause–effect relationships

Our synoptic illustration of local, regional and supra-regional
datasets allows a diachronic comparison and the identification
of possible triggers of intensified geomorphodynamic activity
(Figure 3). This helps to disentangle natural drivers and effects
of human impact, but also shows the limitations of this
approach. These limitations include the availability and spatial
scales of the datasets that are compared with our local CPF, our
local CPF dataset itself, and the interpretation of cause–effect
relationships of possible key driving forces that might have
provoked intensified geomorphodynamic activity.
While some datasets allow us to reconstruct certain develop-

ments on local to regional scales – e.g., evidence for sedentism
(Clare et al., 2019), for the processing of wild cereals (Dietrich
et al., 2019), or for the fast shift in subsistence strategies from
hunting to herding (Peters et al., 2014), and overgrazing of pas-
ture grounds (Grupe and Peters, 2011) – other datasets are only
available on regional to supra-regional scales. The demo-
graphic trends for southern Turkey (Roberts et al., 2019a) can
be considered as regional and the hydroclimatic proxy data
for Turkey and the Levant (Finné et al., 2019) as supra-regional.

Such a lack of local diachronic datasets undoubtedly increases
the uncertainty identifying possible triggers of intensified
geomorphodynamic activity.

Our observed CPF of 42 radiocarbon ages from the vicinity
of Göbekli Tepe and its interpretation also face various difficul-
ties and weaknesses, i.e. the relatively small sample size and
potential redeposition of the sampled material (see ‘Material
and Methods’, above). However, we argue that our data
reflect the general trend of intensified and reduced
geomorphodynamic activity. On the one hand, we averaged
the CPF using a running mean of 1000 years. This operation
reduces the sensitivity of the CPF to repositioning of dated sam-
ples and age inversions, which occur in GT05, GT18, GT19,
and GT22 (Table II). Thus it ensures that the peaks in the CPF
are less likely based only on a single radiocarbon age. Addi-
tionally, the residence time in different archives is accounted
for by simulating the average period covered by the sediment
sequences. On the other hand, our interpretations are based
on those phases and peaks in the CPF that clearly exceed CPFs
of simulated 14C ages that are equally distributed over the avail-
able sediment sequences (Monte Carlo simulations). As the
number of ages in each simulation run is equal to our relatively
small number of observed radiocarbon ages, the effect of sam-
ple size is taken into account by the test. This in turn reduces
the risk of overinterpretation of peaks that are based on a small
number of 14C ages.

The establishment of clear cause–effect relationships
between phases of intensified geomorphodynamic activity
and climatic or anthropogenic impacts represents another diffi-
culty. It can be problematic unless sediment archives such as
varved sediment sequences from endorheic lake basins with
small catchment areas are studied. Roberts et al. (2019b) inves-
tigated such sediments from the central Anatolian Lake Nar, a
maar lake with a diameter of ~0.5 km and a catchment area
of ~4 km2 (including lake surface). They conclude that defores-
tation, cereal and tree crop cultivation, and livestock grazing
were the primary causes for Late Holocene badland expansion
in Cappadocia. Besides, climate change, notably during dry–
wet or wet–dry transitional phases, may have acted synergisti-
cally on erosion acceleration (Roberts et al., 2019b).
Conclusions obtained from such a narrowly confined lake
system cannot be achieved from alluvial sediment archives at
catchment scale having dimensions like the Culap Suyu basin.

Nonlinear responses of the geomorphological system to
climatic and anthropogenic triggers, its system-inherent com-
plexity and internal feedback mechanisms, and the complex
interdependencies among them often complicate the identifi-
cation of clear cause–effect relationships (Verstraeten
et al., 2017). Further, the climatic and anthropogenic triggers
are often interacting; one signal might level or accelerate
another signal (cf. Bintliff, 2002; Fuchs, 2007). Thus, as also
shown in this study, the complex dynamic nature of a given
geomorphodynamic system often prohibits to directly link
natural or anthropogenic events and changes to sedimentary
signals in alluvial sequences. From this perspective, an
integrative and complementary setup of empirical and theoret-
ical models is a prerequisite in order to disentangle the investi-
gated archives and to gain more profound insights into the
development of human–environment interactions.

Conclusions

The presented cumulative probability function of 14C dates
from sediment sequences obtained from the environs of
Göbekli Tepe is in good agreement with the general trend of
increased sediment dynamics in the Eastern Mediterranean.
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The observed phases of intensified geomorphodynamic activity
at ca. 7.4–7.0 and 5.8–3.3 ka BP roughly correspond to phases
of demographic, socioeconomic, and climatic dynamics. The
phase of intensified geomorphodynamic activity at ca. 7.4–
7.0 followed the population growth at ca. 8.0 ka BP and
already established land use practices such as rainfed agricul-
ture or ploughing, and also coincided with aridization in
Turkey after ca. 7.3 ka BP. The phase of intensified
geomorphodynamic activity at ca. 5.8–3.3 ka BP coincided
with demographic and socioeconomic developments such as
the major Bronze Age population growth at ca. 5.1 ka BP and
the emergence of organized agriculture as well as with the final
stage of mid-Holocene aridization in Turkey. Even though these
phases partially coincided quite well with possible triggers, the
derivation of clear cause–effect relationships is not straightfor-
ward. Unlike both mid-Holocene phases of intensified
geomorphodynamic activity, neither the extensive climatic
change at the Younger Dryas–Holocene transition, nor the
introduction of herding in the vicinity of Göbekli Tepe left a
clear signature in our dataset. The separate evaluation of the
deposits from the different hierarchical landscape compart-
ments provides a detailed insight into the spatiotemporal cover-
age of these sediment archives. Phases of varying
geomorphodynamic activity are not equally reflected in the
archives; this especially holds true for the colluvial deposits in
the upland. Presumably, these archives would be particularly
suitable in studying early Neolithic human impacts at the hill-
top site Göbekli Tepe as they are highly sensitive and directly
linked to human activities, but they only cover the Late Holo-
cene. Thus, in semi-arid environments, the preservation of
these deposits represents a key requirement when studying
ancient hilltop sites such as Göbekli Tepe. Besides, the nonlin-
ear relationships governing complex geomorphological and
sociocultural phenomena should be elucidated in far more
detail, conceivably a challenging task for future studies.
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