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Abstract 

Vasopressin (VP) enables antidiuresis via activation of the vasopressin type 2 receptor (V2R) in 

the kidneys. The vasopressin type 1a receptor (V1aR) is also expressed in renal tissue, but its 

function receives little attention. V1aR signaling has been linked to the acid-base handling in 

collecting duct intercalated cells (ICs), although the underlying mechanisms remain elusive.  

In this study, we tested the hypothesis that V1aR activation in type A intercalated cells (A-ICs) 

of the collecting duct induces urinary H+ secretion, thereby promoting urinary acidification and 

net acid excretion (NAE). 

To study renal V1aR distribution, we generated an anti-V1aR antibody and verified its specificity 

using V1aR knockout tissue and V1aR-transfected cultured cells. Localization studies in mice, 

rats, and human tissue were performed using immunofluorescence and confocal microscopy, 

combined with 3D-structured illumination microscopy (3D-SIM). For functional studies in vivo, 

the V1aR-specific agonist, AO-4-67, was administered in VP-deficient Brattleboro rats and wild-

type (C57BL/6J) mice (0.2, 2, or 10 µg/kg BW; 1 to 4h). The V1aR antagonist, CL-14-102, was 

used to evaluate V1aR effects in acidotic mice fed with NH4Cl in chow for three days. Urine was 

collected in metabolic cages or via a ureteral catheter, and plasma samples were obtained at 

the end of experiments. The in vivo studies were complemented by ex vivo experiments in 

isolated, microperfused mouse collecting ducts, and cultured inner medullary collecting duct 

cells. 

Localization of V1aR in mouse, rat, and human kidneys produced a basolateral signal in A-ICs 

and a perinuclear to subapical signal in type B intercalated cells  of connecting tubules and 

collecting ducts throughout these species. Basolateral V1aR signal was further detected in 

macula densa cells of mouse but not of rat or human kidneys. The V1aR agonist significantly 

decreased the urinary pH in Brattleboro rats (pH 7.38 to 6.71 after 1-hour, P<0.01) and 

C57BL/6J mice (pH 7.18 to 6.78 after 20 minutes, P<0.05) and tripled the urinary net acid 

excretion in Brattleboro rats. In contrast, the administration of the V1aR-antagonist in acidotic 

mice induced no changes in urinary pH. Basolateral treatment of isolated perfused medullary 

collecting ducts with the V1aR agonist or VP increased intracellular Ca2+ levels in ICs and 

decreased luminal pH (pH -5% after 3 minutes, P<0.05) suggesting V1aR-dependent Ca2+ 

release and stimulation of proton secreting proteins. Basolateral treatment of inner medullary 

collecting duct cells with the V1aR agonist induced luminal translocation of vacuolar H+-ATPase 

(V-ATPase) in A-ICs (apical signal intensity +93%, P<0.001). 

In summary, our results show that V1aR activation contributes to urinary acidification via H+ 

secretion by A-ICs. Pharmacological targeting of V1aR may have clinical implications for 

disorders of renal acid-base handling, such as distal renal tubular acidosis. 
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Zusammenfassung 

Die antidiuretischen Effekte des Hormons Vasopressins (VP) werden durch Aktivierung des 

Vasopressin Typ 2 Rezeptors (V2R) in der Niere vermittelt. Der Vasopressin Typ 1a Rezeptor 

(V1aR) wird ebenfalls in der Niere exprimiert und hier in Verbindung mit der Aufrechterhaltung 

der Säure-Base Homöostase gebracht. Diese Funktion wurde jedoch bisher nur unzureichend 

charakterisiert. In der vorliegenden Arbeit haben wir daher die Hypothese untersucht, dass die 

Aktivierung des V1aR in den Typ A Schaltzellen des Sammelrohres der Niere die 

Säuresekretion in den Urin steigert.  

Für die Charakterisierung der renalen V1aR Verteilung wurde ein V1aR-Antikörper hergestellt 

und seine Spezifität validiert. Die Lokalisationsstudien in Gewebe von Mäusen, Ratten und 

humanen Proben wurden mit immunhistochemischen Verfahren durchgeführt und mit 

hochauflösenden mikroskopischen Verfahren ausgewertet. Im Rahmen der funktionellen 

Untersuchungen in vivo, wurde ein V1aR Agonist (A0-4-67) bei Vasopressin defizienten 

Brattleboro Ratten und normalen Mäusen verwendet (0.2, 2, or 10 µg/kg BW; 1 to 4h). Darüber 

hinaus wurde der V1aR Antagonist (CL-14-102) Mäusen im Rahmen  einer experimentellen 

metabolischen Azidose verabreicht. Urin- und Plasmaproben wurden ausgewertet. Isolierte, 

mikroperfundierte Sammelrohre der Niere wurden hinsichtlich der luminalen Veränderungen des 

pH Wertes und kultivierte Zellen des inneren Marks der Niere bezüglich der Regulation der 

protonensezernierenden V-ATPase untersucht. 

In Geweben von Maus, Ratte und Mensch zeigte der V1aR ein basolaterales Signal in den Typ 

A und ein perinukleäres bis subapikales Signal in den Typ B Schaltzellen des 

Verbindungstubulus und des Sammelrohres aller drei Spezies. Die Applikation des V1aR 

Agonisten führte zur einer signifikanten Reduktion des pH-Wertes im Urin, sowohl in den 

Brattleboro Ratten (10 μg/kg Körpergewicht; pH 7.38 auf 6.71 nach 1 Stunde, P<0.01), als auch 

in Mäusen (2 μg/kg Körpergewicht; pH 7.18 auf 6.78  nach 20 Minuten, P<0.05). Dabei war die 

Netto-Säure-Sekretion im Urin der Brattleboro Ratten dreifach erhöht. Die basolaterale 

Stimulation von isolierten Sammelrohren des Nierenmarks mit dem V1aR Agonisten oder mit 

VP führte zu einem Anstieg des intrazellulären Calciums in den Schaltzellen sowie zu einem 

reduzierten pH-Wert im Lumen der Sammelrohre (pH -5% nach 3 Minuten, P<0.05). Diese 

Ergebnisse sprechen für eine über den V1aR vermittelte Calciumfreisetzung und Stimulation 

der Protonensekretion. In der Zellkultur von Sammelrohrzellen führte eine basolaterale 

Stimulation zur luminalen Translokation der V-ATPase in den Typ A Schaltzellen (apikale 

Signalintensität +93%, P<0.001).  

Zusammengefasst zeigen die Ergebnisse, dass die Aktivierung des V1aR zur Ansäuerung des 

Urins durch Stimulation der Protonensekretion in den Typ A Schaltzellen der Niere beiträgt. 

Zukünftig könnten daher V1aR Agonisten oder Antagonisten als Behandlungsoption bei 

Störungen des Säure-Basen Haushaltes in Betracht gezogen werden.
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1 Introduction 

Vasopressin (VP) is a small neurohypophyseal hormone (MW=1080), containing nine amino 

acids in a ring structure. It is synthesized by magnocellular neurons of the supraoptic- and 

paraventricular hypothalamic nuclei. VP is derived from a prepro-hormone consisting of a signal 

peptide, vasopressin, neurophysin II and a C-terminal peptide called copeptin. The hormone 

precursor is proteolytically cleaved in neurosecretory granules to VP, neurophysin II and 

copeptin. After transport to the neurosecretory endings of the magnocellular neurons that 

project to the posterior pituitary gland, the cleavage products are released in equimolar amounts 

to the bloodstream.1 The critical stimulus for the VP secretion is an increase in plasma 

osmolality. Other triggers include decreased arterial pressure, reduced cardiac filling, stress, 

and cold temperatures.2  

Three receptor-subtypes can mediate the effects of VP: the vasopressin type 1a receptor 

(V1aR), the vasopressin type 1b receptor (V1bR), and the vasopressin type 2 receptor (V2R). 

They are  G-protein-coupled receptors (GPCRs), using either calcium (V1aR and V1bR) or 

cyclic adenosine monophosphate (cAMP) as a second messenger (V2R).3  

Activation of these receptors leads to diverse central and peripheral effects. Stimulation of V1aR 

and V1bR in the central nervous system may affect several functions such as social behavior, 

aggression, anxiety, learning, memory, or thermoregulation.4 The peripheral effects include the 

constriction of vessels via the V1aR.5 These vasoconstrictive effects were first discovered in the 

nineteenth century. Extracts of the posterior pituitary caused elevation of blood pressure in vivo 

and vasoconstriction of isolated blood vessels in vitro.6 These observations gave the hormone 

its present name: vasopressin.7 However, more important is its role in the water-electrolyte 

balance, mediated via the V2R in the kidney. The kidneys help to maintain the water and 

electrolyte balance through the regulation of water and electrolyte excretion.8  

The functional unit of the kidney, the nephron, consists of the glomerulus and several types of 

tubules, including the proximal tubule (PT), the loop of Henle, the distal convoluted tubule 

(DCT), and the connecting tubule (CNT). The ensuing collecting ducts (CDs) also fulfill several 

vital tasks for the water-electrolyte balance. The glomerulus filters the blood into the tubular 

system, which is lined by a single layer of epithelial cells and surrounded by capillaries. Through 

their close anatomical relationship, the epithelial cells can reabsorb solutes back from the 

tubular lumen to the blood and secrete toxic substances into the lumen. The epithelial cells of 

the PT are responsible for the reabsorption of approximately two-thirds of filtered sodium 

chloride, water, and significant amounts of other solutes. The coordinated work of the distal 

nephron and CDs enables the urinary concentration, thereby adjusting the excretion of water 

and electrolytes to the needs of the body.9  
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The V2R is expressed in the distal nephron, comprising the thick ascending limb (TAL), DCT, 

and CNT, as well as the cortical and medullary CDs. V2R activation enables the urinary 

concentration via stimulation of relevant salt transport or water transport proteins. Effects of V2R 

activation include insertion of the aquaporin-2 (AQP2) water channels into the luminal 

membrane of principal cells (PCs) and stimulation of Na+-(K+)-Cl- transporters in TAL and DCT, 

leading to enhanced salt and water reabsorption. 

The crucial role of the VP-V2R signaling for the water and electrolyte homeostasis can be 

illustrated by disease-causing mutations either in the VP genes or V2R genes. Mutations in the 

VP gene, which impair the VP-production or secretion, lead to the clinical picture of central 

diabetes insipidus with pronounced polyuria and polydipsia. Similarly, non-responsiveness of 

V2R to VP due to loss-of-function mutations causes nephrogenic diabetes insipidus with similar 

symptoms.10 

The V1aR is also expressed in the kidney, but its functional relevance has been studied to a 

lesser extent compared to the V2R receptor. Several studies addressed the distribution of 

V1aR, but the results remain controversial.  The lack of specific antibodies robustly recognizing 

this receptor type was a critical barrier to the understanding of its renal distribution and 

physiological roles. Recent characterization of genetically engineered V1aR knockout mice 

suggested that the renal V1aR promotes renin release, thereby stimulating the renin-

angiotensin-aldosterone system (RAAS), which affects the blood pressure.11,12  

Further studies revealed that V1aR-deficient mice also exhibit an impaired acid-base balance. 

They show a phenotype that is consistent with the distal renal tubular acidosis (dRTA) caused 

by hyporeninemic hypoaldosteronism. The impaired renin release and low RAAS activity lead to 

low blood pressure, metabolic acidosis, and hyperkalemia in V1aR knockout mice.13  

Recent single-cell ribonucleic acid (RNA) sequencing, as well as some older localization 

studies, suggested that the V1aR is expressed in the intercalated cells (ICs) of the CNT and 

CD.14–16 Moreover, metabolic acidosis increased the V1aR messenger ribonucleic acid (mRNA) 

expression and protein abundance in CDs of rats, suggesting that V1aR is involved in adaptive 

changes during acidosis.17,18  

The collecting duct is composed of two different cell types, principal cells (PCs) and intercalated 

cells (ICs). PCs are responsible for water reabsorption in response to V2R stimulation. The ICs 

can be morphologically and functionally divided into the proton-secreting type A intercalated 

cells (A-ICs) and bicarbonate-secreting type B intercalated cells (B-ICs). A third population, the 

so-called non-A, non-B ICs may represent a transition state between the other two types. In a 

simplified view, A-ICs secrete protons via different proton pumps expressed in their apical 

membrane, and B-ICs are responsible for the secretion of hydroxide ion equivalents via a 
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chloride-bicarbonate exchanger expressed in their apical membrane. Both subtypes are 

essential in maintaining the acid-base balance by responding to changes of the acid-base 

status, helping to dispose of acid generated by dietary intake, which cannot be eliminated by the 

lungs.19  

Several lines of evidence so far have suggested that V1aR is expressed in CD intercalated 

cells, where the receptor participates in renal acid-base handling, although the underlying 

mechanisms remain to be characterized in detail. We hypothesized that the VP-V1aR axis 

promotes the urinary proton secretion by A-ICs, thereby increasing the net acid excretion (NAE) 

and acidifying the urine.13 
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2 Aims of this work 

The aims of this work include the characterization of the V1aR distribution in rodent and human 

kidneys and elucidation of the functional relevance of the V1aR signaling in renal acid-base 

handling. To this end, we followed the hypothesis that the V1aR is expressed in A-ICs, and that 

its activation stimulates the proton secretion in this cell type.  The study was designed to enable 

a high-quality morphological analysis of renal V1aR distribution using a new antibody generated 

for this purpose. The physiological in vivo experiments recruit relevant models such as VP-

deficient Brattleboro rats and a metabolic acidosis model in mice receiving a V1aR agonist or 

antagonist. The in vivo data were supported by ex vivo experiments in isolated mouse CDs and 

cultured primary rat CD cells to demonstrate local effects of V1aR activation in the absence of 

concomitant systemic changes. 
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3 Methods 

3.1 Approval of animal experiments  

The animals used for experiments in this study were treated in accordance with the European 

Union Directive 2010/63/EU on the protection of animals used for scientific purposes. We got 

the permission of the Berlin Animals Ethics Committee at the Landesamt für Gesundheit und 

Soziales for our studies on Brattleboro rats (permission G0220/12 and G0148/18), the group of 

Prof. Leipziger received the permission for the studies with C57BL/6J mice (permission 2016-

15-02101-01129) from the Danish Animal Welfare Regulation Authority and the group of Prof. 

Bleich performed the experiments on isolated collecting duct segments after approval from the 

Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume of Schleswig-

Holstein (permission V312-72241.121-2). All animals were housed under controlled 

temperature, air humidity, and under a 12/12 hour day/night light cycle with free access to table 

water and food ad libitum.  

3.2 Generation and characterization of the anti-V1aR antibody  

For the generation of the anti-V1aR antibody, we collaborated with the company Pineda 

Antikörper-Service in Berlin, represented by Dr. Julio Pineda de Castro. For immunization of the 

animals, we chose the peptide sequence NH2-CKDSPKSSKSIRFIPVST-CONH2 due to its little 

homology with the vasopressin type 2 (V2R) and vasopressin type 1b receptors (V1bR) and 

high conservation between rodent and human species. After analyzing of eighteen rabbit pre-

immune serum samples for potential background and cross-reactivity signals using 

immunofluorescence, we choose three animals for immunization. Peptide synthesis, 

immunization of animals, and affinity purification of anti-V1aR antibodies from the three rabbits 

were performed by Pineda Antibody-Service (Berlin, Germany). We tested the sera of all three 

rabbits on day 60, 90, and at day 150 for specific V1aR signals by immunofluorescence 

microscopy. After an immunization time of 156 days, the sera of all three animals were used for 

affinity purification of three different anti-V1aR antibodies. After evaluating all three antibodies, 

we selected the antibody that produced the strongest signal in mouse kidney for our localization 

studies. The specificity of this anti-V1aR antibody was verified using kidneys from V1aR-

deficient mice as negative controls, and transient transfection of human green fluorescent 

protein-tagged (GFP-tagged) V1aR in human embryonic kidney cells  (HEK293) as positive 

controls. For further validation of the antibody immunoprecipitation and western blot analysis 

were performed.  Polymerase chain reaction (PCR) was used to insert the FLAG epitope, 

DYKDDDDK, between the initial methionine residue and the second amino acid of the mouse 

V1bR. Construction of the expression plasmid for mouse V1aR was described previously by 

Kashiwazaki A.20 Empty vector and mammalian expression plasmids for V1aR, or FLAG-V1bR 

were transiently transfected into HEK293 cells in 100-mm dishes using Fugene HD reagent 
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(Promega). Twenty-four hours after transfection, the cells were washed with phosphate-buffered 

saline (PBS) and were then lysed in lysis buffer (50mM Tris-HCl [pH 7.4], 100 mM NaCl, 0.5% 

Nonidet P-40, and a proteinase inhibitor cocktail (Roche). For immunoprecipitation, cellular 

lysate and 1 μg of antibody was incubated at 4ºC for 1 h and precipitated with protein G 

Sepharose (GE Healthcare Life Sciences). For western blot analysis, anti-V1aR antibody and 

FLAG antibodies were used at dilutions of 1:1000 and 1:1500, respectively. The signals from 

peroxidase-conjugated secondary antibody were detected using enhanced chemiluminescence 

(GE Healthcare Life Sciences). For this part of the study, we used the following antibodies: Anti-

FLAG-tag M2 mouse monoclonal antibody (#F3165, Sigma Aldrich, Japan), horseradish 

peroxidase (HRP) conjugated antibody against mouse immunoglobulin G (#W4021, Promega, 

1:20000), secondary HRP-conjugated antibodies for rabbit (#458, Medical & Biological 

Laboratories Co. LTD, Japan, 1:5000). 

3.3 Cell culture experiments  

3.3.1 Overexpression of the V1aR in HEK293 cells 

We further verified our anti-V1aR antibody by overexpression experiments with V1aR- and 

control plasmids in cell culture. For this purpose we cultured HEK293 cells in Minimum Essential 

Medium Eagle (#M4526, SIGMA ALDRICH CHEMIE GmbH, Steinheim, Germany)  containing 

5% fetal calf serum (#10270, GibcoTM, Life technologiesTM, Carlsbad, CA, US) and 1% 

GlutaMAXTM-I 100X  (#35050-038, GibcoTM, Life technologiesTM, Carlsbad, CA, US) at 37°C, 

95% humidity and 5% CO2 (Incubator CB150, Binder GmbH, Tuttlingen, Germany). Cells were 

seeded on coverslips (Ø 12mm, #P231.1, Carl Roth GmbH+Co.KG, Karlsruhe, Germany) 

placed in 24 well tissue culture plates (#353047, Falcon®, Corning Incorporated, Corning, NY, 

USA). We transfected the cells either with  GFP-tagged V1aR plasmid (#67846, Addgene, 

Cambridge, MA 02139, USA) or with the control GFP plasmid (pEFGP-N1) using jetPEI® DNA 

transfection reagent (#101-40N, Polyplus-transfection-Bioparc, Illkirch, France), for 48 hours at 

37°C. Cells on coverslips were then were fixed with 3% paraformaldehyde (#30525-89-4, Merck 

KGaA, Darmstadt, Germany) in tris-buffered saline (pH 7.57) for 10 minutes. After fixation, we 

washed the cells shortly with tris-buffered saline (TBS). After washing, cells were permeabilized 

using 0.1% Triton X-100 (#9036-19-5, Merck KGaA, Darmstadt, Germany) in TBS for 10 

minutes, blocked with 5% bovine serum albumin (BSA) (#11930.04, SERVA Electrophoresis 

GmbH, Heidelberg, Germany) in TBS for 30 minutes. The coverslips with the attached cells 

were then incubated with the anti-V1aR antibody in 5% BSA in TBS for 30 minutes at room 

temperature followed by overnight incubation at 4°C followed by treatment with an anti-rabbit 

Cy3-coupled IgG (711-165-152, DIANOVA GmbH, Hamburg, Germany) for two hours at room 

temperature.  Next, followed the incubation with mouse-anti-GFP antibody (ab291-50, abcam, 

Cambridge, UK) and detection with anti-mouse Alexa Fluor® 488 coupled IgG antibody 
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(DIANOVA GmbH, Hamburg, Germany) using the same protocol. Each incubation step was 

separated by three 5-minute washing steps. Samples were evaluated under an LSM 5 Exciter 

confocal microscope (Carl Zeiss Microscopy GmbH, Jena, Germany).  

3.3.2 Primary cell culture of inner medullary collecting duct cells 

We used the protocol published by the group of E. Klussmann at the Max Delbrück Center for 

Molecular Medicine in Berlin to culture inner medullary collecting duct (IMCD) cells.21 Briefly, 

0.4 μm pore size, 24 mm polyester Transwell® plates (#3450, Corning Inc., Kennebunk, ME, 

US) were coated with Collagen Type IV (#356233, BD Biosciences, Le Pont de Claix, France). 

Six adult (12-14 weeks) male Wistar rats per experiment were anesthetized by isoflurane 

inhalation (#B506, Forene®, AbbVie Deutschland, Germany) and sacrificed by decapitation. We 

removed the kidneys and separated the inner medulla from the rest of the kidney with a sharp, 

curved scissor and place the material immediately in ice-cold dulbecco's phosphate-buffered 

saline (DPBS) (#14190144, GibcoTM, Life technologiesTM, Carlsbad, CA, US). The tissue was 

then digested in a freshly prepared enzyme solution containing 1 mg/ml hyaluronidase  

(#37326-33-3, Merck KGaA, Darmstadt, Germany), 2.2 mg/ml collagenase (C2-22, Biochrom 

GmbH, Berlin, Germany), gentamicin (#15710064, Thermo Fisher Scientific, Karlsruhe, 

Germany) and nystatin (#N4014, Merck KGaA, Darmstadt, Germany) in DPBS (#14190144, 

GibcoTM, Life technologiesTM, Carlsbad, CA, US) for 2 hours at 37°C at 200-300 rpm in a 

shaking water bath (Typ 1083, GFL Gesellschaft für Labortechnik mbH, Burgwedel, Germany). 

The homogenate was then filtered through a Cell Strainer with a pore size of 70 µm (#4117401, 

BD FalconTM, BD Bioscience, Bedford, MA, USA) and centrifuged at 300 g (Laborfuge 400e, 

Heraeus Holding GmbH, Hanau, Germany) at 16°C for 5 minutes to obtain the IMCD cells in the 

pellet. Cells were then re-suspended in freshly prepared dulbecco's modified eagle medium 

(DMEM) culture containing 4.5 g/L glucose (#P04-03550, PAN Biotech, Aidenbach, Germany), 

adjusted with urea (#U5378-100G, SIGMA-ALDRICH CHEMIE GmbH, Steinheim, Germany) 

and sodium chloride to 600 mosmol (#1064040500, Merck KGaA, Darmstadt, Germany) and 

supplemented with 1% GlutaMAXTM-I 100X (#35050-038, GibcoTM, Life technologiesTM, 

Carlsbad, CA, US), 1% non-essential amino acids (#SH30238.01, GE Healthcare Lifescience, 

Chalfont St Giles, Great Britain), 1% Ultroser (#15950-017, Cytogen GmbH, Wetzlar, Germany), 

500 µm Dibutyryl-cAMP (#D009, BIOLOG Life Science Institute, Bremen, Germany), 20 U/ml 

nystatin (#N6261, Sigma-Aldrich, St. Luis, MO, USA) and 0.25 µg/ml gentamicin (#G1264, 

Sigma-Aldrich, St. Luis, MO, USA). We seeded the cells on permeable filter support (#3450, 

Transwell® Permeable Supports, Corning Incorporated, Kennebunk, USA). After growing to full 

confluence, we treated the cells with the V1aR agonist A0-4-67 ([Phe2,Orn8]VT([Phe2]OVT); 1.3 

µm) or with vehicle (0.9 % saline solution) from the basolateral side for 4 hours. After that, cells 

were fixed in 4% paraformaldehyde (#30525-89-4, Merck KGaA, Darmstadt, Germany) for 10 
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minutes, washed in TBS, incubated with a V-ATPase B1/B2 antibody (#sc-20943, Santa Cruz 

Biotechnology, Dallas, TX, USA) and the primary antibody was detected using an IgG Cy3-

coupled antibody (711-165-152, DIANOVA GmbH, Hamburg, Germany). Nuclei were 

counterstained with 4′,6-Diamidin-2-phenylindol (DAPI; D9542-5MG, SIGMA-ALDRICH 

CHEMIE GmbH, Steinheim, Germany). V-ATPase B1/B2 signals were detected by a confocal 

microscope (Zeiss LSM 5 Exciter), processed with a ZEN 2008 software (Carl Zeiss Microscopy 

GmbH, Jena, Germany) and quantified using Fiji v2.0 (National Institutes of Health, Bethesda, 

MD, USA). 

3.4 Immunofluorescence and immunohistochemistry  

For our localization studies, we used paraffin-embedded kidneys of mice and rats. The animals 

were anesthetized by an intraperitoneal (IP) injection of 0.07 mg/g body weight pentobarbital 

sodium (#6088986, Narcoren®, Boehringer Ingelheim Vetmedica GmbH, Ingelheim, Germany). 

After laparotomy and preparation of the big abdominal vessels, we perfused the kidneys 

through the infrarenal aorta for 15 seconds with PBS followed perfusion-fixation with 3% 

paraformaldehyde (#1.04005, Merck KGaA, Darmstadt, Germany) in PBS over 5 minutes. 

Kidneys were then removed, dissected, placed in tissue cassettes (#10794582, Thermo 

ScientificTM ShandonTM Gewebekassetten, Fisher Scientific GmbH, Schwerte, Germany) and 

stored in a solution of PBS/sucrose (330 mOsm/kg H20, pH 7.4). Paraffin embedding was 

performed shortly after the preparation of the kidneys by the pathology department of the 

Charité – Universitätsmedizin Berlin. Paraffin blocks were then cut in 4 µm sections using a 

microtome (Leica RM2125RT, Leica Microsystems, Wetzlar, Germany), placed on object slides 

(Super Frost Plus®, R. Langenbrinck GmbH Labor- und Medizintechnik, Emmendingen, 

Germany) using a water bath (water bath 1052, GFL Gesellschaft für Labortechnik mbH, 

Burgwedel, Germany) and dried overnight at a temperature of 37 degrees (Drying cabinet, GFL 

Gesellschaft für Labortechnik mbH, Burgwedel, Germany). For immunofluorescence staining, 

the slices were dewaxed with xylene (#8080, J.T.Baker, Avantor Performance Materials BV, 

Deventer, Netherlands) and rehydrated with a series of descending grades of ethanol (#K928.4, 

Carl Roth GmbH+Co.KG, Karlsruhe, Germany). Sections were then boiled in citrate buffer (pH 

6.0) for 6 minutes for antigen retrieval. Coverslips with fixed cultured cells were permeabilized 

for 30 minutes in 0.5% 0.5% Triton® X-100 (#9036-19-5, Merck KGaA, Darmstadt, Germany). 

After washing in TBS, kidney sections or cultured cells were incubated in a wet chamber with 

5% skim milk (#232100, BD DifcoTM Skim MILK, Becton, Dickinson and Company, Sparks, MD, 

USA) in TBS to block unspecific protein interactions. Primary antibodies to V1aR (own 

antibody), AQP2 (sc-9882, Santa Cruz Biotechnology, Dallas, TX, USA), pendrin (Gift from CA 

Wagner, Zürich, Schweiz) and V-ATPase (sc-20943, Santa Cruz Biotechnology, Dallas, TX, 

USA) were applied for 1 hour at room temperature followed by overnight incubation at 4°C. For 
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double-labeling, the primary antibodies were applied consecutively, separated by three washing 

steps in TBS, each lasting 5 minutes. Signals were generated using fluorescent Cy2-, Cy3- or 

Cy5 conjugated (Dianova, Hamburg, Germany) or HRP-conjugated secondary antibodies 

(#P0399, Dako, Glostrup, Denmark). Immunofluorescent stains were evaluated under an LSM 5 

Exciter confocal microscope (Carl Zeiss Microscopy GmbH, Jena, Germany) equipped with 40× 

and 63× EC  Plan-NEOFLUAR oil immersion objectives (NA 1.3/1.4). The confocal microscope 

was equipped with 405 nm/50 mW diode laser, 458 nm/476 nm/488 nm/514 nm/50 mW argon 

laser, 543 nm/2 mW helium-neon laser and  633 nm/12 mW helium-neon laser lines. Filters for 

excitation/emission were set to 405/BP 420-480 for DAPI, 488/BP 505-550 for Cy2, 543/BP 

560–615 for Cy3, and 633/LP 650 for Cy5.  Bright-field images were taken with a Leica DMRB 

upright microscope (Leica Microsystems GmbH, Wetzlar, Germany) fitted with a 100× PL 

FLUOTAR oil immersion objective and an Axio Cam MR3 camera (Carl Zeiss Microscopy 

GmbH, Jena, Germany). Images were processed with either a ZEN 2008 or Axio Vision SE 64 

4.8.3 software (Carl Zeiss Microscopy GmbH, Jena, Germany). Brightness and contrast were 

adjusted in Fiji v2.0 (National Institutes of Health, Bethesda, MD, USA). 3D SIM images were 

acquired using 568 nm and 647 nm laser lines, standard filter sets, and 125 nm z-sectioning 

using the Delta Vision OMX V4 BlazeTM (GE Healthcare, Chalfont St Giles, Buckinghamshire, 

Great Britain) system. 100 nm fluorescent beads (#T7284, Tetraspeck, Thermo Fischer 

Scientific, Karlsruhe, Germany) were used for registration of the detection channels, achieving 

less than 40 nm registration error for all channels. Images and movies were exported with the 

SoftWoRx software (version 6.5.2, GE Healthcare, Chalfont St Giles, Buckinghamshire, Great 

Britain) and Fiji v2.0 (National Institutes of Health, Bethesda, MD, USA).  

3.5 Immunoblotting 

Kidney, livers, and brains of mice (C57BL/6J) were cut in little pieces using a razor blade, 

placed in 2 ml microtubes (#72.691, SARSTEDT AG & Co., Nürnbrecht, Germany) and stored in 

liquid nitrogen. After freezing, probes were crushed in a mortar, filled with liquid nitrogen using a 

pestle. The tissue powder of each sample was collected with a cold scalpel, transferred in a 

fresh precooled 1.5 ml microtube (#72706, SARSTEDT AG & Co., Nürnbrecht, Germany), and 

temporarily stored in liquid nitrogen. Depending on the amount of tissue, 500 µl to 750 µl of 

homogenization buffer containing 250 mM sucrose, 10 mM triethanolamine, protease inhibitors 

(complete, #11697498001, Roche Diagnostics GmbH, Mannheim, Germany), and phosphatase 

inhibitors (PhosSTOP EASYpack, #04906845001, Roche Diagnostics GmbH, Mannheim, 

Germany) were added and samples thawed on ice. The disintegration of the homogenized 

probes was further achieved by sonication (Sonoplus GM70, BANDELIN electronic GmbH & Co. 

KG, Berlin, Germany ). Cell debris and nuclei were removed by centrifugation at 1000 x g for 10 

min at 4°C (MIKRO200R,  Andreas Hettich GmbH & Co.KG, Tuttlingen, Germany). The 
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supernatant was secured in a fresh 1.5 ml microtube (#72706, SARSTEDT AG & Co., 

Nürnbrecht, Germany) tube and stored on ice; the pellet was discharged. For a colorimetric 

detection and quantitative analysis of the total protein amount in the supernatant, a 

bicinchoninic acid protein assay reagent kit (#23235, Micro BCA Protein Assay Kit, Fisher 

Scientific GmbH, Schwerte, Germany) was used. The resulting water-soluble complex has an 

absorbance at 562 nm, linear with the protein concentration. Samples were incubated for 

2 hours at 37°C and absorbance was measured (Microplate reader ASYS Expert 96, BioChrom 

Ltd., Cambridge, United Kingdom).  Protein concentration was then calculated from a standard 

curve using albumin (#11930, Albumin Bovine Fraction V, ph 7.0, SERVA Electrophoresis 

GmbH, Heidelberg, Germany).  The Samples were dissolved in a buffer (2 % SDS, 10 % 

glycerol, 5 % ß-mercaptoethanol, 1 % bromphenol blue, 95 mM Tris, pH 6,8) and incubated for 

15 minutes at 65°C. Protein separation was carried out by a sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) using an electrophoresis chamber(Bio-Rad 

Laboratories GmbH, München, Germany) filled with buffer (SDS 0,1 %, glycin 192 mM, Tris 25 

mM; pH 8,3; 8–10% acrylamide gel). Proteins were transferred to a nitrocellulose membrane 

(#741280, Porablot NCP, Macherey-Nagel GmbH & Co. KG, Düren, Germany) in a tank-

plotting-system (PEQLAB Biotechnologie GmbH, Erlangen, Germany). The membranes were 

incubated with 0.1% Ponceau red staining (#P3504, Merck KGaA, Darmstadt, Germany) to 

verify the successful transfer and equity of protein loading.  Blocking of unspecific binding was 

performed with 5% skim milk (#232100, DifcoTM Skim Milk, BD, Becton, Dickinson and 

Company, Franklin Lakes USA)  in PBS. Membranes were sealed in plastic film and incubated 

with the respective primary antibodies overnight at 4°C. Polyclonal rabbit anti-Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) antibody (Santa Cruz Biotechnology Inc., Dallas, TX, 

USA) was used to normalize all data for expression of the housekeeping gene GAPDH. 

Proteins were finally visualized by chemiluminescence, and signals were detected by as ECL- 

and Fluorescence Imager (Chemostar, Intas Science Imaging Instruments GmbH) followed by 

evaluation with Fiji Image J Software (National Institutes of Health, Bethesda, MD, USA). 

3.6 Effects of V1aR agonist and antagonist in mice 

We randomly assigned male adult (10-12 weeks) C57BL/6J mice (Janvier Labs, Le Genest-

Saint-Isle, France) to the experimental and control group and induced anesthesia by an 

intraperitoneal bolus injection of a ketamine (10 mg/ml) / xylazine (1 mg/ml) mix at a dose of 

0.1 ml/10 g body weight. After induction, anesthesia was maintained by intravenous infusion of 

the same mixture at a third of the induction dose per hour via one of the animal's tail veins. The 

depth of anesthesia was assessed during the experiment by testing the withdrawal reflexes on 

the lower limbs of the mice. Each experiment lasted 90 minutes, and urine volume was 

measured every 5 minutes by calibrated glass capillaries, whereas urine samples were 
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collected every 5 minutes. For continuous pH measurement and urine collection, the urinary 

bladder was catheterized via a small incision in the abdomen. A micro pH electrode (Ø 200 µm; 

Unisense A/S, Aarhus, Denmark) was placed in the outflow of the catheter to measure the urine 

pH continuously. The data were obtained every second (pH/mV-Meter, Unisense A/S, Aarhus, 

Denmark). After establishing the baseline pH values for 30 minutes, the mice received the V1aR 

agonist A0-4-67, [Phe2,Orn8]VT([Phe2]OVT)22 (2 µg/kg body weight) or the vehicle (0.9% saline) 

by intraperitoneal bolus injection. Measurements of pH and urine collection were continued for 

another 60 minutes. Experiments were repeated using the V1aR antagonist, CL-14-102, 

d(CH2)5[Tyr(Me)2,Dab5]AVP.23 Metabolic acidosis was induced by providing NH4CL enriched 

chow for three days as prescribed previously.  

3.7 Effects of V1aR stimulation in vasopressin-deficient rats  

For further evaluation of V1aR stimulation in vivo, we studied the effects of the V1aR agonist 

AO-4-67, [Phe2,Orn8]VT([Phe2]OVT),22  in VP-deficient Brattleboro rats that were placed in 

metabolic cages during the experiments. We used a total number of 16 male Brattleboro rats, 

13 to 15 weeks old, each weighing 300-380g that had free access to distilled water and 

standard rat chow. Rats were randomly divided into two groups (each n=8). Starting with the 

first subgroup (n=8), animals were coincidentally divided into experimental (n=4) and control 

group (n=4) and placed in 8 metabolic cages.  After three days of recovery in regular cages, the 

groups were changed. The experimental group (n=4) received the vehicle and served as the 

control group, whereas the control group (n=4) was treated with the V1aR agonist and served 

as the experimental group. The same procedure was conducted with the second subgroup 

(n=8). Each approach involving 4 rats in control and 4 rats in the experimental group was 

considered as an independent experiment. Each independent experiment started on the 

respective day at 12:00 AM with 120 minutes of adaptation time. All urine samples were 

collected under mineral oil (#M5904, Sigma-Aldrich, St. Luis, MO, USA).  After collecting 

baseline urine samples at the end of the adaptation time, rats were treated at the respective day 

always between 2:00 and 2:30 PM via intraperitoneal bolus injection with vehicle (0.9% saline) 

or A0-4-67 (200 ng/kg body weight IP). Urine samples were collected hourly at 3:30 PM (t1), 

4:30 PM (t2), 5:30 PM (t3), and 6:30 PM (t4) and were directly measured after collection for 

acid-base parameters using an ABL800 FLEX analyzer (Radiometer GmbH, Krefeld, Germany). 

The rats were then placed in regular cages for three days, and the experiment was repeated 

two times using higher A0-4-67 doses (2 µg/kg body weight and 10 µg/kg body weight IP) with a 

3 days interval for recovery in regular cages between the experiments. After the application of 

these three doses and a further recovery period in regular cages for three days, the treatment 

groups were exchanged so that the vehicle-treated rats now received the three A0-4-67 doses, 

whereas the V1aR agonist group received vehicle according to the protocol above. This 
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experimental design resulted in consecutive treatment of all 16 Brattleboro rats with a vehicle 

and the three different A0-4-67 doses. After pilot analysis of the urine data, we have chosen the 

A0-4-67 dose of 2 µg/kg body weight and the treatment time of 2 hours for evaluation of effects 

on plasma acid-base parameters. After 2 hours, animals were anesthetized with isoflurane 

(#B506, Forene®, AbbVie Deutschland GmbH & Co.KG) and sacrificed by decapitation. Blood 

samples were taken from the cervical arteries directly into 1.3 ml microtubes containing 

ethylenediaminetetraacetic acid (EDAT) or Heparin (#41.1504.005 and #41.1503.005, 

SARSTEDT AG & Co., Nürnbrecht, Germany) and centrifuged for 10 minutes at 4°C at 1000 

RPM (MIKRO 200R, Andreas Hettich GmbH & Co.KG). The supernatant was pipetted to fresh 

1.5 ml SafeSeal tubes (#72706, SARSTEDT AG & Co., Nürnbrecht, Germany) and stored at 

4°C. Plasma samples were measured on the same day with the ABL 800 Flex analyzer 

(Radiometer GmbH, Krefeld, Germany). 

3.8 Measurement of urinary net acid excretion 

The determination of urinary net acid excretion (NAE) in Brattleboro rats after V1aR stimulation 

with the V1aR agonist A0-4-67 (10 µg/kg body weight IP)  was carried out by manual titration 

with 0.1 N NaOH as described by Chan JC to the endpoint of pH 7.40 at PCO2=0 mmHg, at a 

temperature of 37°C.24 We evaluated the experimental setting and the protocol for a reduced 

urine volume of 500 µl per sample by measuring the same urine probe from a healthy human 

male individual and from a male Brattleboro rat multiple times. The sodium hydroxide was 

dissolved in distilled water, and the 0.1 M NaOH solution was standardized using benzoic acid 

to 0.1 N NaOH. The titration was carried out using Eppendorf pipettes (Eppendorf Research® 

plus 0.1 – 2.5 µl, Eppendorf Research® plus 0.5 – 10 µl, Eppendorf Research® plus 10 – 100 µl, 

Eppendorf Multipette® Xstream). The pH was measured, adjusted to temperature, by an 

electronic pH-Meter (pH-Meter CG 812, SCHOTT Instruments GmbH, Mainz, Germany) with a 

micro pH-electrode (#285105151, N 6000 A, SI Analytics GmbH, Mainz, Germany). All urine 

samples of the Brattleboro rats were stored at -25°C. 500 µl of urine per animal were mixed with 

500 µl 0.1 M HCL, boiled for 4 minutes and placed on ice for 5 minutes to cool down and then in 

a water bath of 37°C to allow temperature adjustment. For the assessment of titratable acid 

(TA), the titration was started with 0.1 N NaOH using the titration mode of the Eppendorf 

Multipette® Xstream. Because HCL converts bicarbonate HCO3
- to CO2, which was removed by 

boiling, TA represents titratable acid minus HCO3
-. Adding of 500 µl of 8% formaldehyde 

solution exposed the protons bound to ammonia and caused the pH to drop. The sample was 

titrated back to the endpoint of pH 7.40. The blank was treated identically. Ammonia, titratable 

acid, and net acid excretion were calculated in units of mmol/l as described by Chan JC; briefly: 

(d VNaOH ml / 0.5 ml) × 0.1 N NaOH mol/l × 1000 mmol/Eq, 

Net acid excretion = titratable acid - bicarbonate + ammonia. 
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The results were adjusted to the urine volume per hour and the body weight of the rats. 

3.9 Isolated perfused collecting ducts 

All chemicals for the following experimental part were obtained by Merck Chemicals GmbH, 

Darmstadt, Germany, or Carl Roth GmbH + Co.KG, Karlsruhe, Germany, if not stated 

otherwise.  Adult C57BL/6J mice were sacrificed by decapitation after isoflurane anesthesia. 

Kidneys were removed immediately, cut in thin coronary sections, and placed in ice-cold (4°C) 

dissection solution that was adjusted to a pH of 7.4. The dissection solution contained: 145 

mmol/l NaCl, 0.4 mmol/l KH2PO4, 1.6 mmol/l K2HPO4, 1 mmol/l MgSO4, 10 mmol/l sodium 

acetate, 1 mmol/l alpha-ketoglutarate, 1.3 mmol/l calcium gluconate, 5 mmol/l glycine, 48 mg/l 

trypsin inhibitor, 25 mg/l DNase I, 0.05 % albumin. Collecting ducts were dissected from the 

transition zone between cortex and outer medulla and processed for measurements of 

intracellular calcium concentrations [Ca2+]i or luminal pH. We used fura-2 (#F1221, Thermo 

Fischer Scientific, Karlsruhe, Germany) as an indicator for calcium concentration measurement 

and 2',7'-Bis-(2-Carboxyethyl)-5-(and-6)-Carboxyfluorescein (BCECF;  #B1151, Thermo Fischer 

Scientific, Karlsruhe, Germany) as a marker for the pH. Four to six collecting ducts were 

analyzed in each experimental setting. The collecting ducts were perfused with a double-

barreled perfusion system of concentric pipettes as described by Greger R and Hampel W.25 

The luminal perfusion solution contained: 145 mmol/l NaCl, 3.6 mmol/l Potassium gluconate, 

5 mmol/l glucose, 1 mmol/l MgCl2, 1.3 mmol/l Calciumgluconat and was adjusted to a  pH of 7.4 

and a temperature of 37°C. All measurements were performed in a pre-gassed (95% O2 5% 

CO2) bath solution with a bath exchange rate of 5-6 ml/minute. The bath chamber solution 

consisted: 120 mmol/l NaCl, 0.4 mmol/l KH2PO4,  1.6 mmol/l K2HPO4, 1 mmol/l, 5 mmol/l 

glucose, 1 mmol/l Mg2Cl, 1.5 mmol/l CaCl2 and was adjusted with NaHCO3 to a pH of 7.4 and 

maintained at a temperature of 37°C. For [Ca2+]i measurements, collecting ducts were incubated 

for 50 to 60 minutes at room temperature in the dissection solution with 10 µmol/l Fura-2-AM. 

Tubules were transferred to the bath chamber, and fluorescence intensities at 340 nm and 380 

nm were monitored using an Axiovert 55m inverted microscope (Carl Zeiss Microscopy GmbH, 

Jena, Germany) with a Visichrome High-Speed Polychromator System (Visitron Systems 

GmbH, Puchheim, Germany)  and the MetaFluor® Fluorescence Ratio Imaging Software 

(version 7.6.1.0, Molecular Devices LLC, San Jose, CA, USA). The 340/380 nm excitation ratio 

was calculated and used as an indicator for the intracellular Ca2+ concentration. After obtaining 

baseline values, the collecting ducts were treated with the V1aR agonist A0-4-67 (50 nM or 100 

nM) from the basolateral side for 3 minutes, followed by a washout period of 7-8 minutes and 

the consecutive application of AVP ([arg8]vasopressin, 50 nM) for 3 minutes. The goal was to 

compare the effect caused by the V1aR agonist, AO-4-67, [Phe2,Orn8]VT([Phe2]OVT),22 with the 

AVP response. In each experiment, one perfused collecting duct was analyzed by 
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measurement of 5 regions in the respective segment. The peak height of the effects of the 

V1aR agonist A0-4-67 and AVP effects are given as the delta of the 340/380 nm excitation ratio 

in comparison to the pre-value. For the assessment of the luminal pH, collecting ducts were 

perfused with 100 µmol/l BCECF. Collecting ducts were closed at the open, unperfused side 

with a holding pipette, and luminal fluorescence intensities at 486 nm and 440 nm were 

monitored to calculate the ratio 486/440 as a measure of luminal pH. After an equilibration 

period of 5-10 minutes, the V1aR agonist was applied at a concentration of 100 nM for 

approximately 4 minutes followed by a washout period of 10 minutes and the consecutive 

application of AVP at a concentration of 50 nM for over 4 minutes. A luminal region near the 

perfusion side was analyzed for each tubule and the ratio of 486/440 nm normalized to the 

mean of 30 seconds shortly before the application of the V1aR agonist. The effects of the V1aR 

agonist and of AVP are given as the delta relative ratio of 486/440 nm in comparison to the 

mean of pre- and post-value from 6 independent experiments. In addition, 4 experiments were 

performed with only the application of 50 nM AVP without preceding V1aR application and 

analyzed accordingly.  

3.10 Data analysis 

Data are shown as mean and standard error of the mean (SEM). For experimental series, n 

reflects the number of mice, rats, or collecting ducts. We assumed normal distribution of our 

results. Comparisons between experimental conditions were performed with unpaired two-tailed 

Student's t-test. The effects of V1aR agonist and AVP in isolated collecting ducts were tested by 

paired Student's t-test vs. pre-control (Fura-2 measurements) and vs. mean of pre- and post-

control (luminal BCECF), respectively. The effects between different V1aR-AG concentrations 

and AVP were compared by a Kruskal-Wallis- test followed by Dunn's multiple comparisons 

test. A p-value of <0.05 was chosen to indicate statistical significance.  
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4 Results 

VP is crucial for maintaining water homeostasis in the body by activating renal salt and water 

conservation mechanisms mainly by the activation of the V2R in the kidney.8 The V1aR in the 

kidney has been studied to a lesser extent compared to the V2R. Several studies have 

addressed its renal distribution. However, the results are inconclusive. Particularly little 

information is available about the intracellular localization of the receptor. 15,16,26  

To provide more valid localization data, we generated a new polyclonal anti-V1aR antibody. We 

immunized six rabbits using a synthetic peptide with a high homology to rat and human V1aR 

and low similarities to V1bR and V2R. The resulting affinity-purified anti-V1aR antibodies were 

applied for localization studies. 

4.1 V1aR distribution in rodent and human kidneys 

Firstly, we performed immunoperoxidase stainings of mouse kidneys using the new anti-V1aR 

antibody and evaluated them by light microscopy. A basolateral V1aR signal was present in 

scattered cells of the connecting tubule (CNT) and collecting duct (CD), which were identified as 

intercalated cells (ICs) according to morphologic criteria such as bulging out into the luminal 

space.9 Other ICs demonstrated a perinuclear to apical V1aR immunoreactivity. 

To assign these distinct patterns of V1aR immunoreactivity to the intercalated cell types, we 

performed multi-labeling of principal cell- and intercalated cell-marker proteins in mouse, rat, 

and human kidney sections. Aquaporin-2 (AQP2) was applied as a marker for principal cells 

(PCs), and pendrin served as a marker for type B intercalated cells (B-ICs). A basolateral V1aR 

signal was present in AQP2- and pendrin-negative type A intercalated cells (A-ICs), whereas 

perinuclear and apical signal patterns, were observed in pendrin-positive B-ICs across the 

studied species.  

In contrast, PCs showed no significant V1aR immunoreactivity. This finding is significant since 

previous data suggested the presence of the V1aR in both intercalated cells (ICs), and principal 

cells(PCs).16 A minor proportion of ICs showed intermediate diffuse V1aR signal patterns likely 

reflecting the transition state of non-A, non-B ICs.19 Apart from in the CDs, substantial 

basolateral V1aR signal was identified in macula densa cells of the mouse kidney. However, 

these could not be reproduced in the rat or human species. Other nephron segments showed 

no significant V1aR immunoreactivity in either species. 

To study the distinct intracellular V1aR distribution patterns in more detail, we took advantage of 

the structured illumination microscopy (SIM) combined with 3D-reconstruction. This high-

resolution technique showed V1aR-positive, vesicle-like structures, which were associated with 

the basolateral membrane in A-ICs and enriched in the subapical and perinuclear cell 

compartments of B-ICs.  
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Furthermore, we used microdissected mouse nephron segments to investigate the expression 

of the V1aR along the nephron on mRNA level by real-time polymerase chain reaction (RT-

PCR).  We found strong signals in the connecting tubule and collecting duct segments, as well 

as in glomeruli with attached macula densa cells. In contrast to earlier studies, we could not 

confirm its presence in the thick ascending limb (TAL).13,18,27 Nevertheless, these results are 

consistent with the findings of our antibody study at protein level. 

Since the V1aR localization data were obtained with a new antibody, we paid particular 

attention to the verification of its specificity using several positive and negative controls. 

Labeling of kidney sections from V1aR-deficient mice with the anti-V1aR antibody produced no 

significant signal, suggesting that immunoreactive patterns obtained in rodent or human kidneys 

reflect the specific binding of the antibody to V1aR. Immunoblotting using this antibody 

produced strong immunoreactive bands of predicted molecular size (45 kDa) in extracts from 

mouse liver, and weaker signals in lysates from mouse brain or kidney tissues.15,28 Transfection 

of cultured HEK293 cells with either V1aR or V1bR followed by immunoblotting using the anti-

V1aR antibody produced significant V1aR immunoreactivity in V1aR- but not in V1bR-

transfected cells.  

Therefore, the specificity of our anti-V1aR antibody was confirmed by several independent 

control experiments, which validated our localization data. 

4.2 Effects of V1aR-deficiency on the distribution of Intercalated cells 

Because of the reported morphological plasticity of ICs, we decided to evaluate the effects of 

V1aR signaling on the proportions of A-ICs vs. B-ICs using V1aR-deficient mice.29,30 

Quantification of PCs, A-ICs, and B-ICs in kidney sections, triple-labeled for AQP2, pendrin, and 

V-ATPase, showed no significant differences between wild-type and V1aR-deficient mice, 

suggesting that V1aR-signaling is not essential for proportional distribution of IC-types under 

normal conditions. 

4.3 V1aR mediated effects in vivo  

To characterize functional effects mediated by V1aR activation, we performed in vivo studies 

using the V1aR agonist, AO-4-67, [Phe2, Orn8]VT([Phe2]OVT),22  and the V1aR antagonist, CL-

14-102, d(CH2)5[Tyr(Me)2,Dab5]AVP,23 kindly provided by Prof. Manning (College of Medicine, 

Toledo, OH, USA). 

4.3.1 Effects of V1aR stimulation in mice 

We treated urinary bladder-catheterized mice (C57BL/6J) with the V1aR agonist or vehicle. 

Compared to the vehicle, the treatment of mice with the V1aR agonist significantly decreased 

the urinary pH from 7.18 to 6.78, suggesting urinary acidification. 
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4.3.2 Effects of V1aR stimulation in vasopressin-deficient rats 

To further characterize the effects of V1aR activation, we treated vasopressin-deficient 

Brattleboro rats with the V1aR agonist and evaluated their acid-base balance using metabolic 

cages. The animals received three different doses of the V1aR agonist as a single 

intraperitoneal injection (200 ng/kg, 2 µg/kg, or 10 µg/kg body weight). We collected the urine 

hourly under mineral oil to avoid contamination of the probes with carbon dioxide from the air. 

The highest dose significantly reduced the urinary pH [from 7.40 to 6.71, 6.71, 6.56, and 6.53 

after 1, 2, 3, and 4 hours; P<0.01], diminished urinary bicarbonate excretion (-82%, -92%, and -

85% after 2, 3 and 4 hours; P<0.001) and produced a trend for increased ammonia (NH4
+). 

Calculation of the net acid excretion (NAE) revealed significant increases in animals receiving 

the V1aR agonist. The NAE was measured by manual titration of the urine probes according to 

the protocol published by Chan JC with some adaptations.24 We calculated the NAE with the 

formula: NAE = titratable acid - bicarbonate + ammonia. 

4.3.3 V1aR mediated effects during metabolic acidosis  

Since V1aR-induced urinary proton secretion may be involved in renal adaptations to acidotic 

states, we studied the role of V1aR during acid load. To this end, we have taken advantage of 

an established mouse-model of metabolic acidosis resulting from NH4Cl administration with 

chow for three days.31 Neither intracellular V1aR distribution in A-ICs or B-ICs, nor proportional 

distribution of different IC-types was altered in acidotic mice. Moreover, the application of the 

V1aR antagonist in acidotic, bladder-catheterized mice produced no significant changes in 

urinary pH compared to the vehicle group suggesting that V1aR signaling is not involved in the 

compensation of metabolic acidosis, at least in this setting.   

4.4 V1aR mediated effects ex vivo  

4.4.1 Effects of V1aR stimulation in primary inner medullary collecting duct cells  

Two transporters are mainly responsible for proton secretion in A-ICs, both localized in the 

apical membrane. The V-ATPase is a uniporter that only secretes protons. In contrast, the 

H+/K+-ATPase transports protons into the lumen in exchange for potassium.19 We tested V1aR-

mediated effects on V-ATPase in inner medullary collecting duct (IMCD) cells isolated from rat 

kidney papilla.21 Labeling of cultured IMCD cells for V1aR and V-ATPase revealed the presence 

of both products in A-ICs, which were scattered between AQP2-positive PCs. We treated these 

cells grown on a permeable support, to full confluence from the basolateral side with the V1aR 

agonist, AO-4-67 (1 µm), or vehicle for four hours and evaluated the V-ATPase signal intensity 

and distribution in A-ICs using confocal z-stacks. Treatment with the V1aR agonist substantially 

enhanced the apical V-ATPase signal intensity in A-ICs, suggesting the V1aR-mediated 

activation of V-ATPase. Assuming the same effect in our in vivo experiments, stimulation of 

V-ATPase may partially explain for the observed urinary acidification.             
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4.4.2 Effects of V1aR stimulation in isolated collecting duct segments 

In an additional set of experiments, we assessed V1aR-mediated effects in isolated perfused 

outer medullary CDs from mouse kidney. Binding of VP to the V1aR has been reported to 

induce intracellular calcium release via activation of the phospholipase C (PLC) pathway.4 

Therefore, we evaluated the intracellular Ca2+ levels [Ca2+]i, as well as the luminal pH in CDs 

using Ca2+- or pH-sensitive fluorescent dyes. Application of the V1aR agonist or AVP to the 

basolateral side of the collecting ducts significantly increased [Ca2+]i in ICs to a comparable 

extent. Parallel measurement of the luminal pH revealed decreased levels after the application 

of the V1a agonist or AVP, suggesting that V1aR activation promotes luminal proton secretion. 
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5 Discussion 

The hormone vasopressin (VP), also known as the antidiuretic hormone (ADH), is critical to the 

urinary concentration and volume homeostasis.8 While the water reabsorption is chiefly 

governed by the V2R-mediated response to VP, activation of V1aR appears to exert modulating 

effects on the renal electrolyte handling, particularly, on the acid-base homeostasis.13,17  The 

role of renal V1aR remained elusive, but the recent characterization of V1aR knockout mice 

shed some light on its functions in the kidney.11 The phenotyping of V1aR-deficient mice 

revealed impaired acid-base balance.17  These results may have significant clinical impact since 

dysregulation of the extracellular pH, and impaired acid-base status have been associated with 

higher morbidity and mortality in humans. Chronic metabolic acidosis contributes to osteopenia, 

osteoporosis, and peripheral insulin resistance.32,33 Insufficient urinary acidification may facilitate 

kidney stone formation, leading to recurrent stones in the urogenital tract. A low urinary pH 

prevents crystal formation, which is seen as the starting point of stone development.34 Despite 

these clinical conditions, associated with impaired acid-base homeostasis, the role of VP and 

V1aR herein has received only little attention even after the generation of V1aR knockout mice. 

This study extends the morphological and functional information related to the role of V1aR in 

the renal acid-base handling. 

Previous studies demonstrated V1aR expression in the connecting tubules (CNTs)  and 

collecting ducts (CDs), but its cell type-specific and intracellular distribution remained 

debatable.15,16 Early functional studies with isolated CDs of rabbit kidneys suggested apical 

V1aR distribution in intercalated (ICs) or principal cells (PCs). In these experiments, the luminal 

application of [arg8]vasopressin (AVP) exerted effects on the transepithelial resistance and 

intracellular calcium levels,  indicating the presence of an apical vasopressin receptor.35 The 

hypothesis of apical V1aR distribution is promising since VP is filtered into the urine and 

reaches concentrations that are 50-100 times higher than those in plasma. The high luminal 

hormone levels would then rapidly activate any apical vasopressin receptor.36 However, 

previous studies provided no convincing evidence for the apical V1aR localization. In contrast, 

other studies demonstrated basolateral effects of V1aR stimulation in rodents but failed to 

define the responsive cell type.37 

To clarify this issue, we addressed the segment- and cell type-specific aspects of V1aR 

distribution in mouse, rat, and human kidneys using a new anti-V1aR antibody. The clear 

basolateral, membrane-bound V1aR signal in type A intercalated cells (A-ICs) suggests that this 

cell type responds to the plasma vasopressin rather than to the filtered hormone. Although type 

B intercalated cells (B-ICs) showed a perinuclear to subapical V1aR signal, high-resolution 

imaging revealed no association of the V1aR signal with the apical membrane in this cell type. 

Nevertheless, minor luminal surface expression of the receptor below the detection limit of our 
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antibody may enable a particular responsiveness of ICs to the luminal VP, especially when 

considering its high urinary concentrations. In this context, the intracellular accumulation of the 

receptor in B-ICs may reflect a rapid AVP-binding to the luminal V1aR followed by the 

internalization of the receptor.38 Following this reasoning, one would expect a clear membrane-

bound signal in VP-deficient Brattleboro rats. However, these animals lacked the apical V1aR 

signal as well. Based on our localization data, we suggest that B-ICs do not directly respond to 

vasopressin.  

This coincides with previous studies, showing that neither V1aR deletion in mice nor V1aR 

knockdown of the receptor in cultured ICs altered the expression of pendrin, which is the major 

transporter of B-ICs.17 In contrast, pendrin expression was suppressed in V2R-deficient mice, 

whereas the treatment of VP-deficient Brattleboro rats with the V2R agonist desmopressin 

increased pendrin expression. Since V2R receptor is not expressed in ICs39, we conclude that 

these effects may result from paracrine signaling events between ICs and the neighboring V2R-

expressing PCs.29,40  

Notably, apart from the clear basolateral V1aR signal in A-ICs or sub-apical signals in B-ICs, we 

observed a small population of ICs showing discrete V1aR signal patterns, which do not match 

those of A-ICs or B-ICs.  We believe that these cells represent a transitional state and belong to 

the so-called non-A, non-B intercalated cells. In general, adaptation to the stress of metabolic 

acidosis can be accomplished either by changes in the number of intercalated cells or by a shift 

from type B to type A intercalated cells.19 The transition from a type B to a type A intercalated 

cell depends on the presence of particular proteins, such as the extracellular matrix protein 

hensin or galectin 3. Mice with a defect in the protein hensin develop metabolic acidosis due to 

the heavily reduced number of A-ICs in the cortex or the kidney.30 Our morphological analysis of 

V1aR-deficient mice did not reveal any changes in proportions of A-ICs vs. B-ICs, suggesting 

that V1aR-signaling is not critical to the proper differentiation of intercalated cells.        

Our functional experiments supported our localization data and showed direct effects of VP in 

A-ICs. We used a specific V1aR agonist or antagonist in rodents to investigate changes in 

parameters of acid-base status. In VP-deficient Brattleboro rats, stimulation with the V1aR 

agonist leads to decreased urinary pH and increases the net acid excretion (NAE). Given the 

absence of endogenous VP we expected a particularly strong response to the V1aR agonist, 

but only a relatively high dose was efficient. One possible explanation for this finding could be 

the altered urinary buffering capacities in Brattleboro rats due to extreme diuresis and volume 

depletion. 
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Similar to Brattleboro rats, the application of a high V1aR-agonist dose rapidly decreased the 

urinary pH in bladder catheterized mice. This effect may be related to V1aR-induced activation 

of A-ICs. 

To characterize local effects of V1aR in the absence of concomitant systemic stimuli, we 

performed ex vivo experiments in primary cell culture of inner medullary collecting duct (IMCD) 

cells and in isolated perfused collecting ducts (CDs). Basolateral application of the V1aR 

agonist or VP induced several effects supporting the in vivo data. These effects include 

intracellular calcium release and decrease of luminal pH in isolated perfused CDs, as well as 

apical V-ATPase immunoreactivity in cultured IMCD cells. The latter likely reflect V-ATPase 

trafficking41, although increased protein abundance due to stimulated translation may contribute 

as well. Other studies reported angiotensin II and aldosterone as potent stimuli for the V-

ATPase.41 Interestingly, aldosterone seems to require the presence of the V1aR to mediate the 

proton secretion in ICs. Knockdown of the V1aR in vitro abrogated the effects of aldosterone on 

V-ATPase stressing the role of V1aR signaling in the regulation of this proton pump.17  Further 

work is necessary to elucidate the effects of V1aR activation on the H+/K+-ATPase, which is 

another proton secreting transporter in the apical membrane of A-ICs. Due to the lack of 

suitable technical tools, we were not able to address this issue.  

Since our results implicated V1aR in urinary proton secretion, we assumed that this mechanism 

might contribute to renal adaptations to systemic shifts of the acid-base homeostasis, such as 

metabolic acidosis. In this context, previous work reported elevated V1aR mRNA expression in 

ICs after acid load.13 We therefore evaluated the V1aR distribution in mice with metabolic 

acidosis due to an NH4CL enriched diet.31 In contrast to previous data, our results showed no 

effects of metabolic acidosis on V1aR protein abundance or distribution, suggesting the 

absence of compensatory alterations at this level. Application of the V1aR antagonist did not 

affect urinary pH in this model as well, pointing to a minor role of V1aR signaling in adaptation 

to metabolic acidosis.  

In conclusion, this study significantly extends morphological and physiological information on 

the V1aR-mediated signaling in the kidney and provides translational perspectives for 

modulation of the renal acid-base handling using selective V1aR agonists and antagonists. 
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