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I. Abstract 
 
Deutsch 

 
In murinen, experimentellen Modellen von Gliomen hat die Aktivierung von TLR3 oder TLR9 in 

Mikroglia/Makrophagen nachweislich das Wachstum von Gliomen beeinträchtigt, was jedoch 

nicht in jüngsten, klinischen Studien verifiziert werden konnte. Deswegen haben wir getestet, ob 

die kombinierte Aktivierung von TLR3 und TLR9 in Mikroglia/Makrophagen einen 

synergistischen Effekt hat. Tatsächlich hat die kombinierte TLR3/TLR9-Aktivierung die 

Suppression des Wachstums von Gliomen in organotypischen Hirnschnitten von männlichen 

Mäusen in Abhängigkeit von Mikroglia positiv beeinflusst, und diese synergistische Suppression 

war von der Ausschüttung von Interferon β und der phagozytotischen Beseitigung des Tumors 

abhängig. Die kombinierte TLR3/9 Stimulation hat ebenfalls mehrere, funktionelle 

Eigenschaften von Mikroglia erhöht, wie beispielsweise die Ausschüttung von 

proinflammatorischen Faktoren, Beweglichkeit und phagozytotische Aktivität. Die Stimulation 

von TLR3/9 in Kombination mit einer CD47-Blockierung hat weiterhin zu einer vermehrten 

Beseitigung der Gliome geführt. Abschließend haben wir bestätigt, dass die Koaktivierung von 

TLR3/9 auch die Beeinträchtigung des Wachstums von Gliomen in vivo erhöht. Unsere 

Ergebnisse zeigen, dass die kombinierte Aktivierung von TLR3/9 in Mikroglia/Makrophagen eine 

effizientere Unterdrückung von Gliomen zum Ergebnis hat, was eine potenzielle Strategie für 

die Behandlung von Gliomen bieten könnte. 
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English 
In murine experimental glioma models, TLR3 or TLR9 activation of microglial/macrophages has 

been shown to impair glioma growth, which could, however, not been verified in recent clinical 

trials. We therefore tested whether combined TLR3 and TLR9 activation of 

microglia/macrophages would have a synergistic effect. Indeed, combined TLR3/9 activation 

augmented the suppression of glioma growth in organotypic brain slices from male mice in a 

microglia-dependent fashion, and this synergistic suppression depended on interferon β release 

and phagocytic tumor clearance. Combined TLR3/9 stimulation also augmented several 

functional features of microglia such as the release of pro-inflammatory factors, motility and 

phagocytosis activity. TLR3/9 stimulation combined with CD47 blockade further augmented 

glioma clearance. Finally, we confirmed that the co-activation of TLR3/9 also augments the 

impairment of glioma growth in vivo. Our results show that combined activation of TLR3/9 in 

microglia/macrophages results in a more efficient glioma suppression, which may provide a 

potential strategy for glioma treatment. 
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II. Manteltext  
 
State of the art – research  

Glioblastoma (Glioma) is the most common (comprising approximately 80% of) malignant tumor 

in the brain, which cause high rate of mortality and disability (Marenco-Hillembrand et al., 2020). 

Glioma can be most commonly classified by World Health Organization (WHO) according to 

histologic properties with the spectrum from low grades (I and II) to high grades (III and IV). 

Current therapeutic strategies including aggressive resection followed by radiotherapy and 

chemotherapy received improving survival time of patients, while the overall medium survival 

time of glioma patients is merely 14 months(Marenco-Hillembrand et al., 2020).  

Microglia, as the major myeloid cell population in central nerve system (CNS), play 

crucial role in maintaining brain hemostasis, exerting functions including brain development, 

synaptic pruning and immune responses (Helmut et al., 2011).  Under disease conditions, 

microglia infiltrate, rapidly activate and polarize into certain phenotypes to react to the 

pathological signals (Helmut et al., 2011). In glioma, tumor tissue are not only containing tumor 

cells but also the non-transforming cells, which predominantly are resident microglia from the 

brain and circulating blood monocytes (macrophages), comprising approximately 30% of the 

cellular content of these tumors (Hambardzumyan et al., 2015). Over the past decade, these 

glioma associated microglia/macrophages (GAMs) are revealed that could closely interact with 

tumor cells to actively affect brain tumor biology (Gutmann and Kettenmann, 2019).  

Multiple mechanisms underlying this pro-tumoral effect likely vary from tumor to tumor, 

while numerous potential etiologies have been identified (Ku et al., 2013; Hu et al., 2015; Dzaye 

et al., 2016). Toll like receptors (TLRs) are superfamily of pattern recognization receptors that 

recognize pathogens and mediate responses in innate immune cells by activating inflammatory 

pathways (Kawai and Akira, 2011).  Previous studies illustrated that TLRs (TLR2, TLR4) play 

important role in glioma progression via regulating MMP9 (Hu et al., 2014), MMP14 (Markovic et 

al., 2009; Hu et al., 2015) and interleukin-6(Dzaye et al., 2016). On the other hand, some other 

TLRs (TLR3, TLR7, TLR9) activation on microglia mediate tumor suppression effect (Zhu et al., 

2007; Buonfiglioli et al., 2019). Hence, understanding the mechanisms underlying the microglial 

TLRs regulating glioma progression is important to identify the potential novel therapeutic 

targets against tumor. In addition, our collaborating group previously reported that co-activating 

TLRs on microglia result synergistic impact on microglia properties and influence the neuro-

inflammation (Rosenberger et al., 2014). Nevertheless, TLR3 ligands, and TLR9 ligands had 

been utilized in glioma treatment (Hartman et al., 2014; Jordan and Waxman, 2016; Carpentier 

and Lambert, 2017). 
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Therefore, we hypothesis that co-stimulation of TLR3 and TLR9 on microglia may 

synergistically induce microglial property changes which affect tumor growth. This study we 

focused on the effect of combined activation of TLR3/9 on microglia and the potential synergistic 

impact on glioma suppression.  

 

Methodology 
In this study, to determine the expression pattern of TLR3 and TLR9 on microglia or glioma 

tissues, we applied immunofluorescence staining to the human glioma tissues. Briefly, after 

fixation with 4% parformaldehyde solution (PFA), 40 µm free-floating tumor sections were 

prepared. Subsequently, slices were washed with PBS 3 times for 5 min and blocked with 5% of 

donkey serum and 0.1% Triton-X. Primary antibodies (1:500 dilution for Iba-1, 1:200 for TLR3 

and 1:100 for TLR9) were incubated overnight. After washing with PBS, secondary antibodies 

Cy3 conjugated anti-rabbit IgG and DyLight 488 conjugated anti-goat were applied to the slices. 

Nuclei were labeled with 4,6-diamidino-2-phenylindole (DAPI).  

We also performed quantitative real time PCR (qPCR) to the Magnetic activated cell 

sorting (MACS) sorted GAMs from human glioma tissue and normal murine microglia.  In brief, 

tumor tissues were first rinsed with PBS and enzymatically digested into single-cell-suspension 

using Adult Brain Dissociation Kit. Single cell suspension was incubated with CD11b 

microbeads™ in MACS buffer and subsequently loaded onto a MACS column. CD11b-positive 

and CD11b-negative cells were then separated for qPCR. To examine the tumor growth, we 

generated the organotypic brain slices (OBS) with fluorescence labeled murine GL261mCherry 

tumor inoculation and singly or combined applied with TLR3 ligand Poly(I:C) and TLR9 ligand 

CpG Oligodeoxynucleotide (CpG ODN), which clodronate liposome was used to clarify the 

microglia effect. To detailed, 14-day-old Macgreen (CSF1R-EGFP) mice were decapitated, and 

brains were cut in coronal plane into 250 μm sections with a vibratome. Brain slices were 

transferred onto cell culture inserts containing with 0.4 μm pores. Culturing medium (DMEM 

supplemented with 10% heat inactivated FCS, 0.2 mM glutamine, 100 U/ml penicillin, and 100 

mg/ml streptomycin) were added to the inserts. Liposome-encapsulated clodronate or liposome-

encapsulated PBS diluted with culture medium (1:10) was added into the well for microglia 

depletion. Next, GL261mCherry cells were injected into the caudate putamen region of the slice 

in 150 μm depth of both hemispheres and after 5 days, slices were fixed with 4% PFA. Tumor 

volumes were assessed by confocal microscopy (LSM710, ZEISS) with Z-stack scanning and 

were reconstructed by IMARIS software into 3D model for volume evaluation. To evaluate 

density of tumor infiltrating microglia in the organotypic brain slice, EGFP fluorescence intensity 

or numbers within the tumor volume were quantified. Using immunofluorescence staining, cell 
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counting kit (CCK-8), and quantitative real time PCR (qPCR), glioma growth was determined.  

For CCK-8, briefly, GL261 cells were seeded in the 96-well plate. After treatment, CCK-8 

reagent was added (10 ul per well) and incubated for 2 h. Plates were measured with a multi-

reader at 450 nm absorbance.   

Using qPCR, enzyme-linked immunosorbent assay (ELISA), we verified the phenotype 

changes of microglia after TLR3/9 activation. Besides, we identified interferon β (IFNβ) as main 

synergistic target of microglial TLR3/9 activation and the effect of IFNβ on glioma progression 

were also determined via immunofluorescence staining, CCK-8, qPCR and OBS.  

Further, impact of TLR3/9 co-stimulation on microglial phagocytic capability was 

detected using fluorescence labeled beads and tumor cells using fluorescence-activated cell 

sorting (FACS) and ex vivo OBS. For phagocytosis beads assay, microglia were seeded on 

coverslips in a 24-well-plate and treated with Poly(I:C) and/or CpG for 24 h followed by adding 

YF fluorescent beads. Coverslips were then washed 3 times with PBS for 5 min and fixed with 

4% PFA. Iba-1 was used to label microglia. Images were taken by a confocal microscope. 

Phagocytosis index was evalulated as total number of beads in Iba-1 positive cells divided by 

100 number of DAPI-positive cells.  To assess phagocytosis of glioma cells by microglia, 

similarly, microglia were seeded on coverslips in a 24-well-plate and treated with Poly(I:C) 

and/or CpG for 24 h. GL261mCherry cells were applied to coverslips and incubated for 2 h. 

coverslips were then fixed and stained for Iba-1 as described above. Coverslips were scanned 

with a confocal microscope (LSM710, Zeiss). Number of mCherry fluorescence within the iba1 

volume was determined with IMARIS software as a proxy for glioma phagocytosis.  

Furthermore, influence of TLR3/9 on microglial migrating activity was measured via ex 

vivo OBS, agarose spot and Boyden chamber assay. Briefly, low-melting point agarose was 

dissolved and mixed with or without Poly(I:C), CpG and Poly(I:C) + CpG, using PBS as negative 

control. Mixed solution was rapidly plated into glass-bottomed dishes. After cooling, microglial 

cells were plated in the dish in 2 ml DMEM supplemented with 10% fetal calf serum and 

incubated at 37°C for 3 h. Cells inside the spot were counted at the microscope. For Boyden 

Chamber, microglial cells in serum-free DMEM medium were added to the upper compartment, 

while the lower wells contained the TLRs ligands in medium, using polycarbonate filter (8 m 

pore size). The chamber was incubated for 6 h. Cells remaining on the upper surface of the 

membrane were removed by wiping, and cells in the lower compartment were fixed in methanol 

and subjected to Diff-Quik staining.  
To verify the tumor inhibition impact induced by TLR3/9 activation, we generated in vivo 

tumor bearing mice and combined administrated with TLR3/9 ligands, which validating the in 

vitro and ex vivo tumor growth results. For GL261 in vivo model, anaesthetized mice were 
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mounted onto a stereotactic head holder. 1mm skin incision were made and the skull was drilled 

with a needle tip. Blunt tip syringe containing glioma cell suspension was slowly injected into the 

right caudate putamen. After surgery, mice were kept warm, and post-operative condition was 

monitored daily. For treatment, 14 days after tumor implantation, tumor-bearing mice were intra-

peritoneally injected with 200 µg Poly(I:C) every 3 d. For CpG administration, mice were first 

anaesthetized, and 100 μg CpG in 2 µl volume was administered intratumorally. 

In the end, CD47 blockade antibody was applied accompanied with to the TLR3/9 

ligands to detect the tumor volume of organotypic brain slice system and tumor clearance in 

vitro using FACS.   

 

A detailed description of all methods applied for this study can be found in the materials and 

methods section of Huang et al. (2020) 

 

Essential new results 
 

For the first time, Huang et al. illustrated that microglial combined activation of TLR3 and TLR9 

synergistically suppress tumor growth that could be beneficial for potential therapeutic strategies.  

 Previous study from our group revealed that microglial TLR activation inhibits tumor 

growth(Buonfiglioli et al., 2019).   Additionally, our collaborating group showed the synergistic 

effect of increasing pro-inflammatory cytokines induced by TLRs (TLR2 and TLR4) co-

stimulation on microglia. Our current study explored the impact of TLR3/9 co-stimulation on 

microglia functions which affect tumor growth.  First, we evaluated the tumor volume change 

after TLR3/9 combined activation, and observed that TLR3/9 co-stimulation drastically reduce 

tumor volume with microglia dependent fashion. We verified previous observations that 

microglia accumulate in the glioma tissue and acquire a defined phenotype. We found that 

infiltrating microglia expressed significant higher level of Secreted Phosphoprotein 1 (Spp1), 

Glycoprotein Nmb (Gpnmb), Matrix Metallopeptidase 14 (MMP14) and Matrix Metallopeptidase 

9 (MMP9), which represents tumor-supporting phenotype of GAMs as we previously published 

(Szulzewsky et al., 2015). Next, microglia were singly or combined treated with TLR3/9 ligands, 

and conditioned medium of microglia (MCM) were collected to treat tumor cells. We revealed 

that MCM of TLR3/9 co-stimulated microglia synergistically suppressed glioma cell proliferation 

and induce cell apoptosis, indicating factors released from microglia activated through 

TLR3/TLR9 impeded glioma growth and promote tumor cell apoptosis. To further measure 

microglial phenotype affected by TLR3/9 co-activation, we assessed the pro-inflammatory 

genes and cytokines and we observed that Poly(I:C) alone increased Tumor necrosis factor α 

(TNFα), Interferon β (IFNβ), Interleukin 1β (IL1β), Nitric oxide synthase (NOS2), and Interleukin 
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6 (IL6) expression, while CpG increased TNFα, IL1β and IL6 expression. Combined application 

of Poly(I:C) + CpG augmented TNFα, IFNβ, NOS2 and IL12 expression compared to single 

stimulation with either Poly(I:C) or CpG, indicating that TLR3/9 combined stimulation 

synergistically induce pro-inflammatory genes expression and cytokines release.  

It has been widely recognized that TLR3 and TLR9 signaling both activate IRF/type I IFN 

signaling, which IFNβ as crucial member of type I IFN has been identified as a potent anti-

tumorogenic factors in multiple cancers (Borden, 2019), we therefore analyzed different time 

periods of stimulation and different agonist concentrations with respect to IFNβ release. Gene 

expression of IFNß was most prominently increased after co-stimulation with Poly(I:C) and CpG 

compared to control. In addition, the combined application of Poly(I:C) and CpG strongly 

enhanced IFNβ release compared to treatment with Poly(I:C) alone. Further, we testified 

whether microglia priming with either Poly(I:C) or CpG plays a role in the observed IFNβ release 

and we observed that CpG needed to be existing in the beginning to reach the synergistic effect 

of augmented IFNβ release, suggesting the priming effect of TLR9 signaling in TLR3 induced 

IFNβ release.  Next, to verify the potential tumor inhibition effect of IFNβ, recombinant IFNβ was 

applied to the glioma cells. We found that IFNβ significantly suppressed the proliferation rate of 

GL261.In addition, we observed tumor volumes significantly decreased after incubation with 

IFNβ in the organotypic brain slices. We then examined the role of IFNβ in TLR3/9 co-activation 

induced glioma suppression neutralizing antibodies. We found that when the IFNβ neutralizing 

antibody was added to the respective supernatant, proliferation rate was no longer reduced. 

Taken together, TLR3/9 co-stimulation on microglia synergistically increased IFNβ release and 

IFNβ was the main effective cytokine of microglial TLR3/9 induced tumor proliferation reduction 

and apoptosis promotion.  

 To address microglial function influenced by TLR3/9 co-activation, we further found that 

TLR3/9 combined stimulation synergistically augment microglial phagocytosis activity engulfing 

fluorescence beads as well as tumor cells, indicating co-stimulation increase direct tumor 

clearance. In addition, we observed increasing infiltrating microglia in the tumor and higher 

migration capacity of microglia when stimulated with TLR3/9, and these increasing effect could 

be attenuated by PI3K/Akt inhibition, suggesting TLR3/9 co-stimulation enhance microglial 

motility via PI3K/Akt signaling cascade.  

 To verify the synergistic tumor suppression effect of microglia TLR3/9 activation, GL261 

orthotopic murine glioma model was established and administrated with TLR3 and TLR9 ligands. 

We observed smallest tumor volume in the TLR3/9 ligands co-treatment group, and combined 

treatment significantly prolong average survival time of tumor bearing mice, indicating efficient 

tumor suppression compared to single treatment.  
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 Furthermore, since recent studies demonstrated that tumor expressed CD47 is essential 

to negatively regulate microglia/macrophage phagocytic capacity in tumor clearance (Veillette 

and Chen, 2018), we also co-administrated CD47 neutralizing antibody along with TLR3/9 

ligands and we found further augment of tumor clearance based on phagocytosis, suggesting 

the potential usage of combined the CD47 blockade and TLR3/9 activation in even more 

efficient glioma treatment.  

In conclusion, combined microglial TLR3 and TLR9 activation triggers an anti-tumor 

phenotype of microglia, which affects glioma cells via release of cytokines, stimulates their 

phagocytic activity to directly attack glioma cells, and enhances migratory activity, which may 

explain increased accumulation of microglia in glioma tissue. Given the fact that single TLR3 

and TLR9 stimulation have so far failed in clinical trials, treatment with combined stimulation of 

TLR3 and TLR9 in concert with CD47 inhibition might provide a novel approach for glioma 

therapy. 

 

Further scientific questions 
 

The findings of Huang et al.(2020) provides the first insight of impact of combined activation of 

TLR3/9 on microglia function and glioma growth, indicating novel therapeutic method to glioma 

treatment.  

Toll-like receptors (TLRs) are a family of proteins that play a crucial role in the innate 

immune system, serving as pathogen recognition receptors which leads to comprehensive 

immune response.  TLRs ligands raised plenty of interest in glioma treatment, which have 

confirmed therapeutic benefits as anti-tumor methods that regulate immune cells of the tumor 

microenvironment. TLR3/9 ligands were successfully assessed in glioma animal model and 

utilized in clinical trial against glioma while no satisfying outcome achieved until now (Butowski 

et al., 2009; Rosenfeld et al., 2010). As we stated above, microglial TLR3/9 activation 

synergistically impaired tumor growth via releasing IFNβ, phagocytosis enhancement.  Previous 

studies showed that combination of TLRs achieved synergistic impacts on different cells. For 

example, combined administrated TLR2 with 4 or TLR4 with 7 agonists could form a potent 

adjuvant system that can be combined with multiple antigens to enhance the innate immunity 

(ref). Synergistic effect prompted by TLR 2/3 or TLR 2/4 activation has also been observed (ref). 

Therefore, it is necessary to investigate potential synergistic effect on tumor inhibition of other 

TLRs combination, using TLR3/7 or TLR7/9 for instance.  

The delivery methods of the ligands are essential to the tumor inhibition efficiency. It has 

been exhibited that nanoparticles containing Poly(I:C) received satisfactory results of tumor 
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inhibition (Colapicchioni et al., 2015; Alipour Talesh et al., 2016), and the CpG ODN required to 

be intratumoral administrated (Meng et al., 2005; Alizadeh et al., 2010; Carpentier and Lambert, 

2017). Thus, further important investigation could focus on using multiple novel delivery 

methods to test whether some of the methods improve the treatment efficiency.  

In terms of mechanisms, TLRs interaction has been previously revealed (Kawai and 

Akira, 2011). Adaptor proteins and kinases are essential in the transducing TLRs signal. When 

triggered by the pathogens or agonists, adapter molecules within the cytoplasm of cells are 

recruited by TLRs to amplify the signal. There are four identified adapter molecules that involved 

in signaling. These proteins are known as Myeloid differentiation primary response 88 (MyD88), 

TIR Domain Containing Adaptor Protein (TIRAP, also called Mal), TIR-domain-containing 

adapter-inducing interferon-β (TRIF), and TRIF-related adaptor molecule (TRAM). TLR signaling 

could be divided into two distinct signaling pathways, the MyD88-dependent and TRIF-

dependent pathway. The MyD88-dependent response occurs on every TLR including TLR9 

except for TLR3. It might be interactions between the MyD88 dependent pathwas and TRIF-

dependent pathways. While the mechanism of the synergistic effect remain unknown, especially 

the signaling cascade involving in the TLR3/9 interaction, which require further investigation to 

illustrate the cross-talk between TLR3/9 signaling.  

 In addition, immune checkpoint blockade became promising strategies in multiple 

cancers, which received exciting clinical outcomes (Ribas and Wolchok, 2018). TLRs ligands 

have become popular in company with immune checkpoints therapy against tumors (Sato-

Kaneko et al., 2017; De Waele et al., 2018; Zhu et al., 2019). In our current study, TLR3/9 

activation and CD47 blockade successfully synergistically suppress tumor growth. Further 

investigation could be performed to determine the impact of TLR3/9 ligands with PD-1 or PD-L1 

blockade. Also, it will be interesting to identify whether other TLRs (TLR2, TLR5, or TLR7) 

amplify the immune-checkpoint inhibition induced tumor suppression. Last, we observed that 

TLR3 and 9 express redundantly in GAMs of human glioma tissue.  

This study is based on murine glioma in vitro, ex vivo and in vivo model, which is difficult 

to perfectly reflect glioma micro-environment in human. Since our ultimate goal of the study is 

translating to human glioma treatment. Increasing publications reported the differentiation of 

human induced pluripotent stem cells (iPSCs) into microglia, provides the new methods for 

establishing humanized context(Abud et al., 2017). Furthermore, recent studies showed the 

chimeric model of inoculating human microglia in murine brain (Abud et al., 2017; Hasselmann 

et al., 2019; Xu et al., 2020), which could be served as a great model to investigate brain 

microenvironment in diseases. In addition, a novel organoid glioma model using primary human 

glioma gives us the other chance to verify therapy efficiency in different patients, based on 
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heterogeneity of glioma(Linkous et al., 2019). It would be extremely interesting to take 

advantage of these humanized models to further testify the potential therapeutic beneficial of 

TLRs ligands in glioma treatment.  

Overall, Huang et al. (2020) provides the very first insights of the effect of microglial 

combined TLR3/9 activation on microglial properties and affecting tumor growth, which provides 

multiple further investigation potentiality for microglia based glioma intervention. 
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