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Abstract: To explicitly account for asymptotic dependence between rainfall intensity maxima of
different accumulation duration, a recent development for estimating Intensity-Duration-Frequency
(IDF) curves involves the use of a max-stable process. In our study, we aimed to estimate the impact on
the performance of the return levels resulting from an IDF model that accounts for such asymptotical
dependence. To investigate this impact, we compared the performance of the return level estimates of
two IDF models using the quantile skill index (QSI). One IDF model is based on a max-stable process
assuming asymptotic dependence; the other is a simplified (or reduced) duration-dependent GEV
model assuming asymptotic independence. The resulting QSI shows that the overall performance of
the two models is very similar, with the max-stable model slightly outperforming the other model for
short durations (d ≤ 10 h). From a simulation study, we conclude that max-stable processes are worth
considering for IDF curve estimation when focusing on short durations if the model’s asymptotic
dependence can be assumed to be properly captured.

Keywords: extreme value statistics; extreme precipitation; intensity-duration-frequency curve;
max-stable process; duration-dependent GEV

1. Introduction

Much research has been recently done on the application of multivariate methods to estimate
Intensity-Duration-Frequency (IDF) curves. IDF curves are a popular tool among hydrologists to
estimate exceedance probabilities of extreme rainfall events with different durations. In broad terms,
IDF curves model a relationship between intensities of extreme rainfall events and their frequencies
(i.e., return periods) as a function of event duration. A challenge in estimating IDF curves is how
to deal with the simultaneous modeling of intensities for different durations, in particular, how to
account for the possible dependence that could arise between intensities of different durations.

Initially, the conventional approach to model IDF curves was based on univariate extreme value
theory (EVT) models. Early work on the topic estimates extreme value distributions individually for
several fixed durations and subsequently fits an empirical relation to quantiles (return levels) as a
function of duration [1–4]. This approach is prone to inconsistencies as the natural ordering of quantiles
is not guaranteed to be preserved over all durations (in other words: quantiles cross). To address
this problem, Koutsoyiannis et al. [5] suggested a consistent extreme value model for intensities as a
function of duration with location and scale being functions of duration. Later on, a couple of studies
implemented methods from Bayesian statistics for the univariate relationship between intensity and
duration. Lehmann et al. [6] formulated a Bayesian Hierarchical Model (BHM) based on the model
from [5], and Van de Vyver [7] presented a multi-scale model using Bayesian inference. More recently,
Ritschel et al. [8] used this model to characterize stochastic precipitation models, and Ulrich et al.
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[9] proposed the addition of spatial covariates to the model from Koutsoyiannis et al. [5], extending
the work of Fischer et al. [10] using spatial covariates to model daily precipitation maxima. These
studies make an assumption of stationarity, which may not be valid under a changing climate. Some
recent studies have focused on tackling this issue with univariate methods to construct consistent IDF
curves in a nonstationary setting. Some examples include the work of Padulano et al. [11] using the
storm index method, as well as those of Ganguli and Coulibaly [12,13] comparing the estimates from a
stationary and nonstationary method.

Many of the previous univariate models assume that rainfall intensities are independent for
different durations, thus simplifying the modeling efforts. However, the estimation of an extreme
value distribution as a function of durations brings along the problem of dependence of extremes
associated with different durations, as longer duration series are always aggregated from series of
shorter durations. An important consequence of this way of aggregating is that there exists no “single”
event for any given duration. As an example, the values of the 15 min duration events are not events
that lasted exactly 15 min, but rather the “largest” 15 min long average values from longer events.

In recent years there has been widespread use of multivariate EVT methods for modeling IDF
curves, which allow the explicit modeling of dependence structures that could not be captured by
the univariate approach. Essentially, a multivariate extreme value distribution (MEVD) is fitted to
extreme precipitation data, with the marginal distributions being frequently modeled by a univariate
extreme value distribution. Simultaneously, the dependence structure is described with methods such
as max-stable processes or copulas. An early example of this was proposed by Muller et al. [14] who,
alongside the independence likelihood (analogous to the univariate approach), proposed the use of a
so-called trivariate likelihood for three durations: 1, 24, and 72 h. In this study, the dependence between
24 and 72 h was modeled with a bivariate extreme distribution from the logistic family. Afterward,
Van de Vyver [15] investigated the use of the trivariate likelihood by calculating the parameters’
uncertainty using a Bayesian approach. He found that, while the resulting posterior distributions from
the trivariate likelihood were narrower than the independence likelihood ones, its limitations were
too strict to recommend its use over the independence likelihood. An early example of modeling IDF
curves using copulas is the study of Singh and Zhang [16], who used a Frank Archimedean copula to
estimate the IDF relationship in a bivariate setting.

Some of the most recent advances have been a result of studies that attempted to model IDF
curves within a spatial setting. These approaches take advantage of the methods developed for
modeling so-called spatial extremes [17]. For example, Stephenson et al. [18] implemented a spatial
max-stable process for IDF estimation; they estimated IDF curves in a spatial setting by incorporating
a Bayesian Hierarchical Model in every station with a max-stable process. While their approach
was able to capture the spatial dependence, they had to limit their scope to assume that the rainfall
maxima were independent for different durations. Later on, Tyralis and Langousis [19] proposed the
use of a max-stable process to estimate IDF curves for a single station in a way that the asymptotic
dependence between rainfall intensity maxima of different durations was explicitly modeled, extending
the spatial methodology by proposing a so-called duration space instead of geographical coordinates.
Remarkably, their proposed max-stable process was able to explicitly account for the asymptotic
dependence between intensities for different durations.

Although Tyralis and Langousis [19] demonstrated the feasibility of a duration-dependent
max-stable process to estimate IDF curves, they did not investigate their performance compared to, e.g.,
univariate EVT methods. Their results showed that both the univariate and multivariate approaches
adequately approximated the empirical quantiles, where the max-stable approach resulted in more
conservative (i.e., higher) intensities for large quantiles (i.e., longer return periods). In our study, we
aimed to build upon the results of Tyralis and Langousis [19] by estimating the impact on performance
when accounting for the asymptotical dependence between rainfall intensity aggregated over different
durations. We expected that, whenever the asymptotical dependence between durations is high and the
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max-stable approach is able to capture the “strength” of such dependence for the estimated intensities,
the model performance should be significantly higher than for a model assuming independence.

The present paper introduces a scheme to evaluate the impact of the asymptotic dependence
between rainfall intensities aggregated over different durations on the performance of EVT-based
IDF models. This involves a comparison of skill between two IDF models: one accounting for
asymptotic dependence between durations, the other assuming independence. The comparison shows
that accounting for the dependence between rainfall intensity aggregated over different durations
slightly improves the point estimates for long return periods, and particularly for “short” durations
(d ≤ 10 h) usually associated with convective phenomena. However, this comes at the price of
increased complexity of modeling the asymptotic dependence.

2. Methods and Data

Our study involves numerical experiments to estimate the relative performance of IDF curves
modeled with two approaches: one based on a max-stable process to account for asymptotic
dependence (henceforth named as the MS-GEV approach), and another one based on the assumption of
independence using the reduced d-GEV model (henceforth named as the rd-GEV approach). By doing
so, we aimed to estimate how the performance of IDF curves is affected by considering (or ignoring)
the asymptotic dependence between rainfall intensity maxima for different durations.

We performed the study in two broad steps. First, we conducted a case study using data from 6
rain-gauge stations. This data was used to estimate the respective IDF-model parameters from both the
MS-GEV and rd-GEV approaches. We compared the performance of both approaches using a measure
of skill. In the second step, we introduced synthetic data with known levels of dependence to estimate
the effect that the level of dependence has on the resulting estimations. We used the synthetic data
to estimate and compare their performance again. Finally, we compared the results from both steps
to determine how the performance was affected by the asymptotic dependence between durations.
The two different methods used for estimating IDF curves are explained in more detail in the following
section. Subsequently, the methods used for verification are described, and, finally, the observation
data and the synthetic data are presented.

2.1. Estimation of IDF Curves

Let ζd(t) be the instantaneous rainfall intensity series integrated over a time window of length
d, where d is an arbitrary time duration (which commonly ranges from the measurement interval to
72–120 h). Given ζd(t), we obtain the series of the maximum annual average rainfall intensity for each
value of d as

i(d) = max
y−<t<y+

{ζd(t)} y = (1, ..., n), (1)

where n is the total number of observation years, and y−, y+ are the beginning and end of the yth year,
respectively. As a rule, k durations dj, j = 1, ..., k are simultaneously used when constructing i(d), with
values from the measurement interval to 120 h (depending on the application). The resulting k series
can be thought of as a realization of a random variable I(d). Notice that, in Equation (1), d is not a
random variable but a parameter for the intensity, as noted by Koutsoyiannis et al. [5].

The construction of i(d) from a single duration series (e.g., hourly precipitation sums) generates
a statistical dependence between i(d1) and i(d2) corresponding to different aggregation durations
d1 6= d2. For example, i(d = 2 h) and i(d = 3 h) show a very high dependence (that is, when one of them
has what is considered to be a high value, the other intensity also has a high value). However, as the
gap in aggregation duration between the values grows, this dependence diminishes: i(d = 2) and
i(d = 24) show almost complete independence. Nadarajah et al. [20] proposed a scheme to work
with this type of random variable, which they denoted as ordered random variables. Some authors
have linked this concept to the different physical processes that result in different time scales for
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precipitation events. For example, Muller et al. [14] claimed that the independence between the 1 h
and 24-h events were due to the 1-h events being a result of convective (local) motions, while the 24-h
event was related to synoptic phenomena. In this paper, we take a closer look at how this dependence
affects the estimation of IDF curves down the road.

Following the block-maxima approach, e.g., [21], a GEV can be fitted to each k-series of i(dj).
Then, the return levels zd,T associated with return periods T = 1/p can be calculated for each duration
used for the fit dj, where p is denoting the non-exceedance probability with values usually in the range
corresponding to upper extreme quantiles. The idea behind IDF curves is to describe the return level
zd,T for arbitrary durations d based on the sample i(dj) in a meaningful way. This typically involves
a parametric form of zd,T as a function of d. The choice of the model used for estimating IDF curves
depends on the choice of parametric form of zd,T .

For this study, we employed two different approaches for the parametric form of zd,T as a function
of d. For the model that assumes asymptotical independence for i(d) for different d, we follow the
duration dependent GEV model (d-GEV) of Ritschel et al. [8]. Based on Koutsoyiannis et al. [5], the
d-GEV model of Reference Ritschel et al. [8] estimates a GEV simultaneously from annual maxima
associated with various durations, thus conceiving the GEV as a function of duration. The d-GEV
yields consistent quantiles zd,T , which cannot cross by definition. The other approach is based on a
max-stable process for modeling the relationship of zd,T that accounts for the asymptotic dependence
between durations.

2.1.1. Using the Duration-Dependent GEV

Following Ritschel et al. [8] and Ulrich et al. [9], we used the duration dependent GEV (d-GEV) to
model i(d) with the distribution

G(x) = exp

[
−
(

1 + ξ

(
x

σ(d)
− µ̃

))−1/ξ
]

, (2)

where σ(d) = σ0/(d + ν)η is the duration dependent scale parameter, and µ̃ = µ(d)/σ(d) is the
modified location parameter. Given the estimated (µ(d), σ(d), ξ) parameters, it is straightforward to
calculate the return level zd,T for any arbitrary duration using

zd,T = µ(d) +
σ(d)

ξ

[(
− log

(
1− 1

T

))−ξ

− 1

]
. (3)

To compare the resulting zd,T of this approach with those estimated using the MS-GEV approach,
we set the parameter ν = 0. This parameter is related to sub-hourly duration values (0 < d < 1),
which we do not consider here. Therefore, the dependence of location and scale parameter on
duration follows

µ(d) = µ̃σ0d−η , (4)

σ(d) = σ0d−η . (5)

This results in a model with four parameters to be estimated, namely {µ̃, σ0, ξ, η}. We call this
modified distribution the reduced d-GEV or rd-GEV for short. The parameters of the d-GEV distribution
are estimated by maximizing the likelihood as implemented in the R-package IDF [22]. Equation (3) is
used to get intensities for arbitrary durations (d ≥ 1).

2.1.2. Using a Max-Stable Process

Max-stable processes are extensions to infinite dimensions of finite-dimensional extreme value
theory models (i.e., extremes of random variables or vectors). They arise as “the pointwise maxima
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taken over an infinite number of (appropriately rescaled) stochastic processes” [23]. Let {X(x) : x ∈ χ}
be a stochastic process, where χ is a compact subset of Rd, d ≥ 1, and {Z(x) : x ∈ χ} be a max-stable
stochastic process. Following de Haan [24], if there exist continuous functions an(x) > 0 and bn(x) ∈ R,
and provided that the limit is non-degenerate, the process Z(x) can be defined as

Z(x) = lim
n→+∞

maxn
i=1 Xi(x)− bn(x)

an(x)
, x ∈ χ . (6)

The max-stable process Z(·) describes the limiting process of maxima from the Xi IID random
fields [25]. The use of this max-stable process for modeling spatial extremes is justified when, based on
n independent replicates, and, if n is large enough, we assume that Z(x) is a good candidate for
modeling the partial maxima process {maxi=1,...,n Xi(x) : x ∈ χ} [26].

One of the main advantages of using a max-stable process is that it provides a flexible way of
modeling the dependence structure between the Xi IID random fields. If we assume that χ ⊂ R2

represents a geographical catchment, we can think that for multiple points (x ∈ χ), the marginal
distributions are jointly modeled via the max-stable process, resulting in continuous functions of the
GEV parameters µ(x), σ(x), ξ(x) for each margin.

In order to implement a max-stable model for estimating IDF curves, we followed the framework
proposed by Tyralis and Langousis [19]. This approach (MS-GEV) employs the Brown-Resnick process,
a frequently used parametric family of max-stable processes for modeling environmental extremes
[27–29]. Previous studies have shown the applicability of the Brown-Resnick process for extreme
rainfall applications [17,30–32]. A central proposition of our current approach is to define a continuous
variable ī(d) in a one-dimensional space, where each “location” is one of the durations d. This in
contrast to other applications of max-stable processes, where the variable of interest is commonly
defined in a two-dimensional (e.g., latitude and longitude) space.

For any max-stable process, the X(si) marginals are generalized extreme value (GEV) distributed,
with distribution function:

G(i) = exp

{
−
[(

1 + ξ
i− µ

σ

)−1/ξ

+

]}
, (7)

where µ, σ, ξ are the location, scale and shape parameters, and x+ = max(0, x). Following de Haan
[24] (with the adaptation for d > 0), when the limiting process {ī(d) : d > 0} is non-degenerate, a
simple max-stable process can be constructed by its so-called spectral characterization, which is a
representation of the max-stable process in the frequency domain [23]. In the spectral characterization,
the max-stable process is given by choice of the stochastic process (Xi(d) in Equation (A1)).

Such max-stable processes are called simple as the margins z̄(d) are unit Fréchet distributed (i.e.,
µ = σ = ξ = 1). The use of unit Fréchet marginals is standard, as the max-stable process theory
is based on the assumption that the marginals have a common, convenient max-stable distribution.
There is no loss of generality in assuming that the limiting process {ī(d) : d > 0} has unit Fréchet
margins, as it is straightforward to transform such margins into arbitrarily GEV-distributed ones and
vice versa.

For this study, we used the bivariate form of the Brown-Resnick process given by Kabluchko et al.
[33] (see Appendix A) as the stochastic process Xi(d). In this form, the dependence is a function of
the semivariogram γ, defined as

γ2(h) = 2
(

h
ρ

)α

, ρ > 0, 0 < α ≤ 2 , (8)

where α and ρ are, respectively, the smooth and range parameters of the semivariogram, and h
represents a measure of the distance between two durations. Tyralis and Langousis [19] calculated this
distance as the euclidean distance
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he = |dj − di|, (9)

where the indices i and j denote different durations di in hours, and j 6= i. However, this measure does
not account for the non-linearity of the distance between durations for events of increasing magnitude.
For example, consider that an event of 4 h compared to one of 2 h (he = 2) is already twice as long,
while an event of 50 h compared to one of 48 h (he = 2) is only 1.04 times the second one.

To address this issue, we explored the use of a distance measure based on a logarithm following
Van de Vyver and Van den Bergh [34]. This distance is defined as

hl = log2(dj)− log2(di) = log2

(dj

di

)
, (10)

where i and j denote different durations di in hours, and j > i.
We compare the resulting pairwise extremal coefficients from both distance measures to discern

which one results in a more appropiate fit for the semivariogram of Equation (8).
The bivariate form of the Brown-Resnick max-stable process described in Equation (A2) is valid

only for unit Fréchet marginals. Therefore, the series of yearly rainfall intensity ī(d) requires an
appropriate transformation (see [19] for details) to be unit Fréchet distributed, using the relationship

z̄(d) = (1 + ξ(ī(d)− µ(d)/σ(d))1/ξ
+ . (11)

To link ī(d) to z̄(d) for all durations, we used the response surfaces for the GEV parameters [19]:

µ(d) = µ0dc , (12)

σ(d) = σ0dc . (13)

These response surfaces follow the constraints given by Equations (18)–(20), and describe a
function Ψ(d) for the parameters of the marginals of ī(d). Equations (12) and (13) are equivalent
to Equations (4) and (5) in the rd-GEV model. The response surfaces allow to use all durations
simultaneously when estimating the max-stable process parameters.

Taking the response surfaces into account, the parameters that we need to estimate for calculating
IDF curves using the Brown-Resnick model are six: [ρ, α, µ0, σ0, ξ0, c]. This is accomplished via the
maximum likelihood estimate of the pairwise likelihood given in Equation (A3). The estimation of the
parameters is done using the R package SpatialExtremes [35].

Of particular usefulness for our study, is a measure to summarize the strength of the asymptotical
dependence modeled by the Brown-Resnick max-stable process. A well-known measure is the extremal
coefficient θ, which for the bivariate case, can take values of 1 ≤ θ ≤ 2. The value of θ decreases when
the dependence between the two margins increases. When θ = 1 the two margins are completely
dependent, and when θ = 2 they are independent.

For the dependence structure of the Brown-Resnick max-stable process described by Equation (8),
the extremal coefficient is a function only of the distance between durations: θ = θ(h). Given the
semivariogram γ for a Brown-Resnick max-stable process, with Φ denoting the standard normal
distribution function, the extremal coefficient is given by

θ(h)BR = 2Φ(γ(h)/2)1/2 . (14)

For comparison purposes, we also calculate the extremal coefficient nonparametrically (θ̂emp).
For our study, we used the method proposed by Marcon et al. [36], which was found by Vettori et al.
[37] to generally perform better than other nonparametric estimators.

To summarize: To estimate IDF curves with a max-stable process, we (i) transform our
block-maxima data i(d) into unit Fréchet using Equation (11) with the response surfaces given by
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Equations (12)–(13); then (ii) estimate the parameters via the maximum likelihood estimates of the
pairwise likelihood given by Equation (A3); and, finally, (iii) calculate the intensity for any arbitrary
duration d and return period T from Equation (3). We perform all the computations within the R
language [38]. The data and code is available as supplementary information.

2.2. Verification and Model Comparison

As a performance measure, we use the quantile score (QS) [39]. This allows us to evaluate
predictions of zd,T estimated from IDF-curves in terms of quantiles (i.e., return periods). For D
durations, N years, and a given return period T the QS is defined as

QST =
1

ND

D

∑
d=1

N

∑
n=1

ρT (in(d)− zd,T) , (15)

where in(d) is the observed block maxima, zd,T is the corresponding intensity from the model (using
Equation (3)), and ρT(u) is the so-called check function

ρT(u) =

{
(1− 1/T) u u ≥ 0

(−1/T) u u < 0;
(16)

thus, for this particular application, ρT(u) = ρT(in(d)− zd,T).
The QS is always positive and reaches an optimal value at zero. To compare the performance of a

model with a reference, we use the Quantile Skill Index (QSI) [9] derived from the Quantile Skill Score
QSS = 1−QSmodel/QSref (see [40] for more details on skill scores), defined as

QSI =

1− QSmodel
QSref

, if QSmodel < QSref

−
(

1− QSref
QSmodel

)
, if QSmodel ≥ QSref

. (17)

For our study, QSmodel is the score for the MS-GEV approach, and QSreference is the score for the
rd-GEV approach. Positive (negative) values of the QSI indicate a gain (loss) of skill for the MS-GEV
approach compared to the rd-GEV one. The advantage of using the QSI over QSS is that negative
values have a more meaningful interpretation.

To get a robust estimation of the prediction error for the QSI, we applied 10-fold cross-validation
to estimate the QS [41]. The QSI is then obtained using the mean cross-validated QS, averaged
over all cross-validation folds, for each model. We used return periods T = (5, 10, 20, 40, 100) years.
However, the results from the 100 year return period should be interpreted with caution, as the data
used for parameter estimation consists of much shorter series of approximately 40 years. The QSI
has to be interpreted with care for return periods much larger than the length of the time series (e.g.,
T > 40 years). The lack of observations for this region could result in a really high uncertainty of the
value of the QS, and, therefore, of the QSI.

2.3. Data

Two different datasets are used for our study. The first one is a synthetic dataset generated for
the simulation study. The second one is the block maxima from six rain gauge stations located in the
Wupper Catchment (West Germany). We describe both datasets in the following section.

2.3.1. Synthetic Data

We generate synthetic datasets with varying levels of dependence to investigate the models’
performance in estimating IDF curves. We designed three synthetic datasets that simulate rainfall
block maxima aggregated over different durations with increasing levels of dependence. For each
dataset, we simulate values from a Brown-Resnick simple max-stable process with known dependence
parameters using the R-package SpatialExtremes. For the marginal d-GEV distribution, we used a set
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of parameters characteristic of those d-GEV distributions fitted from the stations in the observational
dataset. Then, to fulfill the constraints of annual rainfall maxima averaged over durations di, i = 1, ..., k,
we transformed the initial simulated data from having unit-Fréchet margins to GEV margins that
follow the constraints given by [5,20]

ζ(di) = ζ0 , (18)

σ(di)(di/dj) ≤ σ(dj) ≤ σ(di), di ≤ dj ∀i, j, and (19)

µ(di)(di/dj) ≤ µ(dj) ≤ µ(di), di ≤ dj ∀i, j . (20)

This transformation uses the response surface described in Equations (12) and (13). We simulate 40
values for each dataset (representing 40 years) for d = (1, 3, ..., 119, 120) h. Following Zheng et al. [25],
three sets of dependence parameters were used: (ρ = 1, α = 1) for weak dependence, (ρ = 0.5, α = 0.5)
for moderate dependence, and (ρ = 0.5, α = 0.2) for strong dependence. For each parameter set,
we generate 1000 realizations. An issue we encountered is that the nature of the simulated data allowed
for rainfall intensity series that did not strictly follow the constrains given by Equations (18)–(20),
however, we considered this to happen at a frequency that would not affect the final result of the study.

2.3.2. Observations

We used six rain gauge stations from the Wupper Catchment in Germany (Figure 1). All the
stations have hourly values of accumulated precipitation height for the period 1979–2016. The stations
are all within an elevation range of 250 m, and horizontally the shortest and longest distance between
each station is 7 Km and 34 Km, respectively. We chose this dataset as it has a large number of years
with high-frequency (hourly) measurements. Furthermore, the stations range from the Bergisches Land
to the Upper Rhine Plain and therefore represent very well the different altitudes of the catchment.
Figure 1 shows the distribution of rainfall maxima for this period.

Figure 1. Left: (Lower panel) Distribution of the annual rainfall maxima at a 1-h accumulation duration
plotted against time. Each boxplot shows the distribution of the pooled maxima from the six stations
used for the case study in the Wupper catchment region. (Upper panel) Time series of the annual
rainfall maxima, showing the values of each station as a different color. Right: Map of the Wupper
catchment (dashed line) showing the location of all 6 stations; the lower-right corner shows the location
of the catchment within Germany.

We obtain the annual block maxima i(dj) of the averaged rainfall intensity ζd(t) over the
time window dj for each station using Equation (1). For estimation purposes, we used durations
d = (1, 3, ..., 119, 120) h. The decision for the cut-off value of 120 h was based on previous studies on IDF
curve estimation [18,19]. By visual inspection of the corresponding Quantile Quantile (QQ)-plot, we
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ensure good agreement of the resulting i(dj) block maxima for all 6 stations with the GEV distribution.
A small subset of the QQ-plots can be seen in Figure A2.

3. Results

We present the results for the case study in the Wupper region of Germany first, followed by the
results of the simulation study.

3.1. Case Study

3.1.1. Structure of the Extremal Dependence

Figures 2 and 3 show a comparison of the pairwise extremal coefficient θ derived from the
parameters of the MS-GEV approach (Equation (14), red line) and from a nonparametric estimate (dots)
to assess how well the MS-GEV approach captures the observed asymptotic dependence. We used
different distance measures h for each plot. Figure 2 uses the euclidean distance he (Equation (9)), and
Figure 3 uses the log-distance hl (Equation (10)). Additionally, the different colors show the lower
distance di used for each duration pair (di, dj), where i < j, and (i > 0, j > 0).

Figure 2. Nonparametric (dots = θ̂emp) and parametric (solid line = θBR) estimates for the pairwise
extremal coefficient θ using the euclidean distance he. The estimated nonparametric mean of θ for each
duration lag bin is shown as black dots. Each color represents the lower duration di used for each
duration pair.

For the euclidean distance he (Figure 2), the values of θBR are close to the binned means of θ̂emp

(black circles) with respect to the scattering of the individual empirical estimates (color circles) for
all stations. Nevertheless, the empirical point clouds show a remarkably high variability of θ around
the mean value. To name one example, in station Buchenhofen, the distance of he = 25 h has a range
of very different values of θ, spanning from 1.2 to 1.8. Thus, using a model that approximates the
empirical mean-binned values in this case does not appear to be a meaningful representation of the
overall variability of the dependence between durations.
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Furthermore, each set of duration pairs with a fixed lower duration di in Figure 2 (represented by
different colors) seems to follow a different path as the distance he grows. In particular, for duration
pairs with a short lower duration (di ≤ 10 h), the value of θ grows much faster than duration pairs with
longer lower durations (di > 10 h). This suggests that several different regimes of dependence coexist,
which are not only a function of the distance he, but also of the magnitude of the durations used. This is
a transgression of the assumption that the extremal coefficient, and by extension, the semivariogram
model of Equation (8) is isotropic (i.e., γ should only be a function of h). It is thus not evident that
using a dependence model for the MS-GEV approach based on the euclidean distance he adequately
captures the asymptotical dependence between durations seen on the data used for this study.

The resulting extremal coefficient using the log-distance hl is shown in Figure 3. The point
cloud shows a remarkably lower variability around the binned means than those of Figure 2.
Furthermore, the empirical values of θ̂emp appear to follow the same regime, suggesting that θ is
isotropic when using the log-distance. The shape of the point cloud seems to be appropriately captured
by θBR for duration ratios dj/di . 6 (i.e., when the upper duration dj is around six times the lower
duration di). However, the parametric model deviates from the empirical estimates as hl increases.
With the exception of station Leverkusen, the parametric model consistently overestimates the strength
of the asymptotical dependence for the pairs with a duration ratio dj/di > 6.

Figure 3. Nonparametric (dots = θ̂emp) and parametric (solid line = θBR) estimates for the pairwise
extremal coefficient θ using the logarithmic distance hl . For ease of interpretation, the values of the
log-distance hl in the x-axis were transformed to the duration ratio dj/di. The estimated nonparametric
mean of θ for each duration ratio bin is shown as black dots. Each color represents the lower duration di

used for each duration pair. Notice the difference in the variability of the point clouds when compared
to those of Figure 2.

In light of the above results shown by Figures 2 and 3, we decided to use the log-distance hl when
estimating the semivariogram of the MS-GEV approach in all of the following calculations.



Water 2020, 12, 3314 11 of 20

3.1.2. Estimation of IDF Curves

Table 1 shows the parameter estimates for the MS-GEV approach for all Wupper catchment
stations, estimated from durations d = (1, 3, ..., 119, 120) h. The estimates for the range parameter ρ are
reasonably consistent across all stations. Their value of ∼ 2 suggests that, for all stations, the rainfall
intensities of different durations become asymptotically independent when their ratio dj/di is larger
than (22 = 4).

Table 1. Parameter estimates from the MS-GEV approach for stations in the Wupper catchment using
durations d = (1, 3, ..., 119, 120) h.

Station α ρ µ0 σ0 ξ0 c

Bever 1.42 2.09 13.32 2.84 0.03 −0.58
Buchenhofen 1.39 2.22 13.38 3.03 0.02 −0.63
Leverkusen 1.32 2.19 10.74 2.34 0.05 −0.64
Lindscheid 1.54 2.44 13.69 3.23 0.06 −0.64
Neumuehle 1.54 1.84 13.52 2.74 0.04 −0.60
Schwelm 1.53 1.74 13.07 2.77 0.05 −0.62

Figure 4 shows the IDF curves following from Equation (3) for the MS-GEV approach (solid lines)
and compares them to the IDF curves based on the rd-GEV approach (dashed lines). Return levels
from the MS-GEV are for the most part consistently higher, which is in agreement with Tyralis and
Langousis [19].

Figure 4. Comparison of IDF curves for the MS-GEV (solid line) and rd-GEV approach (dashed line)
for all stations. Different colors represent different return periods; from bottom to top: (5, 10, 20, 40,
100) years.

To compare the results of the IDF curves using the euclidean distance he instead of the log-distance
hl , a plot comparing the resulting 100-year return level of both distances is shown in Appendix A.
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3.1.3. Performance Averaged Over All Durations

Figure 5 shows the cross-validated QSI evaluating the performance of the MS-GEV approach
compared to the rd-GEV one. Similar behavior can be seen for all stations. For short return periods,
the QSI is close to zero (denoting that both models are equally good), increasing towards longer
periods. Station Lindscheid profits most from the MS-GEV with a 20% increase in skill for the 100-year
return level. Only for a few points is skill negative, mostly for the shorter return periods.

Figure 5. Quantile Skill Index comparing the MS-GEV versus the rd-GEV approach for all stations in
the Wuppertal catchment. Positive values favor the MS-GEV approach.

3.1.4. Performance for Individual Durations

For a detailed comparison, we show the QSI conditioned on duration in Figure 6. The QSI
varies appreciably over different durations for a given return period. For short durations (d < 10 h),
the QSI is mostly positive for all return periods; for long durations d > 100 h, it is mostly negative.
Gauge Lindscheid exhibits positive skill for many more combinations of durations (d < 50 h) and
return periods T > 40 years; station Bever is the only station not showing a positive skill for very short
durations, showing a general loss of skill for all but the shortest durations.

3.2. Simulation Study

We studied the effect of the level of dependence on the performance of the MS-GEV approach.
To this end, we used synthetic data with known dependence parameters (ρ and α in Equation (8))
and estimate the performance for various levels of dependence. Figure 7 shows the cross-validated
QSI obtained using Equation (17), using the averaged QS values over all d = (1, 2, ..., 120) h durations
for 1000 replications as box-whisker plots. Similar to the case study, the distance h used for the
semivariogram of the Brown-Resnick process was the log-distance hl (Equation (10)).

The variation of skill among the replicates increases with increasing return period. The median is
consistently positive (MS-GEV superior to rd-GEV) but below 0.05, suggesting that the dependence
does not impact strongly on the performance results. The strong level of dependence leads to a slightly
higher median skill but also to a considerable larger variance.

Figure 8 shows the QSI calculated with the model and reference QS averaged over all replicates
for individual durations. The results are similar to the pooled QSI over all durations of Figure 7:
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The QSI increases with return period and dependence, staying below QSI = 0.1 for a 100 year return
period and the strongly dependent series. This again suggests that the level of dependence has little
impact on the performance of the return levels from the IDF curves.

Figure 6. Quantile Skill Index conditioned on duration comparing the MS-GEV (using log-distance
hl) versus the rd-GEV approach for all stations in the Wuppertal catchment. Positive values favor the
MS-GEV approach for different durations.

Figure 7. Quantile Skill Index calculated from QS averaged for all durations d = (1, 2, .., 120)h,
comparing the MS-GEV versus the rd-GEV approach as a function of simulated data’s dependence
parameter. Positive values of the QSI favor the MS-GEV approach. Each boxplot represents the
distribution from the results of 1000 simulations.
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Figure 8. Quantile Skill Index, as in Figure 7, but showing the quantile score index (QSI) as a function
of return period and duration.

4. Discussion

In this study, we obtained a measure of relative performance for return level estimates of IDF
curves for various durations involving a max-stable process that allows for asymptotic dependence
between durations (MS-IDF), compared to a model that assumes independence (rd-GEV). To do so,
we built upon the previous study of Tyralis and Langousis [19], who focused on the theoretical basis
of using max-stable processes for modeling IDF-curves and did not investigate the consequences in
terms of model performance.

To investigate the possible impact of the asymptotical dependence, we evaluated and compared
the performance of estimating IDF curves with two different approaches: i) using a max-stable process
to describe the dependence between rainfall intensity maxima for different durations and ii) assuming
independent maxima. We evaluated individual performance based on a score that allows us to focus
on the tail of the distribution, namely the quantile score (QS). The comparison between the MS-GEV
and rd-GEV approach was carried out with the quantile score index (QSI), an index based on the QS
skill score. The QSI enables us to quantify a gain/loss in performance when accounting for asymptotic
dependence in return level estimation.

The results of Figure 2 showed that the resulting pairwise extremal coefficient was non-isotropic
when using the euclidean distance he as the measure h in the semivariogram of the Brown-Resnick
process for the MS-GEV approach. Thus, in contrast to the approach of Tyralis and Langousis [19], we
explored the use of a logarithmic distance measure instead of an euclidean one for the semivariogram
of the Brown-Resnick process. Figure 3 shows that this was a reasonable choice, with the resulting
parametric extremal coefficient properly capturing the variability of the empirical extremal coefficient
around its binned means.

A simulation study suggests a minor advantage of the MS-GEV approach over the rd-GEV,
particularly for long return periods (large quantiles). This advantage increases with the strength of the
dependence, but remains low (QSI≤ 0.1) even for the strongest level of dependence. A complementary
case study for six gauges in the Wupper catchment (Germany) corroborates a general advantage
for long return periods when averaging the performance measure over all durations. A detailed
investigation of performance conditioned on durations shows, for our case study, that this advantage
results mostly from short (d . 10 h) and, in some cases, from intermediate (20 h . d . 50 h) durations,
depending, however, on the specific station.

The presented findings support the idea of Tyralis and Langousis [19] that max-stable processes
are valuable models for IDF curve estimation. The simulation and case study results indicate that an
increase in skill with the MS-GEV approach is mostly found for large quantiles and short to medium
durations. This effect might be related to the fact that shorter durations have a larger number of
pairs than the longer durations for the pairwise likelihood. This means that the longer durations
could be underrepresented in the current likelihood expression, leading to a better fit of the model
for the shorter durations for the MS-GEV approach. However, extreme events of short durations



Water 2020, 12, 3314 15 of 20

have usually a higher impact on society than those of long durations. Therefore, we believe that this
underrepresentation does not necessarily detract value from using the MS-GEV approach. When
focusing on large quantiles and short durations, it might be worth taking the added computational
expense and model complexity in exchange for increased skill in the return levels for such events.

In addition, the simulation study demonstrated that the level of dependence had a modest impact
on the overall performance and variability of the MS-GEV approach. These findings contradict those
of Zheng et al. [25], who found that the dependence strength did not influence the performance of the
return level estimates. However, our study focused on a different dependence structure than that of
Zheng et al. [25], who used a spatial approach, in contrast to our duration space. This contradiction
may be associated with the particular form of the asymptotic dependence for the different durations
of i(d), which stems from the nature of i(d) as random ordered variables. As previously studied by
[20,42], when two random variables are intrinsically ordered, each margin’s distribution is affected,
something that has to be taken into account. While the response surfaces described in Equations (12)
and (13) take this ordering into account, the dependence structure given in Equation (8) does not, a
factor that could explain the contradiction with previous studies.

The parametric estimate of the extremal coefficient θBR from the MS-GEV approach shown in
Figure 3 appears to be a reasonable fit for the empirical values of θ when the ratio of the duration pair
is around (di/dj . 6). However, as the upper duration gets around six times larger than the lower
duration, the model consistently overestimates the strength of the dependence. Figure 3 also showed
that duration pairs (di, dj) involving short lower durations di ≤ 10 h had an extremal coefficient that
approached independence (i.e., θ = 2) faster than those with longer lower durations as hl increased.
This suggests that the dependence between rainfall maxima of different aggregation durations is
short-ranged, in particular, for the shorter durations.

For an operational use of this approach, uncertainty estimates for the quantiles (IDF curves) need
to be incorporated. In this regard, Ganguli and Coulibaly [12], Mélèse et al. [43] showed that a Bayesian
Hierarchical Model approach resulted in reliable credibility intervals for IDF curves. For the rd-GEV
approach, we investigate a bootstrap-based method for estimating the uncertainty of d-GEV based
return levels in a different study [9]. We also limited our study to using data with hourly frequency,
resulting in the value of the (sub-hourly) ν parameter of the d-GEV to be artificially set to zero (what
we called the rd-GEV). Further studies would benefit from using sub-hourly frequencies, allowing ν to
vary freely. Moreover, we assumed that the stations’ data was stationary, ignoring the possible effects
of climate change. Several studies have shown that accounting for nonstationarity has a measurable
effect on the return levels estimates [11–13].

The method presented in this study is a straightforward and practical manner of estimating IDF
return level performance based on a max-stable process. The results for the case study encourage
to investigate its performance within a larger geographical setting. Furthermore, it seems worth
implementing more flexible functions describing the variability of GEV parameters with duration
as used for the response surface, e.g., an additional parameter accounting for different behavior,
particularly for short durations, as suggested in Koutsoyiannis et al. [5]. Another critical issue for
future studies is to explore how different dependence structures could impact the performance of the
estimation. Furthermore, a comparison with the recent developments in the use of covariates for the
rd-GEV approach could result in better skill for such an approach compared with our current MS-GEV
one [9].

5. Conclusions

Our findings indicate that the use of models that allow for the asymptotic dependence between
rainfall maxima of different durations when estimating IDF curves can lead to moderately better
return level estimates, particularly for long return periods (100 years, generally of considerable
interest) and short durations (d ≤ 10 h). However, the former comes at the expense of the added
complexity of modeling the asymptotic dependence. Furthermore, this asymptotical dependence
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seems to be short-ranged for the short durations. We, therefore, recommend the use of the simpler
univariate-EVT methods assuming independence between durations for a single station when the
main goal is obtaining return levels for a wide range of short and long durations from IDF-curves.
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Abbreviations

The following abbreviations are used in this manuscript:

IDF Intensity-Duration-Frequency (curve)
GEV Generalized Extreme Value distribution
d-GEV Duration-dependent GEV
rd-GEV Reduced d-GEV-based approach for modeling IDF curves
MS-GEV Max-stable-based approach for modeling IDF curves
QS Quantile Score
QSS Quantile Skill Score
QSI Quantile Skill Index

Appendix A. Inference from the Brown-Resnick Max-Stable Process

Consider a stochastic process {X(d) : d ∈ χ} , where χ is a compact subset of RD, D ≥ 1, and a
Poisson process Π with intensity dζ/ζ2 on (0, ∞). Let Xi(d) be independent realizations of a process
X(d) with E[X(d)] = 1, and let ζi ∈ Π be points of the Poisson process. A simple max-stable process is
then given by

Z(d) = max
i≥1

ζiXi(d), d ∈ χ . (A1)

Smith [44] proposed a useful analogy to interpret this kind of max-stable process as the so-called
rainfall-storms interpretation. In this interpretation, ζ represents the overall intensity of a rainfall storm
that impacts the region χ, and ζX(d) corresponds to the total amount of rainfall for the storm centered
at position d. A max-stable process would then be the pointwise maxima (taken over each point in χ)
over an infinite number of storms.

For the Brown-Resnick process, we follow the proposal from Kabluchko et al. [33], where
Xi(d) = exp(ei(d)− 1

2 σ2(d)). Here, ei(d) is a Gaussian process with stationary increments and
semivariogram γ(h) = 1

2 Var(ei(d + h)− ei(d)). The bivariate density function for the Brown-Resnick
process [17,33], is

Pr[Z(d1) ≤ z1, Z(d2) ≤ z2] = exp

[
− 1
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Φ

(√
γ(h)
2

+
1√
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log
z2

z1

)
− 1

z2
Φ

(√
γ(h)
2

+
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γ(h)

log
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z2

)]
, (A2)
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where z̄ follows a unit Fréchet distribution, Φ denotes the standard normal distribution function, h is a
measure of the “distance” between duration pairs (di, dj) (given in this study by Equation 10), and the
semivariogram γ is defined in Equation (8).

For inference purposes, we applied the commonly used pairwise likelihood proposed by
Padoan et al. [45], given by

L(ψ|i1(d1), ..., in(dk)) =
n

∑
t=1

k−1

∑
j=1

k

∑
j′=j+1

log f (it(dj), it(dj′)|ψ) , (A3)

where ψ = [µ, σ, ξ, ρ, α]represents the parameters to estimate, and each term f (ik(dj), ik(dj′)|ψ) is the
(appropriately transformed) bivariate density function derived from Equation (A2) for observed
maxima ī(d) at durations dj and dj′ . Note that the first three parameters in ψ are the univariate
parameters of the GEV distribution, unique for each duration, while the last two parameters of ψ are
the parameters of the Brown-Resnick process, which model the asymptotic dependence.

Appendix B. Comparison of 100-year Return Level between Euclidean and Log-Distance for
MS-GEV Approach

Figure A1 shows a comparison of the resulting 100-year return level intensity resulting from the
MS-GEV approach using the euclidean distance he and the log-distance hl . To facilitate the comparison,
it shows the ratio qhl(0.99)/qhe(0.99), where q(0.99) is the quantile corresponding to the probability
of 0.99, that is, the corresponding 100-year return level.

Figure A1. Comparison of the 100-year return level intensity for the MS-GEV approach using the
euclidean distance he and the log-distance hl .

Surprisingly, although the variability of θ around its mean is remarkably different when using
hl instead of he, the resulting 100-year return levels are very similar for both distances. The single
exception was for station Leverkusen, which is the only station of the catchment located in the Upper
Rhine Plain; the change observed for this stations was however still relatively small. However, this
result is only accounting for the point estimates of the return levels. As seen in Figures 2 and 3,
the variability of the extremal dependence is much higher when using the euclidean distance he than
the log-distance hl . Thus, we believe that the resulting uncertainty for the MS-GEV approach should be
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lower when using hl instead of he. Nevertheless, as mentioned in the limitations of our study, we did
not perform any estimation of the uncertainty.

Appendix C. QQ-Plots for Selected Stations and Durations

Figure A2 shows the QQ-plots for validation of the marginal fits of the GEV distribution for
four intensity maxima series ī(d), with d = (1, 3, 48, 72) h, for three stations (Bever, Leverkusen, and
Neumuehle.). The closer that the points are aligned to the identity line, the better the fit of the
GEV distribution.

Figure A2. QQ plots for model checking of the marginal distributions for three stations: Bever (top row),
Leverkusen (middle row), and Neumuehle (bottom row). The duration used for the accumulation of
the rainfall maxima is indicated in each plot.
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