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Globally, antimicrobials are a main pillar of medical, veterinary, and agriculture interventions

[1,2]. In all cases, resistance of microbes against antimicrobials is prevalent. The problem is

exacerbated by the drying up of the antibiotic pipeline, as economic incentives to develop new

drugs are very limited. In antifungals, the range of available compounds is also low with only 4

main classes of drugs available to treat fungal infections in humans and 6 main classes used in

agriculture, with 1 class, the azoles, used in both [1].

The problem of drug resistance evolution has been observed early on in the antibiotic era

[3,4]. Ultimately, however, the introduction of each antimicrobial resulted in resistance evolu-

tion in target and nontarget microbes. In realization of this problem, some antibiotics such as

daptomycin were even developed with avoiding resistance evolution in mind, yet it took only

2 years from the introduction of daptomycin until resistance was recorded [4]. But how fast is

resistance evolving?

Here, we want to discuss how fast resistance emerges after the introduction of antimicrobi-

als. We base this on widely cited data in the literature for antibiotics ([4–7]; see also Fig 1A,

based on [8]) and compared this to data on antifungal resistance [9,10]. Replotting the antibi-

otic data (Fig 1B), by displaying the time from introduction to resistance emergence over the

year of introduction, suggests that the evolution of antibiotic resistance is accelerating over

time. The same trend can be observed for antifungals (Fig 1C and 1D). In the following, we

focus on (1) the quality of the underlying data and (2) possible explanations for this pattern of

accelerating resistance.

We first want to ask how reliable these commonly presented data on resistance emergence

are. For this, we tried to trace the original papers from which the aggregated data for antibiot-

ics (using [7] as a starting point) and antifungals [9,10] were obtained. To our great surprise,

finding the original data for the antibiotics was very difficult, and many of the original sources

could not be verified (see S1 Fig and S1 Appendix for more details). While the pattern of accel-

erating resistance in antibiotics might be true, it certainly cannot be supported given the data

currently available. By contrast, for the antifungal data, it is possible to identify the original

publications in most cases (see S2 Fig, S2 Appendix, and S1 Table). Replotting the suspected

relation with the data that can be traced shows that the pattern of accelerating resistance evolu-

tion still holds for antifungals (Fig 2). Given that the antifungal data with traceable sources

show a clearly accelerating trend, this should certainly be investigated for antibiotics.

If we take the data for both antibiotics and antifungals at face value, we see a clear trend of

accelerating resistance evolution. We briefly want to propose 3—mutually not exclusive—test-

able hypotheses: (1) increase in usage; (2) increase in surveillance; and (3) evolutionary dynam-

ics: cross-resistance, concurrent selection, and environmental enrichment of resistance genes.
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Fig 2. Timeline of antifungal (a) introduction and detection of evolved resistance for antifungals where the source could be traced (unambiguous and reliable

sources of data points are shown in blue; untraceable data are shown in red and excluded from analysis) (b). The time to resistance decreases with the year of

introduction (linear regression F1,12 = 8.10, p< 0.05�, R2 = 0.40).

https://doi.org/10.1371/journal.ppat.1008905.g002

Fig 1. Timeline of antibiotic (a) and antifungal (c) introduction and detection of surmised evolved resistance depicted by the ends of the bars. In antibiotics (b)

and antifungals (d), the time to resistance decreases with the year of introduction: for newer antimicrobials, resistance is described earlier after introduction

(linear regression for antibiotics (b) F1,16 = 6.47, p< 0.05�, R2 = 0.29 and antifungals (d) F1,13 = 19.57, p< 0.001���, R2 = 0.60).

https://doi.org/10.1371/journal.ppat.1008905.g001
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Increase in usage

Since the introduction of both antibiotics and antifungals, their use has steadily increased.

This results in higher amounts of antibiotics, antifungals, and their residues in the environ-

ment, and this problem is exacerbated by the projected increase in global usage (e.g., [11]).

That usage per se is correlated with prevalence of resistance is well established [12]. However,

the hypothesis would predict more specifically that antibiotics and antifungals that have been

introduced later are used more, because the pattern we observe is that resistance emerges faster

for later introductions. Notably, some of the antibiotics concerned are reserve antibiotics, for

which we expect that the usage is limited. Therefore, while testable, we think that this hypothe-

sis may not be the most likely explanation for the timing of resistance emergence.

Increase in surveillance

At the same time when the use of antibiotics and antifungals intensified, a parallel increase in

surveilling infections and infection outcomes, and equally pest control measures, can arguably

result in a higher probability of resistance detection. If this were true, it might well be sufficient

to explain the pattern of accelerating resistance. In fact, if this was the sole explanation, it

would be reassuring. It would mean that the older the data, the higher the probability that

resistance was not detected when it evolved. In support of this notion, the number of publica-

tions on antibiotic resistance is increasing year to year [13].

Evolutionary dynamics: Cross-resistance, concurrent selection,

and environmental enrichment of resistance genes

Many newer antibiotics and antifungals are variations on older substances. Moreover, almost

all of the antibiotics are derived from natural antibiotics. Therefore, resistance evolution might

become faster, because growing reservoirs of resistance genes and resistant microorganisms in

the environment can cause cross-resistance [14,15]. Also, some mutations conferring resis-

tance reduce the fitness costs of genes providing resistance against other antibiotics [16].

Moreover, antibiotic resistance, despite often being costly, can persist in the environment in

the absence of the selective agents [17,18]. This applies both to the persistence of resistant bac-

teria as well as the persistence of antibiotic resistance genes and can be caused by several mech-

anisms that mitigate the costs [17] or concurrent selection, for example, by heavy metals [14]

or by pesticides [19]. Finally, as resistance mechanisms against different antibiotics might be

under co-selection mediated by genetic linkage [20], the increase in resistance genes, resistant

microbes, and antibiotic residues will facilitate faster resistance evolution. Many of the mecha-

nisms mentioned for antibiotics and possibly others such as increase in mutagenesis or evolu-

tion of bet-hedging almost certainly apply to antifungals as well and can be seen as combining

to reduce the available genomic resistance space. The risk of emergence of resistant nontarget

species of agricultural fungicides is illustrated by potential cross-resistance of Cryptococcus gat-
tii against agriculturally used benomyl and clinically used azoles [21].

We think that each of these hypotheses, especially (2) and (3), warrants further investiga-

tion. Resistance evolution is an important challenge to healthcare and food security alike. The

pattern of accelerating resistance evolution we identified here for antifungals is certainly of

enough significance to motivate studies to investigate how this pattern arises and should

inform ways of reversing the trend. For antibiotics, the question of whether resistance evolu-

tion is accelerating needs to be urgently addressed. Even though the original data used in sev-

eral references [4–7] could not be identified for antibiotics, it is possible that the trend

observed in antifungals also applies to antibiotics. We have to assume that the estimates are
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based on expert knowledge. And almost certainly, data must exist and await being collated to

investigate this pattern. The fact that antifungals show a pattern of accelerating resistance is of

high importance itself because of their critical role in food production but should also serve as

a sentinel for the study of antibiotic resistance evolution.
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