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The superantigen Staphylococcus aureus (S. aureus) enterotoxin B (SEB) has been
proposed a central player in the associations between S. aureus nasal colonization and
the development of allergic asthma. Previously, SEB has been shown to aggravate allergic
sensitization and allergic airway inflammation (AAI) in experimental mouse models. Aiming
at understanding the underlying immunological mechanisms, we tested the hypothesis
that intranasal (i.n.) SEB-treatment divergently modulates AAI depending on the timing
and intensity of the SEB-encounter. In an ovalbumin-mediated mouse model of AAI, we
treated mice i.n. with 50 ng or 500 ng SEB either together with the allergic challenge or
prior to the peripheral sensitization. We observed SEB to affect different hallmark
parameters of AAI depending on the timing and the dose of treatment. SEB
administered i.n. together with the allergic challenge significantly modulated respiratory
leukocyte accumulation, intensified lymphocyte activation and, at the higher dose,
induced a strong type-1 and pro-inflammatory cytokine response and alleviated airway
hyperreactivity in AAI. SEB administered i.n. prior to the allergic sensitization at the lower
dose significantly boosted the specific IgE response while administration of the higher
dose led to a significantly reduced recruitment of immune cells, including eosinophils, to
the respiratory tract and to a significantly dampened Th-2 cytokine response without
inducing a Th-1 or pro-inflammatory response. We show a remarkably versatile potential
for SEB to either aggravate or alleviate different parameters of allergic sensitization and
AAI. Our study thereby not only highlights the complexity of the associations between S.
aureus and allergic asthma but possibly even points at prophylactic and
therapeutic pathways.

Keywords: asthma, allergic airway inflammation, Staphylococcus aureus, Staphylococcus aureus enterotoxin B,
nasal carriage, allergic sensitization
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INTRODUCTION

Bronchial asthma is a chronic inflammatory condition affecting
more than 300 million patients world-wide (1). Main symptoms
are airway hyperreactivity, reversible bronchial obstruction,
increased mucus production and structural changes of the
airways (2). Asthma is a highly heterogeneous disease and one
major discrimination is that between non-allergic and allergic
asthma. With over 60%, allergic asthma represents the most
frequent endotype (3). It is typically characterized by T helper
type 2 cell (Th2)-dominated immune responses towards
aeroallergens, including the production of allergen specific IgE
antibodies, the release of Th2-inflammatory mediators such as
interleukin 4 (IL-4), IL-5 and IL-13 as well as the recruitment
and activation of mast cells, eosinophils, basophils and others (4,
5). Major open questions include those of inflammatory
endotypes and pre-disposing factors of allergic asthma.

Today it is accepted that the airways are colonized by
microorganisms that interact with the immune system in
health and disease (6, 7). A significant relationship between
Staphylococcus aureus (S. aureus) nasal carriage and allergic
asthma has been recognized (8–12). Furthermore, colonization
with S. aureus is associated with atopic dermatitis (13–15) and
chronic rhinosinusitis (16, 17). The exact immunological
interactions however remain elusive. S. aureus is a gram
positive facultative bacterial pathogen that constantly colonizes
about 30% of the adult population (18–20). Preferred sites of
colonization are the skin and nasopharynx (18, 21–23). Beside its
role as a commensal, S. aureus may induce deep skin infections
and life threatening conditions such as pneumonia, sepsis and
toxic shock syndrome (18, 24). Up to 80% of isolated S. aureus
strains are capable of producing enterotoxins (12, 25–27) and
especially staphylococcal enterotoxin B (SEB), typically
associated with food poisoning (26, 28–30), has come into
focus regarding allergic airway inflammation (AAI) (31–33).
SEB belongs to the superantigen family of toxins, which are
potent immune activators leading to unspecific lymphocyte
activation and pro-inflammatory, mainly type 1 responses that
are known to suppress Th2- and allergic responses (34–38).

So far, only few studies have experimentally addressed effects
of SEB on allergic asthma and altogether suggest that SEB has a
high immune-modulatory potential facilitating sensitization and
aggravating allergic inflammation (31, 33, 39). A detailed
knowledge of the underlying mechanisms will be essential for
developing diagnostic, prophylactic and therapeutic approaches
in the context of allergic asthma and nasal S. aureus colonization.
Therefore, also in the light of epidemiological data highlighting
associations between S. aureus, SEB and allergic asthma, we have
comprehensively characterized the effects of intranasal SEB-
administration on AAI in a mouse model taking further
previous studies. We hypothesized that SEB would have
diverging effects on AAI depending on whether it is
encountered at a low or a high dose as well as before
sensitization or during the allergic challenge. We show that the
effects of SEB on hallmark features of AAI such as immune cell
recruitment, cytokines, IgE-production, and airway
hyperreactivity can be of an attenuating or intensifying nature
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depending on whether SEB was encountered before sensitization
or during challenge and at a lower or a higher dose. As opposed
to previous studies generally attesting aggravating effects of SEB
on AAI, we describe SEB to ameliorate certain aspects depending
on when and at which concentration it was encountered. Our
study thereby adds a novel aspect to SEB-mediated modulation
of AAI, underlines the profound immune-modulatory potential
of SEB in the context of allergic asthma and adds important
details to our understanding of this possibly clinically highly
relevant interaction.
MATERIALS AND METHODS

Mice
Female specific-pathogen free, 7–8 weeks old C57Bl/6 mice were
obtained from Janvier (Saint-Berthevin, France) and housed in
individually ventilated cages. All experiments were ethically
reviewed, approved by the responsible authori t ies
(Landesverwaltungsamt Sachsen-Anhalt, 203.6.3-42502-2-1495)
and performed in accordance with directive 2010/63/EU.

Intranasal SEB Treatment and Induction of
Allergic Airway Inflammation
To study the effects of intranasal (i.n.) SEB-treatment during the
allergic challenge on AAI, mice (n = 3/group) were sensitized
intraperitoneally (i.p.) three times in weekly intervals with 10 µg
ovalbumin (OVA; grade V, Sigma-Aldrich) in PBS containing
1 mg aluminum hydroxide (alum; Imject™ Alum Adjuvant,
ThermoFisher). One week after the last sensitization, mice were
i.n. challenged on three consecutive days with 100 µg OVA
(grade III, Sigma-Aldrich) in 30 µl PBS (OVA/OVA) or 100 µg
OVA in 30 µl PBS additionally containing 50 ng or 500 ng SEB
(OVA/OVA+SEB50 and OVA/OVA+SEB500) under light
isoflurane anesthesia. Analyses were performed 48 h after the
last challenge (Figure 1A). The control group shown for these
experiments was sensitized against OVA as described and
challenged with PBS only (OVA/sal).

The effects of i.n. SEB-treatment before sensitization were
studied by treating mice (n = 3/group) i.n. with 50 ng SEB in
30 µl PBS or 500 ng SEB in 30 µl PBS under light isoflurane
anesthesia on three consecutive days prior to the first
sensitization. Starting from one day after the last SEB-
treatment, mice were sensitized i.p. three times in weekly
intervals with 10 µg OVA in PBS containing 1 mg alum. One
week after the last sensitization, mice were i.n. challenged with
100 µg OVA in 30 µl PBS under light isoflurane anesthesia on
three consecutive days (SEB50/OVA/OVA and SEB500/OVA/
OVA) (Figure 1B). The control group shown for these
experiments was treated i.n. with PBS thrice prior to
sensitization against OVA and was challenged with PBS only
(sal/OVA/sal).

The different treatments in our models necessitated further
control groups that were analyzed: (i) Mock sensitizations were
performed with 1 mg aluminum hydroxide only (alum only).
Mock-sensitized mice challenged with OVA (alum only/OVA)
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showed no features of AAI (data not shown). (ii) The acute
effects of SEB alone (48 h after the last i.n. SEB-treatment) were
assessed in control-immunized mice that were treated thrice i.n.
with 50 ng or 500 ng SEB alone without OVA (alum only/SEB50
and alum only/SEB500). (iii) Long term effects of i.n. SEB-treatment
alone (day 25) were analyzed in mice treated thrice i.n. with 50 ng
SEB or 500 ng SEB before mock-sensitization and OVA challenge
(SEB50/alum only/OVA and SEB500/alum only/OVA).

Serum
Blood was collected from the retroorbital sinus and was
centrifuged (4000 rpm (1500 x g), 10 min, 4 °C) after 20 min
at 37 °C and 5 min at 4 °C. Serum was aliquoted and stored at
-80 °C until further analysis.

Isolation of Leukocytes
Lungs were flushed through the trachea with 1 ml ice-cold PBS for
bronchoalveolar lavage (BAL). After centrifugation (2,000 rpm (360
x g), 10 min, 4 °C), the BAL supernatant was cleared from debris
(10.000 x g, 5 min at 4°C) and stored at -80 °C and erythrocyte lysis
was performed on the pellet. The cell pellet was used for flow-
cytometric analyses. Lavaged lungs were perfused with 10 ml ice-
cold PBS, excised and minced on ice followed by enzymatic
digestion (45 min, 37 °C) in Iscove’s modified Dulbecco’s
medium containing 0.2 mg/ml Collagenase D (Sigma-Aldrich),
0.01 mg/ml DNase (Sigma-Aldrich), and 5 % fetal calf serum.
After the addition of EDTA (5 mM final concentration),
suspensions were filtered (70 µm) and centrifuged (1,200 rpm
(330 x g), 10 min, 4 °C). Following erythrocyte lysis by osmotic
shock, leukocytes were enriched using Percoll (GE Healthcare Life
Sciences). Splenocytes were isolated by homogenization of spleens
through a 70 µm cell strainer, centrifugation (1,200 rpm (330 × g),
5 min, 4 °C) of the cell suspension and erythrocyte lysis by
osmotic shock.
Frontiers in Immunology | www.frontiersin.org 3
Flow Cytometry
Cells from BAL, lung leukocytes and splenocytes were incubated
with anti-CD16/CD36 (2.4G2) for blocking Fc-receptors and
stained with fixable live/dead stain (BioLegend). Antibody
stainings were performed for B220 (RAE6B2), CD3 (17A2),
CD4 (RM4-5 or GK1.5), CD11b (M1/70), CD11c (N418),
CD49b (HMa2), CD69 (H1.2F3), CD117 (2B8), FcϵRIa
(MAR-1), Ly6C (HK1.4), Ly6G (1A8), MHCII (M5/114.15.2),
NK1.1 (PK136) and Siglec-F (E50-2440, ThermoFisher) in
different combinations (see panels below). Unless otherwise
indicated, antibodies were from BioLegend. Data were acquired
using an Attune NxT instrument (ThermoFisher) and analyzed
using the FlowJo software (Tree Star). Single stainings were
performed for all fluorochromes for compensation using
UltraComp eBeads (ThermoFisher) and fluorescence-minus-
one stainings were performed for gating. For the calculation of
absolute cell numbers from the relative frequencies, 50,000
fluorescent beads (Precision Count Beads, BioLegend) were
added to each sample. Following singlet-gating and dead cell
exclusion, cell populations were gated as follows:

Leukocytes from BAL were stained with panel 1
(Supplementary Figure 1): Live single cells were gated for
CD11c+, CD11b+/CD11c- and CD11b-/CD11c- cells. CD11c+

cells were further divided into macrophages (gated as CD11c+/
Siglec-F+) and Siglec-F- cells from which dendritic cells (DC)
(CD11c+/Siglec-F-/MHCII+) were gated using MHCII as a
marker. CD11b+/CD11c- cells were further gated for the Ly6G
and Siglec-F markers. Neutrophils were gated as CD11b+/
CD11c-/Ly6G+ cells and eosinophils as CD11b+/CD11c-/
Ly6G-/Siglec-F+ cells. CD4+ T cells were gated as CD11b-/
CD11c-/CD4+ and CD8+ T cells as CD11b-/CD11c-/CD8+ cells.

Lung leukocytes and splenocytes were stained with panels 2
and 3. Panel 2 (Supplementary Figure 2): Live single cells were
divided into CD11c+ and CD11c- cells. The latter were further
A

B

FIGURE 1 | Timeline of the experimental setups. (A) For the induction of allergic airway inflammation (AAI), mice were sensitized three times intraperitoneally (i.p.)
with 10 µg ovalbumin (OVA) and aluminum hydroxide (alum) in weekly intervals (d 0, 7, 14). One week after the last sensitization they were intranasally (i.n.)
challenged with OVA in PBS on three consecutive days. For the analysis of the modulation of AAI through SEB administered with the challenge, sensitized mice were
i.n. challenged with OVA alone or with OVA together with SEB (50 ng or 500 ng) on three consecutive days. (B) To investigate effects of i.n. SEB-treatment on
allergic sensitization, mice were treated i.n. with SEB (50 ng or 500 ng) or PBS on three consecutive days, then i.p. sensitized with OVA and alum and i.n. challenged
with OVA.
October 2020 | Volume 11 | Article 592186
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gated by using B220 and MHCII markers. B cells were gated as
CD11c-/B220+/MHCII+ cells. The remaining CD11c-/B220-/
MHCII- cells were further gated for CD4+ T cells (CD11c-/
B220-/MHCII-/CD4+) and CD8+ T cells (CD11c-/B220-/
MHCII-/CD8+). Th2 cells were gated as ST2+ CD4+ T cells.
The activation status of different cell types was determined using
the CD69 marker by gating on CD69+ cells within the
respective population.

Panel 3 (Supplementary Figure 3): From live single cells
alveolar macrophages were gated as autofluorescence+ cells that
were CD11b-/Siglec-F+. Autofluorescence-/CD3-/NK1.1-/B220-/
CD11b+ cells were gated and further divided into neutrophils
(CD3-/NK1.1-/B220-/CD11b+/Ly6G+/Siglec-F-) and eosinophils
(CD3-/NK1.1-/B220-/CD11b+/Ly6G-/Siglec-F+). CD3-/NK1.1-/
B220-/CD11b+/Ly6G-/Siglec-F- cells were divided into
inflammatory monocytes/macrophages (CD3-/NK1.1-/B220-/
CD11b+/Ly6G-/Siglec-F-/Ly6Chigh) and M2-polarized
macrophages (CD3-/NK1.1-/B220-/CD11b+/Ly6G-/Siglec-F-/
Ly6Clow) by using the Ly6C marker. Mast cells and basophils
were gated from singlets without prior dead cell exclusion. Mast
cells were gated as FcϵRIa+/CD117+/CD49- and basophils as
FcϵRIa+/CD117+/CD49+.

Enzyme-Linked Immunosorbent
Assay (ELISA)
OVA-specific IgE was detected by ELISA according to the
manufacturer’s recommendations (BioLegend).

Quantification of Cytokines in BAL
Cytokines were quantified in undiluted BAL using a 13-plex
cytometric bead array according to the manufacturer’s
instructions (LEGENDplex™ Th-cytokine panel, BioLegend).
The following cytokines were analyzed (detection limits): IL-2
(2.22 pg/ml), IL-4 (1.34 pg/ml), IL-5 (4.07 pg/ml), IL-6 (0.69 pg/
ml), IL-9 (1.22 pg/ml), IL-10 (6.65 pg/ml), IL-13 (1.70 pg/ml),
IL-17A (2.14 pg/ml), IL-17F (1.85 pg/ml), IL-21 (1.72 pg/ml), IL-
22 (2.15 pg/ml), IFN-g (1.39 pg/ml), TNF-a (2.09 pg/ml).

Assessment of Airway Hyperreactivity
Mice were anesthetized and mechanically ventilated (120
breaths/min) after tracheotomy (Buxco FinePointe R/C, DSI™

USA). After an acclimation period of 5 min, 10 µl PBS containing
increasing concentrations of methacholine (0, 6.25, 12.5, 25, 25,
50, 100 mg/ml) were automatically nebulized into the breathing
air (20 s delivery duration). Resistance and compliance were
assessed over a 3 min response time for each methacholine
concentration. After each response time there was a 1 min
recovery time before nebulization of the next higher
methacholine concentration. Resistance and compliance were
calculated based on the single compartment lung model, using
the lung pressure and air flow values that were continuously
measured. For each individual animal and methacholine
concentration, the average resistance over the entire respective
3 min response time was assessed. Data were analyzed using the
FinePointe software.
Frontiers in Immunology | www.frontiersin.org 4
Histopathological Analysis
Lungs were fixed in 4 % formalin, embedded in paraffin and 5 µm
sections were dewaxed and stained with hematoxylin and eosin.
Blinded histological evaluations were performed by a veterinary
pathologist certified by the European College of Veterinary
Pathologists. The % of the tissue affected was assessed and
lungs were scored (1 = mild, 2 = moderate, 3 = high) for
perivascular lymphocytic infiltrates, interstitial lymphocytic
infiltrates, alveolar lymphocytes, interstitial eosinophils,
alveolar eosinophils, alveolar neutrophils, bronchial epithelial
hyperplasia and type II pneumocyte hyperplasia. PAS (periodic-
acid Schiff) staining was performed to assess accumulation of
mucus and scored for goblet cell hyperplasia in the medium sized
and large bronchi.

Statistical Analysis
All statistical analyses were performed using the Graph Pad
Prism software version 8 (Graph Pad Software). To assess the
induction of AAI, comparison of all treatment groups to the
control group was performed. To assess the effects of i.n. SEB-
treatment on AAI, comparisons between all treatment groups
were performed. Data for all experimental groups were tested for
normality using the Shapiro-Wilk normality test. In the case of
Gaussian distribution for all groups in a comparison, one-way
ANOVA and Bonferroni post-hoc testing was performed. In the
case of non-Gaussian distribution in at least one of the groups in
a comparison, Kruskal-Wallis testing with Dunn’s post-hoc
testing was performed. P ≤ 0.05 was considered indicative
of statistical significance (*p < 0.05, ** p < 0.01, *** p < 0.005,
**** p < 0.0001).
RESULTS

Modulation of the Allergic Inflammation:
SEB-Treatment During the Allergic
Challenge Significantly Affects Immune
Cell Recruitment to the Respiratory Tract
and Alleviates Airway Hyperreactivity
in AAI
In order to assess effects of i.n. SEB-treatment on AAI, we
employed an OVA-mediated mouse model. Mice were i.p.
sensitized with OVA followed by the induction of AAI through
an i.n. OVA-challenge. We first analyzed the influence of SEB co-
administered to the airways with the allergen-challenge. We
chose 50 ng SEB as a low and 500 ng SEB as a higher but
sublethal dose (31, 40). As a basis for these analyses, we assessed
effects of i.n. treatment with the same doses of SEB alone in
mock-sensitized mice (Supplementary Figure 4). Following
treatment with 500 ng SEB we observed a significant increase
in total cell numbers, CD4+ T cell numbers and eosinophils in
the lungs and BAL. Also respiratory levels of IFN-g, IL-5 and
TNF-a were significantly increased. Treatment with 50 ng SEB
did not lead to significant changes in these parameters
October 2020 | Volume 11 | Article 592186
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(Supplementary Figure 4A-I). For a detailed characterization of
the effects of SEB-treatment on AAI, mice were treated with SEB
together with the allergic challenge (Figure 1A). In the lungs,
induction of AAI alone led to a significant increase in total cell
numbers, eosinophils, mast cells, alveolar macrophages, M2-
polarized monocytes/macrophages and DC (Figures 2A–G).
Also the frequency of M2-polarized monocytes/macrophages
within the monocyte/macrophage population was significantly
increased following the induction of AAI (data not shown). The
total lung leukocyte number was not significantly altered by
additional intranasal treatment with 50 ng or 500 ng SEB during
the allergic challenge (Figure 2A). Nevertheless, treatment with
50 ng SEB led to significantly increased numbers (but not
frequency; data not shown) of M2-polarized monocytes/
macrophages and DC as compared to AAI alone (Figures
2E, F). Treatment with 500 ng SEB led to rather reduced
numbers of these cells as compared to AAI alone and to
significantly reduced numbers as compared to treatment with
50 ng SEB (Figures 2E, F). Lung neutrophils were not
significantly elevated in AAI alone but in AAI combined with
the treatment with 500 ng SEB during the challenge (Figure 2G).

In the BAL, the induction of AAI led to a significant increase
of total cell numbers and eosinophils (Figures 3A, B) and
Frontiers in Immunology | www.frontiersin.org 5
eosinophil numbers were also significantly elevated in the
spleen following induction of AAI alone (Figure 3C).
Treatment with 50 ng or 500 ng SEB during the allergic
challenge did not significantly affect these parameters as
compared to AAI alone (Figures 3A–C). There was however
no significant elevation in splenic eosinophils in AAI, if mice
were treated with 500 ng SEB during the allergic challenge
(Figure 3C). In AAI, lung lesions were histologically
characterized by typical bronchointerstitial pneumonia with a
strong involvement of eosinophils. Mild bronchial epithelial
hyperplasia and pneumocyte type II hyperplasia were observed.
After treatment with either 50 ng or 500 ng SEB during the
allergic challenge, these changes were similar (Figure 3D),
however with milder perivascular lymphocytic infiltrates but
moderate interstitial lymphocytic infiltrates and moderate type
II pneumocyte hyperplasia. Accumulation of mucus was
observed only sporadically but goblet cell hyperplasia in the
medium sized and predominantly large bronchi was present in
AAI and was not affected by SEB-treatment during the challenge
(Supplementary Figure 5). Compared to unchallenged controls,
induction of AAI alone led to significantly increased levels of
OVA-specific IgE antibodies which were not altered by additional
treatment with either 50 ng or 500 ng SEB (Figure 3E). Airway
A B

D E F

G

C

FIGURE 2 | Modulation of the allergic inflammation: S. aureus enterotoxin B (SEB)-treatmentduring the allergen challenge leads to distinct changes in cell
recruitment to the lung. For theinduction of allergic airway inflammation (AAI), mice were sensitized three times intraperitoneally(i.p.) with 10 µg ovalbumin (OVA) and
alum in weekly intervals(d 0, 7, 14). One week after the last sensitization they were intranasally (i.n.)challenged with OVA (■ OVA/OVA) or OVA together with 50 ng or
500 ng SEB on three consecutivedays (50 ng SEB (▲): OVA/OVA + SEB50; 500 ng SEB (♦): OVA/OVA +SEB500). Control mice were sensitized but mock-
challenged with PBS only (● OVA/sal). On day 25, lung leukocytes were analyzed for total cell counts (A), absolute numbers of eosinophils (B), mast cells (C),
alveolar macrophages (D), M2-polarized monocytes/macrophages (E), dendritic cells (F), and neutrophils (G). Data compiled from at least two independent
experiments are shown for individual mice with the median. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.0001.
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hyperreactivity, assessed as airway resistance in response to
methacholine, was significantly elevated in AAI alone and in
AAI combined with the i.n. treatment with 50 ng SEB, but not in
AAI combined with the i.n. treatment with 500 ng SEB during the
allergic challenge (Figure 3F). Treatment with 500 ng SEB during
the allergic challenge resulted in significantly decreased airway
hyperreactivity as compared to AAI alone (Figure 3F).
Frontiers in Immunology | www.frontiersin.org 6
In summary, treatment with 50 ng SEB during the allergic
challenge significantly increased M2-polarized monocytes/
macrophages and DC in the lungs without significantly
affecting airway hyperreactivity as compared to AAI alone. In
contrast, likewise treatment with 500 ng SEB significantly
reduced absolute numbers of M2-polarized monocytes/
macrophages and DC as compared to treatment with 50 ng
A B

D

E F

C

FIGURE 3 | Modulation of the allergic inflammation: S. aureus enterotoxin B (SEB)-treatmentduring the allergen challenge significantly affects airway hyperreactivity.
Ovalbumin(OVA)-sensitized mice were i.n. challenged with OVA (■ OVA/OVA) or OVA together with 50 ng or500 ng SEB (50 ng SEB (▲): OVA/OVA + SEB50; 500
ng SEB (♦): OVA/OVA +SEB500). Control mice were mock-challenged with PBS only (● OVA/sal). On day 25, bronchoalveolar lavage (BAL) leukocytes were
analyzed regarding the total cell count (A) and eosinophil numbers (B) and splenocytes were analyzed for eosinophil numbers (C). Lungs (n = 4 controls, n = 5 in
treatment groups) were stained with hematoxylin and eosin, scale bar = 50 µm (D). OVA-specific IgE in the serum (E) and airway hyperreactivity (n=6/group from
two independent experiments) were assessed (F). In (A–C, E) data compiled from at least two independent experiments and the median are shown for individual
mice. *p < 0.05, **p < 0.01, ***p < 0.005. In (D) representative images are shown. In (F) data are shown as mean + SD. P-values (*p < 0.05, ****p < 0.0001) refer to
RI after 100 mg/ml methacholine.
October 2020 | Volume 11 | Article 592186
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SEB while at the same time attenuating airway hyperreactivity as
compared to AAI alone.

Modulation of the Allergic Inflammation:
SEB-Treatment During the Allergic
Challenge Significantly Affects
Lymphocyte Activation and Cytokines in
the Respiratory Tract in AAI
To characterize the effects of i.n. SEB-treatment during allergen
encounter on the phenotype of AAI in more detail, we assessed
lymphocyte numbers and lymphocyte expression of the activation
marker CD69 as well as cytokine levels in the respiratory tract of
mice treated with SEB together with the allergic challenge. The
induction of AAI alone led to significantly elevated numbers of
B220+ B cells and CD69+ B220+ B cells in the lungs (Figures 4A, B).
CD4+ and CD8+ T cells were significantly increased in the BAL
(Figures 4C, G) and lungs (Figures 4D, H) and CD69+ CD4+ T
cells were significantly increased in the lungs (Figure 4E). Also the
frequency of Th2 cells in the lungs was significantly elevated in AAI
alone (Figure 4F). Treatment with 50 ng SEB during the allergic
Frontiers in Immunology | www.frontiersin.org 7
challenge did not affect total B220+ B cell numbers in the lungs
(Figure 4A) but led to a significant increase of CD69-expressing
B220+ B cells as compared to AAI alone (Figure 4B). Furthermore,
total CD4+ T cell and CD8+ T cell numbers (Figures 4D, H) in the
lungs were significantly elevated as compared to AAI alone.
Treatment with 500 ng SEB during the allergic challenge did not
affect B cell numbers or activation in the lungs as compared to AAI
alone (Figures 4A, B). Nevertheless, total CD4+ in the BAL and
lungs (Figures 4C, D) and CD8+ T cells in the BAL (Figure 4G)
and activated CD4+ T cells in the lungs (Figure 4E) were
significantly increased as compared to AAI alone. In contrast,
while in AAI alone and in AAI in combination with 50 ng SEB
there was a significant increase in the frequency of Th2 cells in the
lungs (Figure 4F), this was not the case in AAI in combination with
500 ng SEB administered during the allergic challenge (Figure 4F).

Taken together, CD4+ T cell numbers in the lung were
likewise affected by treatment with 50 ng and 500 ng SEB.
Furthermore, treatment with 50 ng SEB explicitly intensified B
cell activation and CD8+ T cell numbers in the lung, while
treatment with 500 ng SEB significantly increased CD8+ T cell
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C

FIGURE 4 | Modulation of the allergic inflammation: S. aureus enterotoxin B (SEB)-treatmentduring the allergen challenge leads to increased numbers of activated
lung lymphocytes. Ovalbumin(OVA)-sensitized mice were i.n. challenged with OVA (■ OVA/OVA) or OVA together with 50 ng or500 ng SEB (50 ng SEB (▲): OVA/
OVA + SEB50; 500 ng SEB (♦):OVA/OVA + SEB500). Control mice were mock-challenged with PBS only (● OVA/sal). On day 25, lungs and bronchoalveolar lavage
(BAL) were analyzed for the absolute numbers of B220+ B cells (A) and CD69+ B220+ B cells (B) in the lungs, CD4+ T cells (BAL (C), lung (D)), CD69+ CD4+ T cells
(lung (E)), the frequency of Th2 cells within CD4+ T cells (lung (F)) and CD8+ T cells (BAL (G), lung (H)). Data compiled from at least two independent experiments
are shown for individual mice with the median. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.0001.
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numbers in the BAL, intensified CD4+ T cell activation in the
lung and interfered with Th2 cell recruitment/polarization in the
lungs in AAI.

AAI is typically accompanied by the local production of
characteristic cytokines such as IL-4 and IL-5 as well as pro-
inflammatory mediators. On the basis of the significant SEB-
mediated changes we observed in the immune cell composition
and lymphocyte activation in the airways in AAI, we assessed the
respiratory cytokine profile following the induction of AAI with
and without additional SEB-treatment during the allergic
challenge. AAI was characterized by a significant increase in
IL-4, IL-5 and TNF-a in the BAL (Figures 5A–C). There was no
significant induction of IL-13, IFN-g, IL-6 or IL-17A (Figures
5D–G). Treatment with 50 ng SEB during the allergic challenge
did not significantly affect levels of any of these cytokines.
Treatment with 500 ng SEB during the allergic challenge had
no significant effect on the concentrations of IL-4, IL-5, IL-13
and IL-17 in the BAL (Figures 5A, B, D, G), while at the same
time IL-4 and IL-5 were not significantly increased as compared
to the control, which was however the case for AAI alone and
AAI in combination with 50 ng SEB (Figures 5 A, B).
Furthermore there were significantly increased concentrations
of TNF-a, IFN-g and IL-6 as compared to AAI alone (Figures
5C, E, F).
Frontiers in Immunology | www.frontiersin.org 8
Taken together, treatment with 500 ng SEB during the allergic
challenge as compared to AAI alone led to increased airway
IFN-g, IL-6 and TNF-a, while dampening the AAI-associated
induction of Th2 cytokines. These effects on the cytokine profile
pointed at a possible shift towards a rather Th1- and pro-
inflammatory cytokine response.

Modulation of the Allergic Sensitization:
SEB-Treatment Prior to Sensitization
Significantly Affects Immune Cell
Recruitment and IgE-Production in AAI
Based on the effects on AAI we observed for SEB administered
together with the allergic challenge (summarized in Table 1), we
asked whether SEB administered i.n. before the peripheral
sensitization also has the potential to modulate AAI. To address
possible effects of SEB-treatment before sensitization, mice were i.n.
treated with SEB on three consecutive days before the first i.p.
sensitization (Figure 1B). Long-term effects of intranasal SEB-
treatment alone were assessed in unsensitized control animals
(day 25). Here, mice treated with 50 ng and 500 ng SEB without
the induction of AAI still showed significantly increased total cell
numbers in the lung (Supplementary Figure 6A). Total cell counts in
the BAL as well as CD4+ T cell and eosinophil numbers in lungs and
BAL were not significantly affected (Supplementary Figure 6B-F).
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FIGURE 5 | Modulation of the allergic inflammation: S. aureus enterotoxin B (SEB)-treatmentduring the allergic challenge leads to an increased production of pro-
inflammatory cytokines in therespiratory tract. Ovalbumin (OVA)-sensitized mice were i.n. challenged with OVA (■ OVA/OVA)or OVA together with 50 ng or 500 ng
SEB (50 ng SEB (▲): OVA/OVA + SEB50;500 ng SEB (ɦ): OVA/OVA + SEB500). Control mice were mock-challenged with PBSonly (● OVA/sal). On day 25,
bronchoalveolar lavage (BAL) was analyzed for the concentrations of IL-4 (A), IL-5 (B), TNF-a (C), IL-13 (D), IFN-g (E), IL-6 (F), and IL-17A (G). Data compiled from
at least two independent experiments are shown for individual mice with the median. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.0001.
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Furthermore, at this time-point we did not any longer detect
significant changes in the levels of IFN-g, IL-5 or TNF-a in the
respiratory tract (Supplementary Figure 6G-I). I.n. treatment
with 50 ng SEB before the first sensitization did not affect total cell
numbers, eosinophils, mast cells, alveolar macrophages, the
frequency (or total number, data not shown) of M2-polarized
monocytes/macrophages, DC or neutrophils as compared to AAI
alone (Figures 6A–G). However, the total number of basophils in
the lungs was significantly increased as compared to AAI alone
(Figure 6H). I.n. pre-treatment with 500 ng SEB before the first
sensitization led to significantly reduced total cell numbers in the
lungs as compared to AAI alone (Figure 6A). There were no
changes in the absolute numbers of mast cells, alveolar
macrophages, DC, neutrophils or basophils (Figures 6C, D, F–
H). However, as compared to AAI alone, treatment with 500 ng
SEB before sensitization led to significantly reduced numbers of
eosinophils and a reduced frequency (but not absolute numbers,
data not shown) of M2-polarized monocytes/macrophages in the
lungs (Figures 6B, E).

Also in the BAL, total cell counts and eosinophil numbers
were unchanged between AAI alone and pre-treatment with 50
Frontiers in Immunology | www.frontiersin.org 9
ng SEB (Figures 7A, B). Treatment with 500 ng SEB before
sensitization however led to a significant reduction in total cell
number in BAL (Figure 7A), as had also been observed for the
lungs (Figure 6A). Eosinophil numbers in the BAL and spleen
were not significantly altered between AAI alone and treatment
with 50 ng or 500 ng SEB before sensitization (Figures 7B, C).
There was a clear and significant increase in the production of
OVA-specific IgE antibodies in mice i.n. treated with 50 ng SEB
before sensitization as compared to AAI alone (Figure 7D). At
the same time, i.n. SEB-treatment before sensitization at either
dose, in contrast to treatment together with the challenge, did not
significantly affect airway hyperreactivity in AAI (Figures 7E).

In summary, as compared to AAI alone, i.n. treatment with 50
ng SEB before sensitization led to a significant increase of
basophils in the lungs and to significantly increased serum
OVA-specific IgE antibody levels. In contrast, likewise
treatment with 500 ng SEB led to significantly decreased
numbers of eosinophils as well as a significantly reduced
frequency of M2-polarized monocytes/macrophages in the
lungs. These data (summarized in Table 1) clearly show a
long-term potential for intranasal SEB to modulate AAI,
possibly also through affecting peripheral allergic sensitization.

Modulation of the Allergic Sensitization:
SEB-Treatment Before Sensitization Does
Not Affect Respiratory Lymphocyte
Activation but Cytokine Production in AAI
As compared to AAI alone, neither pre-treatment with 50 ng or
500 ng SEB affected the number of total and CD69-expressing
B220+ B cells and CD4+ T cells, the total number of CD8+ T cells
or the frequency of Th2 CD4+ T cells in the lungs (Figures 8A, B,
D–F, H). Also BAL CD4+ and CD8+ T cells were not affected
(Figures 8C, G). With regard to respiratory cytokines, pre-
treatment with 50 ng SEB did not significantly affect IL-4, IL-5,
TNF-a, IL-13, IFN-g, IL-6 or IL-17A (Figures 9A–G). As
compared to the controls, TNF-a was significantly induced
only in AAI alone but not in AAI after treatment with 50 ng
or 500 ng SEB (Figure 9C). Treatment with 500 ng SEB before
sensitization led to significantly reduced levels of IL-4, IL-5, IL-6
and IL-17A as compared to AAI alone (Figures 9A, B, F, G).

In conclusion, SEB i.n. administered before peripheral
sensitization, next to affecting recruitment of major effector
cells (50 ng and 500 ng) and the production of allergen-
specific IgE antibodies (50 ng), profoundly modulated Th2 and
pro-inflammatory respiratory cytokine production (500 ng)
in AAI.
DISCUSSION

S. aureus is one of the most important bacterial pathogens. It is
widely accepted that next to frequent persistent colonization
every individual gets into contact with it at least once in their life
(18, 41–43). Furthermore, it has been shown that the skin of over
90% of patients with atopic dermatitis is colonized by S. aureus
and that disease severity directly correlates to biofilm growth
TABLE 1 | Summary of the significant effects of i.n. S. aureus enterotoxin B
(SEB)-treatment on allergic airway inflammation (AAI).

i.n. SEB-treat-
ment

SEB-
dose

AAI parameter Effect

with challenge 50 ng cells in respiratory tract
lung M2 macrophages/monocytes increased
lung DC increased
lung CD69+ B220+ B cells increased
lung CD4+ T cells increased
lung CD8+ T cells increased

500 ng airway hyperreactivity
response to metacholine decreased
cells in respiratory tract
BAL CD4+ T cells increased
lung CD4+ T cells increased
lung CD69+ CD4+ T cells increased
BAL CD8+ T cells increased
respiratory cytokines
BAL IFN-g increased
BAL IL-6 increased
BAL TNF-a increased

prior to
sensitization

50 ng IgE response
serum OVA-specific IgE increased
cells in respiratory tract
lung basophils increased

500 ng cells in respiratory tract
lung total cells decreased
BAL total cells decreased
lung eosinophils decreased
lung M2 macrophage/monocyte
frequency

decreased

respiratory cytokines
IL-4 decreased
IL-5 decreased
IL-6 decreased
IL-17A decreased
The table lists significant SEB-mediated effects detected on parameters of AAI as
described in the Results section. All significant changes for the respective SEB-treated
groups as compared to AAI alone are listed.
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(13, 44–46). Also patients with chronic rhinosinusitis are
frequently colonized by S. aureus (16, 47) and a significant
relationship between nasal S. aureus carriage and asthma
severity has been recognized (8).

Different S. aureus proteins, such as, e.g., serine protease like
proteases (Spls), have come into focus regarding Th2-biased
immune responses (48) and also S. aureus toxins have been
proposed to contribute to the development of allergic diseases in
clinical and experimental studies (49, 50). Clinical studies
analyzing S. aureus isolates recovered from nasal carriers
showed occurrence of SEB-producing strains (51, 52), whereas
to our knowledge reports on natural concentrations of SEB
produced by S. aureus in the human respiratory tract are
lacking. Different groups have performed dosing studies for i.n.
SEB-treatment in naïve and sensitized wild-type mice with
respect to parameters such as the recruitment of leukocytes to
the respiratory tract and have observed significant reactions
following treatment with 50 ng and 500 ng SEB, without signs
of wasting disease (31, 40). In line with these studies, we did not
observe significant effects following i.n. treatment with 5 ng SEB
alone (data not shown) and based on the previous reports and
our results we chose to analyze i.n. treatment with 50 ng and 500
ng SEB during the allergic challenge and before sensitization.
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Few previous experimental studies have performed treatment of
wild-type mice with SEB in different models of AAI and
demonstrated a strong immune modulatory potential (31, 33,
39). Combined epicutaneous SEB/OVA-sensitization before
airway OVA-challenge led to increased inflammatory cells in
the lungs as compared to mice sensitized with OVA alone (39).
Furthermore i.n. SEB-treatment, and not any other S. aureus
toxin, together with OVA facilitated respiratory sensitization and
resulted in increased serum levels of OVA-specific IgE, a
significant recruitment of eosinophils and lymphocytes and
increased airway hyperreactivity (33). In a similar approach to
ours, peripherally OVA-sensitized mice were treated i.n. with
500 ng SEB before aerosol challenge. Here, SEB led to increased
cell counts and especially eosinophils in BAL-cytospins and to
enhanced bronchial mRNA levels for IL-5, IL-4, eotaxin-1, IL-12
p40, IFN-g and TGF-b (31). We aimed at taking these important
observations further towards unraveling the underlying
immunological mechanisms, especially as also the clinical
associations between SEB and allergic asthma remain
mechanistically unclear.

We observed that treatment with 50 ng SEB during the
allergic challenge led to a significant increase of DC and M2-
ploarized monocytes/macrophages in the lungs. While Muraille
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FIGURE 6 | Modulation of sensitization: S. aureus enterotoxin B (SEB)-treatment prior tothe first sensitization leads to distinct changes in the recruitment of cells to
the respiratorytract in allergic airway inflammation (AAI). Mice were treated i.n. with 50 ng or 500 ng SEB or PBS(control; sal) on three consecutive days, then i.p.
sensitized with ovalbumin (OVA) and alum andi.n. challenged with OVA (50 ng SEB (D): SEB50/OVA/OVA; 500 ng SEB(◊): SEB500/OVA/OVA; AAI (□): sal/OVA/OVA).
Control mice were mockchallenged i.n. with PBS only (○ sal/OVA/sal). On day 25, lung leukocytes were analyzed for the total cell count (A), absolute numbers of
eosinophils (B), mast cells (C), alveolar macrophages (D), the frequency of M2-polarized monocytes/macrophages (E), absolute numbers of dendritic cells (F),
neutrophils (G), and basophils (H). Data compiled from at least two independent experiments are shown for individual mice with the median. *p < 0.05, **p < 0.01,
***p < 0.005, ****p < 0.0001.
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et al. observed that intravenous injection of SEB led to decreased
DC numbers in the spleen (53), Yoon et al. demonstrated that
i.p.-injected SEB is a potent activator of splenic DC (54). Krysko
et al. treated mice i.n. with OVA, SEB or a combination of both
and observed increased numbers of DC of various phenotypes
following combined treatment (55). Our data are in line with the
recent observation that S. aureus induces type-2 polarization of
monocytes/macrophages and the activation of M2-polarized
macrophages through the production of enterotoxins. Such
polarized macrophages show decreased phagocytosis of S.
aureus allowing its long term survival (12, 56). Also,
macrophages are potent modulators of asthma (57) and
experimental studies showed that the inhibition of M2-
polarization aggravates airway hyperreactivity (58) while vice
versa airway hyperreactivity can be alleviated by increased M2
polarization (59). As opposed to these findings, we observed that
airway hyperreactivity was not significantly affected despite
significantly increased numbers of M2 macrophages in mice
treated with 50 ng SEB during the allergic challenge. On the other
hand, treatment with 500 ng SEB together with the allergic
challenge led to significantly alleviated airway hyperreactivity
while M2-polarization was not significantly altered as compared
to AAI alone. In treatment with 500 ng SEB before sensitization
the frequency of M2-polarized macrophages was significantly
less as compared to AAI alone, while at the same time airway
hyperreactivity was also not significantly affected. As
Frontiers in Immunology | www.frontiersin.org 11
development of airway hyperreactivity itself is a multifactorial
process (60), one can only speculate that in our models
alternative mechanisms overlaying the expected effects of
altered M2 polarization on airway hyperreactivity are at play.
Possibly also the sex of the mice used in our experiments plays a
role, as generally airway hyperreactivity in response to
methacholine is less pronounced in female mice (61, 62). With
respect to the superantigen properties of SEB (28, 63, 64) and
related effects on lymphocytes, we next to a dose-dependent
increase of CD4+ and CD8+ T cell numbers and CD69-
expression in the respiratory tract show significantly increased
numbers of CD69-expressing B cells in the lungs after i.n.
treatment with 50 ng SEB during the allergic challenge. This is
possibly a direct effect of SEB on respiratory B cells, as
staphylococcal enterotoxins are potent B cell activators in
human PBMC cultures (65, 66). Furthermore, treatment with
500 ng SEB during the allergic challenge led to an increase of pro-
inflammatory cytokines and to significantly increased
concentrations of IFN-g, which mirrors the typical antibacterial
type-1 immune response after S. aureus infection (28, 67, 68).
While other reports showed increased levels of typical type-2
cytokines after i.n. treatment with SEB alone or in combination
with OVA (31, 33, 37, 40, 69), we observed no significant changes
in IL-4, IL-5 and IL-13 in AAI, if mice had been treated with SEB
during the allergic challenge. Our observations suggest that the
SEB-induced Th1- and pro-inflammatory cytokine response
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FIGURE 7 | Modulation of sensitization: S. aureus enterotoxin B (SEB)-treatment prior tothe first sensitization leads to changes in bronchoalveolar lavage (BAL)
leukocyte numbers and serumIgE in allergic airway inflammation (AAI). Mice were treated i.n. with 50 ng or 500 ng SEB or PBS(control; sal) on three consecutive
days, then i.p. sensitized with ovalbumin (OVA) and alum andi.n. challenged with OVA (50 ng SEB (D): SEB50/OVA/OVA; 500 ng SEB(◊): SEB500/OVA/OVA; AAI (□):
sal/OVA/OVA). Control mice weremock-challenged i.n. with PBS only (o sal/OVA/sal). On day 25, leukocytes from BAL were analyzed for the total cell count (A) and
absolute number of eosinophils (B). Splenocytes were analyzed for eosinophils (C). OVA-specific IgE-antibodies were assessed in the serum (D) and airway
hyperreactivity (n=6/group from two experiments) was analyzed (E). In (A–C), and (D) data compiled from at least two independent experiments and the median are
shown for individual mice. *p < 0.05, **p < 0.01, ****p < 0.0001. In (E) data are shown as mean + SD. P-values (*p < 0.05, ***p < 0.005) refer to RI after 100 mg/ml,
methacholine.
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possibly shifts the balance away from, or at least does not
generally boost, the allergy-associated Th2-response (70). This
is further supported by the reduced frequency of Th2 cells and
the reduced number of M2-polarized macrophages we observed
in the lungs of mice treated with 500 ng SEB during the allergic
challenge, as both the frequency of Th2 cells and the number of
M2 macrophages in the lung were significantly elevated in AAI
alone, but not in AAI in combination with 500 ng SEB during the
allergic challenge. These changes were associated with
significantly decreased airway hyperreactivity, showing that
SEB-mediated modulation of AAI can have beneficial effects
on lung functional parameters. This finding is remarkable, as
generally SEB is associated with an aggravation of AAI (31, 71).

Intraperitoneal injection of SEB leads to lung inflammation (72)
and intranasal SEB facilitates respiratory sensitization (33).
However, the question whether i.n. SEB-treatment would affect
peripheral sensitization has not been addressed. Administration of
SEB prior to sensitization indeed showed distinct effects on
subsequently induced AAI. Administration of 50 ng SEB prior to
sensitization led to significantly elevated levels of OVA-specific IgE
in the serum, suggesting that SEB encountered via the respiratory
Frontiers in Immunology | www.frontiersin.org 12
tract has the potential to enhance peripheral allergic sensitization. At
this point it remains elusive, how this effect is mediated. Possibly,
dissemination of local inflammatory mediators to the periphery or
even neuronal pathways play a role. Clinical studies have shown that
S. aureus colonization in atopic dermatitis leads to a higher degree
of allergic sensitization and a higher frequency of asthma (73).
Furthermore a role for SEB and also for SEB-specific IgE-antibodies
in allergic sensitization and in asthma pathogenesis has been
proposed (74, 75). Treatment with 500 ng SEB prior to
sensitization affected AAI at multiple levels resulting in altogether
ameliorated allergic inflammation. Future studies will have to
address whether this finding reflects acute effects on sensitization,
long-term SEB-mediated effects on local and peripheral
lymphocytes, on the microenvironment of the respiratory tract
including the respiratory epithelium or a combination of these.
Then, a central question will be whether these effects can in any way
be exploited for therapeutic purposes.

Ultimately, our study demonstrates that the potential of SEB
to modulate AAI is exceptionally versatile and at different levels
can affect allergic sensitization, inflammation as well as airway
hyperreactivity (Table 1). While administration of 500 ng SEB
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FIGURE 8 | Modulation of sensitization: Intranasal treatment with S. aureus enterotoxin B(SEB) prior to the first sensitization does not affect respiratory lymphocyte
activation in allergicairway inflammation (AAI). Mice were treated i.n. with 50 ng or 500 ng SEB or PBS(control; sal) on three consecutive days, then i.p. sensitized
with ovalbumin (OVA) and alum andi.n. challenged with OVA (50 ng SEB (D): SEB50/OVA/OVA; 500 ng SEB(◊): SEB500/OVA/OVA; AAI (□): sal/OVA/OVA). Control
mice weremock-challenged i.n. with PBS only (○ sal/OVA/sal). On day 25, lungs and bronchoalveolar lavage (BAL) were analyzed for the absolute numbers of B220+

B cells (lung (A)) and B220+ CD69+ B cells [lung (B)], CD4+ T cells [BAL (C), lung (D)], CD69+ CD4+ T cells [lung (E)], the frequency of Th2 cells of CD4+ T cells [lung
(F)] and CD8+ T cells (BAL (G), lung (H)) Data compiled from at least two independent experiments are shown for individual mice together with the median. *p <
0.05, **p < 0.01, ***p < 0.005, ****p < 0.0001.
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during the allergic challenge shifted inflammation towards a
Th1- and pro-inflammatory phenotype and ameliorated airway
hyperreactivity, administration of the same dose of SEB prior to
sensitization generally dampened AAI without significantly
enhancing Th1- or pro-inflammatory parameters. We describe
for the first time that i.n. SEB-treatment before peripheral
sensitization has a clear potential to boost the allergen-specific
IgE-response. As opposed to previous reports, we therefore
propose SEB rather to specifically modulate than to generally
aggravate allergic processes, which in the future could potentially
even open therapeutic pathways. Our major finding is that SEB-
mediated modulation of AAI can have beneficial or detrimental
consequences that strongly depend on whether SEB is
encountered before allergic sensitization or concurrent with the
allergic challenge and on the intensity of this encounter. Future
experimental and clinical studies will have to disentangle the
exact interplay between SEB, allergic sensitization and airway
inflammation depending on when, where and also on how
intensely SEB is encountered. Such studies will have to
elucidate which of the SEB-mediated effects relate to the
superantigen-activity of SEB on lymphocytes and which are
mediated by lymphocyte-independent pathways such as
modulation of respiratory epithelial cell responses or direct
Frontiers in Immunology | www.frontiersin.org 13
skewing of the phenotype and function of alveolar
macrophages and monocytes. Our observations raise the central
question, which SEB-mediated changes ultimately tip the
immunological balance aggravating or alleviating AAI. Such
knowledge will enable targeted strategies of prevention and
therapy, especially in the light of S. aureus infections and
colonization as well as of the large number of S. aureus carriers
and patients suffering from allergic asthma. Such measures could
possibly range from screening for toxigenic S. aureus carriage,
targeted de-colonization or targeting of suppressive pathways in
inflammation and airway hyperreactivity.
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FIGURE 9 | Modulation of sensitization: Treatment with 500 ng S. aureus enterotoxin B(SEB) prior to sensitization leads to decreased type-2 cytokines in allergic
airway inflammation(AAI). Mice were treated i.n. with 50 ng or 500 ng SEB or PBS (control; sal) on threeconsecutive days, then i.p. sensitized with ovalbumin (OVA)
and alum and i.n. challenged with OVA(50 ng SEB (D): SEB50/OVA/OVA; 500 ng SEB (◊):SEB500/OVA/OVA; AAI (□): sal/OVA/OVA). Control mice were mock-
challenged i.n. withPBS only (○ sal/OVA/sal). On day 25, bronchoalveolar lavage (BAL) was analyzed for IL-4 (A), IL-5 (B), TNF-a (C), IL-13 (D), IFN-g (E), IL-6 (F),
and IL-17A (G). Data from two independent experiments are shown for individual mice with the median. *p < 0.05, **p < 0.01.
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