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1. Synopsis 
 
1.1 Abstract (English) 

Magnetic resonance imaging (MRI) is used extensively for differential diagnosis and disease 

monitoring in neuroinflammatory disorders. Neuromyelitis optica spectrum disorders 

(NMOSD) are autoimmune neuroinflammatory diseases of the central nervous system that 

affect mainly the optic nerves, and spinal cord (SC). SC MRI shows longitudinally extensive 

transverse myelitis in the vast majority of NMOSD patients, where chronic inflammation 

leads to SC lesions and SC atrophy. In vivo imaging biomarkers are lacking for these 

patients, which could greatly aid in evaluating treatment efficacy or monitoring disease-

related changes. 

The key questions addressed in my dissertation are: 

1. Can cerebral T1-weighted MRI be used to measure SC atrophy in NMOSD? 

2. Is there a difference in SC affection between aquaporin-4 IgG seropositive (AQP4-

IgG+) and myelin oligodendrocyte glycoprotein IgG seropositive (MOG-IgG+) 

NMOSD patients? 

3. Is spinal cord atrophy associated with damage in thalamic subregions of AQP4-IgG+ 

patients with myelitis? 

Cervical cord volume, total cord volume, and mean upper cervical cord area (MUCCA) were 

compared and demonstrated the ability to discriminate between AQP4-IgG+ NMOSD 

patients and healthy participants. MUCCA, measured from cerebral T1-weighted MRIs, 

correlated well with cervical cord and total cord volumes, even in patients. SC atrophy 

measurements using MUCCA were thus shown to accurately reflect damage in the entire SC 

of AQP4-IgG+ NMOSD patients. The SC lesion prevalence in specific locations and the 

mean MUCCA between the NMOSD antibody subgroups were similar. However, AQP4-

IgG+ patients had more myelitis attacks, SC lesions, and SC atrophy than MOG-IgG+ 

patients. MUCCA associated with clinical attacks and disability in both NMOSD subgroups 

combined. Damage to the ventral posterior nucleus of the thalamus in AQP4-IgG+ patients 

with myelitis attacks were tested for association with MUCCA. This assessment of mutual 

damage/atrophy was negative. In summary, these studies proved that SC atrophy can be 

assessed using MUCCA, increases in NMOSD patients with more myelitis attacks, and that 

MUCCA is a valuable in vivo imaging parameter in NMOSD. These findings will be crucial 

in future clinical studies that monitor or evaluate treatment efficacy of patients with 

neuromyelitis optica spectrum disorders. 
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1.2 Abstract (Deutsch) 
 
Die Magnetresonanztomographie (MRT) ist eine wichtige Methode für die 

Differentialdiagnose und das Monitoring neuroinflammatorischer Erkrankungen. Bei 

Neuromyelitis optica Spektrum-Erkrankungen (NMOSD) handelt es sich um eine Gruppe 

autoimmuner, inflammatorischer Erkrankungen des zentralen Nervensystems, die vor allem 

die Sehnerven und das Rückenmark betreffen. Mittels spinaler MRT kann bei einer 

überwiegenden Mehrheit der NMOSD Patienten eine longitudinale extensive transverse 

Myelitis nachgewiesen werden. Zur Beobachtung krankheitsbedingter Veränderungen in 

diesen Patienten und zur Therapieevaluation fehlen in-vivo bildgebende Biomarker.  

Die vorliegende Dissertation behandelt drei zentrale Fragen anhand von Studien:  

1. Eignen sich zerebrale T1-gewichtete MRT Aufnahmen, um die Rückenmarkatrophie 

bei NMOSD Patienten zu quantifizieren? 

2. Gibt es Unterschiede zwischen Aquaporin-IgG-seropositiven (AQP4-IgG+) und 

Myelin-Oligodendrozyten-Glykoprotein (MOG-IgG+) NMOSD Patienten im 

Hinblick auf die Myelonaffektion?  

3. Besteht bei AQP4-IgG+ Patienten mit Myelitis ein Zusammenhang zwischen 

Atrophie im Rückenmark und Schäden in Teilregionen des Thalamus? 

Sowohl das Zervikalmarksvolumen, das gesamte Rückenmarksvolumen als auch die mittlere 

Querschnittsfläche des oberen Zervikalmarks (“mean upper cervical cord area”, 

MUCCA) zeigten signifikante Unterschiede zwischen AQP4-IgG+ NMOSD Patienten und 

gesunden Probanden. MUCCA, gemessen mittels zerebralen T1-gewichteten MRTs, 

korreliert gut mit den zuvor genannten Volumina, auch in NMOSD-Patienten. Die 

Quantifizierung von Rückenmarkatrophie mittels MUCCA ist daher geeignet, um Schäden 

im gesamten Rückenmark in AQP4-IgG+ NMOSD Patienten erfassen. Die Prävalenz von 

SC-Läsionen an bestimmten Lokationen und den MUCCA-Mittelwerten zwischen den 

NMOSD-Antikörper-Patientengruppen waren ähnlich. Im Vergleich zu MOG-IgG+ Patienten 

erleiden AQP4-IgG+ Patienten häufig mehr Myelitisschübe, Rückenmarksläsionen, und 

Rückenmarksatrophie. MUCCA korreliert mit der Anzahl der Krankheitsschübe und 

Behinderung für beide NMOSD Patientengruppen zusammen betrachtet. Eine Betrachtung 

der Schäden im Nucleus ventralis posterior des Thalamus in AQP4-IgG+ Patienten mit 

Myelitisschüben ergab keine Korrelationen mit MUCCA. Zusammenfassend konnte daher 

gezeigt werden, dass Rückenmarksatrophie mittels MUCCA gemessen werden kann, in 

NMOSD Patienten mit Myelitis die Atrophie zunimmt, und dass MUCCA einen wertvollen 
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in-vivo bildgebenden Biomarker darstellt. Diese Ergebnisse werden in der Durchführung 

zukünftiger klinischer Studien zur Beobachtung und Evaluierung von Therapien bei Patienten 

mit NMOSD eine wichtige Rolle spielen. 
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1.3 Introduction 

Neuromyelitis optica spectrum disorders (NMOSD) are a group of rare autoimmune disorders 

of the central nervous system (CNS), where patients commonly present with optic neuritis, 

myelitis, and more rarely, brainstem and cerebral attacks [1]. Originally thought to be a 

subset of multiple sclerosis (MS), and often called Devic’s Disease, its designation as a 

disease distinct from MS can be attributed to the finding that a pathogenic immunoglobulin-G 

specific for aquaporin-4 water channel protein is present in the serum of ~70% of patients 

(AQP4-IgG+) [2,3]. AQP4-IgG acts on astrocytic foot processes in CNS regions rich in 

AQP4 protein, such that demyelination is not the first inflammatory consequence in these 

NMOSD patients [4]. Some AQP4-IgG seronegative NMOSD patients are seropositive for 

antibodies against myelin-oligodendrocyte-glycoprotein (MOG-IgG+) [5]. MOG-IgG acts on 

oligodendrocytes, leading to both oligodendrocyte and myelin damage in the CNS of these 

patients, thus, complicating research into NMOSD patients further [6]. 

Although there are different immunological mechanisms in NMOSD patients that are AQP4-

IgG+ versus MOG-IgG+, spinal cord (SC) affection, in the form of longitudinally extensive 

transverse myelitis (LETM), is common in both NMOSD phenotypes [7–9]. LETM can be 

seen as T2-hyperintense lesions in SC MRIs, spanning greater than 3 vertebral segments in 

about 85 – 90% of AQP4-IgG+ patients [10]. Chronic LETM or acute and/or shorter lesions 

can subsequently cause SC atrophy [11]. SC affection is a major component in patient 

prognosis, where length of myelitis-lesions have been shown to be associated with long-term 

disability in AQP4-IgG+ patients [12]. NMOSD myelitis attacks are often severe with 

incomplete recovery [10], thus it would be beneficial to these patients if there was an easy, 

reliable, in vivo method for measuring and monitoring SC atrophy. As a consequence, SC 

atrophy is increasingly being investigated in neuroinflammatory diseases by way of magnetic 

resonance imaging (MRI) [13]. 

One of the most common methods of SC atrophy measurement is the mean upper cervical 

cord area (MUCCA) [14]. Although MUCCA has been used in MS studies, there is no 

consensus on a particular method in calculating this measure and which MRI sequence to use. 

Selection of MRI sequence, as well as methods for analysis of SC atrophy need to be 

considered carefully during the planning stage of a prospective study, especially those 

involving limited MRI sessions or patients (e.g. in the case of rare diseases). MUCCA 

calculated from different MRI sequences or using different regions of the cord would likely 

lead to incomparable results [15]. Therefore, these factors cannot be overlooked during the 
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planning of multi-centered studies or clinical measurement of MUCCA, as this could lead to 

incorrect conclusions.  

Since there are different immunological aspects to this disease, there are currently no 

established imaging biomarkers in NMOSD for monitoring disease stage or severity, or 

which measures could serve as outcomes in clinical trials [16]. SC MRI could lead to a 

clinically relevant imaging outcome measure in NMOSD, since lesions/LETM (location and 

length) can be seen using T2-weighted SC specific MRI [10]. Meanwhile, to measure atrophy 

of the SC, MUCCA calculated from T1-weighted cerebral MRIs [17,18] can be used, 

however, further evaluation of conventional SC MRI methods are required in NMOSD. This 

dissertation details the studies conducted to answer several important questions in relation to 

SC atrophy measurement and its application in clinical investigations of NMOSD patients. 

 

1.3.1 Questions and Hypotheses 

Three studies were conducted to answer the following research questions. 

1. Can cerebral T1-weighted MRI be used to measure SC atrophy in NMOSD? 

In Study 1 [19] of this dissertation, it was hypothesized that MUCCA, measured from 

T1-weighted cerebral MRI, is robust and reflects the SC atrophy or damage in the 

entire spinal cord, therefore simplifying SC atrophy evaluation with respect to 

acquisition and measurement. We also tested whether different SC MRI measures 

could discriminate between healthy participants and NMOSD patients to further 

evaluate the clinical feasibility of using SC measurements to investigate disease-

related structural damage in this set of diseases. 

 

2. Is there a difference in SC affection between aquaporin-4 IgG seropositive (AQP4-

IgG+) and myelin oligodendrocyte glycoprotein IgG seropositive (MOG-IgG+) 

NMOSD patients? 

Since the target of AQP4-IgG are mainly at the foot-processes of astrocytes, it would 

be expected that structural damage would be more severe in this disease subgroup. 

While MOG-IgG targets oligodendrocytes, it would be expected that myelin damage 

is the primary source of affection in these patients, which may not immediately 

present as atrophy in the CNS. Thus, the hypothesis in Study 2 [20] of this 

dissertation was that there would be a difference between AQP4-IgG+ and MOG-

IgG+ NMOSD patient SC lesion prevalence and location, as well as SC atrophy. 
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3. Is there simultaneous atrophy in the ventral posterior nuclei of the thalamus and SC in 

AQP4-IgG+ NMOSD patients with myelitis? 

The thalamus has been found to be affected in neuroinflammatory diseases, such as 

multiple sclerosis, and since it receives and sends signals to many regions of the CNS, 

it has been proposed as an imaging marker in NMOSD as well. Thus, to evaluate 

whether NMOSD-related myelitis attacks are causing damage locally, or are able to 

spread to different regions of the CNS that are highly connected functionally and 

structurally to the spinal cord, MUCCA and thalamic volume were measured and 

compared.  It was hypothesized in Study 3 [21] of this dissertation that the ventral 

posterior nucleus (VPN) of the thalamus would be atrophied at the same time and 

associate with SC atrophy due to myelitis. 

 

1.4 State of Research 

1.4.1 Spinal Cord Atrophy – MRI Context 

Most studies on SC atrophy in NMOSD have focused on the measurement of cervical cross-

sectional area. This is likely due to two reasons: 1) NMOSD lesions are most prevalent in the 

cervical and upper thoracic spinal cord [13] and 2) these measurements can be performed 

relatively simply. For example, it is possible to measure this parameter using a short MRI 

axial spine sequence. Furthermore, a 3D magnetization prepared rapid gradient echo 

(MPRAGE) MRI sequence of the brain, including the upper cervical cord (UCC), is able to 

give good agreement between MUCCA values in multi-centered studies [18]. Full or 

dedicated SC MRI scanning requires a significant amount of additional time and costs for 

patient visits. Complex analysis methods for the quantification of SC measures further 

decrease the availability of full SC evaluation in clinical routine. New sequences are 

available for SC myelin content or functional assessment in patients, but due to the 

experimental nature of the scanning and analysis, it has been difficult to implement into 

normal clinical routine [22]. 

However, the additional benefit of full SC evaluation, using commonly acquired 2D SC MRI, 

over a simple MUCCA measurement from cerebral MRIs was not previously investigated. 

The use of cerebral 3D MRIs with the UCC as a source for MUCCA calculations was chosen 

for Study 1 of this dissertation because many centers use this sequence to regularly image 

patients for detection of abnormalities in the brain. Both cerebral MPRAGE and T2-weighted 

full SC MRIs had been collected cross-sectionally in a relatively large cohort of AQP4-IgG+ 

NMOSD and healthy controls (HC) already, thus allowing for retrospective analysis of SC 
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atrophy. Therefore, full cervical cord and full cord volumes could be compared to MUCCA 

in an age- and sex-matched cohort, allowing for evaluation of MUCCA in detecting SC 

atrophy and discriminating between HC and NMOSD patients [19]. 

 

1.4.2 Spinal Cord Atrophy – Clinical Context 

Myelitis, presenting in the form of LETM, has been reported in both patients with AQP4-

IgG+ and MOG-IgG+ autoimmunity and is a common clinical NMOSD phenotype [23]. 

Acute and radiologically visible extensive SC inflammation and concurrent clinical myelitis 

attacks can subsequently cause SC atrophy [11]. SC atrophy measurements, especially 

MUCCA, are reduced in AQP4-IgG+ NMOSD compared to HC and lower MUCCA have 

been shown to be associated with worse clinical disability [13,24]. Quantification of SC 

damage is also becoming an important method to further investigate pathomechanisms in the 

different NMOSD subtypes [25]. However, large cohorts of NMOSD patients with definite 

AQP4-IgG and MOG-IgG seropositivity, identified with cell-based assays, were not 

previously compared in the context of SC affection by myelitis/LETM, lesions or atrophy. In 

Study 2 of this dissertation, we used SC specific MRI sequences to evaluate SC lesion 

lengths and locations, as well as cerebral MPRAGE MRI to measure MUCCA in AQP4-

IgG+ and MOG-IgG+ NMOSD patients against HC [20]. 

 

1.4.3 Spinal Cord Atrophy – Non-focal Damage 

Assessment of distal CNS regions from localized attacks has not been performed in this 

complex disease. The thalamus has been shown to be a major hub for inputs from sensory 

pathways (e.g. from the spinal cord) and subcortical regions of the brain, as well as from the 

cortex [26]. Atrophy of the total thalamus has been investigated with varied findings in 

NMOSD, where some groups have found total thalamic atrophy with clinical disability 

associations while others have not [27,28]. This could be due to differences in cohort 

selection, methods, or true differences in patient cohorts due to demographics. However, an 

in-depth investigation of the thalamic subregions has not been thoroughly performed in 

AQP4-IgG+ NMOSD patients. Especially in AQP4-IgG+ NMOSD, where the optic nerves 

and spinal cord (SC) are the primary sites of damage when patients present with an optic 

neuritis or myelitis attack [1], could evaluation and monitoring of these small regions be 

clinically relevant.  

In this way, an association of the ventral posterior nuclei (VPN) of the thalamus with 

MUCCA in AQP4-IgG+ patients would serve as evidence of anterograde degeneration from 
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local attack regions to the thalamus. In Study 3 of this dissertation, we assessed the 

association of MUCCA, as a measure of SC atrophy, with VPN volume in patients compared 

to HC [21]. 

 

1.4.4 Objectives 

This dissertation aimed to translate SC MRI methods to NMOSD research and to bridge the 

technical and clinically relevant applications of these methods. This involved the validation 

of using a common cerebral MRI sequence for SC atrophy measurements, representative of 

full SC damage. The validated method was then applied to studies which evaluated and 

elucidated new information on SC atrophy and affection in NMOSD patients. The 

overarching goal of this research is to have an MRI biomarker, which can easily be 

implemented using common clinical MRI scans and is indicative of and/or can be used to 

monitor NMOSD patient disability severity and extent of tissue damage.  

 

1.5 Materials and Methods 

This section gives an overview of the main MRI techniques utilized in this dissertation. 

Specific study methodologies, including study design, patient demographics and selection 

criteria, image analysis, and statistical analysis are described in full in the attached original 

publications [19–21].  

All data were derived from two retrospective, observational, ongoing studies: the 

Neuromyelitis Optica (NMO) study and the Visual Imaging Multiple Sclerosis (VIMS) study 

at the NeuroCure Clinical Research Center (NCRC), Charité-Universitätsmedizin Berlin 

(EA1/041/14 and EA1/163/12). All studies were approved by the ethics committee of the 

Charité-Universitätsmedizin Berlin. All MRI scanning was performed on a 3T Siemens Tim 

Trio machine at the Berlin Center for Advanced Neuroimaging (BCAN), across from the 

NCRC in the Charité-Campus Mitte. Patients gave written informed consent to participate in 

the studies. After validation and peer-reviewed publications using the MUCCA analysis 

technique, MUCCA is now incorporated into all observational studies within the routine post-

processing pipelines. 

 

1.5.1 Evaluation of MUCCA as a surrogate measure for cervical and full spinal cord 

atrophy in AQP4-IgG+ NMOSD patients 

Spinal cord (SC) changes and involvement have been shown to be an important factor in 

patient disability prognosis in neuromyelitis optica spectrum disorders (NMOSD) and 
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multiple sclerosis (MS) [29,30]. Due to the nature of MRI, there are limitations in the 

sensitivity and specificity when imaging and analyzing the SC, especially in disease-states 

that are not clearly understood, such as in NMOSD. This objective was addressed in the first 

publication (Study 1) within this dissertation [19]. In MS, patients often have decreased SC 

cross-sectional areas as measured by MRI, that indicates axonal degeneration, which is a 

secondary effect in the disease after demyelination [31]. However, in aquaporin-4 

immunoglobulin-G seropositive (AQP4-IgG+) NMOSD patients, it is thought that disease-

related attacks and lesions are caused by a primary astrocytopathy [32], thus it is unknown 

whether short-term/cross-sectional analysis of SC cross-sectional areas are able to detect 

changes in these patients.  

To show that measuring the mean upper cervical cord area (MUCCA) from cerebral MRI 

scans is a reliable and representative measure of SC atrophy in NMOSD, we conducted Study 

1 with 30 AQP4-IgG+ NMOSD patients and 19 healthy controls. We used 2D T2-weighted 

SC MRI sequences to calculate cervical cord and full SC volumes, while 3D T1-weighted 

magnetization prepared rapid acquisition of gradient echo (MPRAGE) brain scans including 

the upper cervical cord were used to calculate MUCCA.  

Total cord volume (TCV) was measured from SC MRIs at 3 different levels: cervical, 

thoracic, and lumbar. The volumetric analysis of the full SC required the addition of 3 

segments measured from: 1) the tip of the dens to the rostral border of the thoracic (T)1 

vertebral body, 2) the rostral border of the T1 vertebral body to the T11 vertebral body rostral 

border, and 3) the T11 vertebral body rostral border to the conus tip. Figure 1 [19], shows 

sample segmentations of MUCCA, cervical cord volume (CCV), and representative 

segmentations of the thoracic and lumbar SC. 

 
Figure 1. Sample segmentation of A) MUCCA from a T1-weighted cerebral MPRAGE 

sequence, B) cervical cord volume, C) the thoracic SC volume, and D) the lumbar SC volume 

calculated from T2-weighted SC sequences. The total cord volume is calculated from the sum 

of B, C, and D. Adapted from Chien et al., AJNR, 2018 [19]. 
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Group differences in discrete measures were tested with a Chi-squared test, while for 

continuous measurements (i.e. age, MUCCA, CCV, TCV) a two-sampled t-test was used. 

MUCCA, CCV, and TCV correlations with each other and with parametric clinical measures, 

such as averaged timed 25-foot walk and dominant and nondominant hand 9-hole peg test 

times were tested using a Pearson’s correlation test. Correlations with discrete measures were 

analyzed with a Spearman rank correlation test. Performance of each SC measure was 

evaluated using receiver operating characteristic analysis for the detection of NMOSD versus 

HC SC measures.  

 

1.5.2 Evaluation of SC affection in AQP4-IgG+ versus MOG-IgG+ NMOSD patients  

Autoantibodies against aquaporin-4 (AQP4) water channel proteins mainly target astrocytes, 

the choroid plexus epithelial cells and possibly Müller cells in the retina. Meanwhile, 

autoantibodies against myelin oligodendrocyte glycoprotein (MOG) predominantly attach to 

the outermost layers of myelin sheaths [33]. Recently, there have been many discussions over 

whether or not MOG-IgG+ patients should be categorized as having NMOSD at all [34,35]. 

Nevertheless, studies have found similar pathological features regarding SC involvement and 

clinical manifestations in both patients seropositive for AQP4-IgG and MOG-IgG [9]. 

However, validation of differences in SC affection and their clinical impact between the two 

antibody subgroups of patients with NMOSD have not previously been assessed. This was 

most likely caused by the relatively new diagnostic criteria for NMOSD, including lack of 

availability and costs for MOG-IgG cell-based assays [1,36]. This objective was addressed in 

the second publication (Study 2) within this dissertation. Several clinical measures may affect 

the SC atrophy observed in NMOSD: the number of clinical myelitis attacks and the time 

since last myelitis attack. Since it is hypothesized that severe acute clinical attacks in 

NMOSD are the cause of immediate axonal destruction within lesions [9,37], it is pertinent to 

explore this theme further by looking at atrophy measures in relation to the time since a last 

myelitis attack.  

In Study 2 [20], we endeavoured to evaluate and validate differences between AQP4-IgG+ 

and MOG-IgG+ NMOSD (cell-based assay serostatus confirmed) patient SC abnormalities 

by recording T2-hyperintense SC lesion locations, length, and counts. We also calculated the 

mean upper cervical cord area (MUCCA), as a measure of SC atrophy, in each patient 

subgroup and compared these measures with age- and sex-matched healthy controls (HC). 

Clinical manifestation was tested for correlations with MUCCA, using disease duration, 

clinical myelitis attack counts, the expanded disability status scale (EDSS) score, the 
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pyramidal function score (a section of the Neurostatus EDSS score [38]), the timed 25-foot 

walk test times, and 9-hole peg test times. A total of 53 NMOSD (AQP4-IgG+ n = 38; MOG-

IgG+ n = 15) patients were included in the study. The MRIs utilized in this study included a 

2D T2-weighted SC sequence to visualize and calculate SC lesions locations, lengths, and 

counts, and a T1-weighted 3D MPRAGE brain MRI including the upper cervical cord for 

MUCCA measurement. 

SC lesion counts and median lesion lengths were analyzed for differences using Chi-square 

tests, while MUCCA group differences between HC and NMOSD patients were calculated 

using Welch’s two-sample t-test. Correlations between clinical myelitis attack numbers and 

weeks since last myelitis with MUCCA, were performed using Spearman’s rho estimate. 

Clinical manifestations of SC atrophy were evaluated using age and head-size as covariates 

with parametric multivariable linear models. 

 

1.5.3 Myelitis attack related changes in the ventral posterior thalamic nuclei in association 

with MUCCA of AQP4-IgG+ NMOSD patients 

Although normal (non-atrophied) deep grey matter volumes have been seen in NMOSD 

patients compared to healthy controls [28], it has not been investigated previously whether 

subtle changes are occurring in subregions of the thalamus. This objective was addressed in 

the third publication (Study 3) within this dissertation [21]. Due to recent advances in MRI 

analysis methods, there are now advanced 3D atlases based on histological data, which fit 

each anatomical region of the basal ganglia, including subregions (nuclei) of the thalamus 

[39]. Since the thalamus is connected to cortical regions [26], and several nuclei of this basal 

ganglia component receive direct signals from the visual and spinothalamic pathways [40], it 

would be expected that any anterograde or retrograde degeneration along these tracks would 

be seen in these structures. Evaluation of damage from myelitis in the non-localized region of 

the ventral posterior nucleus (VPN) of the thalamus would allow for evaluation of this type of 

degeneration. 

In Study 3, we performed a cross-sectional analysis of 39 patients with AQP4-IgG+ NMOSD 

and 37 age- and sex-matched healthy controls (HC). 3 Tesla T1-weighted 3D magnetization 

prepared rapid gradient echo (MPRAGE) brain including the upper cervical cord was used 

for mean upper cervical cord area (MUCCA) calculation. T2-hyperintense lesion masks were 

made with T2-weighted 3D fluid attenuated inversion recovery (FLAIR) brain MRIs, which 

allowed for lesion-infilling of brain lesion voxel intensities in each patient MPRAGE scan. 

This step is necessary to increase accuracy of the atlas-based segmentation of the deep grey 
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matter, in the event that lesions are in and around these structural brain components. The 

Multiple Automatically Generated Templates Brain Segmentation Algorithm (MAGeTbrain, 

http://cobralab.ca/software/MAGeTbrain/) was used for segmentation of the thalamus and its 

subregions in each individual participant MRI scan, giving volumes for the VPN. 

Associations of VPN volumes with demographic, clinical, and MUCCA measures were 

evaluated using linear mixed effect models (LMM), with inter-side and intra-participant 

dependencies, adjusting for age and sex as fixed effects.  

 

1.6 Results 

1.6.1 Evaluation of MUCCA as a surrogate measure for cervical and full spinal cord 

atrophy in AQP4-IgG+ NMOSD patients  

In Study 1 [19], we demonstrated that all 3 types of SC quantification could be used to 

differentiate between age- and sex-matched HC (n = 19) and AQP4-IgG+ NMOSD patients 

(n = 30), where all measures were significantly dependent on each other. Receiver operating 

characteristic analysis was used for evaluating accuracy and sensitivity in each measure’s 

ability to discriminate between HC and NMOSD, which showed similar areas under the 

curve (Figure 2). Table 1 illustrates how all 3 SC quantification methods show statistically 

different measures between HC and patients (adapted from Table 2 in Chien et al. AJNR, 

2018 [19]) using two-sampled t-tests 

Mean upper cervical cord area (MUCCA), the cervical cord volume, and total cord volume 

did not correlate with clinical disability, as measured by the expanded disability status scale, 

the pyramidal functional system score, and the averaged timed 25-foot walk and 9-hole peg 

tests. 

 

Table 1 | Quantitative SC MRI measures  
SC Measure Healthy Controls 

(mean ± SD) 
AQP4-IgG+ NMOSD  

patients 
(mean ± SD) 

 

t-statistic; 
p-value 

 

MUCCA (mm2) 
 

73.3 ± 5.51 
 

68.5 ± 7.06 2.70; .009* 

CCV (mL) 
 

7.52 ± 0.92 
 

6.61 ± 0.96 3.33; .002* 

TCV (mL) 20.1 ± 2.37 17.6 ± 2.21 
 

3.69; <.001* 

NMOSD = neuromyelitis optica spectrum disorders; MUCCA = mean upper cervical cord area; CCV = cervical 

cord volume; TCV = total cord volume; SD = standard deviation; *=statistical difference from healthy subjects 

(p < .01). Adapted from Chien et al., AJNR, 2018. 
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Figure 2. Receiver operating characteristics showing the discriminatory power of the mean 

upper cervical cord area, cervical cord volume, and total cord volume for identification of 

AQP4-IgG+ NMOSD patients versus healthy controls. Abbreviations: MUCCA = mean 

upper cervical cord area, CCV = cervical cord volume, TCV = total cord volume, AUC = 

area under the curve. Adapted from Chien et al., AJNR, 2018 [19]   

 

1.6.2 Evaluation of SC affection in AQP4-IgG+ versus MOG-IgG+ NMOSD patients 

In Study 2 [20], investigating SC affection in AQP4-IgG+ (n = 38) and MOG-IgG+ (n = 15) 

NMOSD patients, we found: 1) a higher history of myelitis and prevalence of SC lesions in 

AQP4-IgG+ NMOSD; and 2) that higher counts of clinical myelitis attacks were associated 

with decreased MUCCA in all NMOSD patients. We could not statistically evaluate the 

effect of treatment on MUCCA in these patients, due to the variety of attack preventing 

therapies given (Figure 3), however, it can be seen that most patients had a decreased 

MUCCA compared to HC, as long as they had a history of myelitis attacks, regardless of 

treatment.  
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Figure 3. MUCCA from HC, AQP4-IgG+, and MOG-IgG+ NMOSD patients with associated 

attack preventing therapies. Abbreviations: HC = healthy controls, AQP4-IgG+ = 

aquaporin-4 IgG seropositive NMOSD, MOG-IgG+ = myelin oligodendrocyte glycoprotein 

IgG seropositive NMOSD, MUCCA = mean upper cervical cord area, NA = not 

applicable/unknown. Chien et al., unpublished data. 

 

Finally, MUCCA had associations with clinical disability in both AQP4-IgG+ and MOG-

IgG+ patients as measured by the expanded disability status scale, pyramidal functional 

systems score, averaged timed 25-foot walk and standardized 9-hole peg test (p = 0.030, p = 

0.003, p = 0.010, and p = 0.037, respectively) when age and head-size were taken into 

account [20].  

 

1.6.3 Myelitis attack related changes in the ventral posterior thalamic nuclei in association 

with MUCCA of AQP4-IgG+ NMOSD patients 

In Study 3 [21], we evaluated whether or not the ventral posterior thalamic nuclei (VPN) 

volume in NMOSD patients decreased as a result of clinical myelitis attacks. The mean VPN 

volume was not different (p = 0.730) between age- and sex-matched AQP4-IgG+ NMOSD 

patients (n = 39) and HC (n = 37). No VPN volume differences between a subgroup of 

NMOSD patients with a history of myelitis and HC, nor any associations with the number of 

historical myelitis attacks were found. To evaluate associations of VPN volume with known 
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myelitis-related SC damage, MUCCA was used as a comparator. VPN volume was not 

associated with MUCCA in the entire patient cohort (p = 0.261) or in a subgroup of patients 

with a history of clinical myelitis attacks (p = 0.084). Finally, no correlation was found 

between VPN volume and the sensory functional systems score of the expanded disability 

status scale. However, VPN volume showed a trend to be decreased in patients with a history 

of clinical brainstem attacks versus HC [21]. 

 

1.7 Conclusions and Future Directions 

From the studies conducted for this PhD dissertation, three overarching questions were 

answered: 

1. Can cerebral T1-weighted MRI be used to measure SC atrophy in NMOSD? 

Yes, MUCCA measured from cerebral MPRAGE scans including the upper cervical 

cord is able to reliably evaluate SC atrophy, representative of total cord volume in 

NMOSD. Since MUCCA was able to discriminate between healthy participants and 

NMOSD patients [19], we deemed that this measure can be used to evaluate SC 

atrophy in our multiple sclerosis and NMOSD cohorts in further clinical studies from 

the Charité-Universitätsmedizin Berlin. However, further investigations into the 

longitudinal use of MUCCA must be assessed and tested in a larger cohort, prior to 

using this measure to investigate changes in the SC over time. 

2. Is there a difference in SC affection between aquaporin-4 IgG seropositive (AQP4-

IgG+) and myelin oligodendrocyte glycoprotein IgG seropositive (MOG-IgG+) 

NMOSD patients? 

Yes, there is a difference in SC affection between the two NMOSD subgroups, where 

AQP4-IgG+ NMOSD patients had more SC lesions and atrophy than MOG-IgG+ 

patients. We were able to show that decreased MUCCA is directly associated with an 

increased number of clinical myelitis attacks in both patient subgroups [20]. Thus, our 

findings suggest that there are differences in SC affection between the two antibody 

serostatus groups, which furthers our collective knowledge of attack-related damage 

and common MRI markers that can be used for monitoring patients with AQP4-IgG 

and MOG-IgG associated autoimmunity. Since SC affection is prevalent in both 

patient groups, we will continue to monitor lesions and atrophy in the cord using 

MRI, although it remains to be seen how this information may be used in the clinical 

context for patient treatment or disability assessment. 
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3. Is there simultaneous atrophy in the ventral posterior nuclei of the thalamus and SC in 

AQP4-IgG+ NMOSD patients with myelitis? 

No, there was no atrophy detected in the thalamic ventral posterior nuclei compared 

to healthy participants, although there was SC atrophy measured by MUCCA in 

NMOSD patients, which is in line with previous studies. This would suggest that CNS 

damage in AQP4-IgG+ NMOSD occurs due to clinical attacks, with higher severity in 

localized regions (i.e. myelitis in the SC causes atrophy in the SC). However, we 

could not completely discount any damage in the thalamic subregions due to clinical 

attacks, since volumetric measurements using 3 Tesla MRI may not have the 

sensitivity to identify microstructural changes, or other disease-related damage 

causing functional or adaptive changes [21]. 

 

Overall, the publications related to this dissertation revealed that MUCCA is a reliable and 

representative measure that is sensitive to SC atrophy in NMOSD. Using SC MRI, we were 

able to elucidate that NMOSD patients with increasing counts of clinical myelitis attacks 

accrue more SC atrophy; and that AQP4-IgG+ patients have a higher prevalence of myelitis 

attacks, SC lesions, and SC atrophy than MOG-IgG+ patients. We did not observe myelitis-

related damage in the ventral posterior nucleus of the thalamus in conjunction with a decrease 

in MUCCA in AQP4-IgG+ NMOSD patients. In conclusion, MUCCA is a parameter which 

can detect NMOSD-related SC damage using 3 Tesla cerebral T1-weighted MRIs, and can be 

used to monitor and quantitatively measure atrophy of the SC in these patients. 

Future directions would include the longitudinal monitoring of SC cross-sectional area in 

NMOSD to evaluate any disease progression or atrophy over time or treatment effects. It 

would also be interesting and beneficial to further investigate thalamic subregional volumes 

using higher magnet strengths (i.e. 7 Tesla MRI) to evaluate changes distal from attack 

regions, which are possibly associated with cognitive impairment.  

In conclusion, the SC MRI quantitative measure investigated in this dissertation was not 

previously used in routine clinical observational studies, was shown to be feasible using a 

common MRI sequence, and is able to give valuable information about localized and overall 

damage in the SC of NMOSD patients. This technique will impact clinical trial planning 

when SC atrophy is a prospective outcome measure and may help us further investigate 

pathophysiological processes, and possibly evaluate patient prognoses and clinical outcomes 

in this rare spectrum of autoimmune diseases.   
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