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Abstract 

Arctic rivers carry about 40 Tg of organic carbon per year into the Arctic Ocean, enough 

to change the colour of the surface water over entire shelf seas. Ongoing permafrost thaw 

mobilizes ancient organic matter in the Arctic Oceanôs watershed and, in particular, organic 

carbon that was previously preserved in the perennially frozen soils. Whereas the 

particulate fraction of organic matter is prone to settling and subsequent burial, the 

dissolved fraction of organic matter (DOM) can be transported over large distances and is 

quickly integrated and cycled within the aquatic environment. Therefore, monitoring of 

DOM and its carbon (DOC) in terms of fluxes, quality, transport routes and ultimate fate 

in the Arctic Ocean, is one of the goals of current polar research. In situ observations in the 

Arctic are challenging and costly and hold tremendous scientific value. Ocean Colour 

Remote Sensing (OCRS) is a powerful tool that can complement in situ observations by 

providing frequent and synoptic estimates of surface water DOM and DOC concentration 

via the coloured fraction of DOM (CDOM). However, use of OCRS in Arctic organic-rich 

waters is hampered by uncertainties and needs further evaluation and development. The 

goal of this thesis is to advance our knowledge of the quantity, origin, seasonal variability 

and fate of DOM and carbon transported from land to sea in the Arctic. Biogeochemical 

and bio-optical parameters of water across the fluvial and marine zones in two Arctic 

regions were collected. These in situ datasets include: 1) Lena River DOM measured at 

least bi-weekly for one full year, 2) Lena River and Laptev Sea Shelf DOM and optical 

parameters measured intermittently over 11 years and 3) a suite of water column optical, 

radiometric, and biogeochemical measurements from spring to fall in the Mackenzie River 

Delta and on the Beaufort Sea Shelf. These data are a unique and novel resource for testing 

OCRS atmospheric correction and CDOM retrieval algorithms and for improving satellite-

derived DOC estimates across the fluvial-marine transition zone. Frequent monitoring of 

the Lena River revealed that three source water types determine the strong seasonality of 

fluvial DOM: 1) melt water, 2) rain water and 3) subsurface water. The improved 

estimation of annual Lena River DOC flux was 6.79 Tg C, most of which (84%) was 

transported into the Lena River by melt and rain water. Optical properties of the DOM 

indicated that, in spring, the Lena River dominantly transports young carbon originating 

from degrading vegetation from land surfaces. With rising air temperatures in summer and 

fall, optical properties indicated an increasing fraction of older DOM originating from 
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deeper soil horizons and thawing permafrost deposits. Salinity and DOM were strongly 

correlated (r²>0.8) in both shelf regions, indicating a dominant terrigenous source of DOM 

and a conservative mixing of DOM-rich river water with DOM-poor water from the Arctic 

Ocean. Both in situ and space-borne observations of surface waters revealed a strong 

seasonal variability of river plume propagation and DOC distribution on both shelves. The 

evaluation of several OCRS algorithms with in situ data showed that the OLCI (Ocean and 

Land Colour Instrument) neural network swarm (ONNS) algorithm performed best for the 

retrieval of CDOM in the Lena ï Laptev Sea region (r²=0.72, mean percentage 

error=58.4%), whereas the semi-analytical algorithm ñgsmAò performed best in the 

Mackenzie ï Beaufort Sea region (r²=0.52, mean percentage error=24.1%). Furthermore, 

the Polymer atmospheric correction algorithm resulted in better match-up correlations than 

either the WFR or the C2RCC atmospheric corrections. For both regions, new DOC ï 

CDOM models, based on the in situ observations, expand the applicability of OCRS to 

monitor DOC in surface waters to the entire fluvial-marine transition zone and improve the 

accuracy of DOC retrieval. Overall, the studies of this thesis demonstrated the capability 

of OCRS to monitor the propagation and distribution of DOM on Arctic shelves on large 

spatial and temporal scales. In the future, high frequency sampling in combination with 

OCRS of major Arctic rivers have the potential to improve quantification of DOC export 

into the Arctic Ocean and reduce current uncertainties due to the lack of data. Long-term 

OCRS time series merged from multiple satellites can help in identifying trends of land-

sea carbon fluxes and their impact on the global carbon cycle and climate in a rapidly 

changing Arctic. 
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Zusammenfassung 

Arktische Flüsse exportieren etwa 40 Tg organischen Kohlenstoff pro Jahr in den 

Arktischen Ozean - genug um die Farbe des Oberflächenwassers über ganze Schelfmeere 

zu verändern. Das durch den Klimawandel verstärkte Auftauen der Permafrostböden 

mobilisiert altes organisches Material, insbesondere organischen Kohlestoff, der zuvor im 

durchgehend gefrorenen Boden konserviert wurde. Während der partikuläre Teil der 

organischen Stoffe schnell absinkt und sedimentiert, kann der gelöste Teil der organischen 

Stoffe (dissolved organic matter - DOM) über große Entfernungen transportiert und schnell 

in das aquatische System integriert und umgesetzt werden. Daher ist die Bestimmung der 

Exportmengen und der Qualität des DOM und des gelösten organischen Kohlenstoffes 

(dissolved organic carbon - DOC), sowie deren Transportwege und endgültigen Schicksal, 

ein zentrales Ziel der aktuellen Polarforschung. Auch wenn in situ Beobachtungen in der 

Arktis mit enormen Herausforderungen und Kosten verbunden sind, haben sie einen 

enormen wissenschaftlichen Wert. Die Fernerkundung der Ozeanfarbe (Ocean Colour 

Remote Sensing - OCRS) ist ein leistungsstarkes wissenschaftliches Werkzeug, das in situ 

Beobachtungen ergänzen kann, indem es häufige und synoptische Abschätzungen der 

DOM- und DOC-Konzentrationen des Oberflächenwassers liefert. Für diese Abschätzung 

wird der färbende Anteil von DOM (coloured dissolved organic matter - CDOM) 

verwendet, der einen Proxy für DOC darstellt. Die Verwendung von OCRS in arktischen, 

organikreichen und optisch komplexen Gewässern birgt jedoch große Unsicherheiten und 

muss daher zunächst evaluiert und weiterentwickelt werden. Das Ziel dieser Arbeit ist es, 

unser Wissen über die Menge, Herkunft, saisonale Variabilität und den Verbleib von DOM 

und DOC, welche vom Land zum Meer transportiert werden, zu erweitern. Dazu wurden 

große in situ Datensätze mit biogeochemischen und biooptischen Parametern in der 

Übergangszone von Fluss- zu Meerwasser in zwei Flüssen, der Lena und dem Mackenzie, 

gesammelt. Diese Datensätze umfassen: 1) DOM Messungen in der Lena mindestens 

zweimal pro Woche über ein gesamtes Jahr; 2) DOM und biooptische Messungen in der 

Lena und auf dem Laptewsee Schelf von Expeditionen von 11 Jahren; sowie 3) eine Reihe 

an optischen, radiometrischen und biogeochemischen Messungen von Frühling bis Herbst 

in den Küstengewässern der Beaufortsee nördlich des Mackenzie Deltas. Diese Daten sind 

eine einzigartige und neuartige Ressource zum Testen von OCRS-Algorithmen für die 

Atmosphärenkorrektur und zur satelliten-basierenden Abschätzung von CDOM. Die 

regelmäßige und hochfrequentierte Beprobung des Lena-Wassers ergab, dass die 
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Abwechslung von drei Wassertypen die starke Saisonalität der DOM Konzentration und 

den Export bestimmen: 1) Schmelzwasser, 2) Regenwasser, und 3) Grundwasser. Die 

verbesserte Abschätzung des jährlichen DOC Exportes der Lena wurde auf 6.79 Tg C 

geschätzt, von denen ein Großteil (84%) durch Schmelz- und Regenwasser in die Lena 

transportiert wurde. Die optischen Eigenschaften des DOM zeigten, dass die Lena im 

Frühjahr vorwiegend jungen organischen Kohlenstoff transportiert, der aus dem Abbau von 

Oberflächenvegetation stammt. Bei höheren Lufttemperaturen im Sommer und Herbst 

zeigte sich hingegen ein zunehmender Anteil von älterem DOM, der aus tieferen 

Bodenhorizonten und auftauenden Permafrostböden stammen könnte. Die Salinität und die 

DOM-Konzentration waren in beiden Schelfregionen stark korreliert (r²>0.8), was auf eine 

dominante terrigene DOM-Quelle und eine konservative Mischung von DOM-reichem 

Flusswasser mit niedrig-DOM Wasser aus dem Arktischen Ozean hindeutet. Sowohl in situ 

als auch satellitengestützte Beobachtungen von Oberflächenwasser zeigten eine starke 

saisonale Variabilität der Flusswasserausbreitung und der DOC-Verteilung auf beiden 

Schelfmeeren. Die Auswertung mehrerer OCRS-Algorithmen mithilfe von in situ Daten 

zeigten, dass der ĂONNSñ (OLCI (Ocean and Land Colour Instrument) neural network 

swarm) Algorithmus für die Abschätzung von CDOM in der Lena ï Laptewsee Region am 

besten geeignet ist (r²=0.72, mittlerer prozentualer Fehler: 58.4%), während in der 

Mackenzie ï Beaufortsee Region der semi-analytische Algorithmus ĂgsmAñ am besten 

abschneidet (r²=0.52, mittlerer prozentualer Fehler=24.1%). Darüber hinaus führt die 

Polymer Atmosphärenkorrektur zu besseren Übereinstimmungskorrelationen als die 

ĂWFRñ oder die ĂC2RCCñ Atmosphªrenkorrektur. F¿r beide Regionen erweitern neue 

DOC-CDOM Modelle, die auf in situ Beobachtungen basieren, die Anwendbarkeit von 

OCRS zur Langzeituntersuchung von DOC in Oberflächenwasser über die gesamte 

Übergangszone vom Fluss- zum Meerwasser. Zudem wurde die Genauigkeit der satelliten-

basierenden Abschätzungen der DOC-Konzentration deutlich gesteigert. Insgesamt haben 

die Studien dieser Arbeit gezeigt, dass OCRS die Ausbreitung und Verteilung von DOM 

in arktischen Schelfmeeren auf großen räumlichen und zeitlichen Skalen verfolgen kann. 

In Zukunft können hochfrequentierte Probennahmen in Kombination mit OCRS die 

Quantifizierung des DOC-Exports in den Arktischen Ozean verbessern und die aktuellen 

Unsicherheiten aufgrund fehlender Daten verringern. Langzeit-OCRS Zeitreihen, die durch 

Zusammenführung der Daten mehrerer Satelliten entstehen, können dazu beitragen, 

Veränderungen der Kohlenstoffflüsse und ihre Auswirkungen auf den globalen 
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Kohlenstoffkreislauf und das Klima in einer sich schnell verändernden Arktis zu 

identifizieren. 
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1 Introduction  

1.1 Scientific motivation  

The climate is warming in the Arctic and sea ice cover is shrinking in Arctic coastal and 

shelf regions (Farquharson et al., 2018; Chan et al., 2019). Geochemical and biological 

interactions between ocean and land drive the carbon cycle in these regions. On land, 

permafrost temperatures are rising (Biskaborn et al., 2019) and permafrost is consequently 

thawing, a process that is expected to mobilize ancient frozen carbon (Frey and Smith, 

2005; Frey and McClelland, 2009; McGuire et al., 2009). Additionally, terrestrial 

biological productivity is currently increasing in Arctic river catchments as a response to 

climate warming (Gorham, 1991). This can lead to a growing accumulation of organic 

carbon in plants, part of which, after decomposition, drains into the Arctic Ocean. 

Increasing export of organic carbon into the Arctic Ocean changes the carbon cycle, which 

may exacerbate global climate warming through the release of greenhouse gases into the 

atmosphere. To improve future climate forecast scenarios, numerous recent studies focus 

on the sources, budget and fate of organic carbon in the Arctic (e.g. Kaiser et al., 2017; 

Vonk et al., 2019). The fate of organic carbon, once it is released to the Arctic estuarine 

and coastal waters (those waters that are directly influenced by riverine input, coastal 

erosion or resuspension in shallow waters), in particular, is intensely debated (Bauer et al., 

2013; Fichot and Benner, 2014; Bröder et al., 2018). While the burial of organic carbon in 

the seafloor sediments can act as a carbon sink, the degradation of organic carbon in the 

water columns and its partially conversion to CO2 is potentially a large source of carbon 

release to the atmosphere (Alling et al., 2010). More organic carbon in the Arctic Ocean 

may also shift the air-sea carbon equilibrium towards an increased CO2 uptake by the 

atmosphere, causing a positive feedback loop to climate warming. Another positive 

feedback is the enhanced absorption of sunlight caused by increasing concentrations of dark 

organic matter in ocean surface water. Absorption by this organic matter intensifies 

radiative heating of the surface waters (Soppa et al., 2019), and therefore sea ice melt (Hill, 

2008), and potentially leads to a warming of the seabed near the coast (Dmitrenko et al., 

2011).  

Unprecedented changes are currently underway in the Arctic that have the potential to 

affect the global climate system. Therefore, this thesis focuses on the current carbon 

transfer interactions between land and ocean in the Arctic. 
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1.1.1 Impact of climate warming on the Arctic 

Air temperature in the Arctic is rising twice as fast as the global mean temperature 

(Polyakov et al., 2002; Serreze and Barry, 2011). The Arctic Ocean, its coastlines and the 

catchments of the rivers that drain into it, are currently experiencing drastic changes. 

Satellite data has revealed a dramatic and ongoing decrease in sea ice extent and thickness 

during the last two decades (Screen and Francis, 2016; Stroeve and Notz, 2018). It is 

expected that the Arctic Ocean will become completely ice-free in summer within the next 

few decades (Wang and Overland, 2009, 2012). Ice is thinning most rapidly near the coast 

and winter landfast sea ice protects the coastline from erosion for shorter and shorter 

periods (Overeem et al., 2011; Günther et al., 2013).  

In Arctic rivers, ice thickness is also decreasing (Pavelsky and Zarnetske, 2017) and the 

open water periods are lengthening due to earlier ice break-up and later freeze-up 

(Shiklomanov and Lammers, 2014; Park et al., 2016). Over the last decades, water 

discharge from all Arctic rivers has increased, and most drastically for the Siberian rivers 

(Peterson, 2002; McClelland et al., 2006; Serreze et al., 2006) (Figure 1.1). These changes 

affect the seasonality of the river discharge and the Arctic freshwater cycle (Rawlins et al., 

2010). Increasing export of freshwater can influence water mass stratification and 

circulation in the Arctic Ocean (Carmack and Aagaard, 1973; Clarke and Gascard, 1983; 

Peterson et al., 2006). 

 

Figure 1.1: Long-term records of the annual discharge of large Eurasian and North American rivers flowing into the 

Arctic Ocean (data from Holmes et al. (2018c). 
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1.1.2 Dissolved organic matter from land to the Arctic Ocean: sources, 

fluxes and fate 

Export of dissolved organic matter (DOM) and carbon (DOC) into the Arctic Ocean 

inevitably increases with increasing river discharge. The mobilization of DOC from 

degrading permafrost (Vonk et al., 2012; Dubinenkov et al., 2015) and the release of DOC 

by coastal erosion (Tanski et al., 2016, 2017) modify the cycling of carbon in ways that 

remain unknown and unquantified in the Arctic (MacGilchrist et al., 2014). Therefore, 

monitoring fluxes of organic matter from land to sea and understanding the fate of DOM 

after it is released into the Arctic Ocean have recently become a particular focus of research 

interest.  

River discharge, its chemical composition and constituent concentrations, at any point in 

space and time, integrate environmental processes over a definable upstream area of the 

river watershed (Holmes et al., 2012a). Therefore, biogeochemical parameters of the river 

water are powerful indicators of the impacts of climate change. In 2002, a sampling 

program ñPan-Arctic River Transport of Nutrients, Organic Matter, and Suspended 

Sedimentsò (PARTNERS) was established to monitor fluvial matter fluxes to the Arctic 

Ocean. Its successor, the ñArctic Great Rivers Observatoryò (ArcticGRO), continues the 

pan-Arctic sampling of the largest Arctic rivers. These sampling programs resulted in the 

first estimates of organic matter fluxes into the Arctic Ocean (Raymond et al., 2007; 

Stedmon et al., 2011; Holmes et al., 2012b; Wild et al., 2019). However, these estimates 

are typically based on a few (<10) samples per year. To compensate for periods without 

samples, load models are used to calculate annual fluxes. These load models assume a 

direct dependency of organic matter (OM) concentration on the discharge, which gauge 

stations provide on a daily basis. Changes to fluxes may be smaller than the errors that are 

generated using such assumed relationships between concentration and discharge. Thus, an 

accurate baseline is needed to observe flux changes in Arctic rivers. 

Studies of the fate of DOM after it enters the Arctic Ocean are even scarcer than those 

focusing on its export to the ocean. Little is known about the transport pathways in shelf 

waters, or about the export and removal of the terrestrial organic matter in the Arctic Ocean. 

How these processes may be shifting with climate change is also uncertain (Morison et al., 

2012; Fichot et al., 2013). While some studies report rapid and extensive removal of up to 

70% of organic carbon from the water column (Alling et al., 2010; Letscher et al., 2011), 
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other studies report a conservative mixing across the Arctic shelves (Kattner et al., 1999; 

Semiletov et al., 2013; Tanaka et al., 2016; Pugach et al., 2018).  

To address the knowledge gap in the transport and fate of organic-rich waters, synoptic and 

frequent monitoring of the fluvial-marine transition zones is needed. In situ monitoring and 

tracking of organic-rich Arctic river plumes is challenging as these areas are hard to reach 

and they impose severe constraints on sampling. Furthermore, in situ sampling captures a 

snapshot during expeditions, which usually take place from August to September, when 

sea ice conditions are the most favourable for navigation. In most cases, in situ datasets 

overlook the winter and shoulder seasons, which can be the most important for OM 

transport (McGuire et al., 2009). Thus, in situ sampling can hardly address potential long-

term changes in the coastal waters on a pan-Arctic scale. 

This thesis mainly focuses on the dissolved fraction of organic matter (DOM) and its carbon 

(DOC). DOM and DOC are bulk parameters for total amounts of groups of substances 

found in water solution. DOM refers to the total amount of organic matter (e.g. 

carbohydrates and lignins), whereas DOC refers to the concentration of organic carbon 

only. The "D" in both abbreviations refers to the dissolved species only. In practice, 

however, analytical observations of DOM and DOC are defined by the mean pore size of 

the filter (commonly between 0.2 µm and 0.7 µm) used to prepare the samples. 

1.1.3 Ocean Colour Remote Sensing  

Ocean Colour Remote Sensing (OCRS) is a powerful tool to complement in situ sampling. 

Optical satellite sensors can detect and monitor constituents, such as DOC in surface 

waters. Polar orbiting satellites can provide several images per day if cloud and light 

conditions are favourable. Moreover, a number of optical sensors offer high enough spatial 

resolution (<1 km) to observe Arctic river plumes carrying DOM onto the shelf. High 

spatial and temporal resolution make OCRS an invaluable tool to study land-river-ocean 

interactions in the Arctic shelf regions (Figure 1.2).  
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Figure 1.2: Sentinel 2a Multi Spectral Imager (MSI) true colour (RGB bands 2-3-4) mosaic image of the Lena River 

Delta and surrounding coastal waters from September 1 and 2, 2016. In-water structures show export fluxes of sentiment 

(bright and yellowish colours) and organic matter (dark and black colours). Reflectance values were stretched for land 

and water separately to make in-water structures visible. 

Satellite-borne tracking of organic-rich river waters can reveal changes in freshwater 

pathways (Fichot et al., 2013) and can aid in understanding current shifts in the 

hydrological cycle of the Arctic Ocean under the effects of ocean currents, sea ice 

dynamics, and weather. Terrigenous DOM is frequently used to track freshwater in surface 

waters of the Arctic Ocean (e.g. Stedmon and Markager, 2001; Granskog et al., 2012; 

Stedmon et al., 2015). The coloured fraction of DOM (CDOM) can be measured by OCRS 

techniques. In river-influenced Arctic waters, the absorption of light by CDOM can be 

directly related to the concentration of DOC in the water. Under favourable cloud 

conditions, frequent satellite acquisitions can help to monitor carbon export and transport 

during the entire open water season. Furthermore, satellite observations can provide a better 

understanding of shifts in river seasonality, and how it affects the distribution of organic 

matter on Arctic shelves in the long term.  

However, the performance and accuracy of OCRS products in Arctic coastal waters are 

generally not well constrained, mainly due to a lack of validation through in situ data. Few 

studies evaluate or validate OCRS-derived DOC concentrations in Arctic rivers or river-

influenced Arctic Ocean waters (Matsuoka et al., 2013, 2017; Griffin et al., 2018; Huang 
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et al., 2019). The performance and accuracy of OCRS for the estimation of DOC depends 

primarily on three factors: (1) the performance of the atmospheric correction algorithms, 

which minimize interferences from the atmosphere with the signal received by the satellite; 

(2) the performance of a retrieval algorithm, which converts the satellite reflectance to 

absorption intensity of CDOM; and (3) the robustness of a relationship between DOC and 

CDOM, which is used to estimate DOC concentration from CDOM absorption.  

To determine and improve the quality of OCRS and address all three of these factors, 

extensive in situ sampling is needed. For that, high spatial and temporal coverage as well 

as the capture of a wide range of water constituent concentrations in various combinations 

would be beneficial. In situ radiometric measurements of the water provide the ground truth 

for the atmospherically corrected signal from a satellite sensor. Besides, in situ sampling 

of both DOC concentration and CDOM absorption aids to improve retrieval of CDOM and 

to establish robust relationships between DOC and CDOM. 

1.2 Objectives, thesis organization and author contributions 

This thesis aims to expand our current knowledge of land-to-sea DOM and the associated 

carbon fluxes in the Arctic and to improve the methods of their quantification with satellite-

borne Ocean Colour sensors. Two Arctic land-sea systems were extensively studied in the 

scope of the thesis. They include the near-mouth region of the Lena and Mackenzie rivers 

as well as fluvial-marine transition zones and the coastal waters of the Laptev and Beaufort 

Seas. Variety of in situ and remote sensing platforms were used to acquire the data over the 

entire spatial extent of the two systems and over different seasons (Figure 1.3). For the 

Lena River ï Laptev Sea system, a long-term in situ sampling program for the river water 

monitoring was established in the frame of the work on this thesis. The chapters of this 

thesis answer the following specific objectives at various temporal and spatial scales: 

ǒ Improving accuracy of DOM flux estimation by increasing sampling frequency and 

including ice-covered and shoulder seasons. 

ǒ Describing seasonal variability of DOM flux with high temporal resolution and 

linking the variability to the seasonally changing dominant water sources. 

ǒ Estimating sources and quality (e.g. chemical characteristics and age) of DOM in 

in the Lena River and in the receiving coastal waters of the Laptev Sea and the 

Mackenzie mouth region. For that, in situ optical properties from multi annual and 

multi seasonal field campaigns were used.  
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ǒ Evaluating OCRS algorithms at regional scale in the Laptev Sea and Beaufort Sea 

and improving accuracy and applicability of OCRS for the monitoring of DOC 

concentrations in surface water on Arctic shelves. 
 

 

Figure 1.3: Schematic illustration of the Arctic land, coastal and ocean systems studied and observational platforms used 

in this thesis. Dissolved constituents of river, coastal and shelf waters and ice were measured and estimated in situ and 

remotely. Various in situ sampling platforms such as boats, ships, helicopter, and Arctic research stations as well as Ocean 

Colour satellites were used to study the organic matter fluxes from land to sea. 

The organization and structure of the thesis is following: 

Chapter 2 provides the scientific background and a short review of the state of knowledge 

about organic matter in the Arctic Ocean. Moreover, this chapter guides through the 

fundamentals, feasibility, and limitations of OCRS in Arctic coastal waters. 

Chapter 3 presents the first results of the sampling program near the mouth of the Lena 

River. Observed biogeochemical parameters provide a baseline for the estimation of the 

DOM fluxes and characterization of seasonality drivers of the Lena River water properties. 

The study is published in Frontiers of Environmental Science (Juhls et al., 2020). The 

thesisô author together with a small team initiated, developed and maintained this sampling 

program as well as the analysis of samples. 
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Chapter 4 synthesizes data from eleven ship-based campaigns to river, coastal and offshore 

waters in the Laptev Sea and Lena River Delta region. Sampled DOC and CDOM data 

were used to develop a new model for the OCRS-quantification of DOC from optical 

absorption measurements for this region. Furthermore, OCRS products were evaluated for 

the retrieval of DOC concentration. The study is published in Biogeosciences (Juhls et al., 

2019). The author of the thesis participated in most of the expeditions and performed some 

of the water sample analyses. 

Chapter 5 presents the results of a series of sampling campaigns to the Mackenzie Delta 

region in 2019. Combined biogeochemical, biooptical and radiometric in situ 

measurements were used to evaluate performance of atmospheric correction and CDOM 

retrieval algorithms. The best performing combination of algorithms was then used to 

monitor the river water plume propagation on a large spatial and temporal scale with OCRS. 

This chapter is a manuscript in preparation. 

Chapter 6 provides major outcomes and the concluding summary of this thesis with a brief 

outlook. 
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2 Scientific background 

Although the Arctic Ocean constitutes only about 1% of the global ocean volume (Opsahl 

et al., 1999), it receives about 10% of the global river discharge (Aagaard and Carmack, 

1989; McClelland et al., 2012). This strong impact of freshwater from the surrounding 

landmasses distinguishes the Arctic Ocean from the other oceans (e.g. the Southern Ocean). 

While numerous rivers drain into the Arctic Ocean, the six biggest Arctic rivers (Yukon, 

Mackenzie, Obô, Yenisey, Lena, and Kolyma) contribute about 65% (3913 km3 yr-1) to the 

total annual discharge into the Arctic Ocean (Holmes et al., 2012b). The fluxes of terrestrial 

material carried by river waters to the sea exert a strong influence on the Arctic Ocean, 

particularly on its surface waters. 

Following, background information on the organic matter and the Arctic carbon cycle is 

provided. This thesis focuses on the dissolved fraction of organic material and organic 

carbon for a number of reasons. The dissolved fraction is readily labile making it more 

bioavailable as compared to the particulate fraction. Furthermore, the particulate fraction 

is prone to settling and, thus, less relevant for pan-Arctic transport processes. Large areas 

are affected by terrigenous dissolved organic matter due to the large volume that drains into 

the Arctic Ocean and propagated over large spatial scales. 

2.1 Dissolved organic carbon in the Arctic carbon cycle 

Arctic aquatic systems play key roles in the global carbon cycle. They can, for instance, 

serve as a significant pool for particulate and dissolved inorganic and organic carbon and 

may exert considerable influence on the turnover and sinking of organic carbon. About 

50% of the global soil organic carbon is stored in Arctic permafrost soils (Gorham, 1991; 

Tarnocai et al., 2009), making the cycle of organic carbon in the Arctic an essential part of 

the global carbon cycle. Recent estimates report that 1035 ± 150 Pg of organic carbon is 

stored in the surface layer (top 3 m) of the northern permafrost regions (Hugelius et al., 

2014; Schuur et al., 2015). Ice-rich Pleistocene permafrost (Yedoma) is an important stock 

of organic carbon storing about 500 Pg of organic carbon (Grosse, 2013), which is highly 

vulnerable to climate change. It can potentially generate large fluxes of old carbon that was 

previously inactive in the carbon cycle (Vonk et al., 2012). 

Soils, rich in organic carbon, release it as carbon dioxide (CO2) or methane (CH4) into the 

atmosphere and as particulate organic carbon (POC) and DOC into the aquatic systems. 
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About 94 Tg of dissolved and particulate inorganic and organic carbon is transported 

annually from land into the Arctic Ocean via rivers and coastal erosion (McGuire et al., 

2009). Altogether, the Arctic carbon cycle is complex and many of its pathways remain 

poorly quantified (Figure 2.1). For example, little attention has been paid to the inorganic 

fraction of carbon fluxes (McGuire et al., 2009), although they might be substantial (Striegl 

et al., 2007). 

 

Figure 2.1: Carbon pathways, sources and trigger release and modification processes (A to H) in and between different 

compartments (land, shelf seas, central basins) of the Arctic. 

The DOC makes up about 38% of the total Arctic carbon flux from land to sea (McGuire 

et al., 2009). It constitutes about 10 - 17% of the global DOC flux from land to sea 

(Raymond et al., 2007). The six major Arctic rivers transport 7.5 - 9.5% (Raymond et al., 

2007; Stedmon et al., 2011; Holmes et al., 2012b) of the global annual riverine DOC to the 

Arctic Ocean (210 to 240 Tg C yr-1; Ludwig et al. (1996); Cauwet (2002)). While 

substantial effort has been spent on quantifying fluxes of DOM into the Arctic Ocean, only 

some studies provide information about the composition of the DOM. Arctic DOM is 

composed of a wide and variable range of compounds. Most frequent of them are lipids, 

amino acids, proteins, pigments, tannins, and lignins. Lignin phenols, that are found in river 

runoff and in the surface waters of the Arctic Ocean (Lobbes et al., 2000; Benner et al., 

2004; Amon et al., 2012), contain large amounts of aromatic carbon (Lebo et al., 2001) and 
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exclusively originate from vascular plants. They are identified as the humic fraction of the 

DOM (Kattner et al., 1999). Therefore, lignin is often used to trace the terrestrial fraction 

of DOM (e.g. Mann et al., 2016). Studies report that the lignin-rich terrigenous DOM in 

Arctic surface waters is rather refractory (Hansell et al., 2004; Holmes et al., 2008; Alling 

et al., 2010; Letscher et al., 2011), but also, contradictory, report a rather short DOC half-

life (<3 years) on the Siberian shelves (Alling et al., 2010; Letscher et al., 2011). 

Non-humic components of DOM that are found in the Arctic, such as amino acids and 

proteins, are typically related to autochthonous production and primarily originate from 

microbial communities (Coble, 2007). A fraction of DOM, which absorbs light 

predominantly in the ultraviolet (UV), is termed coloured dissolved organic matter 

(CDOM). CDOM is often used as a tracer for DOC in Arctic river and shelf waters and can 

be measured by optical sensors due to its specific optical absorption properties (chapter 

2.2.2).  

2.1.1 Sources of dissolved organic matter in the Arctic Ocean 

There are multiple sources of organic matter in the Arctic Ocean: (1) terrestrial organic 

matter, released via rivers and coastal erosion, (2) release of organic matter from sea ice, 

(3) freshly produced organic matter by biological activity in the water column, and (4) 

laterally transported organic matter from other water masses such as Atlantic water. 

Terrestrial DOM from rivers and eroding coastlines constitutes the dominant source and 

fraction of organic carbon in Arctic coastal and shelf waters. 
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Figure 2.2: Pan-Arctic map of permafrost zones (Obu et al., 2019), and catchments of the six largest Arctic rivers (GRDC, 

2020) and the Arctic Seas. Arrows display major oceanic currents. 

The largest in situ source of DOM and carbon produced in the Arctic Ocean is primary 

production that varies on seasonal and interannual scales (Davis and Benner, 2005; Mathis 

et al., 2007). Arrigo and Van Dijken (2011) estimated net primary productivity rates 

ranging from 441 to 585 Tg C yr-1 in the Arctic Ocean. According to their estimates, 

productivity may have increased by 20% between 1998 and 2009 due to an increase in the 

spatial and temporal extent of open waters. These same authors project a 65% productivity 

increase under conditions of ice-free summers in the Arctic Ocean. Besides the decline of 

sea ice, the increase of nutrients influx drives the increase of primary production in the 

Arctic (Babin, 2020; Lewis et al., 2020). While phytoplankton growth can result in elevated 

concentrations of particulate organic matter for limited areas and periods, the concentration 

of particulate matter in the offshore and central waters of Arctic Ocean waters is generally 

low. The major fraction of the total organic carbon there is DOC (Anderson and Amon, 

2015).  

The highest DOC concentrations from biological activity are found in sea ice attributed to 

ice algae production. Extensive algae blooming occurs in spring at the ice-water interface 
















































































































































































































































































































