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1
I N T R O D U C T I O N

Life on earth comes in many different shapes, sizes and colors. Ac-
cording to recent studies, it is estimated that our planet is inhabited
by several million or even more than a trillion species [64, 70]. Despite
this great diversity, all living organisms have one thing in common.
In each of their cells they possess the long molecule deoxyribonu-
cleic acid (DNA). This molecule acts as a blueprint for the organism
and comprises most of the information that is required to guide its
development and define its unique morphology and behavior.

A DNA molecule is composed of two complementary strands of
nucleotides (denoted forward and reverse strand) that are bound
together into a double helix. Because there are four different nu-
cleotides (adenine, cytosine, guanine and thymine), the DNA can be
regarded as a string, i.e. a sequence of characters, drawn from the
four-letter alphabet ∑DNA = {A, C, G, T}. This string is structured
into different segments of which the most prominent, known as genes,
encode the structure of proteins and other important building blocks
of the organism. With the exception of most microbial species, many
organisms possess not only one but multiple DNA molecules in their
cells which are referred to as chromosomes. The complete set of all
chromosomes comprising an organism’s entire genetic information
is called its genome.

Our human genome with its approximately 3.1 billion nucleotides
(or base pairs, bp) is distributed over 22 autosomes (chromosomes
1 to 22) and 2 sex chromosomes (chromosomes X and Y). Because
humans belong to the diploid organisms, however, our cells possess
two sets of chromosomes (as opposed to haploid organisms with
only one chromosome set). Each set is inherited either from our
mother or father and consists of the 22 autosomes as well as one of
the two sex chromosomes. Therefore, the full diploid human genome
comprises 44 autosomes (two of each kind) and 2 sex chromosomes
(either XX or XY).
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2 introduction

Although human genomes are highly similar, studies estimate that
there are on average between 4 and 5 million differences, termed
variants, between different individuals [1]. The different alternative
forms of a DNA sequence that originate from a variant are termed
alleles. A set of closely linked alleles that are inherited together
from a single parent is known as a haplotype. While the majority
of variants affect only a few base pairs, larger and more complex
rearrangements referred to as structural variants do exist. In total, the
sum of all variants in an average individual is estimated to affect
more than 25 million nucleotides.

The entirety of genomic variants in a given individual (their geno-
type) influences to a large extent their unique observable properties
and traits including physical appearance, character traits and sus-
ceptibility to disease (their phenotype). Therefore, the detection of the
unique set of variants for a given individual (variant calling) and the
reconstruction of its genome sequence (genome assembly) are highly
important tasks. They provide the basis for deepening our under-
standing of the complex network of genes, proteins and regulatory
elements that is defined by our genome.

Over the last few decades, new molecular and computational meth-
ods have been developed that enabled the analysis of genomes at un-
precedented resolution and scale. In the mid-2000s, next-generation
sequencing considerably reduced the cost of genome sequencing
by producing large numbers of short sequence fragments known
as reads. These reads can be localized and aligned on a reference
genome facilitating a comparison of the sequenced genome with the
reference. More recently, third-generation sequencing technologies
have enabled the generation of substantially longer reads driving
advances in variant calling and genome assembly.

Due to their large size and great impact, the characterization of
structural variants is of particular importance in fields like genetics,
medicine and genomics. Therefore, structural variant detection has
been the target of extensive research efforts over the last decades.
Due to biological, technical and algorithmic challenges, however,
neither the comprehensive detection of structural variants nor the
complete reconstruction of personal genome sequences could be
fully achieved yet.
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Figure 1.1: Schematic overview over the topics discussed in this doctoral
thesis. Long sequencing reads from third-generation sequenc-
ing technologies can be aligned and compared to an existing
reference genome (read alignment). Alternatively, the reads can
be assembled into a complete genome sequence (genome as-
sembly) followed by its comparison with the reference genome
(genome alignment). The alignments of reads or genomes can
be analyzed to detect structural variants.

1.1 research objective

This thesis presents a new computational method for the detection of
structural variants using third-generation sequencing data. We apply
this new method on simulated and real sequencing datasets and
compare it to existing approaches. Furthermore, we use our method
to detect structural variants from genome assemblies. This work cov-
ers topics at the interface between genome assembly and structural
variant calling as illustrated in Figure 1.1. Our novel contributions
are:

• an accurate and user-friendly software tool for the detection
and genotype estimation of structural variants from long
reads or genome assemblies

• classification of six classes of structural variation including
similar classes, such as insertions and two types of duplications

• genotyping of structural variants from long reads and genome
assemblies with higher accuracy than existing methods
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• detection, filtering and validation of novel adjacencies in a
cohort of highly rearranged genomes

1.2 thesis overview

This chapter shortly introduced the scope of this thesis. The following
Chapter 2 will give a more detailed introduction into the landscape
of human genomic variation and the molecular and computational
techniques used for its characterization. Chapter 3 presents the soft-
ware tool SVIM for the detection of structural variants from third-
generation sequencing data. The following Chapter 4 explains how
the same concepts and algorithms can be adapted for the detection
of structural variants from genome assemblies. Chapter 5 presents
the evaluation of SVIM on various sequencing datasets and its com-
parison to existing methods. In Chapter 6, SVIM is applied on a set
of highly rearranged patient genomes and used to investigate the
structural variants and novel adjacencies in these genomes. Finally,
the thesis will be concluded in Chapter 7 with a discussion of the
findings and avenues for future research.



2
G E N O M I C VA R I AT I O N A N D G E N O M E
S E Q U E N C I N G

The variation landscape of the human genome is complex and di-
verse. This is a consequence of the multitude of biological mecha-
nisms that can cause changes in the genetic sequence and structure
of the genome. Over the years, the scientific community has gained
an increasingly deeper understanding of these mechanisms and the
different classes of human genomic variation. The most compre-
hensive class of variation is termed structural variation and it ranges
from simple alterations, such as deletions, to large and complex rear-
rangements that modify the greater structure of the genome. In this
chapter, we characterize the landscape of human genomic variation
with a particular emphasis on structural variation. We describe how
structural variants form and what is known about their functional
consequences. Finally, we introduce the molecular and computa-
tional approaches that have been applied now and in the past to
detect and characterize structural and other types of variation.

2.1 human genomic variation

When comparing any two human genomes, a multitude of differ-
ences can be observed. Current studies estimate the average number
of genetic variants in any given genome to be between 4.1 and 5.0
million but the number varies between populations [1]. For instance,
it has been found that genomes from African populations harbor
substantially more variants than genomes from other populations.
All variants combined amount to a total sequence of approximately
25 Mbp in an average genome [1]. Despite these high numbers it is
worth keeping in mind, however, that the vast majority of nucleotides
(more than 99%) in any two human genomes are identical.
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6 genomic variation and genome sequencing

2.1.1 Classes of genomic variation

In most higher organisms, all the cells in the body are descendants
of a single fertilized egg cell. Therefore, they inherit in principle the
same genome which is why we speak of one genome for each or-
ganism. Nevertheless, each cell within an organism can gain private
mutations making its genome different from that of the other cells.
This variation between individual cells is termed somatic variation.
It plays a particularly important role in cancer where tumor cells
acquire multiple important somatic mutations that enable them to
grow faster than non-tumor cells. Although somatic variants can be
detected with approaches similar to those discussed in the following
chapters, they are not the focus of this thesis. Instead, we describe
approaches for the detection of germline variants, i.e. differences be-
tween the genomes of different individuals. These variants can be
categorized into different classes according to their properties.

by size The first and most intuitive way of categorizing the vari-
ants in a genome is by their size. The smallest and most frequent
class of variants in the human genome are the so-called Single Nu-
cleotide Variants (SNVs). As the name indicates, SNVs denote changes
of only a single base pair. Recent studies estimate that the average
number of SNVs in a genome lies between 3.5 and 4.3 million [1].
The second most frequent class of variants in the human genome
are short insertions and deletions (indels) with on average more than
500,000 variants per genome [1]. While insertions denote additional
bases present in one genome but absent in the other, deletions repre-
sent the inverse case of bases missing from one of the genomes. A
third class of variants in the human genome is known as Structural
Variants (SVs). They are larger in size than SNVs and indels and can
represent major rearrangements in the structure of the genome. SVs
are the most diverse class of variants and encompass all conceivable
genomic rearrangements of large size.

by frequency Another way of categorizing variants in the hu-
man genome is by their frequency. Large-scale studies like the 1000

Genomes Project have analyzed variation in thousands of human
genomes from different populations around the globe. They found
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that some variants are common (i.e. they are present in more than
1% of the population) while others are rare [29]. The majority of
variants in a given genome are common and therefore referred to
as polymorphisms [1]. Nevertheless, the majority of variants found in
the entire population are rare. Approximately 76 million variants
detected in the 1000 Genomes Project had a frequency below 5%
compared to only 8 million with a frequency above 5% [1].

by copy number Thirdly, the variants in a genome can be catego-
rized into copy-number variants (CNVs) and balanced variants. CNVs,
such as insertions, duplications and deletions, are adding or remov-
ing genetic material and can therefore have a direct effect on the
dosage of a gene [77]. Balanced variants, such as inversions and
translocations, on the other hand, merely change the orientation,
order or location of genomic segments. Although they do not add
or remove any genetic material they have the potential to disturb
the gene structure and regulatory landscape of the genome causing
phenotypic changes [76].

by zygosity A fourth way of categorizing variants in a diploid
genome, such as the human genome, is by their zygosity. This term
refers to the presence of a variant in the two chromosome sets.
Because a human cell possesses a pair of each autosome (and of chro-
mosome X in female individuals), a given variant can be present in
one or both of these homologous, i.e. related, chromosomes. Variants
that are present in only one of the two homologous chromosomes
are called heterozygous while variants present in both are called ho-
mozygous. The zygosity of a variant is often also referred to as the
genotype of the individual at this position. But whereas the genotype
denotes the complete genetic make-up or nucleotide sequence of
an individual on both homologous chromosomes, the zygosity only
refers to the presence or absence of a variant.

2.1.2 Structural variation

Structural variants are now widely defined as rearrangements larger
than 50 bp [2, 19]. The term encompasses a broad spectrum of
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Figure 2.1: Six classes of structural variation. Structural variants can be
categorized into deletions, insertions, inversions, duplications
(in tandem or interspersed) and translocations. Each SV class
is depicted in an individual genome (lower line) when com-
pared to the reference genome (upper line). The regions being
rearranged are marked in red.

genomic alterations that can affect from a few dozen to millions
of base pairs. Typically, the scientific community distinguishes the
following common SV classes (depicted in Figure 2.1) [2]:

• Deletions: A deletion denotes the removal of a genomic segment
that is present in the reference genome but missing in the
individual genome (panel a). Deletions are a type of CNV.

• Insertions: An insertion denotes that a genomic segment which
is not present in the reference genome has been added at a
certain location in the individual genome (panel b). Insertions
are a type of CNV.

• Inversions: An inversion denotes the reversal of a genomic seg-
ment in the individual genome such that the sequence in the
segment is replaced by its reverse-complement (panel c). Inver-
sions are a type of balanced rearrangement.

• Tandem duplications: A tandem duplication denotes the dupli-
cation of a genomic segment and the adjacent insertion of the
copy in the individual genome (panel d). Tandem duplications
are a type of CNV and can also be regarded as a special type
of insertion.

• Interspersed duplications: An interspersed duplication denotes
the duplication of a genomic segment and the insertion of the
copy at a distant location in the individual genome (panel e).
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The copy can be inserted either somewhere else in the source
chromosome (intra-chromosomal) or in a different chromosome
(inter-chromosomal). Interspersed duplications are a type of
CNV and can also be regarded as a special type of insertion.

• Translocations: A translocation denotes the change in position
of a genomic segment (panel f). The genomic segment can be
moved to another position in the same chromosome (intra-
chromosomal) or to another chromosome (inter-chromosomal).
The most common type of translocation, known as reciprocal
translocation, denotes the exchange of genomic segments be-
tween two chromosomes. Translocations are often expressed in
terms of novel adjacencies, i.e. connections between two genomic
loci in the individual genome that are distant in the reference
genome.

These six canonical classes are by no means complete and several
other classes and subclasses of SVs have been defined. Furthermore,
combinations of multiple SVs at the same locus can lead to com-
plex or nested rearrangements. Numerous classes of complex SVs
have been described, such as inversions flanked by deletions or
duplications [16].

The boundaries between the six canonical SV classes are not al-
ways clear and some classes overlap. Duplications for instance can be
regarded as a special type of insertion where the inserted sequence
is identical to an existing portion of the genome. When the inserted
copy misses a few bases, however, the rearrangement can be repre-
sented either as a duplication with a deletion or as a simple insertion.
Ambiguities like these are common because many differences be-
tween two genomes have multiple possible interpretations.

Another aspect to keep in mind is that the variant class determined
for a given genomic difference does not necessarily indicate how the
difference developed during evolutionary history. To illustrate this,
consider a deletion that is observed in an individual genome when
compared to the reference genome. The most intuitive explanation
for the deletion is that the genomic segment was removed in the
evolutionary past of the individual genome while it was retained in
that of the reference genome. However, another explanation is that
the segment was added in a recent insertion event to the reference
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genome and never existed in the lineage of the individual genome.
Furthermore, the variant class that is identified for a given genomic
difference is closely linked to the choice of one of the genomes as
reference. All deletions detected in a given individual genome will be
categorized as insertions and vice versa when the individual genome
is chosen as reference. These two examples illustrate that differences
between two genomes do not reveal much about their origin and are
dependent on the choice of one genome as the reference.

2.1.2.1 Mechanisms of SV formation

SVs are known to form during DNA recombination, DNA replication
and DNA repair [10]. Two general mechanisms can be distinguished
that give rise to structural rearrangements in the genome: homologous
recombination (HR) and non-homologous recombination [40]. While HR
requires long stretches of DNA with high sequence similarity (ho-
mology), non-homologous recombination mechanisms require no or
only short stretches of similar sequence (microhomologies).

HR forms the basis for several accurate DNA repair mechanisms
that repair a damaged sequence using a similar sequence tem-
plate [40]. Most often, the homologous chromosome of a diploid set
is used for this purpose. However, the presence of two homologous
regions in the genome can cause misalignment through a process
called Non-allelic homologous recombination (NAHR, Figure 2.2a). Sub-
sequent crossover between the two homologous chromosomes can
result in deletions, duplications, inversions and translocations.

Another repair mechanism known as break-induced replication (BIR)
can be triggered by nicks in one DNA strand causing the DNA repli-
cation process to fail (Figure 2.2b) [50]. To repair the strand breakage,
the DNA strand aligns to an homologous region on another DNA
molecule and uses it as a template for replication. The misalignment
between different homologous regions can result in deletions, du-
plications and inversions constituting an alternative mechanism for
NAHR [40].

SVs can also form as a result of repair processes that do not
require extensive homology, such as non-homologous end joining
(NHEJ) [10]. NHEJ is a repair mechanism that joins broken DNA
ends originating from double-strand breaks (Figure 2.2c). Instead of
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Figure 2.2: Molecular mechanisms causing the formation of SVs.
a | Non-allelic homologous recombination denotes the recombi-
nation between long homologous stretches of DNA (red arrows)
from different genomic regions. In this example, the second
region from chromosome A misaligns to the first instead of
second region from chromosome B. Subsequent cross-over be-
tween the chromosomes leads to a deletion (light grey path) or
a duplication (dark grey path).
b | Break-induced replication (BIR) is a mechanism to repair
one-ended breaks in the DNA, e.g. caused by a broken replica-
tion fork. The broken DNA (upper line) is repaired by using
an homologous region in another DNA molecule (lower line)
as a template. Similarly to NAHR, a misalignment between
different homologous regions can result in variations, such as
duplications.
c | Non-homologous end joining (NHEJ) is a repair mechanism
for double-strand breaks that rejoins the two ends without re-
quiring extensive homology. As a consequence of this inaccurate
repair mechanism, small deletions (in red), insertions or translo-
cations can occur at the repair site.
d | Active mobile elements in the genome, such as LINE-1 ele-
ments, are able to duplicate their own sequence and to insert it
at another location (target region) in the genome. These mobile
element insertions (MEI) can in turn also promote the formation
of new variants through homologous recombination.
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long sequence homologies, NHEJ either uses microhomologies to
guide repair or joins ends without any homology. This can lead to
small insertions or deletions or even the fusion of unrelated DNA
strands [40].

Another source of SVs in human genomes are duplications of
mobile elements, such as Alu, LINE-1 and SVA elements [90]. Mo-
bile elements are segments in the genome that are able to move
around with the help of proteins. The mobile elements in the human
genome duplicate using a process called retrotransposition and insert
their duplicated sequence into other locations across the genome
(Figure 2.2d). In total, they are responsible for a considerable fraction
of the structural variation found in human genomes. A large-scale
study that was part of the 1000 Genomes Project estimated that ap-
proximately 25% of detected SVs were mobile element insertions [92].
Most of these insertions formed during ancient retrotransposition
events. However, a minority of elements, particularly LINE-1 ele-
ments, remains active and still contributes to human genomic vari-
ation. DNA transposons, another class of mobile elements, use a
cut&paste mechanism to move around the genome. They are now
inactive in most mammals except bats but remain active in plants
and lower-order animals [41].

As we have seen, many SVs are caused either by the misalignment
of homologous regions in the genome or the duplication of sequence
by retrotransposition. Therefore, it is not surprising that SVs are
commonly found in repetitive regions of the genome [3, 77, 85].

2.1.2.2 Functional consequences

Although SNVs and indels make up more than 99% of all variants in
an average human genome, studies have shown that SVs affect more
base pairs [1]. Consequently, SVs are responsible for a substantial
fraction of human genetic diversity and have a major influence
on both normal phenotype and disease [96]. When SVs alter the
genotype of an organism, they can influence its phenotype through
a wide range of mechanisms. Duplications or deletions, for instance,
can change the copy number of a gene or regulatory element and
thus have a direct impact on the gene’s expression [68]. Alternatively,
SVs in coding regions can alter the inner structure of a gene or
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fuse different genes together. Furthermore, they can influence the
regulation of genes by rearranging their regulatory elements [96].
SVs are also able to alter the 3-D architecture of the genome and
thus affect the expression of distant genes [87].

The functional impact of SVs has been most thoroughly stud-
ied in the context of human disease. A growing number of syn-
dromes and genomic disorders, such as Smith–Magenis syndrome,
Williams–Beuren syndrome and DiGeorge syndrome, are associated
with SVs [96]. SVs have also been linked to complex diseases, such
as autism, schizophrenia, attention deficit hyperactivity disorder,
Crohn’s disease, rheumatoid arthritis and diabetes [81, 96]. More-
over, SVs are known to be a major driving force in many cancers [59].
Consequently, the characterization of SVs is of major importance to
human medicine and genetics alike. It can contribute to the early de-
tection of disorders and can help to elucidate the underlying genetic
and molecular processes [35].

2.2 variant detection through the years

The technologies used for the analysis of genomic sequence and
variation have changed rapidly over the last decades. From the
first observations of chromosomes under a microscope to the high-
throughput technologies that are in use today, the ability to investi-
gate more and more genomes with increasing resolution has steadily
improved. Nevertheless, each new technology has brought along
unique challenges and weaknesses. For many applications, it is there-
fore necessary to combine multiple complementary technologies to
obtain meaningful results.

2.2.1 Cytogenetic and hybridization-based technologies

Initial observations of genomic differences were made under a mi-
croscope using cytogenetic approaches [27]. At first, condensed and
unstained chromosomes were viewed under the microscope in a
process termed karyotyping, revealing only large rearrangements and
changes in chromosome number. Later, elongated prometaphase
chromosomes were stained with specialized dyes enabling the iden-



14 genomic variation and genome sequencing

tification of individual chromosomes by characteristic banding pat-
terns. Thus, more subtle variations down to a size of 3 Mb includ-
ing translocations, deletions, duplications, insertions and inversions
could be detected. Using fluorescence in situ hybridization (FISH), spe-
cific target sequences could be fluorescently labelled, revealing their
presence and relative location under the microscope. This enabled
the detection of variants down to a size of a few kbp.

Later, hybridization-based methods such as array-based comparative
genomic hybridization (array-CGH) enabled the detection of CNVs at
a higher resolution [27]. When analyzing a genome of interest in
comparison to a reference sample with array-CGH, both samples are
fragmented and fluorescently labelled with different tags. Then, the
labelled fragments are applied to an array with a collection of DNA
probes where the sample fragments only bind to matching DNA
probes. Finally, the fluorescence from both samples and for every
probe can be measured and compared to reveal CNVs between the
two samples. Similar to array-CGH, SNP arrays use allele-specific
DNA probes to detect not only CNVs but also SNVs.

2.2.2 Next-generation sequencing

With the advent of next-generation sequencing (NGS) in the mid-2000s,
the older cytogenetic and hybridization-based technologies have
been gradually replaced by sequencing-based approaches [36]. NGS
experiments produce high volumes of sequence data for a fraction of
the cost of previous sequencing technologies like Sanger sequencing.
This high throughput is achieved through the fragmentation of the
DNA into smaller pieces and subsequent amplification to produce
many copies of each DNA fragment (see Figure 2.3a). Then, NGS
is carried out in a massively parallel fashion with millions of DNA
molecules being sequenced at the same time in different reaction
chambers of the same sequencing machine.

Two broad categories for NGS exist that either use the ligation of
labelled probes (sequencing by ligation, SBL) or the incorporation of
labelled nucleotides using a DNA polymerase (sequencing by synthe-
sis, SBS) to identify the sequence of a DNA fragment. Today, SBS
accounts for the largest market share of NGS instruments [36]. Illu-
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Figure 2.3: Overview of short-read sequencing technologies.
a | In Illumina sequencing, DNA fragments (yellow and red)
are ligated to adapters (blue and aqua) that attach to oligonu-
cleotides on the surface of the flow cell. Through a process
called bridge amplification, numerous copies of each fragment
are generated. Then, millions of fragments are sequenced at the
same time by incorporating fluorescently labelled nucleotides
on the fragment. Characteristic light flashes corresponding to
each newly incorporated base are recorded using microscopy
and enable the detection of the fragment’s DNA sequence.
b | In Hi-C, nuclear chromatin is fixed with formaldehyde so
that genomic loci in close spatial proximity are cross-linked.
After cutting the fixed chromatin with a restriction enzyme,
the resulting ends of the DNA fragments are extended with
biotin-linked nucleotides and ligated to connect the two cross-
linked fragments. Then, the crosslinks are removed and the
fragments are split into smaller pieces. Pieces with attached
biotin are pulled down with specialized beads and sequenced
with Illumina paired-end sequencing. This produces read pairs
connecting two genomic loci (light and dark blue). The contact
frequency between pairs of loci strongly correlates with their
distance in 3-D space and can be visualized in a contact map.
Reprinted by permission from Springer Nature c© 2020 [65]



16 genomic variation and genome sequencing

mina, the most prominent manufacturer of NGS machines, provides
a range of different sequencing machines that all use an SBS-based
technology called cyclic reversible termination (CRT). CRT uses la-
belled nucleotides with an attached blocking group that prevents
further elongation after the incorporation of the nucleotide. After the
incorporated nucleotide is imaged to identify its label, the blocking
group and label are removed and the next incorporation cycle can
begin.

NGS experiments produce millions of short DNA sequences known
as reads that, depending on the instrument, have a length between
70 and 700 bp. Usually, every position of the sequenced genome
is contained in several reads where the average number of reads
covering any position is termed sequencing coverage or sequencing
depth. In comparison to the earlier Sanger sequencing technology,
NGS data has an elevated error rate with current Illumina instru-
ments reaching an accuracy of approximately 99.9% [33]. Like most
sequencing platforms, Illumina machines exhibit some systematic
bias, such as a propensity towards substitution errors [69] and an
under-representation of regions with extreme GC content [39].

Despite these errors and biases, NGS enabled, for the first time,
the near-complete resolution of an individual’s genome sequence
and the comprehensive detection of all classes of variation. Although
array-based technologies are still in use due to their high throughput
and low cost, NGS possesses two major advantages: its ability to
detect balanced variants as well as insertions of sequence not present
in the reference genome and its considerably higher resolution down
to the base-pair level.

2.2.3 Long-read sequencing

Recently, a number of new technologies are promising to revolu-
tionize variant detection. Compared to traditional NGS approaches
using short sequencing reads they offer both improved sensitivity
and lower false discovery rates. The most versatile of these novel
technologies are long-read sequencing technologies (also referred to
as third-generation sequencing, TGS). As the name indicates, they pro-
duce longer reads than traditional NGS technologies which enables
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Figure 2.4: Overview of long-read sequencing technologies.
a | In Pacific Biosciences (PacBio) sequencing, DNA fragments
(yellow for forward strand, dark blue for reverse strand) are
ligated to so-called hairpin adapters (light blue) to form cir-
cularized DNA templates (SMRTbell). The actual sequencing
reaction is performed in small chambers known as Zero-mode
waveguides (ZMWs). A DNA polymerase molecule attached
to the bottom of each ZMW incorporates fluorescently labelled
nucleotides (dNTP) on the DNA template. During incorpora-
tion, fluorescent light flashes are emitted and recorded by a
camera. Different colors corresponding to the different DNA
bases enable the identification of each incorporated nucleotide.
b | In Oxford Nanopore Technologies (ONT) sequencing, DNA
fragments are ligated to adapters (light blue) with attached
motor proteins. The fragments are passed through protein
nanopores embedded in a synthetic membrane. While the mo-
tor protein drives the fragment through the pore at a constant
speed, an electric field is applied to the pore. The DNA fragment
causes characteristic changes in the field’s current that are used
to identify its DNA sequence.
Reprinted by permission from Springer Nature c© 2020 [65]



18 genomic variation and genome sequencing

them to resolve long repeats, structural variants or other complex
regions of the genome [36]. When applied in transcriptome studies,
long reads are able to cover entire mRNA transcripts. This facilitates
the discovery of alternative splicing events and the reconstruction of
complete gene isoforms. Long-read sequencing approaches can be
broadly categorized into two groups: synthetic long-read sequencing
and single-molecule real-time (SMRT) approaches.

As the name already indicates, synthetic long-read sequencing
does not produce actual long reads. Instead, it produces short reads
using existing sequencing technologies that are later computation-
ally assembled into longer fragments [94]. For this purpose, special
library preparation steps have been developed. First, long sequence
fragments are distributed across a large number of wells in a plate.
Subsequently, the few fragments in each well are amplified, split
into smaller fragments and tagged with short characteristic sequence
barcodes unique to each well. Then, all fragments from all wells
can be sequenced together on a traditional NGS machine. As frag-
ments sharing the same barcode originated from the same well, the
barcodes can be used to split the data again and computationally
reassemble the original long sequence fragments.

In contrast to synthetic long-read sequencing, SMRT sequencing
does not rely on traditional NGS technology but follows a completely
different approach. SMRT sequencing instruments analyze a single
DNA molecule without prior amplification in real-time, i.e. without
the cyclic addition and removal of chemical reagents necessary in
NGS approaches. Two commercial SMRT solutions exist to date:
SMRT sequencing by Pacific Biosciences (PacBio) and nanopore se-
quencing by Oxford Nanopore Technologies (ONT). PacBio machines
possess millions of small reaction chambers (Zero-mode waveguides,
ZMWs) with a stationary DNA polymerase molecule fixed to the bot-
tom (see Figure 2.4a) [25]. To initiate sequencing, a single-stranded
DNA template is added to the chamber together with fluorescently la-
belled nucleotides. When the DNA polymerase incorporates comple-
mentary nucleotides on the DNA template, fluorescent light flashes
are emitted and recorded by a camera revealing the identity of each
incorporated nucleotide. The PacBio technology uses circularized
DNA templates that allow the DNA polymerase to traverse the tem-
plate several times. This enables PacBio machines to produce two
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different data types: Firstly, the relatively inaccurate raw read se-
quences termed continuous long reads (CLR) from individual passes
of the circular template can be used. Secondly, a template can be
sequenced multiple times to correct sequencing errors and generate
a more accurate circular consensus sequence (CCS).

SMRT sequencing by ONT uses a very different approach. Small
protein pores (nanopores) in a synthetic membrane are utilized that
directly sense the composition of the DNA molecule (see Figure
2.4b) [15]. This is made possible through the application of an electric
field to the pore and the constant measurement of the field’s current.
To initiate sequencing, a single-stranded DNA molecule is passed
through the pore causing characteristic changes in the current. By
analyzing these changes, the DNA sequence can be determined.

Both SMRT sequencing technologies have the same two draw-
backs. Firstly, the relatively high error rates of approximately 5-15%
complicate many downstream applications [65, 95]. Errors in PacBio
reads are randomly distributed and can be easily corrected with a
sufficiently high sequencing coverage. Furthermore, the generation
of a CCS from multiple sequencing rounds of the same template
can correct most errors and reduce the error rate to below 1% [97].
The Nanopore platform, in contrast, suffers from systematic errors
in homopolymer regions that are harder to correct than random
errors [44]. In both platforms, the majority of errors are indels and
error rates steadily decreased in recent years with the introduction
of new instrument generations, chemistry updates and software
improvements.

The second major drawback of the SMRT sequencing platforms
is their high cost compared to short-read sequencing. Although the
costs significantly decreased over the last years with the release of
new instrument generations, further reductions are necessary for
more widespread adoption of both technologies [65].

2.2.4 Chromosome conformation capture

Beside long-read sequencing, several other new technologies and
protocols enable the detection and characterization of genomic vari-
ants. They often complement the existing short-read and long-read
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sequencing approaches with their sensitivity for variant classes or
sizes that are frequently missed by sequencing approaches.

One of these protocols is called Hi-C. Together with other chro-
mosome conformation capture (3C) techniques it analyzes the three-
dimensional organization of genomic DNA in the nucleus [99]. The
folding of chromosomes can bring loci that are distant on the linear
genome into close proximity in 3-D space. This spatial organization is
closely linked to the biological function of the genome and its inves-
tigation with 3C techniques has enabled several important research
findings. Most prominently, it has been revealed that the genome
is organized into topologically associating domains (TADs) which are
characterized by a higher interaction frequency between loci in the
same TAD relative to loci in different TADs [23].

As the first step of most 3C methods, the chromatin is fixed with
formaldehyde so that genomic loci in close spatial proximity are
cross-linked (see Figure 2.3b) [99]. Then, the fixed chromatin is cut
with a restriction enzyme. The resulting ends of the DNA fragments
are ligated to connect the two cross-linked fragments that were origi-
nally in close spatial proximity in the nucleus. Then, these connected
fragments from interacting loci are quantified with subsequent steps
that are specific to the concrete 3C technique.

In the Hi-C protocol, the quantification of interacting loci is per-
formed using paired-end short-read sequencing [60]. This produces
read pairs with highly variable genomic distances between the reads
reflecting the spatial organization of the chromosome. After align-
ment of the read pairs to a reference genome, a contact matrix can
be constructed from the number of ligations products/read pairs
between every combination of genomic regions.

2.2.5 Optical mapping

Another method to complement traditional sequencing-based tech-
nologies is optical mapping. First introduced in 1993, it employs re-
striction enzymes to produce low-resolution maps of large DNA
fragments [80]. A restriction enzyme cuts the DNA only at sites with
a specific sequence pattern (restriction sites). Mapping the locations
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of restriction sites on a DNA fragment therefore produces a unique
barcode pattern for the fragment.

Modern optical mapping approaches, such as the Bionano Ge-
nomics platform, attach fluorescent labels at restriction sites instead
of cutting [53]. Then, they stretch the DNA fragments with sizes
of up to 1 Mbp into small channels and take images of them. The
images reveal the locations of the fluorescently labelled sites and can
be transformed into digital representations (barcodes) of the label
patterns. Finally, the barcodes can be aligned to each other or to a
reference map to produce genome-wide maps.

Optical mapping is widely used in de novo genome assembly be-
cause it provides a long-range scaffold for other datasets, for instance
from short-read or long-read sequencing [46, 51]. Optical maps can
also be compared to detect SVs, such as deletions or insertions, that
can cause deviations in the distances between adjacent labels [9,
53]. Unlike sequencing-based approaches, however, optical mapping
provides neither base-pair resolution nor the genomic sequence of
the fragment.

2.3 from sequencing reads to genomic variants

Since the widespread adoption of NGS approaches, the volume of
sequencing data being generated has seen an unprecedented growth.
Sequencing data most commonly consists of sequencing reads, i.e.
strings of nucleotide bases that are relatively short when compared
to the length of the genome. To analyze these sequencing reads, new
bioinformatics methods, tools and protocols were required. Most
prominently, read alignment and genome assembly evolved as the
two main avenues for the analysis of sequencing reads.

2.3.1 Read alignment and genome assembly

Read mapping describes the task of locating the original position
of a given read on an existing reference genome. After identifying
this position, a sequence alignment can be derived in the next step.
The alignment associates each base of a query sequence with a base
from a target sequence in such a way that the associated bases are
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related or share a common ancestry. In the case of read alignment,
the aim is to associate each read base to the reference base it was
sequenced from. To find an optimal alignment, alignment algorithms
attempt to maximize the number of associations between similar
bases (matches) and to minimize the number of associations between
differing bases (mismatches). To account for insertions or deletions
in one of the sequences, gaps can be inserted between bases. Thus,
read alignment enables a direct comparison between the sequenced
genome and the reference genome at a particular genomic locus.
The read alignments contain characteristic signatures of genomic
variation that can be analyzed by computational tools.

Genome assembly, in contrast, is performed when a suitable refer-
ence genome is either lacking or shall not be used in order to conduct
a reference-independent analysis. It denotes the task of using overlap-
ping portions of sequencing reads to reconstruct larger units that are
denoted contigs. The three main goals of genome assembly are to pro-
duce a representation of the genome that is a) accurate, b) complete
and c) partitioned in as few fragments as possible. Consequently, the
ideal assembly has a low error rate, covers the entire genome and
consists of large fragments corresponding to full chromosomes.

However, a genome assembly on its own is merely a set of nu-
cleotide sequences. To draw valuable conclusions from the assembly,
an annotation of its elements, such as genes and regulatory regions,
is needed. The annotation can be performed explicitly using special-
ized tools or implicitly by comparing the assembly with an existing,
already annotated, genome sequence. For species with an existing
high-quality reference genome, such as human or mouse, a new
genome assembly is routinely aligned to this reference genome.
From the resulting genome-genome alignment, SVs can be detected
in a similar fashion as from read alignments.

2.3.2 Computational variant detection

Read alignment and genome assembly are only intermediate steps
towards the characterization of genomic variants. After alignment,
the reads need to be compared with the reference genome to extract,
filter and interpret signatures of the different variant classes. In
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a similar fashion, a new genome assembly can be compared to
another assembly or reference genome to identify differences and
rearrangements. Over the last years, more than a hundred different
tools have been developed for this task of variant detection [73].

Due to their simple structure, SNVs and small indels were the
first classes of variation to be comprehensively analyzed using NGS.
Their detection has since become a routine task in genetics and
genomics studies and is usually divided into two separate steps:
Variant calling and genotype calling. While variant calling aims to
identify positions where the read bases differ from the reference
sequence, genotype calling estimates the zygosity of the variant as
well as the exact bases in the maternal and paternal chromosome.
Early approaches for both steps used fixed cutoffs to determine when
to call a variant or a certain genotype. Recent methods, however,
employ probabilistic models to incorporate uncertainty as well as
additional information [72]. Results from the 1000 Genomes project
which motivated the development of several tools and best-practice
workflows show that state-of-the-art methods such as the Genome
Analysis Toolkit combine high sensitivity and specificity [17, 21]. How-
ever, several challenges, for instance in genomic regions with poor
mappability, remain.

While NGS has enabled the comprehensive identification of SNVs
and small indels, SVs are much harder to detect. One reason is
that SVs encompass a diverse range of modifications. While SNVs
are simple base pair substitutions, the term SV summarizes many
different phenomena, such as deletions, insertions, inversions and
duplications.

A wide variety of SV calling tools have been developed for dif-
ferent purposes [73]. Most of these callers discover SVs from short
paired-end reads. After the reads have been aligned to a reference
genome, they examine the alignments for characteristic signatures.
There are three common conceptual approaches for SV detection
from sequencing reads [2]:

1. Read depth approaches analyze the alignment depth across
the genome. They search for regions with an elevated read
depth caused by duplications and regions with a reduced
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depth caused by deletions. Read depth approaches are not able
to detect balanced SVs, such as inversions or translocations.

2. Read pair approaches analyze the relative position and ori-
entation of mapped read pairs. Almost all SV classes can be
detected from their characteristic mapping signatures. Read
pairs mapping too far apart, for instance, indicate deletions
while those mapping too close indicate insertions. Pairs with
discordant mapping orientations are indicative of inversions.

3. Split-read approaches analyze reads that have been split and
whose segments have been independently mapped to the refer-
ence to produce a better overall alignment. Particularly reads
from rearranged regions cannot be mapped linearly to the ref-
erence and have to be split up. Similar to read pair approaches,
the relative distances between read segments as well as their
orientations yield information on virtually all classes of under-
lying SVs.

Over the years, numerous SV callers have been published employ-
ing either one or multiple of these conceptual approaches. A recent
benchmarking study counted 79 different tools and compared 69

of them on different real and simulated datasets [49]. The authors
found that each tool excels in the detection of particular SV classes
and sizes but that no single method outperforms the others in all
settings.

After the recent introduction of third-generation sequencing tech-
nologies, a number of SV callers for long-read datasets have been
developed. In the next chapter, we will give a detailed overview of
them and will introduce our own method for SV detection from long
error-prone sequencing reads.
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S T R U C T U R A L VA R I A N T D E T E C T I O N F R O M L O N G
S E Q U E N C I N G R E A D S

Despite ongoing efforts, the discovery of SVs from short-read se-
quencing data remains challenging. Studies have shown that short-
read methods suffer from poor sensitivity, particularly for small SVs
shorter than 1 kbp [12, 43]. In contrast to SNPs where discovery
and sequence resolution can be performed simultaneously within a
single sequencing read, SVs are discovered mainly indirectly from
signatures in the read alignments. These signatures can be indi-
rect evidence in favor of certain SV classes but are often unable to
fully characterize the SV. The main limitation is that most SVs are
larger than a single short sequencing read. Furthermore, the accu-
rate detection of SVs is hampered by the big diversity of SV classes,
their association with repeat regions and biases in the sequencing
technology [10, 42, 98].

Long-read, single-molecule sequencing technologies like those
offered by Pacific Biosciences or Oxford Nanopore Technologies are
able to overcome many of these challenges by producing reads that
are orders of magnitude longer than ordinary NGS reads. Despite the
higher error rate and sequencing cost, they offer many advantages
for the detection of SVs [19]. The long reads can be mapped with
greater accuracy which enables the sequencing of repetitive and
low-complexity regions [11, 66]. Unlike with short reads, SVs are
often spanned by a single long read. This enables the direct detection
and full characterization of the SVs. Consequently, several studies
confirmed that a substantial number of SVs that are missed by
short-read approaches can be identified with long reads [13, 68]. Yet,
available software tools still do not fully exploit the possibilities.

In this chapter, we present SVIM, a tool for the sensitive detection
and precise characterization of SVs from long-read data. SVIM con-
sists of four components for the collection, clustering, combination
and genotyping of SV signatures from read alignments. It distin-

25
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guishes six different variant classes including similar types, such as
insertions, tandem and interspersed duplications.

3.1 current methods for sv detection from long reads

While short-read sequencing has been applied to the task of SV
detection for almost two decades, third-generation sequencing is a
more recent development. Nevertheless, several SV callers have been
developed for long reads [49].

The first tool designed for the analysis of PacBio data, PBHoney,
was published in 2014 and implements two different variant identifi-
cation approaches [26]. The first approach, PBHoney-Spots, exploits
the stochastic nature of the errors in PacBio reads. It scans read
alignments (usually produced by the read aligner BLASR) and recog-
nizes SVs by an increase in error and a subsequent decrease in error
along the reference sequence. The second approach, PBHoney-Tails,
analyzes the soft-clipped (i.e. unmapped) read tails from a BLASR
alignment. It extracts such tails from the BLASR output and realigns
them to the reference. Then, SVs are detected by clustering the
resulting piece-alignments based on their location and orientation.

In 2016, the assembly-based pipeline SMRT-SV was published.
It first covers the genome with overlapping windows of 60 kbp.
Then, it scans PacBio alignments for SV signatures, such as spanned
deletions, spanned insertions and soft-clipped read tails, and places
additional windows around them [43]. From each window, aligned
reads are assembled, polished and realigned to the reference genome.
Based on these alignments, SVs are called.

Three years later in 2019, a follow-up study introduced SMRT-SV2
which follows a similar approach but implements updates for han-
dling data from more recent PacBio machines [3]. Most importantly,
it uses an updated version of the aligner BLASR and canu instead
of the Celera Assembler. Because SMRT-SV2 and SMRT-SV follow an
assembly-based approach, they not only generate SV calls but also
assembly contigs containing the SVs. This comes at the cost of a sub-
stantially longer runtime and an increased demand in computational
resources.
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SMRT Link, the official graphical user interface that PacBio ships
together with its machines to configure, monitor and analyze se-
quencing runs also includes a structural variant caller named pbsv [8].
It distinguishes five basic SV classes: deletions, duplications, inser-
tions, inversions and translocations. Due to its availability on all
PacBio machines, pbsv is widely used although the method has not
been published in a scientific journal and its source code has not been
made open-source. pbsv and the other tools introduced above have
been developed specifically for PacBio data. Correspondingly, other
methods, such as NanoSV and NanoVar, exist that are specifically
designed for Nanopore data [88, 93].

Sniffles, the currently most popular SV caller for long reads was
published in 2018. It uses signatures from split-read alignments,
high-mismatch regions and a coverage analysis to identify SVs in
PacBio or Nanopore data [82]. To overcome the high error rate in
the reads, Sniffles evaluates candidate SVs based on features such as
their size, position and breakpoint consistency. Beside the five basic
SV classes deletions, (tandem) duplications, insertions, inversions
and translocations it also detects inverted duplications.

In contrast to the previous general methods which enable the
detection of several SV types, other more targeted approaches have
been published as well. npInv and rMETL, for instance, are designed
specifically for the detection of inversions and mobile element inser-
tions, respectively [45, 84].

Third-generation sequencing approaches have enabled consider-
able advances towards the accurate detection of the full spectrum of
structural variation present in the human population. Nevertheless,
available methods do not fully exploit the possibilities. Most impor-
tantly, existing methods still suffer from a high error rate [20, 63].
On the one hand, they fail to detect many true SVs (false negatives)
while, on the other hand, many of the detected SVs are wrong (false
positives). Both of these error types complicate downstream analysis
of the callsets and may make it necessary to analyze orthogonal
datasets to confirm and complement the SV calls. Another prob-
lem are the inaccurate genotypes estimated for the called SVs. As a
consequence, additional genotyping steps with specialized tools or
orthogonal datasets are often required to obtain more accurate geno-
type calls. Furthermore, existing methods either do not distinguish



28 structural variant detection from long sequencing reads

between tandem and interspersed duplications or they detect tan-
dem duplications only. This leaves interspersed duplications caused
by mechanisms such as mobile element insertions unexplored.

3.2 challenges in sv detection from long reads

To detect SVs, most SV calling methods analyze reads that were
previously aligned to a reference genome by a read aligner, such
as NGMLR or minimap2 [56, 82]. A read aligner attempts to find
the best alignment of each read to the reference genome. Simply
put, it searches for an alignment with as many consecutive matches
and as few mismatches or gaps as possible. In genomic regions that
are free of any variant, the reads match perfectly to the reference
genome and can be aligned linearly and at their full length yielding
only a single alignment segment for each read. In regions harboring
variation, however, no perfect alignment exists and discordancies
in the read alignment arise. To accommodate smaller differences
between a read and the reference, the read aligner can introduce
mismatches or gaps (representing inserted and deleted bases) into
the alignment. Around larger and more complex variants, such as
SVs, the read aligner can also split the read into multiple segments
and align each segment independently to the reference. These so-
called split alignments allow the aligner to produce good alignments
even when there are major rearrangements between the reference
genome and the individual genome that the read has been sampled
from. Due to split alignments, the BAM file can contain multiple
alignment records for a single read, i.e. one record for each aligned
read segment.

In Figure 3.1, we schematically visualize the discordant read align-
ments caused by different classes of SVs. It shows that discordancies
in a read alignment can be contained either within alignment seg-
ments in the form of mismatches and gaps (intra-alignment discor-
dancies) or between alignment segments in the form of discordantly
mapped split alignments (inter-alignment discordancies). The figure
also depicts how some SV classes lead to reads that can be aligned in
multiple different ways. Reads containing a tandem duplication (fifth
column), for instance, can be either linearly aligned with reference
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Figure 3.1: Discordant read alignments across 5 different classes of SVs.
Structural variants between an individual genome (first row)
and a reference genome (second row) lead to discordant align-
ments of reads from the individual genome to the reference.
The discordancies can be contained either within a continuously
aligned read segment (intra-alignment discordancies, third row)
or between independently aligned segments of a read (inter-
alignment discordancies, fourth row).
Abbreviations: aln. - alignment, d. - discordancies, dup. - duplication

(a) Intra-alignment discordancies (b) Inter-alignment discordancies

Figure 3.2: Discordant alignments of real reads. Shown are views from a
genome browser that visualizes the read alignments as horizon-
tal bars along the reference genome.
a | Long reads are aligned to a genomic region on the forward
(red) or reverse strand (blue). Most read alignments show gaps
between 231 and 265 bp in length caused by a homozygous
deletion. The precise lengths and positions of the gaps vary sub-
stantially due to sequencing errors in the reads and alignment
ambiguities.
b | To align long reads to this genomic region, many reads
had to be split by the alignment algorithm. Most reads are split
into three segments and the segment in the middle is aligned
to a different strand than the other two segments (visualized
by the color). These discordancies indicate the presence of a
homozygous inversion.
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gaps for the tandem copy (third row) or split into two segments with
overlapping positions on the reference (fourth row).

When assessing alignments of real long-read datasets, numerous
discordancies can be observed. Most of them are small gaps or mis-
matches (visualized by colored vertical marks in Figure 3.2) caused
by sequencing errors in the reads. Larger discordancies, such as
long gaps (Figure 3.2a) or discordant split alignments (Figure 3.2b),
can point to the presence of SVs. There is no clear line between
small discordancies and those larger ones indicative of SVs. Most SV
callers including SVIM use a user-configurable threshold defining
the minimum size of an SV and ignore all discordancies smaller than
this threshold (see Section C.1 in the Appendix).

Another challenge presented by real data is the heterogeneity of
the read alignments (see Figure 3.2a). Due to the repetitive nature of
the human genome, the same read sequence can often give rise to
different equally good alignments. Sequencing errors in the reads
further exacerbate the problem by pushing the alignment in a di-
rection where the similarity between the partially erroneous read
bases and the reference is maximized. Together, this can lead to very
different alignments of reads that were originally sequenced from
the same haplotype.

3.3 four steps towards more accurate sv detection

from long reads

In this section, we introduce our computational method SVIM (Struc-
tural Variant Identification Method). It analyzes alignments of long
reads in BAM format [57] to detect six different classes of SVs. In par-
ticular, SVIM searches discordant alignments in order to extract SV
signatures from them. We define SV signatures as pieces of evidence
pointing to the presence of an SV between the sequenced genome
and the reference. More formally, an SV signature can be viewed
as a quadruple S = (S.type, S.chrom, S.start, S.end) where S.type is
one of six different signature types defined below. S.chrom is the
chromosome where the SV is located on and S.start and S.end define
the genomic start and end position.
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Figure 3.3: The SVIM workflow. (1) Signatures for SVs are collected from
the input read alignments. SVIM collects them from within
alignments (intra-alignment discordancies) and between align-
ments (inter-alignment discordancies). (2) Collected signatures
are clustered based on their genomic position and span. (3)
Different signature clusters are combined to distinguish six dif-
ferent classes of SV candidates: deletions, insertions, inversions,
interspersed duplications, tandem duplications and transloca-
tions. (4) Read alignments spanning each SV candidate are
analyzed to determine the candidate’s genotype.

SVIM implements a pipeline of four consecutive components (see
Figure 3.3). Firstly, SV signatures are collected from each individual
read in the input BAM file (COLLECT). Secondly, the detected sig-
natures are clustered using a hierarchical clustering approach and
a novel distance metric for SV signatures (CLUSTER). Thirdly, the
signature clusters are analyzed, combined and classified into six
classes of SVs (COMBINE). Finally, the SV candidates are genotyped
using read alignments in the genomic neighborhood (GENOTYPE).
Below, we explain the four components in greater detail.

SVIM has been implemented in Python and its source code is
available at github.com/eldariont/svim. It can be easily installed

github.com/eldariont/svim
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via bioconda or the Python Package Index (PyPI) [38]. As input,
SVIM expects either raw or already aligned reads (in FASTA/FASTQ
or BAM format, respectively) as well as a reference genome (in
FASTA format).

3.3.1 COLLECT: Collection of SV signatures from individual reads

SVIM extracts six different types of SV signatures from the BAM file
by analyzing one read at a time. Firstly, the individual alignment
segments of each read are scanned for intra-alignment discordancies.
This type of discordancy can be retrieved from the CIGAR string,
a special field in the BAM record. In simplified terms, the CIGAR
string defines the precise read alignment as a string of matches,
mismatches and gaps between the read and the reference. Long
gaps in the read or in the reference represent regions that have been
deleted from or inserted into the sequenced genome, respectively.
They are collected as deleted region (DEL) and inserted region (INS)
signatures, respectively.

Secondly, the alignment segments of each read are scanned for
inter-alignment discordancies, i.e. discordant relative alignment po-
sitions and orientations among alignment segments. This type of
discordancy arises when a read is split to enable a better alignment
of its segments to the reference. The termination of one alignment
segment and the continuation of the alignment at another genomic
position can indicate several different SV classes. Therefore, SVIM
classifies this type of discordancy in a heuristic fashion to collect the
correct type of SV signature. The heuristic procedure that is used to
classify inter-alignment discordancies and produces different types
of SV signatures is shown as a simplified decision tree in Figure 3.4.
Initially, the alignment segments of each read are sorted by their
position on the read such that alignment segments involving the
first read bases come before segments involving bases later in the
read. Then, each pair of adjacent alignment segments, starting with
the first and second segment, is compared according to the criteria
shown in Figure 3.4. The decision tree has six possible outcomes.
Five of them, representing different SV signature types, are explic-
itly shown in the diagram: (1) deleted region (DEL), (2) inserted region
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Figure 3.4: Heuristic decision tree for detecting and categorizing inter-
alignment discordancies. The decision tree is entered at the
top node. The two boxes at the top represent for-loops such
that the lower portion of the diagram is traversed for every
pair of adjacent alignment segments in every read. Diamond-
shaped boxes represent criteria on the alignment segments and
their outgoing edges represent decisions. The decision tree has
five explicit sink nodes (rounded rectangles) representing the
different types of SV signatures. For clarity, the sixth sink node
and all outgoing edges leading to it are not shown explicitly.
It captures all remaining cases from which no SV signature is
collected.
Abbreviations: MIN - minimum SV size (user-modifiable parameter,
see Section C.1, by default 40 bp), MAX - maximum SV size (user-
modifiable parameter, see Section C.1, by default 100 kbp)
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(INS), (3) inverted region (INV), (4) tandem duplicated region (TAN) and
(5) translocation breakpoint (BRK). The sixth outcome of the tree is not
shown for the purpose of clarity. It captures all remaining cases from
which no SV signature is collected.

After completing this heuristic procedure on a given read, a post-
processing step is performed to collect a sixth SV signature type, in-
terspersed duplicated region (INT). Reads covering interspersed dupli-
cations are often represented by split reads whose middle alignment
segment has been aligned at a distance from its adjacent segments
(see Figure 3.7). Such reads give rise to two characteristic transloca-
tion breakpoints connecting the insertion locus with the start and
end of the origin region. Therefore, the translocation breakpoint
signatures (BRK) collected for a given read are scanned for this char-
acteristic pattern and if detected, an interspersed duplicated region
signature (INT) is collected.

All in all, the first component of the SVIM pipeline collects 6

different types of SV signatures: DEL, INS, INV, TAN, BRK and INT.
Some of these evidence types (e.g. INV) indicate one particular SV
class (inversion). Others could indicate several possible SV classes.
An INS, for instance, can indicate either a duplication or a simple
insertion.

3.3.2 CLUSTER: Clustering of SV signatures

The collection of signatures from the read alignments is only the
first step to accurately detect SVs. Because most genomic regions are
covered by multiple reads, several signatures of the same variant can
be gathered from different reads. In the next step, signatures from
multiple reads need to be merged and criteria have to be found to
distinguish groups of true signatures from signatures that are merely
artifacts caused by sequencing or alignment errors. To achieve this,
SVIM combines a hierarchical clustering approach with a novel
distance metric for SV signatures. The aim is to merge signatures of
the same SV even if their positions vary (as in Figure 3.2a). At the
same time, signatures from separate SVs need to be kept separate
even if the SVs are in close proximity to each other.
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The only distance metric that can, to our knowledge, be applied
to genomic intervals like SV signatures is the Gowda-Diday dis-
tance [37]. It combines (a) the distance between two intervals, (b)
their span difference and (c) their degree of overlap into a single
numeric distance value. However, the Gowda-Diday distance is not
well suited for our type of data derived from error-prone long reads.
Due to the abundance of sequencing errors, we sometimes observe
little to no overlap between signatures even if they originate from
the same SV (see Figure 3.2a). However, signatures from the same
SV often possess similar positions and spans.

Therefore, we introduce span-position distance as a novel distance
metric for SV signatures (see Figure 3.5). For two SV signatures x
and y with different type x.type 6= y.type or different chromosome
x.chrom 6= y.chrom, the span-position distance is set to a very high
value. For two SV signatures x and y on the same chromosome and
with the same type, however, the span-position distance SPD consists
of two components SD and PD: SPD(x, y) = SD(x, y) + PD(x, y).
SD is the relative difference in span between both signatures (SD ∈
[0, 1)). It is defined as |x.span−y.span|

max(x.span,y.span) where x.span = x.end− x.start
and y.span = y.end − y.start. PD is the difference in position be-
tween both signatures scaled by a user-defined scaling constant.
It is defined as |x.center−y.center|

N where x.center = x.start+x.end
2 and

y.center = y.start+y.end
2 . N is a user-defined scaling constant which

regulates the relative importance of SD and PD (see Section C.1 in
the Appendix). In our analyses, setting N = 900 returned the best
results. Intuitively, this setting means that two signatures that are 900

bp apart (PD = 900
900 = 1) but have the same span (SD = 0) would

have the same SPD = 1 as two signatures with extremely different
spans (SD ≈ 1) but the same position (PD = 0

900). It is possible to
show that the span-position distance fulfills all conditions of a metric
(see proof in Section A of the Appendix).

Before performing the actual clustering, we first form coarse par-
titions of signatures in close proximity. The partitions are formed
in an iterative fashion while traversing each chromosome and its
signatures from start to end. When a signature is located close to
the previous signature, it is added to the same partition. When the
distance between a signature and its predecessor exceeds a user-
configurable threshold (see Section C.1 in the Appendix), however,
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Figure 3.6: A clustering dendrogram visualizing the tree structure pro-
duced by a hierarchical clustering process. Shown is the clus-
tering dendrogram from the hierarchical clustering of 22 SV
signatures (x-axis). Each U-shaped link connects two signature
clusters. The height of the link visualizes the average span-
position distance between the members of the two clusters (y-
axis). A cut (red line) is applied at a user-configurable distance
threshold to yield three final clusters: two clusters with a single
signature each (0 and 21, respectively) and a large cluster (in
green) containing the remaining 20 signatures.
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the previous partition is closed and the signature is added to a new
partition.

After all signatures have been distributed to coarse partitions, the
actual signature clustering is performed on each partition using
an hierarchical agglomerative clustering approach. Initially, each
signature in a partition starts in its own cluster. In every clustering
iteration, the pairwise span-position distances between all pairs of
clusters are computed and the two most similar clusters (with the
lowest distance) are merged. To compute distances between clusters
with multiple signatures, we use the average of all signature-to-
signature distances between the two clusters (average linkage). Thus,
two clusters are merged in each iteration until finally all signatures
have been merged into a single big cluster.

The tree structure generated by the hierarchical merging of clusters
can be visualized in a dendrogram (see Figure 3.6). We cut the
cluster dendrogram at a user-configurable distance threshold (by
default 0.3, see Section C.1 in the Appendix) yielding the final set
of signature clusters. Choosing a lower distance threshold would
produce many small clusters while a higher threshold results in
fewer but larger clusters. Each final signature cluster represents a
group of SV signatures that can be jointly assumed to express the
same SV in the genome under investigation.

Finally, SVIM computes a score S ∈ (0, 100] for each cluster based
on three features:

1. The number n ∈N of signatures in the cluster.

2. A score sp ∈ [0, 1] based on the standard deviation spos of the
genomic positions of the signatures in the cluster normalized
by their average span.
sp = 1−min(1, spos/span)

3. A score ss ∈ [0, 1] based on the standard deviation sspan of the
genomic spans of the signatures in the cluster normalized by
their average span.
ss = 1−min(1, sspan/span)
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The three features are combined into a total score S ∈ (0, 100] with
the following formula:

S = max(80, n) ∗ (1 + 1
8
∗ sp +

1
8
∗ ss)

The score formula puts the main emphasis on the number n of
signatures in the cluster but takes at most 80 signatures into account.
Clusters with very consistent genomic positions and spans and conse-
quently high standard deviation scores can earn a score bonus of up
to 25% (1

8 +
1
8 = 1

4 ) relative to the number n of signatures in the clus-
ter. The maximum score that can be reached for clusters with n ≥ 80
and sp = ss = 1 is 100. Thus, we obtain a score to discern trustworthy
signature clusters from artifacts, such as sequencing or alignment
artifacts. Trustworthy events are characterized by many supporting
signatures that exhibit a high concordance of their genomic positions
and spans.

3.3.3 COMBINE: Combination and classification of SVs into six SV
classes

The third component in the workflow analyzes and combines the
SV signature clusters to classify events into the final six SV classes:
deletions, inversions, insertions, tandem duplications, interspersed
duplications and translocations. Three types of signature clusters
(INV, DEL and TAN) are directly reported as inversions, deletions
and tandem duplications, respectively. For the other three types
of signature clusters (INS, INT and BRK) a separate analysis is
performed.

The main motivation for this analysis is that interspersed dupli-
cations can be represented by three different types of SV signatures
(see Figure 3.7):

1. Interspersed duplicated regions (INT) from reads that cover
the entire duplication

2. Inserted regions (INS) that mark only the insertion location of
the additional copy
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Figure 3.7: Discordant read alignments from interspersed duplications,
insertions and translocations. Structural variants between an
individual genome (first row) and a reference genome (second
row) lead to discordant alignments of reads from the individual
genome to the reference. Interspersed duplications (left column)
can lead to discordancies that are very similar to those from
insertions (middle column) and translocations (right column). In
particular, signatures of inserted regions (INS) and translocation
breakpoints (BRK) require further analysis to determine the
correct SV class.
Abbreviations: aln. - alignment, d. - discordancies

3. Translocation breakpoints (BRK) from reads that cover only
parts of the duplication

The last two signature types, INS and BRK, can also indicate the
presence of insertions and translocations, respectively. Which type
of signature can be found around an interspersed duplication is
determined by the sequence of each read and decisions made by the
read aligner. This again illustrates the problem posed by alignment
ambiguities and overlaps between different SV classes.

To classify SVs correctly, SVIM makes the following distinctions:

• Interspersed duplication signature clusters (INT) are reported
as interspersed duplications.

• Inserted region signature clusters (INS) that are connected to
other genomic regions by matching translocation breakpoints
(BRK) are reported as interspersed duplications.
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• The remaining inserted region signature clusters (INS) are
reported as simple insertions.

• The remaining translocation breakpoints (BRK) are reported as
translocations.

3.3.4 GENOTYPE: Genotyping of SV candidates

The last stage in the SVIM workflow estimates the genotype of each
SV candidate using read alignments in close proximity. First, all read
alignments overlapping a window extended by 1 kbp upstream and
downstream around a given SV are retrieved. Then, two read sets are
created: 1) the set V of reads supporting the variant and 2) the set
R of reads supporting the reference allele. The set of variant reads
V contains the reads that gave rise to the SV candidate, i.e. those
that were clustered together in the CLUSTER stage to form the SV
candidate. The set of reference reads R is compiled as follows.

Each retrieved read alignment that is not a member of V is ana-
lyzed with respect to the concrete SV type. If the alignment overlaps
the SV breakpoints in any way that conflicts with the hypothesis of
the read containing the SV, the read is added to the set of reference
reads R. For insertions and duplications, such a conflict arises when
the read is aligned over the insertion location without any gaps. For
deletions and inversions, a conflict arises when a read alignment
extends far into the presumably deleted or inverted region.

Finally, the fraction F = |V|
|R|+|V| of supporting reads is computed

and compared against thresholds that can be modified by the user
(see Section C.1 in the Appendix). If the support fraction is high (by
default F ≥ 0.8), the SV is called homozygous. If it lies around 50%
(by default 0.8 > F ≥ 0.2), the SV is called heterozygous. And if the
support fraction is very low (by default F < 0.2), the variant is called
homozygous reference and filtered out. Homozygous reference SVs
are supported by only a few reads while the majority of reads in
the region supports the reference allele. Although they could be real
SVs, most of them are artifacts caused by spurious read alignments.
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#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT HG002

1 33005341 svim.INS.741 N <INS> 48 PASS SVTYPE=INS;END=33005341;

SVLEN=224;SUPPORT=39;STD_SPAN=1.17;STD_POS=0.77 GT:DP:AD 1/1:39:0,39

1 33156762 svim.DEL.430 N <DEL> 21 PASS SVTYPE=DEL;END=33156938;

SVLEN=-176;SUPPORT=17;STD_SPAN=0.24;STD_POS=2.06 GT:DP:AD 0/1:29:12,17

1 33516612 svim.DUP_INT.1 N <DUP:INT> 14 PASS SVTYPE=DUP:INT;END=33519096;

SVLEN=2484;SUPPORT=21;STD_SPAN=2.22;STD_POS=1.11 GT:DP:AD 0/1:32:11,21

1 197756789 svim.INV.19 N <INV> 22 PASS SVTYPE=INV;END=197757984;

SUPPORT=19;STD_SPAN=0.48;STD_POS=0.23 GT:DP:AD 0/1:34:15,19

1 236876893 svim.DUP_TANDEM.41 N <DUP:TANDEM> 13 PASS SVTYPE=DUP:TANDEM;

END=236878365;SVLEN=1472;SUPPORT=11;STD_SPAN=0.6;STD_POS=0.3 GT:CN:DP:AD ./.:3:.:.,.

1 248572008 svim.BND.9276 N [1:248796343[N 12 PASS SVTYPE=BND;SUPPORT=10;

STD_POS1=17;STD_POS2=. GT:DP:AD ./.:.:.,.

genotype

variant reads
reference reads

read depth

copy number

Figure 3.8: Examples of SV calls in VCF. This example contains six VCF
records of six different SV types (red). The first line starting
with "#" is a header line naming the 10 tab-separated columns
of the file. The first and second fields give the start chromosome
and position of the SV (orange). Some SV classes also require
an end position (also orange) and the length of the SV, i.e. the
length difference between reference and variant allele (blue).
For each SV, the support, i.e. the number of supporting reads,
and a quality score (both green) are given. The last field (purple)
contains the genotype, the number of reads covering the SV (the
read depth) and the number of reads supporting the reference
and variant allele. For tandem duplications, the last field also
contains the estimated copy number.

3.4 representation of svs in the variant call format

SV calls can be stored in different file formats. The most naive ap-
proach would be to use non-standardized tabular text files that store
the different properties of SVs (e.g. chromosome, start and end posi-
tion, SV class) in separate columns. Alternatively, the calls could be
stored as genomic intervals in Browser Extensible Data (BED) format.
The BED format is standardized but because it was not designed for
storing variant calls it lacks specific fields required to define variants
precisely. To facilitate the combination and comparison of variant
callsets from different sources, several standardized formats have
been developed, such as the Genome Variation Format (GVF) and
the Variant Call Format (VCF) [18, 78].

The VCF has been developed for the 1000 Genomes project and
has since been adopted as the mainstream format for calls of short
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and large genomic variants [18]. VCF files consist of a header section
containing an arbitrary amount of meta-information and a data sec-
tion containing the actual variants. In the data section, each variant
is encoded in a single line (see Figure 3.8). Each line consists of 8

mandatory fields plus optional fields to store the genotype informa-
tion of an arbitrary number of samples. The eight mandatory fields
are:

• CHROM: chromosome or contig name

• POS: start position of the SV on CHROM

• ID: SV identifier

• REF: reference sequence or N for undefined

• ALT: variant sequence or symbolic allele, such as <DEL>

• QUAL: quality score

• FILTER: PASS for good calls or list of failed filters

• INFO: semicolon-separated list of fields containing additional
information

The VCF allows two different ways of defining SVs: Firstly, variants
can be characterized using sequence alleles, such as
REF=ATTGGTAGTAGC, ALT=A, to define an 11 bp-deletion of the bases
TTGGTAGTAGC after A. Alternatively, variants can be characterized us-
ing symbolic alleles, such as REF=N, ALT=<DEL>, to define a deletion.
Because symbolic alleles lack important information such as the
length and end position of the SV, this information needs to be given
in the INFO fields SVLEN and END.

Each SV class is defined by a slightly different set of coordinates
and fields. Deletions and inversions are characterized by a chromo-
some (CHROM), a start position (POS) and an end position (IN-
FO/END). Insertions are characterized by a chromosome (CHROM),
an insertion location (POS) and the insertion length (INFO/SVLEN).
Duplications are characterized by a chromosome (CHROM), a start
position (POS) and an end position (INFO/END). Tandem duplica-
tions additionally have a copy number (CN).
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Translocations can be expressed in a VCF file using the breakend
(BND) notation. This notation represents a translocation as a set
of novel adjacencies, i.e. connections between two genomic loci in
the sequenced genome that are distant in the reference genome.
Each adjacency N = (B1, B2) joins two breakends B1 = (P1, O1)

and B2 = (P2, O2) which are defined as genomic positions P with
associated strand orientations O ∈ { f orward, reverse}. Because each
breakend in a novel adjacency has an associated orientation, there
are four possible combinations of orientations { f orward, reverse} ×
{ f orward, reverse} in an adjacency (see Figure 3.9).

SVIM prints all detected SVs into a single output file in VCF. It
characterizes the SVs using symbolic alleles and the fields defined
above. For each detected translocation, it outputs two VCF records
in BND notation - one for each breakend in the novel adjacency.

After we have described our own computational method for the
detection of SVs from long-read alignments, the same principles will
be adapted in the next chapter for the detection of SVs from genome
assemblies.

Chr1:1-1000 Chr1:1000-10000

Chr2:1-2000 Chr2:2000-10000

A C

B D

BND Orientations (O1, O2) CHROM POS REF ALT
A (forward, forward) Chr1 1000 N N[Chr2:2000[
B (forward, reverse) Chr1 1000 N N]Chr2:2000]
C (reverse, reverse) Chr1 1000 N ]Chr2:2000]N
D (reverse, forward) Chr1 1000 N [Chr2:2000[N

Figure 3.9: Schematic view of the four possible combinations of break-
ends in a novel adjacency. Shown are chromosomes 1 and 2

which are broken at positions chr1:1000 and chr2:2000, respec-
tively. There are four possibilities A to D for connecting the
breakpoint at chr1:1000 with the breakpoint at chr2:2000. The
table below contains the four VCF fields CHROM, POS, REF
and ALT for each combination.





4
S T R U C T U R A L VA R I A N T D E T E C T I O N F R O M
G E N O M E A S S E M B L I E S

The alignment of sequencing reads to a reference genome followed
by variant calling is only one way of detecting genomic variants
in a sample (see Figure 1.1). Another approach is to assemble the
sequencing reads into larger units and to compare the resulting
assembly contigs to a reference genome. In this chapter, we first give
more detailed background on genome assembly in diploid organisms.
Then, we introduce a modified version of the SVIM pipeline for the
detection of SVs from haploid and diploid genome assemblies.

4.1 advantages of genome assembly for sv calling

Genome assembly possesses several advantages over read alignment.
Most importantly, the assembly process uses only overlaps between
the sequencing reads and is therefore independent of the reference
genome. Read alignment, in contrast, suffers from biases towards
sequences matching the reference and away from those with substan-
tial differences [22]. Consequently, reads that carry larger variants or
novel sequence are harder to map to the reference than reads similar
to the reference [31]. Another problem arises from the considerable
genomic difference between different human populations. Because
the linear reference genome can only represent one of numerous
human haplotypes, samples from distant populations suffer from
poor mappability.

To avoid these biases, genome assembly can be a good alternative.
However, it usually requires a higher read coverage and substan-
tially more computational resources than read alignment. Addi-
tionally, read alignment simplifies the detection and reporting of
genomic variants because the reference genome offers a standardized
coordinate-system. Genomic variants can be located by numbered
reference bases and are expressed in terms of differences to the

45
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(a) Read alignments

(b) Genome assembly alignments

Figure 4.1: Alignments of sequencing reads versus genome assemblies.
Both sequencing reads (panel a) and contigs from a genome
assembly (panel b) can be aligned to a reference genome.
a | Several long reads are aligned to a reference genome on the
forward (red) or reverse strand (blue). Approximately half of
the reads belong to one parental haplotype containing a 172 bp
deletion while the other half belong to the other parental haplo-
type containing an insertion of approximately 31 bp instead.
b | A diploid genome assembly consisting of two sets of contigs
is aligned to the same genomic region. One contig (upper align-
ment) represents the haplotype carrying the deletion while the
other contig (lower alignment) represents the haplotype with
the insertion.

reference sequence. Genome assembly, in contrast, produces a set
of nucleotide sequences (contigs) without any inherent ordering or
structure. Therefore, it is common practice to align the assembly
contigs to a reference genome to obtain information on similarities
and differences. Conceptually, such a genome-genome alignment is
very similar to a read alignment (see Figure 4.1). But because the
assembly contigs are much longer than a single read and usually
span both similar and divergent regions, the impact of the mapping
bias is greatly reduced.
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4.2 haploid and diploid genome assembly

Like many other species, humans are diploid organisms, i.e. their
cells possess two sets of chromosomes that are inherited from the
mother and the father, respectively. The two copies (or haplotypes) of
each chromosome usually differ to a certain degree so that genomic
variants fall into two categories: homozygous variants present in both
haplotypes and heterozygous variants present in only one haplotype.
Genome sequencing approaches generate a mixture of sequencing
reads from the two copies of each chromosome. When the reads
are aligned to a reference genome, the two groups of reads become
visible in regions harboring heterozygous variation (see Figure 4.1a).
Then, approximately half of the reads deviate from the reference
while the other half does not. In regions with homozygous variation
or regions without variation, all the reads agree in either matching
or deviating from the reference.

In the realm of genome assembly, however, the diploid nature of
the human genome had to be disregarded for a long time due to
technical challenges [65]. Despite numerous differences, the chromo-
somal haplotypes inherited from the two parents are highly simi-
lar and contain long stretches of identical sequence. This makes it
very difficult to separate sequencing reads from the two haplotypes
during the genome assembly process. The separation of the two
haplotypes is further complicated by the presence of sequencing
errors in the reads. Therefore, until recently, the majority of genome
assembly algorithms produced only one (haploid) set of chromo-
somes, effectively collapsing the two copies of each chromosome into
one haploid sequence [65].

Over the last few years, advances in sequencing technology have
enabled the diploid assembly of species with even low heterozygosity,
such as human. Several diploid assembly tools have been developed,
each using different sequencing technologies to separate the two
haplotypes: FALCON-Unzip uses the phasing information contained
in PacBio reads [14]. FALCON-Phase and DipAsm combine PacBio
data with Hi-C while a pipeline by Porubsky et al. combines PacBio
and Strand-Seq [30, 52, 75]. Another method, TrioCanu, uses parental
short-read data to separate long reads from the two haplotypes [48].
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4.3 current methods for sv detection from genome

assemblies

Despite the increased number of high-quality genome assemblies
there are only a few tools so far that detect SVs from genome assem-
blies: In 2015, AsmVar was the first tool to discover and genotype SVs
in genome assemblies on a population scale [62]. When applied to de
novo assemblies of 10 Danish trios and seven other human individ-
uals, it detected more than 3 million SVs between 1 bp and 50 kbp
in length. AsmVar categorizes variants into five broad classes: dele-
tions, insertions, inversions, simultaneous gaps and translocations.
Another method called Assemblytics is a simple web application for
the detection of SVs in genome assemblies [71]. It produces an inter-
active visualization of the results and discovers three types of SVs:
simple indels, indels in tandem repeats and indels in repeat regions.
SyRi, the most recent tool, works in two phases: it first searches for
structural differences in the assemblies, such as inversions, transloca-
tions or duplications. Then, it detects smaller sequence differences
like SNVs and indels [34].

All three tools are designed for haploid genome assemblies. As
input, they expect two sets of genome sequences: a haploid query
assembly and a haploid reference assembly. In their initial step, the
tools align the query sequences to the reference sequences using an
alignment software: AsmVar uses LAST while both Assemblytics and
SyRi use nucmer for this step. Then, the alignments are analyzed to
detect SVs.

For the detection of SVs in diploid genome assemblies, only one
SV caller is available to date: The DipCall pipeline analyzes minimap2
alignments to detect SVs from diploid genome assemblies [58]. After
filtering the alignments based on mapping quality and alignment
length, variants are called separately for each haplotype and later
merged into a set of SVs with genotypes. DipCall produces two
output files: a VCF file containing the SVs and a BED file containing
confident genomic regions. DipCall detects only two classes of SVs:
deletions and insertions. To our knowledge, there is still no tool
available for the detection and genotyping of other SV classes, such
as inversions and duplications, from diploid genome assemblies.
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4.4 adapting the svim pipeline for accurate sv detec-
tion from genome assemblies

In this section, we introduce our computational method SVIM-asm
(Structural Variant Identification Method for Assemblies). Although its
workflow is similar to that of SVIM, several adaptions have been
made to consider the unique properties of assembly alignments as
opposed to read alignments (see Figure 4.2). SVIM-asm implements
two different pipelines for haploid and diploid genome assemblies,
respectively. Like SVIM, it has been implemented in Python, can
be easily installed via bioconda and its source code is available at
github.com/eldariont/svim-asm.

Diploid genome assemblies consist of two sets of contigs, one for
each chromosomal haplotype. Consequently, SVIM-asm expects two
input BAM alignment files as input for this type of assembly. In the
first step of the pipeline (COLLECT), SV signatures are collected
separately for each haplotype from individual contig alignments with
the methodology described in Section 3.3.1. In the second step (PAIR),
signatures from opposite haplotypes are compared and paired up
if sufficiently similar. Paired signatures from the two haplotypes
are merged into homozygous SV candidates while variants without
a partner on the other haplotype are called as heterozygous SV
candidates (GENOTYPE). Finally, the genotyped SVs are written out
in VCF as members of one of six SV classes (OUTPUT).

In contrast to their diploid counterparts, haploid assemblies are
comprised of only a single set of contigs. For diploid organisms,
this set often represents a mixture of the two haplotypes. Due to
the missing second haplotype, it is not possible to estimate geno-
types from haploid genome assemblies which simplifies the pipeline
considerably. After the same first step (COLLECT) is applied to the
assembly alignments, the PAIR and GENOTYPE steps are skipped
for haploid assemblies and the detected SV signatures can be written
out immediately (OUTPUT).

While some parts of the SVIM-asm pipeline are similar to parts
already described in Section 3.3, the PAIR step has been added
and the GENOTYPE stage has been modified. In the PAIR step,
similar signatures from opposite haplotypes are matched. For this
purpose, a clustering approach similar to that in SVIM (see Sec-

github.com/eldariont/svim-asm
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Figure 4.2: The SVIM-asm workflow. Signatures for SVs are collected from
the input assembly alignments (COLLECT). Depending on the
ploidy of the assembly, signatures are collected from a single
haplotype (haploid assembly) or a pair of haplotypes (diploid
assembly). For diploid assemblies, SV signatures from the two
haplotypes are compared and similar signatures are paired up
based on the edit distance between their haplotype sequences
(PAIR). Paired SV signatures represent homozygous (HOM) SVs
while isolated SV signatures from only one of the haplotypes
represent heterozygous (HET) SVs (GENOTYPE). Finally, six
different classes of SV candidates are written out in VCF: dele-
tions, insertions, inversions, interspersed duplications, tandem
duplications and translocations (OUTPUT). SV signatures from
haploid assemblies skip steps PAIR and GENOTYPE and are
written out directly after the COLLECT step.

tion 3.3.2) is applied on the signatures from both haplotypes. Firstly,
coarse partitions of signatures in close proximity are formed. Then,
the haplotype sequences for all signatures in a given partition are
generated. The haplotype sequence hap(R, S) of an SV signature
S and a reference genome sequence R is the nucleotide sequence
formed by applying the genomic rearrangement defined by S to R. If
s = (DEL, chr1, 10100, 10200), for instance, then hap(GRCh37, s) is
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the nucleotide sequence that forms when the bases 10100 through
10200 in chromosome 1 are removed from version 37 of the hu-
man reference genome. Now, for every pair x, y ∈ S of signa-
tures in a given partition, the edit distance (Levenshtein distance)
E(hap(R, x), hap(R, y)) between the haplotype sequences of x and
y is computed. Edit distance is defined as the minimum num-
ber of operations (deletion, insertion or substitution of one char-
acter) required to transform one haplotype sequence into the other.
To compute the edit distance between two signatures, it is suffi-
cient to generate hap(R, x) and hap(R, y) for the genomic context
around x and y and not the entire genome. In our implementa-
tion, we generate both haplotype sequences for the genomic interval
[min(x.start, y.start) − 100, max(x.end, y.end) + 100] and use the li-
brary edlib for the computation of the edit distance [86]. To prevent
that signatures from the same haplotype are matched, we enforce
a very large distance instead of the actual edit distance between
signatures from the same haplotype. Based on the computed dis-
tances between their haplotype sequences, the signatures in each
partition are clustered using an hierarchical agglomerative clustering
approach. With a low distance threshold for cutting the dendrogram
(see Figure 3.6), it is ensured that only very similar signatures (i.e. sig-
natures with similar haplotype sequences) from different haplotypes
are clustered together.

Based on these clusters, the genotype estimation carried out in the
GENOTYPE step becomes trivial. Clusters of two signatures (from
opposite haplotypes) represent homozygous variants while clusters
of only a single signature represent heterozygous variants. Clusters
of more than two signatures cannot form due to the large distance
enforced between signatures from the same haplotype.

Together, SVIM and SVIM-asm form a versatile toolset for the
detection of SVs from different long-read datasets. It can be applied
to raw long reads generated with PacBio or Nanopore technology as
well as haploid or diploid genome assemblies. In the next chapter,
we will evaluate both tools using simulated and real datasets.





5
E VA L UAT I O N

In the previous chapters, we introduced two computational methods,
SVIM and SVIM-asm, for the detection of SVs from long reads and
genome assemblies, respectively. To ensure that these two methods
work as intended and produce accurate results, a comprehensive
evaluation on different datasets is necessary. In this chapter, we
evaluate SVIM and SVIM-asm on both simulated and real datasets
and compare them to existing state-of-the-art tools. For each of the
two methods, we first describe the datasets, metrics and methods
used for the evaluation. Then, we show the results of the evaluation.

5.1 evaluation on long-read alignments

We compared our tool, SVIM (v1.4.1), to two other SV detection
methods: Sniffles (v1.0.11) and pbsv (v.2.3.0) [8, 82]. We chose these
two tools because they are versatile computational methods for
the detection of several SV classes from long-read sequencing data.
Furthermore, they are actively maintained and widely used across
the community [20, 63]. While pbsv is designed for PacBio data only,
SVIM and Sniffles support both PacBio and Oxford Nanopore data.

We did not compare against short-read SV callers because they
have previously been shown to exhibit lower recall than methods
relying on long reads [13, 82]. We also did not compare against
SMRT-SV2 because it is not a stand-alone tool. Instead it is a software
pipeline applying several existing tools in succession. Moreover, it
detects only three SV classes (deletions, insertions and inversions)
and is computationally much more demanding than pure alignment-
based tools.

We performed comprehensive benchmarks on two types of data.
Firstly, we generated a simulated genome from which we sampled
in-silico PacBio sequencing reads with known SVs. This provided
us with a complete set of fully characterized SVs for evaluation.

53
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Secondly, we used three publicly available sequencing datasets from
the latest PacBio and Nanopore sequencers.

For Sniffles and SVIM, we aligned the reads with minimap2 (v2.17-
r941). For pbsv, reads were aligned with pbmm2 (v1.2.1), a software
wrapper around minimap2 developed by PacBio specifically for their
sequencing platform. As reference genome, we used hg19 for the
simulated datasets and GRCh37 with decoy sequences (hs37d5) for
the real datasets, respectively.

5.1.1 Evaluation metrics

We computed precision, recall and F1 score of the three software tools
by comparing their SV calls (comparison calls) with a truth set of SVs
(base calls) for the given dataset. The calls of a given SV caller can fall
into three categories:

• True positives (TP) are comparison calls that are also contained
in the truth set. These are SVs that were correctly called by the
tool.

• False positives (FP) are comparison calls that are not contained
in the truth set. These are SVs that were incorrectly called by
the tool.

• False negatives (FN) are base calls that are not contained in the
set of comparison calls. These are SVs that were missed by the
tool.

The Precision Prec = TP
TP+FP is defined as the fraction of com-

parison calls that are also contained in the truth set. It therefore
represents the fraction of correct comparison calls over all compar-
ison calls. Recall (also known as sensitivity or true-positive rate)
Rec = TP

TP+FN is defined as the fraction of SVs in the truth set that
are also contained in the comparison callset. It therefore represents
the fraction of detected base calls over all base calls. The F1 score
F1 = 2∗Prec∗Rec

Prec+Rec is the harmonic mean of precision and recall. It can
be used to measure the general SV detection performance because it
combines both precision and recall into a single value.

To compare the callsets and compute precision, recall and F1 score,
we used the tool Truvari (v1.3.4) [32]. It matches a comparison call
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with a base call if both have the same type, are less than 1 kbp apart
and have a difference in span of less than 30% (i.e. |span1−span2|

max(span1,span2)
<

0.3).
As expected, recall and precision reached by a tool can change

substantially with the parameters given to it. For SV calling, thresh-
olds on the score, support or confidence of calls have the biggest
impact because they determine which calls are reported and which
are filtered out. More relaxed thresholds (those yielding more SVs)
increase the recall but decrease the precision while stricter cutoffs
achieve the opposite. Consequently, we ran all three tools with differ-
ent settings for their most important confidence threshold: For SVIM
we applied different score cutoffs (1 to 60). Sniffles was run with
different settings of the min_support parameter (1 to 60). For pbsv,
we varied the call-min-reads-one-sample and call-min-reads-all-samples
parameters (both 1 to 60). In the precision-recall plots below, we
visualize the performance of the tools by plotting each parameter
setting as a distinct point.

Beside the confidence threshold, we used the default setting for
all other tool parameters if possible. Only a few parameter settings
had to be changed in order to ensure that the three tools ran with
comparable settings. The complete commands used to call SVs in
the context of this evaluation are displayed in Section C.2 of the
Appendix.

5.1.2 Simulated datasets

To generate the simulated datasets, we simulated 400 homozygous
SVs by altering the sequence of chromosomes 21 and 22 in the
hg19 reference genome. More precisely, we implanted 100 deletions,
100 inversions, 100 tandem duplications and 100 interspersed du-
plications with the R package RSVSim (v1.24.0) [4]. The package
estimates the distribution of SV sizes from real datasets and takes
the association of SVs to various kinds of repeats into account. The
resulting genome contained SVs between 50 bp and 100 kbp in size.
Subsequently, reads were simulated from this genome with the tool
SimLoRD (v1.0.4) to generate 5 different datasets with coverages of
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5x, 15x, 30x, 45x and 60x [91]. SimLoRD imitates the error model of
SMRT reads to simulate realistic PacBio reads.

To simulate heterozygous SVs, we adapted the previously de-
scribed approach only slightly. Instead of sampling all reads from
the altered reference genome, half of the reads were sampled from
the original reference genome. Consequently, reads from the original
reference genome and the altered genome each amounted to 50% of
the total coverage.

The comparison between different tools was complicated by the
fact that each tool defines and detects slightly different SV classes.
pbsv is able to detect deletions, insertions, inversions, tandem duplica-
tions and translocation breakpoints. Sniffles is additionally capable of
identifying inverted duplications. Because only SVIM distinguishes
between insertions and interspersed duplications, we compared the
tools on four common basic SV classes in the simulated datasets:
deletions, insertions, inversions and tandem duplications. To obtain
insertion calls from SVIM for the following benchmarks, we merged
the calls of interspersed duplications with regular insertion calls.

The simulated datasets made it possible to evaluate the SV calling
performance of the three methods in different settings. They allowed
us to investigate strengths and weaknesses of the tools and enabled
us to quantify:

• how well the tools detect SVs of four different classes: deletions,
inversions, insertions and tandem duplications,

• how well the tools perform with different levels of sequencing
coverage and

• how well the tools detect heterozygous and homozygous SVs.

In Figure 5.1, our results for the detection of homozygous SVs
from the 15x coverage simulated dataset are shown. The figure shows
four precision-recall plots for the four different SV classes. In each
plot, the precision on the y-axis is plotted against the recall on the
x-axis. The three colored curves represent the three evaluated tools.
Every point on a curve gives the precision and recall for a certain
value of the confidence threshold. The points with the best threshold
values are located in the upper right corner of the plot where both
precision and recall are maximized.
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Figure 5.1: Comparison of SV detection performance on a 15x coverage
homozygous simulated dataset. Shown are recall (x-axis) and
precision (y-axis) reached by each tool for different confidence
thresholds. Recall and precision were calculated requiring a
maximal distance of 1 kbp and a span difference of less than
0.3 between matching variant calls and the original simulated
variants. Reads were aligned using minimap2 (SVIM and Sniffles)
and pbmm2 (pbsv).

The results show that Sniffles and SVIM performed substantially
better than pbsv across all SV classes. pbsv struggled in particular
on tandem duplications and insertions where it reached a far lower
precision than the other two tools. Although SVIM and Sniffles exhib-
ited a similar performance, SVIM outperformed Sniffles on tandem
duplications and insertions where it maintained high precision even
for confidence thresholds that reached a very high recall.

Instead of plotting the results for all confidence thresholds in
a precision-recall plot, we can alternatively pick only the "best"
threshold that yields the highest F1 score. Conceptually, this reduces
each curve in Figure 5.1 to one data point and makes it easier to
compare the callers in different settings. In Figure 5.2, the best F1

score reached by a caller is plotted on the y-axis against five levels
of read coverage on the x-axis. The colors of the bars represent the
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Figure 5.2: Best SV detection performance for five different simulated
coverage levels. Shown are the best F1 scores (y-axis) reached
by each tool for different read coverages between 5x and 60x
(x-axis). Generally, higher coverages enabled higher F1 scores.
F1 scores were calculated requiring a maximal distance of 1 kbp
and a span difference of less than 0.3 between matching variant
calls and the original simulated variants. Reads were aligned
using minimap2 (SVIM and Sniffles) and pbmm2 (pbsv).

three tools while the color saturation represents the zygosity of the
simulated SVs.

The first observation one can make is that the SV detection perfor-
mance increased with higher coverages. However, as the coverage
reached 30x, none of the callers substantially benefited from even
more data. When comparing the three tools, the observations from
the 15x dataset above were confirmed. SVIM achieved the best re-
sults among the three tools and was followed closely by Sniffles.
While both were largely on a par for deletions and inversions, SVIM
reached better F1 scores for tandem duplications and, in particular,
insertions.

For the detection of homozygous deletions, inversions and tandem
duplications, SVIM and Sniffles reached almost perfect results (F1

scores > 97%) even for coverages as low as 15x. Insertions proved
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slightly harder to detect with F1 scores of 92.3%, 88.6% and 48.2%,
respectively, for SVIM, Sniffles and pbsv on the 15x dataset.

When comparing different zygosities, heterozygous SVs were
harder to detect than homozygous SVs and all tools reached slightly
lower F1 scores on heterozygous SVs. This was expected, as heterozy-
gous SVs are supported by only a subset of reads, making them
harder to distinguish from the general signal noise. For heterozy-
gous SVs, SVIM again produced the best results followed closely by
Sniffles.

To measure the influence of the input read alignments on SV
calling, we also compared the previous results from alignments
by minimap2 with results from another long-read aligner, NGMLR
(see Figure B.1 in the appendix). The results indicate that SVIM is
very robust to the choice of the aligner. Sniffles, however, reached
considerably worse results for calling insertions when analyzing
alignments by NGMLR. Visual inspection of the alignments revealed
a difference in the way that reads covering insertions are aligned.
While minimap2 expresses insertions mainly as long reference gaps
in the CIGAR string (intra-alignment discordancies), NGMLR tends
to split reads at insertions (inter-alignment discordancies). Because
Sniffles does not call insertions of sequence existing somewhere else
in the genome (i.e. interspersed duplications) from split alignments,
it reached a lower recall with NGMLR on our simulated datasets.

5.1.3 Real datasets

Simulations cannot reproduce all aspects of real biological data. Even
sequencing data from a sophisticated read simulator like RSVSim is
different from actual long-read sequencing data. Therefore, we used
real PacBio and Nanopore data in the second part of our analysis.
There, we analyzed three different long-read datasets from the same
individual, HG002. This individual is part of the Ashkenazi Jewish
trio in the Personal Genomes Project (PGP) and their DNA is avail-
able as a Reference Material of the National Institute of Standards
and Technology (NIST) [101].

A large variety of sequencing datasets are available for HG002

as well as a draft SV benchmark set generated by the NIST-hosted
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A B C
Data type PacBio CLR PacBio CCS Nanopore

Seq. instrument Sequel II Sequel II PromethION
Read coverage 38.7x 36.6x 50.7x
Mean read len. 14.9 kbp 12.9 kbp 8.2 kbp
Read len. N50 20.9 kbp 12.9 kbp 49.4 kbp

Source PacBio [6] PacBio [7] UCSC [79, 83]

Table 5.1: Three recently generated long-read datasets for the HG002
individual. The datasets were compiled by the Human
Pangenome Reference Consortium (see https://github.com/

human-pangenomics/HG002_Data_Freeze_v1.0 for details).
Abbreviations: Seq. - Sequencing, len. - length

Genome in a Bottle Consortium (GIAB) [102]. To generate the bench-
mark set, GIAB combined 19 variant calling methods applied to
four technologies: short-read (Illumina and Complete Genomics),
linked-read (10x Genomics) and long-read (PacBio) sequencing as
well as optical (Bionano) and electronic (Nabsys) mapping. With
12,745 isolated, sequence-resolved insertion and deletion calls larger
than 50 bp it represents the most comprehensive callset of germline
SVs to date. We used the benchmark set in our analysis of real long-
read datasets to identify false negative and false positive SV calls and
to compare the precision and recall of different SV callers. It is worth
noting that pbsv was among the calling methods used to generate
the benchmark set which could give the tool a slight advantage in
the comparisons below.

For our analysis, we chose long-read datasets produced using
three different sequencing technologies: PacBio CLR, PacBio CCS
and Oxford Nanopore sequencing (see Table 5.1). The evaluation of
the SV callers on these three most common TGS technologies gives a
realistic insight into their practical performance. All datasets were
generated with the most recent sequencing instrument available for
each platform (PacBio Sequel II and Oxford Nanopore PromethION).
They all had sequencing coverages of more than 30x, with the Oxford
Nanopore dataset reaching the highest coverage of 50.7x. Of the two
PacBio datasets, the CLR dataset contained longer reads with a mean
read length of 14.9 kbp compared to 12.9 kbp for the CCS dataset.
While the Nanopore dataset showed the lowest mean read length

https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0
https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0
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(8.2 kbp) it reached by far the highest read length N50. The N50

measures the length of the longest read in the dataset for which it is
true that 50% of all bases in the dataset are from reads longer than
that read. In the Nanopore dataset, 50% of the bases were contained
in reads with a length of 49.4 kbp or larger. For the two PacBio
datasets, read length N50 was substantially lower with 20.9 kbp and
12.9 kbp, respectively. The high read length N50 in the Nanopore
dataset was achieved with a special ultra-long read protocol. Due to
this library preparation protocol, a large fraction of the reads in the
dataset were longer than 100 kbp, amounting to a coverage of 8.5x
with these reads alone.

To assess the influence of the sequencing coverage on the SV de-
tection performance, we subsampled all three datasets to 10 different
coverage levels using samtools view and performed SV calling on each
subset.

5.1.3.1 Dataset A - PacBio CLR

Dataset A is a PacBio CLR dataset with 38.7x read coverage and a
read length N50 of 20.9 kbp. PacBio CLR sequencing is characterized
by a relatively high error rate between 8 and 13% [65]. The majority
of errors are small indels with substantially more insertions than
deletions [95].

We generated precision-recall curves which are shown in Fig-
ure 5.3. Because all three tools are able to detect SVs and estimate
their genotype, we performed two evaluations represented by the
two panels: Firstly, we evaluated the ability of the tools to detect the
presence of an SV regardless of its predicted genotype (Figure 5.3a).
In stark contrast to the results on the simulated data, pbsv outper-
formed both Sniffles and SVIM reaching a better balance of precision
and recall than the two others. pbsv’s increased performance on real
data can at least partly be explained by differences in the error profile
compared to simulated data. Most likely, pbsv has been optimized
for real PacBio data and its performance deteriorates on datasets
with slightly different characteristics. This finding emphasizes the
importance of evaluating computational methods on both simulated
and real data. Behind pbsv, Sniffles and SVIM were on a par although
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SVIM reached both a higher maximal recall and a higher maximal
precision.

Secondly, we assessed the ability of the tools to detect the presence
and exact genotype of an SV (Figure 5.3b). In this scenario, the pre-
cision and recall of all tools decreased substantially. SVIM yielded
the best results followed by pbsv indicating that SVIM produced
more reliable genotypes than pbsv. Compared to the previous evalu-
ation, Sniffles’ performance decreased the most with both precision
and recall falling below 50%. This indicates that Sniffles had great
difficulties predicting correct genotypes.

To investigate how the tools cope with lower levels of PacBio CLR
data, we subsampled the dataset into ten different subsets containing
between 10% and 90% of the total number of reads. In Figure 5.4,
we plot the best F1 score (y-axis) reached by each tool against the
subsampling fraction (x-axis). As for the simulated data, we gener-
ally observed increasing F1 scores from higher sequencing depth
but also a saturation of performance for higher coverages. When
we assessed variant calls and ignored genotypes (Figure 5.4a), pbsv
outperformed the other methods except for the lowest coverage level.
SVIM and Sniffles reached similar results except for the 30-50% sub-
samples where SVIM was slightly superior. When genotypes were
evaluated, F1 scores dropped for all tools while SVIM overtook pbsv
on high coverages (Figure 5.4b). At the same time, Sniffles produced
considerably worse results than the others with F1 scores remaining
below 50%.

5.1.3.2 Dataset B - PacBio CCS

Dataset B is a PacBio CCS dataset with 36.6x read coverage and a read
length N50 of 12.9 kbp. Because PacBio CCS sequencing generates a
consensus sequence from multiple sequencing rounds of the same
circular fragment, it is characterized by a relatively low error rate
of less than 1% and shorter read lengths than PacBio CLR [97]. The
majority of remaining errors are indels in homopolymer regions.

For this dataset, we performed the same analyses as for dataset A.
Figure 5.5 shows the precision-recall curves for calls and genotyped
calls, respectively. In the first setting, the differences between the
tools were smaller than from PacBio CLR data, presumably because
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(a) Calls only: Ability of the tools
to detect the presence of SVs
regardless of their genotype

(b) Calls with genotype: Ability of the tools
to detect the presence of SVs and their
correct genotype

Figure 5.3: Precision-recall curves for three SV callers on the 38.7x
PacBio CLR dataset. Shown are recall (x-axis) and precision
(y-axis) reached by each tool for different confidence thresholds.
Precision and recall were calculated requiring a distance of less
than 1 kbp and a span difference of less than 0.3 between match-
ing variant calls and the gold standard variants. Reads were
aligned using minimap2 (SVIM and Sniffles) and pbmm2 (pbsv).

(a) Calls only: Ability of the tools
to detect the presence of SVs
regardless of their genotype

(b) Calls with genotype: Ability of the tools
to detect the presence of SVs and their
correct genotype

Figure 5.4: Best SV detection performance for ten different subsamples
of the 38.7x PacBio CLR dataset. Shown are the best F1 scores
(y-axis) reached by each tool for different subsamples between
10% and 100% of the full 38.7x coverage (x-axis). F1 scores were
calculated requiring a distance of less than 1 kbp and a span
difference of less than 0.3 between matching variant calls and
the gold standard variants. Reads were aligned using minimap2
(SVIM and Sniffles) and pbmm2 (pbsv).
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of the lower amount of noise in the PacBio CCS data (Figure 5.5a).
All three tools reached similar precision and recall for their optimal
confidence threshold. However, SVIM and pbsv reached a higher
maximal recall than Sniffles while SVIM and Sniffles reached a higher
maximal precision than pbsv. When taking genotypes into account,
SVIM outperformed the other tools by reaching a precision and
recall of approximately 90% compared to 85% and 44% for pbsv and
Sniffles, respectively (Figure 5.5b).

We again assessed the best F1 score reached by each tool on
different subsamples of the dataset and observed a swift satura-
tion of performance even for relatively low coverages (Figure 5.6).
When ignoring genotypes, differences between the tools were more
pronounced for lower coverages (Figure 5.6a). The performance of
Sniffles degraded faster than that of the other tools for decreasing
read coverages while pbsv gained a slight advantage over SVIM for
coverages below 15x (50% subsample). When evaluating genotyped
calls, SVIM outperformed the two others with the exception of the
two lowest coverage levels below 10x (30% subsample) where pbsv
was able to predict more reliable genotypes (Figure 5.6b). Across all
coverage levels, Sniffles produced poor results when genotypes were
considered with F1 scores below 50%.

5.1.3.3 Dataset C - Nanopore

Dataset C is an Oxford Nanopore dataset with 50.7x read coverage
and a read length N50 of 49.4 kbp. Oxford Nanopore sequencing is
characterized by a relatively high error rate, between 10 and 20% [95].
The majority of errors are small indels that occur particularly of-
ten in homopolymers. In contrast to PacBio sequencing, there are
substantially more deletions than insertions.

As pbsv is a development of PacBio and has been targeted and
optimized for their own PacBio SMRT platform, we restricted our
analysis to Sniffles and SVIM on this Nanopore dataset. The precision-
recall curves for calls and genotyped calls, respectively, are shown
in Figure 5.7. In both settings, SVIM consistently reached a higher
precision and recall than Sniffles. Similar to the other datasets, Snif-
fles failed to predict accurate genotypes and was outperformed by
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(a) Calls only: Ability of the tools
to detect the presence of SVs
regardless of their genotype

(b) Calls with genotype: Ability of the tools
to detect the presence of SVs and their
correct genotype

Figure 5.5: Precision-recall curves for three SV callers on the 36.6x
PacBio CCS dataset. Shown are recall (x-axis) and precision
(y-axis) reached by each tool for different confidence thresholds.
Precision and recall were calculated requiring a distance of less
than 1 kbp and a span difference of less than 0.3 between match-
ing variant calls and the gold standard variants. Reads were
aligned using minimap2 (SVIM and Sniffles) and pbmm2 (pbsv).

(a) Calls only: Ability of the tools
to detect the presence of SVs
regardless of their genotype

(b) Calls with genotype: Ability of the tools
to detect the presence of SVs and their
correct genotype

Figure 5.6: Best SV detection performance for ten different subsamples
of the 36.6x PacBio CCS dataset. Shown are the best F1 scores
(y-axis) reached by each tool for different subsamples between
10% and 100% of the full 36.6x coverage (x-axis). F1 scores were
calculated requiring a distance of less than 1 kbp and a span
difference of less than 0.3 between matching variant calls and
the gold standard variants. Reads were aligned using minimap2
(SVIM and Sniffles) and pbmm2 (pbsv).
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a particularly wide margin when genotypes were considered (Fig-
ure 5.7b).

These trends were persistent across all coverage levels as is shown
in Figure 5.8. SVIM yielded F1 scores that were slightly higher for
simple calls and considerably higher for genotyped calls.

5.1.3.4 Comparison of different sequencing technologies

Beyond a comparison of the different SV callers, the three sequencing
datasets enabled us to assess the different TGS technologies and their
suitability for SV calling and genotyping. Above, we already ana-
lyzed the SV calling performance with varying sequencing coverages
and observed that the performance generally improves with increas-
ing coverage. Now, we compare different sequencing technologies in
terms of the SV detection performance they enable.

In Figure 5.9, we plot the alignment coverage on the x-axis against
the best F1 score achieved by SVIM on the y-axis (for similar plots
using calls from Sniffles and pbsv see Figure B.2 and B.3 in the Ap-
pendix). The line color represents the sequencing technologies PacBio
CLR, PacBio CCS and Oxford Nanopore. The left panel of the figure
shows the results for simple calls ignoring their genotype. Again, we
observed that the F1 score increased with increasing coverage. How-
ever, the different technologies did not follow the same curve. The
two less accurate technologies, PacBio CLR and Oxford Nanopore,
achieved substantially lower F1 scores than the more accurate PacBio
CCS sequencing for the same alignment coverage. Understandably,
an elevated error rate on the sequence level seems to result in a
higher amount of erroneous SV calls while more accurate read se-
quences make it easier for the SV callers to distinguish the signal
from the noise. Although PacBio CLR and Oxford Nanopore reached
a similar level of performance, PacBio CLR performed slightly better
than Oxford Nanopore for all but the lowest coverages.

From the PacBio CCS data, a high SV calling performance could
be reached even using a relatively low coverage. A coverage of only
10x was sufficient to produce F1 scores above 90%. PacBio CLR and
Oxford Nanopore, in contrast, required a coverage of 24x and 36x,
respectively, to reach the same level of performance. At 28x coverage,
PacBio CCS enabled F1 scores above 94% which was far beyond
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(a) Calls only: Ability of the tools
to detect the presence of SVs
regardless of their genotype

(b) Calls with genotype: Ability of the tools
to detect the presence of SVs and their
correct genotype

Figure 5.7: Precision-recall curves for three SV callers on the 50.7x Ox-
ford Nanopore dataset. Shown are recall (x-axis) and precision
(y-axis) reached by each tool for different confidence thresholds.
Precision and recall were calculated requiring a distance of less
than 1 kbp and a span difference of less than 0.3 between match-
ing variant calls and the gold standard variants. Reads were
aligned using minimap2 for both SVIM and Sniffles.

(a) Calls only: Ability of the tools
to detect the presence of SVs
regardless of their genotype

(b) Calls with genotype: Ability of the tools
to detect the presence of SVs and their
correct genotype

Figure 5.8: Best SV detection performance for ten different subsamples
of the 50.7x Oxford Nanopore dataset. Shown are the best F1

scores (y-axis) reached by each tool for different subsamples
between 10% and 100% of the full 50.7x coverage (x-axis). F1

scores were calculated requiring a distance of less than 1 kbp
and a span difference of less than 0.3 between matching variant
calls and the gold standard variants. Reads were aligned using
minimap2 for both SVIM and Sniffles.
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Figure 5.9: Best SV detection performance reached by SVIM on sequenc-
ing datasets of different coverage levels from different tech-
nologies. Plotted are the best F1 scores achieved by SVIM (y-
axis) against the alignment coverage (x-axis) of the sequencing
dataset (represented by the line color). Results for simple and
genotyped calls are visualized in the left and right panel by
solid and dashed lines, respectively. F1 scores were calculated
requiring a distance of less than 1 kbp and a span difference
of less than 0.3 between matching variant calls and the original
simulated variants. Reads were aligned using minimap2.

the maximum performance reached by PacBio CLR and Oxford
Nanopore (maximum F1 scores of 90.9% and 90.6%, respectively).
When considering genotypes (right panel of Figure 5.9), all previous
observations were confirmed although the general SV detection
performance dropped slightly. PacBio CCS still produced the best
results with a maximum F1 score of 90.2% compared to 83.2% and
80.9% for PacBio CLR and Oxford Nanopore, respectively.

5.1.3.5 Analysis of SV lengths and classes

After evaluating the performance of different SV callers and sequenc-
ing technologies, we assessed the sizes and classes of SVs detected
in the HG002 individual. For this analysis, we used the PacBio CCS
dataset (dataset B) because it had achieved the best SV detection
performance in the benchmarks above (for similar results for the
PacBio CLR and Oxford Nanopore datasets see Figure B.4 and B.5 in
the Appendix).

In Figure 5.10, the frequency of SVs from different classes is plotted
against their length. We observed a characteristic size distribution
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(a) pbsv

(b) Sniffles

(c) SVIM

Figure 5.10: Size distribution of SVs detected in the 36.6x PacBio CCS
dataset. Shown are stacked histograms of SV classes repre-
sented by different colors. In the left column, SV sizes up to
2 kbp are plotted with a bin size of 10 bp. In the right col-
umn, SV sizes up to 20 kbp are plotted on a logarithmic y-axis
with a bin size of 100 bp. The top, middle and bottom panels,
visualize callsets by pbsv, Sniffles and SVIM, respectively. All
callsets were generated with a confidence threshold of 5. To
simplify the comparison, SV class names have been harmo-
nized between the tools.
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that has already been described in several earlier studies [20, 43,
88]. Regardless of the SV calling method, the number of detected
SVs decreased exponentially with increasing size and the vast ma-
jority of SVs were small. Two prominent peaks could be observed
in all callsets: one at approximately 300 bp corresponding to Alu
elements and another one at approximately 6 kbp corresponding to
LINE1 elements. Alu and LINE1 elements are both mobile elements
that spread across the genome through interspersed duplication. In
HG002, they were responsible for a large number of deletions and
insertions depending on whether the duplication occurred in the
reference genome or the genome of HG002.

In total, pbsv, Sniffles and SVIM detected 23,389, 18,499 and 24,111

SVs, respectively (see Figure 5.11, panel "all"). Approximately half
of these SVs (12,808, 9,686 and 13,825, respectively) were smaller
than 200 bp (panel "tiny"). Another third (8,163, 6,848 and 8,343,
respectively) had a size between 200 bp and 1 kbp (panel "small").
Only few SVs fell into the larger size categories (panels "medium",
"large" and "huge").

All detected SVs reached a cumulative length of 16.6 (pbsv), 642.6
(Sniffles) and 14.5 Mbp (SVIM), respectively. The considerably larger
value for Sniffles was mainly caused by a few very large but most
likely spurious SV calls. While all SVs greater than 100 kbp detected
by pbsv and SVIM amounted to 2.0 and 3.6 Mbp, respectively, the 7

inversions, 18 deletions and 4 tandem duplications in this size range
detected by Sniffles had an unrealistic total size of 630.5 Mbp.

Generally, the size and class distributions from the three meth-
ods were very similar although slight differences could be observed.
All three classified the majority of SVs as deletions and insertions.
The most prominent difference was the higher number of tandem
duplications detected by pbsv (3,942 compared to 64 and 128 for
Sniffles and SVIM, respectively). Unlike the other two approaches,
pbsv compares the sequences of insertions to the neighboring ref-
erence regions. If the sequences match, the insertion is called as a
tandem duplication instead. All duplications, by definition, can also
be represented as insertions. This ambiguity is one of the difficulties
of SV calling making it hard to compare callsets from different se-
quencing technologies or algorithms. Among the other detected SVs,
45 (pbsv), 107 (Sniffles) and 21 (SVIM) were inversions. Furthermore,
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Figure 5.11: Number of SV calls from the 36.6x PacBio CCS dataset strat-
ified into five size classes. Shown is a stacked bar plot of SV
classes represented by different colors. Each panel represents
one size class and visualizes the number of calls in that size
range called by pbsv, Sniffles and SVIM, respectively. The bot-
tom right panel shows the counts for all SV calls regardless of
size. All callsets were generated with a confidence threshold
of 5.

SVIM detected 24 interspersed duplications while Sniffles called 101

complex SVs.

5.1.3.6 Comparison of runtime and memory consumption

To compare the runtime and memory consumption of pbsv, Snif-
fles and SVIM, we ran the tools on the same PacBio CCS dataset
(Dataset B with 36.6x coverage). Sniffles and SVIM were given in-
put alignments produced by minimap2 while pbsv was given pbmm2
alignments. Three measurements were taken with GNU time (v1.9)
on a machine with an AMD EPYC 7601 CPU (128 cores, 2.7 GHz) and
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1 TB of memory. Only the runtime of the SV detection was measured
not considering the time required for producing the alignments.

All three tools analyzed the entire dataset in under 3 hours (see
Table 5.2). Sniffles was the fastest tool taking only 51 minutes. pbsv
and SVIM took considerably longer with 109 and 129 minutes, re-
spectively. When comparing memory consumption, SVIM turned
out to require the least memory with only 1,248 MB. Sniffles and
pbsv consumed substantially more with 2,075 MB and 6,133 MB,
respectively.

We also measured the runtimes of the individual components in
the SVIM pipeline (see Table 5.3). The two components requiring
the most time were the COLLECT (1,654s) and GENOTYPE (5,922s)
stages. Together, they consumed more than 98% of the total runtime.
Both of them read and analyze alignments from the input BAM file.
This is an IO-intensive process limited by the speed of the hard disk.
While the COLLECT component sequentially reads records from the
BAM file, the GENOTYPE component needs to fetch reads from the
genomic neighborhood of each SV candidate. This targeted reading
is slower because it requires the file reader to jump around in the
BAM file. Without the genotyping, SVIM analyzes the dataset in less
than 30 min or only 23.2% of the runtime with genotyping.

5.2 evaluation on genome assemblies

We compared our tool, SVIM-asm (v0.1.1), to the DipCall pipeline
(v0.1) [58]. Both tools are designed for reference-based variant calling
on diploid genome assemblies.

For the evaluation we chose two publicly available diploid genome
assemblies of the HG002 individual from Wenger et al. (Assembly A)
and Garg et al. (Assembly B) (see Section C.3 in the appendix) [30,
97]. Assembly A was generated using the assembler Canu on a
trio-binned PacBio CCS dataset (29.7x coverage). Assembly B, in
contrast, combined the same PacBio CCS dataset with Hi-C data
(28.5x coverage) for scaffolding using the assembly pipeline DipAsm.
For both assemblies, we aligned the genome fragments separately
for each haplotype using minimap2 (v2.17-r941) and produced geno-
typed SV calls using SVIM-asm and DipCall, respectively [56]. For
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Table 5.2: Runtime and memory consumption on the 36.6x PacBio CCS
dataset. The runtime of each tool for SV calling was measured,
i.e. excluding the prior read alignment step. CPU time denotes
the sum of User time and System time while Wall clock time mea-
sures the real time passed. The Maximum memory represents the
maximum resident set size. Three measurements were taken for
each value using GNU time (v1.9) and the average of the three
measurements is reported.

Tool Threads CPU time
(min)

Wall clock
time (min)

Maximum
memory (MB)

pbsv 1 109 109 6133

Sniffles 1 51 51 2075

SVIM 1 129 129 1248

Table 5.3: Runtime of the SVIM components on the 36.6x PacBio CCS
dataset. The runtime of each component was measured based on
the time stamps printed in the log file. Three measurements were
taken from separate runs on the same dataset and the average of
the three measurements is reported.

Component Wall clock time (sec) % of total
COLLECT 1654 21.4%
CLUSTER 93 1.2%
COMBINE 27 0.3%
GENOTYPE 5922 76.8%
Final Output & Plotting 20 0.3%
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Figure 5.12: Comparison of SV detection performance of DipCall and
SVIM-asm on two diploid genome assemblies. Plotted are
the precision, recall and F1 score (y-axis) measured by compar-
ing against the GIAB SV benchmark set. Results are shown for
two genome assemblies (x axis): Asm A by Wenger et al. and
Asm B by Garg et al. Two evaluation modes are distinguished:
1) Evaluating the ability of the tools to detect the presence
of SVs regardless of their genotype (Calls) and 2) evaluating
the ability of the tools to detect the presence of SVs and their
correct genotype (Calls + Genotypes).

HG002, a comprehensive callset of germline SVs is available from
the GIAB consortium (see Section 5.1.3) which we used to com-
pute the precision, recall and F1 score of the two SV callers (using
the same definitions and methods as in our previous analyses, see
Section 5.1.1).

We observed that both methods reached F1 scores above 90%
when only the variant calls were evaluated (see Figure 5.12, upper
panels). SVIM-asm performed slightly better than DipCall with F1

scores of 93.2% (Assembly A) and 93.7% (Assembly B) compared to
91.7% and 92.5%, respectively. When additionally requiring matching
genotypes, the values for both tools decreased considerably and
SVIM-asm outperformed DipCall by a wide margin (see Figure 5.12,
lower panels). While SVIM-asm reached F1 scores of 62.4% and
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(a) DipCall

(b) SVIM-asm

Figure 5.13: Size distribution of SVs identified in Assembly A. Shown
is a stacked histogram of SV classes represented by different
colors. In the left panels, SV sizes up to 2 kbp are plotted with
a bin size of 10 bp. In the right panel, SV sizes up to 20 kbp
are plotted on a logarithmic y-axis with a bin size of 100 bp.
The top and bottom panels, visualize callsets by DipCall and
SVIM-asm, respectively.

67.0%, DipCall only reached 48.3% and 54.0%, respectively. When
measuring precision and recall across variant lengths, we observed
that SVIM-asm reached a higher recall particularly for large deletions
and insertions (see Figures B.8 and B.9 in the Appendix).

When we analyzed the size distribution of SVs detected from
Assembly A (see Figure 5.13), we observed a close resemblance to the
distributions retrieved from long-read alignments (see Figure 5.10).
Again, we found an exponential decrease in the number of SVs
with increasing size and two characteristic peaks at 300 bp and
6 kbp. The distributions from DipCall (Figure 5.13a) and SVIM-
asm (Figure 5.13b) were highly similar indicating that both tools
produce similar callsets. The same observations could be made also
on Assembly B (see Figure B.10 in the Appendix).

In total, DipCall and SVIM-asm detected 23,321 and 24,170 SVs
(excluding translocations), respectively, from Assembly A (see Fig-
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ure 5.14, panel "all"). This is again similar to the number of calls from
long-read alignments. Approximately half of the SVs (13,214 and
13,023, respectively) were smaller than 200 bp (panel "tiny"). Another
third (7,878 and 8,290, respectively) had a size between 200 bp and 1

kbp (panel "small"). Only few SVs fell into the larger size categories
(panels "medium", "large" and "huge"). As for long-read alignments,
the majority of SVs were categorized as deletions and insertions.

Unlike DipCall, SVIM-asm is able to detect inversions, transloca-
tion breakpoints and two types of duplications. From the Assemblies
A and B it detected 90 / 73 inversions, 124 / 101 tandem duplica-
tions, 2 / 4 interspersed duplications and 3110 / 4028 translocation
breakpoints, respectively.

All in all, our evaluations demonstrated that SVIM and SVIM-asm
produce accurate results on diverse input datasets and outperform
existing methods on the detection of genotyped SVs. In the next
chapter, we will apply SVIM to investigate the structural variants
and novel adjacencies in a set of highly rearranged patient genomes.
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Figure 5.14: Number of SV calls from Assembly A grouped into five size
classes. Shown is a stacked bar plot of SV classes represented
by different colors. Each panel represents one size class and
visualizes the number of calls in that size range called by
DipCall and SVIM-asm. The bottom right panel shows the
counts for all SV calls regardless of size. As translocation
breakpoints (BND) do not have a size, they are included only
in this bottom right panel.
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S T R U C T U R A L VA R I A N T D E T E C T I O N I N H I G H LY
R E A R R A N G E D C H R O M O S O M E S

It is generally believed that human germline SVs form in isolated
events involving a range of functional mechanisms (see Section
2.1.2.1). But three recently discovered molecular phenomena summa-
rized under the term chromoanagenesis now challenge this assumption
by introducing several rearrangements into the genome in a single
event.

In this chapter, we describe the application of our SV detection
method SVIM in the context of a larger research project investigating
the mechanisms and consequences of chromoanagenesis. As part
of this project, we analyzed PacBio data from a cohort of patients
with highly rearranged genomes and detected both canonical SVs
and novel adjacencies between distant genomic locations. To obtain
a high-confidence set of novel adjacencies, we employed a multi-step
filtering process and validated the final calls using orthogonal Hi-C
data. The validation confirmed that the final callset was highly accu-
rate and well-suited for downstream analysis, such as the complete
reconstruction of rearranged chromosomes or the investigation of
the molecular mechanisms behind chromoanagenesis.

6.1 three forms of chromoanagenesis

The term chromoanagenesis encompasses three different phenomena
which were described in the years 2011 and 2012 for the first time.
The most prominent of them is called chromothripsis (from Greek
thripsis for shattering). It describes the acquisition of a large number
of chromosomal rearrangements in a single catastrophic event (see
Figure 6.1) [67]. The acquired rearrangements are often complex
and clustered in a limited number of genomic regions. Although
the mechanisms causing chromothripsis are still under debate, the
double-strand breaks forming the basis for such chromosomal re-

79
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(a) Chromothripsis mechanism (b) Hi-C map of a chromothriptic
genome

Figure 6.1: Chromothripsis leads to a large number of chromosomal re-
arrangements through a single catastrophic event.
a | Schematic view of a chromosome undergoing chromothrip-
sis. A single catastrophic event shatters the chromosome into
numerous fragments. When the cell attempts to repair the dam-
age by reconnecting the fragments, multiple rearrangements are
introduced and some fragments can get lost.
b | Hi-C map showing the 3-D contacts in a genome that under-
went chromothripsis involving multiple chromosomes. Rows
and columns represent the chromosomes while the color in-
tensity visualizes the strength of interaction between two loci.
Beside the expected intra-chromosomal contacts along the di-
agonal, several contacts between different chromosomes can be
observed (black arrows) that indicate large inter-chromosomal
rearrangements.

arrangements can occur by several mechanisms including aberrant
DNA replication, ionizing radiation or the entry of DNA cutting
enzymes into the cell nucleus [28, 74]. The DNA fragments resulting
from the breaks are later reassembled by error-prone repair mecha-
nisms, such as non-homologous end joining. Mistakes made by the
repair mechanism can lead to the complex rearrangements that are
the signature of chromothripsis.

Chromothripsis has been first reported in a patient with chronic
lymphocytic leukemia and later confirmed to occur commonly in
various types of human cancer, such as melanomas, sarcomas and
gliomas [28, 89]. In cancer, chromothripsis can cause several tumor-
promoting changes through one event which contrasts with the
conventional theory of tumor progression through gradual changes.
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Shortly after the first reports on chromothripsis in cancer, other
studies described similar rearrangements in the germline causing
congenital defects and genomic disorders [67]. While some of these
cases showed very similar signatures to those of cancer chromo-
thripsis, others exhibited pronounced differences [47, 61]. Unlike
chromothripsis in cancer, which is mainly characterized by inver-
sions and translocations, these latter rearrangements also comprised
extensive duplication and triplication. These and other differences
suggest that some germline rearrangements might be caused by
other mechanisms than those active in chromothripsis. In particular,
replicative processes and repair mechanisms, such as break-induced
replication (BIR) might be involved. Instead of shattering and subse-
quent reassembly of chromosomes, these germline rearrangements
might arise through replicative repair mechanisms which is why the
term chromoanasynthesis (from Greek anasynthesis for reconstitution)
has been suggested for such rearrangements [61].

Beside chromothripsis and chromoanasynthesis, a third related
phenomenon known as chromoplexy (from Greek pleko for twisting)
has been described [5]. Similar to chromothripsis, it is caused by
double-strand breaks that are repaired by error-prone repair mecha-
nisms. However, chromoplexy is characterized by a lower number of
breakpoints from multiple chromosomes. Unlike in chromothripsis,
the breakpoints are not clustered but distributed across the genome.

All three phenomena, chromothripsis, chromoplexy and chro-
moanasynthesis have in the literature been grouped under the um-
brella term of chromoanagenesis (from Greek anagenesis for rebirth).
Due to its recent discovery, chromoanagenesis is under active inves-
tigation by research groups worldwide and many questions remain
unanswered [100].

6.2 detection of canonical svs in a patient cohort

using svim

In a joint effort with collaborators from several research institutions,
a cohort of 12 patients (in the following referred to as patients 1

through 12) with massive genomic germline rearrangements was col-
lected. From the patients, lymphoblastoid or (in the case of patient 2)
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fibroblast cell lines were obtained and analyzed using a comprehen-
sive set of technologies. For each patient, three sequencing datasets
were generated using Illumina sequencing, PacBio CLR sequencing
and Hi-C. Ten of the twelve PacBio CLR datasets were generated on
a PacBio Sequel II machine. Only patients 6 and 7 were sequenced
on the older PacBio Sequel I. For most patients, only one sequencing
run with a single SMRT cell was performed. The exceptions were
patients 6 (11 SMRT cells), 7 (11 SMRT cells) and 11 (2 SMRT cells).

As the first step in our analysis, we aligned all datasets to the
GRCh37 human reference genome. The amount of reads and bases
sequenced varied greatly between the datasets. Therefore, the num-
ber of aligned reads and aligned bases also showed a high vari-
ance (see Figure 6.2). The number of aligned reads varied between
3,433,547 for patient 1 and 7,954,431 for patient 9. And while only
59.3 Gbp could be aligned for patient 6, the dataset for patient 2

comprised 148.6 aligned Gbp. Consequently, the alignment coverage
of the datasets varied between 19.1x (patient 6) and 47.9x (patient 2)
when assuming a genome size of approximately 3.1 Gbp.

We also observed a high variance between read lengths in dif-
ferent datasets (see Figure 6.3). The median read length varied be-
tween 6,839 bp for patient 11 and 24,389 bp for patient 3. In general,
read lengths exhibited a right-skewed distribution. Most reads were
shorter than 40 kbp with 39,694 bp (patient 3) being the highest
third quartile observed among all patients. In the right tail of the
distribution, numerous outliers with lengths of up to 248 kbp were
present. Consequently, the mean read lengths were generally larger
than the median read lengths with values between 12,896 bp and
27,083 bp.

We analyzed the read alignments of all 12 datasets with SVIM
(v1.4.1) and detected five classes of SVs: deletions, insertions, inver-
sions, tandem and interspersed duplications. The numbers of SVs
from each class detected in each patient are visualized in Figure 6.4.
In total, between 19,666 (patient 6) and 25,050 (patient 3) SVs were
detected per sample. We observed a relationship between the number
of aligned bases and the number of detected SVs. The datasets with
the lowest number of bases (Patients 6, 7 and 11) also yielded fewer
SVs. This relationship can be at least partly explained by the filtering
which was applied on the callsets to retain only SVs supported by
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(a) Aligned reads

(b) Aligned bases

Figure 6.2: PacBio CLR sequencing datasets from the patient cohort.
Shown is the number of aligned reads (panel a) and the number
of aligned bases (panel b) for each dataset. Reads were aligned
with minimap2 on the GRCh37 human reference genome.
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(a) Boxplot on linear scale

(b) Violin plot on log scale

Figure 6.3: Distribution of read lengths in PacBio CLR sequencing
datasets from the patient cohort.
a | Each box in this boxplot visualizes the first and third quar-
tiles (upper and lower end) and the median (middle bar in the
box). The upper and lower whiskers extend to the largest/s-
mallest value no further than 1.5 times the inter-quartile range
from the upper/lower end of the box, respectively. Outliers are
plotted with an alpha value of 0.1.
b | The violin plot visualizes the probability density at different
values on a log-scaled y-axis.
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Figure 6.4: Number of SVs detected in the patient cohort and supported
by at least 5 reads. Plotted is the number of SVs (on a log
scale) detected in each patient. Five lines with different colors
are shown for the different SV classes. SVs were grouped into
five size classes which are represented by the first five panels.
The last panel represents SVs of all size classes. DEL - deletion,
INS - insertion, INV - inversions, DUP:TANDEM - tandem
duplication, DUP:INT - interspersed duplication

at least 5 reads. Datasets with a deeper coverage provide a higher
chance of passing this threshold.

With counts between 11,468 for patient 6 and 13,910 for patient
8, approximately half of the detected SVs were smaller than 200 bp.
Another third was between 200 bp and 1 kbp in size (between 6,630

for patient 6 and 8,478 for patient 8). The most common SV class
across all datasets were insertions (between 11,368 for patient 6 and
14,982 for patient 8) followed closely by deletions (between 7,918 for
patient 6 and 9,449 for patient 3). All insertions together reached a
cumulative size of several megabases (between 3.8 Mbp for patient 6
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and 6.4 Mbp for patient 3). Deletions covered an even larger portion
of the genome with a cumulative size between 9.8 Mbp for patient 6

and 33.2 Mbp for patient 12. Beside insertions and deletions, several
hundred tandem duplications were detected in each dataset (between
346 for patient 6 and 734 for patient 10). Inversions (between 25 for
patient 6 and 53 for patient 3) and interspersed duplications (5 for
patient 7 and 22 for patient 2) were detected less frequently.

When we focus on large SVs with a size of more than 10 kbp,
tandem duplications (between 47 for patient 6 and 246 for patient
3) and deletions (43 for patient 6 and 90 for patient 12) were the
most frequent SV classes. Only few large insertions (between 0 for
patient 7 and 10 for patients 3 and 9) were detected. The low number
of large insertions can be easily explained by a lack of reads that
were long enough to cover large insertions including their genomic
context. In the size range above 100 kbp, no insertions were detected
at all.

6.3 generation and validation of a high-confidence

set of novel adjacencies

The genomes from our patient cohort contained numerous genomic
rearrangements that were indicative of chromoanagenesis. Because
these rearrangements were likely acquired during a single catas-
trophic event they could not easily be categorized into the canonical
SV classes, such as deletions or inversions. These classes describe
isolated local rearrangements of the genome with the assumption
that the genomic context of each SV remains largely the same. In
chromoanagenesis, however, the large-scale structure of entire chro-
mosomes is disrupted. Therefore, it is hard or even impossible to
describe the rearrangements as a set of isolated local SVs because
they tend to be nested and overlay each other.

Instead, a highly rearranged chromosome can be characterized as a
chain of genomic fragments formed by splitting the reference genome
at particular positions. The splitting positions, the orientations of
the fragments and their order in the derivative chromosome are
unknown but can be reconstructed from sequencing data. Below, we
describe our approach of detecting and filtering novel adjacencies
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between distant genomic locations from PacBio sequencing data and
validating the final adjacencies with Hi-C data.

6.3.1 Collection of novel adjacencies from PacBio alignments

To identify the genomic fragments present in each genome and
the connections between them, we aimed to collect the complete
set of novel adjacencies between formerly distant genomic loci (i.e.
translocation breakpoints). From PacBio data, novel adjacencies can
be detected from split alignments of reads to multiple locations.
Beside translocations, most other SV classes can also be expressed in
terms of novel adjacencies. A deletion, for instance, creates a novel
adjacency between its start and end locus. Similarly, an inversion
is characterized by two novel adjacencies between its start and end
locus each connecting the forward with the reverse strand.

We collected the novel adjacencies with our SV caller SVIM by
implementing an additional operation mode (command line pa-
rameter --all_bnds). It collects all novel adjacencies indicated by
the alignments including those from translocations, deletions, in-
versions, interspersed and tandem duplications. Simple insertions
were not considered because the insertion of bases does not create
novel adjacencies. Similar to the regular translocation breakpoint
signatures collected by SVIM, all novel adjacencies were clustered
and annotated with a confidence score (see Section 3.3.2).

6.3.2 Filtering of novel adjacencies

For downstream analysis, it is vital to keep the rate of false nega-
tives and false positives in the set of adjacencies as low as possible.
Even a small number of missing or erroneous adjacencies can have
far-reaching consequences, e.g. in the reconstruction of rearranged
chromosomes. Therefore, we inspected the SVIM calls using the
orthogonal Hi-C data. We identified putative false positive calls and
used the gained insights to develop five targeted filtering steps for
the reduction of false positive calls in the set of novel adjacencies
detected by SVIM. Although Hi-C data was used to develop and
refine the filtering approach, the actual filtering steps were carried



88 structural variant detection in highly rearranged chromosomes

Figure 6.5: Alignment coverage on chromosomes 1 to 5 of patient 4. Each
chromosome is represented by a grayscale ideogram with its
characteristic banding pattern. Above each ideogram, blue bars
visualize the average alignment coverage in non-overlapping
genomic windows of 10 kbp. Yellow dashed lines represent the
average alignment coverage (46x) across the whole genome. The
red dashed lines represent the filtering threshold of 3 times that
genome-wide average coverage.

out without the use of Hi-C data. Each of the following five steps
was applied successively:

coverage-based filtering Firstly, we analyzed the alignment
coverage distribution across the genome by measuring the average
alignment coverage in non-overlapping genomic windows of 10

kbp (see Figure 6.5). Generally, we observed a relatively uniform
alignment coverage in most genomic regions. The most prominent
exception were centromeric regions that contained segments with
very low and very high coverages. We annotated windows with an
average coverage higher than 3 times the genome-wide average cov-
erage as high-coverage regions. Although there are multiple reasons
for elevated coverages, they are often caused by CNVs, paralogous
sequences missing from the reference genome or repetitive sequences
attracting many reads [55]. Because such regions are prone to erro-
neous read mappings, all novel adjacencies found in high-coverage
regions were filtered out.

gap-based filtering In our cohort, we observed numerous
novel adjacencies close to gaps in the reference genome. Instead
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of having a proper nucleotide sequence, these gaps contain long
stretches of the letter N which can represent any letter in the nu-
cleotide alphabet [24]. Due to the lack of a sequence, alignment
algorithms are not able to align reads to gap regions. Reads that
cover a gap boundary therefore consist of two parts: The part outside
of the gap can be aligned up to the gap whereas the part inside the
gap cannot be aligned due to the lack of a reference sequence. When
a region with similar sequence exists somewhere else in the genome,
the latter part can sometimes be aligned to that region instead. This
gives rise to a spurious novel adjacency that is only caused by the
presence of the gap. Due to this problem, read alignments and par-
ticularly split alignments in the close proximity of reference gaps
are unreliable. Therefore, we filtered out all novel adjacencies with a
distance of less than 10 kbp to a reference gap.

duplication-based filtering Another source of unreliable
read alignments in our cohort were segmental duplications. These du-
plicated genomic regions are larger than 1 kbp and have an identity
of 90% or more to other regions in the genome [54]. Due to their
length and similarity, segmental duplications often confuse the read
alignment algorithm which leads to erroneous alignments, e.g. the
alignment of reads to wrong genomic locations. In our cohort, we
observed numerous novel adjacencies between related segmental
duplication regions that were most likely caused by spurious split
alignments. Therefore, we filtered out all novel adjacencies overlap-
ping annotated segmental duplication regions.

score-based filtering The remaining calls were filtered based
on their confidence score. SVIM does not perform any filtering on
its own so that many of the novel adjacency calls are supported
by only a few reads. Most of these low-scoring calls are caused by
errors in the PacBio data and the resulting misalignment of read
segments or entire reads. Because the errors in PacBio data are
randomly distributed, only individual reads are affected leading to
novel adjacency calls with low score. Therefore, we defined score
thresholds and filtered out adjacencies with scores lower than the
threshold. Due to the large variance in alignment coverage across
samples (see Figure 6.2) we used sample-specific score thresholds. On
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average, we would expect heterozygous and homozygous variants
to be supported by approximately 50% or 100% of the reads in
the region, respectively. To avoid the removal of true adjacencies,
however, we used a lenient threshold of 10% of the genome-wide
average alignment coverage for each sample (e.g. filtering out calls
with score < 5 for a sample with 50x coverage).

cohort-based filtering When comparing calls between dif-
ferent samples, we observed considerable overlap. Therefore, we
merged the remaining novel adjacencies from all patients and clus-
tered similar adjacencies using a breakend distance cutoff of 1 kbp.
Our analysis showed that non-unique adjacencies, i.e. those present
in more than one sample, were particularly common in the repet-
itive genomic regions close to the centromeres and telomeres. We
explain these adjacencies with systematic alignment errors that occur
in multiple samples when mapping to the same reference genome.
Some of the non-unique adjacencies might also reflect variants that
are common in the population and therefore present in multiple
patients. In our analysis, however, we were most interested in the
genomic rearrangements related to chromoanagenesis which should
be unique for each patient. Therefore, we filtered out adjacencies
present in more than one sample.

Each of the five filtering steps removed a large number of novel ad-
jacencies from the initial set (see Figure 6.6 with numbers for patient
4). To focus on large-scale rearrangements, the numbers below refer
exclusively to long-range novel adjacencies, i.e. adjacencies between
loci on different chromosomes or with a distance larger than 100

kbp on the same chromosome. The coverage-based filtering already
removed between 2,835 (patient 1) and 5,709 (patient 10) of those
adjacencies in high-coverage regions. Then, the gap-based filtering
removed between 390 (patient 6) and 781 (patient 9) adjacencies
close to gaps in the reference. Next, the duplication-based filtering
removed between 959 (patient 1) and 3,434 (patient 7) adjacencies
in segmental duplication regions. The score-based filtering removed
the most calls with between 6,214 (patient 1) and 71,553 (patient 7).
In the final cohort-based filtering step, between 42 (patient 6) and 76

(patient 12) non-unique adjacencies were removed. This left between
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Figure 6.6: Number of novel adjacencies in patient 4 passing and failing
each filtering step. Visualized are the five filtering steps that
were successively applied to novel adjacencies. The numbers
shown refer to novel adjacencies between different chromo-
somes or connecting two loci on the same chromosome with a
distance larger than 100 kbp. The stacked colored bars visual-
ize the fraction of adjacencies passing (aqua) and failing (red)
each step. Absolute numbers are printed inside (passed) and
above (failed) the bars. After the filtering, 61 high-confidence
adjacencies remained for patient 4.

10 (patient 2) and 79 calls (patient 12) in the final sets of unique
long-range adjacencies (see Figure 6.7).

6.3.3 Validation of novel adjacencies using Hi-C

To confirm that the applied filtering steps removed false positive calls
instead of true positives, we investigated a subset of the filtered out
adjacencies using Hi-C data. In Figure 6.8, several calls for patient
4 are overlaid on the Hi-C map of the same individual. In the Hi-C
map, contact frequencies between two genomic loci (on the x-axis
and y-axis, respectively) are visualized by the intensity of the red
color. Pairs of distant genomic loci are located far from the diagonal
and generally have a lower contact intensity than proximal loci closer
to the diagonal. For true novel adjacencies between distant loci in a
rearranged genome, however, sharp increases in contact intensity can
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Figure 6.7: Number of final novel adjacencies for each patient. The
barplot visualizes the number of novel adjacencies in each pa-
tient passing all five filtering steps. The numbers shown refer to
novel adjacencies between different chromosomes or connecting
two loci on the same chromosome with a distance larger than
100 kbp.

be observed at the breakpoint location. These prominent increases
represent the proximity of two loci in 3-D space that are distant in the
reference genome but close in the genome under investigation. None
of the adjacencies that were filtered out due to high coverage (panel
a), gaps in the reference (panel b), segmental duplication regions
(panel c), low score (panel d), or presence in multiple samples (panel
e) showed any substantial support by Hi-C. They were either located
in regions of low mappability (gray regions with a low number of
mapped Hi-C reads) or regions without any prominent increases
in contact frequency. The final calls shown in panel f, in contrast,
were well supported by sharp increases in contact intensity at the
breakpoint locations.

Yet, not all sharp edges observed in the Hi-C map were caused
by direct adjacencies. Nested rearrangements between chromosomes
also led to indirect (i.e. more distant) adjacencies that could be ob-
served in the map as sharp edges. For most applications, however,
only direct adjacencies are useful. While it was hard to distinguish
direct and indirect adjacencies from Hi-C data alone (see Figure 6.8,
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(a) In high-coverage region (b) Close to reference gap

(c) In segmental duplication region (d) Low score

(e) Present in multiple samples (f) Final calls

Figure 6.8: Selected parts of the Hi-C map for patient 4 around filtered
and final novel adjacencies. In the Hi-C map, contact frequen-
cies between two genomic loci are visualized by the color inten-
sity. Regions with low mappability, such as repeats or reference
gaps, appear as gray areas. Novel adjacencies detected in the
PacBio data are plotted as black rectangles centered around the
precise breakpoint. In the first five panels a) to e), novel adjacen-
cies are shown that were removed in each of the five filtering
steps. The last panel f) shows final novel adjacency calls. The
black arrow in panel f) points to an indirect adjacency caused
by a nested rearrangement.
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panel f), the indirect adjacencies were correctly not supported by the
PacBio alignments illustrating how well PacBio and Hi-C comple-
ment each other.

As the final step in our analysis, we compared the final callset of
long-range novel adjacencies for patient 4 with a manually curated
gold standard set of breakpoints. To produce the gold standard,
the complete unfiltered set of long-range novel adjacencies detected
by SVIM was obtained. After adjacencies supported by less than 3

PacBio reads were removed, the remaining 631 calls were displayed
on the Hi-C map of patient 4 and inspected by two expert curators.
The curators examined each call for support by the Hi-C data and
thus produced a gold standard set of 65 high-confidence adjacencies
supported by both Hi-C and PacBio.

When we compared the final callset of 61 unique long-range ad-
jacencies detected for patient 4 with this gold standard set, we
observed a very good concordance. 56 out of 65 (recall of 86.2%)
adjacencies from the gold standard set were contained in the fil-
tered callset. When we inspected the nine adjacencies missing from
the filtered callset, we found that they had been filtered out in the
coverage-based filtering step (2 adjacencies), the duplication-based
filtering step (2 adjacencies) and the cohort-based filtering step (5
adjacencies), respectively. A closer inspection revealed five of them
as likely artifacts caused by segmental duplications. All other ad-
jacencies were present in several other samples of the cohort. We
therefore concluded that the gold standard set still contains artifacts
that were successfully detected by our filtering approach.

Conversely, 56 out of 61 (precision of 91.8%) adjacencies from
the filtered callset were contained in the gold standard set. We also
inspected the five adjacencies missing from the gold standard set.
In four out of the five cases we found good support in the PacBio
data but little to no evidence by Hi-C. Two of these adjacencies
were located in regions of low short-read mappability which would
explain the missing support by Hi-C. For all five cases it was hard to
judge whether they represented real adjacencies or artifacts.

The validation of the final callset for patient 4 confirmed that the
applied filtering steps were able to produce an accurate callset of
novel adjacencies for a highly rearranged genome. The callset will be
a valuable resource for different applications, such as the complete
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reconstruction of derived chromosomes or the investigation of chro-
moanagenesis mechanisms. Our analysis illustrated that PacBio and
Hi-C are complementary technologies for the study of large-scale
genomic rearrangements. While PacBio reads provided local infor-
mation on the precise locations of and the sequence around genomic
breakpoints, Hi-C provided a global but low-resolution map of the
rearrangements.

In this thesis, we discussed two complementary paradigms for the
investigation of genomic structural variation: While the classifica-
tion of structural variation into a fixed set of canonical classes is a
good framework for simpler variants, the decomposition of complex
rearrangements into novel adjacencies presents itself as the more
suitable approach for highly rearranged genomes. With our analysis
in the context of this research project, we could demonstrate that
SVIM can assist both in the detection of canonical SV as well as the
resolution of more complex chromosomal rearrangements.





7
D I S C U S S I O N

Structural variation is, next to single-nucleotide variation and small
indels, one of the main classes of genetic variation. The large size
of SVs and their strong influence on human phenotype and disease
make them an important research target. However, their unique prop-
erties and the weaknesses of traditional sequencing technologies com-
plicate the detection and characterization of SVs. Third-generation
sequencing technologies, such as PacBio SMRT sequencing and ONT
Nanopore sequencing, have the potential to alleviate these problems
through the generation of long but relatively inaccurate reads.

In this thesis, we discussed the problem of detecting different
classes of SVs in third-generation sequencing datasets. The main
challenges that we met were the relatively high error rate of the data,
the great diversity of SVs and the repetitive nature of the human
genome. To overcome these obstacles, we introduced a novel SV
detection method, SVIM, that employs a four-step pipeline to accu-
rately detect and genotype SVs from long-read alignments. SVIM
combines an hierarchical clustering approach with a novel distance
metric to merge signatures of the same SV despite discrepancies
caused by sequencing or alignment errors. For each SV, a confidence
score is computed that facilitates the separation of true calls from
artifacts. Furthermore, SVIM estimates the genotype of SVs from
the ratio of read alignments supporting or contradicting each vari-
ant. While existing methods do not distinguish different types of
duplications, SVIM is, to our knowledge, the first method to detect
interspersed duplications from split alignments.

A comprehensive comparison of SVIM with two competing tools,
Sniffles and pbsv, on simulated and real datasets demonstrated that
our method combines a high recall with a high precision. On the
simulated datasets, SVIM achieved the best results among the three
tools followed closely by Sniffles. Deletions, inversions and tandem
duplications could be detected best with F1 scores above 98% (ho-
mozygous) and 95% (heterozygous) even for coverages as low as
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15x. Insertions proved slightly harder to detect with F1 scores above
92% (homozygous) and 86% (heterozygous). On two real PacBio
datasets, SVIM performed best among the tools when comparing the
genotyped variant calls with a gold standard set of large deletions
and insertions. On low-coverage subsamples of the datasets or when
variant calls without genotypes were compared, pbsv achieved the
best results. Unlike Sniffles and SVIM, however, pbsv was among
the methods used to compile the gold standard which could have
represented a slight bias in favor of pbsv in our evaluation. On the
real Nanopore dataset where SVIM was compared only to Sniffles,
our method consistently achieved better results with a particularly
wide margin on genotyped variant calls. All in all, our experiments
suggest that SVIM outperforms Sniffles in most settings. Depending
on the scenario, pbsv achieved mostly comparable but sometimes
slightly better or worse results than SVIM. That SVIM performed
best in our comparisons with genotyped variant calls indicates that
our method estimates the most accurate genotypes of all three tools.

Yet, we would like to note that the evaluation of SV callers remains
difficult in the absence of a complete and accurate truth set of SVs.
Simulated datasets, like the one we generated, provide such a truth
set but are often not able to emulate the full complexity of real
data. For evaluations on real datasets, in contrast, only few suitable
truth sets are available. The GIAB consortium combined numerous
technologies and methods to generate a benchmark set for HG002

that we used in our experiments. However, that set was limited
to isolated deletions and insertions leaving out other SV classes
and SVs in difficult regions [102]. Furthermore, the evaluation and
comparison of SV callers requires the choice of particular sequencing
datasets, tool versions, tool parameters and filtering approaches.
Although we made these choices with the aim of a fair comparison
in mind, changes in any of these parameters could produce slightly
different results.

Generally, our experiments showed that SV detection performance
increases for higher coverages but saturates at a certain point where
the methods do not benefit from even more data. Compared to
PacBio CLR and Nanopore data, PacBio CCS enabled higher perfor-
mances at lower coverages. This improved performance is enabled by
the computational construction of an accurate consensus sequence
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from multiple sequencing passes of the same genomic fragment. It
comes at the expense of shorter read lengths and a considerably
higher cost (approximately 3× the cost of CLR sequencing) [65]. In
our experiments, a PacBio CCS coverage of only 10x was sufficient
to produce variant calls with F1 scores above 90% (84% for calls with
genotypes). PacBio CLR and Oxford Nanopore, in contrast, required
much higher coverages (24x and 36x, respectively) to reach the same
level of performance. This approximately threefold increase in re-
quired coverage that we observed for PacBio CLR and Nanopore
data nearly balances the similar increase in cost for the PacBio CCS
data. Moreover, its considerably higher accuracy makes CCS data
more broadly applicable than the other TGS technologies. Unlike
those, CCS data enables the accurate detection of small variants, the
analysis of even more complex and repetitive genomic regions and
the confident separation of haplotypes for diploid genome assembly.

Beside the analysis of long-read alignments, we also discussed the
analysis of genome assemblies for SV detection. The process of de
novo genome assembly is usually independent of existing reference
genomes which makes the process free of any reference bias but also
computationally demanding and time-consuming. To detect SVs in
the sequence contigs produced by the assembly, the contigs need to
be compared to another genome assembly or a reference genome. To
this end, an alignment between the two assemblies is produced and
analyzed with an SV caller. While several methods exist for haploid
assemblies, we are aware of only one other method, DipCall, for the
detection and genotyping of SVs from diploid genome assemblies.
By adapting our method SVIM, we implemented a new caller for
diploid assemblies, SVIM-asm, that detects more classes of SVs and
estimates more accurate genotypes than DipCall. We confirmed the
improved calling and genotyping performance of SVIM-asm on two
publicly available diploid genome assemblies.

The classification of SVs into distinct classes produces a structured
catalogue of differences between a macroscopically similar pair of
genomes. For genomes with a disrupted structure or a large number
of major rearrangements, however, the detection and classification of
isolated SVs meets its limits. In this scenario, the decomposition of
complex rearrangements into novel adjacencies presents itself as a
suitable alternative. For a set of patients with chromoanagenesis, we
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used SVIM to collect a comprehensive callset of novel adjacencies
which was subsequently filtered. The filtering removed more than
99% of all calls which reflects the high error rate of the PacBio data.
While variant calling pipelines typically impose a strict cutoff on
the confidence score or the number of supporting reads, we wanted
to retain the high sensitivity of our callset. Therefore, we used a
low score cutoff and combined it with multiple filtering steps based
on genomic features and a cross-sample analysis. Eventually, we
validated the final callset using orthogonal Hi-C data and demon-
strated its high sensitivity and precision. This makes our approach
well-suited for applications that require a complete and accurate list
of long-range genomic rearrangements, e.g. the investigation of gene
regulation around genomic breakpoints or the study of breakpoint
pathogenicity.

A major limitation of the approaches discussed in this thesis is their
dependence on the correctness of the analyzed sequence alignments.
Similar to other SV callers, SVIM and SVIM-asm are able to detect
only rearrangements that are already indicated by the layout of
the alignments. One problem is posed by the repetitive nature of
many genomes, due to which many sequences map ambiguously or
cannot be mapped confidently. These artifacts affect the sensitivity
and precision of our tools but might also cause misclassification
of variants, e.g. the classification of interspersed duplication from
mobile elements as simple insertions.

Another limitation is that SVIM and SVIM-asm are currently un-
able to detect complex structural variation. Although this class of
variation is much rarer than the six canonical SV classes discussed in
this thesis, they are generally larger and more likely to disrupt genes
or regulatory regions [16]. Therefore, we plan to extend our methods
with the ability to detect complex SVs. Furthermore, we intend to
add multi-threading support to SVIM to accelerate the processing of
very large sequencing datasets.
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A
P R O O F O F M E T R I C A X I O M S F O R S PA N - P O S I T I O N
D I S TA N C E

a.1 definitions

A metric on a set X is a function d : X× X → [0, ∞).
For all x, y, z ∈ X, the following three axioms need to be satisfied:

1. Identity of indiscernibles: d(x, y) = 0⇔ x = y

2. Symmetry: d(x, y) = d(y, x)

3. Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y)

Span-position distance is a function SPD : S× S→ [0, ∞) where S is
the set of SV signatures (S.type, S.chrom, S.start, S.end). S.type is the
signature type, S.chrom is the chromosome, S.start is the genomic
start position and S.end is the genomic end position. Span-position
distance is defined as the sum of two components: SPD = SD + PD.
SD is a function SD : S × S → [0, 1) on the set S. It is defined
as the relative difference in span between two signatures x and y:
SD = |x.span−y.span|

max(x.span,y.span) where x.span = x.end− x.start and y.span =

y.end− y.start.
PD is a function PD : S× S→ [0, ∞) on the set S. It is defined as the
absolute difference between the center positions of two signatures x
and y scaled by a user-defined scaling constant: PD = |x.center−y.center|

N
where x.center = x.start+x.end

2 , y.center = y.start+y.end
2 and N ∈N.

In the following, we show that span-position distance satisfies the
three axioms of a metric.

a.2 identity of indiscernibles

Consider two identical SV signatures x = y. Because they are identi-
cal, they have the same signature type and chromosome as well as the
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same start and end coordinates. Therefore SD(x, y) = 0∧ PD(x, y) =
0⇒ SPD(x, y) = 0.
Consider two indiscernible SV signatures x and y for which SPD(x, y) =
0. From the definition of the span-position distance for signatures
on different chromosomes or with different types, it follows that x
and y must have the same type x.type = y.type and chromosome
x.chrom = y.chrom. Because SPD is a sum which is 0, it follows that
SD(x, y) = 0∧ PD(x, y) = 0. From the definitions of SD and PD, it
follows that x.span = y.span⇒ (x.end− x.start) = (y.end− y.start)
and x.center = y.center ⇒ (x.start + x.end) = (y.start + y.end). It
follows that x.start = y.start and x.end = y.end. Because all four
components of x and y are identical, it follows that x and y are
identical.

a.3 symmetry

SPD(x, y) = SPD(y, x) follows from the definitions of SD and PD.
The numerator of SD is the absolute value of the difference in spans
which does not change if x and y are swapped. The denominator of
SD is the maximum value of the spans which does not change either.
Therefore, SD does not change if x and y are swapped.
The numerator of PD is the absolute value of the difference in po-
sition which does not change if x and y are swapped. The denom-
inator of PD is a natural number independent of x and y. Because
SD and PD do not change if x and y are swapped, it follows that
SPD(x, y) = SPD(y, x).

a.4 triangle inequality

To show that the triangle inequality is satisfied by the span-position
distance SPD, we first show that the triangle inequality is satisfied
by the span distance SD and the position distance PD.

a.4.1 Span distance

The triangle inequality for the span distance:
SD(x, y) ≤ SD(x, z) + SD(z, y).
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It is easy to show that if two of x,y,z have the same span, one of
SD(x, y), SD(x, z) and SD(z, y) is 0 and in this case the inequality is
satisfied.
Therefore, we assume that all spans are different. Next, we assume
that x.span < y.span (the inverse case y.span < x.span is similar).
Then there are 3 possibilities: z.span < x.span < y.span, x.span <

z.span < y.span and x.span < y.span < z.span.
In the first case SD(x, y) = y.span−x.span

y.span and SD(z, y) = y.span−z.span
y.span

so that SD(x, y) < SD(z, y). In the third case SD(x, y) = y.span−x.span
y.span =

1− x.span
y.span and SD(x, z) = z.span−x.span

z.span = 1− x.span
z.span so that SD(x, y) <

SD(x, z). In both cases, the strict inequality SD(x, y) < SD(x, z) +
SD(z, y) applies.
In the second case, SD(x, y) = y.span−x.span

y.span , SD(x, z) = z.span−x.span
z.span

and SD(z, y) = y.span−z.span
y.span .

Then,

SD(x, y) ≤ SD(x, z) + SD(z, y)

⇒ y.span− x.span
y.span

≤ z.span− x.span
z.span

+
y.span− z.span

y.span

⇒ y.span− x.span− y.span + z.span
y.span

≤ z.span− x.span
z.span

⇒ z.span− x.span
y.span

≤ z.span− x.span
z.span

⇒ 1
y.span

≤ 1
z.span

⇒ z.span ≤ y.span

, which is true.

a.4.2 Position distance

The triangle inequality for the position distance:
PD(x, y) ≤ PD(x, z) + PD(z, y)
The position distance is defined as the absolute distance between
the centers x.center = x.start+x.end

2 and y.center = y.start+y.end
2 of the

signatures x and y scaled by a user-defined scaling constant N.
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Because N is a constant we can ignore it in this proof of triangle
inequality.
It is easy to show that if two of x,y,z have the same center, one of
PD(x, y), PD(x, z) and PD(z, y) is 0 and in this case the inequality
is satisfied.
Therefore, we assume that all centers are different. Next, we assume
that x.center < y.center (the inverse case y.center < x.center is sim-
ilar). Then there are 3 possibilities: z.center < x.center < y.center,
x.center < z.center < y.center and x.center < y.center < z.center.
In the first case PD(x, y) = y.center−x.center

N and PD(z, y) = y.center−z.center
N

so that PD(x, y) < PD(z, y). In the third case PD(x, y) = y.center−x.center
N

and PD(x, z) = z.center−x.center
N so that PD(x, y) < PD(x, z). In both

cases, the strict inequality PD(x, y) < PD(x, z) + PD(z, y) applies.
In the second case, PD(x, y) = y.center−x.center

N , PD(x, z) = z.center−x.center
N

and PD(z, y) = y.center−z.center
N .

Then,

PD(x, y) ≤ PD(x, z) + PD(z, y)
y.center− x.center

N
≤ z.center− x.center

N
+

y.center− z.center
N

y.center− x.center ≤ (z.center− x.center) + (y.center− z.center)

y.center− x.center ≤ y.center− x.center

, which is true.

a.4.3 Span-position distance

Above we showed that span distance and position distance satisfy
the triangle inequality. It follows that span-position distance also
satisfies the triangle inequality:

SD(x, y) ≤ SD(x, z) + SD(z, y)∧
PD(x, y) ≤ PD(x, z) + PD(z, y)

⇒ SD(x, y) + PD(x, y) ≤ SD(x, z) + PD(x, z) + SD(z, y) + PD(z, y)

⇒ SPD(x, y) ≤ SPD(x, z) + SPD(z, y)
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Figure B.1: Best SV detection performance for five different simulated
coverage levels (ngmlr alignments). Shown are the best F1

scores (y-axis) reached by each tool for different read cover-
ages between 5x and 60x (x-axis). Generally, higher coverages
enabled higher F1 scores. F1 scores were calculated requiring
a maximal distance of 1 kbp and a span difference of less than
0.3 between matching variant calls and the original simulated
variants. For Sniffles and SVIM, reads were aligned using ngmlr
while pbsv required input reads to be aligned with pbmm2.
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Figure B.2: Best SV detection performance reached by Sniffles on se-
quencing datasets of different coverage levels from different
technologies. Plotted are the best F1 scores achieved by Sniffles
(y-axis) against the alignment coverage (x-axis) of the sequenc-
ing dataset (represented by the line color). Results for simple
and genotyped calls are visualized in left and right panels by
solid and dashed lines, respectively. F1 scores were calculated
requiring a maximal distance of 1 kbp and a span difference of
less than 0.3 between matching variant calls and the original
simulated variants. Reads were aligned using minimap2.

Figure B.3: Best SV detection performance reached by pbsv on sequenc-
ing datasets of different coverage levels from different tech-
nologies. Plotted are the best F1 scores achieved by pbsv (y-
axis) against the alignment coverage (x-axis) of the sequencing
dataset (represented by the line color). Results for simple and
genotyped calls are visualized in left and right panels by solid
and dashed lines, respectively. F1 scores were calculated re-
quiring a maximal distance of 1 kbp and a span difference of
less than 0.3 between matching variant calls and the original
simulated variants. Reads were aligned using minimap2.
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(a) pbsv

(b) Sniffles

(c) SVIM

Figure B.4: Size distribution of SVs detected in the 38.7x PacBio CLR
dataset. Shown are stacked histograms of SV classes represented
by different colors. In the left column, SV sizes up to 2 kbp are
plotted with a bin size of 10 bp. In the right column, SV sizes up
to 20 kbp are plotted on a logarithmic y-axis with a bin size of
100 bp. The top, middle and bottom panels, visualize callsets by
pbsv, Sniffles and SVIM, respectively. All callsets were generated
with a confidence threshold of 5. To simplify the comparison,
SV class names have been harmonized between the tools.
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(a) Sniffles

(b) SVIM

Figure B.5: Size distribution of SVs detected in the 50.7x Oxford Nano-
pore dataset. Shown are stacked histograms of SV classes rep-
resented by different colors. In the left column, SV sizes up to
2 kbp are plotted with a bin size of 10 bp. In the right column,
SV sizes up to 20 kbp are plotted on a logarithmic y-axis with a
bin size of 100 bp. The top and bottom panels, visualize callsets
by Sniffles and SVIM, respectively. All callsets were generated
with a confidence threshold of 5. To simplify the comparison,
SV class names have been harmonized between the tools.
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Figure B.6: Number of SV calls from the 38.7x PacBio CLR dataset strat-
ified into five size classes. Shown is a stacked bar plot of SV
classes represented by different colors. Each panel represents
one size class and visualizes the number of calls in that size
range called by pbsv, Sniffles and SVIM. All callsets were gener-
ated with a confidence threshold of 5. The bottom right panel
shows the counts for all SV calls regardless of size.
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Figure B.7: Number of SV calls from the 50.7x Oxford Nanopore dataset
stratified into five size classes. Shown is a stacked bar plot of
SV classes represented by different colors. Each panel represents
one size class and visualizes the number of calls in that size
range called by Sniffles and SVIM. All callsets were generated
with a confidence threshold of 5. The bottom right panel shows
the counts for all SV calls regardless of size.
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(a) DipCall

(b) SVIM-asm

Figure B.8: SV detection performance across variant sizes for Assembly
A. Precision, recall and number of variant calls (y-axis) are
shown for different SV length bins (x-axis) for the SV callers
DipCall (a and b) and SVIM-asm (c and d). The bin size is 50

bp for variants shorter than 1 kbp and 500 bp for variants >1

kbp. Positive lengths indicate insertions and negative lengths
indicate deletions.
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(a) DipCall

(b) SVIM-asm

Figure B.9: SV detection performance across variant sizes for Assembly
B. Precision, recall and number of variant calls (y-axis) are
shown for different SV length bins (x-axis) for the SV callers
DipCall (a and b) and SVIM-asm (c and d). The bin size is 50

bp for variants shorter than 1 kbp and 500 bp for variants >1

kbp. Positive lengths indicate insertions and negative lengths
indicate deletions.
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(a) DipCall

(b) SVIM-asm

Figure B.10: Size distribution of SVs identified in Assembly B. Shown
is a stacked histogram of SV classes represented by different
colors. In the left panels, SV sizes up to 2 kbp are plotted with
a bin size of 10 bp. In the right panel, SV sizes up to 20 kbp
are plotted on a logarithmic y-axis with a bin size of 100 bp.
The top and bottom panels, visualize callsets by DipCall and
SVIM-asm, respectively.
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Figure B.11: Number of SV calls from Assembly B grouped into five size
classes. Shown is a stacked bar plot of SV classes represented
by different colors. Each panel represents one size class and
visualizes the number of calls in that size range called by
DipCall and SVIM-asm. The bottom right panel shows the
counts for all SV calls regardless of size. As translocation
breakpoints (BND) do not have a size, they are included only
in this bottom right panel.
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c.1 parameters and thresholds of svim

Like most software tools, our method SVIM needs to make certain
decision during its execution that are dependent on parameters or
thresholds. Some of these parameters, such as the minimum and max-
imum SV size, define the range of variants that SVIM is supposed to
detect. Others, such as the partition and clustering thresholds, affect
internal processing steps of the pipeline and have an impact on the
quality of the results. All parameters can be modified by the user
via command-line parameters. Table C.1 lists most of the parameters
and thresholds used by SVIM with their respective default values.
For a complete list, please refer to the command-line documentation
of SVIM (svim --help).

Parameter Default value
Minimum SV size 40 bp
Maximum SV size 100 kbp
Span-position normalization constant 900

Partition distance threshold 1 kbp
Clustering distance threshold 0.3
Homozygosity threshold 80%
Heterozygosity threshold 20%

Table C.1: Parameters and thresholds of SVIM. Shown are the most im-
portant parameters and thresholds of SVIM with their default
values.

c.2 complete evaluation commands

In the following, we show the complete commands used to perform
read alignment and SV calling for the evaluations in Chapter 5.
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c.2.1 Simulated long-read datasets

We aligned the simulated reads with three different read aligners.
For SVIM and Sniffles, reads were aligned using minimap2 and ngmlr.
For pbsv, reads were aligned using pbmm2.

#minimap2

minimap2 -ax map-pb -t 10 -z 200,100 --MD -Y <genome> <reads> >

<alignments>

#pbmm2

pbmm2 index --num-threads 2 --preset SUBREAD <genome> <index>

pbmm2 align --preset SUBREAD -j 10 --sort <index> <reads>

<alignments>

#ngmlr

ngmlr --presets pacbio -t 10 -r <genome> -q <reads> -o

<alignments>

To perform SV calling on the read alignments, the following pa-
rameters were used.

#SVIM

svim alignment --interspersed_duplications_as_insertions

<working_dir> <alignments> <genome>

#Sniffles

sniffles --mapped_reads <alignments> --min_support

<confidence_threshold> --threads 3 --vcf <vcf>

#pbsv

pbsv discover <alignments> <sv_signatures>

pbsv call -j 2 --min-sv-length 40 --max-ins-length 100K

--call-min-reads-one-sample <confidence_threshold>

--call-min-reads-all-samples <confidence_threshold>

--call-min-reads-per-strand-all-samples 0

--call-min-bnd-reads-all-samples 0

--call-min-read-perc-one-sample 0 <genome> <sv_signatures>

<vcf>
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c.2.2 Real long-read datasets

We aligned the real reads with minimap2 (for SVIM and Sniffles) and
pbmm2 (for pbsv). For each input dataset, we used slightly different
presets and parameters.

#minimap2 (CLR)

minimap2 -ax map-pb -t 10 --MD -Y <genome> <reads> >

<alignments>

#minimap2 (CCS)

minimap2 -ax asm20 -k19 -w10 -O5,56 -E4,1 -A2 -B5 -z400,50

-r2000 --lj-min-ratio 0.5 -g5000 -t 10 --MD -Y <genome>

<reads> > <alignments>

#minimap2 (ONT)

minimap2 -ax map-ont -t 10 --MD -Y <genome> <reads> >

<alignments>

#pbmm2 (CLR)

pbmm2 index --num-threads 2 --preset SUBREAD <genome> <index>

pbmm2 align --preset SUBREAD -j 10 --sort <index> <reads>

<alignments>

#pbmm2 (CCS)

pbmm2 index --num-threads 2 --preset CCS <genome> <index>

pbmm2 align --preset CCS -j 10 --sort <index> <reads>

<alignments>

To perform SV calling on the read alignments, the following pa-
rameters were used.

#SVIM

svim alignment --segment_gap_tolerance 20

--segment_overlap_tolerance 20

--interspersed_duplications_as_insertions

--tandem_duplications_as_insertions --read_names

--max.startv_size 1000000 <working_dir> <alignments>

<genome>

#Sniffles
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sniffles --mapped_reads <alignments> --min_length $40

--min_support <confidence_threshold> --threads 1 --genotype

--vcf <vcf>

#pbsv

pbsv discover <alignments> <sv_signatures>

pbsv call -t INS,DEL -j 1 --min-sv-length 40 --max-ins-length

100K --call-min-reads-one-sample <confidence_threshold>

--call-min-reads-all-samples <confidence_threshold>

--call-min-reads-per-strand-all-samples 0

--call-min-bnd-reads-all-samples 0

--call-min-read-perc-one-sample 0 <genome> <sv_signatures>

<vcf>

c.2.3 Diploid genome assembly datasets

We aligned the diploid assembly contigs with minimap2 and called
SVs using SVIM-asm. DipCall uses minimap2, too, but internally.

#minimap2

minimap2 -ax asm5 -r2k -t 8 <genome> <contigs_hap1> >

<alignments_hap1>

minimap2 -ax asm5 -r2k -t 8 <genome> <contigs_hap2> >

<alignments_hap2>

#SVIM-asm

svim-asm diploid <working_dir> <alignments_hap1>

<alignments_hap2> <genome> --min_sv_size 20

--tandem_duplications_as_insertions

--interspersed_duplications_as_insertions

--reference_gap_tolerance 1000

--reference_overlap_tolerance 1000 --query_gap_tolerance

2000 --query_overlap_tolerance 2000 --max_edit_distance 200

--sample HG002 --query_names

#Dip-call

run-dipcall -t 10 -x hs37d5.PAR.bed HG002 <genome>

<contigs_hap1> <contigs_hap2 > HG002.mak

make -j 40 -f HG002.mak
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c.3 assembly datasets

To evaluate the assembly-based SV callers, we analyzed two publicly
available diploid genome assemblies of the HG002 individual from
Wenger et al. (Assembly A) and Garg et al. (Assembly B) [30, 97].
The following Table C.2 contains information on both assemblies.

Assembly A Assembly B
Authors Wenger et al. Garg et al.
Assembler Canu v1.7.1 DipAsm
Input data
for contig
assembly

29.7x PacBio CCS data (trio-
binned) 29.7x PacBio CCS data

Input data
for scaf-
folding

No scaffolding 28.5x Hi-C data

Polishing Arrow v2.2.2 No polishing

Download

Maternal:
https://downloads.
pacbcloud.com/
public/publications/
2019-HG002-CCS/asm/
HG002_canu_maternal.
fasta
Paternal:
https://downloads.
pacbcloud.com/
public/publications/
2019-HG002-CCS/asm/
HG002_canu_paternal.
fasta

Haplotype 1:
ftp://ftp.dfci.harvard.
edu/pub/hli/whdenovo/
asm/NA24385-denovo-H1.
fa.gz
Haplotype 2:
ftp://ftp.dfci.harvard.
edu/pub/hli/whdenovo/
asm/NA24385-denovo-H2.
fa.gz

Citation [97] [30]

Table C.2: Two recently generated diploid genome assemblies for the
HG002 individual.
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ftp://ftp.dfci.harvard.edu/pub/hli/whdenovo/asm/NA24385-denovo-H2.fa.gz
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A B S T R A C T

Structural variants, commonly defined as genomic differences larger
than 50 bp, are an important research target due to their large size
and great impact on human phenotype and disease. Their unique
properties and the weaknesses of traditional short-read sequencing
technologies, however, complicate their detection and comprehensive
characterization. Third-generation sequencing technologies, such as
PacBio SMRT sequencing and ONT Nanopore sequencing, have the
potential to resolve some of these problems through the genera-
tion of considerably longer reads. Despite their higher error rate
and sequencing cost, they offer many advantages for the detection
of structural variants and the complete reconstruction of personal
genome sequences. Yet, available software tools for the detection of
SVs from long reads and genome assemblies still do not fully exploit
the possibilities.

Here we present two new computational methods, SVIM and
SVIM-asm, for the detection and genotype estimation of structural
variants using third-generation sequencing data. The methods can
be applied to long, error-prone reads or genome assemblies and dis-
tinguish six canonical classes of structural variation. We apply both
tools on simulated and real sequencing datasets and demonstrate
that they outperform existing methods on the detection of genotyped
SVs. In the context of a larger research project, we apply SVIM for
the detection of both canonical SVs and long-range novel adjacencies
in a set of highly rearranged genomes. After a stringent filtering
process, the final callset of long-range novel adjacencies is validated
with orthogonal Hi-C data. We show the completeness and precision
of the callset demonstrating its suitability for downstream analyses,
such as chromosome reconstruction.
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Z U S A M M E N FA S S U N G

Vergleicht man die Genome verschiedener Lebewesen treten zahlrei-
che kleine und große Unterschiede zutage. Unterschiede mit einer
Größe von mehr als 50 Basenpaaren werden auch Strukturvarianten
genannt. Sie haben einen erheblichen Einfluss auf den Phänotyp des
Menschen und seine Erkrankungen. Die Erkennung von Struktur-
varianten wurde lange durch ihre besonderen Eigenschaften, aber
auch Schwächen der gängigen Sequenziertechnologien erschwert.
Neue Sequenziertechnologien der dritten Generation, z.B. PacBio
SMRT Sequenzierung und ONT Nanopore Sequenzierung, sind nun
in der Lage, einige dieser Probleme zu lösen. Sie produzieren Se-
quenzfragmente (Reads), die um ein vielfaches länger sind als Reads
traditioneller Sequenziertechnologien, aber auch eine höhere Feh-
lerrate besitzen. Für die Erkennung von Strukturvarianten sowie
die komplette Rekonstruktion von Genomsequenzen besitzen diese
Technologien dennoch viele Vorteile. Bisher werden diese durch die
bestehenden Software-Tools jedoch nicht ausgeschöpft.

Wir stellen zwei neue Softwaremethoden namens SVIM und SVIM-
asm für die Erkennung und Genotypisierung von Strukturvarianten
mittels Sequenzierdaten der dritten Generation vor. Die Anwendun-
gen können sowohl für die Analyse langer Reads als auch kompletter
Genomsequenzen eingesetzt werden und unterscheiden sechs klas-
sische Typen von Strukturvarianten. Wir wenden beide Methoden
auf simulierten und echten Sequenzierdaten an und zeigen, dass sie
Strukturvarianten besser erkennen und genotypisieren können als
bestehende Tools. Im Rahmen eines größeren Forschungsprojektes
verwenden wir SVIM, um in einer Reihe von stark umstrukturierten
Genomen sowohl klassische Strukturvarianten, als auch neue Verbin-
dungen zwischen weit entfernten Genompositionen zu detektieren.
Die Neuverbindungen werden nach verschiedenen Qualitätsmerk-
malen gefiltert und anschließend mit unabhängigen Hi-C Daten vali-
diert. Unser Ansatz bildet damit die Voraussetzung für nachfolgende
Analysen, z.B. der Genregulation in umstrukturierten Genomen.
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