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1 I N TRODUCT ION

The genomes of females and males di�er substantially with respect to their pair of sex determining

chromosomes: females have two X chromosomes while males have one X and one Y chromosome.

The process of X-Chromosome Inactivation (XCI) is a dosage compensation mechanism in mam-

malian females that ensures equal levels of X-linked gene expression between XX females and

XY males by transcriptional inactivation and heterochromatinization of either the paternal or

maternal X chromosome during early embryonic development. In placental mammals, the master

regulator of the XCI process is the long non-coding RNA Xist , which is responsible for gene

silencing and conversion of the entire X chromosome into silent heterochromatin. Once Xist is

upregulated in a monoallelic fashion, the Xist RNA starts to spread along the future inactive X

chromosome in cis, thereby creating an Xist RNA domain from which the transcription machinery

is excluded. X-linked genes that are being silenced are recruited from the periphery of the X

chromosome into the Xist RNA domain. Those early events are followed by the loss of active

and recruitment of repressive chromatin marks, the spatial reorganization of the X chromosomal

architecture as well as the repositioning of the X chromosome inside the nucleus. Once XCI is

established in female somatic cells, the silenced state is stably propagated through the clonal cell

population, leading to a mosaic of clonal groups of cells, where either the paternal or maternal X

chromosome is silenced (see Figure 1.1)
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Figure 1.1: X chromosome inactivation in female calico cats. X chromosome inactivation causes the

black and orange fur coloring of female calico cats. In those cats, the color coding gene is located on the X

chromosome, where the allele for the orange color is located in the one and the allele for the black color on

the other X chromosome. Since X chromosome inactivation is a random process, an orange and black color

mosaic is produced. The colors tend to occur in patches, because the silencing state is propagated through

the clonal cell population and sister cells tend to remain close together during later stages of development.

In contrast, male calico cats are either solid orange or solid black, depending on the X chromosome that is

inherited from the mother. The picture of the calico cat is adapted from tah-heetch.com.

The dynamics of Xist-mediated silencing are highly variable across genes, with some genes being

silenced early, while others being silenced later during the silencing process. A small fraction
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2 introduction

of X chromosomal genes is even able to escape this silencing process and remains active on

both X chromosomes in female somatic cells. The underlying mechanisms that de�ne the si-

lencing kinetics of X-linked genes remain poorly understood. While a variety of epigenetic and

genomic factors have been implicated in controlling gene-speci�c silencing dynamics, none of

these factors alone can predict whether and to what extent a gene will be silenced upon XCI, and

the associations with measured silencing e�ciencies is generally weak. This in turn suggests

that a gene’s susceptibility to Xist-mediated silencing is potentially controlled by a complex

combination of di�erent silencing factors. Since most in vivo and in vitro studies analyze the

in�uence of a silencing factor in isolation from other silencing factors, very little is known about

the interplay of di�erent factors and their relative contribution to the overall silencing dynamics.

Few in silico studies attempted to predict gene silencing on the X chromosome by integrating DNA

or chromatin features into a machine learning (ML) model in order to identify important silencing

determinants. However, those studies either focus on only a speci�c set of silencing factors (e.g.

factors previously shown to be related to Xist-mediated silencing) and / or investigate only a

speci�c subset of X-linked genes, making them less generalizable to the silencing dynamics of all

X-linked genes. Hence, de�ning the combinatorial feature patterns that underlie the di�erential

susceptibility to XCI remains an open but important question, particularly as genes that are not

fully silenced are implicated in diseases, such as autoimmune syndromes and tumorigenesis.

The main goal of this thesis was to investigate the interplay of di�erent silencing factors in order

to uncover di�erent Xist-mediated silencing pathways. We expected to �nd di�erent silencing

pathways, because the di�erent functional domains of Xist (repeat-A to -F) recruit di�erent

silencing complexes (e.g. PRC 1 and SPEN/HDAC3) and susceptibility to each silencing pathway

might be determined by distinct feature patterns. To put the di�erent pieces of the XCI puzzle

together, we set out to identify silencing determinants in an unbiased and combinatorial manner

based on chromosome-wide measured gene silencing dynamics. Therefore, we measured gene

silencing dynamics at the level of the nascent transcriptome using allele-speci�c Precision nuclear

Run-On sequencing (PRO-seq) and collected a large number of epigenetic and genomic as well as

primary DNA sequence factors, including factors that were identi�ed as silencing determinants

before but also factors that were not yet associated to Xist-mediated silencing. To predict the

silencing susceptibility of X chromosomal genes, we used a non-linear ML model - a Random

Forest (RF) model - in order to account for the potential combinatorial nature of the silencing

factors. We speci�cally chose the RF algorithm, because it has a reduced risk of over�tting, even

when features correlate and the training set is small with high class imbalances - all properties that

were present in our data set. Classical feature importance helped us to identify the most important

features in the model, i.e. the main determinants of gene silencing, which included known but

also unknown silencing factors. To identify the combinations of epigenetic and genomic factors,

which predispose X-linked genes to be silenced e�ciently or escape XCI, we had to go beyond

classical features importance. We had to extract the combinatorial feature patterns from the

RF model that arise from non-linear relationships within the data. We solved this problem by

implementing a forest-guided clustering approach that strati�es the data points (X-linked genes)

into subgroups according to di�erent combinations of features (silencing factors). Thereby we

were able to identify two silencing pathways that might be associated with the di�erent silencing

e�ciencies of X chromosomal genes.
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Thesis outline

Following this Chapter, a more detailed introduction into the biological background is given

in Chapter 2. It gives a broad overview on gene regulation in general, including genome-wide

experiments for gene regulation studies, as well as a more detailed overview on gene regulation

during the process of XCI. Chapter 3 gives an introduction to the core ML concepts and a more

detailed description of the main ML algorithms used throughout this thesis. Chapter 4 reviews

di�erent approaches to study XCI in vivo or in vitro and the computational approaches that

attempt to predict the gene silencing status from di�erent features.

The training process and interpretation of the our model, which is used to identify the most

important gene silencing determinants and combination of those, is described in Chapter 5, 6

and 7. Chapter 5 focuses on the experimental quanti�cation of chromosome-wide gene silenc-

ing dynamics and on the computation of gene-speci�c silencing half-times from allele-speci�c

PRO-seq time course data. Chapter 6 describes the training process of our ML models based on the

computed silencing half-times and the collected epigenetic and genomic as well as primary DNA

sequence features. Furthermore, it describes the validation of one ML model with three di�erent

strategies. The interpretation of the trained ML models is described in Chapter 7. Here, a classical

feature importance approach is used to identify the main determinants of Xist-mediated gene

silencing. In addition, the idea of the forest-guided clustering approach is introduced and applied

to the trained models to extract the complex combinatorial rules underlying gene silencing during

XCI. The conclusions of this thesis and potential open questions are discussed in Chapter 8.





2 B IOLOG ICAL BACKGROUND

The �rst part of this chapter gives a general introduction to molecular biology with a focus on the

topic of gene regulation and provides an overview on the experimental techniques that can be

used to explore the di�erent areas of this topic. The second part of this chapter gives an overview

on the current knowledge in the �eld of X chromosome inactivation.

2.1 introduction to gene regulation

All living organisms on our planet are made of the same basic functional unit - the cell. Most living

organisms are single cells but even the most complex organisms, like us humans who consist

of more than 10
13

cells, originate from one single cell. The cells in a multicellular organism are

able to develop into di�erent cell types, each performing a specialized function in the organisms.

A few essential types of molecules are required for each cell to perform its function: DNA, the

building block of every genome; RNA, a copy of a certain genomic region that either has its own

functionality or serves as an intermediate between DNA and proteins; proteins, the molecules

that regulate the di�erent processes in a cell. Hence, although most living organisms have very

distinct phenotypes, they paradoxically share the same basic building blocks and mechanisms.

The following sections are based on the book Molecular Biology of The Cell (Alberts et al., 2014)

and give an introduction to the basics of molecular biology, with a focus on the aspect of gene

regulation. Therefore, the �rst section gives a short introduction to the genome, followed by an

overview of transcription and its regulation in the second and third section, respectively.

2.1.1 Genome

A major breakthrough in molecular biology was the discovery of the DNA structure in the early

1950s by James D. Watson and Francis H.C. Crick (Watson et al., 1953). Each DNA molecule

consists of two long complementary DNA strands. Those strands are chains of nucleotides,
where each nucleotide is composed of a sugar (deoxyribose) backbone and a base that can be

either adenine (A), cytosine (C), guanine (G) or thymine (T). The nucleotides of each DNA strand

are covalently linked together by a phosphate group between the 3’ carbon atom of the one

nucleotide and the 5’ carbon atom of the adjacent nucleotide, giving the DNA strand a certain

orientation with a downstream (5’ to 3’) and an upstream (3’ to 5’) direction. Both DNA strands

are twisted around each other and held together by hydrogen bonds between complementary

bases where A and T bind with two hydrogen bonds and G and T bind with three hydrogen bonds,

giving the DNA its characteristic three-dimensional double helix structure (Figure 2.1).
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6 biological background

Figure 2.1: DNA and its building
blocks. Each DNA strand is built

from four types of nucleotides that

are covalently linked by a phosphate

group. Each nucleotide consist of two

parts: a sugar-phosphate backbone

and a base (A, C, G, and T). Two

DNA strands are held together via hy-

drogen bonds between complemen-

tary bases, resulting in the character-

istic double helix, where both DNA

strands are twisted around each other.

Reprinted from (Alberts et al., 2014).

The set of DNA molecules in a cell, also called the genome of a cell, contains all the genetic

information necessary to build and maintain a functioning cell. This information is inherited to

the next generation by a mechanisms called DNA replication that creates two identical copies of

DNA from one original DNA molecule. Due to errors in the replication process or other types

of DNA damage, the genome di�ers slightly between individuals of the same species and more

drastically between di�erent species giving rise to the huge diversity of species on our planet but

also to the slight phenotypic di�erences between individuals that make everyone of us unique.

2.1.2 Transcription

The genome contains all the genetic information necessary to produce the di�erent molecules

that are required for proper cell functionality. Since the information is stored in very long DNA

molecules, it would be ine�cient if the whole DNA sequence was read each time a speci�c

molecule is needed. The central dogma of molecular biology, a fundamental principle that ap-

plies to all cells in every living organism, states that every molecule originates from a speci�c

region in the genome, referred to as gene. Those genes are segments of short or long DNA

sequences that are read independently from each other, enabling the cell to produce only the

required molecules. The �nal product of a gene can either be a protein or a noncoding RNA
(ncRNA) , which is a functional RNA that performs regulatory or catalytic functions in the cell

but lacks protein coding capacity. The process of converting the genetic information encoded in

each gene into a functioning protein is called gene expression. Gene expression can be divided

into two major steps: transcription of an RNA intermediate from DNA, called messenger RNA

(mRNA), and translation of the RNA intermediate into a functional protein (Figure 2.2). The

transcription process is mediated by a protein complex called RNA polymerase that synthesizes
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RNA molecules by reading the corresponding gene from the 5’ to 3’ end. While prokaryotes

(cellular organisms without cell nucleus) only have one type of RNA polymerase, eukaryotes

(cellular organisms with cell nucleus) have three di�erent types of RNA polymerase. Here, the

focus is on the transcription of mRNAs and ncRNAs in eukaryotes by RNA Polymerase II (RNAPII).

Figure 2.2: The central dogma of
molecular biology. Each protein

is produced in a two step process

from a certain functional genomic re-

gion, called gene. The gene is �rst

transcribed into a precursor mRNA,

which is then processed into a ma-

ture mRNA and exported into the cy-

toplasm where it is translated into

a functional protein. Reprinted from

(Alberts et al., 2014).

Transcription can be seen as a three-step process with an initiation, elongation and termination

step. During the initiation step speci�c initiation factors, called general transcription factors,
recruit the RNAPII to the transcription start site (TSS). The TSS indicates the starting point

for the RNA synthesis and is located at 5’ end of the gene. The transition from initiation into

elongation requires the exchange of co-factors and certain conformational changes in the RNAPII

molecule, which are associated with its C-Terminal Domain (CTD). The CTD is a RNAPII speci�c

domain that does not exist in RNAP I or RNAP III and consists of multiple heptapeptide repeats

with a consensus amino acid sequence Tyrosine - Serine - Proline - Threonine - Serine - Proline -

Serine. A phosphate group can be added to each of those residues. During the initiation step the

CTD is unphosphorylated. Phosphorylation of Serine5 and Serine7 residues helps the RNAPII to

disengage from the cluster of general transcription factors and leave the TSS to move along the

DNA. While sliding along the DNA, the RNAPII unwinds small portions of the double helix and

uses the gene as a template to synthesize an RNA that is a reverse complement to the gene itself.

During the elongation step, the CTD serves as sca�old for several elongation factors, which help

the RNAPII to move along the gene body without dissociating from the DNA before it reaches

the end of the transcribed gene. Before entering the termination step, the CTD is phosphorylated

at the Serine2 and the phosphate groups at Serine5 and Serine7 are gradually removed. Once the

RNAPII reaches the 3’ end of the gene, called the transcription termination site, it cleaves the

RNA transcript and dissociates from the DNA. The transcribed RNA can either be a ncRNA or a

precursor mRNA, which is later translated into a protein.

Precursor mRNAs are modi�ed at both ends (addition of a 5’ cap and a 3’ poly-A tail) during

the transcription process. This mechanism allows the cell to access if the precursor mRNA is

intact before transforming it into a mature mRNA through a process called splicing. Splicing
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is a process, where certain non-coding parts of the RNA (introns) are removed and the coding

parts (exons) are merged together. The mature mRNAs are then exported to the cytoplasm and

translated into proteins. ncRNAs on the other hand are not translated into proteins but are able

to fold into complex three-dimensional structures, giving rise to their speci�c regulatory and

catalytic functions. The class of ncRNAs can be divided into two major groups based on the

length of the RNA: short ncRNAs (sncRNAs) with a length < 200 nucleotides and long noncoding

RNAs (lncRNAs) with a length > 200 nucleotides. sncRNAs include functional RNAs, involved in

the processes of transcription and translation (e.g. t-RNAs, r-RNAs and small nuclear RNAs), and

regulatory RNAs, involved in regulation of gene expression (e.g. micro RNAs, small interfering

RNAs and interacting RNAs). lncRNAs on the other hand are a not well de�ned group of large,

heterogeneous ncRNAs involved in regulation of gene expression.

2.1.3 Transcriptional Regulation

Multicellular organisms are composed of many di�erent cell types such as liver, brain or blood

cells, all with very distinct phenotypes. Since all those cells are built from the same genetic

information, which is read by the same basic mechanisms, the only way to achieve phenotypic

di�erences is through regulation of gene expression. However, the genetic information encoded

in the DNA is not actively altered to control gene expression. Instead, gene expression is regulated

on a transcriptional and post-transcriptional level or through degradation of no longer needed

molecules.

Transcriptional regulation is a process that controls the transcriptional rate of each gene, allowing

the cell to produce high amounts of certain RNAs and low amounts of other RNAs according

to its needs. Transcriptional regulation is primarily modulated by so-called cis-regulatory el-

ements, which are genomic regions that can be bound by di�erent transcriptional regulators.

For instance, general transcription factors, which help to recruit RNAPII, assemble at a speci�c

cis-regulatory element called gene promoter , a genomic region that is located right upstream of

the gene’s TSS. Other important cis-regulatory elements are enhancers, which are also bound by

transcription regulators and can interact with gene promoters. Transcription regulators do not

only comprise general transcription factors, which exclusively assemble at the gene promoter,

but also sequence-speci�c transcription factors that bind to promoter and enhancer regions in

a sequence-speci�c manner. Those regulators usually assemble in groups through recognition of

speci�c DNA sequences within the cis-regulatory element. Once bound to the DNA they either

act as activators through positive regulation or as repressors through negative regulation of

transcription.

Another factor that in�uences gene transcription is the 3D architecture of the DNA, which a�ects

the accessibility of cis-regulatory regions for transcription regulators. Since the DNA double helix

is a very long molecule (in human about 2m in length), it needs to be compacted into higher

order structures in order to �t into the nucleus. The needed degree of compaction is achieved

by a complex of histone proteins and DNA, called chromatin, whose basic repeating unit is the

nucleosome. Each nucleosome is formed by 147 nucleotides of double stranded DNA that is

wound around an octamer of histone proteins, consisting of two copies of each core histone
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(H2A, H2B, H3 and H4). Those core histones are highly conserved across eukaryotic organisms,

showing their fundamental role in organizing and compacting the DNA inside the nucleus. The

chromatin itself is further folded into a series of loops and coils, which allows cis-regulatory

elements to overcome large genomic distances and get into spatial proximity to interact with

each other (e.g. enhancers and their interacting promoter can be located far away on a linear

scale) . Di�erent segments of folded DNA are further organized into spatially separated domains,

so-called topologically associating domains (TADs) (Dixon et al., 2012). TADs generally help

to create spatial proximity between certain cis-regulatory elements but also prevent deleterious

interaction between other cis-regulatory elements by placing them in separate TADs, thereby

creating spatial distance between them (Kim et al., 2011). TADs are formed with the help of

structural proteins, like CTCF and cohesin, that regulate the spatial folding and 3D structure of

the chromatin (Seitan et al., 2013; Zuin et al., 2014). The highest-order structure of compacted

DNA is called the chromosome (Figure 2.3). Each eukaryotic cell divides its DNA into several

chromosomes. Humans, for instance, have 22 pairs of autosomes (homologous chromosomes, with

one copy being inherited from the mother and the other one from the father) and two additional

sex chromosomes, where females have a homologous pair of X chromosomes and males one X

and one Y chromosome.

Figure 2.3: Levels of chromatin
compaction. A heterodimer of hi-

stone complexes and 147 nucleotides

of DNA double helix forms the ba-

sic compaction unit of the chromatin.

The chromatin is further folded into

loops and coils to achieve the maxi-

mal degree of compaction of the DNA

in form of highly compacted chromo-

somes. Reprinted from (Alberts et al.,

2014).

The static genetic information, encoded in the DNA, can be interpreted on a dynamic level through

di�erent levels of chromatin compaction. Packing DNA into higher-order structures is a quite

dynamic process, where parts of the genome can be packed more loosely in order to make the DNA

accessible or compacted to make the DNA inaccessible for transcription regulators. The level of

compaction is usually described by two states: heterochromatin, the highly condensed form, and

euchromatin, the less condensed form of chromatin. Euchromatin is usually located at the center

of the cell nucleus and harbours many actively transcribed genes, because cis-regulatory elements
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are made accessible for the transcription machinery. If euchromatic regions are converted into

heterochromatin, the genes within that region are usually switched o�. Heterochromatin contains

only few, mainly inactive, genes and is located in proximity to the nuclear membrane, sometimes

attached to the nuclear lamina, which is a �brillar network, associated with the nuclear membrane

and composed of lamins and lamin-associated proteins (Dechat et al., 2010). The sites where

the chromatin attaches to the nuclear lamina are called Lamina-associated Domains (LADs)
(Guelen et al., 2008).

Local conversion of the chromatin state can be achieved through covalent modi�cations of

the DNA or histone proteins. This additional layer of information is known as the epigenome.

Epigenetic mechanisms include for instance the enzymatic modi�cation of histone tails. Each

core histone has an N-terminal amino acid tail, which is subject to di�erent types of covalent

modi�cations, such as acetylation of lysines or mono-, di- and trimethylation of lysines as well as

phosphorylation of serines. The di�erent types of histone modi�cations are associated with

di�erent parts of the gene and can be related to di�erent chromatin states, dividing them into

active, elongation and repression marks. H3K4me3 as well as histone acetylation are active marks

that are found at accessible promoter regions. H3K27me3 and H3K9me3, on the other hand, are

repressive marks found in heterochromatic regions where gene expression is inactivated (Kim

et al., 2012). H3K36me3 and H3K79me2 are strongly associated with transcription elongation and

are deposited along the gene body by RNAPII-bound complexes during the transcription of the

target gene. Deposition of elongation marks is thought to prevent spurious transcription behind

the moving RNAPII at the opened DNA strand. Covalent histone marks are frequently removed

or added to the histone tails depending on the chromatin state. Those changes are induced by

speci�c protein complexes, so called chromatin remodelling complexes, that can read, catalyze

or remove histone modi�cation. Acetyl groups, for example, are added by a set of histone acetyl

transferases (HATs) and removed by di�erent histonedeacetylase complexes (HDACs). Methyl

groups, on the other hand, are removed by a set of histone demethylases and added by di�erent

histone methyltransferases. For instance, the enzyme EZH2, which is part of the Polycomb Repres-

sive Complex 2 (PRC2), catalyzes the histone modi�cation H3K27me3 (Cao et al., 2002; Czermin

et al., 2002). Another epigenetic mechanism is the covalent modi�cation of the DNA that does

not change the DNA sequence itself. DNA methylation describes the methylation of a cytosine

nucleotide in a GC context. Clusters of GC dinucleotides with a minimum length of 200 nucleotide

pairs and a GC content higher than 50% are called CpG islands and are typically found at gene

promoters (Gardiner-Garden et al., 1987). DNA methylation of gene promoter GC dinucleotides

can lead to impaired binding of transcription factors or to binding of methyl-CpG-binding do-

main proteins (MBDs), which recruit chromatin remodelling complexes that alter the histone

modi�cation pattern around the promoter region to form highly compacted heterochromatin.

Hence, DNA methylation is predominantly found at highly compacted chromatin regions and

regulates gene expression through repression of gene transcription at promoter level. In addition,

DNA methylation provides a mechanism through which gene expression patterns can be stably

inherited to daughter cells because GC sequences are base-paired exactly to the same sequence

on the opposite strand. Hence, the parental strand can serve as a methylation template during

DNA replication leading to a direct inheritance of the DNA methylation pattern to progeny cells.
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Interestingly, the product of transcription, the RNA itself can function as a transcriptional regulator

as well. For instance, RNAs belonging to the class of lncRNAs are able to regulate gene transcription

through various mechanisms: recruitment of regulatory protein complexes to the gene promoter

or enhancer; inhibition of transcription factor binding; competing transcription (due to colliding

polymerase) of a lncRNA located on the opposite strand of the target gene; or re-organization of

the chromatin structure through recruitment of chromatin remodelling complexes (Long et al.,

2017). One of the most prominent examples for transcriptional regulation through lncRNAs is

the process of X chromosome inactivation in which one copy of the two X chromosomes in

female somatic cells is entirely inactivated to achieve gene dosage compensation between females

and males, which only have one copy of the X chromosome. The process of X chromosome

inactivation shows the power of transcriptional regulation within a cell: inactivation of more than

a thousand genes on one of the two essentially identical X chromosomes that are located in the

same nucleus and are exposed to the same transcription regulators. The topic of X chromosome

inactivation will be further elucidated in Section 2.2.

2.1.4 Experimental Methods in Gene Regulation Studies

The previous section introduced the principles of gene transcription and its various regulatory

mechanisms. The di�erent aspects of transcription and its regulation can be explored with di�erent

experimental protocols. The basis for most protocols is a technique called high throughput

sequencing, where short segments of DNA or RNA of interest are sequenced. More precisely, the

DNA segment of interest is sheared into small fragments of uniform size by sonication or enzymes

and then ampli�ed by a factor of ∼ 1000 to generate more signal for the following sequencing step.

The sequencing step generates millions of so-called sequencing reads and computational methods

are used to determine their original position in the genome in a process called mapping (Ambardar

et al., 2016). The following section gives an overview on how high throughput sequencing is used

to quantify gene expression and to explore the regulatory mechanisms of gene transcription.

Techniques to Measure Gene Expression

RNA-seq. RNA sequencing (RNA-seq) provides a snapshot of the transcriptome in a biological

sample (e.g. a cell) at a given time point by measuring the abundance of all RNA transcripts and

their isoforms in that cell (Mortazavi et al., 2008). In a �rst step, the RNA of interest is isolated

from the biological sample and reverse transcribed into cDNA, which are then sheared into

fragments of uniform size. Adapters are ligated to the 3’ and 5’ ends of the cDNA fragments to

create a sequencing library, which is then used for high-throughput sequencing. In a last step, the

sequencing reads are mapped to a reference genome. The RNA-seq experiment can be adapted to

capture only certain parts of the transcriptome. For instance, the coding transcriptome can be

measured by a targeted RNA-Seq protocol, called mRNA-seq, that enriches for RNA transcripts

with a 3’ poly-A tail, an attribute of RNAs that are translated into proteins.

PRO-seq. Precision nuclear Run-On sequencing (PRO-seq) is an experimental method that maps

the location of active RNA polymerases at base-pair resolution in a genome-wide manner, provid-

ing a snapshot of active gene transcription at a given time point in the cell (Kwak et al., 2013). In
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the �rst step of the protocol, biotin-labeled nucleotide triphosphates (biotin-NTPs) are carried

out in isolated nuclei to be incorporated into the 3’ end of nascent RNAs by transcriptionally en-

gaged RNAPII. The biotin-labeled nascent RNAs are isolated, fragmented and reverse transcribed

into cDNA to create a sequencing library. Next, adapters are ligated to the 3’ and 5’ end of the

cDNA fragments before being sequenced from the 3’ end via high-throughput sequencing. The

sequencing reads are then mapped to a reference genome.

Pyrosequencing. Pyrosequencing is a DNA sequencing method based on the sequencing by

synthesis principle that detects light emitted due to pyrophosphate release when nucleotides

are incorporated by DNA polymerase (Ronaghi et al., 1998). In a �rst step, the isolated DNA is

fragmented and ampli�ed. Added nucleotides are then incorporated by DNA polymerase at the

3’ end of the DNA fragments, thereby releasing pyrophosphate that is converted to adenosine

triphosphate (ATP) by ATP sulfurylase. ATP then catalyzes the conversion of luciferin to oxylu-

ciferin, a process that emits light with an intensity proportional to the amount of consumed ATP.

The light intensity emitted by this process is determined by a light detector and can be used to

infer the number and type of incorporated nucleotides.

Protocols to Study Chromatin Modifications

ChIP-seq. Chromatin Immunoprecipitation followed by high-throughput sequencing (ChIP-seq)

is an experimental method used for genome-wide pro�ling of DNA-binding proteins like tran-

scription factors (Johnson et al., 2007; Robertson et al., 2007) as well as histone modi�cations

(Barski et al., 2007). In the �rst step of the protocol, covalent bonds are established between DNA

and proteins by crosslinking the protein to the chromatin, typically with formaldehyde treatment.

Next, the chromatin is sheared into small fragments through sonication and the DNA fragments

bound by a protein are co-immunoprecipitated via a protein-speci�c antibody to isolate the DNA

fragments with the protein of interest. The cross-link between DNA and protein is then reversed

and the puri�ed DNA fragments are prepared for sequencing (DNA ampli�cation) and sequenced

from the 5’ end using high-throughput sequencing. The obtained sequencing reads are then

mapped to the reference genome.

Protocols to Study DNA Modifications

DNA methylation. Several experimental protocols are available to detect the proportion of

methylated cytosines in the genome. A common technique to analyse DNA methylation patterns

is Whole Genome Bisul�te Sequencing (WGBS) (Cokus et al., 2008). High-throughput sequenc-

ing techniques cannot distinguish between methylated and unmethylated cytosines because

the DNA methylation pattern is erased during PCR ampli�cation. To overcome this problem,

an intermediate step is introduced where the genomic DNA is treated with sodium bisul�te,

converting unmethylated cytosines into uracils while methylated cytosines are protected from

bisul�te-induced conversion. Unmethylated cytosines appear as thymines after sequencing be-

cause the DNA polymerase reads uracils as thymines during the ampli�cation of the bisul�te

treated DNA. The methylation status of a CpG site is calculated as the proportion of reads with a
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thymine where the reference sequence has a cytosine for a given CpG site (commonly referred

to as beta value). A disadvantage of the WGBS is the di�culty of discriminating between the

classical 5mC-modi�cation and 5hmC or 5fC. Enrichment-based methods are able to distinguish

between the di�erent cytosine modi�cations though immunoprecipitation of methylated DNA,

using for example DNA-methylation-speci�c antibodies (MeDIP). However, the resolution of

enrichment-based techniques is much lower compared to WGBS.

Protocols to Study Chromatin Structure

Chromosome conformation capture. Chromosome conformation capture (3C) is an experi-

mental technique that investigates the 3D chromatin structure through measured interactions

between genomic loci (Dekker et al., 2002). The loci of those fragments can be very distant

from each other on a linear genomic scale but get into spatial proximity through DNA looping.

Many techniques have evolved from 3C, e.g. 4C, 5C, HiC or HiCap, but the basis for the di�erent

protocols is the same. Crosslinking agents are used to preserve the 3D structure of the chromatin

within the nucleus from which the DNA is isolated and sheared into DNA fragments. DNA

fragments that lie in close spatial proximity are ligated to capture regions of interacting DNA.

The ligated DNA is ampli�ed and sequenced via high-throughput sequencing. The sequencing

reads are mapped to a reference genome to identify the two interacting regions and calculate their

interaction frequency. The interaction frequencies between di�erent loci identify genomic regions

that frequently interact with each other and regions that are in spatial distance to each other,

enabling the reconstruction of the 3D chromatin architecture. While 3C only detects interactions

for a speci�c region of interest, HiC detects interactions for the entire genome (Lieberman-Aiden

et al., 2009). HiCap is similar to HiC but focuses on interactions where one of the two interacting

regions is a promoter (Sahlén et al., 2015).

2.2 introduction to x-chromosome inactivation

All females are beautiful mosaics, we just don’t have the fur to show it.

— Edith Heard

Mammalian females have two X chromosomes (XX) while males have one X and one Y chro-

mosome (XY). The pair of sex-determining chromosomes is derived from an ancestral pair of

autosomes, which lost homology during the mammalian evolution. The Y chromosome lost

more than 97% whereas the X chromosome lost less than 5% of its ancestral genes. Hence, the

Y chromosome is small and harbours less than 100 genes while X chromosome is large and

harbours more than 1000 genes, generating a strong dosage imbalance of X-linked gene expres-

sion between XX females, containing two gene copies, and XY males, containing only one gene

copy of X-linked genes. Double dosage of X-linked genes is lethal probably due to an increased

dosage of genes that are responsible for cell function and di�erentiation (Takagi et al., 1990).

Hence, mammalian females have developed a dosage compensation mechanism that generates

an inactive X chromosome (Xi) and maintains an active X chromosome (Xa) during early female

development. This process is called X-Chromosome Inactivation (XCI) and equalizes X-linked
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gene expression by inactivating one of the two X chromosomes through transcriptional silencing

and heterochromatinization.

The concept of XCI was �rst introduced in 1961 by Mary Lyon, who proposed that either the

paternal or maternal X chromosome becomes inactivated during early embryonic development

and that the inactive state is stably inherited through cell divisions (Lyon, 1961). In 1991, Brown et

al. discovered the master regulator of the XCI process - the X inactive speci�c transcript (Xist) -

a long non-coding RNA that is responsible for gene silencing and heterochromatinization (Brown

et al., 1991). This discovery was a milestone in answering the questions of how the XCI process is

regulated but also raised new questions concerning the mechanisms that allow Xist to induce

chromosome-wide gene silencing and heterochromatinization.

In the past 50 years, the process of XCI has been studied extensively, typically in mouse model

systems, more speci�cally in female mouse embryonic stem cells (mESCs). Female mESCs, that

are derived from the inner cell mass of the blastocyst, harbour two active X chromosomes and

recapitulate the early stages of XCI upon induced in vitro di�erentiation quite well (Rastan et al.,

1985). In mouse, two waves of XCI are observed during early female development (Figure 2.4A,

Figure 2.4B). The �rst wave of XCI is called imprinted XCI and starts shortly after fertilization

during the 2- to 8-cell stage of embryonic development, where all cells selectively inactivate the

paternal X chromosome. Imprinted XCI is maintained during pre-implantation embryogenesis up

to the blastocyst stage. The imprint is retained in the cells of the trophectoderm and primitive

endoderm, which will form the extraembryonic tissues, while cells of the inner cell mass (ICM),

which that will form pluripotent epiblast cells, reactivate the paternal X chromosome. A second

wave of XCI, called random XCI, occurs after implantation in pluripotent epiblast cells. When

epiblast cells enter di�erentiation, random XCI is rapidly triggered and leads to random silencing

of either the paternal or maternal X chromosome. Once established, random XCI is stably main-

tained in somatic cells. Since the epiblast cells give rise to the embryo proper, the embryo proper

will develop as a mosaic of cells with either a silent paternal or maternal X chromosome. Certain

key steps in the process of XCI have been identi�ed over past years: spreading of Xist RNA along

the X chromosome in cis, exclusion of the transcription machinery, recruitment of repressive

chromatin marks, spatial reorganization of the X chromosomal architecture and repositioning of

the X chromosome inside the nucleus. Once established, random XCI is stably inherited through

clonal cell propagation.

The importance of understanding the mechanisms behind XCI is depicted by the multitude of

genetic disorders or X-linked disease that are caused by an aberrant number of X chromosomes

or an impaired X inactivation process. A disrupted XCI process, for example through loss of Xist
expression, has been implicated in tumorigenesis (Yang et al., 2018). In female cancers, like breast

and ovarian cancer, Xist expression is lost and low Xist expression highly correlates with advanced

tumor stages (Kobayashi et al., 2016; Zheng et al., 2018). However, in male-speci�c cancers, like

testicular cancer, Xist expression is upregulated, showing the diverse roles of the master regulator

Xist in tumorigenesis (Kawakami et al., 2003). X-linked genetic disorders are caused by an aberrant

number of X chromosomes like the Turner’s syndrome in females where one X chromosome (XO)

is missing, or the Klinefelter syndrome in males where one or more additional X chromosomes

(XXY) are present. Both karyotypes show severe phenotypic variations form the regular XX
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females or XY males phenotypes, although in Klinefelter males the additional X chromosome is

inactivated and in regular females only one X chromosome is active (Tüttelmann et al., 2010). This

shows that even slight changes in the dosage of certain genes caused by an additional or missing

inactive X chromosome can have a high impact on biological systems. Hence, it is important to

understand the underlying mechanisms that drive the process of XCI, to develop new treatments

for X-linked disease and genetic disorders. Unfortunately, our understanding of the XCI process

is far from being complete, although various aspects of the underlying mechanisms have been

described in many studies.

Since most of our knowledge about XCI and its mechanisms comes from mouse models and the

analysis in this thesis are based on a mouse model experiment, this introduction on XCI focusses

on XCI in mouse, more speci�cally on random XCI in mouse. XCI in human is similar to XCI in

mouse but has some substantial di�erences. However, the details and di�erences of XCI in human

won’t be issued here. In the subsequent chapters,the current knowledge on the process of XCI is

described, starting with the X-inactivation center, where the master regulator Xist is expressed

from, followed by current knowledge on how Xist is able to spread and then silence the genes on

the X chromosome. Finally, the changes in the 3D architecture of the X chromosome during XCI

and how certain genes are able to escape the process of XCI are described. The main reference

for those chapters is (Galupa et al., 2018), if not stated otherwise.

2.2.1 Xist and the X-Inactivation Center

One of the �rst discovered long noncoding RNAs (lncRNAs) in mammals is the X inactive speci�c

transcript (Xist) whose gene is located on the X chromosome (Borsani et al., 1991; Brockdor�

et al., 1991). The Xist gene produces a 17 kilobase long lncRNA, which is capped, spliced, and

polyadenylated but remains localized within the nucleus, closely associated with the X chromo-

some it is expressed from (Brown et al., 1992). The monoallelic upregulation of Xist is highly

correlated with the onset of the XCI process and has been shown to be essential for the process

of XCI (Marahrens et al., 1997; Penny et al., 1996). Hence, Xist is seen as the master regulator

of the XCI process. After being expressed, the Xist RNA spreads along the future inactive X

chromosome (Xi) in cis and silences the genes on Xi through the recruitment of multiple proteins

involved in transcriptional silencing. The Xist gene is conserved across species, but unique to

placental mammals (Grant et al., 2012). Some of the highly conserved parts of the Xist gene are

comprised of tandem repeated sequence elements, named repeats A-F , and have been shown to

bind RNA-binding proteinss (RBPs) (Figure 2.5) (Brockdor�, 2018; Brown et al., 1992; Chu et al.,

2015; Wutz et al., 2002). One of the most important and best studied repeat element is the repeat-A,

which is crucial for the gene silencing function of the Xist RNA by interacting with RBPs like

SPEN and RBM15 (for further information head to Section 2.2.3) (McHugh et al., 2015; Moindrot

et al., 2015; Monfort et al., 2015). The repeat-B and -C elements recruit the Polycomb Repressive

Complexes (PRC) 1 and 2 through binding of the RBP hnRNPK (Brockdor�, 2017; Pintacuda et al.,

2017), while repeat-E was shown to bind the RBP CIZ1, which is important for the localization of

Xist on the Xi (Ridings-Figueroa et al., 2017; Sunwoo et al., 2017). The function of repeat-D and

-F are still unknown. Overall, it seems like Xist is acting as a sca�old to recruit important RBPs
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Figure 2.4: The two waves of XCI during early female development in mouse. (A) The pre-

implantation stages of early embryonic development are characterized by a relatively synchronous doubling

of cell until the 8-cell stage. After the 8-cell stage the embryo undergoes a process known as compaction

to become a morula. The cells on the outside of the morula di�erentiate into the trophectoderm, while

the cells inside the morula become the inner cell mass (ICM), resulting in the formation of the blastocyst.

The epiblast and primitive endoderm cells are derived during the second di�erentiation event from the

ICM. Trophectoderm and primitive endoderm cells form the extraembryonic tissue (e.g. placenta), while

the epilast give rise to the embryo proper. (B) In mouse, two waves of XCI are known. During embryonic

pre-implantation development of female mice, starting at the 2-cell stage, the paternal X chromosome

undergoes global silencing associated with the establishment of imprinted X chromosome inactivation. The

paternal imprint is propagated to the extraembryonic lineages of trophectoderm and primitive endoderm,

while the epiblast cells reactivate the inactive X chromosome and a random X chromosome inactivation

occurs de novo after implantation in the epiblast cells, the progenitor cells of the embryo proper. Inspired

by (Augui et al., 2011).

during the XCI process.
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Figure 2.5: Repetitive elements of the Xist gene and their proposed functions in XCI. The repeat

elements A-F were shown to be important for the localization and silencing function of Xist through the

recruitment of RBPs. While Repeat-A, -B and -C are important for the silencing function, Repeat-E is

involved in the localization of Xist on the Xi. Inspired by (Brockdor�, 2018; Gendrel et al., 2014).

The Xist gene is located on the X chromosome, more speci�cally in a region called the X-
inactivation center (Xic). The Xic is de�ned as the minimal genetic region, containing all

required cis-acting elements, for initiation of the XCI process if at least two chromosomes are

present, which carry this de�ned region. This suggests that the two copies of the Xic in�uence

each other in trans, while triggering XCI in cis (Augui et al., 2011). The Xic is organized into

two topologically associating domain (TAD): the Xist TAD and the Tsix TAD (Figure 2.5-2) (Nora

et al., 2012). TADs are domains with increased 3D interactions between loci within the respective

domain. The two TADs separate the Xic into two domains of positive and negative gene regulation

potentially facilitating the interaction between repressive and activating regulatory elements

of Xist (Tsai et al., 2008). The Xist promoter is located in the Xist TAD but the complete Xist
gene spans both TADs. While the Xist TAD harbours most of its known activators (e.g. Rnf12
or Jpx), the Tsix TAD includes most of the known Xist repressors (e.g. Tsix or Xite) (Table 2.1,

Table 2.2). The major known repressor of Xist is its antisense transcript Tsix that spans the

complete Xist gene and represses Xist upregulation in cis by being transcribed across the Xist
promoter (Luikenhuis et al., 2001; Stavropoulos et al., 2001). The Tsix TAD also harbours Xite

(X-inactivation intergenic transcription element), an enhancer of the Tsix promoter, which lies

upstream of the Tsix transcription start site (TSS) and is regulated by di�erent pluripotency factors

(Ogawa et al., 2003; Stavropoulos et al., 2005). Pluripotency factors are transcription factors and

epigenetic regulators (e.g. OCT4, SOX2, NANOG KLF4 or REX1) that hold embryonic stem cells

in the pluripotent state through repression of genes that are required for di�erentiation. A key

activator of Xist is the trans-acting protein RNF12, which has a ubiquitin ligase activity that

degrades Xist repressors REX1 and whose gene lies within the Xist TAD (Gontan et al., 2012;

Jonkers et al., 2009). It was shown that RNF12 has to be transcribed from both X chromosomes to

reach a critical dosage that is necessary to activate Xist on one of the two X chromosomes. Once

that threshold is reached, RNF12 will be inactivated in cis, lowering RNF12 levels, which prevents
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the onset of Xist on both X chromosomes. However, deletion of Rnf12 on one X chromosome does

not prevent XCI, suggesting that additional, probably redundant, Xist activation mechanisms

exist (Monkhorst et al., 2008).

Table 2.1: Genes within the Xist TAD.

Locus coding potential functional during XCI

Xist lncRNA master regulator of XCI

• coats Xi in cis

• triggers gene silencing on Xi

• triggers chromatin remodelling and struc-

tural reorganization of Xi

Jpx lncRNA Xist activator, acts in cis or trans by binding

to Xist repressor CTCF

Ftx lncRNA Xist activator, acts in cis

X-pairing region (Xpr) protein-coding not implicated in XCI

Rnf12 also called: Rlim protein-coding Xist activator, acts in trans by targeting REX1

for degradation

Table 2.2: Genes within the Tsix TAD.

Locus coding potential functional during XCI

Nap1/2 protein-coding not implicated in XCI

Linx lncRNA in�uences structure of Tsix TAD

Cdx4 protein-coding not implicated in XCI

Chic1 protein-coding unknown

Tsx protein-coding & ncRNA unknown

Xite ncRNA Tsix activator, acts in cis by being an enhancer for

Tsix promoter

Tsix lncRNA Xist repressor, acts in cis by being transcribed across

the Xist promoter

2.2.2 Xist localization to the inactive X chromosome

The �rst step in the process of XCI is the counting step where the cell determines if and how

many X chromosomes should be inactivated. Still very little is known about the exact molecular



2.2 introduction to x-chromosome inactivation 19

mechanisms of the counting step but it was shown that both X chromosomes become transiently

colocalized before Xist expression is upregulated. This colocalization step is mediated by the

X-pairing region, which lies upstream of the Xist locus within the Xic. It was proposed that the

physical proximity of both Xic helps the cell to count the number of chromosomes by sensing

the second Xic (Augui et al., 2011). However, a recent study showed that neither Xic pairing nor

nuclear lamina localization in�uences choice-making or monoallelic Xist upregulation (Pollex

et al., 2019). Another recent study proposed that the cooperation of a cis-acting repressor (e.g.

Tsix) and a trans-acting activator (e.g. RNF12 or Jpx) is su�cient for the mono-allelic upregulation

of Xist . In this model, a double dosage of the trans-acting activator is required to overcome the

repression of the cis-acting repressor, a mechnism that would prevent Xist upregulation if only

one X chromosome is present in the cell (Mutzel et al., 2019).

The initiation of the XCI process is marked by the monoallelic upregulation of Xist and down-

regulation of pluripotency factors, which are thought to negatively regulate Xist expression

by promoting Tsix transcription. The trans-acting factor RNF12 targets pluripotency factors

like REX1 for degradation, leading to the downregulation of Xist repressor Tsix through loss

of interaction between Tsix and its enhancer Xite (Galupa et al., 2015). Subsequently, RNF12 is

quickly silenced by Xist RNA to prevent the expression of Xist on the second X chromosome. Xist
upregulation is further facilitated by the release of CTCF, which is bound to the Xist promoter,

through the lncRNA Jpx (Sun et al., 2013). Once Xist is stably upregulated from the Xic of the

future Xi, its lncRNA localizes to the X chromosome in cis. The molecular mechanisms that ensure

Xist localization to the correct X chromosome remain poorly understood. However, localization

seems to be independent of direct RNA-DNA binding. In fact, certain matrix proteins have been

identi�ed to interact with the Xist RNA to embed Xist in the nuclear matrix of the Xi (Brockdor�,

2018). One of the identi�ed matrix proteins that was shown to contribute to the localization of

Xist is the RBP CIZ1. CIZ1 binds the repeat-E element on the Xist RNA, thereby anchoring the

lncRNA to the nuclear territory of the future Xi. The function of CIZ1 seems to be dependent on

another matrix protein, the RBP hnRNPU, whose knockout leads to the dispersal of Xist RNA

although it is still associated to CIZ1 (Sunwoo et al., 2017).

It is hypothesized that Xist RNA is able to spread across the future Xi in cis via so-called early
Xist entry sites, since X-linked genes with promoters close to early Xist entry sites were shown

to be silenced early during the XCI process (Borensztein et al., 2017; Engreitz et al., 2013). Early

Xist entry sites are sites that frequently interact with the Xist locus in 3D space and therefore

are in spatial proximity to the Xist locus. Hence, the Xist RNA is able to rapidly reach the early

Xist entry sites through proximity transfer because those distal genomic regions come in close

contact to the Xist locus by chromosome folding. From there, Xist has been proposed to �rst

propagate locally into gene-dense and then into intergenic regions (Simon et al., 2013). This

spreading mechanism allows Xist RNA to initiate gene silencing across the entire X chromosome.

2.2.3 Xist -mediated repression of the inactive X chromosome

Once Xist RNA has coated the entire X chromosome in cis, it forms a transcriptionally silent
compartment (TSC) that is depleted of RNA Polymerase II and associated transcription factors.
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X-linked genes that become silenced are recruited from the periphery of the Xi territory into

the TSC. The TSC mainly consists of a speci�c class of repetitive DNA elements, called LINEs

(long interspersed nuclear elements), which are silenced during the early stages of XCI, prior

to X-linked genes but independent of the A-repeat, which in turn is crucial for X-linked gene

silencing. Genes that are located in LINE-rich regions are silenced more e�ciently than genes

located in LINE-poor regions, which tend to remain outside the TSC. A speci�c subset of young

LINE-1 elements is expressed during later stages of XCI upon Xist -induced heterochromatin

formation and remains outside the TSC. Such active LINEs potentially serve as way stations

that facilitate local propagation of Xist and silencing of X-linked genes in escape-prone regions

outside the TSC (Chow et al., 2010). The repeat hypothesis is supported by the fact that the X

chromosome is enriched for LINEs compared to autosomes and that autosomes, which carry an

Xist transgene, are silenced with lower e�ciency relative to the X chromosome (Balaton et al.,

2016).

The silencing of X-linked genes seems to depend on the A-repeat since recruitment of X-linked

genes into the TSC is impaired in A-repeat mutants. Several RBPs have been identi�ed to interact

with the A-repeat, for instance, the transcriptional repressor SPEN, which recruits the NCoR-

HDAC3 corepressor complex, leading to the loss of euchromatic histone marks by deacetylation

of histone tails (Balaton et al., 2018). Another RBP that has been shown to bind to the A-repeat is

RBM15. RBM15 interacts with WTAP, a core subunit of the m6A RNA methyltransferase complex

that catalyses methylation of the N6-adenosine (m6A) residues of RNAs (Mira-Bontenbal et al.,

2016; Moindrot et al., 2015; Patil et al., 2016). Di�erent regions of the Xist RNA, including the

A-repeat, are targeted by m6A modi�cations, possibly contributing to the stability and recognition

of Xist RNA by RBPs (Rocha et al., 2017).

Another RBP that has been implicated in Xist -mediated gene silencing is hnRNPK, which does

not bind to the A-repeat but instead to the B- and at lower levels also to the C-repeat. hnRNPK

is thought to initiate Polycomb recruitment through interaction with PCGF3 and PCGF5, both

proteins of the core subunit of non-canonical PRC1 (ncPRC1) (Figure 2.6) (Almeida et al., 2017;

Pintacuda et al., 2017). After being recruited, ncPRC1 catalyzes mono-ubiquitylation of lysine

119 in histone H2A (H2AK119ub1), a repressive chromatin mark that directly contributes to

gene silencing but also enables indirect recruitment of PRC2 through binding of JARID2 (Cooper

et al., 2016; Rocha et al., 2014). PRC2 catalyses histone H3 lysine 27 trimethylation (H3K27me3),

which is also a repressive chromatin mark. H3K27me3 promotes gene silencing as well but is also

responsible for the recruitment of canonical PRC1 (Cao et al., 2002; Wang et al., 2004). Polycomb

Group Proteins seem to be important to stabilize gene silencing but not necessary for the initiation

of the silencing process mediated by Xist (Bousard et al., 2019). Hence, they represent the �rst

repressive epigenetic layer in the process of XCI before a stable silent state is established on the

Xi through accumulation of additional repressive histone marks (e.g. H3K9me2/3), incorporation

of the H2A histone variant macroH2A and DNA methylation of CpG islands.
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Figure 2.6: Current model for PRC1/PRC2 recruitment during early XCI. The RBP hnRNPK binds

to the repeat-B and -C elements of Xist and helps to recruit non-canonical PRC1, which in turn deposits

the histone mark H2AK119ub1. JARID2 is able to interact with PRC1 mark H2AK119ub1, leading to the

recruitment of PRC2 to the Xi. PRC2 in turn deposits the repressive mark H3K27me3 through which

canonical PRC1 is recruited. Inspired by (Galupa et al., 2018).

2.2.4 Structural reorganization of the inactive X chromosome

The upregulation of Xist on the future Xi initiates a series of events that lead to the silencing of

X-linked genes but also triggers the spatial reorganisation and the localization of the Xi to the

nuclear periphery.

Despite condensation due to spatial reorganization, the Xi does not have the typical heterochro-

matic structure with a high degree of compaction. Instead it only has a 1.2-fold higher compaction

than the Xa (Naughton et al., 2010). More dramatic changes seem to occur in the chromatin

structure of the Xi. The amount of 3D interactions on a chromosome is generally high, even

within inactive chromosomal regions, because it leads to the compartmentalization of the chromo-

some into TADs. Allele-speci�c HiC studies, however, could show that the Xi lacks any complex

three-dimensional structure because 3D interactions of silenced genes with other loci on the Xi

are completely missing. Hence, the Xi is mostly devoid of TADs but has a conserved bipartite

structure that is formed by CTCF-mediated superloops and separates the Xi into two large super-

domains rather than individual smaller TADs as observed on other chromosomes. The anchor

point between those two superdomains is the macrosatellite DXZ4, a repeat array that is able to

bind CTCF, and has been shown to be essential for the bipartite structure of the Xi. Xist seems to

play a crucial role in the formation of the two superdomains as well, because deletion of Xist from

the Xi leads to the recovery of TAD structures on the Xi by increased cohesin binding. This in

turn shows that Xist is continuously required to maintain the silent status of the Xi by controlling

the spatial organization of the Xi.

The dramatic spatial reorganization of the Xi during the XCI process results in the characteristic

condensed structure of the Xi, also known as Barr body. Barr and Bertram �rst described the Xi

as a nucleolar satellite because the Xi is commonly found at the periphery of the nucleolus or in

proximity to the nuclear lamina after inactivation. The interaction between Xist lncRNA and the

lamin B receptor, a component of the nuclear lamina, enables the recruitment of Xi to the nuclear
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periphery. The attachment of the Xi to the nuclear lamina seems to be an important step in the

XCI process because Xist RNA that is de�cient for lamin B receptor binding fails to induce Xist
-mediated gene silencing (Balaton et al., 2018; Monfort et al., 2017). Anchoring of the Xi to the

nucleolus is mediated by the X-linked lncRNA Firre and the microsatellite DXZ4, which is also

responsible for superdomain formation (Jégu et al., 2017). Perinucleolar association seems to be

important for the stable maintenance of repressive marks, because the loss of this association

leads to the erosion of H3K27me3 histone mark.

2.2.5 Escapees

Xist -mediated silencing of Xi genes occurs with di�erent kinetics during the XCI process. Certain

groups of genes are silenced early other later during the XCI process while some genes, so-called

escapees, are even able to escape XCI. Escapees are an exception in the XCI process because

they are expressed from both, the Xa and Xi, leading to the assumption that they might have a

female-speci�c function. Although escapees are expressed from both X chromosomes, the genes

on the Xi are expressed at lower levels, typically only around 33%, compared to their counterparts

on the Xa (Keniry et al., 2018). Hence, in most studies escapees are de�ned by having an expression

level of at least 10% of the Xa gene expression (Balaton et al., 2018). In mice, 3 to 7% of X-linked

genes escape XCI on average with some genes escaping in all cell types (constitutive escapees)

and others escaping in a cell-type speci�c manner (facultative escapees) (Balaton et al., 2016).

Facultative genes often have cell-type speci�c functions while constitutive escapees are genes

enriched among Y-linked homologs or genes of the Xic.

The underlying mechanisms that de�ne the silencing kinetics of X-linked genes are not yet fully

understood. It has been proposed that early silenced genes lie in close genomic proximity to the

Xic or to early Xist entry sites. Marks et al. could show that gene silencing dynamics correlate

with the genomic distance from the gene to the Xic (Marks et al., 2015). The more distantly a

gene is located from the Xic, the later it is silenced during XCI. Furthermore, promoter regions

of early silenced genes seems to be depleted for active chromatin marks such as H3K4me3 but

enriched for repressive chromatin marks like H3K27me3 and H3K9me3. Escapee promoters on

the other hand are enriched in active but depleted in repressive chromatin marks as well as PRC2

components like EZH2, which are responsible for the deposition of repressive chromatin marks

(Table 2.3). In addition, the histone variant macroH2A, which shows a fourfold enrichment on the

Xi compared to the Xa, is locally depleted at escapee promoters (Balaton et al., 2016; Carrel et al.,

2017; Pinheiro et al., 2017; Sahakyan et al., 2018).
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Table 2.3: Enrichment and depletion of epigenetic marks at promoters of X-linked genes. Adapted

from (Balaton et al., 2016).

Epigenetic Mark Function Silenced Gene Escapee

H3K4me2 active depleted enriched

H3K4me3 active depleted enriched

H3K9ac active enriched

H3K9me1 active enriched

H3K27ac active depleted enriched

RNA Polymerase II active depleted enriched

H3K9me3 repressive enriched

H3K27me3 repressive enriched depleted

H4K20me3 repressive enriched

macroH2A repressive enriched depleted

Xist RNA repressive enriched depleted

Gene silencing dynamics seem to further be a�ected by the nuclear position and folding of the

gene loci. As mentioned before, the Xi is mainly devoid of TADs because silenced genes on the

Xi lack 3D interactions with other loci. Escapees, however, show increased 3D interactions with

each other, leading to the formation of mini TAD-like structures that potentially help escapees

to loop out of the transcriptionally silent compartment (TSC) formed by Xist RNA (Jégu et al.,

2017; Splinter et al., 2011). Binding of YY1 or CTCF near promoters of escapees potentially plays

a role in the formation of those mini TAD-like structures and the interaction between escapee

promoters and their cis-regulatory elements (Chen et al., 2016; Filippova et al., 2005). Escapees

remain at the periphery of the TSC even at later stages of di�erentiation, most likely due to better

accessibility of the transcription machinery that is excluded from the TSC. Supporting this idea,

RNA Polymerase II is more frequently found at escapees than at silenced genes. Despite all the

�ndings described above, still very little is known about how escapees establish and maintain

their active state in the heterochromatic environment on the Xi.





3 MACH INE LEARN ING BACKGROUND

“In the 1990’s “data mining” was an exciting and popular new concept. Around 2010, people instead
started to speak of “big data.” Today, the popular term is “data science”. However, during all this time,
the concept remained the same: use the most powerful hardware, the most powerful programming
systems, and the most e�cient algorithms to solve problems in science, commerce, healthcare,

government, the humanities, and many other �elds of human endeavor."

— (Leskovec et al., 2014)

Recent technological advances in molecular science have made it possible to analyse biological

systems in a high throughput fashion. The possibility to perform high throughput experiments at

low cost led to a dramatic increase of generated biological data, heralding the era of “Big Data”

in biology - a pervasive buzzword for the huge amount of (biological) data that is generated

every day. The speed of data growth can be observed for instance at the European Bioinformatics

Institute (EMBL-EBI), which maintains big data bases like Ensembl, where the total disk capacity

for storing biological data grew from around 60 petabytes at the end of 2015 to just over 160

petabytes by the end of 2018 and a continuing exponential growth is expected (Cook et al., 2019).

The generated biological data ranges from microscopic imaging to protein structures or genomic

sequences and consortia of leading research institutes were able to assemble the generated data

into huge biological data sets, like the Encyclopedia of DNA Elements (ENCODE) project that has

collected more than 9000 genomic datasets from ChIP-seq, RNA-seq, Hi-C and other experiments

(ENCODE Project Consortium 2004). The availability of such huge data sets gives us the opportu-

nity to answer challenging biological questions, where the underlying mechanisms are complex

and depend on the interplay of many di�erent regulatory factors. Often, data sets of di�erent

sources and types need to be integrated and analysed in a data-driven manner to understand how

regulatory systems work together and to uncover the patterns that explain those complex mecha-

nisms. However, e�cient analysis of such large and complex data sets is merely impossible by

visual investigation or traditional statistical methods (e.g. pairwise correlations). Instead, machine

learning (ML) algorithms o�er the opportunity to systematically extract information from the

integrated data sets and gain new biological insights by generating data-driven hypotheses that

can be validated later on with biological experiments.

But what exactly is the magic behind those ML algorithms? The subject of ML can be seen as a

joint sub�eld of statistics and computer science that deals with the development of computational

algorithms, which are able to identify complex patterns in large data sets and make predictions

based on a given input data set. Hence, ML algorithms can help to extract knowledge and gain

insights from structured and unstructured data, considering thousands of observations and their

relationship between each other at once. ML has many applications in di�erent �elds within

science and industry, ranging from healthcare to intelligent process automation and is nowadays

25
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used in every area of our lives: shopping platforms recommend products we might be interested

in; online maps propose alternatives routes to not get caught up in a tra�c jam and Google’s ML

based program AlphaGo beats the reigning champion of the ancient board game Go. (Silver et al.,

2016)

Generally, ML algorithms can be categorized into two broad classes: supervised and unsuper-
vised ML algorithms (Figure 3.1). An input data set usually consists of a set of observations for

which we have a set of input features and optionally a set of known output measurements that can

be either continuous or categorical. We call a data set labelled if we have known output measure-

ments and unlabelled if known output measurements are missing. Supervised ML algorithms

aim to �nd underlying pattern in labelled data by learning a function on given input features that

approximates the known output measurement. Supervised ML applications in bioinformatics are

for example the prediction of the gene expression status from di�erent chromatin marks (Karlić

et al., 2010). Unsupervised ML algorithms, on the other hand, discover underlying patterns in

unlabelled data by extracting structures from the data itself. A typical application is the discovery

of recurring biological patterns from di�erent epigenetic or genomic data sets e.g. the system-

atic annotation of gene regulatory elements from ChIP-seq data by ChromHMM (Ernst et al., 2012).
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Figure 3.1: Supervised vs unsupervised machine learning. The goal of supervised learning is the

identi�cation of a function that explains the output measurements of each observation by the input features.

Usually we either have a regression (continuous measurement values) or a classi�cation (categorical

measurements) problem. In the latter case we try to �nd a decision boundary that best separates the classes

(left panel). The goal of unsupervised learning is to �nd structure in unlabelled data. A common technique

to �nd groups of similar observations is clustering (right panel).

The choice for a particular ML algorithm, whether supervised or unsupervised, strongly depends

on the biological question to be answered and the data available for answering that question.

Every ML algorithm has its advantages and disadvantages and the choice of an appropriate ML

algorithm is in�uenced by di�erent properties of the collected data set. For instance, properties

like multicollinearity, where similar features with correlating values are included in the data set,

curse of dimensionality, where the data set has fewer observations than features, and confounding

factors, where measurements are a�ected by batch e�ects caused by di�erent laboratory condi-
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tions, all require di�erent strategies. Hence, every complex biological question requires speci�c

data preparation and a tailored ML solution.

This chapter gives an introduction to the core ML concepts and a more detailed description of the

main ML algorithms used throughout this thesis. In Section 3.1 the basic mathematical notations

are de�ned. Section 3.2 gives an introduction to the main concepts of the supervised ML methods

used in this thesis, while Section 3.3 gives an introduction to the unsupervised ML algorithms

used in this thesis.

3.1 mathematical notations

In this section, the statistical framework and basic notations for this thesis are de�ned. All notations

are based on the second chapter of the Statistical Learning Book of Hastie et. al. (Hastie et al., 2009).

Let Z = (x1, y1),… , (xi , yi),… , (xn, yn) be a data set of n independent identically distributed (i.i.d.)

observations. Then for every observation i we have a vector of p input features xi = (xi1, xi2,… , xip)

with associated known output measurement yi . Input features, which are typically called predictor
or independent variable, can be continuous or categorical and are represented as a n × p matrix

X = (X1,… , Xj ,… , Xp), where Xj = (xj1, xj2,… , xjn), with n observations and p features. The vector

of known output measurements Y = (y1, y2,… , yn) is typically called the response or dependent
variable and can be either quantitative (continuous response) or qualitative (categorical response).

For X and Y we assume a relation of Y = f (X ) + � where f is a �xed but unknown function on X

and � is a random error term with mean zero, independent of X .

3.2 supervised machine learning

The goal of any supervised machine learning (ML) algorithm is to �nd complex structures in

data sets with hundreds of observations that can be used to predict the response of new unseen

observations (predictions) and understand the dependence of the response on di�erent predictors

(interpretation). To relate the response to the predictors, the algorithm tries to �nd a function

̂
f (X ) of the predictor variables that approximates the response variable accurately such that

Y ≈
̂
f (X ) for any observation (xi , yi). If the function approximates a continuous response, we call

it a regression problem, whereas if the function maps the predictor variables to a categorical

response, we call it a classi�cation problem.

Supervised ML algorithms can be further divided into parametric and non-parametric ap-

proaches. Parametric methods simplify the approximation function to a known functional form,

e.g. assuming that
̂
f is linear in X , which creates a linear model of the form:

̂
f (X ) = �0 + �1X1 +… + �pXp

This assumption greatly simpli�es the modelling process because now we just have to estimate

the p + 1 coe�cients �0,… , �p of the prede�ned function from the given data set instead of �tting

an arbitrary p-dimensional function to the predictor variables. Prominent examples of parametric
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models are linear as well as generalized linear models. Non-parametric approaches, on the other

hand, do not make any explicit assumptions on the functional form of the approximation function.

Instead, the functional form is learned from the given data set itself, making it possible to �t

the approximation function
̂
f to a wider range of functional forms. Common examples of non-

parametric methods are k-nearest neighbors, decision trees and Support Vector Machines with

radial basis function Kernels. In general, parametric models are easier to interpret but constrained

by the functional form that needs to be speci�ed beforehand, which might not match the true

underlying function f . In contrast, non-parametric approaches are more �exible because they do

not make any assumptions on the functional form of the approximation function but they are

more prone to over�tting and also harder to interpret (Hastie et al., 2009).

Model over��ing occurs when the ML model is too complex and therefore, is not generalizable

to new unseen data. Complex models usually predict the response of the observations they are

trained on very well (small learning error) but perform poorly on new unseen observations (large

generalization error). Model complexity is commonly de�ned by the number of �tting parameters

in the model (e.g. coe�cients �0,… , �p in a linear regression model), meaning that the model gets

more complex as we add more parameters. But how exactly do we identify model over�tting?

One way of identifying over�tting is to calculate the generalization error on an independent data

set that was not used to optimize the model parameters and train the �nal model. Therefore, the

given set of observations Z = (x1, y1),… , (xi , yi),… , (xn, yn) is divided into three non overlapping

and independent data sets: training set Ztraining , validation set Zvalidation and test set Ztest . The

training set is the largest data set and is used to �t the approximation function of the model, while

the validation set is used to calculate the model performance on di�erent sets of hyperparameters.

Hyperparameters are higher-level structural properties of the model which need to be �xed before

�tting the approximation function because they cannot be learned from the training data.
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Figure 3.2: Relationship between Learning and Generalization Error. Model over�tting can be iden-

ti�ed through comparison of learning and generalization error. The learning error tends to monotonically

decrease with increasing model complexity, while the generalization error tends to increase if the model

gets too complex.
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The learning error , which is the error made on the validation set, is used to select the best set of

hyperparameters on which the �nal model
̂
ff inal is trained. The test set is then used to access the

performance of the �nal model by predicting the outcome of the observations in Ztest with the

�nal model: Ŷtest =
̂
ff inal (Xtest ) and comparing it to the ground truth Ytest . The error made on the

test set is called the generalization error and describes how good the model performs on unseen

observations. By comparing the learning error with the generalization error, we can identify

model over�tting and then chose a model complexity that leads to the lowest generalization error

to avoid over�tting (Figure 3.2).

In situations where the available input data set is small, it is possible to divide the data into only

two subsets, training and test set, and perform model training and hyperparameter tuning on the

same subset, the training set. Therefore, methods like k-fold cross-validation or bootstrapping,

that use di�erent splits of the training set for every set of hyperparameters, can be applied to

get the �nal model (Izenman, 2008). In k-fold cross-validation, the training set is divided into K

distinct subgroups, called folds. The model is trained on K − 1 folds while the k
tℎ

fold is used

as validation set to compute the learning error. This process is repeated until each of the K

folds was used once as validation set and the learning error is averaged across all folds (Geisser,

1975). Bootstrapping on the other hand, is a data resampling method that draws a bootstrap

sample of size N with replacement from a training set of size N . Hence, some observations are

represented multiple times in the bootstrap sample while others are left out. Following the 632+

bootstrap rule, typically
1
/3 of the observations are left out of the bootstrap sample (Efron et al.,

1997). In total, B bootstrap samples are drawn and a model is �tted to each of the bootstrap

samples. The observations that were left out of the bootstrap sample - Out of Bag data - are then

used to compute the learning error, which is then averaged over the B bootstraps (Efron et al., 1994).

The focus of this thesis lies on classi�cation problems, more speci�cally on binary classi�cation

problems, where the response variable Y is divided into two classes Y ∈ 0, 1. Here, the classi�cation

task is to train a classi�er
̂
f ∶ X → 0, 1 , which maps the predictor variables of an observation

to one of the two classes, e.g predict the disease status (yes/no) of a patient based on gene

expression data. There exist a variety of methods that perform binary classi�cation tasks, like

logistic regression, Support Vector Machines, Neural Networks or Random Forests. In this thesis,

the focus is on the parametric logistic regression method and the non-parametric Random Forest

algorithm. The following sections explain both methods and are based on Izenman, 2008 and

Hastie et al., 2009.

3.2.1 Linear Models

Linear models are a large class of supervised machine learning (ML) algorithms that assume a

linear relationship between predictor variable X and response variable Y and can be used to solve

both, regression (continuous response) and classi�cation (categorical response) problems.
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One of the simplest linear models is linear regression, where the linear relationship between

predictor variables X and a continuous response Y is modelled with a weighted linear combination

of the predictor variables:

Y = f (X ) = �0 +

p

∑

j=1

�jXj + �

where Xj is the j
tℎ

predictor variable and �0,… , �p are a set of unknown model coe�cients that

have to be estimated from the training set Ztraining . The most common method to estimate �0,… , �p

is the least squares approach, which selects the set of coe�cients that minimizes the residual sum

of squares:

̂
� = argmin

�

RSS(�)

where the residual sum of squares (RSS) is de�ned as:

RSS(�) =

N

∑

i=1

(yi − f (xi))
2

The estimated model coe�cient
̂
�j represents the mean change in Y for one unit of change in

Xj . We can then use the linear model with the estimated model coe�cients
̂
�0,… ,

̂
�p to make

predictions for new unseen observations:

ŷi =
̂
�0 +

p

∑

j=1

̂
�jxj

The performance of a linear regression model can be assessed with di�erent metrics. One possible

performance metric is the R
2

statistic, which calculates the proportion of variability in Y that can

be explained by the linear regression model:

R
2
=

TSS − RSS

TSS

where the total sum of squares (TSS) is de�ned as:

TSS =

N

∑

i=1

(yi − ȳ)
2

and measures the amount of variability in the response Y , whereas the RSS measures the amount

of variability that is left unexplained by the linear regression model. Hence, an R
2

value close to

one indicates that a large fraction of the variability in Y is explained by the model, while an R
2

value close to zero indicates that a large fraction of the variability in Y is left unexplained by the

model.

Linear models can also be applied to classi�cation problems, where the probability that the

response variable Y belongs to a certain class K is modelled:

f (X ) = Pr(Y = K |X )

The simplest classi�cation setting is a binary classi�cation, where Y is divided into two classes

(K = 2). In this case, f (X ) gives the posterior probability of Y belonging to the positive class:

f (X ) = Pr(Y = 1|X )



3.2 supervised machine learning 31

and should take values between zero and one. A transformation function T (X ) ∶ X → [0, 1] can

be used to model the relationship between predictor variables and probabilities, i.e. the logistic

function:

p(X ) =

e
�X

1 + e
�X

which transforms a real number to values between [0, 1]. By log-transforming the logistic function,

we get a linear regression model of the log-odds, also called a logistic regression model:

log
(

p(X )

1 − p(X ))
= �0 + �1X1 + �2X2 +… + �pXp

which allows us to predict the posterior probability of Y = 1. The idea is to �nd a set of coe�cients

�0,… , �p that maximizes the posterior probability for Y = 1 and minimizes the posterior probability

for Y = 0. A commonly used method to solve this problem is the maximum likelihood estimator:

̂
� = argmax

�

L(�0,… , �p)

where the likelihood L is the product of both probabilities:

L(�0,… , �p) = ∏

i∶yi=1

p(xi) × ∏

i∶yi=0

(i − p(xi))

and p(X ) is related to the model coe�cients via the logistic function p(X ) =
e
�X

1+e
�X

. The coe�cients

of a logistic regression model indicate the change in log-odds for a one unit increase in X . A

positive coe�cient � indicates that an increase in X is associated with an increased posterior

probability, while a negative coe�cient � indicates a decreased posterior probability. We can use

the logistic regression model with the estimated model coe�cients
̂
�0,… ,

̂
�p to make predictions

for new unseen observations:

p̂(X ) =

e
�X

1 + e
�X

which can be used to assess the performance of a linear regression model. Therefore, we assign

each new observation to one of the two classes, based on its predicted probability to belong to the

positive class, and compare the assigned class to the true observed class yi . Di�erent performance

metrics make use of this comparison to evaluate the logistic regression model. One of the simplest

performance measures is the misclassi�cation error:

error =

FP + FN

n

where FP includes all observations, which were wrongly predicted as Y = 1 and FN includes all

observations, which were wrongly predicted as Y = 0.

If a linear model (regression or classi�cation model) was �t to a large number of predictor vari-

ables with a high predictor to observations ratio (n << p situations), one has to be careful when

interpreting the estimated model coe�cients
̂
�0,… ,

̂
�p . In a n << p situations, the linear model is

underdetermined and hence, the system of linear equations has many feasible solutions, where

small changes in the training set may lead to highly varying results, even when the model bias

stays constant. Generating sparsity in the input feature space can help to overcome this problem,
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because it reduces the number of predictor variables used to �t the model. The interpretation

of model coe�cients associated to correlated predictor variables is highly problematic as well,

because for a set of equally important but highly correlated predictor variables, often only one

predictor has a high coe�cient, i.e. is interpreted as an important predictor, while the others

have low coe�cients, i.e. are wrongly interpreted as unimportant predictors. The joint selection

of correlated features into the model can help to overcome this problem. Both, the sparsity and

grouping problem, can be addressed with regularization methods that penalize large model

coe�cients, leading to a sparse input feature space, and encourage a grouping e�ect, leading to the

joint selection of correlated features. In the following, the application of di�erent regularization

techniques to a logistic regression model are explained. However, those regularization techniques

can also be applied to other machine learning models.

A common regularization method that addresses the sparsity problem is the Lasso regularization.

Lasso constrains the maximum likelihood estimator with an additional penalty term that shrinks

the coe�cients towards zero:

̂
�
L

�
= argmax

�

L(�0,… , �p) − �

p

∑

j=1

|�j |

where �∑
p

j=1
|�j | is the shrinkage penalty, using the L1 norm as a constraint, and � ≥ 0 is a

tuning parameter, controlling the impact of both terms in the equation and thereby regulating the

trade-o� between the goodness of �t and size of coe�cients. The constraint region of the L1 norm

shrinks the coe�cients towards zero and forces some of them to be equal to zero if � is large

enough (Figure 3.3). Hence, the Lasso regularization can be used to perform feature selection but

is not able to address the grouping problem that arises from correlated features.

β�

β�

Ridge
Lasso

Elastic Net

Figure 3.3: Regularization of Lin-
ear Models. Regularization is

achieved by adding an additional

shrinkage penalty term to the objec-

tive function. The constraint region

of Lasso (green dotted line) has a

diamond shape with corners, which

helps to generate a sparse model by

shrinking some coe�cients to exactly

zero. The constraint region of Ridge

(blue dotted line) has a circular shape

with convex edges, which encourage

a grouping e�ect. Elastic Net (red line)

combines both penalty terms, leading

to a constraint region that has con-

vex edges but also singularities at ver-

tices, which generates a sparse model

and encourages the grouping of cor-

related variables.
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Ridge regularization addresses the grouping problem by using the quadratic L2 norm as a

shrinkage penalty:

̂
�
R

�
= argmax

�

L(�0,… , �p) − �

p

∑

j=1

�
2

j

The constraint region of Ridge regression encourages a grouping e�ect by which groups of

correlated features tend to have similar model coe�cients, i.e. similar importance in the model

(Figure 3.3). However, Ridge regularization will keep all features in the �nal model, because it is

not able to shrink the coe�cients to zero and hence, does not provide a sparse model.

A solution to this problem is Elastic Net, which combines the shrinkage penalties from Lasso

and Ridge (Figure 3.3) to perform feature selection in combination with a grouped selection of

correlated predictors:

̂
�
EN

�
= argmax

�

L(�0,… , �p) − �1

p

∑

j=1

|�j | − �2

p

∑

j=1

�
2

j

where �1 and �2 control the impact of both shrinkage penalties. If �1 ≈ �2 we have a balanced

impact of feature selection and feature grouping, while �1 >> �2 or �1 << �2 emphasizes either

the selection or the grouping e�ect.

Regularization methods help to better interpret the model coe�cients of a linear model by shrink-

ing unimportant predictors to zero and/or giving correlated predictors equal importance. However,

in cases of n << p, where we have many more predictor variables than observations, linear models

still su�er from the curse of dimensionality, where parameter estimates become highly unstable.

Nevertheless, regularized linear models often provide an adequate and interpretable description

of how the response variable is a�ected by the predictor variables. However, the interpretability

comes at the cost of assuming a linear dependence between predictor and response variables,

but for many biological problems, a linear relationship between response and predictor variables

is not given. In such cases it can be bene�cial to use non-parametric ML models that make

no assumptions on the relationship between response and predictor variable. A large class of

non-parametric models are tree-based models that will be described in the next section.

3.2.2 Random Forest

Random Forest is a commonly used non-parametric machine learning (ML) algorithm, which is

based on the concepts of decision trees and ensemble learning.

Decision Trees

Decision trees are non-parametric tree-based learning methods that recursively split the predictor

space X into smaller subsets such that the resulting subgroups of Y are as homogeneous as

possible. A decision tree can be represented by a tree graph with one root node that contains the

whole input data set, many internal nodes that represent the splitting points on the predictor

variables X and terminal nodes that are not further split and contain a subgroups of Y belonging
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to a certain class (Figure 3.4). The �rst step in constructing a decision tree is to split the root

node based on the predictor variable X into two terminal nodes to improve the homogeneity of

the response variable Y in each terminal node compared to the root node. This splitting step is

repeated with the two terminal nodes, which now become internal nodes, to successively improve

the homogeneity of the response variable in each terminal node until we reach a prede�ned

stopping criterion. A natural stopping criterion is the node purity, where the tree is grown until

the terminal nodes are homogeneous, hence all members in a terminal node belong to the same

class. This however, often leads to model over�tting, because the model starts being too complex

and tends to learn the noise in the data as well. An appropriate stopping criterion serves the

purpose of �nding a balance between too complex models, which over�t the data, and too simple

models, which under�t the data, both leading to a high generalization error. A suitable stopping

criterion can be a minimum member size of each terminal node, where the terminal node is then

marked with the most frequent class of its members, or a maximum depth for the tree, where

the longest path from the root node to a terminal node should not exceed a certain threshold. By

applying such methods we “prune” the decision tree.
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Figure 3.4: Example of a classi�cation tree. Classi�cation of a response variable into two classes (red

and yellow) in the two-dimensional input feature space with a classi�cation tree. The classi�cation tree

makes two splits on feature A and feature B and has three terminal nodes, representing the subgroups

of the response variable. The splits divide the feature space into rectangles, where most points belong to

either one of the two classes and the region is labelled with the majority class.

Decision trees can be used for regression or classi�cation tasks. Here, the focus is on decision trees

used for classi�cation that are build with a popular tree-based method called CART (Classi�cation

and Regression Trees) which was introduced in 1984 by Breiman et al. (Breiman et al., 1984). The

construction of a globally optimal decision tree has been proven to be an NP complete problem

(Laurent et al., 1976). Hence, decision tree algorithms like CART are based on heuristics that

build the decision tree in a top-down, greedy approach resulting in locally optimal decision trees
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because at each step we make the best split for that particular step instead of choosing a less

optimal split that would lead to a better tree in some future steps. The CART algorithm constructs

a decision tree, by dividing the predictor space X into l distinct and non-overlapping regions Rl

(de�ned by the split points s of the internal nodes) such that the homogeneity of Y in each region

is maximized, which is equivalent to minimizing the node impurity in that region. Therefore,

for each node m we select a predictor Xj with splitting point s ∈ Sj , where Sj is the set of all

possible split points for Xj , such that we get the maximal decrease in node impurity for the two

daughter nodes m1 and m2. The node impurity for a classi�cation problem with K classes can be

measured by di�erent impurity indices. The most popular impurity index is the Gini index. Let

the proportion of members in node m belonging to class k ∈ K be de�ned as:

pmk =

1

Nm

∑

xi∈Rm

I (yi = k)

where I is the identity function, Rm is the region of node m containing in total Nm observations

and ∑
K

k=1
pmk = 1. Then the Gini index for node m is de�ned by:

Gm =

K

∑

k=1

pmk(1 − pmk) = 1 −

K

∑

k=1

p
2

mk

Small Gini index values indicate a more pure node than higher Gini index values, where 0 ≤ Gm ≤ 1.

To compute the optimal split for a node m, the algorithm computes for every unique value s in

the space of each predictor Xj the reduction in impurity of the two daughter nodes m1 and m2

compared to the parent node m:

ΔGm(Xj , s) = Gm −

(

|Nm1|

|Nm |

×Gm1(Xj , s) +

|Nm2|

|Nm |

×Gm2(Xj , s)

)

for all Xj ∈ X and s ∈ Sj . The best split sopt for node m is the one that has the highest reduction in

impurity, hence ΔGm(Xj , s) with the largest value. This split point is then used to split the region

Rm of node m into two sub-regions: Rm1 = {X |Xj < sopt} and Rm2 = {X |Xj ≥ sopt}.

The constructed decision tree can then be used to predict the class of a new unseen observation:

start at the root node, drop the new observation down the left or right daughter node, depending

on its value of the predictor variable that was used at that split, repeat until a terminal node is

reached. For each new observation that falls into terminal node l we will make the same prediction,

which is the majority class of the response values in region Rl .

The partitioning of the predictor space X into smaller subsets allows us to model nonlinear,

complex relationships between predictor and response variables. However, if we have a linear

dependency of the response variable on the predictor variables, a linear model, e.g. a logistic

regression model, will most likely outperform a decision tree model because the linear model can

approximate the linear dependency by a linear function whereas the decision tree has to use a

step function. In addition, decision trees are very sensitive to changes in the input data and are

prone to over�tting when constructing trees that are too complex. To avoid such problems one

can build a model based on an ensemble of decision trees, trained on bootstrapped input data.
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Ensemble Learning

The predictive performance of weak ML models like decision trees can be improved by a technique

called ensemble learning, which combines a group of weak predictor models, to form a strong

ensemble learner. The idea behind ensemble learning is to improve the predictive performance by

reducing the variance term of the generalization error. The generalization error of a predictor

model can be decomposed into two elements, a bias term and a variance term (Figure 3.5). While

the bias measures how well the function learned on the predictor variables approximates the true

underlying function, the variance describes how much this bias varies across di�erent training

sets. Interestingly, the variance of the average of B i.i.d. predictor models with variance �
2
, is

�
2

B
while the bias of the average is the same as that of an individual predictor model. Hence, by

building an ensemble learner from a set of B individual predictor models, we can theoretically

reduce the variance by a factor equal to the number of models in the ensemble. Thereby, we

are able to reduce the generalization error and improve the predictive performance of the ML

model. Common methods for ensemble learning are Bagging (Bootstrap Aggregation), Boosting

or Randomization. Here, the focus is on Bagging, a method introduced in 1996 by Breiman et al.

(Breiman, 1996) that can be used to aggregate multiple decision trees to form a strong ensemble

model.

Model Complexity (e.g. # of features)

Bias

Underfitting Overfitting

Figure 3.5: Bias-Variance decomposition of the Generalization Error. The generalization error can

be decomposed into a bias and a variance term. The bias monotonically decreases, while the variance

monotonically increases with increasing model complexity. To avoid over�tting of the model due to model

complexity, which in turn increases the generalization error, we have to �nd the optimal trade-o� between

bias and variance.

In Bagging, trees are fully grown, hence have a low bias, but predictions are averaged over multiple

trees which reduces variance. To build a bagged model, B bootstrap samples Zb are drawn from

the training set Ztraining and on each bootstrap sample a decision tree
̂
fb(Zb) is trained (Figure 3.6).

To obtain the predicted class for a new observation i, the majority class across all trained decision

trees in the bagged model is calculated:

̂
f
B

bag
(xi) = majority vote{

̂
fb(xi)}

B

1
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where
̂
fb(xi) is the class prediction of the b

tℎ
decision tree in the ensemble based on the predictor

variables xi of observation i. The learning error of the bagged model can be calculated during the

training phase through the Out of Bag (OOB) error . The OOB error is an unbiased estimate of

the learning error because it is calculated on the OOB data, which is the data that was not used

to train the bagged model. To calculate the OOB error, the majority vote of the predictions for

a training observation i over all decision trees
̂
fb , in which observation i was part of the OOB

data of
̂
fb , is calculated. The fraction of OOB observations that were classi�ed incorrectly is then

the OOB error. It has been shown that OOB error estimates are nearly identical to k-fold cross

validation estimates (Hastie et al., 2009).

original  data set

Step 1: 
create B bootstraps

Step 2: 
build B predictors

Ensemble Learner

Step 3:
combine predictors

bootstrap bootstrap bootstrap bootstrap

OOB OOB OOB OOB

weak predictor 
model

weak predictor 
model

weak predictor 
model

weak predictor 
model

prediction

OOB error

Figure 3.6: Construction of a bagged model. A bagged model is a collection of weak prediction models

(e.g. decision trees), each build on a bootstrapped data set of the original input data, which are then

combined to form a strong ensemble learner.

Notably, the assumption of variance reduction in Bagging only holds for i.i.d. predictor models.

If the predictor models are simply identically distributed but not necessarily independent, e.g.

the common case that some decision trees in the ensemble are correlated amongst each other,

the variance of the average is not
�
2

B
but instead ��

2
+
1−�

B
× �

2
. By increasing B, the number of

predictor models in the ensemble, the second term becomes negligible small, however, the �rst

term remains and therefore limits the bene�ts of Bagging by the amount of correlation � between

the predictor models. To decrease the overall amount of correlation in the ensemble, the predictor

models have to be decorrelated. The solution to this problem is implemented in an algorithm

called Random Forest.
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Random Forest Algorithm

The Random Forest (RF) algorithm was introduced in 2001 by Breiman et al. (Breiman, 2001) and

extends the Bagging algorithm by building an ensemble of decorrelated decision trees. Decision

trees become correlated if only few features are strong predictors of the response variable, leading

to the majority of decision trees having a similar structure (the strong predictor is used as �rst

split in many trees) and therefore highly correlated predictions. To reduce the correlation between

decision trees, RF performs random feature selection at each node prior to the selection of the

optimal split sopt . Hence, the reduction in node impurity is only computed on a random subset

of predictor variables, which reduces the chance that strong predictors are always used as �rst

splits.

De�nition (Random Forest). A Random Forest is an ensemble classi�er consisting of a collection

of B tree-structured classi�ers {
̂
f (x,Θb)|b = 1,… , B} where the Θb is the number of randomly

selected features and each tree casts a unit vote for the most popular class at input x .

In short, RF creates an ensemble of decision trees by �tting unpruned decision trees to a set

of B di�erent bootstrap samples, while selecting at each split a random subset of p
′
< p input

features as candidates for splitting. The class of a new unseen observation x is then predicted as

the majority class across predictions for x made with all trees in the ensemble. By averaging the

predictions over a large ensemble of high variance but low correlation and low bias decision trees,

RF is able to improve the variance reduction of Bagging and e�ciently reduce both components -

bias and variance - of the generalization error. Figure 3.7 and Algorithm 1 summarize the training

and prediction steps for a RF classi�cation model.

unseen observation

predicted class

majority vote

final class

Figure 3.7: Classi�cation with a Random Forest model. To classify a new unseen observation with a

RF model, the class of the unseen observation is predicted with each decision tree in the model. The �nal

class is then determined by a majority vote over the predicted classes.
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Algorithm 1: Random Forest for Classi�cation

Input :data set X = (X1, X2,… , Xp),

silencing class Y = (y1, y2,… , yn)

1) Train the RF model

1 for b=1 to B do
2 draw a bootstrap sample Zb from the training set Ztraining ;

3 train a decision tree model Tb on the bootstrapped data by:

4 repeat
5 for each terminal node starting at the root node:

6 randomly select p
′
< p of the original predictor variables;

7 compute the best split sopt based on the p
′

predictor variables;

8 split node m into two daughter nodes m1 and m2 with

9 Rm1 ∶ X |Xj < sopt and Rm2 ∶ X |Xj ≥ sopt ;

10 until stopping criterion reached;

11 end

12 return ensemble of trees {Tb}B1

2) Make predictions

13 for new observation x do
14 let Ĉb(x) be the class prediction of the b

tℎ
RF tree;

15 then Ĉ
B

rf
(x) = majority vote{Ĉ

b
(x)}

B

1

16 end

As in Bagging, we can use the OOB error rate as an unbiased estimate for the learning error

because it accesses the model performance on the OOB data set that was not used to train

the model. In addition, Breiman (Breiman, 2001) could show that the generalization error (GE)

converges to an upper bound when the number of decision trees in the RF model is large enough:

GE ≤

�̄(1 − s
2

s
2

where �̄ is the mean correlation between decision trees and s is the strength of the decision trees

{
̂
f (x,Θb)|b = 1,… , B} in the model (e.g. a measure of accuracy of a decision tree in the model).

Hence, if the number of decision trees in the RF model is chosen large enough, over�tting of the

RF model can be avoided.

Interpretation of Random Forest Models

Complex supervised ML models are often considered to be “Black Boxes” because it can be hard

to understand why certain predictions have been made by the model. It means that although the

model correctly predicts the outcome of an observation, we cannot explain the logic behind those
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predictions. But why aren’t we just satis�ed with an accurately predicting model?

“The problem is that a single metric, such as classi�cation accuracy, is an incomplete description of
most real-world tasks."

— (Doshi-Velez et al., 2017)

Particularly in biology, it is more and more important to not just accurately predict the outcome

of a biological system with an ML model but to also be able to uncover the mechanisms behind

those biological systems that led to a certain outcome. To uncover the underlying mechanisms

of a biological system, we have to work on the interpretability of our ML models, which are

able to learn the underlying patterns in our data. Interpretability means, for example, to under-

stand which features play the most important role in predicting the outcome of an observation

or which combination of features lead to a certain outcome. The advantage of parametric and

simple non-parametric models like logistic regression or decision trees, respectively, is that their

interpretability is straightforward: the importance of a predictor variable j directly corresponds to

its coe�cient �j in the linear model or to its position in the decision tree. However, for more com-

plex models like RFs the interpretation is not as straightforward as for decision trees, because in

RFs we have an ensemble of di�erently structured decision trees that are hard to analyse separately.

The visualization of single decision trees, implemented in di�erent tools, only makes sense for

RF models with small numbers of decision trees (Hänsch et al., 2015; Yang et al., 2012). Such

tools visualize each decision tree separately as a 3D tree, where its structure and complexity is

represented by its height and shape, e.g. a complex decision tree is represented by a tree with

many branches. All trees are placed on local hills on a plateau, where the height of the hill

indicates the performance of the respective decision tree, while the performance of the RF model

is represented by the global height of the plateau. Correlations among decision trees are visualized

by the distance and proximity of the trees on the plateau, i.e. if a tree is far away from another

tree on the plateau the correlation between the decision trees is low. A major drawback of those

visualization tools is that they become hard to interpret for larger collections of decision trees,

because there are too many instances to plot and analyse.

Hence, alternative measures for the interpretation of bigger RF models had to be developed. In

2004, Adele Cutler and Leo Breiman introduced the RAFT tool, which focuses on the visualization

of RF models using four di�erent interpretation measures: variable importance, proximities,

prototypes and interactions (Cutler et al., 2004). Below, those four interpretation measures are

explained in more detail.

Variable Importance. The variable importance captures the contribution of a predictor variable

to the prediction of the response to access its importance for the classi�cation problem. Variable

importance measures can be used for di�erent purposes: 1) variable selection, �nd the minimum

number of predictor variables that are su�cient to correctly classify the response variable and 2)

interpretation, �nd the most important predictor variables that highly contribute to the classi�ca-

tion of the response variable. Generally, more important predictor variables are assumed to be

closer to the root node, where they partition big parts of the observations. Hence, naive variable

importance approaches quantify the frequency by which the predictor variable was used as split
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point in the RF model or calculate for each predictor variable the average depth (relative distance

to the root node) of the �rst split point across all decision trees in the model.

More elaborated approaches are the mean decrease in impurity (MDI) and the mean decrease in

accuracy (MDA), which can also be applied to other ML methods. The MDI for predictor variable

Xj measures the weighted reduction of impurity (using the Gini index) for all nodes m where Xj

was used as splitting variable, averaged over all decision trees in the RF. The drawback of the

MDI measure is that it is biased towards continuous predictor variables and variables with many

categories because predictor variables that have more potential splitting points are more likely to

produce a good split point by chance (Strobl et al., 2007). MDA, on the other hand, measures the

di�erence in prediction accuracy of the model before and after permuting the predictor variable

Xj . The random permutation of the values of Xj breaks up its original association to the response

variable Y . The logic behind MDA is that if the original predictor Xj was linked to the response Y ,

the prediction accuracy of the model will drop substantially if the link between Xj and Y is broken

through permutation. However, if Xj is unrelated to Y the random permutation of Xj should not

a�ect the prediction accuracy of the model. To compute the MDA for a predictor variable Xj we

calculate the prediction accuracy on the OOB observations for each decision tree in the model.

Next, we randomly permute the values of Xj in the OOB observations and once more calculate the

prediction accuracy of the OOB observations for each decision tree in the model. The di�erence

between the prediction accuracy of the RF model with the original and the permuted predictor is

then averaged over all decision trees in the model:

MDA(Xj) =

1

B

B

∑

b=1

MDA
b
(Xj)

where MDA
b
(Xj) = L(yb , ŷb) − L(yb , ŷ

�

b
) with L() being the prediction accuracy, ŷb being the

predicted values for the OOB observations in decision tree b on the original Xj and ŷ
�

b
after

permuting Xj . MDA values close to or below zero indicate that the predictor variable does not

contribute to or is even detrimental for the classi�cation of the response variable, while positive

MDA values are indicative for a relationship between predictor and response variables. The higher

the decrease in prediction accuracy for a predictor variable, the stronger the relationship between

predictor and response variables and therefore the more important the predictor variable for

the classi�cation problem. MDA was shown to be a more reliable indicator than MDI because it

shows no preference for continuous predictor variables or variables with many categories (Strobl

et al., 2007). In addition, MDA values can be computed separately for each class. There also exist

extensions of the MDA measure where joint e�ects of predictor variables are captured by jointly

permuting the values of the predictor variables across the OOB observations (Bureau et al., 2005).

Variable Importance has also been shown to be superior to univariate screening methods like

Fisher’s exact test because such methods consider each variable in isolation while variable im-

portance can capture the interactions between predictor variables in the context of a decision

tree. This in turn, enables the detection of important predictors that have little predictive power

on their own but important interaction e�ects with other predictor variables (Lunetta et al.,

2004). Nevertheless, one has to keep in mind that MDA is a measure of predictive - not causal -

importance of the predictor variable.
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Proximities. Proximities indicate which observations are close together in the eye of the RF

model. To calculate the proximity for a pair of observations we count how often those two

observations end up in the same terminal node across all decision trees and divide the count

by the number of decision trees in the RF model. Proximities range between zero (observations

never end up together in a terminal node) and one (observations always end up together in a

terminal node) and are represented by a n × n matrix where each entry is the proximity between

two observations. The proximity measure shows the connectivity between observations and

can be used to identify structures in the data of a RF model, e.g. �nd outliers and misclassi�ed

observations or �nd groups of observations that are classi�ed in the same way by the same set of

rules.

Prototypes. A prototype is an arti�cial observation for class k that provides a condensed view

on how the predictor variables relate to the classi�cation. For each class we can calculate a small

number of prototypes that are representative for that class. To �nd a prototype for class k, we

�nd the n-nearest neighbors for each observation among all observations, where neighbors are

de�ned via proximities. Next, we select the observation that has the largest number of class

k observations among its neighbors. The prototype is calculated for each predictor variable

separately by de�ning the median (continuous predictor variables) or most frequent value (cat-

egorical predictor variable) among those neighbors as the prototype of class k for a speci�c

predictor variable. Depending on the homogeneity of each class, one or more prototypes should

be calculated. While a small, homogeneous classes can be summarized by one prototype, more

diverse classes will require more prototypes. The prototype represents a group of observations

that are classi�ed in a similar way by the RF model (due to the de�nition of neighbors via proximi-

ties) and indicate which features have on average high or low values for this group of observations.

Interactions. Interactions explore the relationship between predictor variables within the RF

model. The interaction measure describes the in�uence of predictor variable Xi on predictor

variable Xj in the RF model (e.g. caused by correlation of variable Xi with variable Xj ). Two

predictor variables Xi and Xj are de�ned to interact with each other if a split on Xi makes a nearby

split on Xj systematically more or less possible. If a split on Xi has no in�uence on a nearby split

on Xj , both variables are considered to be independent from each other, i.e. they do not interact.

Variable interactions can be derived from the reduction in Gini impurity or a joint permutation

test, based on the MDA (Kelly et al., 2012).

In the RAFT tool, variable importance and prototypes are visualized as pro�le plots with the

predictor variables on the x-axis and the variable importance / prototype on the y-axis, while

proximities and interactions are visualized as heatmaps with observations and predictor variables

on both axis, respectively (Figure 3.8). Another tool called Random Forest INspEctor (ReFINE)

visualizes proximities, interactions and prototypes in a slightly di�erent way (e.g. prototypes are

visualized in a scatterplot for all pairs of predictor variables) and adds a visualization for each

decision tree in the model (Kuznetsova, 2014).
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A Variable Importance B Proximities D InteractionsC Prototypes

Figure 3.8: RAFT tool visualizations. (A) Visualization of variable importance, where each line repre-

sents the importance of a predictor variable for a speci�c observation in the training set (colors indicate

class membership). (B) Proximities are visualized in a heatmap, where each entry represents the proximity

for a pair of observations (colors indicate class membership, darker colors represent higher values). (C)
Visualization of prototypes, where each line represents the prototype of a predictor variable for a speci�c

observation in the training set (colors indicate class membership). (D) Interactions are visualized in a

heatmap, where each entry represents interaction between a pair of observations (the darker the color, the

stronger the interaction). Reprinted from (Cutler et al., 2004)

A di�erent way to interpret the results of a RF model is to visualize the relationship between

predictor and response variables through so-called partial dependence plots. Partial dependence

plots decompose the high dimensional prediction function into a sequence of partial functions:

f (X ) = f1(X1) + f2(X2) + … + fp(Xp)

which can be each represented in a two-dimensional plot (Figure 3.9), representing the relationship

of one predictor variable to the response (implemented for instance in the package R package

edarf (M. Jones et al., 2016)). Interactions between predictor variables, which were captured by

the RF model, can be visualized in 3D plots of the two interacting predictor variables and the

response variable. However, with increasing number of predictor variables it becomes hard to

identify the pairs of interacting predictor variables or to capture latent interaction e�ects. The

Forest Floor package extends the idea of partial dependence plots to identify latent interactions

between predictor variables and applies a color gradient to each 2D partial dependence plot to

identify and highlight interactions between predictor variables (Welling et al., 2016).
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Figure 3.9: Partial dependence plots for RF visualizations. Example of a partial dependence plot for

�ve di�erent predictor variables, representing the relationship between predictor and response variable

(x-axis: predictor variable; y-axis: predictions from a RF model). The plot for the Age on Election Day

predictor variable, shows for instance that low values of the predictor variable are related to the negative

class, while high values are related to the positive class. Reprinted from (M. Jones et al., 2016).
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Advantages of using Random Forest Models

In molecular biology, we often have the case that di�erent biological pathways with di�erent

interacting factors lead to the same outcome, e.g. a set of genes belonging to the positive class

is transcriptionally activated by pathway A while the remaining genes of the positive class are

transcriptionally activated by pathway B. Those combinatorial patterns are hard to detect by

simple ML classi�ers, like logistic regression models, which assume a linear relationship between

predictor and response variable. Non-parametric ML learning algorithm, like RFs, on the other

hand are able to approximate the relationship between predictor and response variables with

arbitrary functional forms that allow to capture complex higher-order interaction e�ects and

non-linear relationships between predictor and response variables. This in turn helps to uncover

the combinatorial interaction patterns of biological systems. Due to the random subsampling in

the splitting step of a RF model, they can be applied to problems where we have multicollinearity

among predictor variables or more predictor variables than observations (curse of dimensionality).

This is why RFs are also well suited for biological problems with large sets of correlating predictor

variables but limited amount of samples like in large-scale association studies for complex genetic

disease where each Single Nucleotide Polymorphism represeAlvareznts one predictor variable,

but often only few biological samples are available (Bureau et al., 2005; Díaz-Uriarte et al., 2006;

Lunetta et al., 2004). Additionally, RF has a variety of available interpretation measures that help

us to not only make accurate predictions with the learned model but also to understand the logic

behind those predictions. The underlying mechanisms that lead to a certain outcome can be

detected by measures like feature importance or proximities, which point to the most informative

predictor variables and help to �nd clusters of outcomes that are predicted by the same rules.

Be�er Practice for the Application of Random Forest Models

A RF model has two hyperparameters that have to be tuned during the training process: the

number of decision trees in the model and the number of predictor variables that get randomly

chosen at each split. As mentioned before, the generalization error of a RF model converges

to an upper bound if the number of trees in the forest is large enough. Hence, the number of

decision trees should be chosen as large as possible, limited by the available compute time, to

improve the predictive power and avoid over�tting of the model. The number of randomly chosen

predictor variables controls the amount of correlation between decision trees in the RF model. If

we choose a value equal to the number of input features, the RF model reduces to Bagging on

unpruned decision trees. As mentioned above, the generalization error of a RF model depends on

the strength of each individual decision tree (bias) and the correlation between those decision

trees (variance). By reducing the number of randomly selected features, we reduce the variance

of the model but at the same time we increase the bias of each individual tree because we might

not �nd the optimal predictor variable for each split. Hence, the number of randomly selected

features is a tradeo� between bias and variance in the model and we can use the OOB error to

�nd the best tradeo� for our model.

Another important issue is the training of a RF model on an unbalanced data set. Unbalanced

data sets usually have a large proportion of observations belonging to one class but only a small
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fraction belonging to the other class. Training a RF model on such a data set will result in large

variations between prediction errors for the di�erent classes because the algorithm will minimize

the overall error rate but not the error rates for each class. Hence, if the algorithm classi�es most

observations according to the bigger class, the overall error rate will be small but the error rate

for the small class might be very high, because most of its observations will be misclassi�ed. To

overcome this problem, two modi�cations to the RF algorithm exist: balanced RFs, where the

bigger class is undersampled and weighted RFs, where higher weights are assigned to the smaller

class when calculating the error rate.

3.3 unsupervised machine learning

Unsupervised machine learning (ML) methods analyse the underlying structures of the input data

X , to get a better understanding of the relationship between input features or between observa-

tions, without having an associated outcome Y that can guide the analysis. The most prominent

unsupervised ML approaches are clustering and dimensionality reduction which both try to

simplify the input data with di�erent strategies. Dimensionality reduction methods, like principal

component analysis or non-negative matrix factorization, transform the input data from a high-

dimensional into a low-dimensional representation through a small set of latent variables that are

inferred from the predictor variables and explain a good fraction of the variance in the input data.

Clustering on the other hand describes a group of methods which try to partition the input data

into previously unknown homogeneous subgroups or so-called ‘clusters’. The input data set can

be clustered based on the p input features, to �nd subgroups among observations, or based on

the n observations, to discover subgroups among features. Depending on the context, we can also

cluster the input data on both, observations and features simultaneously. Hence, in the further

description the term ‘instances’ as is used as a proxy for either observations, input features or both.

Clustering methods can be divided into hierarchical and non-hierarchical approaches. Hier-

archical clustering methods split the input data set recursively into two subclusters based on

pairwise dissimilarity measures until each cluster contains a single instance. In this thesis the

focus is on non-hierarchical clustering methods which seek to partition the input data into a

pre-speci�ed number of distinct and non-overlapping clusters such that the instances within each

subgroup are more similar to each other than to instances of other subgroups (Hastie et al., 2009;

Izenman, 2008). In the �nal clustering, each instance belongs to at least one of the clusters but no

instance belongs to more than one cluster.

To partition the input data into clusters, we �rst need to de�ne what it means for two instances

to be similar or dissimilar. The applied dissimilarity measure is computed from the input data and

usually varies between di�erent clustering methods, leading to quite di�erent clustering results.

Let xij be an instance of the input matrix with i = 1,… , n observation on j = 1,… , p input features,

then the pairwise dissimilarities between observations i and i
′

is de�ned by:

D(xi , xi ′) =

p

∑

j=1

dj(xij , xi ′j)



46 machine learning background

where dj(xij , xi ′j) is the dissimilarity between the values of the j
tℎ

input feature. Popular dissim-

ilarity measures for dj(xij , xi ′j) are the squared Euclidean distance: dj(xij , xi ′j) = (xij − xi ′j)
2

or

Manhattan City-Block distance: dj(xij , xi ′j) = |xij − xi ′j |. It should be noted that it is recommended

to standardize the input data when the input features are on di�erent scales and therefore the

variability between features is quite high. One of the most popular non-hierarchical clustering

methods is the K-means algorithm (MacQueen, 1967), where the squared Euclidean distance is

chosen as dissimilarity measure, requiring quantitative input data. K stands for the total number

of desired cluster and needs to be speci�ed beforehand. After choosing K , each instance will be

assigned to exactly one of the K clusters C1,… , CK such that the within-cluster variation across

all clusters is minimized:

minimizeC1,…,CK

{
K

∑

k=1

W (Ck)

}

where the within-cluster variation is de�ned by the average squared Euclidean distance:

W (Ck) =

1

|Ck |

∑

i,i
′
∈Ck

p

∑

j=1

(xij − xi ′j)
2

and describes how much the instances in each cluster di�er from each other, normalized by the

total number of instances in the k
tℎ

cluster |Ck |. To solve this minimization problem the K -means

algorithm (Figure 3.10, Algorithm 2) iteratively computes the centroids of each cluster (e.g. mean

over input features for the observations of the k
tℎ

cluster) and then assigns each instance to the

closest cluster (de�ned by the squared Euclidean distance).

Given: k=2
Randomly assign 
each instance to 

one cluster compute 
cluster centroid

reassign 
each instance to 
closest centroid

compute new 
cluster centroids

reassign 
each instance to 
closest centroid

repeat until 
no change

Figure 3.10: Steps in a K-means clustering algorithm. K -means clustering partitions unlabelled

data into a prede�ned number (K ) of clusters based on the computation of K cluster centroids and the

assignment of each instance to the closest centroid.
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Algorithm 2: K -means clustering

Input :data set X = (X1, X2,… , Xp),

number of clusters K

1) Randomly assign each instance to one of the K clusters and use as initial
cluster assignment

2) Reassign instances

1 repeat
2 for each cluster k:

3 a) compute cluster centroid

4 b) assign each instance to the closest centroid

5 until cluster assignment does not change;

The solution to the minimization problem obtained by the K -means algorithm will be a local

optimum, depending on the initial random assignment of instances to the clusters. Hence, it

is recommended to run the algorithm with di�erent initial assignments and then choose the

best solution based on the within-cluster variation of each clustering. In addition, the K -means

algorithm lacks robustness against outliers because the squared Euclidean distance in�ates the

large distances generated by the outlier.

A generalization of the K -means clustering methods to arbitrary de�ned dissimilarity measures

D(xi , xi ′) is the K -medoids method which is not restricted to the squared Euclidean distance

(Vinod, 1969). Hence, k-medoids is robust against outliers and the input data is not required to

be quantitative. In some settings the input data might be represented directly by a proximity

matrix, a symmetric n × n similarity matrix with non-negative entries and ones on the diagonal.

The K -medoids clustering method replaces centroids by medoids, which are a representative

instance for each cluster, i.e. an actual observation. Hence, we do not need to explicitly compute

cluster centroids from the original data. This in turn allows the application to input data that

is only represented by a proximity matrix because we can transform the proximity matrix (P )

into a distance matrix (D) with D = 1 − P . The PAM (Partitioning Around Medoids) algorithm is

an implementation of the K -medoids clustering (Figure 3.11, Algorithm 3), where the medoids

of each cluster are assigned initially at random and then replaced by another instance if the

exchange reduces the dissimilarity between instances within the cluster (Kaufman et al., 1990).
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Given: k=2
randomly assign 

k instances as
initial medoids

assign 
each instance to 
closest medoid

swap medoids with 
non-medoid instance 

if total dissimilarity 
is reduced

reassign 
each instance to 
closest medoid

repeat until 
no change

Figure 3.11: Steps of Partitioning Around Medoids clustering. PAM clustering partitions unlabelled

data into a prede�ned number (K ) of clusters based on the selection ofK cluster medoids and the assignment

of each instance to the closest medoid.

Algorithm 3: Partitioning Around Medoids clustering

Input :distance matrix D(xi , xi ′),

number of clusters K

1) Randomly assign K instances as initial medoids

2) Reassign instances

1 repeat
2 for each cluster k:

3 a) assign each non-medoid instance to the nearest medoid

4 b) swap medoid with non-medoid instance if the total dissimilarity to all other

instances in the cluster is reduced

5 until cluster assignment does not change;

Since K -medoids clustering can be applied on proximity matrices, we can use this clustering

method to further interpret the results of a RF model. Clustering the observation of a RF model

based on their proximities can help to �nd groups of observations that are classi�ed by a similar

set of rules and to determine the features that de�ne the di�erent groups of observations. A

complete description of this approach and an application to Xist -mediated gene silencing during

X-chromosome inactivation is given in Chapter 7.
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The dynamics of X-Chromosome Inactivation (XCI) as well as the di�erent properties of the

inactive X chromosome (Xi) have been widely studied with di�erent in vivo and in vitro mouse

models. The prevailing in vitro system to study random XCI are female mouse embryonic stem cells

(mESCs), which have two active X chromosomes and recapitulate random XCI when di�erentiation

is triggered. mESCs are derived from the inner cell mass (ICM) of preimplantation embryos and

are considered to be in ground/naïve state, which is characterised by the ability to form any cell

type of the embryo proper upon di�erentiation (Vallot et al., 2016). Female trophoblast stem cells

on the other hand, can be used to study imprinted XCI in vitro. Trophoblast stem cells are derived

from the trophectoderm or extraembryonic ectoderm, where imprinted XCI with an inactivated

paternal X chromosome is retained (Roberts et al., 2011). In vivo studies of random XCI usually

analyse di�erent mouse tissues, where di�erentiation and thus random XCI has already occurred,

while in vivo studies of imprinted XCI follow early embryonic development from the 2-cell until

blastocyst stage, where imprinted XCI is established.

4.1 in vivo and in vitro mouse models are used
to identify escapees

Several genome-wide studies have analysed gene silencing kinetics during random XCI and

have identi�ed genes that escape random XCI (Andergassen et al., 2017; Berletch et al., 2015;

Borensztein et al., 2017; Calabrese et al., 2012; Marks et al., 2015; Splinter et al., 2011; Wu et al.,

2014; Yang et al., 2010). Depending on the study design either in vivo or in vitro mouse models are

used to identify escaping genes. In vivo studies use di�erent types of mouse tissue with concluded

random XCI (e.g. Brain, Ovary, Spleen) to analyse the tissue-dependency of escapees. In such

studies, escapees can be identi�ed with RNA �uorescent in situ hybridization (FISH) experiments,

where the absence or presence of an RNA is measured through �uorescent probes that bind to

candidate genes via sequence complementarity (Hosoi et al., 2018). In vitro studies di�erentiate

mESCs into speci�c cell types to identify escapees or combine di�erentiating mESC models with

time course experiments to follow gene silencing kinetics during the process of random XCI.

During random XCI either the paternal or maternal X chromosome becomes silenced. Hence, to

follow the silencing dynamics on the X chromosome or to determine the silencing status of X

chromosomal genes, the silenced X chromosome has to be identi�ed. Some studies use a Hprt
mutation test to separate cells with a Hprt mutation on Xa, which become resistant to the toxic

Purinbase 6-Thioguanin, from the remaining cells via �ow sorting (Albertini, 2001), while other

studies completely skew XCI towards a pre-speci�ed X chromosome, i.e. through insertion of

a stop signal in the Xist antisense transcript Tsix . Once the Xi is identi�ed, allele-speci�c gene

expression analysis can be used to determine the amount of expression coming from Xi and

49
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Xa. Highly polymorphic hybrid mouse lines are used to measure allele-speci�c gene expression.

Such hybrid mouse lines are derived from an intercrossing of two genetically distant mouse

strains (typically Mus musculus domesticus (C57BL/6J) is crossbred with either Mus musculus
castaneus (CAST/Ei) or Mus spretus), each with a distinct Single Nucleotide Polymorphism (SNP)

pattern. Allele-speci�c RNA-seq exploits the strain-speci�c SNPs to measure allele-speci�c gene

expression by counting the allele-speci�c reads that contain strain-speci�c SNPs (Babak et al.,

2008; Lu et al., 2017). Allele-speci�c gene expression is then used to map gene expression back

to the Xi and Xa in order to follow the silencing dynamics on the Xi or to identify silenced or

escaping genes on the Xi (note: only genes containing strain-speci�c SNPs can be analysed with

allele-speci�c RNA-seq). The majority of studies de�ne silenced or escaping genes as genes, which

have an allele-speci�c Xi expression < 10% or ≥ 10% of the active X chromosome expression

levels, respectively.

Few studies focus on imprinted XCI, where the paternal X chromosome is always inactivated and

hence, the Xi is already known beforehand (Andergassen et al., 2017; Borensztein et al., 2017;

Calabrese et al., 2012). Those studies identify escapees in extraembryonic tissue or follow early

embryonic development with allele-speci�c RNA sequencing. Details for each study are listed in

Table 4.1.

Table 4.1: Genome-wide XCI studies that identify escapees. The column # is used to reference

each study in the text. The column study references the corresponding publication. The column XCI
speci�es if random or imprinted XCI was studied and if the study was conducted in vivo or in vitro. The

column Experiment speci�es what kind of experimental technique was used to identify escapees. The last

column Mouse model speci�es a) which mouse strains were crossbred, b) which cell types or tissues were

analysed and c) which chromosome was silenced and the corresponding technique to select the inactive X

chromosome.

# Study XCI Experiment Mouse model

1 (Yang et al., 2010) random

(in vitro)

allele-speci�c

RNA-seq

a) M. spretus × C57BL/6

b) embryonic kidney cells

c) Xi: C57BL/6→ Hprt muta-

tion on M. spretus

2 (Splinter et al., 2011) random

(in vitro)

identi�cation of

new escapees

via 4C interac-

tions with known

escapees and

validation of new

escapees via allele-

speci�c RT-PCR on

genes with SNPs

a) C57BL/6 x CAST/Ei

b) mESCs di�erentiated into

NPCs

c) Xi: C57BL/6 or CAST/Ei→

clone extraction

3 (Calabrese et al., 2012) imprinted

(in vitro)

allele-speci�c

RNA-seq

a) C57BL/6 x CAST/Ei

b) trophoblast stem cells

c) Xi: paternal
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4 (Wu et al., 2014) random

(in vivo)

allele-speci�c

RNA-seq

a) C57BL/6 x CAST/Ei

b) brain tissue

c) Xi: C57BL/6→ Hprt muta-

tion on CAST/Ei

Xi: CAST/Ei → Hprt muta-

tion on C57BL/6

5 (Berletch et al., 2015) random

(in vivo)

allele-speci�c

RNA-seq

a) M. spretus × C57BL/6

b) spleen, ovary and brain tis-

sue

c) Xi: M. spretus → Xist mu-

tation on C57BL/6

6 (Marks et al., 2015) random

(in vitro)

allele-speci�c

RNA-seq

a) M.musculus 129 ×CAST/Ei

b) mESCs di�erentiated into

NPCs with time course data:

0, 2, 3, 4, 8 days after di�eren-

tiation

c) Xi: M. musculus 129 →

clone extraction or stop sig-

nal in Xist antisense tran-

script Tsix on M. musculus
129

Xi: CAST/Ei → clone ex-

traction

7 (Borensztein et al., 2017) imprinted

(in vivo)

allele-speci�c

RNA-seq

a) C57BL/6 x CAST/Ei b) time

course data: 2, 4, 8, 16, 32 cell

stage and blastocyst c) Xi: pa-

ternal

8 (Andergassen et al., 2017) imprinted

random

(in vivo)

allele-speci�c

RNA-seq

a) FVB/NJ × CAST/Ei

random XCI:

b) 5 embryonic, 2 neonatal

and 9 adult stage tissues

c) Xi: FVB/NJ → bias in Xist
expression

imprinted XCI: b) 3 extraem-

bryonic tissues c) Xi: paternal
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4.2 xist transgenes help to identify silencing
determinants

Transgenic mESCs with an inducible Xist transgene allow for tightly controlled expression of Xist
RNA. An inducible transgene can be integrated at di�erent X chromosomal or autosomal locations.

Such transgenic models can be used to access the silencing e�ciency of Xist in autosomes,

measured by the total number of silenced genes on the autosomes, in order to understand the

dependency of Xist on certain genomic conditions (Russell, 1963). For instance, Loda et al. induced

ectopic Xist expression from di�erent X-linked and autosomal (chromosome 12) loci in mESCs

to investigate the mechanisms of Xist-mediated gene silencing (Loda et al., 2017). They could

show that an Xist transgene can recapitulate Xist function in an autosomal context. However, the

silencing e�ciency was lower on chromosome 12 compared to chromosome X, indicating that

the silencing ability of Xist is independent of its genomic location, but the silencing e�ciency of

Xist is position dependent. Analysis of the silencing e�ciency on chromosome 12 revealed for

instance, that e�ciently silenced genes, which are located far from the Xist integration site, are

enriched for LINE elements around their transcription start site (TSS).

4.3 xist mutants help to understand the func-
tion of xist repeat elements

Several chromosome-wide studies used Xist mutants to analyse the importance of the di�erent

conserved Xist repeats-A to -F for the silencing function of Xist . Typically, Xist mutants have a

mutated Xist allele that produces an Xist RNA, which is lacking one of its repeat elements (Wutz

et al., 2002). Xist mutant studies can be used to analyse the impact of a speci�c repeat element on

imprinted XCI, where the paternal Xist allele is mutated. Sakata et. al. studied the importance of

the repeat-A element for the silencing function of Xist RNA during imprinted XCI in trophoblasts

(Sakata et al., 2017). The mutated Xist allele was expressed from its endogenous locus and produced

an Xist RNA that is lacking the repeat-A sequence. The mutated Xist RNA was able to coat the X

chromosome in cis but failed to silence the majority of X-linked genes. Surprisingly, it still retained

the silencing ability for a subset of X chromosomal genes, suggesting that not all X-linked genes

are silenced via the Xist repeat-A element. Other mutant studies analysed the contribution of Xist
repeats to random XCI, using an inducible mESCs system where the maternal or paternal Xist
allele is mutated. Bousard et al. created several Xist mutants in mESC, lacking the repeats-A,-B,-C

and -F (Bousard et al., 2019). The mutated Xist allele was mono-allelically upregulated from its

endogenous Xist locus with a tetracycline-inducible Xist promoter (Xist-tetOP), which can be

activated by doxycycline. For both repeat-A and repeat-BC mutants (Xist RNA lacking both,

repeat-B and -C), the authors measured the extent to which transcriptional silencing could still

be induced in both mutants via RNA-seq. Their analysis con�rmed that the repeat-A element is

important for the initiation of gene silencing and the repeat-B and -C elements are important

for the interaction with Polycomb Group Proteins. In addition, they could show that repeat-B

and -C elements are not necessary to initiate X-linked gene silencing but are rather important for

the stabilization of the repressive state. Similar results were reported by a study from Nesterova
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et al., where the repeat-A and repeat-BC mutants were created in mESCs carrying an inducible

endogenous Xist allele (Nesterova et al., 2019). The study showed that repeat-A and its interacting

partner SPEN is responsible for silencing the majority of X-linked genes, except a small fraction

of weakly expressed genes, while a deletion of the repeat-BC element leads to a complete loss of

Xist-dependent H2AK119ub and H3K27me3. Colognori et al. further investigated the role of the

repeat-B element in female mouse embryonic �broblasts, where the repeat-B element has been

deleted from endogenous Xist (Colognori et al., 2019). They could show that Xist and polycomb

complexes depend on each other and that the repeat-B element plays an important role in Xist
spreading and the formation of the Xist cloud.

4.4 in silico studies try to uncover genomic
properties that influence xist -mediated gene
silencing

The previous sections described how silenced and escaping genes can be identi�ed with di�erent

mouse models and how Xist transgenes and Xist mutants can be used to identify speci�c silencing

factors that in�uence silencing dynamics on the X chromosome. However, the relative contribu-

tion of each silencing factor and their possibly combinatorial nature is hard to access with studies

that focus on only a couple of speci�c factors or only on a set of certain X chromosomal genes.

To overcome this problem, few in silico studies used di�erent machine learning approaches to

systematically analyse the combination and contribution of sequence features and chromatin

states to Xist-mediated gene silencing on the X chromosome (Carrel et al., 2006; Nesterova et al.,

2019; Wang et al., 2006).

Early studies used statistical approaches to systematically investigate the relationship between

sequence features and X chromosome inactivation. Furthermore, machine learning models were

used to predict the silencing status of X chromosomal genes from sequence features (Carrel

et al., 2006; Wang et al., 2006). Both studies derived the silencing status of X chromosomal genes

from human �broblast-derived somatic cell hybrids containing one inactivated X chromosome.

Genes were de�ned as escapee if they were expressed in at least 75% (Wang et al., 2006) or 8

out of 9 (Carrel et al., 2006) hybrids. Carrel et al. identi�ed enriched oligomers in the neighbor-

hood of silenced and escaping genes: 12-mers that have a 5-fold enrichment around the TSS of

silenced vs escaping genes. The counts of overrepresented oligomers (in 50kb, 100kb and 250kb

windows) around the TSSs of silenced and escaping genes were used as input features for a linear

discriminant analysis (LDA) classi�er to predict the silencing status of X chromosomal genes

(silenced genes vs escapees). The classi�er achieved a leave-one-out CV performance of > 90%

accuracy (silenced: 93% and escapee: 90%) and test set performance of > 80% accuracy (silenced:

100% and escapee: 81%) for the 100kb window (best performance). However, an interpretation

of the classi�cation results was not possible, because the dimension of the input feature space

(248 overrepresented oligomers) was reduced by principal components analysis to �t the number

of genes in the training set (71 genes: 31 silenced and 40 escapees). Wang et al. systematically

analysed the neighborhood of silenced and escaping genes by comparing the distributions of DNA
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sequence features, including CpG islands, repeat counts as well as 3-mer and 5-mer sequence

counts, in di�erent windows (2kb up to 100kb) surrounding each gene TSS. Their analysis revealed

that the most informative window sizes are larger windows (50kb and 100kb), which show the

greatest di�erence between silenced and escaping genes for sequence features. Furthermore,

they could show that long long interspersed nuclear elements (LINEs) and mammalian-wide

interspersed repeat elements (MIRs) are signi�cantly enriched around TSSs of silenced genes,

while ALU repetitive elements as well as short motifs containing ACG/CGT are enriched around

TSSs of escapees. In addition, a linear Support Vector Machine (SVM) classi�er was trained on

110 X chromosomal genes with the described DNA sequence features (using only the 50kb and

100kb windows) as input features to predict the silencing status of X chromosomal genes. The

SVM model correctly predicted 81% of the genes (silenced: 85% and escapee: 76%), measured with

leave-one-out CV, and LINE-1 / LINE-2 elements were among the important classi�cation features.

However, both studies built their machine learning models only on a subset of X chromosomal

genes. Those genes lie on the X-added region (XAR), located on the shorter arm of the human X

chromosome, which contains about equal numbers of genes that are silenced and that escape X

chromosome inactivation. Both models show considerably lower performance when predictions

are made for all X chromosomal genes: the LDA classi�er achieved an accuracy of 56% for silenced

and 80% for escapees; the SVM classi�er achieved an accuracy of 92% for silenced but only 17%

for escapees. Furthermore, model predictions of both models were not validated experimentally.

A more recent study, used a machine learning model to identify key determinants of gene silencing

e�ciency during XCI (Nesterova et al., 2019). Gene silencing e�ciencies of X chromosomal genes

were measured with allele-speci�c Chromatin RNA-seq before (day 0) and after induction of Xist
(day 1) in an inducible mESC system under di�erentiating conditions (129 × Cast mESC line (XX)

with an Xist-tetOP):

SE =
[

Xi

X i + Xa]
day1

−
[

Xi

X i + Xa]
day0

where Xi and Xa indicate expression from the inactive and active allele, respectively. Genes with a

silencing e�ciency SE < −0.2were de�ned as highly silenced, while genes with −0.05 < SE < −0.2

were de�ned as lowly silenced. ChromHMM was used to assign one of 12 mESC chromatin states

(e.g. heterochromatin, active promoter or gene body) to each gene promoter based on a 4kb

window around the gene TSS. A Random Forest model was used to predict the silencing e�ciency

of X chromosomal genes (highly vs lowly silenced) based on the chromatin state of the gene

promoter, the gene expression level at day 0 as well as the linear and 3D distance of the gene

promoter to the Xist locus. Feature importance identi�ed the linear and 3D distance to the Xist
locus as well as active promoter and repressed chromatin states as the most informative features.

However, the results are hard to interpret because chromatin states summarize several epigenetic

marks in one state and do not provide a detailed view on the importance of speci�c epigenetic

marks. In addition, the model performance was not striking with an AUC of 0.71.

The models described above show that the usage of machine learning models is a good approach

to systematically analyse the impact of epigenetic or DNA sequence features on Xist-mediated

gene silencing. However, all models show some drawbacks (e.g. lack of generalizability to all

X-linked genes or di�culty to interpret the model results), which can be avoided by building an

integrative machine learning model that includes as many epigenetic but also genomic features as
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available and is trained on all, not just a subset of well-suited, X chromosomal genes. Such a model

could help to understand the interplay between known silencing factors and potentially uncover

new players in the XCI process - an important �rst step towards a system-level understanding of

the XCI process.
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S I L ENC ING DYNAM ICS

Gene silencing dynamics during the process of XCI are usually measured in di�erentiating

mouse embryonic stem cells (mESCs) (see Section 4.1 for an overview on di�erent mouse model

systems). Such mouse models limit the temporal resolution of population measurements due

to the asynchronous nature of the XCI process in di�erentiating mESCs. Here, an inducible

mouse model system was used that allowed to overcome the asynchronous nature of XCI by

inducing Xist expression through a doxycycline-inducible promoter from its endogenous locus.

The inducible system was combined with an allele-speci�c Precision nuclear Run-On sequencing

(PRO-seq) time course experiment to quantify chromosome-wide gene silencing dynamics with

high temporal resolution. In comparison to mRNA-seq, which is commonly used to quantify gene

silencing dynamics (see Section 4.1), PRO-seq measures gene expression at the level of nascent

transcriptome, which allows a direct readout of gene silencing dynamics.

5.1 experimental data

Changes in X chromosomal gene expression were measured after ectopic Xist induction in a time
course experiment with dense temporal resolution. The female TX1072 mESC line was used for

this experiment. This cell line is derived from a cross between the two mouse strains C57BL/6

(B6) x CAST/EiJ (Cast ) and carries a doxycycline-inducible promoter in front of the Xist gene

on the B6 X chromosome that can be activated by doxycycline (dox) (Schulz et al., 2014). Xist
up-regulation from the endogenous locus on the B6 X chromosome was induced through dox

treatment and allele-speci�c gene expression was measured before and at di�erent time points

after dox treatment with two di�erent high-throughput techniques: PRO-seq and mRNA-seq

(Figure 5.1).

PRO-seq experiment. Xist expression was induced by dox treatment in undi�erentiated female

TX1072 mESCs and the nascent transcriptome was measured by allele-speci�c PRO-seq at dif-

ferent time points up to 24 hours (h) of dox treatment (Section 2.1.4 for further details on the

PRO-seq protocol). Samples were collected before (0h) and at time points 0.5, 1, 2, 4, 8, 12 and 24h

after dox treatment. The gene expression on the B6 X chromosome decreases gradually over

time, with most genes being silenced after 12h - 24h (Figure 5.2A). Samples before and after 24h

of dox treatment were collected in duplicate to be able to assess reproducibility. The obtained

allele-speci�c sequencing data is highly reproducible, since replicates generated for the �rst and

last time point of the experiment (0h, 24h) are strongly correlated (Pearson correlation > 0.94;

(Figure 5.2B). The PRO-seq procedure and allele-speci�c mapping of PRO-seq reads is described

in more detail in the Appendix (Section A.1) as it was done by Laurene Syx (Heard Lab).

57
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Figure 5.1: Measuring gene silencing dynamics. Schematic overview of the experimental setup used for

PRO-seq and mRNA-seq experiments. The used hybrid female mESC line (B6 × CAST ) carried a doxycycline-

inducible promoter (tetOP) in front of the endogenous Xist gene on the B6 allele. Xist expression was

induced through dox treatment and silencing kinetics were measured through allele-speci�c PRO-seq or

mRNA-seq at di�erent time points.

mRNA-seq experiment. Two additional data sets were generated to analyse the e�ects of

ectopic XCI. Allele-speci�c mRNA-seq was performed in undi�erentiated and di�erentiating

female TX1072 mESCs before and after dox treatment (Section 2.1.4 for further details on the

mRNA-seq protocol). For undi�erentiated mESCs, allele-speci�c mRNA-seq data was collected

before (0h) and at time points 2, 4, 8, 12 and 24h after dox treatment with two replicates for each

time point. The majority of genes on the B6 X chromosome is silenced after 12h - 24h, as observed

for the PRO-seq experiment (Figure 5.2A). For di�erentiating mESCs, allele-speci�c mRNA-seq

data was collected before (0h) and at time points 8, 16, 24 and 48h after dox treatment with two

replicates for each time point (Figure 5.2A). The mRNA-seq procedure and allele-speci�c mapping

of mRNA-seq reads is described in more detail in the Appendix (Section A.1) as it was done by

Laurene Syx (Heard Lab).

Pyrosequencing experiment. A pyrosequencing experiment was performed for validation

of a few candidate genes (silenced genes and escapees) that were not captured in the PRO-seq

experiment (Section 2.1.4 for further details on the pyrosequencing protocol). Samples were

collected before dox treatment (0h) and at time points 4, 8, 12, 24h after dox treatment with 3

replicates for each time point. The pyrosequencing procedure is described in more detail in the

Appendix (Section A.1).

All data described above was generated by our collaborators in the Labs of Edith Heard (Laurene

Syx, Julie Chaumeil, Christel Picard, Chong-Jian Chen), John Lis (Iris Jonkers) and Edda Schulz

(Ilona Dunkel). Edda Schulz provided the TX1072mESCs line. Iris Jonkers performed the PRO-seq

experiment and Chong-Jian Chen as well as Laurene Syx processed the allele-speci�c PRO-seq

data. Julie Chaumeil and Christel Picard performed both mRNA-seq experiments and Laurene

Syx processed the allele-speci�c mRNA-seq data. Ilona Dunkel performed the pyrosequencing

experiment. All generated raw and processed sequencing data was submitted to the NCBI Gene

Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession number

GSE121144. The �rst quantitative analysis (Figure 5.2) as well as all subsequent analysis steps

were done by Lisa Barros de Andrade e Sousa (Marsico Lab).

http://www.ncbi.nlm.nih.gov/geo/
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Figure 5.2: Allele-speci�c data obtained from time course experiments. (A) Comparison of PRO-seq

(undi�erentiated mESC, upper panel) and mRNA-seq data (undi�erentiated mESCs, middle panel; di�er-

entiated mESCs, lower panel). Fraction of B6 reads are shown for all genes covered in all three data sets,

ordered by genomic position. (B) Scatterplots of the log10 RPKM of all covered autosomal genes of no

doxycycline sample A and B (upper panel) and doxycycline 24 hours sample A and B (lower panel). The

data was highly reproducible, since replicates generated for the �rst and last time point of the experiment

are strongly correlated.

5.2 silencing half-times as measure of silenc-
ing dynamics

To quantify the changes in silencing dynamics of X chromosomal genes due to Xist activation,

we estimated gene-speci�c silencing half-times that indicate the time point when transcription

from the B6 X chromosome is reduced by 50% compared to the uninduced control.
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Figure 5.3: Computation of silencing half-times. (A) Schematic overview on how gene silencing

half-times were estimated from allele-speci�c time course data through �tting of an exponential decay

function. (B) Three examples of �tted gene silencing half-times (in parentheses) from the PRO-seq data

set: one early silenced gene (Stard8), one late silenced gene (Piga) and one potential escapee (Otud5).
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To calculate gene-speci�c silencing half-times, we normalized the allele-speci�c PRO-seq and

mRNA-seq counts for sequencing depth, corrected for basal skewing (di�erent transcriptional

activity at the two active X chromosomes in the absence of dox) and �tted an exponential decay

function to the time course data of each gene from which we estimated the gene-speci�c silencing

half-time (Figure 5.3A), as described in detail in the next paragraph.

Out of 2610 genes annotated on chromosome X, 1630 genes had at least one SNP and could be

used for allele-speci�c mapping. In order to con�dently compute silencing dynamics using read

coverage from all time points, we discarded genes without a minimum read coverage of > 10

reads for all time points (Table 5.1).

Table 5.1: Filtering steps in computation of gene half-times.

�ltering step # of genes after �ltering

PRO-seq mRNA-seq undi�. mRNA-seq undi�.

genes annotated on Chromosome X 2610

genes containing at least one SNP 1630

minimum read coverage per timestep > 10 341 374 401

basal skewing between 0.2 and 0.8 330 353 379

sqrtRSS < 1.5 296 346 379

active TSS identi�ed 280 320 349

For each gene, the reads mapping to the B6 genome were divided by the total number of allele-

speci�c reads to normalize for sequencing depth:

f
t

B6
=

reads
t

B6

reads
t

B6
+ reads

t

CAST

For the PRO-seq data set, f
t

B6
was averaged across replicates (0, 24h), resulting in a total of eight

time points (t = 0, 0.5, 1, 2, 4, 8, 12, 24h). For the undi�erentiated mRNA-seq data set we discarded

replicate B due to insu�cient read coverage and only used replicate A, resulting in a total of

six time points (t = 0, 2, 4, 8, 12, 24h). For the di�erentiated mRNA-seq data set we averaged f
t

B6

across replicates for each time point, resulting in a total of �ve time points (t = 0, 8, 16, 24, 48h).

Genes with a strong basal skewing, showing di�erent transcriptional activity at the two active

X chromosomes in the absence of dox, (f
0

B6
< 0.2 or f

0

B6
> 0.8) were removed from the data set

(Table 5.1). The allelic ratio for the normalized counts was calculated as follows:

ratio
t
=

read
t

B6

read
t

CAST

=

f
t

B6

1 − f
t

B6

and normalized to the uninduced control (t = 0) to correct for basal skewing:

norm
t
=

ratio
t

ratio
0
=

f
t

B6

1 − f
t

B6

×

1 − f
0

B6

f
0

B6
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The expectation is that gene transcription gradually reduces over time due to Xist-mediated

silencing. Exponential decay functions are typically used to model transcript decay over time

(Lugowski et al., 2018; Rabani et al., 2011; Wada et al., 2017). The transcript abundance at a given

time point t (N (t)) is de�ned by two parameters, the abundance at t = 0 (N0) and the decay rate

(k). Hence, the amount of remaining transcripts at time point t is described by the equation:

N (t) = N0 × e
−kt

In our case, k represents the silencing rate of a speci�c gene, the transcript abundance N (t) is

given by the normalized counts norm
t

and N0 = 1 because the data is normalized to the uninduced

control. The equation can be �t to the time course data using nonlinear least squares, which is

implemented in the nls function of the stats R package. Once the exponential decay function
is �t, the half-time of each gene can be calculated as:

t1/2 =

ln(2)

k

A maximum value of k = 5 was de�ned (corresponding to a half-time of 3.5 days) as higher

half-times cannot be reliably estimated from our data, due to the limited range of time points

from 0 to 24h / 48h. The goodness of �t was evaluated via the square root of the sum of squared

residuals sqrtRSS, de�ned as:

sqrtRSS =

√

∑

t

(norm
t
−N (t))

2

Genes with sum of squared residuals sqrtRSS > 1.5 are indicative of a bad exponential �t and

were discarded (Table 5.1).

The resulting silencing half-times range from 0 to 3.5 days. Genes with low silencing half-times

are silenced very early during XCI process, whereas high silencing half-times are indicative of

potential escapees (Figure 5.3B).

5.3 identification of active transcription start
sites

Since we wanted to associate silencing dynamics with promoter features in the downstream

analysis (Chapter 6), we further �ltered out genes, for which no active transcription start
site (TSS) could be identi�ed. To identify the active gene TSS that is used in embryonic stem cells,

we annotated regulatory regions (RR) based on the PRO-seq data before dox treatment (0h)

with the dREG tool (Core et al., 2014; Danko et al., 2015). RRs are de�ned as regions which harbor

bidirectional transcription from the PRO-seq signal. Both replicates were analysed separately

and de-novo RRs with a quality score of 0.8 or higher were selected. Those RRs are indicative

of active TSSs and were used to assign each gene to its active TSS (Figure 5.4A with example in

Figure 5.4B).
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Figure 5.4: Assignment of X-linked gene to its active TSS. (A) GENCODE M9 gene annotation (blue)

and annotated regulatory regions (orange) from the PRO-seq data (0h), identi�ed with the dREG tool (Core

et al., 2014; Danko et al., 2015) are used to assign each gene to its corresponding active TSS (red box, panel

1-3). Genes, for which no regulatory region can be identi�ed within +/ − 1000bp around the annotated

gene TSS, were discarded (panel 4). (B) As an example, the Mecp2 gene on the (−) strand of chromosome X

is shown. Its assigned active TSS is the one corresponding to isoform 2, as it overlaps a regulatory region

de�ned by a bi-directional peak in the PRO-seq track.

Regulatory regions with overlapping genomic ranges between replicates were merged into one

region. Most of the identi�ed RRs overlapped known gene promoters. If a RR was found within

+/ − 100bp of an annotated gene TSS, the TSS was chosen as active TSS for that gene (Figure 5.4A,

panel 1). If multiple gene TSSs were found to overlap RRs, the TSS overlapping the RR with the

strongest signal (i.e. highest score) was chosen for that gene (Figure 5.4A, panel 2). If no RR was

found within +/ − 100bp of an annotated gene TSS, the genomic search space was extended to

+/− 1000bp. If a RR could be found within +/− 1000bp of an annotated gene TSS, a novel alternative

TSS, coincident with the middle point of the RR, was de�ned for that gene (Figure 5.4A, panel 3).

If no RR could be found also within the enlarged region, the gene was discarded (Figure 5.4A,

panel 4). For the PRO-seq data set, we �ltered out 16 genes for which the active TSS could not be

de�ned con�dently, leading to a �nal data set of 280 genes with assigned active TSS on mouse

genome mm10 for which we could estimate silencing half-times (see Supplemental Table S2 in

Barros de Andrade E Sousa et al., 2019). For both mRNA-seq data sets, we �ltered out 26 and

30 genes without active TSS (via the regulatory regions de�ned with the PRO-seq data set) for
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undi�erentiated and di�erentiated mESCs, respectively. The remaining genes were mapped to the

mouse genome mm9 with the liftOver tool from UCSC Genome Browser (Kuhn et al., 2007)).

For 233 genes, half-time could be estimated from all 3 data sets. The estimated half-times of all

three data sets ranged from several hours up to several days (Figure 5.5).
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Figure 5.5: Distribution of silencing half-times. Distribution of computed half-times for X-linked

genes of PRO-seq (undi�erentiated mESCs) and mRNA-seq (undi�erentiated and di�erentiated mESCs)

experiments.

5.4 comparison of in vitro and in vivo silencing
dynamics

Xist started to be upregulated from the B6 X chromosome about 1h after dox treatment and reached

a plateau after 4h (Figure 5.6A, Figure A2). Global gene expression on the B6 X chromosome was

gradually reduced over time, starting at 4h of dox treatment, while autosomal gene expression

stayed constant over time, showing that only X-linked genes are a�ected by Xist-mediated gene

silencing (Figure 5.6B).
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Figure 5.6: Xist expression over time. (A) Xist expression from the B6 and Cast chromosomes for

PRO-seq experiment over 24 hours time course. (B) Distribution of the fraction of B6 reads for autosomal

and X-linked genes over time in undi�erentiated mESCs (PRO-seq). (C-D) Xist expression from the B6 and

Cast chromosomes in undi�erentiated mESCs and di�erentiated mESCs measured by mRNA-seq over 24

and 48 hours time course, respectively.

To ensure that the relative silencing dynamics across genes, when XCI is induced in undi�eren-

tiated mESCs, are comparable to those in the cellular context where XCI occurs endogenously,
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we generated two additional data sets, where allele-speci�c mRNA-seq was performed at dif-

ferent time points of a 24h and 48h dox treatment in undi�erentiated and di�erentiating
mESCs, respectively (Section 5.1, Figure 5.6C-D). The computed half-times were comparable

between these two data sets (Figure 5.7A, Pearson correlation coe�cient: r = 0.75), suggesting

that the di�erentiation process only has a minor impact on relative gene silencing dynamics.

When comparing half-times estimated from the two di�erent data types (mRNA-seq vs PRO-seq)

correlation was generally a bit lower, independent of the cellular context (Figure 5.7B, Figure 5.7C,

Pearson correlation coe�cient: r = 0.52 and r = 0.51), which would be expected given that

PRO-seq measures the direct transcription dynamics, whereas mRNA-seq kinetics are in�uenced

by transcription, RNA-processing and degradation.
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Figure 5.7: Comparison of PRO-seq-based silencing half-times to mRNA-seq data sets. (A-
C)Comparison of estimated half-times (in days) between PRO-seq and mRNA-seq data sets with �tted

regression lines (red). Pearson correlation coe�cients are indicated.

In addition, we compared our estimated half-times to previous studies, which identi�ed genes

that escape random XCI in vitro and in vivo (Table 4.1 study #1, #2, #4, #5, #6). Genes that were

identi�ed as escapee in at least one study have signi�cantly higher half-times than genes that were

not identi�ed as escapee (Wilcoxon Rank Sum Test: p = 9.06 × 10
−6

, Figure 5.8A), indicating that

our estimated half-times recapitulate the �ndings of previous studies. Interestingly, constitutive
escapees (genes identi�ed as escapee in at least three samples/tissues) have higher half-times

than facultative escapees (ANOVA Tukey Test: p = 0.05, Figure 5.8B), suggesting that facultative

escapees are subject to XCI in our data set because they are speci�c to other cell types. To ensure

that in vitro studies are comparable to in vivo studies, we compared the escapees identi�ed in

studies #1, #2 and #6, which were conducted in vitro, to those of studies #4 and #5, which were

conducted in vivo. Most facultative escapees (> 90%) are only identi�ed by either in vitro or in
vivo studies while all constitutive escapees are identi�ed by both types of studies, suggesting that

the identi�cation of escapees is not a�ected by the study type itself but rather by the cell-type

speci�city of certain escapees.

Furthermore, we compared our computed half-times to the silencing classes de�ned in study

#6 (Marks et al., 2015), which used a dox-independent strategy to make XCI non-random. The

di�erent silencing classes in this study (early, intermediate, late, escapee) were de�ned based on

time course data measured during di�erentiation of mESCs into Neural Progenitor Cells (NPCs).

The de�ned silencing classes are in good agreement with the half-times estimated from the

PRO-seq data (Figure 5.8C), which suggests that dox-induced XCI recapitulates endogenous gene
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silencing dynamics. We also compared our Xist-induced gene silencing half-times in mESCs

to the dynamics of imprinted XCI measured in pre-implantation mouse embryos of study #7

(Borensztein et al., 2017). The gene classi�cation in that study (early: 16-cell stage; intermediate:

32-cell stage; late: blastocyst stage or escapee: still expressed in blastocyst stage) was once more

in good agreement with the silencing half-times estimated from the PRO-seq data (Figure 5.8D).
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Figure 5.8: Comparison of PRO-seq-based silencing half-times to silencing classes of previous
studies. (A) Distribution of computed silencing half-times for genes previously identi�ed as non escapees

and escapees (Table 4.1 studies #1, #2, #4, #5, #6) (B) Distribution of half-times for genes de�ned as

constitutive escapees (identi�ed in at least 3 tissues/samples) or facultative escapees, which are potentially

cell-type speci�c escapees. (C) Distribution of half-times within silencing classes de�ned previously in

di�erentiating mESCs (Table 4.1 study #6). (D) Distribution of half-times within silencing classes de�ned

previously in pre-implantation mouse embryos (Table 4.1 study #7).

In conclusion, estimated half-times were comparable between undi�erentiated and di�erentiated

mESCs, suggesting that random XCI is mainly dependent on the silencing function of Xist and less

dependent on the accompanying di�erentiation process. Furthermore, a comparison to previous

studies on random XCI, suggests that our dox-inducible in vitro mouse model recapitulates

endogenous gene silencing dynamics and is comparable to in vivo mouse models. However, in

contrast to previous studies, we are able to follow silencing dynamics on the Xi with a high

temporal resolution (resolution in hours vs resolution in days (Marks et al., 2015)), which gives us

the possibility to not only distinguish between silenced genes and escapees but to also di�erentiate

between genes that are silenced very early in the silencing process and genes that are silenced

with slower kinetics. The computed silencing dynamics will be used in the next Chapter as input

for a machine learning model to better understand the dependency of Xist-mediated silencing on

epigenetic, genomic and DNA sequence factors.
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Chapter 6 explains and introduces the machine learning (ML) model used to predict gene silencing

dynamics on the X chromosome. A schematic overview of the di�erent steps required to build

such an ML model is given in Figure 6.1. First, di�erent epigenetic and genomic data sets were pre-

processed and integrated into one feature matrix (Figure 6.1A, Section 6.1). Second, an ML model

was trained on the integrated feature matrix (Section 6.2.1 and Section 6.2.2) and its predictions

were validated with di�erent experimental approaches (Figure 6.1B, Section 6.2.3). The last step,

described in Chapter 7, focuses on the interpretation of the trained machine learning (Figure 6.1C).
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Figure 6.1: Schematic overview of our modeling approach. (A) Epigenetic and genomic as well

DNA sequence feature input data for the model are collected, and feature matrices are computed for

all X-linked genes with estimated half-times (labeled) and without estimated half-times (unlabeled). (B)
After model training, the XCI/escape model is then used to predict the silencing class of all unlabeled

X-linked genes given the same set of input features. The predictions are validated by comparing them

to measured half-times from undi�erentiated mRNA-seq data, with pyrosequencing experiments (few

selected genes) and with measured silencing dynamics of genes in six transgenic mESCs clones. (C) A

forest-guided clustering approach was developed for model interpretation. A proximity matrix between

genes is computed from the trained model and converted into a distance matrix. Clusters of genes and

their most signi�cant associated features are displayed as a heatmap.
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The code for the modelling pipelines and the di�erent feature interpretation approaches is available

on GitHub: https://github.com/marsicoLab/xist_mediated_gene_silencing.

6.1 feature engineering

To analyse the impact of epigenetic and genomic factors as well as primary DNA sequence
elements on the silencing status of X chromosomal genes, we collected a large amount of di�erent

data sets from various sources (Figure 6.1A). Epigenetic features were computed from high-

throughput data sets (ChIP-seq and Bisul�te-seq) measuring genome-wide signals of chromatin

modi�cations, chromatin modi�ers, Transcription Factor (TF) binding and components of the

transcriptional machinery. Since these data sets were generated in undi�erentiated mESCs, they

correspond to the chromatin state before Xist induction. In addition to the epigenetic features,

we de�ned several genomic and structural features, such as gene density, the frequency of 3D

chromatin interactions with di�erent genomic elements and the linear distance to other genomic

features, such as the distance to the Xist locus or the next full-length LINE element. DNA sequence

features were represented by the distribution of k-mer sequences in a de�ned genomic window.

A complete list of the features used in the model is given in (Table 6.1). Since we wanted to

analyse the predictive power of epigenetic and genomic features from two di�erent cis-regulatory

elements - promoters and enhancers - we either used the active gene transcription start site (TSS)

(see Section 5.3 for identi�cation of active TSSs) or the center of the enhancer region as reference

point for the computation of the di�erent model features described below.

https://github.com/marsicoLab/xist_mediated_gene_silencing
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Table 6.1: Overview on di�erent features used for modeling.

Epigenetic features transcriptional regulators CDK9, E2F1, HCFC1, MAX, MED1, MED12,

NIPBL, RNAPII (unphosphorylated, S2p, S5p,

S7p), SIN3A, TAF1, TAF3, TBP, MYC, ESRRB,

KLF4, MAFK, NANOG, MYCN, OCT4, SOX2,

TCF3, TCFCP2L1, YY1, ZNF384

histone modi�cations

activation: H3K27ac, H3K9ac, H3K4me1,

H3K4me3, H3K36me3, H3K79me2

repression: H2AK119ub1, H3K27me3)

DNA modi�cations DNA methylation (BS-seq), 5fC (MeDip),

5hmC (MeDip

chromatin remodelling

complexes

RING1B (PRC1), CBX7 (PRC1) RYBP

(PRC1), KMT6/EZH2 (PRC2), SUZ12 (PRC2),

KMT2B/MLL2, KDM1A/LSD1, KDM2A,

KDM2B, HDAC1, HDAC2, HDAC3, TET1

structural proteins CTCF, SMC1, SMC3

others H2A.Z, OGT, BRG1, CBX3

Genomic features genomic elements distance to the Xist locus, TAD borders, LADs,

full-length LINEs

overlap with Xist entry sites, LADs, CpG is-

lands

density of genes (1 Mb) and full-length LINE

(700 kb)

CpG content

3D structure number Hi-C all, Hi-C promoter, HiCap all,

HiCap promoter, HiCap enhancer

strength Hi-C all, Hi-C promoter, Hi-C Xist

DNA sequence
features

density of 3-mers (100 kb), density of 5-mers (100 kb)

6.1.1 Epigenetic Features

ChIP-seq experiments are the standard tool for genome-wide pro�ling of protein-DNA interac-

tions, including TF binding, RNAPII occupancy and epigenetic modi�cations (see Section 2.1.4

for further description of ChIP-seq experiments). We downloaded a collection of 138 publicly

available ChIP-seq libraries on undi�erentiated mESCs with matching control libraries from

the Gene Expression Omnibus (GEO) database (Edgar et al., 2002) (Table A1). ChIP-seq and control

reads (downloaded as sra or fastq �les) were aligned to the mouse genome mm9 with Bowtie2

(with number of mismatches = 1) (Langmead et al., 2012). Obtained sam �les were converted

into bam �les using samtools, only keeping alignments with a MAPQ score > 10 (Li et al., 2009).
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Replicates were pooled for further analysis to obtain better coverage. All ChIP libraries containing

less than three million uniquely mapped reads were removed from the collection, as the read

coverage would be too sparse to infer robust ChIP signals.
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Figure 6.2: ChIP-seq library �ltering with deepTools heatmap. (A) DeepTools heatmaps are vi-

sualized for two ChIP-seq experiments, H3K4me1 (GEO: GSE29184, left panel) and SUZ12 (GEO: GSE66830,

right panel) and their respective controls. Shown is the ChIP-seq signal at the +/ − 2 kb region around

the TSS of each gene (280 X chromosomal genes with computed half-times). For a ChIP-seq dataset on

H3K4me1 or SUZ12 we expect an average signal enrichment (i.e. a peak) at the gene promoter for the

experiment but not for the control. However, both experiments show a higher enrichment for the control

signal in this region than the experiment itself (where very little signal is present). This evidence makes the

quality of both data sets doubtful and therefore those libraries, as well as other data sets showing similar

characteristics, were excluded from further analysis to avoid biases in the modelling process. (B-C) For each

epigenetic feature only one GEO library is selected for further analysis based on deepTools heatmaps
(B) and fingerprint plots (C). An example is shown for CTCF (from left to right: GSE25777, GSE29184,

GSE28247), where the GSE28247 dataset is selected out of three libraries because: 1) the �ngerprint plot

shows that the cumulative distribution of the reads from the control experiment is closer to the diagonal,

indicative of a uniform read distribution, compared to the other two libraries, 2) the �ngerprint plot shows

that the read distribution of the ChIP experiment has a steep rise towards the end of the plot, which is

indicative of a peaked read distribution at CTCF binding sites, compared to the other two libraries and

3) the heatmap (top plots) clearly shows signal enrichment for CTCF at the −/ + 2 kb region around gene

TSSs compared to control, indicative of a good signal to noise ratio, which is not the case for the GSE29184

and the GSE25777 libraries.
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The obtained reads from a ChIP-seq experiment are usually a mixture of the actual ChIP sig-

nal reads and background noise reads, which originate from di�erent sources of experimental

biases. Hence, we had to ensure that the quality of each ChIP-seq data set was high enough

to separate the ChIP signal from the background noise. The deepTools package (Ramírez et

al., 2014) was used for quality control of the ChIP-seq data: fingerprint plots, created

with the plotFingerprint function and heatmap summary plots, created with bamCoverage,

computeMatrix and plotHeatmap functions, were created for each ChIP and corresponding

control library. Fingerprint plots (e.g. Figure 6.2C) produce a pro�le of cumulative read cover-

age from bins of speci�ed size (bin size = 500) across the genome and allow to assess the antibody

enrichment of the ChIP-seq experiment, i.e. is there su�cient antibody enrichment to separate the

ChIP signal from the background noise. Heatmap plots (e.g. Figure 6.2B) produce an enrichment

pro�le around a prede�ned region (e.g. promoters) from bins of speci�ed size (bin size = 100) and

allow to access the signal to noise ratio, i.e. does the observed signal correspond to the expected

signal (based on prior knowledge). ChIP libraries were �ltered by manual inspection based on the

antibody enrichment and signal to noise ratio (Figure 6.2A). For some features more than one

ChIP-seq library was downloaded, when experiments from di�erent labs were available in GEO,

and the most high-quality data set for each feature was chosen based on the signal to noise ratio

(deepTools heatmap, Figure 6.2B) and the antibody enrichment (deepTools fingerprint,

Figure 6.2C). After applying the aforementioned �ltering steps we were left with 58 high-quality

ChIP-seq libraries that were used for further analysis (Table A1).

After completion of all �ltering steps (Table 6.2), we de�ned regions of enrichment based on

the deepTools heatmap, which was used to show the average distribution of ChIP-seq signal

around the promoter. Regions of enrichment can be short and localized in case of some TF binding

or long and di�used in case of histone modi�cations. Hence, for each feature the width of the

enrichment region was chosen according to the feature type and the observed enrichment in

the deepTools heatmap plot at the reference point (promoter or enhancer). For instance, the

enrichment region for promoter features was mainly located around the active gene TSS and only

for few features, such as elongation marks (H3K36me3, RNAPII S2P, and H3K79me2), the signal

was averaged over the entire gene body region (Table A1).

Table 6.2: Filtering steps in ChIP library preprocessing.

�ltering step # of ChIP libraries after �ltering

number of downloaded data sets 138

remove ChIP libraries with < 3 Mio. reads 125

manual �ltering with heatmap plots 84

selecting the best ChIP library for each feature 58

To remove experimental source of biases from the actual ChIP signal, we had to normalize the
ChIP signal to a control sample, i.e. a sequenced sample from either Input DNA (DNA isolated

from cells that were treated similarly to the ChIP-seq sample) or IgG (enrichment of a non speci�c

antibody). Several di�erent normalization methods for ChIP-seq experiments were developed
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over the past decades, one of the simplest methods being for example the log2-ratio of ChIP

over control signal. Here, we use a more elaborated normalization approach, implemented in

the R package normR (Helmuth et al., 2016; Kinkley et al., 2016). normR jointly models ChIP and

control reads over the whole genome with a binomial m-component mixture model where one

component models the background noise and the remaining m-1 components models the signal.

In our case only a two-component model is used: one component to account for the background

and one component to account for the ChIP signal. The �tted background component allows to

inspect the enrichment in a certain genomic region and is used to compare ChIP read counts for

that region to the expected read counts under the �tted background component (Figure A4). This

model can then be used to calculate a normalized enrichment for each region, where the fold

change of ChIP vs control read counts of each region is regularized (windows with zero counts

get zero enrichment) and standardized (to values between zero and one, where zero means no

enrichment and one means 100% enrichment), making read counts comparable between di�erent

ChIP experiments. We used normR to normalize each ChIP library to the corresponding control

library in order to remove the background signal. For each of the remaining 58 ChIP-seq libraries

((after quality �ltering steps, see Table 6.2)we used the normalized read counts in the speci�ed

regions as epigenetics features for the machine learning model.

In addition to the aforementioned ChIP-seq features, we computed the level of 5fC and 5hmC

DNA methylation within 1000 bp around each gene promoter using published MeDIP data (for

description see Section 2.1.4) in mESC (Pastor et al., 2011; Raiber et al., 2012). The MeDip data was

processed in the same way as the ChIP-seq data using normR to normalize the MeDIP signal to

the control signal. We furthermore computed the level of 5mC DNA methylation within 1000 bp

around each gene promoter using published Whole Genome Bisul�te Sequencing (WGBS) data

(for description see Section 2.1.4) in mESC (Stadler et al., 2011). For each C in a CG context, the

total number of reads and the number of methylated reads is given, from which the percentage

of methylation (# methylated reads / # total reads) can be computed. We computed the average

methylation level over all CG sites within a 1000 bp region around each reference point as proxy

for the promoter and enhancer methylation level (subsequently referred to as DNA methylation

(WGBS)).

6.1.2 Genomic Features

In addition to the 59 epigenetic features (58 ChIP-seq, 1 WGBS feature), we collected 18 genomic

and structural features, which are listed below.

Xist distance. We de�ned the linear distance of each reference point to the TSS of the Xist gene

as a genomic feature: distance to Xist. The gene annotation for Xist was taken from GENCODE

v. M9 on mm10 and lifted over to mm9.

Xist early sites. Engreitz et al. de�ned the genomic coordinates of few early site (between 100

KB and 1 MB in size) on the X Chromosome, which have been identi�ed as regions coated by Xist
at an early stage of XCI, i.e. sites where Xist transfers itself from its transcription locus in order

to initiate spreading across the X Chromosome (Engreitz et al., 2013). We de�ne the overlap of
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each X-linked gene / enhancer with these early sites as a genomic feature: overlap with Xist
entry sites. This feature is a dichotomic feature where a value of ’1’ indicates an overlap with an

early entry site, while ’0’ indicates no overlap.

Genes. We de�ned the number of annotated genes within a 1Mb region around each reference

point as a genomic feature: gene density. Gene annotation was taken from GENCODE v. M9 on

mm10 and lifted over to mm9.

LINE elements. Long interspersed nuclear elements are a type of repetitive DNA that is derived

from transposons. We de�ned the distance of each reference point to the closest full-length LINE

as a genomic feature: distance to LINE. Furthermore, we de�ned the number of full-length LINEs

within the 700 kb region around each reference point as a genomic feature: LINE density. The

genomic annotation of full-length LINEs in mESCs was taken from Penzkofer et al. (Penzkofer

et al., 2017) and includes 1594 LINEs on Chromosome X. We downloaded the following data set of

Penzkofer et al. from the L1Base (v2): Mouse Full-Length LINE-1 Elements [FLnI-L1] (Ens84.38)

(14076 Entries, Last Update: 2016-09-27). LINE annotation was downloaded on mm10 and lifted

over to mm9.

TADs. Topologically associated domains are chromatin units with a high frequency of long-range

DNA interactions between loci within the same unit but with low interaction frequency between

loci of adjacent units (Section 2.1.3). We de�ned the distance of each reference point to the border

of the closest TAD as a genomic feature: distance to TAD border . TADs are annotated from

Hi-C data on mESC, which is taken from Dixon et al. (Dixon et al., 2012).

LADs. Lamina Associated Domains are genomic regions that interact with the nuclear lamina

(Section 2.1.3). We de�ned the distance of each reference point to the closest LAD boundary as

a genomic feature: distance to LAD. Furthermore, we de�ned the occurrence of a LAD within

a 1000 bp region around the reference point as a genomic feature: overlap with LADs. This

feature is dichotomic: a value of ’1’ indicates an overlap with a LAD, ’0’ indicates no overlap. The

genomic annotation of LADs in mESCs was taken from Peric-Hupkes et al. (Peric-Hupkes et al.,

2010).

3D interactions. Long-range 3D interaction between genomic loci can be measured with chro-

mosome conformation capture (3C). While 3C only detects interactions for a speci�c region

of interest, Hi-C experiments detect long-range DNA interactions across the entire genome.

HiCap, on the other hand, combines Hi-C with sequence capture of promoter regions to identify

promoter-anchored 3D chromatin interactions at high-resolution (Section 2.1.4). We obtained the

number of 3D interactions and the average strength of 3D interactions (sum(Hi-C interactions

strength) / number of interactions) of each gene TSS with other genomic elements from mESC

Hi-C data (Schoenfelder et al., 2015). We de�ned separate features for all interactions (number
Hi-C all and strength Hi-C all), interactions with other promoters only (number Hi-C pro-
moter and strength Hi-C promoter) or with the Xist locus (strength Hi-C Xist ). In addition,

we computed three features from HiCap data on mESCs (Sahlén et al., 2015): number HiCap
all, which corresponds to the total number of interactions of each gene’s promoter / enhancer

with other elements, such as other promoters or enhancer regions, averaged over two replicates;
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number HiCap promoter , which corresponds to the number of interactions of each gene’s

promoter / enhancer with other promoters only; number HiCap enhancers, which corresponds

to the number of interactions of each gene’s promoter / enhancer with enhancer elements only.

CpGs. CpG dinucleotides are cytosine nucleotides that are followed by a guanine nucleotide in

the DNA sequence. The CpG content of a speci�c region is the amount of CpG dinucleotides

within that region. We de�ned the normalized CpG content within the 1000 bp region around

each reference point as a genomic feature: CpG content. We computed the normalized CpG

content as the ratio of observed over expected CG dinucleotides (Marsico et al., 2013):

#GpGs/L

((#G + #C)/2L)
2

where L is the length of the considered region. CpG islands are regions of DNA (> 200 bp) in

which the GC content exceeds 50%. We de�ned the occurrence of a CpG island within a 1000 bp

region around each reference point as a genomic feature: overlap CpG island. This feature is

dichotomic: a value of ’1’ indicates an overlap with a CpG island, ’0’ indicates no overlap. CpG

island annotation was taken from the UCSC genome browser (mm9) (Kuhn et al., 2007).

6.1.3 DNA Sequence Features

We choose to use 3-mer and 5-mer sequences to analyse the impact of the primary DNA sequence

on the XCI process, because Wang et al. showed that the distributions of certain 3-mers and

5-mers are consistently di�erent between silenced and escaping genes (Wang et al., 2006). We

retrieved the distribution of all possible 3-mer (64) and 5-mer (1024) sequences within a 100 kb

window surrounding each gene TSS (i.e. 50 kb upstream and 50 kb downstream of each gene

TSS). We choose a large genomic window of 100 kb, because Wang et al. showed that the greatest

sequence feature di�erence between silenced and escaping genes can be found in larger window

sizes of 50 to 100 kb (Wang et al., 2006). We used bedTools to extract the DNA sequence from

mouse genome mm9 within a 100 kb windows around each active gene TSS (see Section 5.3

for identi�cation of active TSSs) and then computed the occurrences of each k-mer within the

respective windows with the R package kmer. The k-mer counts for k = 3 and k = 5 were merged

into one feature matrix, resulting in a feature matrix with 1088 (64 3-mers, 1024 5-mers) DNA

sequence features for the 100 kb window.

In summary, we retrieved the distribution of 1088 primary DNA sequence features around each

gene promoter. In addition, we computed the enrichment of 59 epigenetic features and de�ned 18

genomic and structural features for each gene promoter and enhancer from various sources of

publicly available data sets. Those features will be used in the next sections as predictor variables

for di�erent machine learning models to predict the silencing status of X chromosomal genes

from promoter- or enhancer-associated features.
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6.2 predicting gene silencing dynamics from
promoter-associated features

Promoters are cis-regulatory elements, which are located right upstream of the gene TSS and

play a major role in transcriptional regulation of each gene in the genome. Promoters are usually

bound by a variety of general and speci�c transcription factors and the adjacent nucleosomes

typically show a speci�c modi�cation pattern, which were shown to be predictive of the gene

expression status (Karlić et al., 2010). Since promoters play such an important regulatory role, we

analysed if the primary DNA sequence or a pre-marking of the promoter with certain epigenetic

and genomic factors is predictive of gene silencing dynamics mediated by Xist .

6.2.1 A Linear Model Fails to Predict Gene Silencing

Dynamics

Linear models are one of the simplest machine learning models that are easy to interpret and often

outperform fancier nonlinear models, especially when the size of the training set is small. Since

the assembled data for our modelling task includes only 280 observation (genes with measured

silencing kinetics), we started with a simple linear regression model to model the continuous

values of the gene silencing dynamics from promoter-associated features. Here, we only used the

epigenetic and genomic feature matrix, because the DNA sequence feature matrix contained

many more predictor variables (1088) than observations (280), which made it unsuitable for linear

regression models that su�er from the curse of dimensionality problem in n << p situations.

We used the enrichment of the 59 epigenetic features at promoter level as well as the 18 com-

puted genomic features for all 280 genes with measured half-times as input matrix for the linear
regression model. The input matrix was standardized by applying z-score transformation to

every predictor variable, except the dichotomous predictors. The computed silencing half-times

(Section 5.2) served as response variable in the linear regression model. We trained the linear

model (with the lm function of stats R package) on 80% of the genes in our data set and left

20% of the genes as an independent test set to access the model performance. Unfortunately,

the linear regression model had low predictive power with an average R
2

value of 0.2 across

200 independently trained linear regression models. This could be due to di�erent sources of

biases and imprecisions in the estimated half-times. For instance, we set a maximum value of

3.5 days for all silencing half-times (higher half-times could not be reliably estimated due to

the limited time point range of 24 hours), whereby very late silenced genes and escapees get

the same half-times. In addition, the exponential decay function that we used to �t the time

course data, did not perfectly �t the data of all genes, introducing bias into the computed half-times.

To overcome those problems, we divided our gene set into di�erent silencing classes to predict

the silencing status of each gene instead of predicting the actual silencing half-time. We trained

two logistic regression models to distinguish 1) silenced from not silenced genes, referred to

as XCI/escape model and 2) early silenced from late silenced genes, referred to as silencing
dynamics model. The XCI/escape model is used to identify those factors that are important for
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silencing in general, and the silencing dynamics model is used to �nd those factors that in�uence

the kinetics of gene silencing. Therefore, the continuous half-time values were assigned to discrete

classes according to �xed thresholds. Those thresholds were chosen from a range of di�erent

possible thresholds for each class (Table 6.3) and a grid search was performed to �nd the threshold

combination that would minimize the misclassi�cation error (as de�ned in Section 3.2.1). The

ranges of possible thresholds were inferred from the distribution of silencing half-times computed

from the PRO-seq experiment (Figure 5.5). Genes that did not fall into one of the two model

classes were excluded from the analysis.

Table 6.3: Ranges of half-times for choosing class thresholds.

silencing class half-time ranges

silenced genes t(1/2) < [0.9,… , 1.4]

not silenced genes t(1/2) > [1.4,… , 2]

early silenced genes t(1/2) < [0.5,… , 0.7]

late silenced genes [0.7,… , 1] < t(1/2) < [1,… , 1.4]

For the grid search, we trained a logistic regression model (with the glm function of the glmnet

R package) for each threshold combination on a training set and assessed the model performance

on an independent test set. We had a strong class imbalance for most threshold combinations,

i.e. the class of silenced genes was on average three times larger than the class of not silenced

genes, which is expected since most genes are silenced during XCI and only few genes are able

to escape the process of XCI. Such a class imbalance can lead to high prediction errors for the

smaller class, because the classi�er mainly learns the properties of the bigger class and achieves a

good average error rate by assigning most observations to the bigger class. A common method to

overcome this problem is to downsample the bigger class in order to achieve a better class error

rate for the smaller class. Hence, we downsampled the bigger class (e.g. silenced class) and used a

balanced data set (containing the same number of genes (n = size smaller class) for both classes)

as training set. We held out 20% of the genes for a test set and set the number of training genes

to: ntraining = n × 0.8 for each class, where n is the size of the balanced data set. All remaining

genes ntest = n × 0.2 were used as independent test set. However, we required a minimum size

for the test set of ntest > 10 and excluded threshold combinations where ntraining < 25 for one of

the two classes. For each threshold combination, we then calculated the misclassi�cation error

on the test set genes. We averaged the misclassi�cation error over 200 trained models for the

same threshold combination to obtain stable results. The misclassi�cation errors for all threshold

combinations are listed in Table A2 and Table A3. We identi�ed several threshold combinations

with similar minimum misclassi�cation errors of around 44% and 45% for the XCI/escape and

silencing dynamics model, respectively. The high misclassi�cation error for both models shows

that simply replacing the linear regression by a linear classi�cation model does not help to improve

the predictive power of the model. This could be due to the large number of predictor variables

with variable degree of correlation among each other (Figure A5), of which some potentially

introduce noise into the model.
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To account for correlation among features and to remove noisy features from the model, we

regularized the logistic regression model with Elastic Net to achieve both, feature selection

and grouping of correlated features (see Section 3.2.1). We implemented the regularized logistic

regression model with the glm function of the glmnet R package. We set the parameter � , which

regulates the impact of both shrinkage penalties, to � = 0.5 to have a balanced impact of feature

selection and feature grouping. We trained a regularized logistic regression model for each

threshold combination in the same way we trained the simple logistic regression model, adding

an additional cross-validation step to tune the shrinkage parameters �. Both models had several

threshold combinations with similar minimum misclassi�cation error of around 35% (see Table A2

and Table A3). Hence, using the Elastic Net regularization improved the model performance

by ∼ 10% for both models, probably by removing features that introduce noise into the model.

Nevertheless, the predictive power of the regularized logistic regression model was still low,

indicating that no single linear combination of features or rules could be de�ned to discriminate,

for example, silenced from not silenced genes.

6.2.2 A Random Forest Model Can Predict Gene Silencing Dy-

namics

Previous studies have identi�ed the linear distance to the Xist locus as a main determinant of

gene silencing on the X chromosome (Marks et al., 2015; Nesterova et al., 2019). Yet, many genes

do not follow this trend, as they are close to the Xist locus but escape XCI or are located in the

distal regions of the X chromosome but are silenced early Figure A3. This indicates that the sus-

ceptibility of genes to Xist -mediated silencing is likely to be controlled by a complex combination

of di�erent features. In addition, it was shown that a subset of X chromosomal genes can be

silenced independently of the Xist repeat-A element, while the majority of X chromosomal genes

requires the repeat-A element for silencing (see Section 4.3 for details on Xist mutant experiments

(Sakata et al., 2017)). To account for the potential combinatorial nature of silencing pathways, we

switched from a linear to a non-linear classi�cation model - a Random Forest (RF) model - to

predict the silencing susceptibility of X chromosomal genes (Figure 6.1B). RFs are non-parametric

classi�ers which make use of multiple decision trees to learn non-linear classi�cation tasks. The

use of multiple trees makes the method robust to outliers and noise, and reduces the risk of

over�tting, also with a small number of training examples (in n << p situations), strong class

imbalance and correlated features - properties which are all present in our data sets.

We implemented two RF models with the randomForest R package to distinguish silenced from

not silenced genes (XCI/escape model) and early from late silenced genes (silencing dynamics

model) based on the epigenetic and genomic feature matrix (EGm) but also based on the DNA

sequence feature matrix (Sm). Therefore, we used the enrichment of the 59 epigenetic features at

promoter level as well as the 18 computed genomic features as input matrix for the epigenetic

and genomic feature model. For the DNA sequence feature model, we used the distribution of

1088 3-mer and 5-mer sequence features within a 100 kb window around each gene TSS as input

matrix. In contrast to the input matrix of the linear models, we did not apply any standardization,

e.g. z-score transformation, to the input matrix of the RF model, because RFs are invariant to

scaling of input features and can handle continuous and categorical predictor variables. The
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continuous half-time values were assigned to discrete classes, as described for the logistic re-

gression model, and a grid search was performed to �nd the threshold combination that would

minimize the OOB error of the RF model (see Section 3.2.2 for de�nition of OOB error). For

the grid search, we trained a collection of 500 RF models for each threshold combination and

calculated the average OOB error. We trained each RF model with a large number of decision

trees (parameter ntree = 1000) to avoid over�tting of the RF model. The number of training

observations for each decision tree (parameter sampsize) was chosen as described for the logistic

regression model to train each decision tree on a balanced subset of the data, thereby avoiding

a classi�cation in favour of the larger class. The mtry parameter, which de�nes the number of

randomly selected features at each node and represents the trade-o� between bias and variance

of the RF model, was optimized during training such that the OOB error of the RF model is

minimized. The XCI/escape model based on the EGm had several threshold combinations with

similar minimum OOB error rates of around 27%, while the XCI/escape model trained on the

Sm had only two threshold combinations with similar minimum OOB error rates of around 31%

(see Table A2 and Table A3). Hence, the RF model trained on the EGm performed slightly better

than the RF model trained on the Sm. For both silencing dynamics models, trained on EGm and

Sm, we found four threshold combinations with similar minimum OOB error rates of around

30% and 27%, respectively (see Table A2 and Table A3). In comparison to the XCI/escape model,

the silencing dynamics model performed better on the Sm. A comparison of the linear classi�-

cation model based on the EGm to the corresponding RF classi�cation model, showed that the

model performance improved by 15-17%, indicating that the process of XCI is of non-linear nature.

Regularizing the logistic regression model to perform feature selection led to a high performance

increase due to the removal of weaker or redundant features, which potentially introduce noise

into the model. Since we train one RF model on 77 epigenetic and genomic features and another

RF model on 1088 sequence features, we checked whether the performance of the RF models

could be improved through feature selection as well. RF provides an internal measure of variable

importance (related to the relevance of each feature in the classi�cation) that can be used for

feature selection as proposed by Díaz-Uriarte and Alvarez (Díaz-Uriarte et al., 2006) and Genuer

et al. (Genuer et al., 2008). They propose recursive feature elimination, where 20% of variables

that have the smallest variable importance are recursively eliminated or sequential feature in-

troduction, where the k most important variables are sequentially introduced into the model

(Díaz-Uriarte et al., 2006; Genuer et al., 2008). The set of features leading to the smallest error rate

is then selected for the �nal model. Here, we performed feature selection with a modi�ed version

of the sequential feature introduction approach. Instead of using the global feature importance

measure, we used a class-wise feature importance measure to include important features for

both classes. In order to identify the class-wise most important features, we computed the mean

decrease in accuracy (MDA, see Section 3.2.2) of each feature. The MDA is computed for every

feature in the model and for each class separately, as some features might contribute more to

the prediction of one class than the other. Next, we ranked the features according to their MDA

for each class separately and then computed the OOB error rate on the top x features from both

classes (including only features with MDA > 0). x was optimized to obtain the feature set with

minimal OOB error rate, which was then used to retrain the RF model (Algorithm 4).
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Algorithm 4: Random Forest Feature Selection

Input :data set X = (X1, X2,… , Xp),

silencing class Y = (y1, y2,… , yn),

feature importance from the RF model trained on all features MDAi with i = 1, .., p

1) Compute OOB error for each set of top x features

1 fi0 = all p features Xi sorted by their MDAi for class 0;

2 fi1 = all p features Xi sorted by their MDAi for class 1;

3 fi0, fi1 = remove feature Xi when MDAi < 0 for fi0, fi1;

4 p’ = number of features Xi with MDAi > 0;

5 for x=1 to p’ do
6 top_x_features = fi0[1 ∶ x] ∪ fi1[1 ∶ x];

7 train RF model RF(top_x_features,Y) and save OOB error

8 return table with OOB error rates for p’ sets of top x features

2) Choose optimal number of top x features

9 optimal_x = x which lead to minimal OOB error rate in step 1

10 retrain RF on top_x_features

To test whether feature selection based on the top x features performs signi�cantly better than

feature selection based on a Random subset of x input features, we computed an empirical
p-value for each threshold combination. The empirical p-value was calculated via a bootstrap

test by randomly sampling x features from the whole set of input features, where x is the number

of top features that led to the best OOB error rate. We repeated the sampling 500 times and

computed each time the expected OOB error rate (EER) for that run. The empirical p-value is

then de�ned as:

p − value = sum(#of times EER < CER)/500

where CER is the computed OOB error rate for the top x features that led to the best OOB error

rate. The CER is considered to be signi�cant if the empirical p-value is smaller than 0.05. For

all threshold combinations of the XCI/escape model based on the EGm, we obtained empirical

p-values smaller than 0.05, indicating that the set of top x features generally performs better than

a random subset of x input features.

The model performance of the RF model trained on the EGm improved by 5-8%, resulting in

an OOB error rate of 22% for both models. In comparison, a previously trained RF model on

chromatin states only obtained an accuracy of 71% (see Section 4.4) (Nesterova et al., 2019). The

best performing thresholds combinations of the RF models with feature selection were similar

to those without feature selection. The RF models trained on the Sm bene�ted the most from

feature selection, most likely due to the high number of input features. Feature selection improved

the model performance by 13% and 11%, leading to an improved error rate of 18% and 16% for
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the XCI/escape and silencing dynamics model, respectively. Yet, the best performing thresholds

combinations of the RF models with feature selection were similar to those without feature

selection. The OOB error rate for the silenced / early silenced class was on average only 3% lower

than the OOB error rate for the not silenced / late silenced class. This is a great improvement

compared to previous machine learning models trained on DNA sequence features, where the

chromosome-wide classi�cation was always in favour of one class, while the other class had

a much lower accuracy (LDA classi�er: 56% accuracy for silenced genes; SVM classi�er: 17%

accuracy for escapees; see Section 4.4) (Carrel et al., 2006; Wang et al., 2006).
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Figure 6.3: Model performance. (A-B) RF model performance measured with OOB error rate for the best

performing thresholds of (A) the XCI/escape model and (B) the silencing dynamics model trained on the

epigenetic and genomic or DNA sequence feature matrix. Each box in the plot represents the distribution

of error rates over 500 trained RF models. Error rates are reported for both classes combined (total) and

for the prediction of each individual class (silenced and not silenced class for the XCI/escape model, early

and late silenced class for the silencing dynamics model). In addition, error rates are reported for models

trained on the complete set of features (all 77 epigenetic and genomic features or all 1088 DNA sequence

features) and models retrained on the top x features for feature selection (XCI/escape EGm: top 10 features;

XCI/escape Sm: top 16 features; silencing dynamics EGm: top 8 features; silencing dynamics Sm: top 6

features). (C-D) Distribution of 280 X chromosomal genes with estimated half-times. The halftime ranges

used to de�ne the model classes for the best performing threshold combination are indicated for the both

models, (C) XCI/escape and (D) silencing dynamics, and both feature matrices, epigenetic and genomic or

DNA sequence feature matrix.
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For further analysis (model validation and model interpretation), we selected the best performing
threshold combination for each model, which is the threshold combination with smallest total

OOB error rate that ful�lls the following criterion: the absolute di�erence between the class errors

should not exceed 3% (the average di�erence between class error rates): |OOBclass0 −OOBclass1| < 3.

For both XCI/escape models the best performing threshold combination was t1/2 < 0.9 for the

silenced class (168 genes) and t1/2 > 1.6 for the not silenced class (50 genes). The model trained on

the EGm and Sm had an OOB error rate of 22.44% and 19.01%, respectively, after feature selection

was performed (EGm: top 10 features; Sm: top 16 features; Figure 6.3A). The best performing

threshold combination of the silencing dynamics models had an OOB error rate of 21.56% and

15.57% for the EGm and Sm, respectively, after feature selection (EGm: top 8 features; Sm: top 6

features; Figure 6.3B). The early silenced class had a threshold of t1/2 < 0.5 and t1/2 < 0.6 (74 and

104 genes) for the EGm and the Sm, respectively, while the late silenced class had a threshold of

0.9 < t1/2 < 1.3 (40 genes) for both, EGm and the Sm (Figure 6.3C-D).

Based on the PRO-seq derived silencing half-times and the trained RF models, we classi�ed all

genes according to whether they are subject to XCI or escape (silenced / not silenced) and whether

they are silenced with slow or fast kinetics (early / late). Genes with intermediate half-times

between the classes were excluded from the analysis (see gap between groups in Figure 6.3C).

The resulting classes largely agree with those previously de�ned in di�erentiating mESCs, using

a dox-independent strategy to make random XCI non random, and in pre-implantation embryos,

where classes are de�ned based on the di�erent cell stages during imprinted XCI (Figure 6.4 as

example for EGm models).
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Figure 6.4: Comparison of silencing classes. Distribution of half-times within silencing classes de�ned

previously in di�erentiating mESCs (Marks et al., 2015), in pre-implantation mouse embryos (Borensztein

et al., 2017), and the classes used for RF model trained on epigenetic and genomic features: XCI/escape

model (blue) and silencing dynamics model (red).

Using a RF model in combination with feature selection, instead of a regularized logistic regression

model, improved the model performance of the XCI/escape and silencing dynamics model by 13%

each. This indicates that no single linear combination of features but instead a combination of

di�erent silencing pathways is required to silence the genes on the X chromosome.
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6.2.3 Validating Predictions from the Promoter-associated Ran-

dom Forest Model

The trained promoter-associated RF models, distinguishing silenced from not silenced (XCI/escape

model) and early from late silenced genes (silencing dynamics model), performed well on the

77 epigenetics and genomic features as well as 1088 DNA sequence features with OOB error

rates between 16-22%. To con�rm the model performances in an independent way, we further

validated the XCI/escape model trained on the epigenetic and genomic feature matrix with

three di�erent validation approaches: 1) experimental validation of selected candidate genes,

2) comparison of predicted gene classes to half-times computed from mRNA-seq time course
data (in undi�erentiated mESCs) and 3) prediction of silencing kinetics in transgenic clones
(Figure 6.5).
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Figure 6.5: Experimental validation of model predictions. (A) Half-times of six candidate genes

predicted as silenced (top) and �ve candidate genes predicted as not silenced (bottom) were validated

experimentally. Allele-speci�c expression analysis was measured with pyrosequencing at di�erent time

points during 24 h of doxycycline treatment in TX1072 cells with three replicates per time point. Individual

data points (dots), the �tted exponential decay function (line), and the estimated silencing half-times are

shown. (B) Scatter plot of the silencing half-times estimated in (A). (C) Scatter plot of undi�erentiated

mRNA-seq half-times for genes predicted as silenced and not silenced by our XCI/escape model. The

gray lines in B and C indicate the mean, and the p-value (Wilcoxon rank-sum test) indicates a signi�cant

di�erence between the mean of the two distributions. (D) Fraction of genes correctly predicted as silenced

by the XCI/escape model (red lines) for six cell lines in which an inducible Xist transgene was integrated in

di�erent chromosomal locations (orange, cartoon on the right). The background distributions of silenced

predictions was used to estimate empirical p-values (histogram, black dashed line represents the mean).
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Each validation approach is described in more detail below. The results from all three validation

steps con�rm that our machine learning model can successfully predict the silencing status of X

chromosomal genes based solely on promoter-associated features.

Validation with Pyrosequencing

We selected candidate genes for experimental validation among those X-linked genes that were

not included in the training set of the XCI/escape model due to missing half-times, either because

of insu�cient read coverage from the PRO-seq data or because of a poor �t to the exponential

decay function (see Section 5.2). Given our trained XCI/escape model, we predicted the silencing

class for the respective genes based on their computed epigenetic and genomic features and then

selected a few candidate genes for experimental validation according to the following criteria:

1) su�cient expression for experimental detection at time point 0 (PRO-seq RPKM > 1, based

on non-allele speci�c mapping), 2) at least one SNP in exonic regions for allele-speci�c signal

detection and 3) probability of a gene to be predicted in a certain class (silenced or not silenced)

higher than 80%, averaged over 500 trained RF models.

For experimental validation of the selected candidate genes, an independent doxycycline (dox)

induced time course experiment was performed and pyrosequencing was used to assess the allele-

speci�c expression of 6 genes predicted to be silenced (Figure 6.5A, top) and 5 genes predicted to

be not silenced (Figure 6.5A, bottom, for experimental details see Section 5.1). For each gene the

signal fraction coming from the B6 X chromosome was reported before dox treatment and at four

time points after dox treatment (t = 4, 8, 12, 24). We normalized the signal fraction fraction of each

time point to the uninduced control and �tted the normalized signals to an exponential decay

function to obtain silencing half-times for each gene (as described for the PRO-seq and mRNA-seq

data in Section 5.2). The half-times of the silenced genes ranged from 0.45 to 0.87 days, and those

of the not silenced genes ranged from 0.99 to 3.01 days. The half-time di�erence between silenced

and not silenced genes was highly signi�cant (Wilcoxon Rank Sum Test: p = 0.0043, Figure 6.5B).

In addition, the half-times of all silenced genes fell in the silenced category (t1/2 < 0.9), while the

half-time of 3 out of 5 not silenced genes fell in the not silenced category (t1/2 > 1.6).

Validation with mRNA-seq Data

To further validate the XCI/escape model, we compared the model predictions for all X-linked

genes that were not included in the training set of the XCI/escape model (as described above)

to the silencing half-times that were estimated from the mRNA-seq time course experiment in

undi�erentiated mESCs (see Section 5.2). Genes predicted as not silenced exhibited much longer

silencing half-times than genes predicted as silenced (Wilcoxon Rank Sum Test: p = 1.710
−5

,

Figure 6.5C). In addition, we identi�ed three genes (B630019k06Rik, Porcn, Ssr4) that have not

previously been reported as escapees, but are predicted to be not silenced by the XCI/escape model

and are also measured as not silenced in the mRNA-seq experiment. Those genes are potentially

novel escapees, which were not identi�ed in previous studies.
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Validation with Di�erent Xist Transgenes

Xist transgenes, which are activated in a doxycycline dependent manner, can be integrated in

di�erent X chromosomal or autosomal locations and are used to access the silencing e�ciency of

Xist in a di�erent genomic context (see Section 4.2 for details on transgenic clones). We assessed

the capability of our model to predict gene silencing e�ciencies in such transgenic models, to

verify the generalizability of our model. To this end, we made use of a study that performed

allele-speci�c mRNA-seq before and after 5 days of Xist induction in transgenic mESC clones

(GEO: GSE92894), that carry such a transgene in di�erent positions on chromosome X or on

chromosome 12 (Loda et al., 2017).

For our validation, we only used transgenic clones, where the genomic location of the Xist trans-

gene is precisely reported in the paper and the experiment has been performed in undi�erentiating

mESCs (listed in Table 6.4). In total, we analysed 2 clones on chromosome 12 and 4 clones on

chromosome X, where the Xist transgene is located in di�erent positions with respect to its

endogenous locus.

Table 6.4: Summary of clones used for validating the result from the XCI/escape model.

Clone Chr Allele Karyotype Integration site (mm9)

86 ChrX Cast diploid chrX:130936613-131094303

87 ChrX Cast diploid chrX:100655712-100678556

109 ChrX Cast diploid chrX:100678562-100679597

190 ChrX Cast diploid chrX:166414854-166443668

228 Chr12 Cast diploid (duplicated chr12) chr12:110315558-110351738

273 Chr12 Cast diploid (duplicated chr12) chr12:99721510-99727910

Loda et al. de�ned the allele-speci�c expression ratio (AER) for each gene i in clone j as:

AERij =

readsCast

readsCast + reads129

To de�ne gene silencing kinetics in each transgenic clone j, we computed the normalized allelic

expression ratio (AER
norm

) as a measure of silencing kinetics for each gene i in each clone j (as

we did for the PRO-seq data in Section 5.2):

AER
norm

ij
=

AR
5 days

ij

1 −AR
5 days

ij

×

1 −AR
uninduced

ij

AR
uninduced

ij

Gene i was de�ned as silenced in clone j if AER
norm

ij
< 0.9. Di�erent cuto�s for de�ning silenced

genes were tested and led to very similar results. Here, we used a cuto� of 0.9, a reasonable value

for all clones.

To check whether our model correctly predicts gene silencing e�ciencies in the di�erent trans-

genic clones, we computed the epigenetic and genomic features for all genes of each transgenic
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clone j. Therefore, we had to adapt the distance to Xist feature to the genomic location of each

Xist transgene. We then applied our XCI/escape model trained on the PRO-seq data to predict the

silencing class of all genes in each clone j. From the predictions, we de�ned the ratio of correctly
predicted silenced (CPS) ratio genes as the fraction of genes predicted to be silenced by our

model within all genes that were silenced in clone j (Figure 6.5D, red lines). These values varied

considerably between clones depending on the size of the chromosomes and the location of the

transgene. To test the signi�cance of the obtained CPS ratio for each clone, we computed an

empirical p-value with a bootstrap test by randomly sampling xj genes, where xj equals the

number of silenced genes in clone j, from the background set of all genes detected in that clone.

We repeated the sampling 1000 times and computed each time the ratio of expected predicted
silenced genes (EPS) ratio for that run. The empirical p-value was then de�ned as:

p − value = sum(# of times EPS ratio < CPS ratio)/1000

The CPS ratio is considered signi�cant if the empirical p-value for clone j is smaller than 0.1. A

signi�cant empirical p-value indicates that our XCI/escape model is able to predict a proportion

of silenced genes in clone j that is signi�cantly higher than the random expectation. For 5 out of

6 clones the CPS ratio was signi�cantly higher than expected for a random sample (Figure 6.5D,

cp. red line to background distribution). Although potentially limited by the e�ciency of the

transgenes (Figure A6), this analysis shows that our model can, to some extent, be generalized

even to other chromosomes.

The results of our three validation steps con�rmed that our machine learning model can predict

X chromosomal gene silencing based solely on epigenetic and genomic features. However, to

understand the epigenetic and genomic mechanisms that govern Xist-mediated silencing it is also

important to derive the biological meaning behind our trained RF model.

6.3 modelling gene silencing dynamics from
enhancer-associated features

Transcriptional regulation is not only mediated by gene promoters, but also by other important

cis-regulatory elements like enhancers. In contrast to promoters, which are located right upstream

of the gene TSS, enhancers can be located far away from the regulated gene but are brought

into spatial proximity to the gene promoter via 3D chromatin interactions. To get a more com-

plete picture of the factors that in�uence Xist -mediated gene silencing, we analysed di�erent

enhancer features and their association with gene silencing dynamics. To address this question,

we downloaded enhancer annotations in mESCs from a high-resolution, genome-wide mapping

of promoter-enhancer and enhancer-enhancer interactions determined with the HiCap technique

(Sahlén et al., 2015). HiCap enables the identi�cation of promoter anchored 3D chromatin interac-

tions by combining Hi-C with sequence capture of annotated promoters. Genomic regions that

are enriched in either H3K27ac or DNA hypersensitive sites and are connected to promoters with

a HiCap interaction that is supported by at least three reads in both replicates, were de�ned as

enhancers by Sahlén et al. (Sahlén et al., 2015) and used for our analysis. The set of putative HiCap

enhancers comprises 654 unique genomic regions on the X chromosome, where each putative
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enhancer can interact with more than one gene promoter and each gene promoter can have more

than one interacting enhancer. We were able to map 365 enhancers to 110 X chromosomal gene

promoters (with computed half-times), with an average of 3.3 interacting enhancers per gene

promoter (maximum: 19).

To analyse the association of enhancer features with di�erent gene silencing dynamics, we

computed the enrichment of our 59 epigenetic and 18 genomic features (Table 6.1) within the

de�ned enhancer region, similarly to what we did with the promoter regions. If the length of an

enhancer region was below 1000 bp we extended the region to +/ − 500 bp around the center of the

enhancer. Next, we assigned each enhancer the silencing class of its associated gene (i.e. silenced

or not silenced) and then used the assigned silencing class and the computed enhancer-associated

features as input for a RF model. Unfortunately, the resulting RF model was biased, because some

genes, which are linked to many enhancers (up to 19 enhancers per gene) were overrepresented

in the training set, while others, which are linked to only one enhancers, were underrepresented

in the model. Hence, the model results were not reliable. To overcome this problem, we had the

idea to train an RF model on a selected subset of enhancers by choosing only one enhancer per

gene, e.g. the enhancer with the strongest 3D interaction for each gene. Unfortunately, when

choosing only one enhancer per gene, the training set for the RF model was not large enough to

meet our minimum size requirements (de�ned in logistic regression model of Section 6.2.1) for

any available threshold combination. Hence, we were not able to model gene silencing dynamics

from enhancer-associated features. To still get some insights into the impact of enhancer features

in the process of XCI, we performed a simple association analysis, described in Section 7.3.



7 I D EN T I F Y ING THE MA IN DETERM INAN TS OF
X I S T -MED IATED GENE S I L ENC ING
DYNAM ICS

“Interpretability is the degree to which a human can understand the cause of a decision.”

— (Miller, 2019)

In Chapter 6 we showed that gene silencing dynamics on the X chromosome can be predicted

with high accuracy from promoter-associated features, including epigenetic and genomic (called

in the following EGm, see Section 6.1.1 and Section 6.1.2) as well as DNA sequence features (called

in the following Sm, see Section 6.1.3). We built two binary classi�cation models for each set

of input features, to predict whether a gene is silenced or not (XCI/escape model), and whether

it is silenced early or late (silencing dynamics model) using the RF classi�cation described in

Section 6.2.2. In this chapter we focus on the biological interpretation of the RF models trained

in Chapter 6, starting with di�erent commonly used interpretation techniques (introduced in

the background Section 3.2.2), followed by a new approach to determine combinatorial feature

patterns from RF models (see Figure 6.1).

7.1 random forest interpretation measures iden-
tify relationships between features and model
classes

In modelling, often only a small fraction of the collected input features is associated to the outcome.

To better understand which features are associated with gene silencing in general (XCI/escape

model) and which features are associated with the kinetics of gene silencing (silencing dynamics

model), we identi�ed, in a �rst step, the most important features among the large set of input

features in a variable importance analysis (Section 3.2.2). In RF models, important features are

often used as split points in the �rst node levels (close to the root node), where they partition big

parts of the observations. Hence, to get a �rst impression on the importance of each feature, we

obtained the frequency by which each feature was used as a split point (split point frequen-
cies) in the �rst three node levels of all decision trees in the RF model. The obtained split point

frequencies indicate that the linear distance of the gene TSS to the Xist locus and gene density

around the gene TSS play an important role for silencing in general but also for the kinetics

of gene silencing (Figure A7). Furthermore, the Polycomb Repressive Complexes (PRC) 1 mark

RING1B, the histone mark H3K4me1, as well as the chromatin remodelling complexes HDAC2

and TET1 seem to be important for the classi�cation of genes into silenced and not silenced, while

the pluripotency factor SOX2, the CpG content around the gene TSS as well as the distance to

the next TAD border and LINE element seem to be important for the classi�cation of genes into

87
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early and late silenced. The split point frequencies for the DNA sequence features do not give

such a clear picture, probably because many k-mers are quite similar to each other and are used

alternately as a split point in the �rst node levels (Figure A8). Nonetheless, an AT rich sequence

context seems to play a more important role for silencing in general, while a GC rich context

seems to play a more important role for the dynamics of gene silencing.
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Figure 7.1: Feature importance for XCI/escape and silencing dynamics model. For each model

(trained on epigenetic and genomic feature matrix (EGm) or DNA sequence feature matrix (Sm)), features

are ranked class wise according to their importance for the classi�cation, quanti�ed by the mean decrease

in accuracy (MDA). (*) The top features of each class that are used to build the �nal model (XCI/escape: 10

(EGm) and 16 (Sm) features; silencing dynamics: 8 (EGm) and 6 (Sm) features; described in Section 6.2.2).

The investigation of the �rst node levels of a RF model provides a good overview on the features

that signi�cantly contribute to the classi�cation. At the same time it does not consider features

that have important interaction e�ects with other features in the model but low predictive power.

To get a more detailed view on the important model features, RF provides internal measures of

feature importance, based on the OOB data. Here, we chose the mean decrease in accuracy
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(MDA, introduced in Section 3.2.2) as feature importance criterion, because it does not only

identify features with high predictive power but also features with low predictive power but

important interaction e�ects with other features in the model. We calculated the MDA for every

feature in the model and for each class separately, as some features might contribute more to the

prediction of one class than the other. Furthermore, we averaged the feature importance (MDA)

over a collection of �ve hundred Random Forest models to obtain stable results and considered

only features with MDA > 0. All features identi�ed as important with the split point frequency

analysis (above, Figure A7, Figure A8) were also among the most important features in the MDA

analysis (Figure 7.1, Figure A9).

The linear distance of the gene TSS to the Xist locus as well as the gene density were again the

most important features for both models. In contrast to the split frequency analysis, the MDA

analysis showed that the distance to the next LINE element, is not only an important feature for

the classes of early and late silenced genes but also for the class of silenced genes. While the PRC1

component RING1B and histone deacetylase HDAC2 were again among the important features

for silencing in general, the PRC2 deposited histone mark H3K27me3 and the histone deacetylase

HDAC3 seem to play an important role for the silencing kinetics. The histone deacetylase HDAC1

is an important feature for both models. The MDA analysis also identi�ed several additional

important features for both models. Among the top features speci�c for the XCI/escape model we

found features associated with active transcription, such as H3K27ac and RNAPII S5P and the

general transcription factor TAF1. In contrast, for the silencing dynamics model several features

related to 3D chromatin organisation (e.g. distance to LADs, 3D interactions with other genomic

loci) seem to be important. Interestingly, the top two epigenetic and genomic features for each

class have much higher MDA values (MDA > 8%) compared to the remaining top features (MDA

2 − 5%), while the top DNA sequence features all have similar, moderate MDA values (MDA < 6%).

This suggests that few epigenetic and genomic features have a big impact in the classi�cation of

silencing classes, while no speci�c k-mer but rather a speci�c AT or GC rich sequence context

seems to be important for the classi�cation of silencing classes.

The variable importance analysis was able to identify the most relevant features in the classi�ca-

tion process but did not provide insights into the RF decision making process and the relationship

between features and outcome, i.e. is the feature positively or negatively related to a silencing

class? To investigate the relationship between features and outcome, di�erent measures and tools

were developed (see Section 3.2.2). Here, we focussed on the internal RF prototype measure,

which is calculated by the randomForest R package, and a partial dependence analysis, which is

implemented in the edarf R package.For both analysis we only used the top x features that were

identi�ed in the RF feature selection process and yield to the model with the highest predictive

power (XCI/escape: 10 (EGm) and 16 (Sm) features; silencing dynamics: 8 (EGm) and 6 (Sm) fea-

tures; described in Section 6.2.2). Prototypes are calculated for each class and feature and show the

general trend (e.g. enrichment or depletion) of each feature for each class (for further description

see Section 3.2.2). For instance, Figure 7.2A shows that the 5-mer TTGTT frequently occurs in the

100 kb region around gene promoters (count values as de�ned in Section 6.1.3) of both silencing

classes, while the 5-mer AATTG occurs more frequently around gene promoters of silenced

genes. Partial dependence plots show the relationship between features and model predictions,

represented by a linear function on the feature (for further description see Section 3.2.2). For
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instance, the third panel of Figure 7.3B shows that a gene will be predicted with high probability

as not silenced (probability of not silenced class > 0.7) if it is located far away from Xist locus.

Combining the results from both analysis, we can get insights into the relationship between

features and silencing classes. The analysis revealed that silenced genes are placed in an AT rich

sequence context (Figure 7.2) and have higher levels of sequence-speci�c transcription factors (e.g.

ESRRB) and chromatin remodelling complexes, such as MLL2, TET1, RRC1 component RING1B

and histone deacetylases HDAC1 and HDAC2 (Figure 7.3). In agreement with the previous feature

importance analysis, not silenced genes are located further away from the Xist locus and are

found in gene dense regions.
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Figure 7.2: Prototypes and partial dependence plots for XCI/escape model trained on DNA
sequence features. Prototypes and partial dependence plots are shown for the top 16 features of

XCI/escape model trained on DNA sequence features. (A) Prototypes computed for each feature and class.

A prototype is a representative for the respective class that helps to relate the features to the classes, i.e.

how frequent is a speci�c k-mer in a certain class. The y-axis of a prototype plot shows the actual feature

value, i.e the k-mer counts in a 100 kb window surrounding the gene TSS as de�ned in Section 6.1.3, while

the displays the top x features. (B) Partial dependence plot for each feature. A partial dependence plot

shows the relation of each feature to the prediction probability for both classes, i.e. which class is predicted

if we observe a high count of a certain k-mer. The x-axis corresponds to the actual feature value, i.e. the

k-mer counts in a 100 kb window surrounding the gene TSS (as de�ned in Section 6.1.3) and the y-axis

corresponds to the prediction probability of either class for a speci�c feature value.
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Figure 7.3: Prototypes and partial dependence plots for XCI/escape model trained on epigenetic
and genomic features. Prototypes and partial dependence plots are shown for the top 10 features of

XCI/escape model trained on epigenetic and genomic features. (A) Prototypes computed for each feature

and class. A prototype is a representative for the respective class that helps to relate the features to the

classes, i.e. is an epigenetic feature enriched or depleted in a certain class. The y-axis corresponds to the

actual feature value, i.e. the enrichment of epigenetic features or scaled distance / density measures (e.g.

distance to Xist is scaled by the maximum distance to the Xist locus in the data set to put the feature

value on the same scale as the epigenetic features). (B) Partial dependence plot for each feature. A partial

dependence plot shows the relation of each feature to the prediction probability for both classes, i.e. which

class is predicted if a certain epigenetic feature is enriched. The x-axis corresponds to the enrichment of

epigenetic features (as de�ned in Section 6.1.1) or distance / density measures (as de�ned in Section 6.1.2)

and the y-axis corresponds to the prediction probability of either class for a speci�c feature value.

A similar pattern can be observed for late silenced genes, which are also found in gene dense

regions, far away from the Xist locus (but not as far as not silenced genes) but also far away

from full-length LINE elements (Figure 7.4). Late silenced genes are placed in a GC rich sequence

context (Figure 7.5). In accordance, early silenced genes have a lower CpG content than late

silenced genes and are, in addition, either depleted in SOX2 or have high levels of SOX2.
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Figure 7.4: Prototypes and partial dependence plots for silencing dynamics model trained on
epigenetic and genomic features. Prototypes and partial dependence plots are shown for the top 8

features of silencing dynamics model trained on epigenetic and genomic features. (A) Prototypes computed

for each feature and class. A prototype is a representative for the respective class that helps to relate

the features to the classes, i.e. is an epigenetic feature enriched or depleted in a certain class. The y-axis

corresponds to the actual feature value, i.e. the enrichment of epigenetic features or scaled distance /

density measures (e.g. distance to Xist is scaled by the maximum distance to the Xist locus in the data set

to put the feature value on the same scale as epigenetic features). (B) Partial dependence plot for each

feature. A partial dependence plot shows the relation of each feature to the prediction probability for both

classes, i.e. which class is predicted if a certain epigenetic feature is enriched. The x-axis corresponds to the

enrichment of epigenetic features (as de�ned in Section 6.1.1) or distance / density measures (as de�ned in

Section 6.1.2) and the y-axis corresponds to the prediction probability of either class for a speci�c feature

value.

Unfortunately, no clear trend is captured for the remaining features, which could be due to an

enrichment or depletion in only a subset of (early) silenced genes. This in turn demonstrates

the major drawback of those interpretation techniques. They only provide a linear view on the

relationship between features and silencing class although RFs are used to model non-linear

relationships. In chapter 6, we switched from a linear to a RF model due to the non-linear nature

of our classi�cation problem. Hence, the goal of the next section is to extract and visualize the

combinatorial rules that might be captured by the RF model.



7.2 forest-guided clustering identifies combinatorial feature patterns 93

0

50

100

150

200
GT

CG
C

CG
GC

C

GG
CC

G

AG
CG

A

AC
AC

G

GG
CA

G

AG
GC

A

features

class

Silencing dynamics model trained on
DNA sequence features

early silenced genes
late silenced genes

GGCAG

100 150 200 250

GGCCG

0 20 40 60

AGCGA

10 20 30 40

AGGCA

100 150 200

ACACG

10 20 30 40

0.3

0.4

0.5

0.6

0.7

CGGCC

10 20 30 40 50

GTCGC

0 10 20 30

0.3

0.4

0.5

0.6

0.7

k-mer count

pr
ed

ic
tio

n 
pr

ob
ab

ili
ty

 (%
)

k-
m

er
 c

ou
nt

A B

Figure 7.5: Prototypes and partial dependence plots for silencing dynamics model trained on
DNA sequence features. Prototypes and partial dependence plots are shown for the top 6 features of

silencing dynamics model trained on DNA sequence features. (A) Prototypes computed for each feature

and class. A prototype is a representative for the respective class that helps to relate the features to the

classes, i.e. how frequent is a speci�c k-mer in a certain class. The y-axis of a prototype plot shows the

actual feature value, i.e. the k-mer counts in a 100 kb window surrounding the gene TSS as de�ned in

Section 6.1.3, while the displays the top x features. (B) Partial dependence plot for each feature. A partial

dependence plot shows the relation of each feature to the prediction probability for both classes, i.e. which

class is predicted if we observe a high count of a certain k-mer. The x-axis corresponds to the actual feature

value, i.e. the k-mer counts in a 100 kb window surrounding the gene TSS (as de�ned in Section 6.1.3) and

the y-axis corresponds to the prediction probability of either class for a speci�c feature value.

7.2 forest-guided clustering identifies combi-
natorial feature patterns from random for-
est models

The variable importance analysis above pinpoints the individual contribution of each feature to

the classi�cation problem, but cannot identify the role of correlated features and of feature com-

binations associated with di�erent silencing pathways, which ultimately determine the silencing

class of each gene. To stratify the genes into subgroups according to di�erent combinations of

classi�cation rules, we implemented a forest-guided clustering approach.
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7.2.1 Forest-Guided Clustering

We used the proximity measure (see Section 3.2.1) between genes to cluster genes that are regu-

lated by the same set of rules with the k-medoids clustering algorithm (see Section 3.2.2).

Clustering on the Proximity Matrix

The proximity measure between two genes i and j represents the frequency with which those

genes occur in the same terminal nodes of a tree in the RF, intuitively de�ning how close

those genes are in the RF model. The proximity matrix is a N × N symmetric matrix (with

N =total number of genes) and can be calculated from a trained RF model (using the R package

randomForest). Each entry in the proximity matrix lies in the interval [0, 1]. The values 1 −

proximity[i, j] are squared distances in an Euclidean space (Breiman et al., 2003) and can therefore

be used as distance measures:

distance[i, j] = 1 − proximity[i, j]

for a k-medoids clustering (using the pam function of the cluster R-package). The proximity

matrix values and the class predictions used for clustering are averaged over 500 RF models.

Determining the optimal number of clusters

Similarly to k-means clustering, k-medoids clustering requires setting the number of clusters k

in advance. We developed a scoring system to choose the optimal number of clusters k, which

minimizes the model bias while restricting the model complexity. The model bias measures how

well the trained model (with a certain value of k) approximates the expected model, while the

variance is related to the model complexity, since complex models usually have a high variance

and poor generalization capability.

We de�ne the model bias by the mixture_indexk that penalizes values of k yielding a clustering

with a high degree of mixture, i.e. clusters containing genes from both silencing classes. For

the de�nition of the mixture_indexk , we introduce a mixture measure for each cluster i that is

de�ned as:

mixture_indexi = 4(

xi0

ni

×

xi1

ni

)

where ni is the number of genes in cluster i and xij with either j = 0 or j = 1, is the number of

genes in cluster i belonging to the silencing class j. The maximum mixture value for each cluster

i is 0.25 in case of a completely mixed cluster where 50% of genes belong to one class and 50% to

the other class. We multiply the mixture value by a scaling factor of 4 to obtain a number between

0 and 1. A small adjustment to this formula is needed in case of class imbalances. The smaller

class needs to be scaled to the size of the larger class in a way that both classes have comparable

in�uence on the mixture value. Hence, the number of genes belonging to the smaller class xsj in

cluster i are scaled by:

scaledxsj = xsj +

xsj

nsmall

× (nlarge − nsmall)
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where nsmall is the total number of genes belonging to the smaller class and nlarge is the total

number of genes belonging to the larger class. Themixture_indexk for a given number of clusters

k represents the average degree of mixture per cluster across all k clusters:

mixture_indexk =

∑
k

i=1
mixture_indexi

k

The smaller the value of the mixture_indexk , the better the separation of both class into separate

clusters.

On the other hand, we restrict the model variance by discarding too complex models (i.e.

partitions with many clusters, high values of k) and thereby avoiding over�tting. Therefore, we

analyse the stability of the forest-guided clustering for each value of k. We assess the stability of

each cluster i in the clustering with the average Jaccard Similarity between the original cluster A

and three hundred bootstrapped clusters Bb:

J Si(A|B) =

∑
300

b=1

|A∩Bb |

|A∪Bb |

300

using the function clusterboot of the R package fpc. Therefore, the genes are resampled via

bootstrapping and each bootstrap is clustered with the k-medoids clustering procedure described

above. Jaccard similarities values, which are smaller than or equal to 0.5 are an indication of a

dissolved cluster, while values higher than 0.6 are usually indicative of stable patterns in the data

(Hennig, 2008). We de�ne a clustering to be stable if each cluster i in the partition has an average

Jaccard Similarity J Si(A|B) > 0.6. Only stable clusterings, i.e. clustering with low variance, are

considered as clustering candidates for selecting an optimal value of k based on the minimal

bias. Hence, the optimal number of clusters k is the one yielding the minimum mixture_indexk ,

while having a stable clustering.

An Analysis of Variance (ANOVA) test was performed to �nd features with signi�cant di�erences

across clusters. The results of the k-medoids clustering are visualized as heatmaps, displaying

the top 10 features, which have a signi�cant variation across clusters according to the p-value of

the ANOVA test, and a few other features with signi�cant di�erences that provide interesting

biological insights (Figure 7.6A, Figure 7.8A).

7.2.2 Identifying Feature Combinations Associated with Dif-

ferent Silencing Pathways

Genes of the same silencing class are largely expected to cluster together according to a certain

combination of features. Given the non-linear nature of our classi�cation problem, we also expect,

to some extent, genes from the same silencing class to be grouped in di�erent clusters according

to di�erent combinations of features. Considering the scoring system described above, the optimal

number of clusters for both XCI/escape models was k = 3, with stable clusters (J Si > 0.9 and

J Si > 0.6 for EGm and Sm, respectively, Figure A10). The minimal value of mixture_indexk for

the silencing dynamics model was achieved for k = 3 (J Si > 0.8, Figure A10) and k = 2 (J Si > 0.8,

Figure A10) for the EGm and Sm, respectively.
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Figure 7.6: Forest-guided clustering for the XCI/escape model. Results from the forest-guided

clustering of the XCI/escape model, trained on (A) epigenetic and genomic as well as (B) DNA sequence

features, visualized as a heatmap. Columns indicate the genes grouped by cluster; rows correspond to

features with signi�cant di�erences among clusters (ANOVA test). (§) The top 10 most signi�cant features

from the ANOVA test. Distributions of epigenetic and genomic features in each cluster are shown in the

box plots next to the heatmap (exception: overlap LADs, where the number of genes in each category is

shown). (C) Silencing half-time distribution in each cluster of XCI/escape model trained on epigenetic and

genomic features. (D) Silencing half-time distribution in each cluster of XCI/escape model trained on DNA

sequence features. (E) Distribution of RING1B in each cluster of the XCI/escape model trained on DNA

sequence features, indicates that RING1B is signi�cantly enriched in cluster 2 (p-value of Wilcoxon Rank

Sum Test).

The results are visualized in a heatmap showing the genes (columns), grouped by cluster, and

a subset of features (rows) selected based on whether they have signi�cant di�erences across
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clusters (Figure 7.6, Figure 7.8). For the XCI/escape model trained on epigenetic and genomic

features, genes in clusters 1 and cluster 2 are mainly predicted as silenced and genes in cluster 3

as not silenced (Figure 7.6A, Figure 7.6C).

The escaping genes seem to cluster close to the centromeric region of the mouse X chromosome,

which is located far from the Xist locus (distance to Xist > 70 Mb). Furthermore, genes tend to

escape when they are far from LINE elements (distance to LINEs> 400 kb) and LADs (distance to

LADs> 800 kb), are located in gene dense regions and are enriched for transcription elongation

marks such as RNAPII S2P and H3K36me3. Previous studies pointed out that some genes escape in

all cell types (constitutive escapees), while others escape in a cell type speci�c manner (facultative

escapees, see Section 2.2.5, Section 5.4), which poses the interesting question whether constitutive

and facultative escapees are enriched for certain epigenetic or genomic features.
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Figure 7.7: Enriched features at constitutive and facultative escapees. Each boxplot shows the

di�erences for epigenetic and genomic features between constitutive and facultative escapees. Only those

features where we observe signi�cant di�erences between constitutive (genes identi�ed as escapee in at

least three samples/tissues, listed in Table 4.1) and facultative escapees (p-value of Wilcoxon Rank Sum

Test) are displayed.

Figure 7.7 shows that constitutive escapees have higher levels of elongation marks (H3K36m3,

RNAPII S2p) compared to facultative escapees, indicating that constitutive escapees might be

expressed at higher levels than facultative escapees before XCI is initiated. Facultative escapees

on the other hand, seem to be located in gene denser regions and closer to LINE elements. In-

terestingly, the distance to the Xist locus seems to play a less important role for constitutive

escapees than for facultative escapees, probably because constitutive escapees are also enriched

among genes of the X-inactivation centre (Xic) that help to maintain a stable Xist expression, i.e.

the constitutive escapee Ftx, which is located in the Xic and is an activator of Xist . The class of

silenced genes is divided into two clusters: cluster 1, which is marked by a repressive chromatin

state (PRC1/2, HDAC1) and bound by TET1, and cluster 2, which is depleted for those marks

(Figure A11, Figure A12). A similar pattern can be observed for the forest-guided clustering of

the DNA sequence feature model (Figure 7.6B, Figure 7.6D). Again, the class of silenced genes

is divided into two clusters: cluster1, which shows a strong enrichment in AT-rich k-mers, and

cluster 2, which shows no speci�c k-mer preferences. However, cluster 2 is signi�cantly enriched

for PRC1 mark RING1B (Figure 7.6E), indicating that there might exist two di�erent silencing

pathways: one sequence-speci�c and one Polycomb-speci�c silencing pathway.
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7.2.3 Identifying Combinatorial Rules Associated to the Kinet-

ics of Gene Silencing

In the next step, we investigated the factors that would distinguish early from late silenced genes

based on epigenetic and genomic features. The forest-guided clustering approach produced two

early silenced clusters (cluster 1 and cluster 2) with lower half-times and one late silenced cluster

(cluster 3) with higher half-times (Figure 7.8A, Figure 7.8C).
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Figure 7.8: Forest-guided clustering for the silencing dynamics model. Results from the forest-

guided clustering of the silencing dynamics model, trained on (A) epigenetic and genomic as well as

(B) DNA sequence features, visualized as a heatmap. Columns indicate the genes grouped by cluster;

rows correspond to features with signi�cant di�erences among clusters (ANOVA test). (§) The top 10

most signi�cant features from the ANOVA test. Distributions of epigenetic and genomic features in each

cluster are shown in the box plots next to the heatmap (exception: overlap with Xist entry sites and mean

interaction strength (Hi-C) Xist , where the number of genes in each category is shown). (C) Silencing

half-time distribution in each cluster of silencing dynamics model trained on epigenetic and genomic

features. (D) Silencing half-time distribution in each cluster of silencing dynamics model trained on DNA

sequence features.
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Again, one early silenced cluster (cluster 1) is pre-marked by Polycomb repressed chromatin

(H2AK119ub1, RING1B, EZH2, SUZ12, H3K27me3) and also H3K4me1. The other early silenced

cluster (cluster 2) is mainly characterized by a preferential location of genes in LINE-dense regions

and an enrichment of transcription elongation related features (E2F1 subunit and H3K79me2) as

well as transcription factor YY1 (Figure A13, Figure A14). Genes in both early silenced clusters

tend to be far away from TAD borders, to overlap with Xist entry sites and to exhibit strong

3D contacts with the Xist locus. The late silenced genes in cluster 3 are mainly characterized by

genomic features. They are located in gene dense regions, distant from the Xist locus (though

not as far as not silenced genes) and far from LINE elements and LADs. In addition, late silenced

genes show an enrichment of GC-rich k-mers, while early silenced genes tend to be enriched in

AT-rich k-mers (Figure 7.8B, Figure 7.8D).

7.2.4 Contribution of Di�erent Xist Repeats to Gene Silencing

Pathways

The results of the forest-guided clustering showed that there seem to be two distinct silencing

pathways, one in�uenced by the sequence context and another one controlled by Polycomb Group

Protein complexes. Proteins of the Polycomb complex PRC1 were shown to interact with the

repeat-B and -C elements on the Xist RNA in previous studies (see Section 2.2.1). To investigate

how the di�erent Xist repeat elements are associated with the two silencing pathways, we ana-

lyzed data from two previous studies: one study that analysed repeat-A mutants in trophoblasts

in vivo (Sakata et al., 2017) and another study that analyzed di�erent repeat mutants in mESCs

(Bousard et al., 2019) (see Section 4.3).

Sakata et al. measured gene silencing kinetics with allele-speci�c RNA-seq and provided mea-

surements of the percentage of paternal reads, the fraction of reads expressed from the paternal

X chromosome after silencing has occurred. The percentage of paternal reads were then used

to de�ne whether a gene is a�ected by the absence of the repeat-A element or not: gene i is

dependent on the repeat-A if the percentage of paternal reads of gene i is greater than 10%

(according to Sakata et al.), otherwise gene i is silenced independently of the repeat-A (Sakata

et al., 2017). We used the information about the repeat dependency to analyse if any of the clusters

of the epigenetic and genomic XCI/escape model is enriched in repeat dependent or independent

genes, which would indicate an association of the repeat-A element with one of the two silencing

pathways.

Bousard et al. analysed the impact of an repeat-A or repeat-BC depleted Xist RNA on gene

silencing with an dox-inducible mESC model and measured gene expression via RNA-seq before

and after 2 days of dox induction (Bousard et al., 2019). We used the provided data to compute

the di�erence in fold-change between repeat-A or repeat-BC with the wild type form:

Δf c = log2
(

Dox 2 Days

no Dox )
mutant

− log2
(

Dox 2 Days

no Dox )
WT

If Δf c > t , we considered the silencing to be reduced in the mutant lacking the corresponding

repeat element. As the e�ect on gene silencing is much milder for the repeat-BC than for the
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repeat-A mutant, the threshold t was set di�erently for the two mutants: a higher (more strict)

threshold t = 1 for the repeat-A and a lower threshold t = 0.5 for the repeat-BC, corresponding to

the 30% and 60% lower quantile of the f c distribution, respectively. Based on these thresholds

we divided our gene set into repeat dependent (silencing a�ected by the removal of the repeat

element, Δf c > t) and repeat independent genes (silencing not a�ected by the removal of the

repeat element, Δf c < t).
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Figure 7.9: Relation between clustering results and repeat dependency. The proportion of genes

shown to undergo silencing in repeat-A and repeat-BC mutants (i.e. Xist carrying a deletion of either

repeat-A or both repeat-B and -C) is shown for each cluster of the XCI/escape model. In detail, repeat

dependent genes refers to genes that have an impaired silencing in the mutants, while repeat independent

genes refers to those genes that could still undergo silencing in the repeat mutants, and not measured

refers to those genes in our dataset which were not covered by Sakata et al. (Sakata et al., 2017) or Bousard

et al. (Bousard et al., 2019). Cluster 2 has a signi�cant enrichment of repeat-A dependent genes compared

to cluster 1, whereas repeat-BC dependent genes show an enrichment in cluster 1 compared to cluster 2.

A Fisher’s exact test was performed to test for repeat-A or repeat-BC dependent genes in the

clusters of the epigenetic and genomic XCI/escape model (Figure 7.9). Cluster 1 is enriched for

repeat-BC dependent genes, whose silencing e�ciency is impaired in a repeat-BC mutant, com-

pared to cluster 2 (odd ratio = 1.6, Fisher’s exact test: p = 0.19), while cluster 2 is enriched for

repeat-A dependent genes, whose silencing is a�ected by the removal of the repeat-A element

from the Xist RNA (mESC data: odd ratio = 2.3, Fisher’s exact test: p = 0.09 and trophoblast data:

odd ratio = 2.76, Fisher’s exact test: p = 0.003). These �ndings are consistent with the recent

observation that PRC1/2 recruitment requires Xist repeat-B and -C and the idea that genes that

require Polycomb for silencing are already pre-marked by PRC1/2 and the associated histone

modi�cations (cluster 1). Genes, which are placed in an AT-rich environment, on the other hand,

seem to require the repeat-A element for silencing, which activates the SPEN/HDAC3 silencing

pathway (cluster 2). Interestingly, matrix-associated/attached regions (MARs), which determine

chromatin structure and accessibility, were shown to have an AT-rich sequence context. The

special AT-rich binding protein 1 (SATB1) is an MARs binding protein, which serves as docking

stations for histone modifying enzymes and is involved in the compaction of chromatin structure,

was implicated in the initiation of gene repression by Xist (Agrelo et al., 2009). Another interesting

observation is that genes, which rely on the repeat-A element for silencing, are located further

away from the Xist locus than genes that are silenced independently of the A-repeat element. This

in turn would be in accordance with the AT-rich sequence context, because MARs and SATB1
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localize to the periphery of the chromosome.

The above observations further support the idea that there exist at least two di�erent silencing

pathways by which X chromosomal genes can be silenced.

7.3 contribution of enhancer features to gene
silencing

In Section 6.2.3, we set out to build a RF model on enhancer-associated features. Unfortunately,

the enhancer training set was too small to build a reliable RF model. To still get some insights into

silencing associated enhancer features, we used a Wilcoxon Rank Sum Test to identify enhancer

features that show signi�cant di�erences between silenced vs not silenced genes (silencing thresh-

olds as de�ned in Section 6.2.2 for the RF XCI/escape model).

Most of the 110 X chromosomal gene promoters analysed in Section 6.2.3 could be linked to more

than one enhancer region. Therefore, we inspected di�erences between silenced and not silenced

genes for features at 1) all enhancers connected to a gene, 2) only the strongest enhancer (i.e.

with the best read support), 3) only the closest enhancer to each gene. Following the results of

the Wilcoxon Rank Sum Test (Figure 7.10), not silenced genes are preferentially associated to

enhancers with high levels of H3K27ac, as well as features related to active transcription (e.g.

RNAPII signal) and strong 3D interactions with other genomic regions, all hallmarks of strong

enhancer activity. Additionally, we observe a signi�cant pre-marking of CTCF signal at enhancers

of not silenced genes compared to silenced genes. On the other hand, enhancers of silenced

genes have a smaller genomic distance to the Xist locus, LINE elements and LADs, similarly to

promoters of silenced genes.
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Figure 7.10: Enriched features at enhancers of genes with measured half-times. For each gene we

de�ned putative enhancers via HiCap 3D chromatin promoter-enhancer interactions from Sahlén et al.

(Sahlén et al., 2015). Each boxplot shows di�erences between silenced and not silenced genes for epigenetic

and genomic features at 1) all enhancers connected to the gene 2) only the strongest enhancer and 3) only

the closest enhancer to each gene. Only those features where we observe signi�cant di�erences between

the class of silenced versus not silenced genes (p-value of Wilcoxon Rank Sum Test) are displayed.
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The process of X-Chromosome Inactivation (XCI) and its master regulator Xist has been studied

extensively over the past 50 years with various in vivo, in vitro and in silico approaches. Although

many key factors in the XCI process have been discovered, we still are missing an overall picture

on the interplay of silencing factors and the resulting silencing pathways, because previous studies

limited their analysis to only a few genes or certain factors that were shown or hypothesized to

have an impact on the XCI process. In the present thesis, those two main issues are addressed to

improve the understanding of XCI.

To understand Xist-mediated gene silencing on a chromosome-wide level, we measured silencing

kinetics on the silenced X chromosome with high temporal resolution through allele-speci�c

expression analysis in undi�erentiated mouse embryonic stem cells (mESCs). We assessed silenc-

ing dynamics via allele-speci�c PRO-seq, which measures nascent transcription and therefore,

allows for a higher temporal resolution (resolution in hours) compared to mRNA-seq (resolution

in days) that has been used in previous studies (Borensztein et al., 2017; Marks et al., 2015).

The high temporal resolution enabled a more direct quanti�cation of silencing kinetics, because

instantaneous changes in transcription by transcriptionally engaged RNAPII can be captured.

Moreover, the use of an inducible system allowed us to uncouple XCI from di�erentiation and to

avoid the use of mutations to ensure non-random XCI.

Previous studies that analysed the XCI process in vivo or in vitro , focused on only a few promoter-

associated factors, often selected based on prior knowledge, whose association with gene silencing

was usually shown by hypothesis testing, not taking interactions with other silencing factors

into account (Kelsey et al., 2015; Loda et al., 2017; Marks et al., 2015). Unlike those studies, we

set out to identify silencing determinants in an unbiased manner, without being in�uenced by

prior knowledge, through the integration of a large number of publicly available epigenetic,

genomic and DNA sequence data sets from mESCs. We used the integrated data sets to train a

machine learning model that is able to systematically analyse the contribution and combination

of features that predispose X chromosomal genes to Xist-mediated silencing. Based on computed

silencing half-times, derived from the PRO-seq time course experiment, we trained two separate

classi�cation models - the XCI/escape and the silencing dynamics model - to identify those factors

that are important for silencing in general and those that in�uence the kinetics of gene silencing.

The low predictive power of a linear model was an indicator for the potential combinatorial

nature of silencing pathways. This was one of the main reasons why we opted for a RF model, a

non-parametric machine learning method, which makes use of multiple decision trees to learn a

non-linear classi�cation task. Furthermore, RF models have a reduced risk of over�tting when the

number of trees is chosen large enough, even in cases with strong class imbalances, correlated

features and small training sets - all properties we exhibit in our data set. Our trained RF models

outperformed previous machine learning models that were build on DNA sequence features or
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chromatin states (Carrel et al., 2006; Nesterova et al., 2019; Wang et al., 2006). Our RF model,

trained on epigenetic and genomic features (22% error rate), generally performed much better

than the RF model of Nesterova et al. that was trained on chromatin states (29% error rate). In

addition, the used chromatin states represent a mixture of certain epigenetic factors and there-

fore, only give an overview on the type of features, i.e. repressive or active features, that might

contribute to the silencing process but not on speci�c epigenetic features that might be important

for silencing. Two previous models trained on DNA sequence features, using linear discriminant

analysis (Carrel et al., 2006) and support vector machines (Wang et al., 2006), reported a slightly

better performance than our RF model trained on DNA sequence features. However, those models

were only trained on a pre-selected subset of X-chromosomal genes coming from a speci�c region

on the X chromosome. When applied to all genes on chromosome X those models showed a very

poor performance for one of the model classes (LDA: 46% error rate for silenced genes; SVM:

83% error rate for escapees), indicating that the trained models are not generalizable to all X

chromosomal genes. In contrast, our RF models were trained on all X chromosomal genes, for

which we could compute silencing half-times, and achieved equally good error rates for both

silencing classes in the model. This in turn indicates that our models are generalizable to genes

on the whole X chromosome and are able to learn important properties of both classes from

the data. Model predictions for X chromosomal genes without computed silencing half-times

were used to further verify the generalizability of our model through 1) experimental testing of

candidate genes, 2) validation of model predictions with an independent mRNA-seq data set and

3) prediction of the silencing susceptibility to Xist transgenes located on an autosome. The results

of all three validation approaches con�rmed that our RF model can predict Xist-mediated gene

silencing based solely on epigenetic and genomic features.

As described above, we trained two separate RF classi�cation models to analyse the impact of

silencing factors on the silencing dynamics but also on silencing in general by discretizing our

computed silencing half-times into two silencing classes for each model (silenced vs not silenced

and early vs late silenced). Since the computed silencing half-times are continuous values, it would

have been desirable to use a regression setting to avoid setting a threshold for each silencing class.

However, one has to keep in mind that the �tted silencing half-times can be noisy, because the

silencing kinetics do not always follow an exponential decay function and hence, a discretization

of the �tted silencing half-times made the RF model more robust. In addition, we had to apply

a maximum value for the computed silencing-halftimes. This cuto� was necessary because the

PRO-seq experiment had a limited range of time points between 0 and 1 day and therefore, half-

times above the maximum cuto� would not have been reliable estimates. The consequence was a

missing graduation for genes with higher half-times, which made the use of a classi�cation setting

more reasonable. Another problem of the limited range of time points was the resulting potential

mixture of very late silenced genes and escapees. Some late silenced genes are only fully silenced

after more than one day of Xist expression (Marks et al., 2015), which means that the class of not

silenced genes potentially includes a few very late silenced genes as well. One possibility to tackle

both problems would be an extension of the experiment up to several days, in order to avoid setting

a half-time cuto� and to get a better half-time resolution for late silenced genes as well as escapees.

To uncover the combinatorial rules that control Xist-mediated silencing dynamics we went one

step beyond classical variable importance analysis and introduced a forest-guided visualization
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scheme. A variable importance analysis provides a ranking of features by importance for the clas-

si�cation task, giving us a linear view on the nonlinear RF model. The forest-guided visualization

scheme, on the other hand, takes the nonlinearity of a RF model into account by visualizing the

combinatorial rules that characterize certain groups of equally regulated genes (gene clusters),

thereby providing insights into the RF decision making process.

The determinants of silencing for groups of clustered genes, recovered by the forest-guided

clustering method, recapitulated previous observations but also shed light on novel players or

combination of features potentially controlling a gene’s susceptibility to Xist-mediated silencing

(see Figure 8.1). The linear distance and 3D interactions with the Xist locus are thought to be

the prime determinants of early Xist spreading (Engreitz et al., 2013). Our model found the same

features to be highly predictive of gene silencing dynamics, an association that had previously

been described (Borensztein et al., 2017; Marks et al., 2015) and suggests that e�cient Xist coating

is required for early silencing. However, previous studies had shown that Xist RNA initially tends

to spread to gene-dense and LINE-poor regions (Engreitz et al., 2013; Simon et al., 2013), but in

our analysis, gene density was associated with reduced silencing and LINE elements were found

in proximity of early silenced genes. A similar association has been reported previously (Chow

et al., 2010; Loda et al., 2017) and suggests that Xist coating is not the only determinant of silencing.

The Xist RNA recruits several protein complexes that mediate gene silencing, such as SPEN, which

binds directly to the repeat-A element, and Polycomb Repressive Complexes (PRC), which are

indirectly recruited by the repeat-B element (Brockdor�, 2017; Chu et al., 2015; Monfort et al., 2015;

Wutz et al., 2002). Our model identi�ed groups of genes associated with each of these silencing

pathways. Repeat-B / PRC associated genes are already enriched for PRC1 and PRC2 prior to the

onset of XCI, suggesting that polycomb pre-marking might promote and even accelerate gene

silencing and/or reinforce Xist spreading, as suggested by a recent study (Colognori et al., 2019). A

similar enrichment of PRC components has previously been found at genes susceptible to ectopic

silencing by Xist transgenes (Kelsey et al., 2015; Loda et al., 2017). Repeat-B associated genes are

also enriched for demethylase TET1, which was identi�ed as a stable partner of OGT in the nucleus

of ESCs (Vella et al., 2013). Notably, the Ogt gene is located on the X chromosome itself and was

identi�ed as escapee in our as well as previous studies (Andergassen et al., 2017; Calabrese et al.,

2012; Marks et al., 2015; Splinter et al., 2011). In the nucleus, OGT is responsible for modi�cations

of important transcriptional regulators like transcription factors or the C-terminal domain of

RNAPII, which leads to the inhibition of RNAPII activation and elongation (Comer et al., 2001).

Interestingly, we found OGT among the top features of silenced genes in our variable importance

analysis, which suggests that OGT, which is an escapee itself, might contribute to X-linked gene

silencing through inhibition of RNAPII activity within the Xist cloud. Although we did not �nd a

clear epigenetic signature at repeat-A associated silenced genes in the XCI/escape model, we did

observe a strong enrichment for AT-rich k-mers (in accordance with the results of (Wang et al.,

2006)) around the promoters of such genes, suggesting that the sequence context plays a more

important role for the repeat-A silencing pathway than the epigenetic environment. The AT-rich

sequence context and the greater genomic distance to the Xist locus of repeat-A associated silenced

genes points towards the placement of those genes in matrix-associated/attached regions (MARs),

which are bound by the special AT-rich binding protein 1 (SATB1) (Bode et al., 1992). SATB1 itself

does not recognize a speci�c primary DNA sequence but rather recognizes an AT-rich sequence
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context, which would explain why no speci�c k-mer showed a high feature importance in our RF

interpretation analysis (Belle et al., 1998). In the study of Agrelo et al. SATB1 was implicated in the

initiation of Xist -mediated gene silencing and Xist was shown to localize along SATB1-organized

chromatin (Agrelo et al., 2009). However, a later study reported that SATB1 is dispensable for X

chromosome inactivation in �broblasts, which could be due to the cell-type speci�c expression of

SATB1 (Dickinson et al., 1992; Nechanitzky et al., 2012). This shows that the role of SATB1 in the

process of XCI has to be further elucidated. Early silenced genes in the silencing dynamics model

that are not enriched for PRC, are located in particularly LINE-dense regions, suggesting that

LINE elements contribute to silencing of polycomb-independent genes as well.
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Figure 8.1: Schematic view of epigenetic and genomic mechanisms that predispose X chromo-
somal genes to Xist-mediated silencing. The potential silencing mechanisms are derived from the

forest-guided clustering of the RF models trained on the set of epigenetic and genomic data. (A) XCI/escape

model. Schematic view of the feature combinations promoting gene silencing (clusters 1 and 2) or escape

(cluster 3). (B) Silencing dynamics model. Schematic view of the features associated with early (cluster 1

and 2) and late gene silencing (cluster 3).

Previous studies looking at post-XCI cells have proposed a role of CTCF in XCI (Berletch et al.,

2015; Filippova et al., 2005) and have found a moderate enrichment of CTCF prior to XCI at

promoters of escapees compared to promoter of silenced genes (Loda et al., 2017). While we

did not �nd CTCF as one of the discriminating promoter features in our XCI/escape model, we

observed a signi�cant enrichment of CTCF signal at enhancers of not silenced X-linked genes,

suggesting a potential role of CTCF in gene silencing mediated by chromatin looping between

enhancers and promoters. Finally, our analysis identi�ed several structural features that appear to

modulate the dynamics of silencing. A high connectivity of some genes, i.e. how much the gene

is involved in 3D interactions with other genomic elements, is associated with faster silencing,

maybe because Xist RNA can spread more easily to these genes through proximity transfer.

Moreover, early silencing preferentially occurs at genes that are close to a LADs, which generally

contain repressed genes (Steensel et al., 2017), while genes placed in a GC-rich sequence context
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and close to TAD boundaries tend to be silenced late.

To investigate the in�uence of the experimental technique (PRO-seq vs mRNA-seq), used to

measure gene silencing dynamics, on the obtained conclusions from the model interpretation

analysis, we additionally trained an XCI/escape model on silencing half-times computed from

the undi�erentiated mRNA-seq data set (see Appendix (Section A.2)). A feature importance and

forest-guided clustering analysis of this model gave similar results to the model interpretation

analysis for the XCI/escape model trained on undi�erentiated PRO-seq data, indicating that the

experimental technique has no mayor impact on the drawn conclusions.

The Random Forest approach allowed us to quantify the relative contribution of several features

that have been previously associated with XCI (e.g. linear distance to Xist , LINE elements, enrich-

ment for PRC1 and PRC2) and suggested new features, which can be tested in more detail in future

studies, like TET1 / OGT and some pluripotency factors, such as ESRRB and SOX2, which have

recently been implicated in reactivation of the X chromosome during reprogramming (Janiszewski

et al., 2019). Additional features could be included in the model to further improve our ability to

predict silencing susceptibility and a detailed experimental investigation of the di�erent silencing

pathways elicited by Xist would facilitate the interpretation of the features that predict silencing

dynamics as well as escape from XCI. We also showed that the sequence context seems to have an

in�uence on gene silencing, since (early) silenced genes that are not enriched in PRC components

are placed in an AT-rich sequence context. In future work, it would be interesting to look at the

sequence context in more detail, to investigate the enrichment of certain oligomers or sequence

motifs that potentially contribute theXist spreading and the repeat-A associated silencing function.

The forest-guided clustering approach helped us to derive the two potential silencing pathways,

one controlled by the repeat-A element and a speci�c sequence context, the other one controlled

by the repeat-B element and a speci�c epigenetic context. Nevertheless, there are few features,

which are among the top feature in the variable importance analysis that are not captured by

the forest-guided clustering. A potential explanation for this observation is the existence of

alternative feature combinations, which are only captured by a minority of decision trees in the

RF but lead to equally good performances. In our szenario, for instance, the feature distance to Xist
is predominantly used as a �rst split point in the decision trees and therefore, heavily in�uences

the remaining split points. In some cases, however, this feature is not among the randomly chosen

features for the calculation of the �rst split point and therefore, another feature is chosen, which

potentially leads to a di�erent tree structure with other features used as split points. However, if

this alternative feature combination is only captured by a minority of decision trees (e.g. where

distance to Xist is not available as �rst split point), it only has a minor in�uence on the computed

proximity matrix and therefore, is not captured by the forest-guided clustering. One potential idea

to solve this problem, is to aggregate di�erently structured decision trees into clusters of decision

trees before calculating the proximity matrix. The proximity matrix could then be calculated

separately for each group of similarly structured decision trees, which would then be visualized

via the forest-guided clustering to uncover all alternative feature combinations. Decision trees

could be aggregated via classi�cation results (i.e. cluster decision trees whose classi�cation results

for all data points correlate) or via feature co-occurrences (i.e. cluster decision trees that are

built on the same set of features). Nevertheless, the forest-guided clustering approach enabled a
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systems-level view of the DNA sequence context and epigenetic landscape of the X chromosome

in mESCs, which in turn allowed to get new insights into the complex mechanisms behind the

di�erent Xist-mediated silencing pathways.
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A APPEND I X

a.1 experimental procedures and data process-
ing

The following data was generated in the Lab of Edith Heard and John Lis (see Section 5.1 for

contribution of each Lab). All raw and processed sequencing data generated were submitted

to the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under

accession number GSE121144.

ES cell culture. The female TX1072 cell line is a F1 hybrid mouse ESC line derived from a cross

between the 57BL/6 (B6) and CAST/EiJ (Cast ) mouse strains that carries a doxycycline responsive

promoter in front of the Xist gene on the B6 chromosome and an rtTA insertion in the Rosa26
locus (Schulz et al., 2014). Cells were grown on gelatin-coated �asks in serum-containing ES

cell medium (DMEM (Sigma), 15% FBS (Gibco), 0.1mM �-mercaptoethanol, 1000 U/ml leukemia

inhibitory factor (LIF, Millipore)), supplemented with 2i (3 �M Gsk3 inhibitor CT-99021, 1 �M

MEK inhibitor PD0325901). Cells were seeded at a density of 10
5

cells/cm
2

coated with gelatin

two days before the experiment. Xist was induced by supplementing the medium with 1 �g/ml

Doxycycline. Samples were collected before doxycycline treatment (0 h) and with dense temporal

sampling at time points 0.5, 1, 2, 4, 8, 12 and 24 h (PRO-seq), 2, 4, 8, 12 and 24 h (mRNA-seq) and

4, 8, 12, 24 h after treatment (Pyro-sequencing). Samples without doxycycline and 24 h doxycycline

were collected in duplicate to be able to assess reproducibility. To induce di�erentiation cells were

cultured in DMEM, supplemented with 15% FBS and 0.1mM �-mercaptoethanol, and collected at

0, 8, 16, 24 and 48 h for mRNA-seq.

PRO-seq. For each timepoint ∼ 10
7

nuclei were isolated by washing the cells twice with ice-cold

PBS, and once with 15 ml swelling bu�er (10 mM Tris-Cl, pH 7.4, 300 mM Sucrose, 3 mM CaCl2,

2 mM MgAc2, 5 mM DTT). Then, 15 ml cell lysis bu�er (10 mM Tris-Cl, pH 7.4, 300 mM Sucrose,

3 mM CaCl2, 2 mM MgAc2, 0.5% NP-40, 1 mM PMSF, EDTA-free protease inhibitors (1 tablet for

50 ml bu�er; Roche), 5 mM DTT) is added and cells are scraped o� the plate into a 50 ml tube and

spun at 900 g and 4
◦
C in a swing bucket centrifuge for 5 minutes. Supernatant is removed and the

cell pellet is resuspended in 5 ml cell lysis bu�er, transferred to a 7 ml dounce homogenizer and

dounced 50 times on ice. Dounced cells are moved to 15 ml tube and spun at 1200 g and 4
◦
C in a

swing bucket centrifuge for 5 minutes. Supernatant is removed and the nuclei are counted, snap

frozen and stored in glycerol storage bu�er (50 mM Tris-Cl, pH 8.3, 40% glycerol, 0.1 mM EDTA,

5 mM MgAc2, 1 mM PMSF, EDTA-free protease inhibitors (1 tablet for 50 ml bu�er; Roche), 5 mM

DTT). Run-on and library preparation was performed as previously described (Mahat et al., 2016)

using the single biotin-CTP nucleotide run-on protocol to prolong run-on and increase sequence

length. In short, run-on was performed with 10
7

nuclei in 100ml glycerol storage bu�er and 100ml
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pre-heated nuclear run-on mix, to get a �nal concentration in the run-on of 5 mM Tris-HCl, pH 8,

2.5mM MgCl2, 0.5mM DTT, 150mM KCl, 0.025mM biotin-11-CTP, 0.25mM CTP, 0.125mM ATP,

UTP and GTP, 0.5% sarkosyl and RNase inhibitor. Run-on was done for 5 minutes at 37 ◦ C and

stopped by adding 500ml TRIzol LS. RNA isolation, base hydrolysis, biotinylated-RNA enrichment

steps, enzymatic modi�cations of RNA, adapter ligations, reverse transcription, ampli�cation

and library size selection were done as described previously (Mahat et al., 2016). Libraries were

sequenced on the HiSeq 2000 Illumina sequencer (single-end, 100bp). For each library at least 50

Mio reads were generated. Adapter sequences were trimmed with cutadapt (v1.8.2). Nucleotides

with poor 3’ base quality (BAPQ < 20) were trimmed and reads of < 20 bp were discarded. After

quality control between 30 to 50 million reads remained. Ribosomal reads were �rst removed

by alignment to the rRNA reference (GenBank identi�ers:18S, NR_003278.3; 28S, NR_003279.1;

5S, D14832.1; and 5.8S, KO1367.1) using Bowtie1 (v1.0.0) and allowing 2 mismatches in the seed

(options: -m 1 -l 20 -n 2) (Langmead et al., 2009). Then, non-ribosomal reads were mapped to

both parental genomes. To do this, the VCF �le (mgp.v5.merged.snps_all.dbSNP142.vcf) reporting

all SNP sites from 36 mouse strains, based on mm10, was downloaded from the Sanger database.

SNPsplit (v0.3.0) was used to reconstruct the Cast genome from the mm10 reference (Krueger

et al., 2016). Only random best alignments with fewer than two mismatches (options: -M 1 -v 2

-l 20) were kept for downstream analyses. We applied an allele-speci�c RNA-seq strategy as

described in Borensztein et al. (Borensztein et al., 2017). Brie�y, mapping �les of both parental

genomes were merged for each sample and SAMtools mpileup (v1.1) was then used to extract

the base-pair information at each genomic position (Li et al., 2009). Read counts mapping to the

paternal and maternal genomes, respectively, were summed up across all SNPs present in the

same gene. To avoid allele speci�c bias, we checked the genotypes using a ChIP-seq input from

the same cell line. Therefore, only SNPs covered by at least 10 reads in this input sample and

having an allelic ratio range between 0.25 and 0.75were kept for downstream analysis (17, 035, 327

SNPs in total). RPKM values were calculated using gene count table, generated with GENCODE

annotation (M9) and HTSeq (v0.6.1) (Anders et al., 2015).

mRNA-seq. Cells were lysed by direct addition of 1 ml TRIzol (Invitrogen), 200�l of Chloroform

was added and after 15 min centrifugation (12000xg, 4
◦
C) the aqueous phase was mixed with

700�l 70% ethanol and applied to a Silica column (Qiagen RNAeasy Mini kit). RNA was then

puri�ed according to the manufacturers recommendations, including on-column DNAse digestion.

Concentration and purity were checked on a Nanodrop. In case of a low 260/230 ratio, extra

ethanol precipitation was performed. RNA pro�les were then checked by Bioanalyzer (Agilent

RNA 6000 Nano kit) and 1ug of RNA from each condition was used for mRNA-seq. Single Index

kit was used, and 12 cycles of PCR were set up. Final libraries were quanti�ed with Qubit dsDNA
HS Assay Kit, and quali�ed with LabChIP® GX system (PerkinElmer). Then 2 equimolar pools of

16 libraries each were prepared at 10nM. The exact molarity of the pools were assess by qPCR

using the KAPA Library Quanti�cation Kit Illumina on CFX96 system (Biorad). Then each pool

was sequenced on 1 �owcell of HiSeq 2000 system (paired-end, 100bp reads) in PE100, in order to

target ∼ 100M cluster per sample. The �rst ten bases from all reads were removed, due to their

low quality, using FASTX toolkit (v0.0.13). Reads were then mapped to both parental genomes

with TopHat2 (v2.1.0). Only random best alignments with less than two mismatches were kept

for downstream analyses. We applied the same allele-speci�c RNA-seq strategy used for PRO-seq
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data analysis.

Pyrosequencing. For pyrosequencing, RNA was extracted using the Direct-zol RNA MiniPrep

kit (Zymo Research) and DNase digest was performed using Turbo DNA free kit (Ambion). 1ug

RNA was reverse transcribed into cDNA using Superscript III Reverse Transcriptase (Invitrogen).

An amplicon containing a SNP is ampli�ed by PCR from cDNA using GoTaq Flexi G2 (Promega)

with 2.5 mM MgCl2 or HotStarTaq (Qiagen) for 40 cycles. The PCR product was sequenced using

the Pyromark Q24 system (Qiagen). Supplemental Table S6 in (Barros de Andrade E Sousa et al.,

2019) contains the forward and reverse Primers used for the validation of 11 candidate genes with

Pyrosequencing: six predicted as silenced, 5 predicted as not silenced by the XCI/escape model.

a.2 xci/escape model on undifferentiated mrna-
seq data

To investigate the di�erences between the undi�erentiated PRO-seq and mRNA-seq data we

trained an XCI/escape model on the gene half-times computed from the undi�erentiated mRNA-seq

data in the same way as we did for the PRO-seq data set, and compared the results with those

obtained from the PRO-seq-based XCI/escape model. The accuracy of the RNA-seq model is

comparable to the accuracy of the PRO-seq model, and many of the important top features used

for classi�cation largely agree between the two models. This is expected given that the Pearson

correlation coe�cient between the computed half-times from PRO-seq and the undi�erentiated

mRNA-seq experiment is 0.5.

Distance to Xist , gene density, distance to LINEs or TAD boundaries are among the top features

which are conserved between the PRO-seq and the mRNA-seq model Figure A1A. We also ex-

plored whether the silencing rules retrieved from the forest-guided clustering on the PRO-seq

model still hold for the mRNA-seq model. Similarly to the PRO-seq clustering, we observe a par-

tition of genes into three clusters: 2 silenced clusters and 1 not silenced cluster. Figure A1B shows

enriched features in the mRNA-seq clusters which were signi�cant in the PRO-seq clustering.

However, the distinction between PRC1/2-enriched cluster 1 versus cluster 2 in the mRNA-seq

clustering is not as prominent as in the PRO-seq model, indicating that PRO-seq is most probably

more sensitive to detect di�erent silencing pathways than mRNA-seq.
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Figure A1: XCI/escape model training on half-times computed from undi�erentiated mRNA-seq
data in mESCs (A) Feature importance of the XCI/escape model on the undi�erentiated mRNA-seq

data set. Features are ranked based on mean decrease in accuracy (MDA) and only features with a MDA

> 0 are shown. Features at the top are more important than features at the bottom. Features marked in

red correspond to discriminating features (MDA > 0) also detected in the PRO-seq model. (B) Boxplots

showing the enrichment of features across the three clusters of the mRNA-seq model. Here we show the

feature enrichment in the clusters of the mRNA-seq model of the top 10 most signi�cant features in the

ANOVA test of the PRO-seq model.
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Figure A2: Tsix / Xist locus. Strand-speci�c read density at the Tsix / Xist locus. Plus-strand is shown in

red, minus strand in blue; the y-axis indicates reads per million.
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Figure A3: Gene half-times vs genomic position of genes. Estimated half-times (black circles) for

all genes in the PRO-seq data set along the X chromosome. A �tted smooth curve of the half-times is

displayed as a blue line, and the Xist locus is marked with a gray line.
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Table A1: Metadata for ChIP-seq features.

ChIP-seq feature GEO Acces-

sion Number

�ltering reason enrichment

region start

(wrt TSS)

enrichment

region end

(wrt TSS)

5fC GSE40148 −500 500

5hmC GSE28682 −500 500

5mC GSE28682 removed due to bad

deepTools heatmap

BRG1 GSE14344 −500 500

CBX3 GSE44242 −250 250

CBX7 GSE42466 −500 500

CDK9 GSE44286 −500 500

CMYC GSE11431 −500 500

COREST GSE27841 removed due to bad

deepTools heatmap

CTCF GSE25777 removed due to bad

deepTools heatmap

CTCF GSE28247 −500 500

CTCF GSE29184 removed due to bad

deepTools heatmap

E2F1 GSE11431 −750 750

ESRRB GSE11431 −500 500

EZH2 GSE46536 removed due to bad

deepTools heatmap

EZH2 GSE49431 −500 500

EZH2 GSE55697 removed because bet-

ter experiment avail-

able for same feature

EZH2 GSE66830 removed due to bad

deepTools heatmap

H2Aub1 GSE34518 −500 500

H2AZ GSE36114 removed due to bad

deepTools heatmap

H2AZ GSE39237 removed because bet-

ter experiment avail-

able for same feature

H2AZ GSE53208 −500 500

H3K27ac GSE31039 −750 750

H3K27ac GSE36114 removed due to bad

deepTools heatmap

H3K27me3 GSE12241 removed due to bad

deepTools heatmap
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H3K27me3 GSE36114 removed due to bad

deepTools heatmap

H3K27me3 GSE41589 removed because bet-

ter experiment avail-

able for same feature

H3K27me3 GSE47949 −1000 1000

H3K27me3 GSE55697 removed because bet-

ter experiment avail-

able for same feature

H3K36me2 GSE41589 removed due to bad

deepTools heatmap

H3K36me3 GSE11724 removed because bet-

ter experiment avail-

able for same feature

H3K36me3 GSE12241 removed due to bad

deepTools heatmap

H3K36me3 GSE31039 removed due to bad

deepTools heatmap

H3K36me3 GSE34518 removed because bet-

ter experiment avail-

able for same feature

H3K36me3 GSE36114 removed due to bad

deepTools heatmap

H3K36me3 GSE41589 0 gene end

H3K4me1 GSE11172 removed because bet-

ter experiment avail-

able for same feature

H3K4me1 GSE29184 removed due to bad

deepTools heatmap

H3K4me1 GSE31039 removed due to bad

deepTools heatmap

H3K4me1 GSE32218 removed because bet-

ter experiment avail-

able for same feature

H3K4me1 GSE36114 removed due to bad

deepTools heatmap

H3K4me1 GSE47949 −1000 1000

H3K4me2 GSE11172 removed because cov-

erage was < 3 Mio.

H3K4me2 GSE36114 removed due to bad

deepTools heatmap

H3K4me3 GSE11724 removed because bet-

ter experiment avail-

able for same feature
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H3K4me3 GSE12241 removed because bet-

ter experiment avail-

able for same feature

H3K4me3 GSE29184 removed because bet-

ter experiment avail-

able for same feature

H3K4me3 GSE31039 removed

because better

experiment

available for

same feature

H3K4me3 GSE32218 −1000 1000

H3K4me3 GSE36114 removed due to bad

deepTools heatmap

H3K79me2 GSE11724 0 3000 or gene

end

H3K9ac GSE31039 −1000 1000

H3K9me3 GSE12241 removed due to bad

deepTools heatmap

H3K9me3 GSE18371 removed due to bad

deepTools heatmap

H3K9me3 GSE31039 removed due to bad

deepTools heatmap

H3K9me3 GSE32218 removed due to bad

deepTools heatmap

H3K9me3 GSE47894 removed due to bad

deepTools heatmap

H4K20me3 GSE12241 removed due to bad

deepTools heatmap

HCFC1 GSE36030 −500 500

HDAC1 GSE27841 −250 250

HDAC2 GSE27841 −250 250

HDAC3 GSE116480 −500 500

KAP1 GSE41903 removed because cov-

erage was < 3 Mio.

KDM2A GSE40860 −500 500

KDM2B GSE37930 removed because bet-

ter experiment avail-

able for same feature

KDM2B GSE40860 −750 750

KLF4 GSE11431 −250 250

LAMINB GSE28247 removed due to bad

deepTools heatmap
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LSD1 GSE18515 removed because bet-

ter experiment avail-

able for same feature

LSD1 GSE27841 −750 750

MAFK GSE36030 −500 500

MAX GSE48175 −500 500

MBD1A GSE39610 removed because cov-

erage was < 3 Mio.

MBD1B GSE39610 removed because cov-

erage was < 3 Mio.

MBD2A GSE39610 removed because cov-

erage was < 3 Mio.

MBD2T GSE39610 removed because cov-

erage was < 3 Mio.

MBD3A GSE39610 removed because cov-

erage was < 3 Mio.

MBD4 GSE39610 removed because cov-

erage was < 3 Mio.

MECP2 GSE39610 removed because cov-

erage was < 3 Mio.

MED1 GSE22562 −500 500

MED12 GSE22562 −500 500

MI2B GSE27841 removed due to bad

deepTools heatmap

MLL2 GSE48172 −500 500

NANOG GSE11431 removed because cov-

erage was < 3 Mio.

NANOG GSE11724 removed because bet-

ter experiment avail-

able for same feature

NANOG GSE44286 −500 500

NIPBL GSE22562 −500 500

NMYC GSE11431 −500 500

OCT4 GSE11431 removed because bet-

ter experiment avail-

able for same feature

OCT4 GSE11724 removed because bet-

ter experiment avail-

able for same feature

OCT4 GSE44286 −500 500

OGT GSE39154 −500 500

P300 GSE11431 removed due to bad

deepTools heatmap
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P300 GSE28247 removed due to bad

deepTools heatmap

P300 GSE29184 removed due to bad

deepTools heatmap

PHF19 GSE41589 removed due to bad

deepTools heatmap

PHF19 GSE41609 removed due to bad

deepTools heatmap

RAD21 GSE25777 removed due to bad

deepTools heatmap

REST GSE27841 removed due to bad

deepTools heatmap

RING1B GSE34518 −500 500

RING1B GSE42466 removed because bet-

ter experiment avail-

able for same feature

RING1B GSE55697 removed because bet-

ter experiment avail-

able for same feature

RNAPII GSE12241 removed because cov-

erage was < 3 Mio.

RNAPII GSE28247 −500 500

RNAPII GSE29184 removed because bet-

ter experiment avail-

able for same feature

RNAPII_8WG16 GSE34518 −500 500

RNAPII_S2P GSE34518 0 gene end

RNAPII_S5P GSE34518 −500 500

RNAPII_S7P GSE34518 −500 500

RYBP GSE42466 −500 500

SETDB1 GSE18371 removed due to bad

deepTools heatmap

SIN3A GSE24841 −500 500

SIN3A GSE24841 removed because bet-

ter experiment avail-

able for same feature

SMAD1 GSE11431 removed because cov-

erage was < 3 Mio.

SMC1 GSE22562 −500 500

SMC3 GSE22562 −500 500
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SOX2 GSE11431

removed

because cov-

erage was < 3

Mio.

SOX2 GSE11724 removed because bet-

ter experiment avail-

able for same feature

SOX2 GSE44286 −500 500

STAT3 GSE11431 removed due to bad

deepTools heatmap

SUZ12 GSE11431 removed due to bad

deepTools heatmap

SUZ12 GSE11724 removed due to bad

deepTools heatmap

SUZ12 GSE42466 removed because bet-

ter experiment avail-

able for same feature

SUZ12 GSE44286 removed because bet-

ter experiment avail-

able for same feature

SUZ12 GSE49431 −750 750

SUZ12 GSE55697 removed because bet-

ter experiment avail-

able for same feature

SUZ12 GSE66830 removed due to bad

deepTools heatmap

TAF1 GSE30959 −500 500

TAF1 GSE36114 removed due to bad

deepTools heatmap

TAF3 GSE30959 −750 750

TBP GSE30959 −500 500

TCF3 GSE11724 −500 500

TCFCP2I1 GSE11431 −500 500

TET1_C GSE24841 −500 500

TET1_N GSE24841 removed because bet-

ter experiment avail-

able for same feature

YY1 GSE68195 −500 500

ZC3H11A GSE36030 removed due to bad

deepTools heatmap

ZNF384 GSE36030 −500 500
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Figure A4: Example of ChIP-seq signal normalization with normR. Two genomic loci on Chromo-

some X are shown. The green box highlights a region with no or little uniform signal in the control but a

sharp peak in the ChIP library. The normalized track correctly shows that the signal corresponding to the

sharp peak is still maintained after normalization. In contrast, the red box highlights a region with a peak

signal in both the control and the ChIP library. The normalized track correctly shows that the peak in this

region is rescaled after normalization to the control signal.
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Table A2: Performance of di�erent machine learning methods for XCI / escape model.

silencing

threshold

# of

silenced

genes / #

of not

silenced

genes /

size

training

set

Logistic
Regres-
sion
(error

rate

total)

Elastic
Net
Regres-
sion
(error

rate

total /

silenced

/ not

silenced)

Random Forest (epige-

netic & genomic features

model)

Random Forest
(DNA sequence

feature model on

100kb window)

all fea-

tures

(error

rate

total /

silenced

/ not si-

lenced)

top

features

(error

rate

total /

silenced

/ not si-

lenced)

permuta-

tion test

top

features

(p-

value)

all fea-

tures

(error

rate

total /

silenced

/ not si-

lenced)

top

features

(error

rate

total /

silenced

/ not si-

lenced)

sil.: t1/2 < 0.9

not sil.: t1/2 >

1.4

168 / 64 /

51

44.33 34.81 /

34.59 /

36.77

29.18 /

28.03 /

32.2

25.49 /

25.08 /

26.57

0.016 36.35 /

35.34 /

38.97

24.3 /

24.07 /

24.91

sil.: t1/2 < 0.9

not sil.: t1/2 >

1.5

168 / 57 /

46

46.06 35.05 /

34.91 /

36.59

26.96
/ 25.8 /

30.35

23.03 /

21.69 /

26.97

0.002 37.63 /

36.43 /

41.16

24.88 /

25.07 /

24.32

sil.: t1/2 < 0.9

not sil.: t1/2 >

1.6

168 / 50 /

40

48.07 35.94
/ 35.7 /

39.05

27.95 /

26.85 /

31.63

22.44 /

22.95 /

19.97

0.024 30.55 /

28.82 /

38.86

19.01 /

18.89 /

21.8

sil.: t1/2 < 0.9

not sil.: t1/2 >

1.7

168 / 44 /

34

49.66 37.59 /

37.53 /

38.4

26.53 /

25.58 /

30.14

21.11 /

20.31 /

24.1

0.020 35.91 /

34.23 /

42.32

26.31 /

26.13 /

27

sil.: t1/2 < 0.9

not sil.: t1/2 >

1.8

168 / 40 /

30

49.68 38.6 /

38.5 / 40

28.87 /

27.93/

32.8

22.69 /

22.69 /

22.7

0.008 35.69
/ 33.7 /

44.05

25.81 /

24.83 /

29.9

sil.: t1/2 < 0.9

not sil.: t1/2 >

1.9

168 / 37 /

27

48.89 37.41
/ 37.4 /

37.6

30.02 /

29.31 /

33.28

24.12 /

24.59 /

22

0.014 31.84 /

29.81 /

41.08

21.84 /

20.97 /

25.78

sil.: t1/2 < 0.9

not sil.: t1/2 >

2.0

168 / 35 /

25

49.01 38 / 37.82

/ 40.6

28.28 /

27.55 /

31.79

21.31 /

20.17 /

25.13

0.028 38.1 /

37.14 /

41.32

23.41 /

22.48 /

26.56

sil.: t1/2 < 1.0

not sil.: t1/2 >

1.4

177 / 64 /

51

43.73 34.74 /

34.36 /

38.46

29.79 /

29.39 /

30.89

26.47 /

26.18 /

27.27

0.027 39.05 /

37.74 /

42.69

28.12 /

28.77 /

26.31

sil.: t1/2 < 1.0

not sil.: t1/2 >

1.5

177 / 57 /

46

46.05 35.24 /

35.08 /

37.23

27.75 /

26.58 /

31.38

24.49 /

23.59 /

27.3

0.008 39.33 /

38.05 /

43.33

25.69
/ 25.5 /

26.28

sil.: t1/2 < 1.0

not sil.: t1/2 >

1.6

177 / 50 /

40

48.46 36.76 /

36.81 /

36.1

28.06 /

27.04 /

31.68

21.43 /

20.42 /

24.99

0.012 39.92 /

38.73 /

44.12

23.27 /

22.52 /

25.92

sil.: t1/2 < 1.0

not sil.: t1/2 >

1.7

177 / 44 /

34

49.95 37.79 /

37.72 /

38.75

27.12 /

26.24 /

30.64

22.47 /

22.39 /

22.79

0.010 38.89 /

37.68 /

43.73

23.87
/ 23.2 /

26.59
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sil.: t1/2 < 1.0

not sil.: t1/2 >

1.8

177 / 40 /

30

49.12 39.21 /

39.18 /

39.65

29.26 /

28.22 /

33.85

24.12 /

23.93 /

24.98

0.008 38.26 /

36.87 /

44.4

23.68 /

22.44 /

29.15

sil.: t1/2 < 1.0

not sil.: t1/2 >

1.9

177 / 37 /

27

48.57 38.53 /

38.43 /

40.05

31.37 /

30.86 /

33.83

22.48
/ 22.4 /

22.83

0.000 33.56 /

31.91 /

41.46

24.05 /

23.14 /

28.38

sil.: t1/2 < 1.0

not sil.: t1/2 >

2.0

177 / 35 /

25

47.95 39.6 /

39.49 /

41.15

29.63 /

29.08 /

32.42

23.49 /

23.93 /

21.26

0.034 32.99 /

31.31 /

41.49

21.13 /

20.48 /

24.4

sil.: t1/2 < 1.1

not sil.: t1/2 >

1.4

191 / 64 /

51

43.46 37.28 /

37.12 / 39

32.04 /

31.33 /

34.17

27.92 /

26.98 /

30.74

0.002 39.42 /

38.05 /

43.5

27.65 /

28.68 /

24.59

sil.: t1/2 < 1.1

not sil.: t1/2 >

1.5

191 / 57 /

46

45 37.23 /

37.08 /

39.18

31.29 /

30.87 /

32.7

29.72 /

28.59 /

33.48

0.016 39.88 /

38.58 /

44.25

26.45 /

25.14 /

30.84

sil.: t1/2 < 1.1

not sil.: t1/2 >

1.6

191 / 50 /

40

48.67 37.96 /

37.97 /

37.75

29.62 /

28.67 /

33.27

22.53 /

21.81 /

25.26

0.008 40.46 /

39.52 /

44.04

24.38 /

23.67 /

27.08

sil.: t1/2 < 1.1

not sil.: t1/2 >

1.7

191 / 44 /

34

49.5 39.69 /

39.59 /

41.3

28.57 /

27.55 /

33.02

23.78 /

24.14 /

22.22

0.000 39 /

38.08 /

42.95

26.16 /

25.89 /

27.36

sil.: t1/2 < 1.1

not sil.: t1/2 >

1.8

191 / 40 /

30

49.23 41.54
/ 41.6 /

40.55

32.06 /

31.29 /

35.77

25.77 /

25.35 /

27.8

0.028 37.72 /

36.35 /

44.3

22.08 /

21.68 /

24

sil.: t1/2 < 1.1

not sil.: t1/2 >

1.9

191 / 37 /

27

49.29 40.21 /

40.22 /

40.1

32.93 /

32.54 /

34.95

24.3 /

24.7 /

22.21

0.002 33.93 /

32.53 /

41.14

21.28
/ 20.6 /

24.81

sil.: t1/2 < 1.1

not sil.: t1/2 >

2.0

191 / 35 /

25

49.79 41.05 /

40.91 /

43.35

33.5 /

33.8 /

31.88

24.17 /

24.31 /

23.39

0.004 33.54 /

32.45 /

39.49

21.03 /

20.95 /

21.43

sil.: t1/2 < 1.2

not sil.: t1/2 >

1.4

205 / 64 /

51

43.82 38.88
/ 38.7 /

41.08

33.55 /

32.86 /

35.76

28.14 /

27.67 /

29.66

0.006 39.53 /

38.45 /

43

27.81 /

27.75 /

28

sil.: t1/2 < 1.2

not sil.: t1/2 >

1.5

205 / 57 /

46

45.91 39 / 39 /

39.09

31.31 /

30.28 /

35.01

29.01 /

28.28 /

31.63

0.044 40.01 /

39.02 /

43.58

23.03 /

22.04 /

26.6

sil.: t1/2 < 1.2

not sil.: t1/2 >

1.6

205 / 50 /

40

hb48.37 hb39.6 /

39.69 /

38.1

29.7 /

28.7 /

33.81

23.86 /

23.25 /

26.34

0.000 34.89
/ 33.9 /

40.69

19.08 /

19.01 /

19.49

sil.: t1/2 < 1.2

not sil.: t1/2 >

1.7

205 / 44 /

34

48.85 41.18 /

41.36 /

38.15

30.44 /

29.81 /

33.37

25.04 /

24.32 /

28.43

0.002 39.98 /

38.99 /

44.64

22.02 /

21.65 /

23.77

sil.: t1/2 < 1.2

not sil.: t1/2 >

1.8

205 / 40 /

30

49.29 42.67 /

42.73 /

41.55

33.7 /

33.68 /

33.78

25.99 /

25.71 /

27.4

0.000 37.96 /

36.77 /

44.05

21.76 /

20.84 /

26.5
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sil.: t1/2 < 1.2

not sil.: t1/2 >

1.9

205 / 37 /

27

49.68 41.58 /

41.77 /

38.2

34.1 /

33.83 /

35.59

24.75 /

24.84 /

24.26

0.000 34.06 /

32.72 /

41.51

18.34 /

17.82 /

21.19

sil.: t1/2 < 1.2

not sil.: t1/2 >

2.0

205 / 35 /

25

50.06 42.64 /

42.75 /

40.65

35.48 /

35.42 /

35.86

26.53 /

27.25 /

22.33

0.016 40.19 /

39.46 /

43.16

22.99 /

22.82 /

23.68

sil.: t1/2 < 1.3

not sil.: t1/2 >

1.4

211 / 64 /

51

45.2 39.29 /

39.14 /

41.08

33.79 /

33.15 /

35.89

29.53 /

29.63 /

29.19

0.004 40.39 /

39.09 /

44.69

24.63
/ 24.3 /

25.72

sil.: t1/2 < 1.3

not sil.: t1/2 >

1.5

211 / 57 /

46

46.2 38.76 /

38.59 /

41.27

31.06 /

30.01 /

34.98

28.56 /

27.46 /

32.66

0.028 40.51 /

39.38 /

44.7

25.83 /

24.98 /

28.98

sil.: t1/2 < 1.3

not sil.: t1/2 >

1.6

211 / 50 /

40

48.57 40.41 /

40.41 /

40.4

29.76 /

28.87 /

33.51

23.37 /

22.55 /

26.82

0.000 39.13 /

38.22 /

43

23.36 /

22.25 /

28

sil.: t1/2 < 1.3

not sil.: t1/2 >

1.7

211 / 44 /

34

49.19 41.25 /

41.27 / 41

30.56 /

30.08 /

32.85

25.08 /

25 / 25.5

0.002 42.06 /

41.19 /

46.23

22.38 /

21.96 /

24.41

sil.: t1/2 < 1.3

not sil.: t1/2 >

1.8

211 / 40 /

30

49.33 42.63 /

42.72 /

40.9

33.65 /

33.44 /

34.77

27.82 /

28.32 /

25.1

0.038 37.71 /

36.45 /

44.3

23.86 /

23.01 /

28.3

sil.: t1/2 < 1.3

not sil.: t1/2 >

1.9

211 / 37 /

27

49.54 41.68 /

41.65 /

42.2

34.24 /

34.02 /

35.51

24.81
/ 24.4 /

27.16

0.000 35.02 /

33.75 /

42.22

17.57 /

16.87 /

21.51

sil.: t1/2 < 1.3

not sil.: t1/2 >

2.0

211 / 35 /

25

49.59 41.54 /

41.47 /

42.85

36.19 /

36.81 /

32.46

25.55 /

26.33 /

20.83

0.018 35.5 /

34.59 /

40.97

21.93 /

21.22 /

26.17

sil.: t1/2 < 1.4

not sil.: t1/2 >

1.4

216 / 64 /

51

44.62 38.65 /

38.42 /

41.54

33.36 /

32.52 /

36.22

27.58 /

27.05 /

29.37

0.002 40.15
/ 38.9 /

44.37

25.63
/ 25.5 /

26.06

sil.: t1/2 < 1.4

not sil.: t1/2 >

1.5

216 / 57 /

46

46.97 38.27 /

38.14 /

40.36

30.70 /

29.85 /

33.93

27.48 /

25.48 /

35.05

0.006 39.33 /

37.94 /

44.6

26.41 /

25.89 /

28.39

sil.: t1/2 < 1.4

not sil.: t1/2 >

1.6

216 / 50 /

40

48.62 40.75 /

40.88 /

38.45

29.68 /

28.71 /

33.88

23.3 /

22.71 /

25.86

0.000 38.5 /

37.66 /

42.16

21.64 /

20.62 /

26.04

sil.: t1/2 < 1.4

not sil.: t1/2 >

1.7

216 / 44 /

34

49.84 40.52 /

40.51 /

40.7

30.16 /

29.55 /

33.2

24.13 /

23.51 /

27.18

0.000 39.32 /

38.34 /

44.09

23.6 /

22.69 /

28.09

sil.: t1/2 < 1.4

not sil.: t1/2 >

1.8

216 / 40 /

30

49.05 42.16 /

42.16 /

42.1

33.66 /

33.38 /

35.17

28.09 /

27.97 /

28.73

0.026 36.7 /

35.26 /

44.45

20.42 /

19.67 /

24.5

sil.: t1/2 < 1.4

not sil.: t1/2 >

1.9

216 / 37 /

27

49.05 41.66 /

41.75 /

39.9

33.96 /

33.79 /

34.96

24.52 /

24.31 /

25.73

0.011 34.67 /

33.37 /

42.27

24.07 /

23.48 /

27.51
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sil.: t1/2 < 1.4

not sil.: t1/2 >

2.0

216 / 35 /

25

48.93 42.84 /

43.05 /

38.65

36.01
/ 35.5 /

39.15

27.17 /

27.88 /

22.82

0.003 34.61
/ 33.6 /

40.86

20.65 /

20.19 /

23.49

Table A3: Performance of di�erent machine learning methods for silencing dynamics model.

silencing

threshold

(early

silenced,

late

silenced)

# of

silenced

genes / #

of not

silenced

genes /

size

training

set

Logistic
Regres-
sion
(error rate

total)

Elastic
Net Re-
gression
(error rate

total /

silenced /

not

silenced)

RandomForest (epi-

genetic & genomic

features model) (er-

ror rate total / si-

lenced / not silenced)

Random Forest
(DNA sequence

feature model on

100kb window) (error

rate total / silenced /

not silenced)

all fea-

tures

(error rate

total /

silenced

/ not

silenced)

top fea-

tures

(error rate

total /

silenced

/ not

silenced)

all fea-

tures

(error rate

total /

silenced

/ not

silenced)

top fea-

tures

(error rate

total /

silenced

/ not

silenced)

early sil.:

t1/2 < 0.5

late sil.:

0.7 <

t1/2 < 1.0

74 / 48 / 38 49.85 44.67 /

45.17 /

42.9

39.05 /

40.41 /

36.96

23.27 /

22.15 /

23.99

40.14 / 39.7

/ 40.83

18.37 /

18.03 /

18.92

early sil.:

t1/2 < 0.5

late sil.:

0.7 <

t1/2 < 1.1

74 / 62 / 50 47.76 43.42 /

43.27 /

43.71

42.27 /

44.37 /

39.76

26.11 /

25.38 /

26.98

41.1 / 37.81

/ 45.03

20.63 /

18.24 /

23.48

early sil.:

t1/2 < 0.5

late sil.:

0.7 <

t1/2 < 1.2

74 / 75 / 59 46.73 39.02 /

37.93 /

40.03

40.1 /

37.95 /

42.23

28.41 /

30.15 /

26.68

42.39 /

39.27 /

45.47

24.87 /

23.54 /

26.19

early sil.:

t1/2 < 0.5

late sil.:

0.7 <

t1/2 < 1.3

74 / 79 / 59 44.69 39.2 /

37.97 /

40.12

36.73 /

34.06 /

39.24

27.73 /

28.81 /

26.73

41.11 /

38.22 /

43.82

26.48 / 26 /

26.94

early sil.:

t1/2 < 0.5

late sil.:

0.7 <

t1/2 < 1.4

74 / 84 / 59 45.74 40.05 /

39.37 /

40.46

36.15 /

33.67 /

38.33

26.71 /

28.08 /

25.5

39.3 /

36.76 /

41.55

25.6 / 26.24

/ 25.02
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early sil.:

t1/2 < 0.5

late sil.:

0.8 <

t1/2 < 1.1

74 / 40 / 30 50.5 44.16 /

43.93 /

45.15

35.37 /

34.85 /

36.34

25.06 /

26.38 /

22.64

43.35 /

36.89 /

55.3

22.65 /

21.62 /

24.55

early sil.:

t1/2 < 0.5

late sil.:

0.8 <

t1/2 < 1.2

74 / 53 / 42 47.03 39.12 /

38.56 /

40.73

41.53 /

39.48 /

44.4

25.95 /

22.84 /

30.29

42.69 /

35.3 /

53.02

23.37 /

22.49 /

24.6

early sil.:

t1/2 < 0.5

late sil.:

0.8 <

t1/2 < 1.3

74 / 57 / 46 47.69 37.62 /

37.48 /

37.95

30.97 /

27.42 /

35.6

21.4 /

19.71 /

23.6

41.66 /

35.08 /

50.21

22.78 /

21.81 /

24.04

early sil.:

t1/2 < 0.5

late sil.:

0.8 <

t1/2 < 1.4

74 / 62 / 50 46.21 37.76 /

37.42 /

38.46

39.27 /

36.94 /

42.06

22.77 /

21.58 /

24.19

38.09 /

33.54 /

43.52

23.43 /

23.57 /

23.26

early sil.:

t1/2 < 0.5

late sil.:

0.9 <

t1/2 < 1.2

74 / 36 / 26 49.61 35.86 /

35.4 / 38.1

32.13 /

31.34 /

33.74

21.99 /

21.37 /

23.28

28.56 /

19.95 /

46.28

19.27 /

18.6 /

20.66

early sil.:

t1/2 < 0.5

late sil.:

0.9 <

t1/2 < 1.3

74 / 40 / 30 49.03 34.13 /

32.52 /

41.2

29.33 /

29.5 / 29

21.56 /

20.43 /

23.24

28.7 /

20.59 /

43.7

19.11 /

18.43 /

20.35

early sil.:

t1/2 < 0.5

late sil.:

0.9 <

t1/2 < 1.4

74 / 45 / 35 48.21 36.15 /

34.91 / 41

29.73 /

28.46 /

31.83

23.82 /

22.32 /

26.27

31.43 /

25.97 /

40.4

19.62 /

18.54 /

21.38

early sil.:

t1/2 < 0.5

late sil.:

1.0 <

t1/2 < 1.4

74 / 36 / 26 49.76 38.72 /

38.73 /

38.7

33.59 /

32.35 /

36.14

24.12 /

22.08 /

28.31

31.06 /

25.19 /

43.11

17.25 /

15.59 /

20.67

early sil.:

t1/2 < 0.6

late sil.:

0.7 <

t1/2 < 1.0

104 / 48 /

38

50.57 47.01 /

47.52 /

43.6

43.36 /

43.21 /

43.68

27.84 /

28.98 /

25.38

44.59 / 43 /

48.04

19.96 /

20.38 /

19.04
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early sil.:

t1/2 < 0.6

late sil.:

0.7 <

t1/2 < 1.1

104 / 62 /

50

48.86 44.89 /

44.92 /

44.79

40.15 /

38.37 /

43.13

27.34 /

28.01 /

26.2

44.67 /

40.75 /

51.26

19.57 /

20.21 /

18.48

early sil.:

t1/2 < 0.6

late sil.:

0.7 <

t1/2 < 1.2

104 / 75 /

60

45.64 39.37 /

38.77 /

41.13

43.43 /

41.52 /

46.07

30.14 /

27.98 /

33.14

41.46 /

35.12 /

50.27

23.06 /

21.19 /

25.65

early sil.:

t1/2 < 0.6

late sil.:

0.7 <

t1/2 < 1.3

104 / 79 /

63

45.44 39.19 /

39.37 /

38.75

43.33 /

40.75 /

46.71

29.44 /

27.04 /

32.61

39.61 /
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Figure A5: Feature correlation matrix. It shows the Pearson correlation coe�cient for every pair of

features used in the model and it is computed based on all 280 genes with estimated half-times from the

PRO-seq data. Red indicates high positive correlation and blue a high negative correlation. One can observe

blocks of correlate features. For example, the active marks (RNAPII, H3K4me3, H3K27ac and others) are

highly correlated amongst each other while repressive features, such as PRC1 and PRC2 components and

H3K27me3 form another positively correlated block but are negatively correlated with many active mark

features.



136 appendix

86

87

109

190

Chr X clones

Chr 12 clones
228

273

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
normalized allelic expression ratio (AER)

di
st

rib
ut

io
n 

of
 n

or
m

al
iz

ed
 A

ER

Figure A6: Distribution of normalized allelic expression ratios (AER) for each clone. Shown is the

distribution of normalized AER for all genes in each of the six clones with ectopic Xist expression (four on

Chromosome X and two autosomal locations on Chromosome 12). A normalized AER below one indicates

that the gene is silenced after 2 days of doxycycline induction in the respective clone. The �gure shows

that overall gene silencing is less e�cient on the clones on Chromosome 12 compared to the clones on

Chromosome X.
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Figure A7: Split point frequencies of the RF models trained on epigenetic and genomic features.
For each epigenetic or genomic feature, the bar indicates how often that feature was used as a split point

in the respective node level counted over all decision trees in the RF model. The �rst three node levels are

displayed, where the �rst node level represents the �rst split point of a decision tree.
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Figure A8: Split point frequencies of the RF models trained on DNA sequence features. For each

DNA sequence feature, the bar indicates how often that feature was used as a split point in the respective

node level counted over all decision trees in the RF model. The �rst three node levels are displayed, where

the �rst node level represents the �rst split point of a decision tree.
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Figure A9: Feature importance for the XCI/escape and silencing dynamics model. The importance

of features for Random Forest classi�cation is measured by the mean decrease in accuracy (MDA), which is

de�ned as the average decrease in model accuracy after permuting the values in each feature. The feature

with the highest MDA (e.g. distance to Xist ) is the most important feature for the classi�cation. Each box

in the plot corresponds to a model feature and represents the distribution of that feature’s MDA over 500

Random Forest models. For simplicity, only features with MDA higher than 0 are shown.
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forest-guided clustering for the XCI/escape model
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Figure A10: Cluster stability analysis for selection of optimal number of k clusters. The cluster

stability analysis shows the distribution of Jaccard Similarity (JS) for each cluster over 300 bootstrap runs.

Average JS values over 300 runs are reported for each cluster.
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Figure A11: Enriched features from the XCI/escape model clustering. The normalized signal of

epigenetic marks and other factors computed in the +/− 2000 bp genomic region around each gene promoter

is shown in the heatmaps for each of the three clusters separately. Average pro�le plots for the same factors

are also shown above the heatmaps to highlight overall di�erences between clusters. Shown here are only

those features which, according to the p-value of an ANOVA test, were the top most signi�cantly di�erent

among clusters in the XCI/escape model.
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Figure A12: Top features from the XCI/escape Random Forest. The feature distributions at each

gene are shown in the boxplots for each of the three clusters separately to highlight overall di�erences

between clusters (p-value of ANOVA test indicates the signi�cance of the di�erences between clusters).

Shown here are epigenetic and genomic features that are among the top 10 features in the XCI/escape

Random Forest model but are not among the top signi�cant ones from the clustering.
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Figure A13: Enriched features from the silencing dynamics model clustering. The normalized

signal of epigenetic marks and other factors, computed in the +/ − 2000 bp genomic region around each

gene promoter is shown in the heatmaps for each of the three clusters separately. Average pro�le plots

for the same factors are also shown above the heatmaps to highlight overall di�erences between clusters.

Shown here are only those features which, according to the p-value of an ANOVA test, were the top most

signi�cantly di�erent among clusters in the silencing dynamics model.
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Figure A14: Top features from the silencing dynamics Random Forest. The feature distributions at

each gene are shown in the boxplots for each of the three clusters separately to highlight overall di�erences

between clusters (p-value of ANOVA test indicates the signi�cance of the di�erences between clusters).

Shown here are epigenetic and genomic features that are among the top 8 features in the silencing dynamics

Random Forest model but are not among the top signi�cant ones from the clustering.



B IB L IOGRAPHY

Agrelo, Ruben et al. (Apr. 2009). “SATB1 de�nes the developmental context for gene silencing

by Xist in lymphoma and embryonic cells.” In: Developmental Cell 16.4, pp. 507–516. doi:

10.1016/j.devcel.2009.03.006.

Albertini, R (Oct. 2001). “HPRT mutations in humans: biomarkers for mechanistic studies.” In:

Mutation Research/Reviews in Mutation Research 489.1, pp. 1–16. issn: 13835742. doi: 10.1016/

S1383-5742(01)00064-3.

Alberts, Bruce, Alexander Johnson, Julian Lewis, David Morgan, Martin Ra�, Keith Roberts, and

Peter Walter (Dec. 2014). Molecular Biology Of The Cell. 6th ed. New York, NY: Garland Science,

p. 1464. isbn: 0815344643.

Almeida, Mafalda et al. (June 2017). “PCGF3/5-PRC1 initiates Polycomb recruitment in X chromo-

some inactivation.” In: Science 356.6342, pp. 1081–1084. doi: 10.1126/science.aal2512.

Ambardar, Sheetal, Rikita Gupta, Deepika Trakroo, Rup Lal, and Jyoti Vakhlu (2016). “High

throughput sequencing: an overview of sequencing chemistry.” In: Indian journal of microbiology
56.4, pp. 394–404.

Andergassen, Daniel et al. (Aug. 2017). “Mapping the mouse Allelome reveals tissue-speci�c

regulation of allelic expression.” In: eLife 6. doi: 10.7554/{eLife}.25125.

Anders, Simon, Paul Theodor Pyl, and Wolfgang Huber (Jan. 2015). “HTSeq —a Python framework

to work with high-throughput sequencing data.” In: Bioinformatics 31.2, pp. 166–169. doi:

10.1093/bioinformatics/btu638.

Augui, Sandrine, Elphège P Nora, and Edith Heard (June 2011). “Regulation of X-chromosome

inactivation by the X-inactivation centre.” In: Nature Reviews. Genetics 12.6, pp. 429–442. doi:

10.1038/nrg2987.

Babak, Tomas, Brian Deveale, Christopher Armour, Christopher Raymond, Michele A Cleary,

Derek van der Kooy, Jason M Johnson, and Lee P Lim (Nov. 2008). “Global survey of genomic

imprinting by transcriptome sequencing.” In: Current Biology 18.22, pp. 1735–1741. issn: 0960-

9822. doi: 10.1016/j.cub.2008.09.044.

Balaton, Bradley P and Carolyn J Brown (Apr. 2016). “Escape artists of the X chromosome.” In:

Trends in Genetics 32.6, pp. 348–359. doi: 10.1016/j.tig.2016.03.007.

Balaton, Bradley P, Thomas Dixon-McDougall, Samantha B Peeters, and Carolyn J Brown (Aug.

2018). “The eXceptional nature of the X chromosome.” In: Human Molecular Genetics 27.R2,

R242–R249. doi: 10.1093/hmg/ddy148.

Barros de Andrade E Sousa, Lisa et al. (June 2019). “Kinetics of Xist-induced gene silencing can be

predicted from combinations of epigenetic and genomic features.” In: Genome Research 29.7,

pp. 1087–1099. doi: 10.1101/gr.245027.118.

Barski, Artem, Suresh Cuddapah, Kairong Cui, Tae-Young Roh, Dustin E Schones, Zhibin Wang,

Gang Wei, Iouri Chepelev, and Keji Zhao (May 2007). “High-resolution pro�ling of histone

methylations in the human genome.” In: Cell 129.4, pp. 823–837. issn: 0092-8674. doi: 10.

1016/j.cell.2007.05.009.

Belle, I de, S Cai, and T Kohwi-Shigematsu (Apr. 1998). “The genomic sequences bound to special

AT-rich sequence-binding protein 1 (SATB1) in vivo in Jurkat T cells are tightly associated with

145

https://doi.org/10.1016/j.devcel.2009.03.006
https://doi.org/10.1016/S1383-5742(01)00064-3
https://doi.org/10.1016/S1383-5742(01)00064-3
https://doi.org/10.1126/science.aal2512
https://doi.org/10.7554/{eLife}.25125
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1038/nrg2987
https://doi.org/10.1016/j.cub.2008.09.044
https://doi.org/10.1016/j.tig.2016.03.007
https://doi.org/10.1093/hmg/ddy148
https://doi.org/10.1101/gr.245027.118
https://doi.org/10.1016/j.cell.2007.05.009
https://doi.org/10.1016/j.cell.2007.05.009


146 bibliography

the nuclear matrix at the bases of the chromatin loops.” In: The Journal of Cell Biology 141.2,

pp. 335–348. doi: 10.1083/jcb.141.2.335.

Berletch, Joel B, Wenxiu Ma, Fan Yang, Jay Shendure, William S Noble, Christine M Disteche,

and Xinxian Deng (Mar. 2015). “Escape from X inactivation varies in mouse tissues.” In: PLoS
Genetics 11.3, e1005079. doi: 10.1371/journal.pgen.1005079.

Bode, J, Y Kohwi, L Dickinson, T Joh, D Klehr, C Mielke, and T Kohwi-Shigematsu (Jan. 1992).

“Biological signi�cance of unwinding capability of nuclear matrix-associating DNAs.” In: Science
255.5041, pp. 195–197. doi: 10.1126/science.1553545.

Borensztein, Maud et al. (Jan. 2017). “Xist-dependent imprinted X inactivation and the early

developmental consequences of its failure.” In: Nature Structural & Molecular Biology 24.3,

pp. 226–233. doi: 10.1038/nsmb.3365.

Borsani, G et al. (May 1991). “Characterization of a murine gene expressed from the inactive X

chromosome.” In: Nature 351.6324, pp. 325–329. doi: 10.1038/351325a0.

Bousard, Aurélie et al. (Aug. 2019). “The role of Xist-mediated Polycomb recruitment in the

initiation of X-chromosome inactivation.” In: EMBO Reports, e48019. doi: 10.15252/embr.

201948019.

Breiman, L, JH Friedman, RA Olshen, and CJ Stone (1984). “Classi�cation and regression trees.”

In: Wadsworth and Brooks, Monterey, CA.

Breiman, Leo (Aug. 1996). “Bagging predictors.” In: Machine learning 24.2, pp. 123–140. issn:

0885-6125. doi: 10.1007/{BF00058655}.

– (2001). “Random Forests.” In: Machine Learning.

Breiman, Leo and Adele Cutler (2003). “Manual for Setting Up, Using, and Understanding Random

Forest V4.0.” In: stat.berkeley.

Brockdor�, N, A Ashworth, G F Kay, P Cooper, S Smith, V M McCabe, D P Norris, G D Penny, D

Patel, and S Rastan (May 1991). “Conservation of position and exclusive expression of mouse Xist

from the inactive X chromosome.” In: Nature 351.6324, pp. 329–331. doi: 10.1038/351329a0.

Brockdor�, Neil (Nov. 2017). “Polycomb complexes in X chromosome inactivation.” In: Philos.
Trans. R. Soc. Lond. B. Biol. Sci 372.1733. doi: 10.1098/rstb.2017.0021.

– (Oct. 2018). “Local Tandem Repeat Expansion in Xist RNA as a Model for the Functionalisation

of ncRNA.” In: Non-coding RNA 4.4. doi: 10.3390/ncrna4040028.

Brown, C J, A Ballabio, J L Rupert, R G Lafreniere, M Grompe, R Tonlorenzi, and H F Willard (Jan.

1991). “A gene from the region of the human X inactivation centre is expressed exclusively

from the inactive X chromosome.” In: Nature 349.6304, pp. 38–44. doi: 10.1038/349038a0.

Brown, C J, B D Hendrich, J L Rupert, R G Lafrenière, Y Xing, J Lawrence, and H F Willard

(Oct. 1992). “The human XIST gene: analysis of a 17 kb inactive X-speci�c RNA that contains

conserved repeats and is highly localized within the nucleus.” In: Cell 71.3, pp. 527–542. doi:

10.1016/0092-8674(92)90520-m.

Bureau, Alexandre, Josée Dupuis, Kathleen Falls, Kathryn L Lunetta, Brooke Hayward, Tim P

Keith, and Paul Van Eerdewegh (Feb. 2005). “Identifying SNPs predictive of phenotype using

random forests.” In: Genetic Epidemiology 28.2, pp. 171–182. doi: 10.1002/gepi.20041.

Calabrese, J Mauro, Wei Sun, Lingyun Song, Joshua W Mugford, Lucy Williams, Della Yee, Joshua

Starmer, Piotr Mieczkowski, Gregory E Crawford, and Terry Magnuson (Nov. 2012). “Site-

speci�c silencing of regulatory elements as a mechanism of X inactivation.” In: Cell 151.5,

pp. 951–963. doi: 10.1016/j.cell.2012.10.037.

https://doi.org/10.1083/jcb.141.2.335
https://doi.org/10.1371/journal.pgen.1005079
https://doi.org/10.1126/science.1553545
https://doi.org/10.1038/nsmb.3365
https://doi.org/10.1038/351325a0
https://doi.org/10.15252/embr.201948019
https://doi.org/10.15252/embr.201948019
https://doi.org/10.1007/{BF00058655}
https://doi.org/10.1038/351329a0
https://doi.org/10.1098/rstb.2017.0021
https://doi.org/10.3390/ncrna4040028
https://doi.org/10.1038/349038a0
https://doi.org/10.1016/0092-8674(92)90520-m
https://doi.org/10.1002/gepi.20041
https://doi.org/10.1016/j.cell.2012.10.037


bibliography 147

Cao, Ru, Liangjun Wang, Hengbin Wang, Li Xia, Hediye Erdjument-Bromage, Paul Tempst, Richard

S Jones, and Yi Zhang (Nov. 2002). “Role of histone H3 lysine 27 methylation in Polycomb-

group silencing.” In: Science 298.5595, pp. 1039–1043. issn: 1095-9203. doi: 10.1126/science.

1076997.

Carrel, Laura and Carolyn J Brown (Nov. 2017). “When the Lyon(ized chromosome) roars: ongoing

expression from an inactive X chromosome.” In: Philosophical Transactions of the Royal Society
of London. Series B, Biological Sciences 372.1733. doi: 10.1098/rstb.2016.0355.

Carrel, Laura, Chungoo Park, Svitlana Tyekucheva, John Dunn, Francesca Chiaromonte, and

Kateryna D Makova (Sept. 2006). “Genomic environment predicts expression patterns on the

human inactive X chromosome.” In: PLoS Genetics 2.9, e151. doi: 10.1371/journal.pgen.

0020151.

Chen, Chih-Yu et al. (Nov. 2016). “YY1 binding association with sex-biased transcription revealed

through X-linked transcript levels and allelic binding analyses.” In: Sci Rep 6, p. 37324. doi:

10.1038/srep37324.

Chow, Jennifer C et al. (June 2010). “LINE-1 activity in facultative heterochromatin formation

during X chromosome inactivation.” In: Cell 141.6, pp. 956–969. issn: 1097-4172. doi: 10.1016/

j.cell.2010.04.042.

Chu, Ci, Qiangfeng Cli� Zhang, Simão Teixeira da Rocha, Ryan A Flynn, Maheetha Bharadwaj,

J Mauro Calabrese, Terry Magnuson, Edith Heard, and Howard Y Chang (Apr. 2015). “Systematic

discovery of Xist RNA binding proteins.” In: Cell 161.2, pp. 404–416. doi: 10.1016/j.cell.

2015.03.025.

Cokus, Shawn J, Suhua Feng, Xiaoyu Zhang, Zugen Chen, Barry Merriman, Christian D Hau-

denschild, Sriharsa Pradhan, Stanley F Nelson, Matteo Pellegrini, and Steven E Jacobsen (Mar.

2008). “Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation

patterning.” In: Nature 452.7184, pp. 215–219. issn: 1476-4687. doi: 10.1038/nature06745.

Colognori, David, Hongjae Sunwoo, Andrea J Kriz, Chen-Yu Wang, and Jeannie T Lee (Apr.

2019). “Xist Deletional Analysis Reveals an Interdependency between Xist RNA and Polycomb

Complexes for Spreading along the Inactive X.” In: Mol Cell 74.1, 101–117.e10. issn: 10972765.

doi: 10.1016/j.molcel.2019.01.015.

Comer, F I and G W Hart (July 2001). “Reciprocity between O-GlcNAc and O-phosphate on the

carboxyl terminal domain of RNA polymerase II.” In: Biochemistry 40.26, pp. 7845–7852. doi:

10.1021/bi0027480.

Cook, Charles E, Rodrigo Lopez, Oana Stroe, Guy Cochrane, Cath Brooksbank, Ewan Birney, and

Rolf Apweiler (Jan. 2019). “The European Bioinformatics Institute in 2018: tools, infrastructure

and training.” In: Nucleic Acids Research 47.D1, pp. D15–D22. doi: 10.1093/nar/gky1124.

Cooper, Sarah et al. (Nov. 2016). “Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate

crosstalk between Polycomb complexes PRC1 and PRC2.” In: Nat Commun 7, p. 13661. doi:

10.1038/ncomms13661.

Core, Leighton J, André L Martins, Charles G Danko, Colin T Waters, Adam Siepel, and John

T Lis (Dec. 2014). “Analysis of nascent RNA identi�es a uni�ed architecture of initiation

regions at mammalian promoters and enhancers.” In: Nature Genetics 46.12, pp. 1311–1320. doi:

10.1038/ng.3142.

Cutler, Adele and Leo Breiman (June 2004). RAFT (RAndom Forest Tool). WEBSITE.

Czermin, Birgit, Ra�aella Mel�, Donna McCabe, Volker Seitz, Axel Imhof, and Vincenzo Pirrotta

(Oct. 2002). “Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase

https://doi.org/10.1126/science.1076997
https://doi.org/10.1126/science.1076997
https://doi.org/10.1098/rstb.2016.0355
https://doi.org/10.1371/journal.pgen.0020151
https://doi.org/10.1371/journal.pgen.0020151
https://doi.org/10.1038/srep37324
https://doi.org/10.1016/j.cell.2010.04.042
https://doi.org/10.1016/j.cell.2010.04.042
https://doi.org/10.1016/j.cell.2015.03.025
https://doi.org/10.1016/j.cell.2015.03.025
https://doi.org/10.1038/nature06745
https://doi.org/10.1016/j.molcel.2019.01.015
https://doi.org/10.1021/bi0027480
https://doi.org/10.1093/nar/gky1124
https://doi.org/10.1038/ncomms13661
https://doi.org/10.1038/ng.3142


148 bibliography

activity that marks chromosomal Polycomb sites.” In: Cell 111.2, pp. 185–196. issn: 0092-8674.

doi: 10.1016/s0092-8674(02)00975-3.

Danko, Charles G, Stephanie L Hyland, Leighton J Core, Andre L Martins, Colin T Waters,

Hyung Won Lee, Vivian G Cheung, W Lee Kraus, John T Lis, and Adam Siepel (May 2015).

“Identi�cation of active transcriptional regulatory elements from GRO-seq data.” In: Nature
Methods 12.5, pp. 433–438. doi: 10.1038/nmeth.3329.

Dechat, Thomas, Stephen A Adam, Pekka Taimen, Takeshi Shimi, and Robert D Goldman (Nov.

2010). “Nuclear lamins.” In: Cold Spring Harb Perspect Biol 2.11, a000547. doi: 10.1101/

cshperspect.a000547.

Dekker, Job, Karsten Rippe, Martijn Dekker, and Nancy Kleckner (Feb. 2002). “Capturing chro-

mosome conformation.” In: Science 295.5558, pp. 1306–1311. issn: 1095-9203. doi: 10.1126/

science.1067799.

Dickinson, L A, T Joh, Y Kohwi, and T Kohwi-Shigematsu (Aug. 1992). “A tissue-speci�c MAR/SAR

DNA-binding protein with unusual binding site recognition.” In: Cell 70.4, pp. 631–645. doi:

10.1016/0092-8674(92)90432-c.

Dixon, Jesse R, Siddarth Selvaraj, Feng Yue, Audrey Kim, Yan Li, Yin Shen, Ming Hu, Jun S Liu,

and Bing Ren (Apr. 2012). “Topological domains in mammalian genomes identi�ed by analysis

of chromatin interactions.” In: Nature 485.7398, pp. 376–380. doi: 10.1038/nature11082.

Doshi-Velez, Finale and Been Kim (Feb. 2017). “Towards A Rigorous Science of Interpretable

Machine Learning.” In: arXiv.

Díaz-Uriarte, Ramón and Sara Alvarez de Andrés (Jan. 2006). “Gene selection and classi�cation

of microarray data using random forest.” In: BMC Bioinformatics 7, p. 3. doi: 10.1186/1471-

2105-7-3.

Edgar, Ron, Michael Domrachev, and Alex E Lash (Jan. 2002). “Gene Expression Omnibus: NCBI

gene expression and hybridization array data repository.” In: Nucleic Acids Research 30.1,

pp. 207–210. doi: 10.1093/nar/30.1.207.

Efron, Bradley and Robert J. Tibshirani (1994). An Introduction to the Bootstrap. Chapman &

Hall/CRC Monographs on Statistics & Applied Probability. Boca Raton: Chapman and Hall/CRC.

isbn: 978-0-412-04231-7. doi: 10.1007/978-1-4899-4541-9.

Efron, Bradley and Robert Tibshirani (June 1997). “Improvements on Cross-Validation: The .632+

Bootstrap Method.” In: Journal of the American Statistical Association 92.438, pp. 548–560. issn:

0162-1459. doi: 10.1080/01621459.1997.10474007.

Engreitz, Jesse M et al. (Aug. 2013). “The Xist lncRNA exploits three-dimensional genome archi-

tecture to spread across the X chromosome.” In: Science 341.6147, p. 1237973. doi: 10.1126/

science.1237973.

Ernst, Jason and Manolis Kellis (Mar. 2012). “ChromHMM: automating chromatin-state discovery

and characterization.” In: Nature Methods 9.3, pp. 215–216. doi: 10.1038/nmeth.1906.

Filippova, Galina N, Mimi K Cheng, James M Moore, Jean-Pierre Truong, Ying J Hu, Di Kim Nguyen,

Karen D Tsuchiya, and Christine M Disteche (Jan. 2005). “Boundaries between chromosomal

domains of X inactivation and escape bind CTCF and lack CpG methylation during early

development.” In: Dev Cell 8.1, pp. 31–42. issn: 1534-5807. doi: 10.1016/j.devcel.2004.10.

018.

Galupa, Rafael and Edith Heard (Apr. 2015). “X-chromosome inactivation: new insights into

cis and trans regulation.” In: Current Opinion in Genetics & Development 31, pp. 57–66. doi:

10.1016/j.gde.2015.04.002.

https://doi.org/10.1016/s0092-8674(02)00975-3
https://doi.org/10.1038/nmeth.3329
https://doi.org/10.1101/cshperspect.a000547
https://doi.org/10.1101/cshperspect.a000547
https://doi.org/10.1126/science.1067799
https://doi.org/10.1126/science.1067799
https://doi.org/10.1016/0092-8674(92)90432-c
https://doi.org/10.1038/nature11082
https://doi.org/10.1186/1471-2105-7-3
https://doi.org/10.1186/1471-2105-7-3
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1007/978-1-4899-4541-9
https://doi.org/10.1080/01621459.1997.10474007
https://doi.org/10.1126/science.1237973
https://doi.org/10.1126/science.1237973
https://doi.org/10.1038/nmeth.1906
https://doi.org/10.1016/j.devcel.2004.10.018
https://doi.org/10.1016/j.devcel.2004.10.018
https://doi.org/10.1016/j.gde.2015.04.002


bibliography 149

– (Nov. 2018). “X-Chromosome Inactivation: A Crossroads Between Chromosome Architecture

and Gene Regulation.” In: Annual Review of Genetics 52, pp. 535–566. doi: 10.1146/annurev-

genet-120116-024611.

Gardiner-Garden, M and M Frommer (July 1987). “CpG islands in vertebrate genomes.” In: J Mol
Biol 196.2, pp. 261–282. doi: 10.1016/0022-2836(87)90689-9.

Geisser, Seymour (June 1975). “The Predictive Sample Reuse Method with Applications.” In:

Journal of the American Statistical Association 70.350, pp. 320–328. issn: 0162-1459. doi: 10.

1080/01621459.1975.10479865.

Gendrel, Anne-Valerie and Edith Heard (June 2014). “Noncoding RNAs and epigenetic mechanisms

during X-chromosome inactivation.” In: Annual Review of Cell and Developmental Biology 30,

pp. 561–580. doi: 10.1146/annurev-cellbio-101512-122415.

Genuer, Robin, Jean-Michel Poggi, and Christine Tuleau (Nov. 2008). “Random Forests: some

methodological insights.” In: arXiv.

Gontan, Cristina, Eskeatnaf Mulugeta Achame, Jeroen Demmers, Tahsin Stefan Barakat, Eveline

Rentmeester, Wilfred van IJcken, J Anton Grootegoed, and Joost Gribnau (Apr. 2012). “RNF12

initiates X-chromosome inactivation by targeting REX1 for degradation.” In: Nature 485.7398,

pp. 386–390. doi: 10.1038/nature11070.

Grant, Jennifer et al. (July 2012). “Rsx is a metatherian RNA with Xist-like properties in X-

chromosome inactivation.” In: Nature 487.7406, pp. 254–258. doi: 10.1038/nature11171.

Guelen, Lars et al. (June 2008). “Domain organization of human chromosomes revealed by mapping

of nuclear lamina interactions.” In: Nature 453.7197, pp. 948–951. issn: 1476-4687. doi: 10.

1038/nature06947.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The Elements of Statistical Learning.

Springer Series in Statistics. New York, NY: Springer New York. isbn: 978-0-387-84857-0. doi:

10.1007/978-0-387-84858-7.

Helmuth, Johannes et al. (Oct. 2016). “normR: Regime enrichment calling for ChIP-seq data.” In:

BioRxiv. doi: 10.1101/082263.

Hennig, Christian (July 2008). “Dissolution point and isolation robustness: Robustness criteria for

general cluster analysis methods.” In: J Multivar Anal 99.6, pp. 1154–1176. issn: 0047259X. doi:

10.1016/j.jmva.2007.07.002.

Hosoi, Yusuke, Miki Soma, Hirosuke Shiura, Takashi Sado, Hidetoshi Hasuwa, Kuniya Abe,

Takashi Kohda, Fumitoshi Ishino, and Shin Kobayashi (Sept. 2018). “Female mice lacking Ftx

lncRNA exhibit impaired X-chromosome inactivation and a microphthalmia-like phenotype.”

In: Nat Commun 9.1, p. 3829. doi: 10.1038/s41467-018-06327-6.

Hänsch, Ronny and Olaf Hellwich (Mar. 2015). “Performance Assessment and Interpretation of Ran-

dom Forests by Three-dimensional Visualizations.” In: Proceedings of the 6th International Con-
ference on Information Visualization Theory and Applications. SCITEPRESS - Science, and Tech-

nology Publications, pp. 149–156. isbn: 978-989-758-088-8. doi: 10.5220/0005310901490156.

Izenman, Alan J. (2008). Modern Multivariate Statistical Techniques. Ed. by G. Casella, S. Fienberg,

and I. Olkin. Springer texts in statistics. New York, NY: Springer New York. isbn: 978-0-387-

78188-4. doi: 10.1007/978-0-387-78189-1.

Janiszewski, Adrian, Irene Talon, Juan Song, Natalie De Geest, San Kit To, Greet Bervoets, Jean-

Christophe Marine, Florian Rambow, and Vincent Pasque (Feb. 2019). “Dynamic Erasure of

Random X-Chromosome Inactivation during iPSC Reprogramming.” In: BioRxiv. doi: 10.1101/

545558.

https://doi.org/10.1146/annurev-genet-120116-024611
https://doi.org/10.1146/annurev-genet-120116-024611
https://doi.org/10.1016/0022-2836(87)90689-9
https://doi.org/10.1080/01621459.1975.10479865
https://doi.org/10.1080/01621459.1975.10479865
https://doi.org/10.1146/annurev-cellbio-101512-122415
https://doi.org/10.1038/nature11070
https://doi.org/10.1038/nature11171
https://doi.org/10.1038/nature06947
https://doi.org/10.1038/nature06947
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1101/082263
https://doi.org/10.1016/j.jmva.2007.07.002
https://doi.org/10.1038/s41467-018-06327-6
https://doi.org/10.5220/0005310901490156
https://doi.org/10.1007/978-0-387-78189-1
https://doi.org/10.1101/545558
https://doi.org/10.1101/545558


150 bibliography

Johnson, David S, Ali Mortazavi, Richard M Myers, and Barbara Wold (June 2007). “Genome-

wide mapping of in vivo protein-DNA interactions.” In: Science 316.5830, pp. 1497–1502. issn:

1095-9203. doi: 10.1126/science.1141319.

Jonkers, Iris, Tahsin Stefan Barakat, Eskeatnaf Mulugeta Achame, Kim Monkhorst, Annegien

Kenter, Eveline Rentmeester, Frank Grosveld, J Anton Grootegoed, and Joost Gribnau (Nov.

2009). “RNF12 is an X-Encoded dose-dependent activator of X chromosome inactivation.” In:

Cell 139.5, pp. 999–1011. doi: 10.1016/j.cell.2009.10.034.

Jégu, Teddy, Eric Aeby, and Jeannie T Lee (May 2017). “The X chromosome in space.” In: Nature
Reviews. Genetics 18.6, pp. 377–389. doi: 10.1038/nrg.2017.17.

Karlić, Rosa, Ho-Ryun Chung, Julia Lasserre, Kristian Vlahovicek, and Martin Vingron (Feb. 2010).

“Histone modi�cation levels are predictive for gene expression.” In: Proc Natl Acad Sci USA
107.7, pp. 2926–2931. issn: 1091-6490. doi: 10.1073/pnas.0909344107.

Kaufman, LR and P Rousseeuw (1990). “PJ (1990) Finding groups in data: An introduction to

cluster analysis.” In: Hoboken NJ John Wiley & Sons Inc 725.

Kawakami, Takahiro, Keisei Okamoto, Hiroyuki Sugihara, Takanori Hattori, Anthony E Reeve,

Osamu Ogawa, and Yusaku Okada (Apr. 2003). “The roles of supernumerical X chromosomes

and XIST expression in testicular germ cell tumors.” In: J Urol 169.4, pp. 1546–1552. doi:

10.1097/01.ju.0000044927.23323.5a.

Kelly, Cassidy and Kazunori Okada (May 2012). “Variable interaction measures with random

forest classi�ers.” In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI). IEEE,

pp. 154–157. isbn: 978-1-4577-1858-8. doi: 10.1109/{ISBI}.2012.6235507.

Kelsey, Angela D, Christine Yang, Danny Leung, Jakub Minks, Thomas Dixon-McDougall, Sarah

E L Baldry, Aaron B Bogutz, Louis Lefebvre, and Carolyn J Brown (Oct. 2015). “Impact of

�anking chromosomal sequences on localization and silencing by the human non-coding RNA

XIST.” In: Genome Biol 16, p. 208. doi: 10.1186/s13059-015-0774-2.

Keniry, Andrew and Marnie E Blewitt (June 2018). “Studying X chromosome inactivation in the

single-cell genomic era.” In: Biochemical Society Transactions 46.3, pp. 577–586. doi: 10.1042/

{BST20170346}.

Kim, Joomyeong and Hana Kim (2012). “Recruitment and biological consequences of histone

modi�cation of H3K27me3 and H3K9me3.” In: ILAR journal 53.3-4, pp. 232–239.

Kim, Yoon Jung, Katharine R Cecchini, and Tae Hoon Kim (May 2011). “Conserved, develop-

mentally regulated mechanism couples chromosomal looping and heterochromatin barrier

activity at the homeobox gene A locus.” In: Proc Natl Acad Sci USA 108.18, pp. 7391–7396. doi:

10.1073/pnas.1018279108.

Kinkley, Sarah, Johannes Helmuth, Julia K Polansky, Ilona Dunkel, Gilles Gasparoni, Sebastian

Fröhler, Wei Chen, Jörn Walter, Alf Hamann, and Ho-Ryun Chung (Aug. 2016). “reChIP-seq

reveals widespread bivalency of H3K4me3 and H3K27me3 in CD4(+) memory T cells.” In:

Nature Communications 7, p. 12514. doi: 10.1038/ncomms12514.

Kobayashi, Reiko, Ryu Miyagawa, Hideomi Yamashita, Teppei Morikawa, Kae Okuma, Masashi

Fukayama, Kuni Ohtomo, and Keiichi Nakagawa (Nov. 2016). “Increased expression of long non-

coding RNA XIST predicts favorable prognosis of cervical squamous cell carcinoma subsequent

to de�nitive chemoradiation therapy.” In: Oncol Lett 12.5, pp. 3066–3074. doi: 10.3892/ol.

2016.5054.

https://doi.org/10.1126/science.1141319
https://doi.org/10.1016/j.cell.2009.10.034
https://doi.org/10.1038/nrg.2017.17
https://doi.org/10.1073/pnas.0909344107
https://doi.org/10.1097/01.ju.0000044927.23323.5a
https://doi.org/10.1109/{ISBI}.2012.6235507
https://doi.org/10.1186/s13059-015-0774-2
https://doi.org/10.1042/{BST20170346}
https://doi.org/10.1042/{BST20170346}
https://doi.org/10.1073/pnas.1018279108
https://doi.org/10.1038/ncomms12514
https://doi.org/10.3892/ol.2016.5054
https://doi.org/10.3892/ol.2016.5054


bibliography 151

Krueger, Felix and Simon R Andrews (June 2016). “SNPsplit: Allele-speci�c splitting of alignments

between genomes with known SNP genotypes.” In: F1000Research 5, p. 1479. doi: 10.12688/

f1000research.9037.2.

Kuhn, R M et al. (Jan. 2007). “The UCSC genome browser database: update 2007.” In: Nucleic Acids
Research 35.Database issue, pp. D668–73. doi: 10.1093/nar/gkl928.

Kuznetsova, Natalia (Aug. 2014). “Random Forest Visualization.” In: Master Thesis.
Kwak, Hojoong, Nicholas J Fuda, Leighton J Core, and John T Lis (Feb. 2013). “Precise maps of

RNA polymerase reveal how promoters direct initiation and pausing.” In: Science 339.6122,

pp. 950–953. doi: 10.1126/science.1229386.

Langmead, Ben and Steven L Salzberg (Mar. 2012). “Fast gapped-read alignment with Bowtie 2.”

In: Nature Methods 9.4, pp. 357–359. doi: 10.1038/nmeth.1923.

Langmead, Ben, Cole Trapnell, Mihai Pop, and Steven L Salzberg (Mar. 2009). “Ultrafast and

memory-e�cient alignment of short DNA sequences to the human genome.” In: Genome
Biology 10.3, R25. doi: 10.1186/gb-2009-10-3-r25.

Laurent, H and RL Rivest (1976). “Constructing optimal binary 12ision trees is NP-complete.” In:

Information processing letters 5.1, pp. 15–17.

Leskovec, A, Anand Rajaraman, and Je�rey David Ullman (2014). Mining of Massive Datasets. Cam-

bridge: Cambridge University Press. isbn: 9781139058452. doi: 10.1017/{CBO9781139058452}.

Li, Heng, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth,

Goncalo Abecasis, Richard Durbin, and 1000 Genome Project Data Processing Subgroup (Aug.

2009). “The Sequence Alignment/Map format and SAMtools.” In: Bioinformatics 25.16, pp. 2078–

2079. doi: 10.1093/bioinformatics/btp352.

Lieberman-Aiden, Erez et al. (Oct. 2009). “Comprehensive mapping of long-range interactions

reveals folding principles of the human genome.” In: Science 326.5950, pp. 289–293. issn: 1095-

9203. doi: 10.1126/science.1181369.

Loda, Agnese et al. (Sept. 2017). “Genetic and epigenetic features direct di�erential e�ciency of

Xist-mediated silencing at X-chromosomal and autosomal locations.” In:Nature Communications
8.1, p. 690. doi: 10.1038/s41467-017-00528-1.

Long, Yicheng, Xueyin Wang, Daniel T Youmans, and Thomas R Cech (Sept. 2017). “How do

lncRNAs regulate transcription?” In: Sci Adv 3.9, eaao2110. doi: 10.1126/sciadv.aao2110.

Lu, Zhipeng, Ava C Carter, and Howard Y Chang (Nov. 2017). “Mechanistic insights in X-

chromosome inactivation.” In: Philosophical Transactions of the Royal Society of London. Series
B, Biological Sciences 372.1733. doi: 10.1098/rstb.2016.0356.

Lugowski, Andrew, Beth Nicholson, and Olivia S Rissland (Mar. 2018). “Determining mRNA

half-lives on a transcriptome-wide scale.” In: Methods 137, pp. 90–98. doi: 10.1016/j.ymeth.

2017.12.006.

Luikenhuis, S, A Wutz, and R Jaenisch (Dec. 2001). “Antisense transcription through the Xist

locus mediates Tsix function in embryonic stem cells.” In: Mol Cell Biol 21.24, pp. 8512–8520.

doi: 10.1128/{MCB}.21.24.8512-8520.2001.

Lunetta, Kathryn L, L Brooke Hayward, Jonathan Segal, and Paul Van Eerdewegh (Dec. 2004).

“Screening large-scale association study data: exploiting interactions using random forests.” In:

BMC Genetics 5, p. 32. issn: 1471-2156. doi: 10.1186/1471-2156-5-32.

Lyon, M F (Apr. 1961). “Gene action in the X-chromosome of the mouse (Mus musculus L.).” In:

Nature 190, pp. 372–373. doi: 10.1038/190372a0.

https://doi.org/10.12688/f1000research.9037.2
https://doi.org/10.12688/f1000research.9037.2
https://doi.org/10.1093/nar/gkl928
https://doi.org/10.1126/science.1229386
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1017/{CBO9781139058452}
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1126/science.1181369
https://doi.org/10.1038/s41467-017-00528-1
https://doi.org/10.1126/sciadv.aao2110
https://doi.org/10.1098/rstb.2016.0356
https://doi.org/10.1016/j.ymeth.2017.12.006
https://doi.org/10.1016/j.ymeth.2017.12.006
https://doi.org/10.1128/{MCB}.21.24.8512-8520.2001
https://doi.org/10.1186/1471-2156-5-32
https://doi.org/10.1038/190372a0


152 bibliography

M. Jones, Zachary and Fridolin J. Linder (Oct. 2016). “edarf: Exploratory Data Analysis using

Random Forests.” In: The Journal of Open Source Software 1.6, p. 92. issn: 2475-9066. doi:

10.21105/joss.00092.

MacQueen, J (1967). “Some methods for classi�cation and analysis of multivariate observations.”

In: Proceedings of the �fth Berkeley symposium on mathematical statistics and probability 1.14,

p. 281.

Mahat, Dig Bijay, Hojoong Kwak, Gregory T Booth, Iris H Jonkers, Charles G Danko, Ravi K Patel,

Colin T Waters, Katie Munson, Leighton J Core, and John T Lis (July 2016). “Base-pair-resolution

genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq).”

In: Nature Protocols 11.8, pp. 1455–1476. doi: 10.1038/nprot.2016.086.

Marahrens, Y, B Panning, J Dausman, W Strauss, and R Jaenisch (Jan. 1997). “Xist-de�cient mice

are defective in dosage compensation but not spermatogenesis.” In: Genes Dev 11.2, pp. 156–166.

doi: 10.1101/gad.11.2.156.

Marks, Hendrik et al. (Aug. 2015). “Dynamics of gene silencing during X inactivation using

allele-speci�c RNA-seq.” In: Genome Biology 16, p. 149. doi: 10.1186/s13059-015-0698-x.

Marsico, Annalisa, Matthew R Huska, Julia Lasserre, Haiyang Hu, Dubravka Vucicevic, Anne

Musahl, Ulf Orom, and Martin Vingron (Aug. 2013). “PROmiRNA: a new miRNA promoter

recognition method uncovers the complex regulation of intronic miRNAs.” In: Genome Biol
14.8, R84. doi: 10.1186/gb-2013-14-8-r84.

McHugh, Colleen A et al. (May 2015). “The Xist lncRNA interacts directly with SHARP to silence

transcription through HDAC3.” In: Nature 521.7551, pp. 232–236. doi: 10.1038/nature14443.

Miller, Tim (Feb. 2019). “Explanation in arti�cial intelligence: Insights from the social sciences.” In:

Arti�cial intelligence 267, pp. 1–38. issn: 00043702. doi: 10.1016/j.artint.2018.07.007.

Mira-Bontenbal, Hegias and Joost Gribnau (Apr. 2016). “New Xist-Interacting Proteins in X-

Chromosome Inactivation.” In: Current Biology 26.8, R338–42. doi: 10.1016/j.cub.2016.03.

022.

Moindrot, Benoit, Andrea Cerase, Heather Coker, Osamu Masui, Anne Grijzenhout, Greta Pin-

tacuda, Lothar Schermelleh, Tatyana B Nesterova, and Neil Brockdor� (July 2015). “A Pooled

shRNA Screen Identi�es Rbm15, Spen, and Wtap as Factors Required for Xist RNA-Mediated

Silencing.” In: Cell Rep 12.4, pp. 562–572. doi: 10.1016/j.celrep.2015.06.053.

Monfort, Asun, Giulio Di Minin, Andreas Postlmayr, Remo Freimann, Fabiana Arieti, Stéphane

Thore, and Anton Wutz (July 2015). “Identi�cation of Spen as a Crucial Factor for Xist Function

through Forward Genetic Screening in Haploid Embryonic Stem Cells.” In: Cell Rep 12.4, pp. 554–

561. doi: 10.1016/j.celrep.2015.06.067.

Monfort, Asun and Anton Wutz (Nov. 2017). “Progress in understanding the molecular mechanism

of Xist RNA function through genetics.” In: Philosophical Transactions of the Royal Society of
London. Series B, Biological Sciences 372.1733. doi: 10.1098/rstb.2016.0368.

Monkhorst, Kim, Iris Jonkers, Eveline Rentmeester, Frank Grosveld, and Joost Gribnau (Feb. 2008).

“X inactivation counting and choice is a stochastic process: evidence for involvement of an

X-linked activator.” In: Cell 132.3, pp. 410–421. doi: 10.1016/j.cell.2007.12.036.

Mortazavi, Ali, Brian A Williams, Kenneth McCue, Lorian Schae�er, and Barbara Wold (July 2008).

“Mapping and quantifying mammalian transcriptomes by RNA-Seq.” In: Nature Methods 5.7,

pp. 621–628. issn: 1548-7105. doi: 10.1038/nmeth.1226.

Mutzel, Verena, Ikuhiro Okamoto, Ilona Dunkel, Mitinori Saitou, Luca Giorgetti, Edith Heard,

and Edda G Schulz (Apr. 2019). “A symmetric toggle switch explains the onset of random X

https://doi.org/10.21105/joss.00092
https://doi.org/10.1038/nprot.2016.086
https://doi.org/10.1101/gad.11.2.156
https://doi.org/10.1186/s13059-015-0698-x
https://doi.org/10.1186/gb-2013-14-8-r84
https://doi.org/10.1038/nature14443
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.cub.2016.03.022
https://doi.org/10.1016/j.cub.2016.03.022
https://doi.org/10.1016/j.celrep.2015.06.053
https://doi.org/10.1016/j.celrep.2015.06.067
https://doi.org/10.1098/rstb.2016.0368
https://doi.org/10.1016/j.cell.2007.12.036
https://doi.org/10.1038/nmeth.1226


bibliography 153

inactivation in di�erent mammals.” In: Nat Struct Mol Biol 26.5, pp. 350–360. doi: 10.1038/

s41594-019-0214-1.

Naughton, Catherine, Duncan Sproul, Charlotte Hamilton, and Nick Gilbert (Nov. 2010). “Analysis

of active and inactive X chromosome architecture reveals the independent organization of

30 nm and large-scale chromatin structures.” In: Mol Cell 40.3, pp. 397–409. doi: 10.1016/j.

molcel.2010.10.013.

Nechanitzky, Robert, Amparo Dávila, Fabio Savarese, Stefanie Fietze, and Rudolf Grosschedl

(Oct. 2012). “Satb1 and Satb2 are dispensable for X chromosome inactivation in mice.” In:

Developmental Cell 23.4, pp. 866–871. doi: 10.1016/j.devcel.2012.09.018.

Nesterova, Tatyana B et al. (July 2019). “Systematic allelic analysis de�nes the interplay of key

pathways in X chromosome inactivation.” In: Nature Communications 10.1, p. 3129. issn: 2041-

1723. doi: 10.1038/s41467-019-11171-3.

Nora, Elphège P et al. (Apr. 2012). “Spatial partitioning of the regulatory landscape of the X-

inactivation centre.” In: Nature 485.7398, pp. 381–385. doi: 10.1038/nature11049.

Ogawa, Yuya and Jeannie T Lee (Mar. 2003). “Xite, X-inactivation intergenic transcription elements

that regulate the probability of choice.” In: Mol Cell 11.3, pp. 731–743. doi: 10.1016/s1097-

2765(03)00063-7.

Pastor, William A, Utz J Pape, Yun Huang, Hope R Henderson, Ryan Lister, Myunggon Ko,

Erin M McLoughlin, Yevgeny Brudno, Sahasransu Mahapatra, Philipp Kapranov, et al. (2011).

“Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells.” In: Nature
473.7347, pp. 394–397.

Patil, Deepak P, Chun-Kan Chen, Brian F Pickering, Amy Chow, Constanza Jackson, Mitchell

Guttman, and Samie R Ja�rey (Sept. 2016). “m(6)A RNA methylation promotes XIST-mediated

transcriptional repression.” In: Nature 537.7620, pp. 369–373. issn: 0028-0836. doi: 10.1038/

nature19342.

Penny, G D, G F Kay, S A Sheardown, S Rastan, and N Brockdor� (Jan. 1996). “Requirement for Xist

in X chromosome inactivation.” In: Nature 379.6561, pp. 131–137. doi: 10.1038/379131a0.

Penzkofer, Tobias, Marten Jäger, Marek Figlerowicz, Richard Badge, Stefan Mundlos, Peter N

Robinson, and Tomasz Zemojtel (Jan. 2017). “L1Base 2: more retrotransposition-active LINE-1s,

more mammalian genomes.” In: Nucleic Acids Res 45.D1, pp. D68–D73. issn: 0305-1048. doi:

10.1093/nar/gkw925.

Peric-Hupkes, Daan et al. (May 2010). “Molecular maps of the reorganization of genome-nuclear

lamina interactions during di�erentiation.” In: Mol Cell 38.4, pp. 603–613. issn: 1097-4164. doi:

10.1016/j.molcel.2010.03.016.

Pinheiro, Ines and Edith Heard (Mar. 2017). “X chromosome inactivation: new players in the

initiation of gene silencing.” In: F1000Research 6. doi: 10.12688/f1000research.10707.1.

Pintacuda, Greta et al. (Dec. 2017). “hnRNPK Recruits PCGF3/5-PRC1 to the Xist RNA B-Repeat

to Establish Polycomb-Mediated Chromosomal Silencing.” In: Mol Cell 68.5, 955–969.e10. doi:

10.1016/j.molcel.2017.11.013.

Pollex, Tim and Edith Heard (Jan. 2019). “Nuclear positioning and pairing of X-chromosome

inactivation centers are not primary determinants during initiation of random X-inactivation.”

In: Nat Genet 51.2, pp. 285–295. issn: 1061-4036. doi: 10.1038/s41588-018-0305-7.

Rabani, Michal et al. (May 2011). “Metabolic labeling of RNA uncovers principles of RNA produc-

tion and degradation dynamics in mammalian cells.” In: Nature Biotechnology 29.5, pp. 436–442.

issn: 1546-1696. doi: 10.1038/nbt.1861.

https://doi.org/10.1038/s41594-019-0214-1
https://doi.org/10.1038/s41594-019-0214-1
https://doi.org/10.1016/j.molcel.2010.10.013
https://doi.org/10.1016/j.molcel.2010.10.013
https://doi.org/10.1016/j.devcel.2012.09.018
https://doi.org/10.1038/s41467-019-11171-3
https://doi.org/10.1038/nature11049
https://doi.org/10.1016/s1097-2765(03)00063-7
https://doi.org/10.1016/s1097-2765(03)00063-7
https://doi.org/10.1038/nature19342
https://doi.org/10.1038/nature19342
https://doi.org/10.1038/379131a0
https://doi.org/10.1093/nar/gkw925
https://doi.org/10.1016/j.molcel.2010.03.016
https://doi.org/10.12688/f1000research.10707.1
https://doi.org/10.1016/j.molcel.2017.11.013
https://doi.org/10.1038/s41588-018-0305-7
https://doi.org/10.1038/nbt.1861


154 bibliography

Raiber, Eun-Ang, Dario Beraldi, Gabriella Ficz, Heather E Burgess, Miguel R Branco, Pierre Murat,

David Oxley, Michael J Booth, Wolf Reik, and Shankar Balasubramanian (2012). “Genome-wide

distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and

depends on thymine DNA glycosylase.” In: Genome biology 13.8, pp. 1–11.

Ramírez, Fidel, Friederike Dündar, Sarah Diehl, Björn A Grüning, and Thomas Manke (July 2014).

“deepTools: a �exible platform for exploring deep-sequencing data.” In: Nucleic Acids Research
42.Web Server issue, W187–91. doi: 10.1093/nar/gku365.

Rastan, S and E J Robertson (Dec. 1985). “X-chromosome deletions in embryo-derived (EK) cell lines

associated with lack of X-chromosome inactivation.” In: Journal of embryology and experimental
morphology 90, pp. 379–388.

Ridings-Figueroa, Rebeca et al. (May 2017). “The nuclear matrix protein CIZ1 facilitates localization

of Xist RNA to the inactive X-chromosome territory.” In: Genes Dev 31.9, pp. 876–888. doi:

10.1101/gad.295907.117.

Roberts, R Michael and Susan J Fisher (Mar. 2011). “Trophoblast stem cells.” In: Biology of Repro-
duction 84.3, pp. 412–421. doi: 10.1095/biolreprod.110.088724.

Robertson, Gordon et al. (Aug. 2007). “Genome-wide pro�les of STAT1 DNA association using

chromatin immunoprecipitation and massively parallel sequencing.” In: Nature Methods 4.8,

pp. 651–657. issn: 1548-7091. doi: 10.1038/nmeth1068.

Rocha, Simão T da and Edith Heard (Mar. 2017). “Novel players in X inactivation: insights into

Xist-mediated gene silencing and chromosome conformation.” In: Nature Structural & Molecular
Biology 24.3, pp. 197–204. doi: 10.1038/nsmb.3370.

Rocha, Simão Teixeira da et al. (Jan. 2014). “Jarid2 Is Implicated in the Initial Xist-Induced Targeting

of PRC2 to the Inactive X Chromosome.” In: Mol Cell 53.2, pp. 301–316. doi: 10.1016/j.

molcel.2014.01.002.

Ronaghi, M, M Uhlén, and P Nyrén (July 1998). “A sequencing method based on real-time py-

rophosphate.” In: Science 281.5375, pp. 363, 365. doi: 10.1126/science.281.5375.363.

Russell, L B (May 1963). “Mammalian X-chromosome action: inactivation limited in spread and

region of origin.” In: Science 140.3570, pp. 976–978.

Sahakyan, Anna, Yihao Yang, and Kathrin Plath (June 2018). “The Role of Xist in X-Chromosome

Dosage Compensation.” In: Trends in Cell Biology 28.12, pp. 999–1013. doi: 10.1016/j.tcb.

2018.05.005.

Sahlén, Pelin, Ilgar Abdullayev, Daniel Ramsköld, Liudmila Matskova, Nemanja Rilakovic, Britta

Lötstedt, Thomas J Albert, Joakim Lundeberg, and Rickard Sandberg (Aug. 2015). “Genome-

wide mapping of promoter-anchored interactions with close to single-enhancer resolution.” In:

Genome Biology 16, p. 156. doi: 10.1186/s13059-015-0727-9.

Sakata, Yuka, Koji Nagao, Yuko Hoki, Hiroyuki Sasaki, Chikashi Obuse, and Takashi Sado (Aug.

2017). “Defects in dosage compensation impact global gene regulation in the mouse trophoblast.”

In: Development 144.15, pp. 2784–2797. doi: 10.1242/dev.149138.

Schoenfelder, Stefan et al. (Apr. 2015). “The pluripotent regulatory circuitry connecting promoters

to their long-range interacting elements.” In: Genome Res 25.4, pp. 582–597. doi: 10.1101/gr.

185272.114.

Schulz, Edda G, Johannes Meisig, Tomonori Nakamura, Ikuhiro Okamoto, Anja Sieber, Christel

Picard, Maud Borensztein, Mitinori Saitou, Nils Blüthgen, and Edith Heard (Feb. 2014). “The

two active X chromosomes in female ESCs block exit from the pluripotent state by modulating

https://doi.org/10.1093/nar/gku365
https://doi.org/10.1101/gad.295907.117
https://doi.org/10.1095/biolreprod.110.088724
https://doi.org/10.1038/nmeth1068
https://doi.org/10.1038/nsmb.3370
https://doi.org/10.1016/j.molcel.2014.01.002
https://doi.org/10.1016/j.molcel.2014.01.002
https://doi.org/10.1126/science.281.5375.363
https://doi.org/10.1016/j.tcb.2018.05.005
https://doi.org/10.1016/j.tcb.2018.05.005
https://doi.org/10.1186/s13059-015-0727-9
https://doi.org/10.1242/dev.149138
https://doi.org/10.1101/gr.185272.114
https://doi.org/10.1101/gr.185272.114


bibliography 155

the ESC signaling network.” In: Cell Stem Cell 14.2, pp. 203–216. doi: 10.1016/j.stem.2013.

11.022.

Seitan, Vlad C et al. (Dec. 2013). “Cohesin-based chromatin interactions enable regulated gene

expression within preexisting architectural compartments.” In: Genome Res 23.12, pp. 2066–2077.

doi: 10.1101/gr.161620.113.

Silver, David et al. (Jan. 2016). “Mastering the game of Go with deep neural networks and tree

search.” In: Nature 529.7587, pp. 484–489. doi: 10.1038/nature16961.

Simon, Noah, Jerome Friedman, and Trevor Hastie (Nov. 2013). “A Blockwise Descent Algorithm

for Group-penalized Multiresponse and Multinomial Regression.” In: arXiv.

Splinter, Erik et al. (July 2011). “The inactive X chromosome adopts a unique three-dimensional

conformation that is dependent on Xist RNA.” In: Genes & Development 25.13, pp. 1371–1383.

doi: 10.1101/gad.633311.

Stadler, Michael B et al. (Dec. 2011). “DNA-binding factors shape the mouse methylome at

distal regulatory regions.” In: Nature 480.7378, pp. 490–495. issn: 0028-08361476-4687. doi:

10.1038/nature10716.

Stavropoulos, N, N Lu, and J T Lee (Aug. 2001). “A functional role for Tsix transcription in blocking

Xist RNA accumulation but not in X-chromosome choice.” In: Proc Natl Acad Sci USA 98.18,

pp. 10232–10237. issn: 0027-8424. doi: 10.1073/pnas.171243598.

Stavropoulos, Nicholas, Rebecca K Rowntree, and Jeannie T Lee (Apr. 2005). “Identi�cation of

developmentally speci�c enhancers for Tsix in the regulation of X chromosome inactivation.”

In: Mol Cell Biol 25.7, pp. 2757–2769. doi: 10.1128/{MCB}.25.7.2757-2769.2005.

Steensel, Bas van and Andrew S Belmont (May 2017). “Lamina-Associated Domains: Links with

Chromosome Architecture, Heterochromatin, and Gene Repression.” In: Cell 169.5, pp. 780–791.

issn: 00928674. doi: 10.1016/j.cell.2017.04.022.

Strobl, Carolin, Anne-Laure Boulesteix, Achim Zeileis, and Torsten Hothorn (Jan. 2007). “Bias in

random forest variable importance measures: illustrations, sources and a solution.” In: BMC
Bioinformatics 8, p. 25. doi: 10.1186/1471-2105-8-25.

Sun, Sha, Brian C Del Rosario, Attila Szanto, Yuya Ogawa, Yesu Jeon, and Jeannie T Lee (June

2013). “Jpx RNA activates Xist by evicting CTCF.” In: Cell 153.7, pp. 1537–1551. doi: 10.1016/

j.cell.2013.05.028.

Sunwoo, Hongjae, David Colognori, John E Froberg, Yesu Jeon, and Jeannie T Lee (Oct. 2017).

“Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-

interacting protein (CIZ1).” In: Proc Natl Acad Sci USA 114.40, pp. 10654–10659. doi: 10.1073/

pnas.1711206114.

Takagi, N and K Abe (May 1990). “Detrimental e�ects of two active X chromosomes on early

mouse development.” In: Development 109.1, pp. 189–201.

Tsai, Chia-Lun, Rebecca K Rowntree, Dena E Cohen, and Jeannie T Lee (July 2008). “Higher order

chromatin structure at the X-inactivation center via looping DNA.” In: Developmental Biology
319.2, pp. 416–425. doi: 10.1016/j.ydbio.2008.04.010.

Tüttelmann, F and J Gromoll (June 2010). “Novel genetic aspects of Klinefelter’s syndrome.” In:

Molecular Human Reproduction 16.6, pp. 386–395. doi: 10.1093/molehr/gaq019.

Vallot, Céline, Jean-François Ouimette, and Claire Rougeulle (July 2016). “Establishment of X

chromosome inactivation and epigenomic features of the inactive X depend on cellular con-

texts.” In: Bioessays: News and Reviews in Molecular, Cellular and Developmental Biology 38.9,

pp. 869–880. doi: 10.1002/bies.201600121.

https://doi.org/10.1016/j.stem.2013.11.022
https://doi.org/10.1016/j.stem.2013.11.022
https://doi.org/10.1101/gr.161620.113
https://doi.org/10.1038/nature16961
https://doi.org/10.1101/gad.633311
https://doi.org/10.1038/nature10716
https://doi.org/10.1073/pnas.171243598
https://doi.org/10.1128/{MCB}.25.7.2757-2769.2005
https://doi.org/10.1016/j.cell.2017.04.022
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1016/j.cell.2013.05.028
https://doi.org/10.1016/j.cell.2013.05.028
https://doi.org/10.1073/pnas.1711206114
https://doi.org/10.1073/pnas.1711206114
https://doi.org/10.1016/j.ydbio.2008.04.010
https://doi.org/10.1093/molehr/gaq019
https://doi.org/10.1002/bies.201600121


156 bibliography

Vella, Pietro et al. (Feb. 2013). “Tet proteins connect the O-linked N-acetylglucosamine transferase

Ogt to chromatin in embryonic stem cells.” In: Mol Cell 49.4, pp. 645–656. doi: 10.1016/j.

molcel.2012.12.019.

Vinod, Hrishikesh D. (June 1969). “Integer programming and the theory of grouping.” In: Journal
of the American Statistical Association 64.326, pp. 506–519. issn: 0162-1459. doi: 10.1080/

01621459.1969.10500990.

Wada, Takeo and Attila Becskei (Dec. 2017). “Impact of Methods on the Measurement of mRNA

Turnover.” In: International Journal of Molecular Sciences 18.12. doi: 10.3390/ijms18122723.

Wang, Liangjun, J Lesley Brown, Ru Cao, Yi Zhang, Judith A Kassis, and Richard S Jones (June

2004). “Hierarchical recruitment of polycomb group silencing complexes.” In: Mol Cell 14.5,

pp. 637–646. issn: 1097-2765. doi: 10.1016/j.molcel.2004.05.009.

Wang, Zhong, Huntington F Willard, Sayan Mukherjee, and Terrence S Furey (Sept. 2006). “Evi-

dence of in�uence of genomic DNA sequence on human X chromosome inactivation.” In: PLoS
Computational Biology 2.9, e113. doi: 10.1371/journal.pcbi.0020113.

Watson, J D and F H Crick (Apr. 1953). “Molecular structure of nucleic acids; a structure for

deoxyribose nucleic acid.” In: Nature 171.4356, pp. 737–738. doi: 10.1038/171737a0.

Welling, Soeren H., Hanne H. F. Refsgaard, Per B. Brockho�, and Line H. Clemmensen (May 2016).

“Forest Floor Visualizations of Random Forests.” In: arXiv.

Wu, Hao, Junjie Luo, Huimin Yu, Amir Rattner, Alisa Mo, Yanshu Wang, Philip M Smallwood,

Bracha Erlanger, Sarah J Wheelan, and Jeremy Nathans (Jan. 2014). “Cellular resolution maps

of X chromosome inactivation: implications for neural development, function, and disease.” In:

Neuron 81.1, pp. 103–119. doi: 10.1016/j.neuron.2013.10.051.

Wutz, Anton, Theodore P Rasmussen, and Rudolf Jaenisch (Feb. 2002). “Chromosomal silencing

and localization are mediated by di�erent domains of Xist RNA.” In: Nat Genet 30.2, pp. 167–174.

issn: 1061-4036. doi: 10.1038/ng820.

Yang, Fan, Tomas Babak, Jay Shendure, and Christine M Disteche (May 2010). “Global survey of

escape from X inactivation by RNA-sequencing in mouse.” In: Genome Research 20.5, pp. 614–

622. doi: 10.1101/gr.103200.109.

Yang, Min, Hexin Xu, Dingju Zhu, and Huijuan Chen (2012). “Visualizing the random forest by

3D techniques.” In: Internet of Things. Ed. by Yongheng Wang and Xiaoming Zhang. Vol. 312.

Communications in computer and information science. Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 639–645. isbn: 978-3-642-32426-0. doi: 10.1007/978-3-642-32427-7\_91.

Yang, Zhi, Xiaodi Jiang, Xiaofeng Jiang, and Haiying Zhao (Aug. 2018). “X-inactive-speci�c

transcript: A long noncoding RNA with complex roles in human cancers.” In: Gene 679, pp. 28–

35. doi: 10.1016/j.gene.2018.08.071.

Zheng, Ruinian, Shunhuan Lin, Ling Guan, Huiling Yuan, Kejun Liu, Chun Liu, Weibiao Ye, Yuting

Liao, Jun Jia, and Ruopeng Zhang (Apr. 2018). “Long non-coding RNA XIST inhibited breast

cancer cell growth, migration, and invasion via miR-155/CDX1 axis.” In: Biochem Biophys Res
Commun 498.4, pp. 1002–1008. doi: 10.1016/j.bbrc.2018.03.104.

Zuin, Jessica et al. (Jan. 2014). “Cohesin and CTCF di�erentially a�ect chromatin architecture

and gene expression in human cells.” In: Proc Natl Acad Sci USA 111.3, pp. 996–1001. doi:

10.1073/pnas.1317788111.

https://doi.org/10.1016/j.molcel.2012.12.019
https://doi.org/10.1016/j.molcel.2012.12.019
https://doi.org/10.1080/01621459.1969.10500990
https://doi.org/10.1080/01621459.1969.10500990
https://doi.org/10.3390/ijms18122723
https://doi.org/10.1016/j.molcel.2004.05.009
https://doi.org/10.1371/journal.pcbi.0020113
https://doi.org/10.1038/171737a0
https://doi.org/10.1016/j.neuron.2013.10.051
https://doi.org/10.1038/ng820
https://doi.org/10.1101/gr.103200.109
https://doi.org/10.1007/978-3-642-32427-7\_91
https://doi.org/10.1016/j.gene.2018.08.071
https://doi.org/10.1016/j.bbrc.2018.03.104
https://doi.org/10.1073/pnas.1317788111


ABSTRACT

To equalize gene dosage between sexes, the long non-coding RNA Xist mediates chromosome-wide gene

silencing of one X Chromosome in female mammals - a process known as X chromosome inactivation

(XCI). The e�ciency of gene silencing is highly variable across genes, with some genes even escaping XCI

in somatic cells. A gene’s susceptibility to Xist-mediated silencing appears to be determined by a complex

interplay of epigenetic and genomic features. However, the underlying rules remain poorly understood.

To advance the understanding of Xist-mediated silencing pathways, chromosome-wide gene silencing

dynamics at the level of nascent transcriptome were quanti�ed using allele-speci�c Precision nuclear

Run-On sequencing. We have developed a Random Forest machine learning model that is able to predict

the measured silencing dynamics based on a large set of epigenetic and genomic features and tested

its predictive power experimentally. We introduced a forest-guided clustering approach to uncover the

combinatorial rules that control Xist-mediated gene silencing. Results suggest that the genomic distance

to the Xist locus, followed by gene density and distance to LINE elements are the prime determinants

of silencing velocity. Moreover, a series of features associated with active transcriptional elongation

and chromatin 3D structure are enriched at e�ciently silenced genes. Generally, silenced genes seem

to be separated into two distinct groups, associated with di�erent silencing pathways: one group that

requires an AT-rich sequence context and the Xist repeat-A for silencing, which is known to activate the

SPEN pathway, and another group where genes are pre-marked by polycomb complexes and tend to rely

on the repeat-B in Xist for silencing, known to recruit polycomb complexes during XCI. Our machine

learning approach can thus uncover the complex combinatorial rules underlying gene silencing during X

chromosome inactivation.

ZUSAMMENFAS SUNG

Eines der beiden X chromosome in weiblichen Säugetieren muss inaktiviert, um die Dosierung von X-

Chromosomalen Genen zwischen den Geschlechtern auszugegleichen. Dieser Prozess wird X Chromosom

Inaktivierung (XCI) genannt und wird maßgeblich von der langen nicht-kodierenden RNA Xist gesteuert.

Die Inaktivierung von unterschiedlichen Genen erfolgt unterschiedlich schnell. Manche Gene sind sogar

in der Lage der Inaktivierung zu entgehen und sind somit weiterhin in somatischen Zellen aktiv. Die

Dynamiken mit denen Gene inaktiviert werden, werden durch ein komplexes Zusammenspiel von epige-

netischen und genomischen Faktoren bestimmt. Dieses Zusammenspiel wurde bis jetzt jedoch noch nicht

hinreichend untersucht um aussagekräftige Rückschlüsse zu ziehen. Für ein besseres Verständnis dieses

Zusammenspiels, wurde mit Hilfe allel spezi�scher Precision nuclear Run-On Sequenzierung die Inaktivie-

rungsdynamik Chromosomen weit gemessen. Diese Messungen, wie auch eine Vielzahl von epigenetischen

und genomischen Faktoren, haben uns in die Lage versetzt, mit Hilfe eines Random Forest Modells, Chro-

mosomen weite Inaktivierungsdynamiken vorherzusagen, welche durch zusätzliche Experimente validiert

werden konnten. Um zu analysieren welche Faktoren in diesem Prozess zusammenspielen, haben wir

einen Random Forest-gestützten Clustering Ansatz implementiert. Die Ergebnisse legen nahe, dass der

genomische Abstand zum Xist Genlocus, sowie die Gendichte und der Abstand zu LINE Elementen, die

Hauptfaktoren für die Inaktivierungsgeschwindigkeit sind. Darüber hinaus wird eine Reihe von Faktoren,

wie zum Beispiel die aktive Transkription oder die 3D Struktur des Chromatins, mit schneller Inaktivierung

in Verbindung gebracht. Im Allgemeinen lassen sich inaktivierte Gene in zwei unterschiedliche Gruppen

unterteilen, die mit unterschiedlichen Inaktivierungspfaden in Verbindung gebracht werden können. Die

eine Gruppe benötigt einen AT-reichen Sequenz Kontext und das Xist Repeat-A Element, das welches den

SPEN-Pfad aktiviert, während die andere Gruppe eine Anreicherung an Polycomb-Komplexen benötigt

und auf das Xist Repeat-B Element zurückgreift, welches Polycomb-Komplexe während des XCI Prozesses

rekrutiert. Diese Ergebnisse zeigen, dass unser Ansatz, basierend auf maschinellem Lernen, die komplexen

kombinatorischen Regeln identi�zieren kann, die der Inaktivierung von Genen während des XCI Prozesses

zugrunde liegen.
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