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Zusammenfassung 

Die aus dem Thymus stammenden regulatorischen T-Zellen (tTREG) spielen eine wichtige Rolle bei der 

Unterdrückung unerwünschter Immunantworten in vivo. Immuntherapien mit humanen tTREG sind daher 

vielversprechende und langfristige Strategien zur Verhinderung von Autoimmunität und 

Transplantatabstoßung. Sie stellen derzeit ein progressives Forschungsgebiet dar. Erste klinische 

Studien mit in vitro expandierten polyklonalen, autologen tTREG, appliziert nach einer Nieren-

Lebendspende, konnten ohne Patientengefährdung durchgeführt werden. Diese Studien zeigen erste 

Hinweise auf die Wirksamkeit der tTREG-basierten Therapien. Die Anwendung dieses Therapieansatzes 

kann jedoch noch verbessert werden. Zum einen würde ein besseres Verständnis über die 

verschiedenen Differenzierungsstadien der humanen tTREG das Wissen über die tTREG-Biologie weiter 

vertiefen. Des Weiteren würde die Voraussage über die Lokalisation und das Verhalten dieser Zellen 

nach dem adoptiven tTREG-Transfer verbessert werden. Für die routinemäßige klinische Anwendung 

wäre die Entwicklung eines schnellen und robusten Testsystems zur Bewertung der suppressiven 

Funktion der tTREG als Freigabekriterium in der adoptiven Immuntherapie vonnöten. Mithilfe der 

Anwendung von Markern zur Bestimmung von Effektor-T-Zelldifferenzierungsstadien haben wir tTREG-

Subpopulationen definiert. Durch umfangreiche phänotypische, funktionelle und epigenetische 

Untersuchungen konnten wir zeigen, dass das tTREG-Kompartiment in ähnliche Subpopulationen wie 

sein Effektor-T-Zell-Pendant unterteilt werden kann. Hier wiesen die tTREG Subpopulationen 

unterschiedliche Merkmale hinsichtlich Phänotyp, Stabilität des Zelltyps/Differenzierungsgrades, 

funktioneller Kapazität und epigenetischem Profil auf. Das deutet darauf hin, dass auch tTREG einem 

Muster der linearen Differenzierung unterliegen. Bemerkenswert ist auch, dass wir eine bisher 

unbeschriebene Subpopulation mit Markern und Eigenschaften von Gedächtniszellen innerhalb des 

naiven tTREG Kompartiments identifizieren konnten. Es wäre folglich wichtig, die Zusammensetzung der 

Zellprodukte bezüglich der tTREG Subpopulation für die adoptive Immuntherapie aufgrund ihres 

möglichen Einflusses auf die Wirksamkeit zu berücksichtigen.  

Hinsichtlich der Entwicklung eines aussagekräftigen, robusten und klinisch praktikablen 

tTREG-Testsystems haben wir einen veröffentlichten tTREG-Funktionsassay getestet, der für eine schnelle 

Freigabe von tTREG-Produkten vorgeschlagen wurde. Im Verlauf unserer Untersuchungen stellten wir 

allerdings fest, dass dieser Test für die Beurteilung der Suppression von früh exprimierten 

Effektor-T-Zell-Aktivierungsmakern und ihrer proinflammatorischen Zytokinproduktion zur Bestimmung 

der tTREG-Funktionalität ungeeignet ist.  

Unsere Daten deuten darauf hin, dass tTREG keine mit den bisher angewendeten Techniken messbaren 

oder suppressiven Effekte auf die frühe Effektor-T-Zellaktivierung zeigen. Daher besteht weiterhin die 

Notwendigkeit, existierende Protokolle zu verbessern oder neue, aussagekräftige, robuste und 

praktikable Ansätze zu entwickeln, um die tTREG-Funktion mit Hilfe eines GMP-konformen 

tTREG-Produktfreigabetests zu bestimmen. 
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Abstract 

Thymus-derived regulatory T cells (tTREG) play an important role in suppressing unwanted immune 

responses in vivo. Therefore, immunotherapies applying human tTREG are promising long-term 

strategies for preventing autoimmunity and allograft rejection and are currently a progressive area of 

investigation. First clinical trials applying in vitro expanded autologous and polyclonal tTREG following 

living-donor kidney transplantation have proven safety and demonstrate first hints of efficacy. The value 

of these approaches can, however, be improved upon: – Firstly, a better understanding of the human 

tTREG mode of differentiation would further expand the knowledge about tTREG biology as well as help 

to predict their fate following application in adoptive tTREG transfer. – Secondly, the development of a 

yet missing robust and short-term test system for evaluating tTREG-mediated suppressive function as a 

release criterion for their application in adoptive immunotherapy would facilitate routine clinical 

application. 

Applying effector T cell differentiation-determining markers to define tTREG subsets and by extensive 

phenotypic, functional and epigenomic description, we could demonstrate that the tTREG compartment 

can be divided into similar subpopulations as their effector T cell counterparts. Hereof, the tTREG subsets 

present with distinct characteristics in terms of phenotype, lineage stability, functional capacities and 

epigenomic profile suggesting that also tTREG underlie a pattern of linear differentiation. Of note, we 

also identified a previously undescribed subset within the naïve tTREG compartment expressing certain 

memory markers and characteristics. Because of the putative impact on cell product efficacy, the tTREG 

subset composition should be taken into account for adoptive immunotherapy. 

For the development of a robust and clinically feasible tTREG test system, we challenged a published 

tTREG functional assay suggested for rapid cell product release. Thereby, we demonstrated that 

assessing suppression of early effector T cell activation markers and their pro-inflammatory cytokine 

production to be inappropriate measures to determine tTREG functionality. 

Our data suggest that tTREG do not show measurable suppressive effects on early effector T cell 

activation, hence there is continuing pressure to improve current protocols or develop novel, robust 

and feasible approaches to determine tTREG function suitable for a GMP-compliant tTREG product release 

assay. 
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Index of Abbreviations 

a  alpha 

APC  antigen presenting cell 

AVTT  adoptive anti-viral T cell therapy 

CCR7  C-C chemokine receptor type 7 

CD  cluster of differentiation 

CFDA-SE carboxyfluorescein diacetate succinimidyl ester 

CFSE  carboxyfluorescein succinimidyl ester 

CM  central memory 

CO2  carbon dioxide 

CTLA-4  cytotoxic T-lymphocyte-associated protein 4 

DC  dendritic cell 

DNA  deoxyribonucleic acid 

EM  effector memory 

EMRA  effector memory expressing CD45RA (terminally-differentiated effector) 

FACS  fluorescence-activated cell sorting 

FCS  fetal calf serum 

FoxP3  forkhead box P3 

GITR  glucocorticoid-induced TNFR-related protein 

GMP  good manufacturing practice 

GvHD  graft versus host disease  

HMD  highly methylated domains 

HSCT  hematopoietic stem cell transplantation 

ICOS  inducible T-cell co-stimulator 

IFNg  interferon gamma 

IgG1  immunglobulin G 1 

IL  interleukin 
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Ki-67  antigen Ki-67 

MHC  major histocompatibility complex 

mL  milliliter 

mRNA  messenger ribonucleic acid 

N  naïve 

NLM  naïve-like memory 

OX40  tumor necrosis factor receptor superfamily, member 4 / CD134 

PBMC  peripheral blood mononuclear cell 

PBS  phosphate-buffered saline 

PMA  phorbol 12-myristate 13-acetate 

PMD  partially methylated domains 

rh  recombinant human 

RNA  ribonucleic acid 

RRBS  reduced representation bisulfite sequencing 

rtPCR  real-time polymerase chain reaction 

SCM  memory stem T cell 

SDS-Page sodium dodecyl sulfate–polyacrylamide gel electrophoresis 

SEM  standard error of the mean 

SOT  solid organ transplantation 

TCONV  conventional T cell 

TCR  T cell receptor 

TGFb  transforming growth factor beta 

TSDR  TREG specific demethylation region 

tTREG  thymic-derived regulatory T cell 
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Schematic Overview of this PhD Thesis 

 

 

 

 

 

TREG show a linear differentiation pattern as their 

effector counterparts

! existence of functionally distinct TREG subsets
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Introduction 

Thymus-derived CD4+CD25+FoxP3+ regulatory T cells (tTREG) can modulate effector immune responses 

and thus play an essential role in the induction and maintenance of immunological tolerance to self-

antigens. Also, other types of suppressive TREG have been described, such as peripherally induced TREG, 

Type 1 regulatory T cells (Tr1) and Type 3 Helper cells (TH3). Fatal autoimmune diseases and other 

pathogenic disorders in both humans and murine models occur due to the loss in tTREG cell number 

and/or function. Among it is the genetic disease immunodysregulation called polyendocrinopathy 

enteropathy X-linked (IPEX) as well as numerous autoimmune diseases, including type 1 diabetes, 

relapsing-remitting multiple sclerosis, psoriasis, myasthenia gravis and rheumatoid arthritis1. 

A diverse arsenal of TREG-mediated suppressive mechanisms has been identified in the past years. 

Inhibitory cytokines, most importantly IL-10 and TGFb, act as short-range soluble factors and function 

in suppressing conventional T cell (TCONV) proliferation and pro-inflammatory cytokine release2. Further, 

TREG have demonstrated the capacity to perform cytolysis of T and B cells e.g. in a granzyme B-

dependent and perforin-(in)dependent manner3–5. Another mode of TREG-mediated suppression is by 

metabolic disruption, which is, among other mechanisms, performed by ATP or IL-2 deprivation due to 

TREG-expressed ectonuclease activity and a constitutively high expression of the IL-2 receptor a-chain 

CD25, respectively. This mechanism enables TREG to withdraw IL-2 from the inflamed environment of 

TCONV, thereby leading to the prevention of TCONV proliferation and activating TCONV apoptosis6. Another 

inhibitory mechanism of TCONV activation is TREG-mediated targeting of antigen presenting cells (APCs), 

e.g. by reducing the contact period of APCs and CD4+ T cells7,8 or by competitively binding co-

stimulatory CD28 preventing binding to their shared APC ligands CD80 and CD869. Only recently it was 

demonstrated that TREG possess the capacity to remove MHC class II:cognate antigen complexes from 

dendritic cell (DCs) surfaces, thereby reducing the DCs’ capacity to function as APCs10. 

Due to the immunoregulatory functions of TREG, the transfer of human TREG has become an appealing 

therapeutic alternative to improve the long-term outcome in transplantation and thereby reducing the 

side-effects of conventional immunosuppressive drugs. This approach would be of great benefit for 

patients since a major challenge in hematopoietic stem cell transplantation (HSCT) and solid organ 

transplantation (SOT) is the induction of tolerance, enabling the long-term allograft survival without the 

necessity for lifelong immunosuppression. In several mouse models, in addition to their protective role 

in autoimmunity, tTREG have been shown to play a key role in the induction and maintenance of tolerance 

to alloantigens, thereby controlling allograft rejection and graft versus host disease (GvHD)1. 

Similarly, in humans, the adoptive transfer of donor-derived tTREG has been shown to prevent GvHD 

after HSCT in the absence of any post-transplantation immunosuppression11. Furthermore, in patients 
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suffering from type I diabetes, tTREG were well tolerated and showed dose-related hints of efficacy12–14. 

A principal clinical phase I/IIa study (ONE study) on the therapeutic application of tTREG in SOT has been 

initiated within a global network with the ultimate goal of inducing allograft tolerance in renal SOT 

patients15. First clinical data of the adoptive transfer of polyclonally in vitro expanded tTREG 

demonstrated safety and first hints of efficacy. However, monitoring the fate of the transferred tTREG 

revealed a limited survival (Landwehr-Kentzel et al., in revision). 

To this end, adoptive immunotherapeutic tTREG applications entail polyclonally in vitro expanded tTREG 

in their bulk entity. From proof-of-concept studies of adoptive anti-viral T cell therapy (AVTT), we 

learned that controlling the patient’s viral load was unsuccessful over an extended period of time due 

to the limited persistence of adoptively transferred T cells16–18. For adoptive immunotherapeutic 

applications, ex vivo isolated T cells have to be stimulated for excessive in vitro expansion and by this 

acquire a proliferation-induced late differentiation state19. The late differentiation state of the adoptively 

administered T cells may have led to the limited in vivo survival of the transferred cells and thus it is 

strongly believed that defining a distinct composition of enriched T cell memory subsets with increased 

longevity potential will ultimately lead to an increased quality of adoptively transferred T cell products. 

For the conventional effector T cell compartment it is well established that central memory T cells (TCM) 

and memory stem T cells (TSCM) possess a great proliferative potential, self-renewal capacity and have 

been demonstrated to show superior survival, persistence and engraftment than further differentiated 

memory T cells, such as effector memory (TEM) and terminally-differentiated effector (TEMRA) T cells20–24. 

In contrast to conventional T cells, convincing data on the existence of different tTREG subsets based on 

distinct differentiation states do not exist. From several murine studies TREG memory was proposed due 

to long-term persistence of antigen-specific tTREG exhibiting potent immunosuppressive properties 

despite the elimination of their cognate antigens25–27. However, human data on functional tTREG memory 

is still missing and even though a rising number of memory effector T cell markers have been identified, 

similar indicators of functional TREG memory are less clearly defined. One of the limitations is the fact 

that only a few tTREG intrinsic molecules associated with their role in immunosuppression are expressed 

de novo upon activation since tTREG activation commonly increases the expression of protein molecules, 

which they already express in the steady state (e.g. CTLA-4, CD25, ICOS, GITR)28,29. Yet, the greatest 

challenge in defining human memory tTREG has been the lack of evidence that tTREG can persist for 

prolonged periods of time in the absence of their respective cognate antigen. 

Therefore, one aim of my PhD project was the characterization and understanding of particular tTREG 

subsets at distinct differentiation states regarding their stability, function and phenotype to identify 

prospective approaches for advancing adoptive tTREG cell products. 
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In vitro polyclonally expanded bulk tTREG have already presented as auspicious candidates for 

immunotherapeutic application. For the ultimate deployment of tTREG cell products, the functional 

capacity of tTREG has to be assured before adoptive transfer, yet a test system meeting all clinical, 

laboratory handling and regulatory authority requirements is still missing. Within my PhD project, the 

second aim was to assess the in vitro functional capacities of the tTREG subsets and to challenge tTREG 

functional assays relating to translation into a robust clinically feasible and Good Manufacturing Practice 

(GMP)-compliant processes. For this, two protocols were compared back-to-back: one following a long-

published ‘gold standard’ protocol assessing the suppression of autologous responder T cell 

proliferation and a second published protocol evaluating suppression of autologous responder T cell 

activation offering essential advantages with regards to clinical translation such as time kinetics. 

Ultimately, the aim was to define a GMP-compliant functional tTREG assay as a release criterion for tTREG 

cell products. 
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Methodology 

Subjects 

Peripheral blood mononuclear cells (PBMCs) were obtained from either healthy volunteers (20 male : 33 

female donors, age range from 20 to 82 years) or buffy coats from the German Red Cross (DRK) society. 

The relevant institutional review boards approved the study and all subjects gave their written informed 

consent according to the ‘Declaration of Helsinki'. 

PBMC Isolation 

PBMCs were isolated from blood by means of density gradient centrifugation. In brief, heparin-

supplemented blood was diluted 1:2 with sterile PBS (Gibco) and carefully added onto a layer of Biocoll 

(Biochrom) solution. After centrifugation at 800x g for 20 minutes at room temperature (RT) without 

deceleration, the interface of PBMCs between separated blood plasma and Biocoll (Biochrom) was 

collected and washed twice with a large amount of PBS at 400x g for 10 minutes at 4°C with full 

deceleration. Cell numbers were determined using a Neubauer chamber after diluting the cells 1:2 with 

trypan blue (Sigma-Aldrich). Cells were cultured in incubators at 37°C and 5% CO2 in X-Vivo15 medium 

(Lonza) supplemented with 10% FCS (Biochrom), 100 U/mL penicillin and 100 µg/mL streptomycin (both 

Biochrom). 

CD4+ T cell enrichment by magnetic-activated cell sorting (MACS) 

CD4+ T cell enrichment was performed prior to FACSorting of various T cell populations by incubating 

PBMCs with antiCD4-coupled magnetic microbeads (Miltenyi Biotec), which were transferred onto a 

column within a strong magnetic field. There, CD4+ T cells bound to microbeads were retained within 

the column and unlabeled CD4- cells were collected as negative fraction. Finally, the column was taken 

out of the magnetic field and CD4+ T cells were eluted. Human CD4 MicroBeads were used according 

to the manufacturers’ protocol. 

Isolation of untouched CD3+ T cell enrichment by modified density-based negative 

selection protocol 

Enrichment of CD3+ T cells was performed for obtaining responder T cells autologous to the expanded 

tTREG subsets in order to perform functional proliferation suppression assays. For this, fresh blood was 

taken from the respective tTREG donor and incubated with “RosetteSep™ Human T Cell Enrichment 

Cocktail” (StemCells) at 20µL/mL blood and further treated according to the manufacturers’ protocol. 

The “RosetteSep™ Human T Cell Enrichment Cocktail” consists of mouse IgG1 antibodies specific for 

human lineage antigens (CD16, CD19, CD36 and CD56). These antibodies are crosslinked to mouse 
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IgG1 antibodies targeting human glycophorine on erythrocytes by means of rat anti-mouse IgG1 

secondary antibodies, thus forming bispecific tetrameric antibody complexes. These complexes 

crosslink all unwanted nucleated cells to multiple erythrocytes by forming erythrocyte rosettes around 

the targeted mononucleated cell, thereby increasing the density of the unwanted cells, such that they 

pellet along with the free erythrocytes when centrifuged over a density gradient medium. The desired 

CD3+ T cells remain free of antibody and can be collected as enriched population at the interface 

between the plasma and the density medium. 

Isolation of bulk tTREG, tTREG subsets and responder T cells 

Freshly isolated PBMCs were enriched for CD4+ T cells via positive selection by MACS. CD4+ T cells 

were rested in PBS/0.5% FCS at 4°C O/N. Subsequently, the cells were labelled with monoclonal 

antibodies and FACSorted. In brief, cells were gated according to forward/sideward scatter and CD4+ 

T cells selected to further define bulk tTREG by CD25high and CD127low expression. Further, tTREG subsets 

were isolated according to their respective CD45RA, CCR7, CD45RO and CD95 expression. In the case 

of functional assays, responder T cells were additionally isolated defined by their CD4+CD25low 

expression. 

Expansion of tTREG 

FACSorted tTREG were suspended in X-Vivo15 medium supplemented with 10% FCS, 100 U/mL penicillin 

and 100 µg/mL streptomycin (complete medium) at a maximum of 105 tTREG in 200µL medium per 96 

well U-bottom cell culture plate (Falcon). 500U/mL rhIL-2 (Proleukin S, Novartis Pharma) and 100µM 

Rapamycin (Pfizer) was complemented to the medium. On day 1 of expansion, TREG expansion beads 

(Miltenyi Biotec), particles loaded with activating antiCD3/CD28 antibodies, were added at a bead-to-

cell ratio of 4:1. On day 7, the cells were re-stimulated at a bead-to-cell ratio of 1:1 and the medium was 

replaced when splitting the cells or when the medium had changed color from red to yellow, thereby 

indicating that the pH had changed due to extensive metabolic processes. 

FACS staining, data acquisition and analysis 

For extracellular staining, cells were incubated with appropriate antibodies at 4°C for 30 minutes and 

subsequently washed with PBS at 400 g for 10 minutes if not stated otherwise. 

Prior to cytokine staining, cells were stimulated with 10ng/mL PMA and 1µg/mL Ionomycin (both Sigma-

Aldrich) for 4 hours, after which 4µg/mL Brefeldin A (Sigma-Aldrich) was added for further 2 hours. For 

intranuclear and intracellular staining, cells were fixed and permeabilized using the 

“Foxp3/Transcription Factor Staining Buffer Set” (eBioscience) according to the manufacturers’ 

instruction. Intracellular antibody staining was performed at 4°C for 30 minutes. Additionally, in all 
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intracellular staining protocols, CD3, CD4 and CD95 molecules were stained intracellularly to enhance 

the intensity by also staining internalized receptors. 

Live/Dead discrimination was performed using LIVE/DEAD Fixable Blue Dead Cell Stain Kit (Molecular 

probes, life technologies) together with extracellular antibodies prior to fixation and permeabilization 

at 4°C for 30 minutes. 

CD154 staining for the functional tTREG activation suppression assay was performed by adding CD154 

antibody into the culture medium at the start of stimulation to ensure antibody binding also to 

transiently expressed CD154 molecules. 

Flow cytometry data acquisition was performed using a BD LSR Fortessa with software FACS Diva (BD). 

Data analysis was performed by FlowJo (TreeStar) software. 

FACSorting 

FACSorting was performed by the Flow Cytometry Core Facility of the “Berlin-Brandenburg Center for 

Regenerative Medicine” and supported by Dr. Désirée Kunkel and Dr. Jens Hartwig. Antibody staining 

for FACSorting was performed as described above. 

CFDA-SE staining for detection of cell proliferation 

Carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) enters cells by diffusion through the cell 

membrane and is subsequently cleaved by intracellular enzymes to form an amine-reactive product, 

carboxyfluorescein succinimidyl ester (CFSE), forming covalent bonds with intracellular molecules. 

When CFSE-labelled cells divide, they pass on half the number of CFSE-labelled molecules to their 

progeny. Therefore, each cell division can be assessed by measuring the corresponding decrease in cell 

fluorescence intensity via flow cytometry hence being a useful tool to assess T cell proliferation. For 

tTREG proliferation suppression assays, responder T cells were stained with 10µM CFDA-SE/PBS for 3 

minutes, followed by the addition of 10mL cold FCS. The cells were washed twice with cold complete 

medium. For tTREG activation marker suppression assays, responder T cells were stained with 2µM CFDA-

SE/PBS for 1 minute, followed by the addition of 10mL cold FCS. The cells were washed twice with cold 

complete medium. 
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Marker Fluoro- 

chrome 

Clone Company Marker Fluoro- 

chrome 

Clone Company 

CCR7 PE G043H7 Biolegend CD45RA PE-Dazzle 
594 

HI100 Biolegend 

CCR7 APC-Cy7 G043H7 Biolegend CD45RO BV785 UCHL1 Biolegend 

CD127 APC-AF700 R34.34 Beckman 

Coulter 

CD69 APC-Cy7 FN50 Biolegend 

CD134 PE Ber-ACT35 Biolegend CD8 BV510 RPA-T8 Biolegend 

CD154 BV711 24-31 Biolegend CD95 PE-Cy7 DX2 Biolegend 

CD25 APC 2A3 BD FoxP3 AF488 259D BD 

CD3 BV650 OKT3 Biolegend IFNg BV605 4S.B3 Biolegend 

CD31 PE WM59 Biolegend IL-2 BV421 MQ1-
17H12 

Biolegend 

CD4 PerCp-
Cy5.5 

SK3 Biolegend Ki-67 AF700 Ki-67 Biolegend 

Table 1 List of used antibodies 

Quantitative real-time PCR 

Total RNA from FACSorted T cells was isolated using the QIAamp RNA Blood Mini Kit (Qiagen) and 

transcribed into cDNA using the QIAamp QuantiTectÒ Reverse Transcription Kit (Qiagen) according to 

the manufacturer’s instructions. The mRNA expression of genes was analyzed by quantitative rtPCR 

performed as described previously30 using an Applied Biosystems (ABI) 7500 cycler using TaqMan 

Universal PCR Mastermix (Applied Biosystems) with the following thermal protocol: 2 min at 50 °C, 10 

min at 95 °C, 42 x (15 s at 95 °C, 60 s at 60 °C). Analysis was performed using the 7500 Real Time Analysis 

software (Applied Biosystems). 

T cell receptor sequencing 

Genomic DNA from cells of interest was obtained using the QIAamp DNA Blood Mini Kit (Qiagen) and 

sent to Adaptive Biotechnologies, Seattle, USA for TCRb sequencing. Analysis of TCR clonality was 

performed using the Adaptive Biotechnologies ‘ImmunoSEQ’ platform. 

Cytokine Multiplex Assay 

Cytokine analyses were performed using the ‘Meso Scale U-Plex Kit’ (Meso Scale Discoveries) following 

the manufacturer’s instructions. Supernatants were diluted 1:4 with the appropriate buffer contained 

within the kit. 
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Proliferation suppression assay 

Described in detail within the publication.  

DNA methylation analysis by Reduced Representation Bisulfite Sequencing (RRBS) 

Frozen cell pellets from ex vivo FACSorted tTREG subsets were sent to the University of Saarland for DNA 

methylation analysis. In short, genomic DNA was isolated and subjected to enzymatic digestion 

obtaining a library of short DNA fragments. After specific size selection by SDS-Page, DNA was treated 

for bisulfite conversion followed by PCR amplification and final sequencing. Bioinformatic analyses were 

performed by the team of Dr. Gilles Gasparoni at the Institute for Genetics/Epigenetics at the University 

of Saarland. 

Methylation analysis of TREG specific demethylation region 

Genomic DNA from cells of interest was obtained using the QIAamp DNA Blood Mini Kit (Qiagen) and 

subjected to bisulfite conversion using the EpiTect kit (Qiagen) according to the manufacturer’s 

instructions. A minimum of 60ng bisulfite-treated genomic DNA was used in a PCR to quantify the Foxp3 

TSDR. rtPCR was performed in a final reaction volume of 20 μL containing 10 μL FastStart universal 

probe master (Roche Diagnostics), 50 ng/μL lamda DNA (New England Biolabs), 5 pmol/μL methylation 

or nonmethylation-specific probe, 30 pmol/μL methylation or nonmethylation-specific primers and 60 

ng bisulfite-treated DNA or a respective amount of plasmid standard. The samples were analyzed in 

triplicates on an ABI 7500 cycler. 

Statistical analysis 

GraphPad Prism V8 was used for graph generation and Kolmogorov-Smirnov testing was performed to 

assess normal Gaussian distribution. To determine significance, experiments with n ³ 6 were subjected 

to a paired one-way ANOVA test comparing the mean of each column with the mean of every other 

column with additional Tukey testing correcting for multiple comparisons using statistical hypothesis 

testing. Experiments with n=3 were analyzed by a paired two-tailed t-test to determine significance.      

*: P£0.05; **: P£0.01; ***: P£0.001; ****: P£0.0001 
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Results 

1. Phenotypic characterization of thymic-derived TREG subsets 

1.1.  tTREG phenotyping reveals distinct subsets when applying classical / naïve memory 

differentiation marker profiles 

T lymphocyte differentiation of naïve into functional effector cells is essential for optimal protection 

against different classes of pathogens as well as for the development of immunological memory, which 

is classically defined on the basis of our comprehension about memory effector T cells. Whereas over 

the last decades an increased number of indicators for the reliable identification of effector T cell 

subsets based upon their differentiation state have been identified, comparable markers for defining 

functional tTREG subsets are less clearly defined to date. This is mostly due to the fact that there are only 

a scarce number of tTREG-specific molecules being expressed de novo upon tTREG activation. Two of the 

few cell surface proteins being differentially expressed on effector as well as regulatory T cells are 

CD45RA31,32 and CCR733. On this basis, tTREG subsets were largely classified as their effector T cell 

counterparts.  

For this ex vivo investigation of the phenotype and pro-inflammatory cytokine profile of effector T cells 

and tTREG, an extensive flow cytometry panel has been established, defining subsets within both T cell 

lineages. In brief, freshly isolated PBMCs of 53 healthy donors were polyclonally stimulated with 

PMA/Ionomycin, as well as left untreated and labelled with a selection of monoclonal antibodies for 

flow cytometric analysis (Fig. 1). For all flow cytometry-based analyses, the gating strategy commenced 

with lymphocyte discrimination, doublet exclusion, followed by the selection of living CD3+CD4+ T cells 

(Fig. 1 A). Thereafter, two major gating strategies were employed:  

1) From bulk CD4+ T cells, tTREG were gated based on their high expression of CD25 and FoxP3. Further, 

tTREG subsets (TREGCM, TREGEM, TREGTEMRA) were defined according to CD45RA and CCR7 expression. 

After stringent elimination of any memory T cells by excluding CD45RO+CD62L- T cells, TREGNLM and 

TREGN were defined based on their differential expression of CD95 and CCR7 (Fig. 1 B).  

2) Bulk CD4+ T cell subsets (TCM, TEM, TEMRA) were defined according to their CD45RA and CCR7 

expression. Once having excluded CD45RO+CD62L- memory T cells, the subsets TSCM and TN were 

defined by means of their differential expression of CD95 and CCR7 (Fig. 1 C).  

For the analysis of pro-inflammatory cytokine profiles, PBMCs were polyclonally stimulated with 

PMA/Ionomycin and intracellularly stained for IFNg and IL-2. Setting the threshold by means of an 
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unstimulated control, the expression of IFNg and IL-2 was assessed on both, bulk CD4+ T cell and tTREG 

subsets (Fig. 1 D). 

As strikingly demonstrated in figure 2 A and B, the central memory compartment within the bulk CD4+ 

T cells compares to only halve the frequency of TREGCM. Thereby, the majority of tTREG exhibit a central 

memory phenotype, suggesting their circulation between peripheral blood and lymphoid organs. 

Further, TN of bulk CD4+ T cells are twice as frequent compared to the naïve cells within the TREG 

population. Noting that naïve and central memory composition differs strongly between bulk CD4+ T 

cells and tTREG, it is all the more intriguing that the frequencies of TSCM within the bulk CD4+ T cell 

compartment strongly compare to that of TREGNLM, a tTREG subpopulation within the naïve compartment 

expressing the memory T cell marker CD95. On this basis, the newly mentioned tTREG subset was termed 

as ‘naïve-like memory’ tTREG population (TREGNLM). 

Non-production of pro-inflammatory cytokines, including IFNg and IL-2, is a hallmark of regulatory 

T cells. Therefore, the PBMCs were polyclonally stimulated with PMA/Ionomycin for 6 hours in order to 

validate the authenticity of the tTREG subsets by demonstrating the absence of pro-inflammatory 

cytokine production. As a positive stimulation control, the cytokine production profile of the bulk CD4+ 

T cell subsets was also assessed.  

As anticipated, the data shown in figure 2 C and D demonstrate that none of the tTREG subsets produce 

mentionable amount of both IFNg and IL-2, whilst bulk CD4+ T cells generate considerable amounts of 

both cytokines, thereby serving as a positive control for polyclonal stimulation. Expectedly, the highest 

IFNg and IL-2 producers present to be effector memory T cells, followed by comparable frequencies 

from TCM and TSCM and lowest cytokine production by naïve CD4+ T cells (Fig. 2 C,D). 
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Figure 1. Gating strategy for defining effector and thymic-derived regulatory T cell subsets. 

(A) Strategy for analyzing effector T cell and tTREG subsets from PBMCs, starting from lymphocytes followed by 
doublet discrimination, selection of living CD3+CD4+ T cells. (B) Strategy for studying tTREG subsets based on their 
expression of CD25 and FoxP3. tTREG subsets were set according to their expression of CD45RA, CCR7, CD45RO 
and CD95. (C) Strategy for analyzing bulk CD4+ T cells according to their expression of CD45RA, CCR7, CD45RO 
and CD95. tTREG within the CD4+ TSCM compartment were further characterized upon their expression of CD25 
and FoxP3. (D) PBMCs were stimulated with PMA/Ionomycin for 6 h, permeabilized and additionally stained for 
IFNg and IL-2. Illustrated are density plots of flow cytometry data of one representative donor. 
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Figure 2. Composition of subsets defining T cell differentiation stages distinctly differs between bulk CD4+ T cells 
and tTREG. 

(A) Summary of ex vivo investigation of bulk CD4+ conventional T cells and (B) tTREG subset distribution of freshly 
isolated PBMCs based on flow cytometry data (Fig. 1 A-C). Cells were polyclonally stimulated with PMA/Ionomycin 
for 6 h and cytokine production was assessed following intracellular cytokine staining (Fig. 1 D). The production of 
the mentioned pro-inflammatory cytokines by tTREG subsets and their CD4+ conventional T cell counterparts is 
summarized in (C) and (D). 20 male : 33 female donors, age range from 20 to 82 years. n=53 ± SEM. 

1.2 tTREG depict distinct extracellular and intracellular marker expression with regard 

to their recent thymic emigration, active proliferation state, prior activation and 
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tTREG and TCONV population: naïve T cells express significantly higher frequencies of CD31 compared to 

TSCM/NLM and TEM. Contrarily to the CD4+ TCONV, TREGNLM and TREGCM express similar CD31 

frequencies. In both compartments, TEM express lowest CD31 frequencies (Fig. 3 B). 

Since proliferation and clonal expansion of antigen-specific T cells are important functions for conferring 

immunity and immunological memory, the nuclear protein Ki-67 was investigated within CD4+ TCONV and 

TREG subsets. Ki-67 plays a role in the regulation of cell division and is expressed during active phases of 

cell division yet is absent in quiescent T cells36. Our data demonstrate that within both T cell 

compartments EM express highest frequencies of Ki-67, being significantly higher than expression in 

CM, SCM/NLM and N. Also, very similar in both compartments is the lowest Ki-67 expression by the 

naïve T cells, followed by the SCM/NLM subsets (Fig. 3 C). 

  

Figure 3. tTREG depict distinct extracellular and intracellular marker expression with regard to recent thymic 
emigration, active proliferation state, prior activation. 

Ex vivo isolated and unstimulated PBMCs were analyzed by flow cytometry based on extracellular, intracellular and 
intranuclear proteins labelled with fluorochrome-conjugated monoclonal antibodies. (A) Representative FACS plots 
are shown for the flow cytometric detection of CD31, Ki-67, CD134 in tTREG and TCONV compartments. Summary of 
frequencies within tTREG and conventional CD4+ T cell subsets of CD31 (B), Ki-67 (C) and CD134 (D). n=6. Results 
are presented as mean ± SEM. Normal distribution of data points was tested with Kolmogorov-Smirnov test and 
significance was determined by paired one-way ANOVA test comparing the mean of each column with the mean 
of every other column with additional Tukey testing correcting for multiple comparisons using statistical hypothesis 
testing. *: P£0.05; **: P£0.01; ***: P£0.001; ****: P£0.0001 
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T cells and tTREG subsets. CD134 represents a major co-stimulatory receptor and was demonstrated, 
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compartments, having not yet encountered their cognate antigen and thus not yet experienced TCR 

engagement, are negative in CD134 expression. The subsets CM and EM within both compartments 

express significantly higher frequencies of CD134 than N and SCM/NLM. Strikingly, SCM/NLM express 

low but significantly higher frequencies of OX40 than N (Fig. 3 D). 

1.3 tTREG subsets demonstrate strong differences in TCR repertoire diversity 

TCR repertoire analysis is a common method for analyzing clonal expansion of T cells after cognate 

antigen encounter giving us the opportunity to study different T cell lineages in their process of 

differentiation. This was of great interest as to help in elucidating the identity of different tTREG subsets 

and to shed some more light onto the path of tTREG differentiation. We therefore analyzed the clonality 

of the entire repertoire of the different tTREG subsets. Clonality expresses the statistics for how much the 

TCR repertoire is made up of expanded clones, i.e. the degree to which one or a few clones (cells 

sharing identical TCR sequences) dominate the repertoire. The analysis defines the measure of clonality 

with a value of 0 to 1, where 0 represents a flat distribution with each clone appearing only once and 

1 being an entirely monoclonal sample, i.e. only one clone was found and all reads come from that one 

clone38. Our TCR sequencing data reveal that the further differentiated tTREG subsets TREGCM and TREGEM 

display the least diverse repertoire, fitting the fact that cells from these subsets have undergone vast 

clonal expansion after antigen encounter, leading to the emerge of single TCR clones. On the other 

end, the slightly greater clonality of TREGNLM compared to TREGN interprets as that the TREGNLM 

population has undergone clonal expansion (Fig 4 A). 

 

Figure 4. TCRb repertoire analysis reveals disparate TCR repertoire among tTREG subsets. 

 (A) TCRb repertoire analysis of ex vivo FACSorted tTREG subsets. n=2, mean data shown. (B) Intuitive view depicting 
the relative proportions of the top 25 clones of each tTREG subset of one donor. 
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1.4 tTREG subsets demonstrate variations within their epigenetic profile  

In 2008, Polansky-Biskup et al. described the TREG-specific demethylation region (TSDR), an evolutionary 

conserved CpG-rich element within the Foxp3 locus, to be selectively demethylated in permanently 

differentiated FoxP3+ tTREG
39. For the investigation of potential differences in tTREG-lineage stability 

among tTREG subsets, the degree of TSDR demethylation of ex vivo tTREG sub-populations was analyzed. 

Our observed mean TSDR demethylation of tTREGBulk was in agreement with data of Polanksy-Biskup 

et al.39. Within the tTREG compartment, tTREGCM demonstrated the lowest TSDR demethylation whereas 

early differentiated subsets showed the greatest degree of stability implying that the degree of FoxP3 

stability differs according to the tTREG’s stage of differentiation (Fig. 5 A). 

 

Figure 5. tTREG subsets demonstrate variations within their epigenetic profile. 

Ex vivo FACSorted tTREG cell subsets were analyzed by (A) qPCR to define the percentage of TSDR demethylation 
(n=3, results are presented as mean ± SEM) and (B) RRBS to determine the weighted average DNA methylation 
across defined DNA segments. n=6. Normal distribution of data points was tested with Kolmogorov-Smirnov test 
and significance was determined by paired two-tailed t-test. *: P£0.05; **: P£0.01; ***: P£0.001; ****: P£0.0001 

As part of the German Epigenome Program (DEEP), in 2016, Polansky-Biskup et al., demonstrated a 

proliferation-associated genome-wide loss of DNA methylation during CD4+ effector memory T cell 

differentiation40. In cooperation with Dr. Polansky-Biskup and Dr. Gasparoni from the Institute of 

Genetics/Epigenetics of the University of Saarbrücken we analyzed the DNA methylation pattern of 

tTREG subsets by Reduced Representation Bisulfite Sequencing (RRBS). Within the partially methylated 

domains (PMD), which were shown to have the greatest loss of methylation of all analyzed segments40, 

also the tTREG compartment demonstrates a progressive loss of DNA methylation from early to 

phenotypically defined late differentiated subsets (Fig. 5 B). 

Since tTREG are expanded in vitro for the application in adoptive immunotherapy in order to obtain 

sufficient cell numbers, we next expanded FACSorted tTREG subsets stimulated with a(anti)CD3/CD28 

expansion microbeads and in the presence of high-dose IL-2 and Rapamycin for 21 days. The obtained 
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data (not shown) demonstrate that 1. TREGCM-derived cells, followed by TREGNLM-derived and 

TREGN-derived exhibit the greatest proliferative capacity, 2. early differentiated tTREG subsets show the 

most stable TREG (CD25+FoxP3+) phenotype over the duration of expansion, 3. TREGEM-derived, as the 

only tTREG subset, produce substantial amounts of pro-inflammatory cytokines IFNg and IL-2, and 4. early 

differentiated tTREG subsets retain the greatest degree of TSDR demethylation, i.e. tTREG lineage stability 

upon in vitro expansion (manuscript in progress). 

2. Functional characterization of thymic-derived TREG subsets 

Since immunosuppressive functionality is a defining characteristic of tTREG rather than their definition by 

means of phenotypic markers, none of which are exclusive to the tTREG lineage, suppressive capacities 

of ex vivo isolated and in vitro expanded tTREG were studied next. For this, we started off with the 

gold-standard proliferation suppression functional test where the proliferation of autologous responder 

T cells (TRESP) incubated with different ratios of tTREG and polyclonally stimulated with aCD3/CD28 

microbeads was assessed by means of a CFSE dilution-based in vitro assay. 

2.1 Gold-standard proliferation suppression assay reveals greatest capacity to suppress 

autologous responder T cell proliferation by early differentiated tTREG 

Since low peripheral tTREG cell numbers obtained from a small volume of blood available from patients 

requires in vitro GMP-compliant expansion of tTREG, we aimed at analyzing any differential suppressive 

capacities between the different tTREG subsets after they have been expanded for 21 days. This in vitro 

expansion time period is in accordance with our GMP facility protocol applied for clinical adoptive tTREG 

cell products. Collectively, it is to note that after 3 weeks of expansion, early differentiated tTREG-derived 

subsets most potently suppressed autologous TRESP proliferation while phenotypically defined late 

differentiated EM-derived tTREG showed only little suppressive capacity (Fig. 6), which goes along with 

their substantial conventional cytokine secretion and loss in tTREG-specific phenotype. 
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Figure 6. Early differentiated tTREG demonstrating greatest capacity to suppress autologous responder T cell 
proliferation. 

Freshly isolated autologous CD3+ TRESP were co-cultured with 3-week in vitro expanded tTREG subsets at different 
TRESP:TREG ratios and stimulated with aCD3/CD28-coated microbeads at a total cell number:bead ratio of 1:1 for 96 
hours. n=6. Results are presented as mean ± SEM. 

The gold-standard responder cell proliferation suppression assay, as demonstrated above, is a robust 

assay to assess tTREG functionality, yet is subject to certain limitations including a delicate intracellular 

CFSE-labelling step and, most importantly, a 4-day incubation period until performance readout. The 

last-mentioned aspect is of particular disadvantage, as functionality should be assessed as close to cell 

product administration as possible. 

2.2 Suppression of early activation marker expression by tTREG cannot be determined by 

means of a short-term functional assay 

As until today expanded tTREG cannot be frozen and thawed without loss of function, we made use of a 

published protocol to evaluate tTREG potency within a much shorter period of time based on the 

assessment of activation marker CD69 and CD154 expression by autologous responder T cells. Shortly 

after the first experiments were performed according to protocol, we revealed a potential drawback of 

this procedure, which was extensively followed up on and published in the peer-reviewed journal 

‘Frontiers in Immunology’ with the title “The value of a rapid test of human regulatory T cell function 

needs to be revised”. This publication lays the foundation of this PhD thesis and can be found on page 

32-38. Briefly summarizing, we were able to demonstrate that the tTREG-mediated suppression of 

activation marker expression proposed by the published protocol is purely attributable to competition 

for aCD3/CD28 activating microbead-binding by responder T cells and tTREG as opposed to tTREG 

functionality. For this publication, my contributions were the design and implementation of the 

experiments, interpretation of the results and writing of the manuscript. 
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2.3 Initiation of pro-inflammatory cytokine production by effector T cells is not suppressed 

by tTREG 

After appreciating that assessing suppression of early activation marker expression as a readout for tTREG 

function in addition to the continued pressing need for a reproducible short-term potency test for tTREG, 

we investigated whether tTREG possess an immune repressive influence on cytokine production by 

autologous effector T cells in an uncompetitive activating microbead environment. This tTREG test system 

protocol was designed to meet several criteria necessary for successful GMP-compliant translation, such 

as no need for intracellular cell labelling, easy handling by the experimenter, short incubation period of 

7 hours and a standardized multiplex readout system. 

After 7 hours tTREG/TRESP co-culture, pro-inflammatory cytokines IFNg, TNFa and IL-2 were analyzed in 

the supernatant. However, the results reveal no suppressive effect of tTREG on conventional T cell effector 

cytokine production in this experimental setup (Fig. 7 A). For the sake of interest, we also incubated the 

co-cultures for 24 hours (Fig. 7 B) and likewise observed no tTREG-mediated suppression of conventional 

T cell effector cytokine production (Fig. 7 C,D). 

 

Figure 7. Effector T cell cytokine production is not suppressed by tTREG after 7 nor after 24 hours. 

Ex vivo FACSorted CD4+CD25- TRESP were co-cultured with autologous bulk tTREG (green bars) and stimulated with 
aCD3/CD28-coated microbeads at a total cell number:bead ratio of 5:1 for (A) 7 hours and (B) 24 hours. Confirming 
potential tTREG specificity, co-cultures were performed with CD4+CD25- effector T cells (TEFF) (grey bars) instead of 
tTREG and incubated for (C) 7 hours and (D) 24 hours. Cytokines were assessed by Mesoscale Multiplex analysis. n=3. 
Results are presented as mean ± SEM. Normal distribution of data points was tested with Kolmogorov-Smirnov test 
and significance was determined by paired two-tailed t-test. *: P£0.05; **: P£0.01; ***: P£0.001; ****: P£0.0001 
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Discussion 

According to the objectives outlined within the first aim of this PhD thesis, this work was able to describe 

distinct subsets making up the human tTREG compartment. By applying recognized differentiation 

lineage markers defining conventional T cell subsets, ex vivo characterization of tTREG disclose similar 

subset distributions, including a T cell memory marker expressing tTREG population within the naïve tTREG 

compartment (TREGNLM). Further investigations support the as such defined tTREG subsets by their 

differential expression of proteins associated with their recent thymic emigration, current state of 

proliferation as well as prior activation. Supportingly, T cell receptor sequencing demonstrates strong 

differences in TCR repertoire diversity between tTREG populations, where the least differentiated subsets 

TREGN and TREGNLM present the greatest TCR diversity. Most strikingly and in accordance with data 

published for CD4+ TCONV within the German Epigenome Program (DEEP)40, tTREG subsets, as previously 

shown for CD4+ TCONV subsets, demonstrate a genome-wide loss in DNA methylation, which, combined 

with the data of ex vivo characterization, suggest being associated with previous proliferation and 

differentiation. 

In vitro expansion of tTREG subsets points out considerable differences between tTREG populations with 

the essence of effector tTREG predominantly losing tTREG-specific characteristics, such as their phenotype, 

inability for pro-inflammatory cytokine production, lineage stability, suppressive function and 

proliferative potential over the time of in vitro expansion. Since on the other hand, early differentiated 

tTREG subsets demonstrate a stable tTREG-characterizing phenotype, these data could be of value for 

clinical translation as to possibly deplete the effector memory or enrich for the central memory tTREG 

subset before vitro expansion. In addition to an increase in patient safety by preventing tTREGEM 

converting to conventional T cells during in vitro expansion, this could also lead to a cell therapeutic 

product being superior in potency compared to bulk-only tTREG cells. Supporting this implementation, 

tTREGCM demonstrate a greater capacity to suppress autologous TRESP proliferation at a high TRESP:TREG 

ratio compared to bulk tTREG. These findings suggest that fewer early differentiated tTREG cell numbers 

might be sufficient for successful application in adoptive immunotherapy. With regard to clinical 

implementation, requiring fewer tTREG cell numbers for a successful therapy may imply that less patient 

material would be necessary for in vitro expansion or even that possibly a shorter expansion period for 

reducing proliferation induced differentiation / senescence could be sufficient. In addition, the cell 

product would be ready for application at an earlier time point reducing the production costs and 

making the cell product available for the patient at an earlier time point. 
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Regarding the second aim of the project - challenging tTREG functional assays relating to their translation 

into a robust GMP-compliant and clinically feasible protocol – it can be concluded that the previously 

published protocol on the assessment of tTREG-mediated suppression of early activation makers on TCONV 

cannot be used to evaluate tTREG functionality as release criterion for adoptive tTREG immunotherapy. 

Even after protocol adjustments to attain bead-uncompetitive co-culture conditions, data demonstrate 

that tTREG do not suppress early activation marker expression on autologous responder T cells. Likewise, 

tTREG-mediated suppression of pro-inflammatory cytokine production by autologous responder T cells 

cannot be observed within the first 7 hours of activation. Hence, tTREG do not exert short-term 

suppressive effects on conventional effector T cells. However, these data can be subjected to critical 

review since the immense supra-physiological magnitude of T cell activation, as shown by roughly 90% 

of TRESP expressing CD69 as demonstrated in the publication, could be too strong for tTREG to mediate 

suppressive effects. Nonetheless it is difficult to determine the physiologically relevant strength of T cell 

activation. Therefore, titrating TRESP-activating microbeads in the presence of tTREG, with the readouts of 

suppressing early activation marker expression and/or pro-inflammatory cytokine production, could be 

interesting for future investigations. Secondly, tTREG-specific mechanisms of immune response 

dampening include the indirect inhibition of effector T cell responses by interfering with APC-effector 

T cell priming. On this account, adding APCs, for example whole PBMCs, to the co-culture and using 

physiologically presented antigens for stimulation could potentially create optimized conditions for 

assessing tTREG-mediated suppression of pro-inflammatory cytokine production and/or early activation 

marker expression by effector T cells. 

To date, there are still no reliable short-term functional assays to assess tTREG function. The gold-

standard protocol to evaluate tTREG-mediated suppression of TRESP proliferation should still be 

considered the most robust assay, yet due to its 4-day incubation period, does not present as a feasible 

candidate for clinical application. In conclusion, future efforts should be concentrated to optimize 

existing or develop novel clinically-feasible protocols to reliably asses tTREG functionality. For this, the 

suppression of conventional effector T cell function by means of other tTREG mechanisms of 

immunosuppression, e.g. the CTLA-4 « CD80/CD86 interaction, could be explored. 
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CD4+CD25+FoxP3+ human regulatory TCELLS (TREG) are promising candidates for

reshaping undesired immunity/inflammation by adoptive cell transfer, yet their application

is strongly dependent on robust assays testing their functionality. Several studies along

with first clinical data indicate TREG to be auspicious to use for future cell therapies, e.g., to

induce tolerance after solid organ transplantation. To this end, TREG suppressive capacity

has to be thoroughly evaluated prior to any therapeutic application. A 7 h-protocol for

the assessment of TREG function by suppression of the early activation markers CD154

and CD69 on CD4+CD25− responder TCELLS (TRESP) upon polyclonal stimulation via

αCD3/28-coated activating microbeads has previously been published. Even though

this assay has since been applied by various groups, the protocol comes with a critical

pitfall, which is yet not corrected by the journal of its original publication. Our results

demonstrate that the observed decrease in activation marker frequency on TRESP is

due to competition for αCD3/28-coated microbeads as opposed to a TREG-attributable

effect and therefore the protocol cannot further be used as a diagnostic test to assess

suppressive TREG function.

Keywords: regulatory T cell functional assay, αCD3/28-coated microbeads, competitive CD3/CD28 binding,

nullified Treg-mediated suppression, correlation between T cell-to-αCD3/CD28-coated microbead ratio and

activation marker frequency on responder T cells

INTRODUCTION

Regulatory TCELLS (TREG) are key players in maintaining immune homeostasis, resolution of
inflammation, and self (1). Exploiting those characteristics, TREG have gained plenty of attention
as promising candidates in immunotherapeutic applications for the prevention or reshaping of
undesired immune responses such as in autoimmune diseases, chronic inflammation, and allograft
rejections. Data from clinical trials identify TREG as an encouraging cell type for use in cellular
therapy (2). By the same token, a robust protocol to assess TREG function is of utmost importance
to ensure their suppressive function prior to adoptive cell-therapeutic clinical trials, as well as for
application in basic research. So far, for assessing TREG functionality, evaluating the suppressive
capacity of TREG to inhibit the proliferation of responder TCELL (TRESP) after a 4-day co-cultivation
period has been the gold-standard protocol since a decade (3, 4). Recently, Canavan et al. (5)
and Ruitenberg et al. (6) described a rapid 7 h assay for the evaluation of TREG functionality
by assessing their suppressive capacity using upregulation of the early TCELL activation makers
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CD154 (CD40L) and CD69 on conventional CD4+CD25−

responder TCELLS (TRESP) upon CD3/28 engagement. CD3/28
stimulation is mediated by microbeads coupled with αCD3 and
αCD28 antibodies. According to these studies, TREG alleviate
CD154 and CD69 expression on TRESP in a dose-dependent
manner. Even though this assay has since been frequently applied
and cited more than 80 times (7, 8, 10), we observed that the
protocol comes with a critical pitfall: TRESP and TREG both
express the signaling molecule CD3 and TCELL co-stimulatory
receptor CD28 on the plasma membrane, potentially competing
for binding αCD3/28 TCELL activating microbeads applied in
the rapid 7 h assay. We investigated whether the observed
decreased frequencies of activated TRESP can be claimed to
be a TREG-attributable effect or if it is rather a result of
competition for αCD3/28-coated activating microbeads. We thus
explored whether different ratios of αCD3/28 TCELL activation
microbeads-to-TCELLS impact the outcome of this functional
TREG assay.

MATERIALS AND METHODS

Study Design
The aim of this study was to investigate the influence of
αCD3/CD28-coated activating microbeads on the expression of
early activation markers CD69 and CD154, used for predicting
TREG functionality in basic and translational research. We
compared the expression of CD69 and CD154 of TRESP in TREG

co-cultures, which were either activated via αCD3/CD28-coated
microbeads adjusted to TRESP only or to the total cell number
present in one well (TRESP + TREG). To verify the integrity of
the TREG used in this study, as well as to demonstrate the TREG-
mediated suppressive function in a bead-uncompetitive setting,
TRESP proliferation suppression experiments were performed.

Cell Isolation
Peripheral blood mononuclear cells from healthy donors were
purified using Ficoll-Paque separation (Biochrom). CD4+ cells
were enriched by magnetic-activated cell sorting (Miltenyi)
according to manufacturer’s instructions (purity>90%). For
fluorescence-activated cell sorting (FACS Aria II, BD) of
CD4+CD25highCD127low TREG and CD4+CD25− TRESP, cells
were stained with CD4 (SK3, Biolegend), CD25 (2A3, BD), and
CD127 (R34.34, Beckman Coulter). Post-FACSort analysis by
flow cytometry yielded CD25+FoxP3+ TCELL purity of >95%.

7h Diagnostic Test for TREG Function and
αCD3/28 Microbead Titration
Assays were performed as described by Canavan et al. (5). Briefly,
CFSE-labeled TRESP were co-cultured with autologous TREG at
TRESP/TREG ratios ranging from 1:1 to 32:1. In two parallel setups,
cells were either stimulated with αCD3/28-coated microbeads
(Dynabeads R© Human T-Activator CD3/CD28, Thermo Fisher
Scientific) at a bead/cell ratio of 0.2 adjusted to the TRESP cell
number per well (5, 6) or adapting the ratio of 0.2 to the total cell
number per well including TREG. Stimulated and unstimulated
TRESP without TREG were included as controls. For themicrobead
titration, TRESP were cultured alone at bead/TRESP ratios ranging

from 0.1 to 0.4 (mimicking the presence of TREG). αCD154 (24–
31) was added at start of incubation. Cells were incubated at 37◦C
for 7 h. All cell cultures were performed in X-Vivo-15 medium
supplemented with 10% FCS (Lonza & Biochrom) and 100 IU/ml
Penicillin/Streptomycin. After harvesting, cells were stained with
CD3 (OKT3), CD4 (SK3), CD137 (4B4-4), and CD69 (FN50),
all Biolegend. Dead cells were excluded (LIFE/DEADTM Fixable
Blue Dead Cell Stain Kit, Thermo Fisher Scientific).

Proliferation Suppression Assay
CFSE-labeled TRESP were cultured alone or with autologous
TREGS at TRESP/TREG ratios ranging from 1:1 to 16:1. The
cells were stimulated with αCD3/28-coated microbeads (TREG

Suppression Inspector, Miltenyi) at a cell/bead ratio of 1:1 and
1:2 adjusted to the total cell number per well and incubated at
37◦C for 96 h. Thereafter, cells were stained with CD3 (OKT3),
CD4 (SK3), all Biolegend. Dead cells were excluded (Thermo
Fisher Scientific). Proliferation was assessed by CFSE dilution
and percentage suppression of proliferation was calculated by
relating the percentage of proliferating TRESP in the presence and
absence of TREG, respectively.

Flow Cytometry Analysis
Data were acquired on a LSR-II Fortessa flow cytometer (BD) and
analyzed using FlowJo V10 (TreeStar).

Statistics
Analysis was performed with GraphPad Prism software (version
6, GraphPad, La Jolla, CA) and R (version 3.4.1) (9). We
have tested for significant interaction, i.e., non-parallel response
profiles of the two bead adjustment methods to the different
TRESP:TREG ratios, using a non-parametric rank-based ANOVA-
type statistic [as implemented in the nparLD package (11)] in a
two-way factorial repeated measures design. For bead titration
experiments, non-parametric two-tailed Wilcoxon matched-
pairs signed rank tests were used to determine significance in
pairwise comparison. Data indicate means ± SEMs in all bar
graphs. P < 0.05 was considered significant.

RESULTS

TCELL Early Activation Marker Expression
Is Dependent of TCR Engagement
We first examined TREG functionality according to the protocols
published by Canavan et al. (5) and Ruitenberg et al. (6),
whereby ex vivo FACSorted and CFSE-labeled TRESP were co-
cultured in the presence and absence of autologous TREG and
stimulated with αCD3/28-coated activating microbeads at a
ratio of 0.2 microbeads per TRESP (Figure 1A). After 7 h, the
mean frequency of CD154+ and CD69+ TCELLS of unstimulated
TRESP was 0.14 and 0.45%, respectively and 57.25 and 78.26%
on CD3/28-stimulated TRESP, respectively (Figure 1B). When
TRESP were stimulated in the presence of TREG at ratio 1:1,
the mean frequency of CD154+ and CD69+ TCELLS decreased
to 47.77 and 69.86%, respectively. With increasing TRESP/TREG

ratios both, CD154 and CD69 expression, increased in a linear
fashion (Figure 1C, quantified in E, F, red columns). We
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FIGURE 1 | TCELL early activation marker expression is dependent of TCR engagement and cannot be used for TREG functional evaluation. FACSorted CD4+CD25−

TRESP with and without autologous TREG co-culture were stimulated with anti-CD3/CD28-coated microbeads and analyzed for early activation marker expression.

(A) For precise TRESP/TREG discrimination, TRESP were labeled with CFDA-SE (CFSE). (B) Representative plots of CD154 and CD69 expression on unstimulated and

stimulated TRESP cultured without TREG. (C) Representative plots of CD154 and CD69 expression of TRESP co-cultured with TREG at different TRESP:TREG ratios and

stimulated with anti-CD3/CD28-coated microbeads adjusted to TRESP. (D) Representative plots of CD154 and CD69 expression of TRESP co-cultured with TREG at

different TRESP:TREG ratios and stimulated with anti-CD3/CD28-coated microbeads adjusted to total cell number. (E,F) Quantified data from (C,D), respectively.

CD154 and CD69 of CFSE+TRESP co-cultured with FACSorted TREG at different TRESP:TREG ratios and stimulated with anti-CD3/CD28-coated microbeads

adjusted to TRESP (red columns) and to total cell numbers (blue columns). For clarification, the table summarizes the experimental setups. n = 7. Non-parametric

rank-based ANOVA-type statistic **p < 0.001 (CD154: p = 1.90E-06, CD69: p = 5.527256E-16). (G) Expression of CD154 and (H) expression of CD69 of

CFSE+TRESP co-cultured with FACSorted TNON−TREG at different TRESP:TREG ratios and stimulated with anti-CD3/CD28-coated microbeads adjusted to TRESP
(red columns) and to total cell numbers (blue columns). n = 3. (I) Expression of CD154 and (J) expression of CD69 of CFSE+TRESP after different

anti-CD3/CD28-coated microbead:TRESP ratio stimulation. For clarification, the table summarizes the experimental setups. n = 7. *p < 0.05, Wilcoxon matched-pairs

signed rank test. TRESP:TREG/TNON−TREG co-cultures (E,F) and corresponding bead titration (I,J) experiments were performed simultaneously using the same donor

cells. Median data of independent experiments are shown and error bars represent SEM.

next determined whether the total TCELL/bead ratio influences
TREG-induced activation marker suppression. Accordingly, we
adjusted the bead numbers to the total cell numbers, including

TREG, thereby eluding the bead competition in contrast to
Canavan et al. (5) and Ruitenberg et al. (6). In that case,
TRESP activation in the presence of TREG equaled control TRESP
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FIGURE 2 | Ex vivo isolated TREG demonstrate a dose-dependent TRESP proliferation suppression in a bead-uncompetitive setting. FACSorted CFSE+CD4+CD25−

TRESP were co-cultured with autologous FACSorted TREG and stimulated with anti-CD3/CD28-coated microbeads for 96 h. TRESP proliferation was analyzed by

CFSE dilution. Representative plots depicting (A) CFSE-labeling strategy to accurately analyze TRESP proliferation; (B) proliferation of unstimulated and stimulated

CFSE+TRESP cultured without TREG and (C) CFSE+TRESP proliferation after co-culture with different TREG ratios. (D) Percentage of TRESP proliferation after

co-culture with decreasing TRESP:TREG ratios (green bars) and TRESP:TNON-TREG ratios (blue bars) stimulated with a total cell number:bead ratio of 1:1. n = 7

TRESP:TREG co-cultures, n = 3 TRESP:TNON−TREG co-cultures. (E) Percentage of TRESP proliferation after co-culture with decreasing TRESP:TREG ratios (green bars)

and TRESP:TNON-TREG ratios (blue bars) stimulated with a total cell number:bead ratio of 1:2. n = 3. Median data of independent experiments are shown and error

bars represent SEM.

cultures without TREG (Figure 1D, quantified in E, F, blue bars),
indicating that indeed TRESP and TREG compete for CD3/28-
binding microbeads. Serving as a negative control, we co-
cultured TRESP with CD4+CD25− non-TREG/effector TCELLS

in place of TREG. When the bead number was adjusted to
TRESP only we observed similar reductions of CD154 and CD69
expression (Figures 1G,H, red bars) as when TRESP were co-
cultured with TREG (Figures 1E,F, red bars). Correspondingly,
when adjusting the bead number to the total cell number
(Figures 1E,H, blue bars), the expression of CD154 and CD69 is
similar to the conditions with TRESP only (Figures 1E–H, gray
bars). To mimic the competition for the activating microbead

stimuli, we stimulated TRESP with different amounts of αCD3/28-
coated microbeads in the absence of TREG. We set the actual
bead/TCELL ratio according to the published TRESP/TREG co-
culture approach, in which the activation bead/TRESP ratio is
adjusted to TRESP only, i.e., calculated the actual bead/TCELL

ratio in each setting. CD154 and CD69 expression decreased
in a dose-dependent manner with highest expression levels at
a bead/TRESP ratio of 0.4 (69.83 and 89.47%, respectively) and
lowest at a ratio of 0.1 (37.80 and 53.33%, respectively). The
TRESP activation pattern with the different bead ratios ranging
from 0.1 to 0.194 indicate a strong bead/TRESP ratio dependency
(Figures 1I,J).
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TREG Demonstrate a Dose-Dependent
TRESP Proliferation Suppression in a
Bead-Uncompetitive Setting
To confirm TREG functionality in an environment where
the number of αCD3/28-activation microbeads is adjusted to
the total cell number, the gold-standard TRESP proliferation
suppression assay was performed. The proliferation assay
was conducted with TCELLS of the same donors in parallel
to the experiments shown in Figure 1. Following activation,
TRESP proliferation alone yielded 52.03% and dose-dependently
decreased in the presence of TREG to 15.51% at a TRESP/TREG

ratio of 1:1 (Figures 2A–C, quantified in Figure 2D, green bars).
Thus, we conclude that the TREG employed in this study are
able to suppress TRESP proliferation in a standardized bead-
competitive setting. To ascertain the reduction of proliferation
to be TREG-mediated, we have added non-TREG/effector TCELLS

instead of TREG to TRESP and observed no decrease in TRESP

proliferation, indicating the suppression of TRESP proliferation
to be a TREG-attributable effect (Figure 2D, blue bars). Even
when TCELLS are stimulated with twice the number of
activating αCD3/CD28 microbeads, the TREG-specific impact in
suppressing TRESP proliferation can be seen (Figure 2E).

DISCUSSION

In conclusion, when adjusting the αCD3/28-bead numbers
to only TRESP in co-cultures of TRESP and TREG, activation
marker expression was comparable to approaches where TRESP

were cultured alone at same bead/total cell ratio present in
the TRESP/TREG co-culture. When normalizing αCD3/28-bead
competition by adjusting the bead number to total cell numbers,
TREG-mediated suppression of activation marker upregulation is
nullified. Even more strikingly, when titrating non-TREG/effector
TCELLS to TRESP and adjusting the αCD3/28-bead numbers
to TRESP only, we observe the same decrease in activation
marker expression as in TRESP:TREG co-cultures. We thereby
demonstrate that the suppression of activationmarker expression
on TRESP observed in co-cultures with TREG are due to
competitive TCELL receptor and CD28 engagement limited by
αCD3/28 microbead availability rather than by suppressive
activity of TREG (Supplementary Figure 1). There is a pressing
demand for a fast assay to evaluate TREG functionality, especially
in the light of upcoming clinical trials needing a robust diagnostic
test to assess the suppressive function as a release criterion for
their TREG cell products. Nonetheless, the TRESP proliferation
suppression analysis should still be considered as the gold-
standard TREG functional assay as it is performed by adjusting
the activation bead to TCELL ratios in experimental setups with
decreasing TREG cell numbers (to assess TREG dose-dependent
suppression). Since we firmly believe that activation bead to

TCELL receptor competition should be kept constant throughout
all conditions within a TREG functional assay, we claim that
the rapid assessment for human TREG function proposed by
Canavan et al. (5) and Ruitenberg et al. (6) does not result in
reliable evidence of functional suppression since the putative
TREG-mediated suppression of TRESP activation is to be ascribed
to competitive TCELL receptor and CD28 engagement. Hence, we
suggest that the previously published protocol is unsuitable as a
diagnostic test to assess suppressive TREG function.
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Supplementary Figure 1. Schematic diagram of TCELL / aCD3/28-coated activating microbead 
competition in dependence of microbead/TCELL 

Since TRESP cell numbers are kept constant and TREG are titrated to TRESP in a functional TRESP/TREG 
co-culture assay, also activating microbead numbers are constant when adjusted to TRESP only – in 
this case 4 beads per 20 TRESP and therefore a microbead/TCELL ratio of 0.2. When the same amount 
of TREG is added to TRESP in a 1:1 co-culture setting, the actual microbead /TCELL ratio is halved, i.e. 
decreased to 0.1. By decreasing the TREG number to demonstrate a TREG-specific effect, the total 
TCELL numbers per well decrease and consequently lead to an increase in microbead /TCELL ratio. 
Both, TRESP and TREG express the signaling molecule CD3 and TCELL co-stimulatory receptor CD28 
on their cell surface. As therefore both TCELL populations compete for binding aCD3/CD28-coated 
activating microbeads, highest microbead availability per TCELL would predict the greatest TCELL 
activation and hence the lowest TCELL activation when bead availability is lowest. 
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