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Abstract (English)  

Head and Neck Squamous Cell Carcinoma (HNSCC), Lung Squamous Cell Carcinoma (LUSC) 

and Lung Adenocarcinoma (LUAD) are among the most common cause of global cancer-related 

mortality and the common major risk factor is smoking consumption. By analyzing 203 HNSCC, 

480 LUSC and 486 LUAD samples from The Cancer Genome Atlas, we systematically studied 

the mutational load as well as mutational patterns in relation to patient age. Multiple mutational 

processes appear to be simultaneously operative with various dynamic changes due to the 

endogenous and exogenous environments, life style habits and physiological ageing. We found a 

proportional increase, independently of smoking consumption, of the HNSCC mutation 

frequency rate in relation to the patient age. Therefore, multiple factors might participate to the 

accumulation of genetic events in the elderly and the prolonged tobacco exposure might increase 

the ageing-related SNPs burden. On the contrary, LUSC and LUAD showed a higher mutational 

rate among younger patients. TP53 mutations in younger LUAD patients might be a crucial 

factor enhancing the sensitivity to smoking related mutations leading to a burst of somatic 

alterations. Indeed, TP53 mutations and patient age significantly affected the higher mutational 

rate of younger patients. TP53 itself showed a higher sensitivity to smoking related C>A 

mutations in younger LUAD patients. TP53 mutated and TP53 wild type patient groups might 

represent phenotypes which endure ageing related mutational processes with different strength. 

LUSC was enriched of defective DNA mismatch repair (MMR) related signatures, in particular 

the Signature 6 (SI6) in younger and the Signature 26 (SI26) in older patients. Therefore, the two 

distinct age-related defective DNA MMR signatures SI6 and SI26 might be crucial mutational 

patterns in LUSC tumorigenesis, which may develop distinct phenotypes. The accumulation of 

SNPs may not follow distinct mutational patterns but rather an accumulation of mutations in 

specific pathways. Disruption of Axon Guidance and ECM-extracellular matrix pathways were 

enriched among the higher mutational rate samples of HNSCC and LUSC. We hypothesize that 

these pathways might have unknown crucial roles in genome stability maintenance. Further 

studies with larger numbers of individuals of different ages and diversity of normal tissues are 

essential to elucidate the intricate relationship between smoking consumption and mutational 

patterns in relation to intrinsic ageing processes. A better comprehension of tumorigenesis in 

relation to patient age might be relevant for cancer prevention and age adjusted treatment 

decisions and should therefore be taken under closer consideration in future studies. 
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Abstract (German)  

Head and Neck Squamous Cell Carcinoma (HNSCC), Lung Squamous Cell Carcinoma (LUSC) 

und Lung Adenocarcinoma (LUAD) gehören zu den häufigsten Ursachen der weltweiten 

krebsbedingten Mortalität. Der häufigste gemeinsame Risikofaktor ist hierbei der Rauchkonsum. 

Durch die Analyse von 203 HNSCC, 480 LUSC und 486 LUAD Proben aus dem „The Cancer 

Genome Atlas”, untersuchten wir systematisch die Mutationslast sowie Mutationsmuster in 

Bezug auf das Alter der Patienten. Mehrere Mutationsprozesse scheinen aufgrund der endogenen 

und exogenen Umgebung, der Lebensgewohnheiten und der physiologischen Alterung 

gleichzeitig mit verschiedenen dynamischen Veränderungen aufzutreten. Wir fanden einen 

Anstieg der HNSCC-Mutationsfrequenzrate unabhängig vom Rauchkonsum im Verhältnis zum 

Patientenalter. Daher könnten mehrere Faktoren zur Anhäufung genetischer Ereignisse bei 

älteren Menschen beitragen, und die verlängerte Tabakbelastung könnte die altersbedingte 

SNPs-Belastung erhöhen. Im Gegensatz dazu zeigten LUSC und LUAD eine höhere 

Mutationsrate bei jüngeren Patienten. TP53-Mutationen bei jüngeren LUAD-Patienten könnten 

ein entscheidender Faktor sein, der die Empfindlichkeit gegenüber rauchbedingten Mutationen 

erhöht, was zu einem Ausbruch von somatischen Veränderungen führt. Tatsächlich beeinflussten 

TP53-Mutationen und das Alter der Patienten signifikant die höhere Mutationsrate jüngerer 

Patienten. TP53 selbst zeigte eine höhere Empfindlichkeit gegenüber rauchbedingten C> A-

Mutationen bei jüngeren LUAD-Patienten. TP53-mutierte und TP53-Wildtyp-Patientengruppen 

könnten Phänotypen darstellen, die altersbedingte Mutationsprozesse in unterschiedlichem Maße 

ertragen. LUSC war angereichert mit defekten DNA Mismatch Repair (MMR) verwandten 

Signaturen, insbesondere die Signatur 6 (SI6) bei jüngeren und die Signatur 26 (SI26) bei älteren 

Patienten. Daher könnten die zwei unterschiedlichen altersbedingten defekten DNA-MMR-

Signaturen SI6 und SI26 entscheidende Mutationsmuster in der LUSC-Tumorgenese sein, die 

unterschiedliche Phänotypen entwickeln können. Die Akkumulation von SNPs folgt 

möglicherweise nicht bestimmten Mutationsmustern, sondern eher einer Akkumulation von 

Mutationen in spezifischen Signalwegen. Eine Unterbrechung der Axon-Führung und der 

extrazellulären ECM-Matrix-Wege traten bei den Proben mit höheren Mutationsraten von 

HNSCC und LUSC gehäuft auf. Wir stellen die Hypothese auf, dass diese Wege eine 

unbekannte und entscheidende Rolle bei der Aufrechterhaltung der Genomstabilität spielen 

könnten. Weitere Studien mit einer größeren Anzahl von Individuen unterschiedlichen Alters 

und unterschiedlicher Gewebeverteilung sind essentiell, um den komplizierten Zusammenhang 

zwischen Rauchkonsum und Mutationsmustern in Bezug auf intrinsische Alterungsprozesse 
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aufzuklären. Ein besseres Verständnis der Tumorgenese in Abhängigkeit vom Patientenalter 

könnte für die Krebsvorsorge und altersgerechte Behandlungsentscheidungen relevant sein und 

sollte daher in zukünftigen Studien näher betrachtet werden.  
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Introduction 

Background research and wet lab experiences 

One of the main research interest of our laboratory at the Charité Comprehensive Cancer Center 

is the establishment of predicting and monitoring non-invasive assays in order to assess the 

tumor mutational profile and personalized treatment strategies. 

Among our past studies, we investigated on CTCs specific markers in non-small-cell lung 

carcinoma (NSCLC) through the surface staining of protein such as CD45, EpCam and CK-19 

followed by flow citometry analysis. In a recent study we investigated the Guanylyl Cyclase C 

(GCC) expression in tumor and normal rectal tissues in comparison with metastasis, CTCs and 

circulating cell-free mRNA through immunohistochemistry, PCR-based methods and flow 

citometry [1]. Guanylyl cyclase C (GCC) is a transmembrane surface receptor restricted to 

intestinal epithelial cells, from the duodenum to the rectum. Our study revealed a higher GCC 

expression in tumor tissues than in normal tissues of the rectum and a significant correlation of 

high GCC mRNA in circulation with tumor emboli in vessels, distal organ metastasis, and poor 

survival, which may promote the clinical application of GCC as a survival predictor for 

assessing tumor burden and a valuable biomarker for guiding treatment strategies in the future. 

Furthermore, we conducted a systematic review and meta-analysis to compare KRAS and BRAF 

mutations in paired CTCs and primary tumors from 244 CRC patients, to detect any possible 

discordance [2]. As predictive markers for anti-EGFR therapy, KRAS and BRAF mutations are 

routinely detected in primary and metastatic colorectal cancer (CRC) cells, but seldom in 

circulating tumor cells (CTCs). The results indicated mutational discordance between CTCs and 

primary CRCs, particularly in the stage IV and KRAS subgroups. Detecting mutations in CTCs 

could help explain mutational differences between tumor cells at local sites and distant 

metastases, thereby improving treatment outcomes and liquid biopsies. In parallel, we are 

currently establishing a protocol for single cell targeted mRNA sequencing and Whole Exome 

Sequencing (WES) of CTCs isolated from various cancer entities.  

Finally, the collaboration with the Focus Area DynAge project arose a new line of research 

focused on the relationships between smoking related cancers and human ageing. Due to the 

high mutational rate and the intra-heterogeneity of smoking related cancers, PCR-based and 

targeted sequencing methods were not suitable for a comprehensive study of the tumor 

mutational landscape in relation to patient age. Therefore, we established a protocol for isolation 
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of DNA from primary FFPE (Formalin Fixed Paraffin Embeded) tissue available at the Charité 

biobank (ZeBanC) in order to establish DNA WES analysis. The DNA was isolated from tumor 

as well as from the adjacent normal tissue of 100 HNSCC samples. Meanwhile the enlarging The 

Cancer Genome Atlas (TCGA) public data bank allowed us to establish a bioinformatics 

workflow in order to perform a broader comprehensive study for the evaluation of the somatic 

alterations landscape in relation to patient age in smoking related cancers.  

Thesis project 

The mutational landscape present in a cancer genome is the cumulative result of endogenous 

and/or exogenous mutational processes (e.g., smoking), constant or sporadic and with different 

strengths along patient ageing. Therefore, multiple mutational processes are operative resulting 

in jumbled composite signatures and tumor characteristics vary between patients of different 

ages [3–6]. In order to provide better insight into the underlying genetic and epigenetic patterns 

of smoking-related cancers in relation to patient ageing, we performed three studies using the 

publicly available TCGA dataset of Head and Neck Squamous Cell Carcinoma (HNSCC), Lung 

Squamous Cell Carcinoma (LUSC) and Lung Adenocarcinoma (LUAD). 

HNSCCs affect 600,000 patients per year worldwide while lung cancer is the most common 

cause of global cancer-related mortality. The major and common risk factor is smoking 

consumption. However, HNSCC might be caused by human papillomaviruses (HPV) infection 

[7]. In previous studies the mutation rate of HPV-positive tumors was lower than that found in 

HPV-negative HNSCC, which is mostly occurring in smokers [8]. In general, patients with 

HPV-positive tumors have non-mutated TP53, however, HPV itself inhibits p53 function. 

Conversely, HPV-negative tumors frequently harbour TP53 mutations [7,9]. Thus, in order to 

select a homogenous patient cohort for investigating possible age-related differences, we only 

considered the 203 patients from the TCGA-cohort which were HPV negative and carried a 

TP53 mutation.  

The two major lung cancer histological classes are non-small-cell lung cancer (NSCLC) and 

small-cell lung cancer (SCLC) [10]. NSCLCs mostly comprise lung adenocarcinomas (LUAD) 

and lung squamous carcinomas (LUSC) [11]. LUAD and LUSC are characterized by a largely 

distinct mutational landscape. Only six common significantly mutated genes (i.e., TP53, RB1, 

ARID1A, CDKN2A, PIK3CA, and NF1) have been found between these two cancer types 

[11,12]. LUSC shows a pattern of somatic genome alteration analogous to the head and neck 
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squamous cell carcinoma (HNSCC), suggesting that cancers arising from developmentally 

similar cells of origin across different tissues may be more similar than cancers arising from 

different cells of origin within an anatomically defined tissue [11,13]. As shown in lung cancer 

the onset of smoking is usually in adolescence or young adult age, and smoking cessation is 

associated with the diagnosis of the malignancy [14,15]. Although the age at diagnosis is very 

closely correlated with the duration of smoking [14,15], previous studies performed on 34 tumor 

types of the TCGA dataset [16,17], showed significant negative correlations between SNPs and 

patient age only in LUSC and LUAD. While 29 tumor types exhibited positive correlations, 

among which the HNSCC [16,18]. Therefore, in the case of lung cancers, the hypothesis is that a 

tumor with defective DNA polymerases and DNA repair genes (a.k.a. mutator phenotype), 

rapidly accumulate somatic mutations and might have concealed any age-related increase in 

mutation frequency [16].  

In order to investigate the relation between age-related accumulation of mutations and tumor 

mutational patterns, firstly we evaluated the correlation between patient age and the average 

number of SNPs in HNSCC, LUSC and LUAD. The study was expanded in lung cancers to 

CNVs and methylation changes as well as to SNPs profiling and the respective correlation to the 

previously defined signatures from the Catalogue Of Somatic Mutations In Cancer (COSMIC) 

[19] (http://cancer.sanger.ac.uk/cosmic/signatures). Characteristic combinations of mutation 

types arising from specific mutagenesis processes such as DNA replication infidelity, exogenous 

and endogenous genotoxins exposures, defective DNA repair pathways and DNA enzymatic 

editing are reported on the COSMIC database. 

Furthermore, we performed gene-specific correlation analysis in relation to patient age with a 

particular focus on the significantly mutated genes [11]. Gene set enrichment analysis was as 

well performed in order to explore functional effect of somatic alterations in relation to patient 

age in HNSCC and LUSC. While a special focus was placed on the TP53 mutational profile in 

LUAD. 

The current study may pave the way for future studies of molecular tumorigenesis in relation to 

human ageing and underlines the need to consider age-adjusted treatments not only based on age 

and morbidity of older patients, but also on differences in tumor biology. 
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Material and Methods 

TCGA data sets  

Multiplatform genomic data sets were generated by TCGA Research Network 

(http://cancergenome.nih.gov/). Cancer molecular profiling data were generated through 

informed consent as part of previously published studies [12] and analyzed in accordance with 

each original study’s data use guidelines and restrictions. The clinical data of the HNSCC, LUSC 

and LUAD normal paired exome sequences were derived via download from the publicly 

available TCGA data matrix (https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm).  

Patients selection and whole exome analysis 

Somatic mutations of HNSCCs from the TCGA study was derived by download from the cBio 

Portal [18]. To create a homogenous set of HNSCC tumors we selected a subset of the TCGA 

cohort (Figure S1). The original patient cohort was selected by two selection criteria, the first (i) 

excluded 36 HPV(+) patients. The second selection criteria (ii) excluded 40 TP53 wild type 

patients, which left the final selected cohort of 203 HPV-negative/TP53-mutated patients with a 

total amount of 29.860 single nucleotide polymorphisms (SNPs) distributed on 11.489 genes. 

Entries without official gene names were removed. 

LUSC and LUAD somatic mutations were obtained from the open access MAFs available from 

the GDC Legacy Archive (2016). We considered three different exclusion criteria for mutation 

data entries. In the first exclusion criteria, we considered only once a mutation present in 

different samples belonging to the same patient. With the second exclusion criterion, we 

removed mutations that were associated to more than one gene. In order to prevent false positive 

variant calls due to repetitive sequences, only somatic mutations with “ref context” containing 

less than 6 continuous single repetitions, less than 4 continuous duplets, less than 3 continuous 

triplets, less than 3 continuous quadruplets, less than 3 continuous quintuplets were kept.  

SNP array-based copy number analysis 

High-level copy gain or copy loss events for individual genes of LUSC and LUAD patients were 

inferred using publicly available Firehose’s data 

(http://gdac.broadinstitute.org/runs/analyses__2016_01_28/data/) (+2 values being indicative of 

gains greater than 1-2 copies, -2 values being indicative of near total copy loss). Global CNV 

load were calculated summing the absolute values from each patients. 
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Array-based DNA methylation assay 

The level 3 beta value DNA methylation scores for individual genes of LUSC patients were 

inferred using publicly available data generated by Illumina Human Methylation 450 platform 

downloaded from the GDC Legacy Archive (https://portal.gdc.cancer.gov/legacy-archive). 

Methylation values were mean centered and scaled to unit variance. After the transformation, the 

rate of methylation changes was calculated summing the values of each gene. 

Single nucleotide variants and COSMIC signatures 

The signature profile of LUSC and LUAD were evaluated considering the 96 possible single 

nucleotide variants (6 types of substitution x 4 types of 5’ base x 4 types of 3’ base). The profile 

of these 96 single nucleotide variants was considered as the results of the combination of the 30 

different COSMIC signatures. The profile of each tumor sample can be represented by a unique 

contribution of each COSMIC signature as the following expression: a1 x SI1 + a2 x SI2 + a3 x 

SI3 + ... + a30 x SI30 (1), where ai is the coefficient representing the contribution of the ith 

COSMIC signature. The coefficients of each tumor samples were calculated minimizing the 

difference between the tumor profile and the expression (1). This procedure was implemented 

using the function optim (method “L-BFGS-B” [21]) of the R software [22]. 

Molecular pathway and biological process analysis 

Unsupervised hierarchical clustering based on gene mutation frequencies was performed for 

different age groups of the HNSCC patient cohort. Genes were clustered according to Euclidian 

distance measure using the method “complete”. Genes from age group specific clusters were 

extracted and tested using the online David Gene Ontology tool [23]. The full list of identified 

genes was used as background for enrichment calculation. In reverse, all genes of an enriched 

KEGG pathway were mapped to our list of mutation frequencies to investigate the number and 

distribution of mutated genes in the respective pathway within all ages of our dataset. A 

minimum difference of 0.15 in mutation frequency between at least two age groups was 

considered for cluster analysis. This cut-off allowed for a comprehensive set of mutational 

patterns within the specific age groups including less frequently mutated genes. 

In LUSC and LUAD, pathway analyses were performed by ssGSEA using the GenePattern 

module ssGSEA Projection (v4) (genepattern.broadinstitute.org). ssGSEA enrichment scores 

were calculated from SNPs and CNVs in LUSC and LUAD data sets, as well as methylation 
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only in LUSC data set. The result is a single score per patient per gene set, transforming the 

original data sets into a more interpretable higher-level description. For the use of ssGSEA 

software, annotated gene sets reference were obtained from the C2 KEGG sub-collection of the 

Molecular Signature database (MSigDB) [24]. Silent mutations (point mutations that would not 

result in a change in the amino acid sequence) were not included in the analysis. 

Statistical analysis 

The relations between total average mutation frequencies and HNSCC patient age groups were 

calculated by linear regression using F-statistics. A two-sided p-value of below 0.05 (Pr(>|t|)) 

was considered significant. The frequency of mutation of a specific gene was calculated using 

the sum of mutations in a specific age group divided by the number of patients in the respective 

age group. The Spearman's Rank Correlation Coefficient was used to identify correlation 

between LUSC and LUAD patient ages and genomic/epigenomic data (e.g., SNP, CNV, and 

methylation loads). For every Spearman's test performed in this study, p-values were computed 

using algorithm AS 89 included in the R function cor.test where the permutation distribution was 

estimated by an Edgeworth approximation [25]. The coefficient interval of rho value was 

calculated by bootstraping (with 1000 replicates) using the function spearman.ci of the R 

package RVAideMemoire. Fisher’s exact test was used to examine the significance of the 

association between COSMIC signature related subgroups (i.e., low-SI6/high-SI26 and high-

SI6/low-SI26) and clinical/demographic/molecular patient features, such as gender, tobacco 

smoking history indicator, and mutated / wild type genes. Fisher’s exact test was computed using 

the R function fisher.test. Wilcoxon Rank-Sum test was performed to compare continuous 

variables between two patient subgroups using the R function wilcox.test. A p-value <0.05 was 

considered to be significant. To account for multiple testing, a FDR of ≤20% was applied to 

reduce identification of false positives [26]. The FDR was calculated using the R function 

p.adjust. All calculations were made using R software [22]. 
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Results 

Somatic alterations and patient age  

Genome-wide mutations and epigenomic changes are expected to varying among tumor subtypes 

showing a different distribution across age. To characterize these distinct distribution patterns, 

we firstly estimated the global number of SNPs across HNSCC (203 patients), LUSC (480 

patients) and LUAD (486 patients) cancer patient cohorts available through The Cancer Genome 

Atlas (TCGA). 

A significant rise in the average number of mutations, calculated by linear regression using F-

statistics, was observed with increasing age in HNSCC (Table 1, Figure 1). While through the 

Spearman's rank correlation coefficient analysis we observed a negative correlation between 

patient age and the global SNPs load in LUSC and LUAD, which indicated a higher mutational 

rate among younger patients (Table 1, Figure 2a and 2c). 

 

Figure 1: Correlation of average mutations and patient age in HNSCC – Upper graph number of patients in the respective 

age group. Lower graph average number of mutations for all patients in the respective age groups. Linear regression analysis was 

done using F-statistics and shows a significant increase in mutations in older patients (p=0.000161, adjusted r2=0.24). Grey area 

around regression line indicates 95% confidence interval. Adapted from [18]. Copyright 2016 by Stefano Meucci. Adapted with 

permission. 
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Patient cohorts Patients n. rho [95%CI] p-value FDR 

HNSCC (linear regression) 203 - 1.61x10-4  - 

LUSC (Spearman´s Rank Correlation) 480 -0.09 [-0.19 0] 4.53x10-2 1.81x10-1 

LUAD (Spearman´s Rank Correlation) 486 -0.16 [-0.25 -0.07] 3.93x10-4 4.78x10-3 

Table 1: SNPs loads correlations with patient age in HNSCC, LUSC and LUAD - Correlations between the SNPs loads and 

patient age for each patient cohort. 

In order to evaluate only the disruptive mutations, we repeated the mutational load analysis 

excluding silent mutations (classified as low impact in Table S1) and multiple mutations in one 

gene. The same significant p-value was detected in HNSCC (Figure S3, list of mutation 

frequencies in Table S2). While we reported a slightly lower correlation in LUSC (rho=-0.08, 

P=0.077, FDR=0.26) and LUAD (rho=-0.16, P=0.0005, FDR=0.008) (Table S3). 

The global CNVs load was as well investigated in LUSC and LUAD. No correlation with patient 

age was observed in LUSC (Figure 2b), while a significant negative correlation (rho=-0.16, 

P=0.0006, FDR=0.02) was identified in LUAD (Figure 2d). Methylation changes at CpG sites 

were evaluated in LUSC, showing a negative correlation with patient age (rho=-0.11, P=0.030, 

FDR=0.23), which indicated a higher a higher level of methylation at CpG sites among younger 

patients. We repeated the analysis on patient sub-cohorts established according to available 

clinical and molecular data for each tumor entity such as tumor localization, tobacco exposure 

data, tumor staging and mutational rate profile in order to explore the influence of patient 

features on the relation among somatic alterations and patient age. Both smokers and non-

smokers subsets showed a significant correlation between the SNPs load and patient age in 

HNSCC, therefore the smoke history surprisingly seemed not to influence the age-related 

mutational load tendency (Table S4). While only the current smokers sub-cohort of LUAD 

showed a negative correlation (rho=-0.23, P=0.01, FDR=0.06) analog to the global cohort. 

LUSC current smokers group did not show any significant correlation. The analysis of lung 

cancer sub-cohorts with a high mutational rate (i.e., transversion-high status) showed a negative 

correlation between the SNPs load and patient age in both LUSC (rho=-0.11, P=0.03, 

FDR=0.16) and LUAD (rho=-0.23, P=0.00002, FDR=0.0007) while no correlations were 

detected in the low mutational rate sub-cohorts (i.e., transversion low status). 
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Figure 2: Correlation between genomic alterations and patient age in LUSC and LUAD – Number of (a) LUSC SNPs, (b) 

LUSC CNVs, (c) LUAD SNPs and (d) LUAD CNVs with their relative 95% confidence interval for each patient distributed 

along patient age. Medians (black line) and their relative 95% confidence interval (red area) were calculated locally in a range of 

±10 years.  

A special focus was placed on sub-cohorts established according to the TP53 mutational profile 

in LUAD, in order to explore the influence of the most frequently mutated gene on the SNPs 

load. The TP53 mutated sub-cohort showed a significant enrichment of SNPs among younger 

patients (rho=-0.21, P=5.74E-04, FDR=2.14E-03), while no correlation was detected in the 

TP53 wild type cohort (Figure S4, Table S3). The TP53 mutated sub-cohort showed a 

significantly higher percentage of current smokers (P=6.58 x10-6, FDR=1.97x10-5) and 

transversion-high profiles (P=2.13x10-4, FDR=3.20x10-4) (Table S5). The overall percentage of 

TP53 mutated patient increased with an inverse proportion to time since smoking cessation, form 
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41.5% in Lifelong Non-Smokers to 70.7% in Current Smokers sub-group. Moreover, through the 

Wilcoxon's test, we detected a significant (P=2.44x10-3) lower age mean in TP53 mutated 

patients compared to TP53 wild type patients. Overall the highest percentage of TP53 mutated 

patients was detected in <50 (66.7%) and 50-60 (66%) age groups (Figure S5, Table S6). The 

CNVs load in TP53 mutated cohort was overall higher than the wild-type counterpart and 

negatively correlated with patient age. No correlation was detected in TP53 wild-type cohort 

(Figure S4, Table S3). Additionally, We used two-ways ANOVA to evaluate, independently, 

the effect of age and TP53 mutations as well as their combination effect. We reported a higher 

mutational load in patients with TP53 mutation (P<10-10) and in younger patient (P=3.75x10-4). 

Interestingly, we observed a statistically significant interaction between the patient age and the 

TP53 status (P=4.04x10-2) on the mutational load.  

While no correlation between tumor staging and patient age was detected in lung cancers, 

HNSCCs showed a smaller size of the primary tumor, a decrease of lymph node metastasis and a 

higher percentage of “localized cancers” and “first stage of locally advanced cancers” in old 

patients (Table S4). The youngest patients group showed the same statistics as the oldest, 

however the results are not comparable due to the significant difference between the two age 

group ranges. 

Gene Set Enrichment Analysis 

As a next step, we wanted to investigate whether the mutational patterns in HNSCC and LUSC 

were a mere accumulation of random mutations or whether we could find age-specific patterns 

of mutated genes. Unsupervised hierarchical clustering based on gene mutation frequencies was 

performed for HNSCC patients pooled into age groups of decades aside two groups of the very 

young (pooled age 19-40) and very old (pooled ages 81 to 87). The results showed two relevant 

clusters of frequently mutated genes, in particular, 39 genes in very young patients and 108 

genes in very old patients (Table S7 with cut clusters A and B from Figure S6). Both the 

young as well as the old group, each consisting of 11 patients, displayed prominent differences 

to middle age groups. The genes of the two specific clusters were tested for KEGG pathway 

enrichments using the online David Gene Ontology tool [23]. The old age gene cluster showed 

six statistically significant enriched pathways, two of which, the Axon-Guidance (p < 0.003) and 

ECM-Receptor Interaction (p < 0.04) pathways, stood out due to their role in angiogenesis 

processes and cell / tissue architecture maintenance respectively (Table S8). Further division of 
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the old and young age groups (Figure S7 and Figure S8) allowed a highly detailed overview 

(Table S8).  

We mapped all genes of the Axon-Guidance pathway (according to the KEGG database) to our 

list of mutation frequencies to see if the pathway is affected in other age groups as well without 

being particularly enriched (Figure 3, Table S8). From the total 127 genes of the “Axon 

Guidance” pathway 99 mapped to our data. As the heatmap showed, mutations in this pathway 

were present in other ages as well, yet at a lower frequency than in the two old age groups. 

Again, the trend of increased pathway alterations towards old ages was visible. ECM-Receptor 

Interaction, NOTCH Signaling and Focal Adhesion pathways were as well mapped to our list of 

mutation frequencies (Figure S9, Figure S10, Figure S11). To study the molecular effects of 

somatic alterations in LUSC, we projected the SNPs, CNVs and DNA methylation values into 

the space of the 186 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways by means of 

single-sample gene set enrichment analysis (ssGSEA) (Table S9). 

Figure 3: Unsupervised hierarchical clustering of mutation frequencies of genes involved in the “Axon Guidance” 

pathway (according to the KEGG database) - Patients were grouped into age groups of very young (ages 19-40), decades in-

between and two separate old ages groups (ages 81-85 and 86 to 87), then clustered according to the mutation frequencies of all 

quantified genes of the “Axon Guidance” pathway. Adapted from [18]. Copyright 2016 by Stefano Meucci. Adapted with 

permission. 
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When evaluating the global cohort, we detected a significant negative correlation between 

patient age and SNPs harboring on Axon-Guidance (rho=-0.15, p=0.0007, FDR=0.14) and ECM 

Receptor Interaction (rho=-0.13, p=0.003, FDR=0.16) pathways, particularly in the 51-60 age 

group. Furthermore, the Axon-Guidance (rho=-0.16, p=0.001, FDR=0.12) pathway was the only 

negatively enriched pathway in transversion-high sub-cohort.  

Age-related COSMIC signatures in lung cancer 

Somatic mutation profile is the sum of multiple mutation processes, such as the intrinsic 

infidelity of the DNA replication machinery, exogenous or endogenous mutagen exposures, 

enzymatic modification of DNA, and defective DNA repair. In order to investigate on the 

differences in mutational profile, we categorized each single nucleotide variants incorporating 

information on the bases immediately 5’ and 3’ to each mutated base. We deconvoluted 

trinucleotide variants profiles into the 30 different signatures described in the COSMIC database 

[5,19]. So, we were able to characterize each patient by a different “intensity” combination of the 

30 COSMIC signatures. Then, we performed the Spearman’s rank correlation test between the 

intensities of each COSMIC signature and the patient age (Table S10). 

The smoking-related Signature 4 (SI4) associated with C>A transversions was negatively 

correlated with patient age in both LUSC (rho=-0.11, p=0.02, FDR=0.21) (Figure S12c) and 

LUAD (rho=-0.18, p=0.000006, FDR=0.002). In particular, in LUAD we identified the same 

trend in TP53-mutated (rho=-0.27, p=0,000007, FDR=0.0002) (Figure 4a), transversion-high 

(rho=-0.26, p=0.000002, FDR=0.00005) and current smokers (rho=-0.30, p=0.001, FDR=0.03) 

sub-cohorts. While no correlation was identified in TP53 wild-type sub-cohort (Figure 4b).  

The age-related Signature 1 (SI1), mainly consisting of C>T transitions, was positively 

correlated in LUAD global cohort (rho=0.14, p=0,001, FDR=0.02) as well as TP53 mutated 

(rho=0.18, p=0.003, FDR=0.03) (Figure 4a) and transversion-high (rho=0.15, p=0.007, 

FDR=0.07) sub-cohorts, showing the simultaneous ongoing age-related accumulation of SNPs. 

While no correlation was identified in TP53 wild-type sub-cohort (Figure 4b). 
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Figure 4: Correlation of SNPs profiling and patient age in TP53 mutated and TP53 wild type patient sub-cohorts. 

Correlation between the smoking related SI4 (green graph) and the age related SI1 (red graph) with patient age in (a) TP53 

mutated and (b) TP53 wild type patient sub-cohorts. Medians (black line) and their relative 95% confidence interval (colored 

area) were calculated locally in a range of ±10 years. Adapted from “Somatic genome alterations in relation to age in lung 

adenocarcinoma” by S.Meucci (unpublished). Copyright 2016 by Stefano Meucci. Adapted with permission. 

In LUSC, the defective DNA mismatch repair (MMR)-related signature 6 (SI6) was negatively 

correlated (rho=-0.13, p=0.004, FDR=0.12) with patient age (Figure S12a) while the signature 

26 (SI26) as well associated with defective DNA MMR, was positively correlated (rho=0.11, 

p=0.013, FDR=0.20) with patient age (Figure S12b). In order to study the patient sub-cohorts, 

which predominantly exhibit SI26 and SI6, we divided the overall LUSC cohort into four 

subgroups using the mean values of SI6 and SI26 as threshold (Figure S12d): high-SI6/high-

SI26 (77/480=16.0%), low-SI6/high-SI26 (55/480=11.0%), high-SI6/low-SI26 

(223/480=45.8%), and low-SI6/low-SI26 (130/480=27.1%). We selected and characterized the 

low-SI6/high-SI26 and high-SI6/low-SI26 subgroups (Table S11). The patients age of the low-

SI6/high-SI26 cohort was significantly higher than the high-SI6/low-SI26 cohort (Wilcoxon 

Rank-Sum test: p=0.005). The ssGSEA analysis [27] was repeated for the high-SI6/low-SI26 and 

low-SI6/high-SI26 sub-cohorts (Table S12). Using the Wilcoxon Rank- Sum test, we reported as 

major significant differences, that Extracellular Matrix (ECM)-Receptor Interaction pathway 

(p=0.0002, FDR=0.04) was significantly enriched of SNPs while the Nucleotide Excision Repair 

pathway was enriched in CNVs (p=0.0007, FDR=0.14) in high-SI6/low-SI26 sub-cohort. Using 

the Spearman's Rank Correlation Coefficient, we detected a negative correlation between SNPs 
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harboring on ECM Receptor Interaction pathway and patient age (rho=-0.16, p=0.016, 

FDR=0.73) in high-SI6/low-SI26 sub-cohort (Figure S13).  

Gene-specific alterations enrichment along patient ageing  

In order to investigate on gene-specific driver mutations in relation to patient age, which might 

contribute to the higher mutational rate detected in younger patients, the Spearman’s rank 

correlation was computed between patient age and gene specific SNPs load for each significantly 

mutated genes previously detected in LUSC and LUAD [11] (Table S13, Figure S14). CNVs 

and methylation changes were as well evaluated in LUSC. A negative correlation between LUSC 

patients age and both CNVs (rho=-0.13, p=0.005, FDR=0.16) and methylation changes (rho=-

0.14, p=0.006, FDR=0.06) was detected on NOTCH1, while no SNPs correlation was displayed. 

In LUAD, a significant enrichment of SNPs on TP53 (rho=-0.13, P=5.25x10-3, FDR=9.98x10-

2), as well as ATM (rho=-0.11, P=1.78x10-2, FDR=2.26x10-1) was detected in younger patients. 

While RBM10 disruptions were enriched among older patients (rho=0.13, P=4.81x10-3, 

FDR=9.98x10-2). 

Finally, we calculated the frequencies of COSMIC signatures using the mutations identified in 

each of the LUAD significantly mutated genes (Table S14). TP53 and RMB10 were especially 

enriched of smoking related SI4 and the aflatoxin related SI24, both constituted of C>A 

transversions, indicating guanine damage that is being repaired by transcription-coupled 

nucleotide excision repair. The defective DNA mismatch repair related SI6, associated with high 

numbers of small (shorter than 3bp) insertions and deletions at mono/polynucleotide repeats was 

as well relatively enriched in TP53 (Figure S15a). RMB10 was also enriched of SI14, with 

unknown aetiology, mainly constituted by C>A and C>T mutations. Interestingly, ATM was 

enriched of SI3 and SI10, while the smoking related SI4 was entirely absent.  

Unsupervised KODAMA algorithm was performed in order evaluate similarities among 

COSMIC signature profiles of the significant mutated genes in LUAD. TP53 and RMB10 shared 

the same cluster (Figure S15b), while ATM showed an independent profile.  
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Discussion 

In the present study, we evaluated the genetic and epigenetic patterns of smoking-related cancers 

in relation to patient ageing. The average number of mutations in HNSCC for each patient 

showed a significant rise (p < 0.01) with increasing age in both smokers and non-smokers 

patients. Smoking consumption increased the overall mutational burden of HNSCC, although it 

did not influence the increasing SNPs burden in relation to patient age. As showed in previous 

studies [16,17], lung cancers displayed opposite correlations, indeed we confirmed a higher 

SNPs load in LUSC and LUAD younger patients. In particular, the correlation was higher in 

tumors with high mutational burden of smoking related C>A transversions. In LUAD, the 

analysis was repeated on sub-cohorts established according to the TP53 mutational profile in 

order to explore the influence of the most frequently mutated gene on the SNPs load. The group 

of TP53 mutated patients showed a higher percentage of current smokers and transversion-high 

profiles as well as a lower age mean compared to TP53 wild type patients, which instead 

displayed a lower average number of SNPs with no correlation with patient age. Additionally, 

we identified that the effect of patient age and TP53 mutations separately, as well as their 

interaction, significantly affected the higher mutational rate of younger TP53-mutated patients. 

Investigating on the underlined mutational patterns, we identified a significant enrichment of the 

smoking-related signature (i.e., SI4) among the overall LUSC younger patients, as well as 

among younger LUAD TP53 mutated patients.  

Therefore, in LUAD the cumulative effect of smoking consumption, TP53 mutations and a 

younger age significantly affected the overall mutational load among younger patients. Although 

the correlation is subtle in LUSC, we observed that younger patients also developed a higher 

sensitivity to smoking-related mutations. Past studies described a similar scenario showing that 

despite maintained carcinogen exposure, tumors from smokers showed a relative decrease in 

smoking-related mutations over time [28,29].  

Furthermore, the LUAD TP53 mutated sub-cohort displayed the concurrent ongoing 

accumulation of SI1 along patient ageing. SI1 is largely made up of C>T substitutions at CpG 

dinucleotides, which are the results of an endogenous mutational process initiated by 

spontaneous deamination of 5-methylcytosine, enzymatic deamination of cytosine, or 

polymerase errors [3,4,30,31]. The SI3, associated with failure of DNA double-strand break-

repair by homologous recombination was as well increasing along patient age in the TP53 

mutated sub-cohort. Recent studies showed that impaired DNA double-strand break repair 
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contributes to the age-associated rise of genomic instability in humans [32]. Meanwhile, 

although present and past smoking is reported in TP53 wild type patients, no correlation between 

mutational signatures and patient age was detected. As shown in past studies, the mutational 

profile of cancer cells might reflect the mutational processes operative in aging in a given tissue 

[33]. Therefore, we hypothesize that TP53 wild type patients might represent a phenotype with 

greater DNA stability, which may confine the ongoing age-related accumulation of genetic 

events as well as the increasing mutational burden due to smoking consumption. Although 

previous studies revealed that the number of TP53 mutations are common in noncancerous tissue 

and accumulate with age and tobacco consumption [33–35], we detected an overall higher rate of 

TP53 mutations in younger patients particularly in <50 and 50-60 age groups.  

Besides the negative correlation of SI4, LUSC mutational profile showed the defective DNA 

MMR SI6 enriched in younger patients. SI6 is characterized predominantly by C<T at NpCpG 

sites (any nucleotide followed by C followed by G). While the SI26, mostly composed of T<C 

transitions, was enriched in older patients. Both SI6 and SI26 are found in microsatellite unstable 

tumors with high numbers of small (shorter than 3bp) insertions and deletions at 

mono/polynucleotide repeats [36]. The role of MMR system is to recognize and repair erroneous 

insertion, deletion, and mis-incorporation of bases arising during DNA replication and 

homologous recombination, as well as repairing some forms of DNA damage. Given the 

importance of these processes in the maintenance of genomic stability, DNA MMR deficiency 

might leads to hypermutation [37]. A recent study showed that out of a large number of DNA 

repair deficiencies analyzed, MMR deficiency leads to the by far highest mutation rate [36]. Our 

results suggest that different causing factors might contribute to MMR system aberrations along 

LUSC patient ageing.  

To study the molecular effects of the mutational patterns, gene unsupervised clustering and gene 

ontology analysis was performed on HNSCC data, while single-sample gene set enrichment 

analysis (ssGSEA) was performed on the LUSC data set. HNSCC patient cohort showed distinct 

clusters of genes expressed with a higher mutation frequency for the very young and very old 

ages. While the young age group did not reveal pathway enrichment, the old age group showed 

enrichment of KEGG pathways, including ECM-Receptor Interaction and Axon Guidance [18]. 

Interestingly, the same pathways were found enriched of SNPs in younger LUSC patients, which 

have the higher mutational rate profile [38]. Therefore, although the inverse tendency, Axon 

Guidance and ECM-Receptor Interaction pathways disruptions seem to show a relation with 
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higher mutational rate squamous carcinomas. Several studies reported that Axon Guidance 

pathway is involved in lung cancer development and progression through interacting with cell 

survival, migration, and tumor angiogenic pathways [39]. While the ECM-Receptor Interaction 

pathway is structurally and functionally involved in interactions at the ECM which lead to a 

direct or indirect control of cellular activities such as cell migration, differentiation, proliferation, 

and apoptosis [40]. Aberrant ECM may promote genetic instability and might compromise DNA 

repair pathways necessary to prevent malignant transformation [41]. Further studies are needed 

to determine whether disruptions in these pathways are a correlative phenotype to higher 

mutational rate squamous carcinomas or a causative factor.  

In conclusion, multiple mutational processes appear to be simultaneously operative with various 

dynamic changes due to the endogenous and exogenous environments, life style habits and 

physiological ageing. We found a proportional increase, independently of smoking consumption, 

of the HNSCC mutation frequency rate in relation to the patient age. Therefore, multiple factors 

might participate to the accumulation of genetic events in the elderly and the prolonged tobacco 

exposure might increase the ageing-related SNPs burden. On the contrary, LUSC and LUAD 

showed a higher mutational rate among younger patients. TP53 mutations in younger LUAD 

patients might be a crucial factor enhancing the sensitivity to smoking related mutations leading 

to a burst of somatic alterations. Indeed, TP53 mutations and patient age significantly affected 

the higher mutational rate of younger patients. TP53 itself showed a higher sensitivity to 

smoking related C>A mutations in younger patients. TP53 mutated and TP53 wild type patient 

groups might represent phenotypes which endure ageing related mutational processes with 

different strength. LUSC was enriched of defective DNA MMR signatures, in particular the SI6 

in younger and the SI26 in older patients. Therefore, the two distinct age-related defective DNA 

MMR signatures SI6 and SI26 might be crucial mutational patterns in LUSC tumorigenesis, 

which may develop distinct phenotypes. 

The accumulation of SNPs may not follow distinct mutational patterns but rather an 

accumulation of mutations in specific pathways. Disruption of Axon Guidance and ECM-

extracellular matrix pathways were enriched among the higher mutational rate samples of both 

HNSCC and LUSC. We hypothesize that these pathways might have unknown crucial roles in 

genome stability maintenance. 

Further studies with larger numbers of individuals of different ages and diversity of normal 

tissues are essential to elucidate the intricate relationship between smoking consumption and 
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mutational patterns in relation to intrinsic ageing processes. A better comprehension of 

tumorigenesis in relation to patient age might be relevant for cancer prevention and age adjusted 

treatment decisions and should therefore be taken under closer consideration in future studies. 
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ABSTRACT
Head and neck squamous cell carcinoma (HNSCC) is a cancer with well-defined 

tumor causes such as HPV infection, smoking and drinking. Using The Cancer Genome 
Atlas (TCGA) HNSCC cohort we systematically studied the mutational load as well as 
patterns related to patient age in HNSCC. To obtain a homogenous set we excluded 
all patients with HPV infection as well as wild type TP53. We found that the overall 
mutational load is higher in patients of old age. Through unsupervised hierarchical 
clustering, we detected distinct mutational clusters in very young as well as very old 
patients. In the group of old patients, we identified four enriched pathways (“Axon 
Guidance”, “ECM-Receptor Interaction”, “Focal Adhesion” and “Notch Signaling”) that 
are only sporadically mutated in the other age groups. Our findings indicate that the 
four pathways regulate cell motility, tumor invasion and angiogenesis supposedly 
leading to less aggressive tumors in older age patients. Importantly, we did not see 
a strict pattern of genes always mutated in older age but rather an accumulation of 
mutations in the same pathways. Our study provides indications of age-dependent 
differences in mutational backgrounds of tumors that might be relevant for treatment 
approaches of HNSCCs patients.

INTRODUCTION

Head and neck squamous cell carcinomas 
(HNSCCs) affect 600,000 patients per year worldwide 
[1]. HNSCCs are characterized by phenotypic, etiological, 
biological and clinical heterogeneity and can originate 
from the paranasal sinuses, nasal cavity, oral cavity, 
pharynx and larynx. The major known risk factors of 
HNSCC are consumption of tobacco and alcohol, as well 
as human papillomaviruses (HPV) infection [2]. Multiple 
studies have elucidated the specific genetic background of 
HNSCC, establishing subclasses of tumors alongside HPV 
infection and/ or TP53 mutations. Due to the heterogeneity 
of study cohorts, the estimated percentages are relatively 
high variable. Overall, approximately 20% of HNSCCs 
contain transcriptionally active human papillomavirus 
(HPV+), and mainly TP53 wild type, which however is 
inactivated by the viral E6 and E7 oncogenes [3]. The 

incidence in HPV positive tumors, in oropharyngeal 
tumors, is exceeding 50% in current cohorts [4-6], and 
these tumors have been associated with a favorable clinical 
outcome [7, 8]. Approximately 80% of HNSCCs are HPV-
negative (HPV-), the majority of them contain a mutation 
in TP53 and are characterized by many numerical genetic 
changes (high chromosome instability). In the remaining 
cases, characterized by a lower number of numerical 
genetic changes, p53 seems not to be inactivated [3]. 

Tumor characteristics vary between patients of 
different ages. Elderly patients are mainly diagnosed with 
a lower incidence of regional lymph node metastasis at 
diagnosis, often associated with a less aggressive tumor 
phenotype [9, 10]. Yet, whether older patients have 
similar or shorter survival is up for debate and shows 
controversial results in different studies [11-13]. Ageing 
related physiological alterations and the duration of active 
smoking should be simultaneously taken into account. As 
shown in lung cancer the onset of smoking is usually in 
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adolescence or young adult age, and smoking cessation is 
associated with the diagnosis of the malignancy [14,15]. 
In addition, several studies report HPV-negative HNSCCs 
mostly occurring in smokers [16-18]. Therefore the age at 
diagnosis of HNSCC patients is very closely correlated to 
the duration of smoking.

While some differences in tumor behavior in older 
patients have been recorded, no study so far systematically 
explored the relationship between genetic tumor 
background and age in HNSCC. A recent study performed 
on the extensive data set available on The Cancer Genome 
Atlas (TCGA) portal showed the age-related accumulation 
of somatic mutations in diverse human tissues [19]. 
However, it is still an open question whether differences 
in mutations between the ages are random coincidence 
or follow distinct patterns. Therefore, this study aims to 
explore the specific age-mutation relationship in tumors 
of HNSCC patients to determine if age-related genetic 
parameters have to be considered in the disease prognosis 
and treatment decision. 

To investigate a possible connection between 
patterns and frequency of genetic mutations and patient 
age, we used the recently published TCGA study on 
HNSCCs of 279 patients. 

HPV infection shows an age bias as a relevant 
impact on the mutational background of the tumor. In 
previous studies the mutation rate of HPV-positive tumors 
was lower than that found in HPV-negative HNSCC, 
consistent with recent epidemiologic studies that establish 
biological differences between HPV-positive and HPV-
negative disease [20]. The major biologic difference 
between HPV-positive and - negative tumors, however, 
concerns p53, which in its role as a guardian of the genome 
influences multiple genes. In general, patients with HPV-
positive tumors have non-mutated TP53, however, HPV 
itself inhibits p53 function. Conversely, HPV-negative 
tumors frequently harbour TP53 mutations. 

Thus, in order to select a homogenous patient cohort 
for investigating possible age-related differences, we only 
considered the 203 patients from the TCGA-cohort which 
were HPV negative and carried a TP53 mutation. This 
homogenous subset of patients allowed for a systematic 
study of the age influence on mutation load and spectrum 
without introducing a heterogeneity caused by HPV or 
p53. Of course, it would have been equally interesting to 
study the other subclasses of HNSCCs. However, since 
only few patients belonged into these subsets, a statistical 
sound investigation would not have been possible within 
the current TCGA cohort. 

RESULTS

Patients selection and cohort features

To create a homogenous set of tumors we used 
a subset of the TCGA cohort (Figure 1). The original 
patient cohort was selected by two criteria, the first 
(i) excluded 36 HPV(+) patients (HPV classification 
according to the TCGA publication). As expected, the 
HPV-positive phenotype was strongly associated with the 
oropharyngeal site and the patient age mean was lower 
than for the HPV-negative patients. The second selection 
criteria (ii) excluded 40 TP53 wild type patients, which 
left the final selected cohort of 203 HPV-negative/TP53-
mutated patients. The original TCGA data set showed a 
higher rate (86%) of TP53 mutations among HPV-negative 
samples than have been previously reported, while only 
1 out of 36 HPV-positive cases had a non-synonymous 
TP53 mutation. Our selection rendered 203 patients with 
a total amount of 29.860 single nucleotide polymorphisms 
(SNPs) distributed on 11.489 genes. 

Statistical hypothesis tests showed that the patient 
selection does not lead to a biased distribution of patients 
features such as age, smoking and alcohol consumption. 
Whereas, the hypergeometric test performed on the tumor 
localization distribution showed an enrichment in Larynx 
tumor (p < 0.05) and a depletion in Oropharynx tumor (p 
< 0.05) in the selected cohort (Table S1).

A comparison of the original TCGA cohort and our 
subset can be found in Table 1.

Furthermore, the results of the investigation of 
TNM and overall staging at diagnosis in relation to the 
age showed a smaller size of the primary tumor, a decrease 
of lymph node metastasis and a higher percentage of 
“localized cancers” and “first stage of locally advanced 
cancers” in old patients (Table S1). The youngest patients 
group showed the same statistics as the oldest, however 
the results are not comparable due to the significant 
difference between the two age group ranges.

Increase of mutation frequency with age

When looking at the mutations in each patient, a 
wide range in numbers along with a single extreme value 
in one patient (age 69) was observed (Figure S1). 

A significant rise (p < 0.01) in the average number of 
mutations in different genes was observed with increasing 
age (Figure 2), which was also true if the patient with the 
extreme number of mutations was removed. Interestingly, 
we repeated the mutation load analysis excluding silent 
mutations and multiple mutations in one gene, to have 
an additional overview of disruptive mutations with 
increasing age. Although the number of mutations in each 
patient decrease drastically, the same significant p-value 
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Figure 1: CONSORT diagram of original and selected patient cohort.
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was detected (Figure S2, list of mutation frequencies 
in Table S2). Thus, the number of mutated genes found 
in a tumor was higher in older patients than in younger 
patients, designating a quantitative difference in mutational 
load between patient ages irrespective of whether this 
signified a pure stochastic increase or the accumulation of 
disease relevant mutations. Interestingly, there were only 
five genes with recurrent mutations, three of which are 
well known players (TP53, CDKN2A, PIK3CA) and two 
are pseudogenes (RPSAP58, WASH3P). 

In order to investigate the influence of patients 
features such the tumor localization and the smoking 
consumption on the increasing of the average number of 
mutations with age, we repeated the regression analysis 
for each subset. Although it´s necessary to consider 
the different number of patients in each subset and the 
difficulty on the acquisition of smoking habits (possible 
false-positive/-negative), both smokers and non-smokers 
subsets showed a significant correlation (linear regression 
as well as Spearman’s rank correlation analysis), therefore 
the smoke history surprisingly seems not to influence the 
age-related mutational load of our sub-cohort. Whereas, 
the mutational load of our sub-cohort as well as the 
original cohort are mostly influenced by the location of 
the cancers, only oral cavity tumors showed a significant 
correlation with age (Table S1).

Relationship of mutational patterns and age

As a next step, we wanted to investigate whether 
this increase was a mere accumulation of random 
mutations or whether we could find age-specific patterns 

of mutated genes. Unsupervised hierarchical clustering 
based on gene mutation frequencies was performed for 
patients pooled into age groups of decades aside two 
groups of the very young (pooled age 19-40) and very old 
(pooled ages 81 to 87). A minimum difference of 0.15 in 
mutation frequency between at least two age groups was 
considered for cluster analysis (Figure S3). This cut-off 
allowed for a comprehensive set of mutational patterns 
within the specific age groups including less frequently 
mutated genes.

The results showed two relevant clusters of 
frequently mutated genes, in particular, 39 genes in 
very young patients and 108 genes in very old patients 
(Table S3 with cut clusters A and B from Figure 3, 
unmarked heatmap Figure S3). Both the young as well 
as the old group, each consisting of 11 patients, displayed 
prominent differences to middle age groups. The genes 
of the two specific clusters were tested for KEGG 
pathway enrichments using the online David Gene 
Ontology tool [21]. The old age gene cluster showed six 
statistically significant enriched pathways, two of which, 
the “Axon Guidance” (p < 0.003) and “ECM-Receptor 
Interaction” (p < 0.04) pathways, stood out due to their 
role in angiogenesis processes and cell / tissue architecture 
maintenance respectively (Table S4).

Six “Axon Guidance” genes (SEMA5A, DCC, 
PLXNB2, UNC5D, ITGB1, EPHA2) and four of the 
“ECM-Receptor Interaction” pathway (LAMA2, LAMA4, 
TNC, ITGB1) were significantly enriched. In contrast, no 
enriched pathways were found for the young age gene 
cluster. To see if the very old and very young patients were 
homogenous groups or comprised of smaller subgroups 
we looked at both in more detail. Further division of the 

Table 1: Comparison of TCGA cohort and selected patients
Characteristics TCGA (279 patients) Selected cohort (203 Patients) 

Age (years)
Median 61 62
Range 19-90 19-87
Smoking history
Yes 220 159
No 52 37
Unknown 7 7
Primary tumor location
Oral Cavity 172 129
Larynx 72 64
Oropharynx 33 9
Hypopharynx 2 1
HPV/ p53 status
HPV + / p53 + 35 0
HPV + / p53 - 1 0
HPV - / p53 + 40 0
HPV - / p53 - 203 203
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young age group into two fractions comprising ages 19 
to 35 (7 patients) and 36 to 40 (4 patients) did yield an 
enrichment of the TGFB pathway for the latter age group 
(Figure S3, Table S4). This enrichment, however, was 
mainly based on the mutations of the enriched genes in 
one single patient (age 39). In addition, TGFβRII and 
TGFb1, two main players of the TGFB pathway and 
responsible for more aggressive tumors in HNSCCs were 
not mutated in the young ages at all [22]. We therefore 
did not interpret this finding as an age-specific enrichment. 

Old age specific clusters and pathway enrichment

The old age group, on the other hand, showed 
distinct clusters and enrichment when split into smaller 
fractions of ages 81 to 85 (7 patients) and 86 to 87 (4 
patients, all age 87). 

Figure 4 shows a major cluster of 542 genes in the 
“87” age class (Cluster D) and two gene clusters in the 
“81-85” age group (Cluster A and B, unmarked heatmap 
Figure S5). The latter consisted of 47 specific mutations 
and 59 genes overlapping with the “87” age group, 
indicating a common genetic background of tumors in 
elderly patients (Table S3). 

Note that we included six genes from the old ages 
clusters (CDKN2A, CSMD3, FAT1, NOTCH1, PIK3CA, 
TTN) that did make the 0.15 cutoff, but were in fact 
frequently mutated in most other ages as well. However, 
since the enrichment analysis showed significant p-values 
for both the set with as well as without the six genes we 
kept them in our gene set. 

The “87” age group showed six significantly 
enriched pathways among which are again “ECM-
Receptor Interaction” (p < 0.006, 11 genes) and “Axon 
Guidance” (p < 0.006, 13 genes), and in addition “Notch 
Signalling” (p < 0.007, 7 genes) as well as “Focal 
Adhesion” (p < 0.05, 15 genes) (Table S4). The 47 genes 
specifically mutated in the “81-85” group did not yield any 
enrichment. However, when combining all highly mutated 
genes in this group, “Axon Guidance” was enriched as 
well yet with a slightly elevated p-value (p = 0.056, 4 
genes) (Table S4). The overlap of the two old age groups 
is only three genes (PLXNB2, SEMA5A, UNC5D), yet 
genes of the same families (such as Ephrins, Slits and 
Rho-associated protein kinases) were mutated in both age 
groups. Overall, the old age groups only revealed a certain 
degree of homogeneity, with the very old patients (age 87) 
showing distinct pathway enrichment. However, the high 
number of overlapping genes as well as the commonly 

Figure 2: Correlation of average mutations and age considering one mutation per gene. Upper graph number of patients 
in the respective age group. Lower graph, average number of mutations for all patients in the respective age groups. Linear regression 
analysis was done using F-statistics and shows a significant increase in mutations in older patients (p = 0.000161, adjusted r2 = 0.24). Grey 
area around regression line indicates 95% confidence interval. Regression without the patient having an extreme number of mutations 
(TCGA-D6-6516, see Figure S1) also yields a significant connection between average mutations and age p = 0.000291, r2 = 0.22 (data not 
shown). 
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enriched pathways fostered the idea of specific mutational 
trends happening at the old age rather than one specific 
mutational pattern. 

Mapping of “Axon Guidance” pathway genes to 
all age groups

We mapped all genes of the “Axon Guidance” 

pathway (according to the KEGG database) to our list 

of mutation frequencies to see if the pathway is affected 

in other age groups as well without being particularly 

enriched (Figure 5, Table S5). From the total 127 genes 

of the “Axon Guidance” pathway 99 mapped to our data. 

As the heatmap showed, mutations in this pathway were 

present in other ages as well, yet at a lower frequency than 

in the two old age groups. Again, the trend of increased 

pathway alterations towards old ages was visible. In 

addition to genes mutated at a high frequency we found 

a group of 10 genes mutated at lower frequencies in the 

“81-85” group (Figure 5). 

Pathway enrichment upon fusion of clusters

As the mapping of all genes to the “Axon Guidance” 

pathway had shown, we were missing mutated genes of 

a pathway that did not make the 0.15 frequency cutoff. 

However, since our results suggested that mutations in old 

patients did not necessarily follow a strict common pattern 

and different genes were affected, we did not expect all 

mutations in a pathway to occur at high frequencies. At the 

same time we had seen a common trend for both old age 

groups with impact of mutations on similar gene families. 

Thus we decided to merge the highly mutated genes of 

both separate age groups for a more comprehensive 

picture of affected pathways. 

Figure 3: Unsupervised hierarchical clustering of gene mutation frequencies of specific age groups with pooled young 
and old ages. Patients were grouped into age groups of very young (ages 19-40) and very old (ages 81-87) with 10-year bins in between, 

then clustered according to the mutations frequencies of the quantified genes. Only genes with a minimum frequency difference of 0.15 
between at least two of the age groups are displayed. Black boxes indicate extracted genes for A., age group 81 to 87 and B., age group 19 

to 40 (for genes see Table S3). 
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Pathway enrichment analysis was performed on a 
consistent group of 589 mutated genes, many of which 
were hidden by the 0.15 clustering threshold when 
calculating the mutation frequency of the two old ages 
groups together, rather than separately.

The result showed 10 significantly enriched 
pathways (Table S4), two of which had been found 
enriched before, namely “Axon Guidance” (p < 0.004, 
14 genes) and “ECM-Receptor Interaction” (p < 0.001, 
13 genes). In addition, “Notch Signaling” (p < 0.002, 8 
genes) and “Focal Adhesion” (p < 0.009, 18 genes) were 
selected for detailed analysis due to their important role 
on cell growth, cell / tissue architecture and cell motility. 
When mapping all pathway genes to our data, we saw 
in all three the same pattern as in the “Axon Guidance” 
pathway of sporadic mutations that occur in all ages, yet 
the frequency of mutated genes was much higher in the 
old age groups of 81 to 87 (Figure S4-S6, Table S6-S8).

Overall, we identified 24 genes mutated in the 
“Axon Guidance” pathway among the 81-87 group of 
patients. 14 genes resulted from the pathway enrichment 
analysis and 10 genes were additionally revealed by the 
pathway heatmap clusters (Table S9). Even though 79% 
(19 out of 24) carried a single mutation showing the 
tumor heterogeneity, in the end 82% of the old patient 
group “81-87” (9 out of 11) reported a disruption in the 
Axon Guidance pathway. Furthermore, 82% (9 out of 
11) of the patients showed mutations in “ECM-Receptor 
Interaction” pathway and all patients reported mutations 
in “Focal Adhesion” pathway. In particular we identified 
21 and 34 significantly mutated genes respectively, which 
overlapped in 20 genes (Table S9). Interestingly we found 
several mutated genes of the same protein families, six 
laminins (LAMA1, LAMA2, LAMA3, LAMA4, LAMC1, 
LAMB1), three integrins (ITGA11, ITGA2, ITGB1) 
and eight collagen mutate genes (COL1A1, COL11A1, 

Figure 4: Unsupervised hierarchical clustering of gene mutation frequencies of specific age groups with separate old 
ages. Patients were grouped into age groups of very young (ages 19-40), decades in-between and two separate old ages groups (ages 81-85 
and 87), then clustered according to the mutations frequencies of the quantified genes. Only genes with a minimum frequency difference 
of 0.15 between two of the age groups are displayed. Black boxes indicate extracted genes for A., age group 81 to 85 upper cluster (shared 
with ages 86 to 87), B., age group 81 to 85 lower cluster (separate genes from ages 86 to 87), C., two clusters of ages 19 to 40 and D., ages 
86 to 87 (for genes see Table S3). 
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COL29A1, COL6A3, COL27A1, COL11A1, COL4A5, 
COL4A4), crucial in ECM-signaling processes and focal 
adhesions, as well as six ephrin genes (EPHA2, EPHA3, 
EPHA5, EPHA6, EPHA8, EPHB6), which have a central 
role in “Axon Guidance” signalling processes. Lastly, 
64% of the patients (7 out of 11) displayed mutations in 
“Notch-Signaling” pathway. We found 10 mutated genes, 
three of which were NOTCH genes (NOTCH1, NOTCH3, 
NOTCH4). 

Altogether, we only saw a few genes recurrently 
mutated and thus no age specific mutational pattern. 
However, even though not always the same genes were 
affected, the mutations accumulated in the same pathways, 
indicating a common trend in elderly patient to have 
similar functions of the cell changed by mutations. 

DISCUSSION

In the present study, we evaluated the somatic DNA 
single nucleotide polymorphisms (SNPs) landscape of 
a selected HNSCC patient cohort in relation to ageing 
processes. The average number of mutations for each 
patient showed a significant rise (p < 0.01) with increasing 
age. Multiple factors participate to the accumulation of 

genetic events in the elderly such as prolonged tobacco 
exposure and ageing-related genomic instability. To 
provide better insight into the underlying mechanisms, 
we therefore investigated whether a mere accumulation 
of random mutations or distinctive mutational patterns are 
related to patient age.

Unsupervised clustering of the selected cohort 
showed distinct clusters of genes expressed with a higher 
mutation frequency for the very young and very old 
ages. While the young age group did not reveal pathway 
enrichment, the old age group showed enrichment of 
KEGG pathways, including “ECM-Receptor Interaction 
” and “Axon Guidance”. Further division of the old age 
group into ages 81 to 85 and age 87 showed several 
genes of the same pathways shared by the two groups. 
Which when clustered together showed ten enriched 
pathways. Besides “Axon Guidance” and “ECM-Receptor 
Interaction”, “Notch-Signaling” and “Focal Adhesion” 
were of special interest to us. When mapping all genes 
of the respective pathways to our data, we saw mutations 
in all patients, however no evident clusters were present 
other than for ages 81 to 87. These results indicate that 
while the specific mutational patterns might only exist in 
very subtle ways due to the heterogeneity of the tumors, 

Figure 5: Unsupervised hierarchical clustering of mutation frequencies of genes involved in the “Axon Guidance” 
pathway (according to the KEGG database). Patients were grouped into age groups of very young (ages 19-40), decades in-
between and two separate old ages groups (ages 81-85 and 86 to 87), then clustered according to the mutation frequencies of all quantified 
genes of the “Axon Guidance” pathway. Genes that did not make the original cut off of 0.15 difference in mutation frequency but are found 
mutated in this pathway in age group 81-85 are LRRC4C, DPYSL2, EPHA8, LIMK1, NCK1, NGEF, RAC1, ROBO2, ROCK1 and SLIT2.
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we could see an increase in mutations in distinct pathways 
over the ages with a peak in the very old fraction. Next, we 
looked at the involved genes in more detail, starting with 
the “Axon Guidance” pathway. 

Although “Axon Guidance” represents a key stage 
in the formation of neuronal networks, recent studies 
also linked this pathway to regulation of angiogenesis 
processes (endothelial cell migration, proliferation 
and vessel formation). Involved proteins are Netrins, 
Slit proteins, Semaphorins, Ephrins and their cognate 
receptors (e.g. UNC5, ROBO1-4), all of which are 
frequently mutated in the elderly groups [24, 25]. The 
expression of Eph receptors, five of which were mutated 
in our data, is frequently elevated in different types of 
malignant tumors possibly resulting in increased cellular 
motility, tumor cell invasion and metastasis [26, 27]. 
One of these, EPHA2, is overexpressed in squamous cell 
carcinoma of oral tongue [27] and was also protruding in 
our mutational analysis. Moreover, studies have proven 
that blocking EphA receptor signaling decreases tumor 
vascular density, volume and cell proliferation in vivo [28-
31]. Since we found many of these genes to be mutated 
in the old age group, we postulated a correlation between 
“Axon Guidance” aberrations and the HNSCC features 
of elderly patients which may result in decreased cellular 
motility and tumor cell invasion.

For the “ECM-Receptor Interaction” pathway, 
we identified 21 frequently mutated genes, including 
six laminins, three integrins and eight collagens. These 
molecules are structurally and functionally involved in 
interactions at the extracellular matrix (ECM) which lead 
to a direct or indirect control of cellular activities such as 
cell migration, differentiation, proliferation, and apoptosis 
[32, 33]. A re-expression of the laminin α2 and α4 chains, 
which were significantly mutated in our old patients group, 
could be shown in adult hyperproliferative, dysplastic and 
carcinomatous lesions [31, 32]. Several studies showed 
Laminin 332 (LAMA3, LAMB3 and LAMC2) to be highly 
expressed in HNSCC and foster tumor invasiveness, an 
effect that is reversed when the laminins are repressed by 
microRNA-29s [36-40]. Several other integrins composed 
by the Integrin β1 chain, highly mutated in patients of old 
age, have been identified as crucial for tumor cell invasion 
and angiogenesis [38, 39]. Altogether, the many mutations 
in this pathway again suggested a decreased cell migration 
and tumor invasion in old patients.

The “Focal Adhesion” pathway was significantly 
enriched in the 81-87 age group as well. We identified 
34 genes, 20 of which overlap with the “ECM-Receptor 
Interaction” pathway, in particular laminins and integrins. 
The latter regulate kinases, such as the focal adhesion 
kinase (FAK), which is crucial for the attachment and 
signal transduction between cells and the ECM [43]. 
Several studies demonstrated that FAK disruption 
caused decreased cell attachment and motility while 
FAK overexpression increased cell invasion in HNSCC 

[41, 42]. Therefore mutations on upstream proteins like 
laminins and integrins again suggested a decreased cellular 
motility in HNSCC. 

NOTCH signalling is a highly conserved pathway 
that plays distinct roles during tissue homeostasis, 
proliferation and apoptosis [46]. Even though NOTCH1 
is one of the most frequently mutated genes in HNSCC, 
there are contradictory studies about its influence on 
tumor development [20]. Loss-of-function mutations in 
the NOTCH1 gene have been detected in a significant 
proportion of patients [47]. On the other side it is known 
that NOTCH activation can enhance proliferation, inhibit 
apoptosis and promote angiogenesis [45, 46]. Thus, while 
we reported high mutation frequencies for 10 genes of the 
notch pathway (inter alia NOTCH1, NOTCH3, NOTCH4), 
we couldn´t make assumptions about the exact impact of 
this finding.

Concluding, we found a proportional increase of 
the mutation frequency rate in relation to the age of the 
HNSCC patients. This increase, however, did not follow 
distinct mutational patterns but rather an accumulation of 
mutations in specific pathways. 

The results of this pathway analysis suggested 
a reduced tumor invasiveness and metastasis in older 
patients, which was underlined by the tumor staging at 
diagnosis. This distinct mutational background might be 
relevant for treatment approaches decisions and should 
therefore be taken under closer consideration in future 
studies.

MATERIALS AND METHODS

Acquisition and processing of data

The clinical data of the TCGA patient set was 
derived via download from the TCGA data matrix 
(https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.
htm). Somatic mutations of HNSCCs from the TCGA 
study was derived by download from the cBio Portal [18, 
19]. The somatic mutations of the 279 HNSCC patients 
detected by exome sequencing within the TCGA project 
[16] were merged with the clinical data from TCGA to 
combine genomic mutations with the age information 
of all patients. Entries without official gene names were 
removed. Since we were interested in patients with a HPV 
negative genomic background, we excluded all patients 
with a positive HPV status according to the standards of 
the TCGA publication. As HPV determination has certain 
limitations [16], it remained uncertain, whether all tumors 
classified as HPV negative were truly negative, or whether 
diagnostic sensitivity may have misclassified some 
cases. Therefore, we selected for patients with at least 
one mutation in TP53 for our study, as TP53 mutations 
are generally not found in HPV positive tumors. For a 
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first evaluation of the mutational rate related to age we 
considered all mutations, including silent mutations as 
well as multiple mutations in one gene. For all subsequent 
analysis, silent mutations were removed and multiple 
mutations in the same gene were only considered once per 
patient to prevent statistical overestimations. 

Statistical analysis

Mutation frequency and age of patients

The primary statistical hypothesis was, that there 
would be an increase in the number of mutations with 
increasing age. The relations between total average 
mutation frequencies and patient age groups (in years) 
were calculated by linear regression using F-statistics. A 
two-sided p-value of below 0.05 (Pr(>|t|)) was considered 
significant. The frequency of mutation of a specific gene 
was calculated using the sum of mutations in a specific age 
group divided by the number of patients in the respective 
age group. Additional Spearman’s rank correlation 
analysis was performed to identify the genes whose 
mutation frequency correlates with the age (Table S10).

All data analysis was done using R [52] unless 
stated otherwise.
Recurrent genes

To check for recurrent genes we only considered 
genes mutated in at least five patients with the same 
starting and end position of the mutation.
Clustering and pathway enrichment analysis

Unsupervised hierarchical clustering based on 
gene mutation frequencies was performed for different 
age groups. Genes were clustered according to Euclidian 
distance measure using the method “complete”. Genes 
from age group specific clusters were extracted and tested 
using the online David Gene Ontology tool [21]. The 
full list of identified genes was used as background for 
enrichment calculation. In reverse, all genes of an enriched 
KEGG pathway were mapped to our list of mutation 
frequencies to investigate the number and distribution of 
mutated genes in the respective pathway within all ages 
of our dataset. 
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ABSTRACT

Lung squamous cell carcinoma (LUSC) is the most common cause of global cancer-
related mortality and the major risk factors is smoking consumption. By analyzing 
~500 LUSC samples from The Cancer Genome Atlas, we detected a higher mutational 
burden as well as a higher level of methylation changes in younger patients. The 
SNPs mutational profiling showed enrichments of smoking-related signature 4 and 
defective DNA mismatch repair (MMR)-related signature 6 in younger patients, while 
the defective DNA MMR signature 26 was enriched among older patients. Furthermore, 
gene set enrichment analysis was performed in order to explore functional effect 
of somatic alterations in relation to patient age. Extracellular Matrix-Receptor 
Interaction, Nucleotide Excision Repair and Axon Guidance seem crucial disrupted 
pathways in younger patients. We hypothesize that a higher sensitivity to smoking-
related damages and the enrichment of defective DNA MMR related mutations may 
contribute to the higher mutational burden of younger patients. The two distinct 
age-related defective DNA MMR signatures 6 and 26 might be crucial mutational 
patterns in LUSC tumorigenesis which may develop distinct phenotypes. Our study 
provides indications of age-dependent differences in mutational backgrounds (SNPs 
and CNVs) as well as epigenetic patterns that might be relevant for age adjusted 
treatment approaches.

INTRODUCTION

Lung cancer is the most common cause of global 
cancer-related mortality and the major risk factors are 
smoking consumption and occupational exposure to 
carcinogens [1]. The two major histological classes are non-
small-cell lung cancer (NSCLC) and small-cell lung cancer 
(SCLC). NSCLCs mostly comprise lung adenocarcinomas 
(LUAD) and lung squamous carcinomas (LUSC) [2], 
characterized by largely distinct mutational patterns [3].

The mutational landscape present in a cancer 
genome is the cumulative result of endogenous and/or 
exogenous mutational processes (e.g., smoking), constant 
or sporadic and with different strengths along patient 
ageing [4–7]. Therefore, multiple mutational processes are 
operative resulting in jumbled composite signatures and 
tumor characteristics vary between patients of different 
ages [7–9]. From the Catalogue Of Somatic Mutations 
In Cancer (COSMIC) which includes 10,952 exomes and 
1,048 whole-genomes across 40 distinct types of human 
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cancer [10], 30 different mutational signatures were 
identified and publicly released (http://cancer.sanger.
ac.uk/cosmic/signatures). Each signature is characterized 
by the contribution of different factor (e.g., smoking, age, 
sex). Signature 1 (SI1) characterized by C>T transitions 
at CpG sites due to the deamination of 5-methylcytosine 
was associated to mutational processes related to the 
ageing [4–6, 11]. While Signature 4 (SI4) associated with 
C>A transversions was found in cancers in which tobacco 
smoking increases risk and mainly in those derived from 
cells directly exposed to the tobacco smoke. According 
to the SI4 pattern, LUSC patients can be classified by 
the “transversion status” in order to study high and low 
mutational rate profiles [3]. Past studies hypothesized 
that chemicals of tobacco smoke increases the speed with 
which these mutations accumulate [12]. Although the 
age at diagnosis of lung tumors is very closely correlated 
with the duration of smoking [13, 14], a previous study 
performed on 34 tumor types of the TCGA dataset [15], 
showed significant negative correlations between SNPs 
and patient age only in LUSC and LUAD. While 29 
tumor types exhibited positive correlations, among which 
the smoking-related tumors such as HNSCC [15, 16]. 
Therefore the hypothesis of the “mutator phenotype”, 
which is a tumor harboring mutations in DNA polymerases 
and DNA repair genes [15, 17], has to be taken into 
account.

Furthermore, Copy Number Variations (CNVs) play 
also important roles in the development of cancer showing 
an association with ageing in terms of longevity, healthy 
aging, and aging-related pathologies [18–20]. Although 
the number of studies about CNVs and ageing are very 
limited, age-related CNVs increase observed in human 
blood cell genomes [21, 22] suggests that CNVs could 
play a key role even in LUSC.

Moreover, epigenomic alteration is now increasingly 
recognized as part of aging and its associated pathologic 
phenotypes as cancer [23]. There is ample evidence 
for changes in DNA methylation patterns at CpG sites 
during development and aging, driving essential somatic 
functions. A general demethylation is linked with aging 
which may reflects some deficiency in maintenance re-
methylation. The epimutation rate appears to be almost 
100,000 times the mutation rate and aberrant DNA 
methylation can predispose to malignancy [22, 24, 25].

This study aims to provide better insight into the 
underlying genetic and epigenetic patterns of LUSC in 
relation to patient age. To this end, we investigated the 
relationships between patient age and the average number 
of SNPs, CNVs and methylation changes as well as 
the SNPs profiling and the respective correlation to the 
previously defined signatures in COSMIC. Furthermore, 
we performed gene-specific correlation analysis in relation 
to patient age with a particular focus on the significantly 
mutated genes in LUSC [3] and the most frequently 
mutated DNA repair genes in lung cancer [26]. Finally, 

gene set enrichment analysis was performed in order to 
explore functional effect of somatic alterations in relation 
to patient age.

The current study may pave the way for future 
studies of molecular tumorigenesis in relation to human 
ageing and underlines the need to consider age-adjusted 
treatments not only based on age and morbidity of older 
patients, but also on differences in tumor biology.

RESULTS

Somatic alterations and patient age

Genome-wide mutations and epigenomic changes 
are expected to varying among tumor subtypes showing 
a different distribution across age. To characterize these 
distinct distribution patterns, we firstly estimated the 
global number of SNPs, CNVs, and methylation changes 
at CpG sites for 504 samples across LUSC cancer cohort 
available through The Cancer Genome Atlas (TCGA). 
We used the Spearman’s rank correlation coefficient to 
explore the relation between the number of SNPs, CNVs 
and methylation changes with patient age.

The global SNPs load showed a slightly negative 
correlation with patient age (Table 1), which indicated a 
higher mutational rate among younger patients (Figure 
1A). Then, we classified SNPs according to their expected 
biological effect as low, moderate, or severe (as shown in 
Supplementary Table 1) and we identified the genes with at 
least a severe or moderate mutation. We reported a lower 
correlation between the age and the number of genes with 
disruptive mutations (rho=-0.08, p=0.077, FDR=0.26). The 
global CNVs load showed no correlation with patient age 
(Figure 1B). While methylation changes were negatively 
correlated with patient age (rho=-0.11, p=0.030, FDR=0.23) 
displaying a higher level of methylation at CpG sites among 
younger patients (Figure 1C).

We repeated the analysis on patient sub-cohorts 
established according to the tobacco exposure data (i.e., 
tobacco smoking history indicator), tumor staging (i.e., ajcc 
pathologic tumor stage), and mutational rate profile (i.e., 
transversion status) in order to explore the influence of patient 
features on the relation among SNPs, CNVs, and methylation 
changes with patient age. The analysis of sub-cohort with a 
high mutational load (i.e., transversion-high status) showed a 
negative correlation between the SNPs load and patient age 
while no correlations were detected in the low mutational 
load sub-cohort (i.e., transversion low status) (Table 1). The 
results regarding CNVs and methylation changes were fully 
reported in Supplementary Table 2.

Gene-specific alterations enrichment along 
patient ageing

The Spearman’s rank correlation was computed 
between SNPs, CNVs, and methylation changes in 
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each gene and patient age, we reported the results in 
Supplementary Table 3. A special focus was placed on 
the 20 significantly mutated genes previously found 
in LUSC [3] (Supplementary Table 4, Figure 1D–1F). 
A negative correlation between patient age and both 
CNVs (rho=-0.13, p=0.005, FDR=0.16) and methylation 
changes (rho=-0.14, p=0.006, FDR=0.06) was detected 
on NOTCH1, while no SNPs correlation was displayed. 
A significantly higher level of methylation at CpG sites 
in younger patients was as well exhibited in RASA1 
(rho=-0.19, p=0.0002, FDR=0.01), ARID1A1 (rho=-
0.22, p=0.00005, FDR=0.006), PASK (rho=-0.11, p=0.04, 
FDR=0.16) and NSD1 (rho=-0.13, p=0.02, FDR=0.09).

In order to explore the hypothesis of possible 
mutator phenotypes contributing to the high mutational 
rate detected among younger patients, we analyzed 
whether mutations harboring on the top 20 frequently 
mutated DNA repair genes in lung cancer [26] might 
have a significant impact on the SNPs load. For each of 
them, the Wilcoxon test was performed to compare the 
mutational load of the patient sub-cohorts exhibiting the 
somatic alterations against the wild-type patient groups 
(Supplementary Table 5). The percentage of patients 
which have at least one of the genes mutated was >83% in 
each age-group. The mutator phenotype had a significant 
impact on the mutational load in 60-70 and 70-80 age 
classes. Therefore the analysis was repeated grouping the 

patient global cohort in younger and older than 60 years 
old. While only 3 genes were significant in ≤60 years old 
patients, 14 out of 20 genes had a significant impact on the 
mutational load in >60 years old patients.

Age-related COSMIC signatures

Somatic mutation profile is the sum of multiple 
mutation processes, such as the intrinsic infidelity of the 
DNA replication machinery, exogenous or endogenous 
mutagen exposures, enzymatic modification of DNA, and 
defective DNA repair. In order to analyze each mutation 
process separately, we correlated the patient age with 
single nucleotide variants (Supplementary Table 6) and 
COSMIC signatures (Supplementary Table 7) using the 
Spearman’s rank correlation. Additionally, the Wilcoxon 
Rank-Sum test was performed to evaluate the differences 
between each age group (i.e., <50, 50-60, 60-70, 70-80, 
>80) and the rest of the cohort.

The defective DNA mismatch repair (MMR)-
related signature 6 (SI6) was negatively correlated (rho=-
0.13, p=0.004, FDR=0.12) with the patient age (Figure 
2A) while the signature 26 (SI26) as well associated 
with defective DNA MMR, was positively correlated 
(rho=0.11, p=0.013, FDR=0.20) with the patient age 
(Figure 2B). Both signatures showed similar trend in the 
transversion-high sub-cohort. The smoking-related SI4 

Table 1: SNPs loads correlations with patient age

Classification Patients n. rho [95%CI] p-value FDR

Global 480 -0.09 [-0.19 0] 4.53×10-2 1.81×10-1

Transversion Status

 High 387 -0.11 [-0.22 -0.01] 2.60×10-2 1.56×10-1

 Low 84 0.15 [-0.05 0.34] 1.87×10-1 3.21×10-1

Tobacco smoking history indicator

 Lifelong non-smokers 18 0.11 [-0.41 0.61] 6.54×10-1 7.85×10-1

 Current smokers 131 -0.12 [-0.29 0.05] 1.66×10-1 3.21×10-1

 Current reformed smokers for >15 yrs 78 -0.19 [-0.38 0.03] 9.88×10-2 2.96×10-1

 Current reformed smokers for < or = 15 yrs 236 -0.09 [-0.22 0.05] 1.59×10-1 3.21×10-1

 Current reformed smokers, duration not 
specified 5 -0.1 [-1 1] 9.50×10-1 9.50×10-1

Ajcc pathologic tumor stage

 1 233 -0.07 [-0.19 0.06] 3.13×10-1 4.70×10-1

 2 153 0.02 [-0.13 0.19] 7.66×10-1 8.36×10-1

 3 83 -0.35 [-0.53 -0.15] 1.12×10-3 1.34×10-2

 4 7 -0.29 [-0.96 0.62] 5.56×10-1 7.41×10-1

Correlations between the SNPs loads and patient age for each patient sub-group established according to the patient 
characteristic evaluated in our study, such as tobacco exposure data (i.e., tobacco smoking history indicator), tumor staging 
(i.e., ajcc pathologic tumor stage), and mutational rate profile (i.e., transversion status).
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was negatively correlated (rho=-0.11, p=0.02, FDR=0.21) 
with patient age (Figure 2C), showing higher values in the 
≤50 and 51-60 age groups (Supplementary Table 7). No 
correlation was detected for the age-related SI1.

In order to study the patient sub-cohorts, which 
predominantly exhibit SI26 and SI6, we divided the 
overall LUSC cohort into four subgroups using the 
mean values of SI6 and SI26 as threshold (Figure 2D): 
high-SI6/high-SI26 (77/480=16.0%), low-SI6/high-SI26 
(55/480=11.0%), high-SI6/low-SI26 (223/480=45.8%), 
and low-SI6/low-SI26 (130/480=27.1%). We selected and 
characterized the low-SI6/high-SI26 and high-SI6/low-
SI26 subgroups (Supplementary Table 8). The patients age 
of the low-SI6/high-SI26 cohort was significantly higher 
than the high-SI6/low-SI26 cohort (Wilcoxon Rank-Sum 
test: p=0.005).

Gene set enrichment analysis

On the basis of the previous analysis, the LUSC 
mutation profile in relation to ageing is characterized by 
two major defective DNA MMR-related signatures (i.e., 
SI6 and SI26). To study the molecular effects of these 
signatures independently, we projected the SNPs, CNVs 
and DNA methylation values from the high-SI6/low-SI26 
and low-SI6/high-SI26 subtypes into the space of the 186 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways by means of single-sample gene set enrichment 
analysis (ssGSEA) (Supplementary Table 9) [27].

Using the Wilcoxon Rank-Sum test, we reported 
as major significant differences, that Extracellular 
Matrix (ECM)-Receptor Interaction pathway (p=0.0002, 
FDR=0.04) was significantly enriched of SNPs while 

Figure 1: Correlation between genomic alterations and patient age in global cohort. Number of (A) SNPs, (B) CNVs and 
(C) methylation changes with their relative 95% confidence interval for each patient distributed along patient age. Medians (black line) and 
their relative 95% confidence interval (red area) were calculated locally in a range of ±10 years. (D) SNPs, (E) CNVs and (F) methylation 
changes profile of the 20 significantly mutated genes in LUSC. Significantly positive and negative correlated genes were highlighted in 
red and blue respectively.
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the Nucleotide Excision Repair pathway was enriched 
in CNVs (p=0.0007, FDR=0.14) in high-SI6/low-SI26 
sub-cohort (Figure 3). The Regulation of Autophagy 
pathway (p=0.0006, FDR=0.06) showed an enrichment of 
SNPs in low-SI6/high-SI26 patient sub-cohort. Using the 
Spearman’s Rank Correlation Coefficient, we detected a 
negative correlation between SNPs harboring on ECM 
Receptor Interaction pathway and patient age (rho=-
0.16, p=0.016, FDR=0.73) in high-SI6/low-SI26 sub-
cohort. In Figure 3, the GSEA values of “ECM-Receptor 
Interaction” pathway were reported for both (Figure 3A) 
high-SI6/low-SI26 and (Figure 3B) low-SI6/high-SI26 
patient sub-cohorts in order to visualize the different trends. 
Unsupervised hierarchical clustering of SNPs frequencies of 
genes involved in the “ECM Receptor Interaction” pathway 
(according to the KEGG database) was added in order to 
report the pathway mutation profile (Figure 3C–3D).

When evaluating the global cohort, we detected 
a significant negative correlation between patient age 
and SNPs harboring on “Axon-Guidance” (rho=-0.15, 
p=0.0007, FDR=0.14) and ECM Receptor Interaction 
(rho=-0.13, p=0.003, FDR=0.16) pathways, particularly 
in the 51-60 age group. Furthermore, the Axon-Guidance 
(rho=-0.16, p=0.001, FDR=0.12) pathway was the only 
negatively enriched pathway in transversion-high sub-
cohort (Supplementary Table 10).

DISCUSSION

We identified a slightly higher SNPs load among 
younger patients of the TCGA LUSC patient cohort 
confirming a previous study [15]. In particular, the 
correlation was higher in tumors with high mutational 
burden. Since the correlation was not robust, we believe 
that our results must be evaluated in an independent 
cohort to confirm higher mutational rate in younger 
patients. Interestingly, a higher overall methylation 
rate at CpG sites was as well detected among younger 
patients. Although the knowledge is still limited, 
numerous studies showed that CpG methylation plays 
an important role in maintaining gene silencing. Several 
studies have revealed that tumor suppressor gene 
promoter hypermethylation is noted in tumor cells [28]. 
However, normal non-proliferative cells also showed gene 
promoter hypermethylation as age increases [29, 30]. Age-
dependent hypermethylation at CpGs was observed to 
be enriched with DNA binding factors and transcription 
factors, therefore the dysregulation can simultaneously 
affect several biological processes [31, 32]. On the 
contrary Heyn et al. [32] revealed that centenarians 
exhibit lower DNA methylation levels compared with 
newborns. Therefore, the higher methylation level at 
CpG sites among younger patients detected in our study 

Figure 2: Correlation of SNPs profiling and patient age in global cohort. Correlation between defective DNA MMR (A) SI6 
and (B) SI26, and smoking related (C) SI4 with patient age. Medians (black line) and their relative 95% confidence interval (colored area) 
were calculated locally in a range of ±10 years. (D) Classification of the overall LUSC cohort into four subgroups using the mean values 
(dashed red lines) of SI6 and SI26 as threshold: high-SI6/high-SI26, low-SI6/high-SI26 (green circle), high-SI6/low-SI26 (blue circle) and 
low-SI6/low-SI26. The values are converted as log(x+1).
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might comprise both aberrations and normal age-related 
patterns. We detected 5 out of 20 significantly mutated 
genes in LUSC (NOTCH1, RASA1, ARID1A1, PASK, 
NSD1) exhibiting a significantly higher methylation 
levels in younger patients. CNVs enrichment was as well 
detected in NOTCH1 among younger patients. NOTCH1 
is one of the highly significant mutated genes in Cancer. 

Cross-talking with many other critical cancer genes and 
pathways, NOTCH1 is involved in multifaceted regulation 
of cell survival, proliferation, tumor angiogenesis, and 
metastasis. A recent study observed that with long-term 
smoking exposure, the DNA sequence suffers persistent 
miscoding that triggers epigenetic changes in NOTCH1 
[33]. Therefore NOTCH1 aberrations might be involved 

Figure 3: (A) GSEA value of “ECM-Receptor Interaction” pathway in high-SI6/low-SI26 and (B) low-SI6/high-SI26 patient sub-cohorts. 
Unsupervised hierarchical clustering of SNPs frequencies of genes involved in the “ECM Receptor Interaction” pathway (according to the 
KEGG database) in (C) high-SI6/low-SI26 and (D) low-SI6/high-SI26.
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in the peculiar higher mutational burden of younger LUSC 
patients.

Mutator phenotypes might develop in LUSC 
tumorigenesis [15], therefore we evaluated the mutational 
profile of the top 20 frequently mutated DNA repair genes 
in lung cancer [26]. No significant differences in mutation 
frequencies were detected among the age classes. More 
than 83 % of the patients harbored at least one of the genes 
mutated in all age classes. Thus, mutator phenotypes seem 
evenly distributed along patient ageing, contributing to the 
overall high mutational burden in LUSC patients. On the 
contrary, the impact of these mutations on the mutational 
load was significantly higher in >60 years old patients. 
Therefore, mutator phenotypes might have different 
consequences in relation to ageing processes.

The overall SNPs mutational profiling and the 
corresponding correlations with COSMIC signatures 
showed an enrichment of the smoking-related signature 
(i.e., SI4) among younger patients. Past studies described 
a similar scenario showing that despite maintained 
carcinogen exposure, tumors from smokers showed a 
relative decrease in smoking-related mutations over time 
[34, 35]. Therefore, younger patients may develop higher 
sensitivity to smoking-related mutations. The defective 
DNA MMR SI6 and SI26 were as well significantly 
correlated with patient age. The SI6, characterized 
predominantly by C>T at NpCpG sites (any nucleotide 
followed by C followed by G), was enriched in younger 
patients. While the SI26, mostly composed of T>C 
transitions, was enriched in older patients. Both SI6 and 
SI26 are found in microsatellite unstable tumors with 
high numbers of small (shorter than 3bp) insertions and 
deletions at mono/polynucleotide repeats [36, 37]. The 
role of MMR system is to recognize and repair erroneous 
insertion, deletion, and mis-incorporation of bases arising 
during DNA replication and homologous recombination, 
as well as repairing some forms of DNA damage. Given 
the importance of these processes in the maintenance of 
genomic stability, DNA MMR deficiency might leads to 
hypermutation [38, 39]. A recent study showed that out 
of a large number of DNA repair deficiencies analyzed, 
MMR deficiency leads to the by far highest mutation 
rate [36]. Our results suggest that different causing 
factors might contribute to MMR system aberrations 
along patient ageing. Therefore we performed gene 
set enrichment analysis in patient sub-cohorts which 
predominantly exhibit SI6 or SI26. We identified the 
SNPs enrichment in ECM-Receptor Interaction pathway 
among younger patients of high-SI6/low-SI26 sub-cohort. 
The ECM-Receptor Interaction pathway is structurally and 
functionally involved in interactions at the ECM which 
lead to a direct or indirect control of cellular activities 
such as cell migration, differentiation, proliferation, and 
apoptosis [40–42]. Aberrant ECM may promote genetic 
instability and might compromise DNA repair pathways 
necessary to prevent malignant transformation [40]. 

Furthermore, we identified an enrichment of CNVs in 
Nucleotide Excision Repair (NER) pathway in high-SI6/
low-SI26 sub-cohort. Since the NER system is primarily 
responsible for detecting and removing bulky DNA lesions 
induced by tobacco smoke in the respiratory tract [43], 
SNPs in NER protein-encoding genes may contribute to 
the higher sensitivity to smoking consumption detected in 
younger patients. Early studies identified associations with 
lung cancer risk in selected mutated NER genes (ERCC1-
6, LIG1, POLE, XPA, and XPC genes) [44–47].

The low-SI6/high-SI26 sub-cohort was enriched in 
SNPs disruptions of Regulation of Autophagy pathway 
involved in lysosome-dependent degradation processes. 
On one hand, autophagy has been shown to regulate 
some of the DNA repair proteins after DNA damage 
by maintaining the balance between their synthesis, 
stabilization, and degradation. One the other hand, 
some evidence has demonstrated that some DNA repair 
molecules have a crucial role in the initiation of autophagy 
[48, 49]. Therefore, disruption of Regulation of Autophagy 
pathway might contribute to the defective DNA MMR 
system in low-SI6/high-SI26 patient sub-cohort.

Considering the “global” cohort, SNPs harboring 
on genes involved in ECM-Receptor Interaction and 
Axon Guidance pathways were enriched among younger 
patients. Intriguingly, in our previous study on HNSCC, 
we detected the same two pathways enriched among older 
patients, which were the higher mutational rate samples 
due to the proportional relation between the HNSCC 
global mutational load and patient age [16]. Therefore, 
although the inverse tendency, Axon Guidance and ECM-
Receptor Interaction pathways seem to show a relation 
with higher mutational rate squamous carcinomas. Several 
studies reported that Axon Guidance pathway is involved 
in lung cancer development and progression through 
interacting with cell survival, migration, and tumor 
angiogenic pathways [50–54]. Further studies are needed 
to determine whether disruptions in these pathways are a 
correlative phenotype to higher mutational rate squamous 
carcinomas or a causative factor.

In conclusion, multiple mutational processes 
appear to be simultaneously operative with various 
dynamic changes due to the endogenous and exogenous 
environments, life style habits and physiological ageing. 
Previous hypothesis of a mutator phenotype concealing 
the effect of age-related accumulation of mutations 
might have different causing factors in relation to ageing 
processes. We hypothesize that a higher sensitivity 
to smoking-related damages and the enrichment of 
defective DNA MMR SI6 may contribute to the higher 
mutational burden of younger patients. A higher overall 
level of methylation was as well detected in younger 
patients. While the defective DNA MMR SI26 showed 
increasing tendency along patient ageing. Therefore, the 
two distinct age-related defective DNA MMR signatures 
SI6 and SI26 might be crucial mutational patterns 
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in LUSC tumorigenesis which may develop distinct 
phenotypes.

The evaluation of somatic genomic alterations 
along patients ageing might be relevant for a better 
comprehension of LUSC tumorigenesis and development 
of age-adjusted treatments.

MATERIALS AND METHODS

TCGA data sets

Multiplatform genomic data sets were generated by 
TCGA Research Network (http://cancergenome.nih.gov/). 
Cancer molecular profiling data were generated through 
informed consent as part of previously published studies 
[55] and analyzed in accordance with each original study’s 
data use guidelines and restrictions. The clinical data of the 
504 LUSC normal paired exome sequences was derived 
via download from the publicly available GDC Data Portal 
(https://portal.gdc.cancer.gov/).

Whole exome analysis

Somatic mutations were obtained from the open 
access MAFs available from the GDC Legacy Archive 
(https://portal.gdc.cancer.gov/legacy-archive). We 
considered three different exclusion criteria for mutation 
data entries. Samples belonging to the same patient share 
a very similar mutational profile. In the first exclusion 
criteria, we considered only once a mutation present in 
different samples belonging to the same patient. The 
mutations not included were equal to the 25.2% (282163 
=>210948).

Some genes can share a similar sequence, such as 
paralogous genes. In presence of a mutation event on a 
sequence shared among different genes, it will not be 
possible to identify the mutated gene. With the second 
exclusion criterion, we decide to remove mutations that 
were associated to more than one gene. In this step we 
removed the 0.1% of mutations (210948 => 210700).

The challenges of repetitive sequence, which 
constitute 50–69 % of the human genome leads to false 
positive variant calls due to systematic sequencing errors 
and local alignment challenges [56]. Therefore, only 
somatic mutations with “ref context” containing less than 
6 continuous single repetitions, less than 4 continuous 
duplets, less than 3 continuous triplets, less than 3 
continuous quadruplets, less than 3 continuous quintuplets 
were kept. With the third exclusion criteria, the mutations 
were reduced from 210700 to 194170 (~8.8%).

The patient TGCA-66-2755 was excluded from the 
following analysis due to the unusual number of mutations.

SNP array-based copy number analysis

DNA from each tumor or germline-derived sample 
had been hybridized to Affymetrix SNP 6.0 arrays [57] 

and processed through GISTIC [58, 59] by the TCGA 
consortium.

High-level copy gain or copy loss events for 
individual genes were inferred using the publicly 
available Firehose’s (Gistic2.Level4) data (http://gdac.
broadinstitute.org/runs/analyses__2016_01_28/data/
LUSC/20160128/) (+2 values being indicative of gains 
greater than 1-2 copies, -2 values being indicative of 
near total copy loss). Global CNV load were calculated 
summing the absolute values from each patients.

Array-based DNA methylation assay

DNA methylation profiles had been previously 
generated by TCGA using either the Infinium HM450 or 
HM27 assay probe. The level 3 beta value DNA methylation 
scores for individual genes were inferred using publicly 
available data generated by Illumina Human Methylation 
450 platform downloaded from the GDC Legacy Archive 
(https://portal.gdc.cancer.gov/legacy-archive). Methylation 
values were mean centered and scaled to unit variance. 
After the transformation, the rate of methylation changes 
was calculated summing the values of each gene.

Single nucleotide variants and COSMIC 
signatures

The signature profile was evaluated using the 
six subtype: C>A, C>G, C>T, T>A, T>C, and T>G 
(all substitutions were referred to by the pyrimidine 
of the mutated Watson-Crick base pair). Further, each 
of the substitutions was examined by incorporating 
information on the bases immediately 5’ and 3’ to each 
mutated base generating 96 possible single nucleotide 
variants (6 types of substitution x 4 types of 5’ base 
x 4 types of 3’ base). The profile of these 96 single 
nucleotide variants was considered as the results of the 
combination of the 30 different COSMIC signatures. 
The profile of each tumor sample can be represented by 
a unique contribution of each COSMIC signature as the 
following expression:

a1 × SI1 + a2 × SI2 + a3 × SI3 + … + a30 × SI30  (1)

where ai is the coefficient representing the 
contribution of the ith COSMIC signature. The 
coefficients of each tumor samples were calculated 
minimizing the difference between the tumor profile 
and the expression (1). This procedure was implemented 
using the function optim (method “L-BFGS-B” [60]) of 
the R software [61].

Molecular pathway and biological process analysis

Pathway analyses were performed by ssGSEA 
using the GenePattern module ssGSEA Projection (v4) 
(genepattern.broadinstitute.org). ssGSEA enrichment 
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scores were calculated from SNPs, CNV, and methylation 
LUSC data sets. The result is a single score per patient 
per gene set, transforming the original data sets into 
a more interpretable higher-level description. For the 
use of ssGSEA software, annotated gene sets reference 
were obtained from the C2 KEGG sub-collection of the 
Molecular Signature database (MSigDB) [62]. Silent 
mutations (point mutations that would not result in a 
change in the amino acid sequence) were not included in 
the analysis.

Statistical analysis

The Spearman’s Rank Correlation Coefficient 
was used to identify correlation between patient age 
and genomic/epigenomic data (e.g., SNP, CNV, and 
methylation loads). For every Spearman’s test performed 
in this study, p-values were computed using algorithm 
AS 89 included in the R function cor.test where the 
permutation distribution was estimated by an Edgeworth 
approximation [63]. The coefficient interval of rho value 
was calculated by bootstraping (with 1000 replicates) 
using the function spearman.ci of the R package 
RVAideMemoire. Fisher’s exact test was used to examine 
the significance of the association between COSMIC 
signature related subgroups (i.e., low-SI6/high-SI26 and 
high-SI6/low-SI26) and clinical/demographic/molecular 
patient features, such as gender, tobacco smoking history 
indicator, and mutated / wild type genes. Fisher’s exact 
test was computed using the R function fisher.test. 
Wilcoxon Rank-Sum test was performed to compare 
continuous variables between two patient subgroups using 
the R function wilcox.test. A p-value <0.05 was considered 
to be significant. To account for multiple testing, a FDR 
of ≤20% was applied to reduce identification of false 
positives [64]. The FDR was calculated using the R 
function p.adjust. All calculations were made using R 
software [61].
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Lung adenocarcinoma (LUAD) is the most common cause of global cancer-related mortality and the major risk factor is smoking
consumption. By analyzing 486 LUAD samples from The Cancer Genome Atlas, we detected a higher mutational burden among
younger patients in the global cohort as well as in the TP53-mutated subcohort. The interaction effect of patient age and TP53
mutations significantly affected the mutational rate of younger TP53-mutated patients. Furthermore, we detected a significant
enrichment of the smoking-related signature SI4 (SI4) among younger TP53-mutated patients, meanwhile the age-related
Signature 1 (SI1) significantly increased in proportion to patient age. Although present and past smoking is reported in the
TP53 wild-type patients, we observed a lower average number of somatic mutations, with no correlation with patient age.
Overall, TP53 mutations were significantly higher in younger patients and mainly characterized by SI4 and Signature 24 (SI24).
Therefore, TP53 seemed to acquire a particular sensitivity to smoking related C>A mutations in younger patients. We
hypothesize that TP53 mutations at a younger age might be a crucial factor enhancing the sensitivity to smoking-related
mutations leading to a burst of somatic alterations. The mutational profile of cancer cell might reflect the mutational processes
operative in aging in a given tissue. Therefore, TP53-mutated and TP53 wild-type patient groups might represent phenotypes
which endure aging-related mutational processes with different strength. Our study provides indications of age-dependent
differences in mutational backgrounds that might be relevant for cancer prevention and age-adjusted treatment approaches.

Introduction
Lung cancer is the most common cause of global cancer-
related mortality. The two major histological classes are non-
small cell lung cancer (NSCLC) and small cell lung cancer
(SCLC). NSCLCs mostly comprise lung adenocarcinomas
(LUAD) and lung squamous carcinomas (LUSC).1 Although
the main common risk factor remain the consumption of
tobacco,2 10–15% of patients with LUAD had never smoked.

Somatic mutations in a cancer genome are mutations accumu-
lating during the human aging with different rates and strength
due to endogenous and exogenous factors.3 Mathematical

modeling strongly suggests that half or more of somatic pas-
sengers mutations in tumors arise before initiation of the
tumor, that is, during development and aging.4 They are clas-
sified as either “driver” mutations, which initiate the tumor and
confer selected cancer phenotypes, or the far more numerous
“passenger” mutations which have minor impact on cell growth
and proliferation but they might built strength to cancer progres-
sion or confer resistance to the treatments.5–7 Indeed, several stud-
ies illustrated the ongoing aging-related process of accumulation
of mutations, selection, and clonal expansion.8 Furthermore, the
age at diagnosis is very closely correlated with the duration of
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smoking, therefore aging- and smoking-related mutations should
be simultaneously taken into account.9–11

However, a higher mutational rate among younger patients
with LUAD was highlighted from the analysis of patient data avail-
able on The Cancer Genome Atlas (TCGA) portal, hypothesizing
that a tumor with defective DNA polymerases and DNA repair
genes (i.e., mutator phenotype), rapidly accumulates somatic muta-
tions and might have concealed any age-related increase in muta-
tion frequency.12,13 In particular, tumors harboring TP53-mutated
gene showed a negative association between the mutational load
and patient age, while this association was not observed for the
wild-type counterparts.14

The tumor suppressor TP53 is the most frequently altered
gene in LUAD.2 Considering the crucial roles of p53 in
maintaining genome stability, the loss or disruption of p53
function can lead to uncontrolled cell proliferation and can-
cer.7 Past studies demonstrated that the frequency of TP53
mutations increased with tobacco consumption.15–17 There-
fore, the relation between TP53 mutations, tobacco consump-
tion and patient age remains an open question.

In order to explore the underlying genetic mechanisms of
LUAD mutational patterns, we investigated on the relationships
between patient age and the number of somatic mutations. Spe-
cific mutagenesis processes such as DNA replication infidelity,
exogenous and endogenous genotoxins exposures, defective
DNA repair pathways and DNA enzymatic editing occur along
patient aging. Therefore, we analyzed the mutational profiling
and the respective correlation with the previously defined muta-
tional signatures described in the Catalogue of Somatic Muta-
tions in Cancer (COSMIC).3,18 Furthermore, we performed
gene-specific correlation analysis in relation to patient age on
each significantly mutated genes in LUAD1 with a special focus
on the tumor suppressor TP53.

Additionally, we correlated copy number alterations (CNAs)
load with patient age. Several CNAs have been reported to be
associated with aging and cancer.19,20 CNAs are defined as
DNA segments larger than 1 kb in size that vary in copy num-
ber between individuals due to insertion, deletion or duplica-
tion.21 The mechanisms through which CNAs can lead to
phenotypic effects include among others gene interruption, gene
fusion and changes in gene expression.

The combination of these multiple mutational processes
may compose jumbled signatures which develop different
tumor characteristics in relation to patient age.22–25 The
results from the current study may pave the way for future

studies of molecular tumorigenesis in relation to human aging
and underlines the need to consider age-adjusted treatments
not only based on age and morbidity of older patients but also
on differences in tumor biology.

Materials and Methods
TCGA data sets
Multiplatform genomic data sets were generated by TCGA
Research Network (http://cancergenome.nih.gov/). Cancer molec-
ular profiling data were generated through informed consent as
part of previously published studies26 and analyzed in accordance
with each original study’s data use guidelines and restrictions. The
clinical data of the LUAD data set was obtained via download
from the publicly available TCGA data matrix (https://tcga-data.
nci.nih.gov/tcga/dataAccessMatrix.htm). Tumor staging classifica-
tion was established according to the American Joint Committee
on Cancer (AJCC) pathologic tumor staging. Tobacco smoking
history was defined as: (i) lifelong nonsmokers (a person who was
not smoking at the time of the interview and has smoked less than
100 cigarettes in their life), (ii) current smokers (includes daily
smokers and occasional smokers), (iii) current reformed smokers
for >15 years and (iv) current reformed smokers for ≤15 years
(a person who was not smoking at the time of the interview since
at least 15 years or since less than 15 years, but has smoked at
least 100 cigarettes in their life). Smoker patients were classified as
heavy smokers (more than 50 packs per year) and mild smokers
(less or equal to 50 packs per years). Patients with no information
about age were excluded by the following analysis.

Somatic mutations
Somatic mutations were obtained from the open access MAFs
available from the GDC Legacy Archive (2016)27 and directly uti-
lized. Three different exclusion criteria for mutation data entries
were considered in our study. (i) Mutations present in different
samples belonging to the same patient were excluded. The muta-
tions not included were equal to the 32.5% (from 347,181 to
234,434 entries). (ii) In presence of a mutation event on a
sequence shared among different genes (e.g., paralogous genes), it
will not be possible to identify the mutated gene. Mutations associ-
ated with more than one gene were excluded. In this step, the
0.1% of mutations were removed (from 234,434 to 234,217
entries). (iii) The challenges of repetitive sequence, which consti-
tute more than half of the human genome leads to false positive
variant calls due to systematic sequencing errors and local align-
ment challenges.28 Therefore, only somatic mutations with

What’s new?
In lung adenocarcinoma, previous analyses have reported a higher mutational rate among younger patients. These authors
investigated the genetic mechanisms at work, drawing on data from The Cancer Genome Atlas (TCGA). They found that in
patients whose tumors carried TP53 mutations, younger age correlated with higher mutational load. This association was not
seen with wild-type TP53. Younger patients were also more likely to have the smoking-related signature 4 mutation profile. The
authors suggest that TP53 mutations in younger patients may increase sensitivity to smoking-related somatic mutations.

2 Genome alterations in relation to age in LUAD
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“ref_context” containing <6 continuous single repetitions, <4 con-
tinuous duplets, <3 continuous triplets, <3 continuous quadruplets
and <3 continuous quintuplets were kept. With the third exclusion
criteria, 8.8% of the mutations were excluded (from 234,217 to
222,139 entries). Somatic mutations belonging to patients with no
reported age were removed (from 222,139 to 190,598 entries).
Finally, data were available for 486 patients. Patients were classified
as TP53 mutated according to the presence of one (or more)
somatic mutation with moderate or high impact on the gene TP53.

Copy number alterations
DNA from each tumor or germline-derived sample had been
hybridized to Affymetrix SNP 6.0 arrays29 and processed through
GISTIC30,31 by the TCGA consortium.

High-level copy gain or copy loss events for individual
genes were interfered from the publicly available Firehose’s
“thresholded by genes” results table (http://gdac.broadinstitute.
org/runs/analyses__2016_01_28/data/LUAD/20160128/gdac.broad
institute.org_LUAD-TP.CopyNumber_Gistic2.Level_4.2016012800
.0.0.tar.gz; −2 values being indicative of near total copy loss, +2
values being indicative of gains greater than 1–2 copies). The global
CNAs load was calculated summing the CNAs absolute values
from each patient. Data were available for 482 patients and 24,776
CNAs entries.

COSMIC signatures
The six mutation subtypes were considered in order to evalu-
ate the signature profile: C>A, C>G, C>T, T>A, T>C and
T>G. Each of the substitutions was considered by incorporat-
ing information on the bases immediately 50 and 30 to each
mutated base generating 96 possible single nucleotide variants
(6 types of substitution × 4 types of 50 base × 4 types of 30

base). The 96 single nucleotide variants profile was evaluated
as the results of the combination of the 30 different COSMIC
signatures. Tumor sample profiles can be represented by a
unique contribution of each COSMIC signature as the follow-
ing expression:

a1xSI1 + a2xSI2 + a3xSI3 +… + a30xSI30 ð1Þ

where ai is the coefficient representing the contribution of the
ith COSMIC signature. The coefficients of each tumor sam-
ples were calculated minimizing the difference between the
tumor profile and the expression (1). The function optim
(method “L-BFGS-B”32) of the R software33 was implemented
in order to perform the above-mentioned procedure.

Statistical analysis
The Spearman’s rank correlation coefficient was used to identify
correlation between patient age and somatic mutations. For
every Spearman’s test performed in our study, p values were
computed using algorithm AS 89 included in the R function
cor.test where the permutation distribution was estimated by an
Edgeworth approximation.34 Fisher’s exact test was performed

to compare categorical variables between two patient subgroups
using the R function fisher.test. Wilcoxon Rank-Sum test was
performed to compare continuous variables between two patient
subgroups using the R function wilcox.test.

Two-way ANOVA was used to investigate the interaction
between patient age and smoking history on somatic mutations.
A p-value <0.05 was considered to be significant. To account for
multiple testing, a FDR of ≤20% was applied to reduce identifi-
cation of false positives.35 The FDR was calculated using the R
function p.adjust. All calculations were made using R software.33

The KODAMA algorithm36–38 was used to facilitate the
identification of patterns among COSMIC signature profiles
of the significant mutated genes in LUAD.

Results
Correlation analysis between somatic alterations and
patient age
We performed our study on the 486 patient samples of the LUAD
cancer cohort available through the TCGA data set (Supporting
Information Table S1). Due to the counterintuitive negative cor-
relation between the somatic mutation load and patient age
observed in past studies, we wanted to investigate the distribution
of genome-wide mutations across age in patient subgroups by
means of the Spearman’s rank correlation coefficient between the
global number of somatic mutations and CNAs for each patient.
Noteworthily, we reported a higher consumption of tobacco
(i.e., smoking intensity) among the older “current smokers” and
“current reformed smoker for ≤15 years” patients, while no corre-
lation is observed when the global smokers were considered
(Supporting Information Table S2).

The global somatic mutations load showed a significant
negative correlation with patient age (Table 1), which indi-
cated a higher mutational rate among younger patients. In
order to evaluate only the disruptive mutations, we classified
somatic mutations according to their expected biological effect
as low, moderate or high (Supporting Information Table S3).
We confirmed a significant negative correlation also when
mutations classified as low and multiple mutations in one
gene were excluded. Also, the correlation between the global
CNAs load and patient age had a negative trend, showing a
higher rate of CNAs among younger patients (Supporting
Information Table S4). A significant negative correlation was
also detected when either only amplifications or only deletion
was considered, independently. We repeated this analysis
on patient subcohorts established according to the tobacco
smoking history indicator, the pathologic tumor stage and the
transversion status defined by Campbell et al.1 as high and
low through the smoking related C>A transversions bimodal
pattern identified in LUAD.2

The transversion-high subcohort showed a significant neg-
ative correlation of both somatic mutations (Table 1) and
CNAs load (Supporting Information Table S4) with patient
age, indicating an enrichment of somatic mutations and CNAs
among younger high mutational rate samples. In particular,
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deletions were negatively correlated in the transversion-high sub-
cohort, while amplifications were negatively correlated in both
transversion-high and transversion-low subcohorts. No somatic
mutations load correlation was detected in the transversion-low
subcohort. The patient subcohort of current smokers showed sig-
nificant negative correlation of both somatic mutations and
CNAs load with patient age.

Additionally, we investigated the differences between the sub-
cohorts established according to the TP53 mutational profile
(i.e., mutated or wild-type) in order to explore the influence of
the most frequently mutated gene in LUAD. The TP53-mutated
subcohort showed a significant enrichment of somatic mutations
among younger patients, while no correlation was detected in the
TP53 wild-type cohort (Table 1). The CNAs load in the TP53-
mutated cohort was overall higher than the wild-type counterpart
and negatively correlated with patient age. No correlation was
detected in the TP53 wild-type cohort. These differences are
highlighted in Figure 1. Full results are reported in Supporting
Information Table S4. Then, we repeated the analysis in the sub-
group of heavy smokers (Supporting Information Table S5) and
in the mild smoker (Supporting Information Table S6). Interest-
ingly, only the mild smokers showed a negative correlation of
both somatic mutations and CNAs with patient age in global
cohort and transversion high subcohort.

We used two-way ANOVA to evaluate, independently, the
effect of age and TP53 mutations as well as the combination
effect of both on the somatic mutations and CNAs loads
(Supporting Information Table S7). We reported a higher muta-
tional load in younger TP53-mutated patients (Supporting

Information Table S4) and we detected a significant effect of
patient age and TP53 mutations separately, on both the somatic
mutations and CNAs loads. Interestingly, the interaction of
patient age and TP53 mutations significantly affected the higher
mutational rate of younger TP53 mutated patients. However, we
did not observe any statistically significant interactions on the
CNAs load.

Age, smoking habits, transversion status and TP53
mutational profile
Next, we explored the relation among TP53mutation, transversion
status and smoking habits with patient age. Using the Fisher’s test,
we noted in the TP53-mutated subcohort a significantly higher
percentage of current smokers (p = 6.58 × 10−6, FDR = 1.97 ×
10−5) and transversion-high profiles (p = 2.13 × 10−4, FDR =
3.20 × 10−4), while no significant difference was detected in tumor
staging (Supporting Information Table S8). Moreover, we used the
Fisher’s test to compare the percentage of patients with TP53
mutated in all subcohort. The overall percentage of TP53-mutated
patients was significantly different (p = 2.13 × 10−4, FDR = 8.48 ×
10−4) between transversion-high (59.6%) and transversion-low
(40.6%) subcohorts (Fig. 2, Supporting Information Table S9). After
the classification of the patients based on their age, we noted that this
difference was even bigger in younger and absent in older patients.
Noteworthy the percentage of TP53-mutated patients in <50 years
age class was 30% and 85% in transversion-low and transversion-
high, respectively (p = 4.84 × 10−3, FDR = 9.69 × 10−9).

The overall percentage of TP53-mutated patients in “life-
long nonsmokers” subgroup was 41.5%, analogous to the

Table 1. Correlation between somatic mutations and patient age

Classification

Somatic mutation

n Age, median [95%CI] rho p FDR

Global 486 66.8 [42.7–83.8] −0.16 3.93 × 10−4 2.14 × 10−3

Transversion status

High 337 66.4 [42.4–81.9] −0.23 2.38 × 10−5 3.09 × 10−4

Low 133 68.0 [44.3–84.7] 0.03 7.69 × 10−1 9.16 × 10−1

Tobacco smoking history indicator

Lifelong nonsmokers 65 66.3 [46.3–81.6] −0.02 9.04 × 10−1 9.16 × 10−1

Current smokers 116 61.7 [41.4–79.8] −0.23 1.20 × 10−2 3.12 × 10−2

Current reformed smokers for >15 years 127 72.0 [49.8–85.5] 0.01 9.16 × 10−1 9.16 × 10−1

Current reformed smokers for ≤15 years 161 64.3 [42.2–79.2] 0.03 6.65 × 10−1 9.16 × 10−1

Tumor staging

Stage I 261 67.6 [42.4–84.0] −0.21 6.59 × 10−4 2.14 × 10−3

Stage II 112 65.3 [46.8–79.9] −0.15 1.10 × 10−1 2.04 × 10−1

Stage III 80 67.9 [47.2–82.5] 0.11 3.46 × 10−1 5.62 × 10−1

Stage IV 26 62.7 [40.4–78.8] −0.34 9.23 × 10−2 2.00 × 10−1

TP53

Mutated 264 64.9 [41.9–82.2] −0.21 5.74 × 10−4 2.14 × 10−3

Wild-type 222 68.0 [44.4–84.0] 0.01 8.47 × 10−1 9.16 × 10−1

Spearman’s rank correlations between the somatic mutations loads and patient age for each patient subgroup established according to the patient char-
acteristic such as mutational rate profile (i.e., transversion status), tobacco exposure data (i.e., tobacco smoking history indicator), tumor staging
(i.e., AJCC pathologic tumor stage) and TP53 mutational profile.
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“current reformed smokers for >15 years” (40.9%). Although
the comparable percentage of transversion-high profiles in
“current reformed smokers for ≤15 years” (86.6%) and “current
smokers” (86.4%) subgroups, they displayed 57.1% and 70.7%
of TP53-mutated patients, respectively, showing an inverse

proportional increase to time since smoking cessation. Overall,
smoking consumption significantly increased (p = 6.20 × 10−7,
FDR = 3.72 × 10−6) the percentage of harboring TP53 mutations
independently of the age. Indeed, not only younger patients
of <50 and 50–60 age classes but also those of the 70–80 age

Figure 2. TP53 -mutated distributions. Heatmap representing the percentage of patients with TP53 mutated across different subgroup of LUAD
cohort.

Figure 1. Correlation between genomic alterations and patient age in the TP53-mutated and TP53 wild-type patient subcohorts. Number of (a)
somatic mutations and (b) CNAs with their relative 95% confidence interval for each patient distributed along patient age in the
TP53-mutated (yellow) and TP53 wild-type (blue) patient subcohorts. Medians (black line) and their relative 95% confidence interval (yellow
and blue areas) were calculated locally in a range of !10 years.
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class showed significant correlations (Supporting Information
Table S9).

Then, we performed the Wilcoxon’s test to evaluate the
difference in patient age between TP53-mutated and TP53 wild-
type patients for each subcohorts. The overall global cohort
showed a significant (p = 2.44 × 10−3) lower age mean in the
TP53-mutated patients compared to TP53 wild-type patients as
well as the transversion-high subcohort (p = 3.14 × 10−4). We
detected the highest percentage of TP53-mutated patients in <50
(66.7%) and 50–60 (66%) age groups.

Mutational profiling
Multiple mutational processes such as exogenous or endogenous
mutagen exposures, defective DNA repair and replication and
enzymatic modification of DNA operate with different strength
and nucleotide specificity along patient aging3 showing unique
mutational signatures.

In order to investigate on the differences in mutational pro-
file between TP53-mutated and TP53 wild-type subcohorts, we
categorized each single nucleotide variants incorporating infor-
mation on the bases immediately 50 and 30 to each mutated
base. We deconvoluted trinucleotide variants profiles into the
30 different signatures described in the COSMIC database.18,22

Therefore, we were able to characterize each patient by a differ-
ent “intensity” combination of the 30 COSMIC signatures.
Then, we performed the Spearman’s rank correlation test
between the intensities each COSMIC signature and the patient
age in both TP53-mutated and TP53 wild-type subcohorts
(Supporting Information Table S10).

The TP53-mutated subcohorts showed a significant negative
correlation between the smoking-related Signature 4 (SI4),
associated with C>A transversions, and patient age (rho =
−0.27, p = 6.89 × 10−6, FDR = 2.07 × 10−4). While the age-
related Signature 1 (SI1), mainly consisting of C>T transitions,
was positively correlated with patient age (rho = 0.18,

p = 3.46 × 10−3, FDR = 3.46 × 10−2; Fig. 3a), showing the
simultaneous ongoing age-related accumulation of somatic
mutations. Moreover, the SI3 associated with failure of DNA
double-strand break-repair by homologous recombination was
positively correlated in the TP53-mutated subcohort (rho = 0.22,
p = 3.51 × 10−4, FDR = 5.26 × 10−3), while no significant cor-
relations were identified in the TP53 wild-type subcohort
(Fig. 3b).

Focus on the significantly mutated genes in LUAD
In order to investigate on gene-specific driver mutations in
relation to patient age, which might contribute to the higher
mutational rate detected in younger patients, we computed
the Spearman’s rank correlation between patient age and
somatic mutations load of each genes significantly mutated in
LUAD as reported in a previous study by Campbell et al.1

(Supporting Information Table S11). We report that somatic
mutations on TP53 were significantly enriched in younger
patients (rho = −0.13, p = 5.25 × 10−3, FDR = 9.98 × 10−2),
as well as ATM (rho = −0.11, p = 1.78 × 10−2, FDR = 2.26 ×
10−1). While RBM10 disruptions were enriched among older
patients (rho = 0.13, p = 4.81 × 10−3, FDR = 9.98 × 10−2).

Finally, we hypothesized that multiple factors, such as the
specific base sequence of each gene or the secondary DNA
structure, could promote a mutational signature among the
others. Therefore, we calculated the frequencies of COSMIC
signatures using the mutations identified in each of these genes
(Supporting Information Table S12). TP53 and RMB10 were
especially enriched of smoking related SI4 and the aflatoxin
related SI24, both constituted of C>A transversions, indicating
guanine damage that is being repaired by transcription-coupled
nucleotide excision repair. The defective DNA mismatch repair
related SI6, associated with high numbers of small (shorter than
3 bp) insertions and deletions at mono/polynucleotide repeats
was as well relatively enriched in TP53 (Fig. 4a). RMB10 was

Figure 3. Correlation of somatic mutations profiling and patient age in the TP53 -mutated and TP53 wild-type patient subcohorts. Correlation
between the smoking related SI4 (green graph) and the age related SI1 (red graph) with patient age in (a) TP53-mutated and (b) TP53 wild-
type patient subcohorts. Medians (black line) and their relative 95% confidence interval (colored area) were calculated locally in a range of
!10 years.
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also enriched of SI14, with unknown etiology, mainly consti-
tuted by C>A and C>T mutations. Interestingly, ATM was
enriched of SI3 and SI10, while the smoking related SI4 was
entirely absent.

To evaluate similarities among COSMIC signature profiles
of these genes, we performed the unsupervised KODAMA
analysis (Fig. 4b) showing that TP53 and RMB10 shared the
same cluster, while ATM showed an independent profile.

Discussion
In the present study performed on the TCGA LUAD data set,
we investigated genetic patterns (somatic mutations and CNAs)

in relation to patient age. We confirmed the negative correlation
between the somatic mutation load and patients age in the global
cohort and TP53-mutated subcohort observed in previous stud-
ies.12,14 The CNAs load was as well higher in younger patients,
even when only amplification or deletion were considered. TP53
mutated, transversion-high and current smokers subcohorts
showed the same higher somatic mutations and CNAs burden
among younger patients, displaying a relation among these fac-
tors. These results overlap with our previous investigation on
LUSC,39 which might be indicative of a tissue-specific higher sen-
sitivity to smoking-related damages in younger patients. The
group of TP53-mutated patients showed a higher percentage of
current smokers and transversion-high profiles as well as a lower
age mean compared to TP53 wild-type patients, which instead
displayed a lower average number of somatic mutations with no
correlation with patient age. Most noteworthy, we identified that
the effect of patient age and TP53 mutations separately, as well as
their interaction, significantly affected the mutational rate of youn-
ger TP53 mutated patients. While only the separate effect of
patient age and TP53 mutations was significant on the CNAs load
correlation displayed by the TP53-mutated subcohort. Further-
more, we detected a significant enrichment of the smoking-related
signature SI4 among younger TP53-mutated patients. Overall,
smoking consumption significantly increase the percentage of har-
boring TP53 mutation independently of the age. The percentage
of TP53-mutated patients increased with an inverse proportion to
the time since smoking cessation. Noteworthy is that 70.7% of
current smokers were TP53-mutated patients.

Milholland et al.12 hypothesized that smoking has a strong
effect on both the frequency and the spectrum of somatic
mutations. Our study enlarges this hypothesis by showing that
the cumulative effect of smoking consumption, TP53 muta-
tions and a younger age significantly affected the overall
mutational load among younger LUAD patients.

Alexandrov et al11 displayed that the number of mutations
(including TP53) increased with the number of pack-years.
However, older current smokers, which had a lower muta-
tional load, showed a higher consumption of tobacco (pack-
years). The heavy smokers did not show correlation between
genetic alteration and patient ages, while the mild smokers
showed a higher mutational burden among younger patients.
Therefore, smoking intensity might be not the only factor
affecting the somatic alteration burst detected in younger
patients.

The TP53-mutated subcohort also displayed the concurrent
ongoing accumulation of SI1 along patient aging. SI1 is largely
made up of C>T substitutions at CpG dinucleotides, which are
the results of an endogenous mutational process initiated by
spontaneous deamination of 5-methylcytosine, enzymatic deami-
nation of cytosine or polymerase errors.3–6 The SI3 associated
with failure of DNA double-strand break-repair by homologous
recombination was as well increasing along patient age in the
TP53-mutated subcohort. Recent studies showed that impaired
DNA double-strand break repair contributes to the age-associated

Figure 4. COSMIC signature profiling. (a) COSMIC signature profile of
RBM10 and TP53 genes. (b) KODAMA plot of the COSMIC signature
profiles of genes significantly mutated in LUAD as reported in a
previous study by Campbell et al.1
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rise of genomic instability in humans.40 Meanwhile, although pre-
sent and past smoking is reported in the TP53 wild-type patients,
no correlation between mutational signatures and patient age was
detected. As shown in past studies, the mutational profile of can-
cer cell might reflect the mutational processes operative in aging
in a given tissue.8,41 Therefore, we hypothesized that TP53 wild-
type patients might represent a phenotype with greater DNA sta-
bility, which may confine the ongoing age-related accumulation
of genetic events as well as the increasing mutational burden due
to smoking consumption.

Although previous studies revealed that the number of TP53
mutations are common in noncancerous tissue and accumulate
with age8 and tobacco consumption,16,17,42 we detected an over-
all higher rate of TP53 mutations in younger patients particu-
larly in <50 and 50–60 age groups. TP53 mutations showed a
strong enrichment of smoking related SI4 and aflatoxin related
SI24, both constituted of C>A transversions, indicating guanine
damages that are being repaired by transcription-coupled nucle-
otide excision repair. RBM10 was as well enriched of SI4 and
SI24, but in older patients. Therefore, TP53 and RBM10 seemed
to acquire a particular sensitivity to smoking-related mutations
with contrary tendencies in relation to patient age. Whereas
ATM mutations were enriched in younger patients and mainly
constituted of SI3, while the smoking related SI4 was absent.
ATM encodes a cell-cycle checkpoint kinase that function as a
regulator of p53, and it acts as the apical regulators of the
response to DNA double-strand breaks.43 A recent study44

suggested that ATM mutations may substitute functionally for
TP53 mutations. Past studies16,45,46 showed that purines seem to
be the major target of carcinogens in tobacco smoke and that G:
C>T:A transversions tended to cluster in the TP53 hotspots,
such as codons 157, 158 and 248. Therefore, we hypothesize

that the nucleotide sequence might contribute to determine the
different sensitivity displayed by TP53 and ATM to smoking-
related mutations and we speculate that the secondary DNA
structure might as well have its influence. Furthermore, the
association between chromatin structure and mutation rates
showed striking heterogeneity along the genome. A past study47

detected lower base substitution rates in open chromatin due to
the higher accessibility of DNA repair mechanisms. Although
the transcriptional activity of TP53 might be higher in younger
patients,48 our results showed an increased TP53 mutational
burden. Furthermore, prolonged exposure to cigarette smoke
and oxidants of lung epithelial cells in vitro resulted in marked
temporal changes in histone acetylation and methylation pat-
terns.49,50 Therefore, the relation between the mutational pat-
tern, which might damage different DNA repair systems, and
the chromatin state might drastically change the sensitivity to
smoking-related mutations.

In conclusion, TP53 mutations at a younger age might be a
crucial factor enhancing the sensitivity to smoking-related
mutations leading to a burst of somatic alterations. TP53 itself
showed a higher sensitivity to smoking related C>A mutations
in younger patients. TP53-mutated and TP53 wild-type
patient groups might represent phenotypes which endure
aging-related mutational processes with different strength.
Further studies with larger numbers of individuals of different
ages and diversity of normal tissues are essential to elucidate
the intricate relationship between smoking consumption and
mutational patterns in relation to intrinsic aging processes. A
better comprehension of LUAD tumorigenesis in relation to
patient age might be relevant for cancer prevention and age-
adjusted treatment decisions and should therefore be taken
under closer consideration in future studies.
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