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Abstract

Nonlinear optical spectroscopy has emerged as a powerful tool for the investi-
gation of crystalline solids. Compared to linear approaches, it offers additional
experimental degrees of freedom which grant access to the sample’s symmetry
properties and can provide unique insight into its crystallographic and electronic
structure. Moreover, owing to their higher-order field dependence, nonlinear
techniques often feature improved contrast and sensitivity. These qualities are
particularly useful in the infrared (ir) spectral region as it contains optical phonon
resonances which carry symmetry information themselves and play a key role in
determining a material’s thermal, ir optical, and phase transition properties.

Among nonlinear optical techniques, second-harmonic generation (shg) takes
on a prominent role as the simplest even-order process and, while widely em-
ployed in the visible, has so far not been fully exploited in the ir—mainly due to
the scarcity of suitable laser sources. With access to an ir free-electron laser (fel),
however, it becomes feasible to employ ir shg as a phonon spectroscopy.

This work explores the potential of second-harmonic phonon spectroscopy as
an alternative to more established even-order techniques. To this end, a com-
prehensive ir shg study of the well-known model system α-quartz is performed,
presenting the technique as a highly sensitive tool to study optical phonons in
noncentrosymmetric polar crystals. Through these vibrational resonances, ir shg
can also aptly probe and characterize symmetry changes in a material which is
demonstrated in a temperature-dependent study of quartz’s α–β phase transition.
The implementation of a cryogenic ir shg setup extends the temperature range
of second-harmonic phonon spectroscopy and enables phase transition studies at
low temperatures where it also benefits from decreased phonon damping rates.

Further, second-harmonic phonon spectroscopywas successfully employed in
the characterization of the unique phonon modes emerging in atomic-scale su-
perlatticeswhich cause a distinct dielectric response, highly suitable for nanopho-
tonic device applications.

An attempt to exploit the technique’s sensitivity to structural phase transitions
in multiferroic thin films, revealed fundamental limitations of ir shg posed by
the relatively large ir fel spot sizes and low sensitivity of available ir detectors.
A proof-of-principle fel-based ir-visible sum-frequency generation experiment
shows how these limitations can be lifted while maintaining nonlinear optical
and ir-resonant capabilities.

Overall, this work comprehensively explores the potential of ir shg as a
phonon spectroscopy, showcasing its unique capabilities and identifying its limi-
tations. Perspectives are presented onhow to further develop fel-based nonlinear
optical approaches to which the present work constitutes important groundwork.
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Deutsche Kurzfassung
Die nichtlineare optische Spektroskopie stellt ein mächtiges Werkzeug zur Un-
tersuchung kristalliner Festkörper dar. Ihre zusätzlichen experimentellen Frei-
heitsgrade im Vergleich zu linearen Ansätzen gewähren Zugriff auf Symme-
trieeigenschaften und geben damit einen tiefen Einblick in die kristallographische
und elektronische Struktur der Probe. Aufgrund ihrer starken Feldabhängigkeit
haben nichtlineare Techniken außerdem oft erhöhte Sensitivität. Diese Eigen-
schaften sind besonders im infraroten (ir) Spektralbereich nützlich, da dort optis-
che Phononenresonanzen liegen, die ihrerseits Symmetrieinformationen enthal-
ten und entscheidend für die thermischen, ir-optischen und Phasenübergangs-
eigenschaften eines Materials sind.

Als einfachstemnichtlinearemProzess geraderOrdnungkommtderFrequenz-
verdopplung (shg) eine besondere Rolle zu. Obwohl sie im sichtbaren Spektral-
bereich weit verbreitet ist, wurde sie im ir bisher nicht vollständig erforscht,
was hauptsächlich auf den Mangel geeigneter Laserquellen zurückzuführen ist.
Mithilfe eines ir Freie-Elektronen-Lasers (fels) ist es jedoch möglich, ir-shg als
Phononenspektroskopie anzuwenden.

In dieser Arbeit wird das Potential der shg-Phononenspektroskopie als Al-
ternative zu etablierten Techniken gerader Ordnung untersucht. Dazu wird
eine umfassende ir-shg-Studie des bekannten Modellsystems α-Quarz durchge-
führt, die die Technik als hochempfindlicheMethode zurUntersuchung optischer
Phononen in nichtzentrosymmetrischen polaren Kristallen präsentiert. Darüber
hinaus ist ir-shg gut zur Erfassung und Charakterisierung von Symmetrieän-
derungen anhand von Schwingungsresonanzen geeignet, was in einer tempera-
turabhängigen Studie des α-β-Phasenübergangs von Quarz gezeigt wird. Die
Realisierung eines kryogenen ir-shg-Aufbaus erweitert den Temperaturbereich
der shg-Phononenspektroskopie und erlaubt somit Tieftemperatur-Phasenüber-
gangsstudien, wo sie zudem von verringerter Phononendämpfung profitiert.

Ferner wurde shg-Phononenspektroskopie erfolgreich zur Charakterisierung
hybrider Phononenmoden in Heterostrukturen auf Atomskala eingesetzt. Diese
hybriden Moden rufen eine spezifische dielektrische Respons hervor, die für
nanophotonische Bauelemente von großem Interesse ist.

Ein Experiment zur Untersuchung von Phasenübergängen inmultiferroischen
Dünnfilmen offenbarte grundlegende Limitierungen von ir-shg, die auf die rel-
ativ großen ir-Fokusgrößen und die geringe Sensitivität aktueller ir-Detektoren
zurückzuführen sind. Eine Machbarkeitsstudie zur fel-basierten ir-sichtbaren
Summenfrequenzerzeugung zeigt, wie diese Limitierungen überwunden und
nichtlineare sowie ir-resonante Eigenschaften beibehalten werden können.

Diese Arbeit stellt eine umfassende Untersuchung über das Potential von ir
shg als Phononenspektroskopie dar und zeigt ihre Vorteile undEinschränkungen
auf. Es werden darüber hinaus Perspektiven skizziert, wie fel-basierte nichtlin-
eare optische Ansätze weiterentwickelt werden können, für die diese Arbeit eine
wichtige Grundlage darstellt.
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Chapter 1.

Introduction

The year of writing this thesis, 2020, marks the 60th anniversary of the invention
of the laser—one of the most important landmark discoveries in modern science.
These coherent light sources paved the way for a plethora of technological and
scientific advancements which are now an integral part of everyday life. In the
realm of fundamental research, their unprecedented light intensities famously
enabled the study of nonlinear light-matter interactions, a development from
which the condensed matter branch of physics, but also neighboring fields such
as materials science and surface chemistry benefited greatly.

Especially the emergence of lasers covering infrared (ir) and terahertz wave-
lengths spurred condensedmatter research as the characteristic vibrationalmodes
of molecules, clusters, and solids fall into this spectral range. It is thus often re-
ferred to as the molecular fingerprint region. For crystalline solids, for instance,
collective lattice vibrations, so-called phonons, play a central role in shaping their
thermal, ir optical as well as phase transition properties and are therefore of vital
interest.

For the studyof vibrationalmodes, the qualities of nonlinear optical techniques
can be immensely useful. Their enhanced field dependence as well as inherent
sensitivity to symmetry can provide valuable information in characterizing the
fundamental vibrational properties of the studiedmaterial itself, but also in inves-
tigating the underlying principles of light-matter interactions. Here, the unique
properties of ir free-electron lasers (fels) open up possibilities inaccessible by
any other coherent light source: Their broad wavelength tunability and narrow
bandwidth make them excellent spectroscopic tools while their high peak power
is extremely well-suited for the employment of nonlinear optical approaches.

This work focuses on the exploration of fel-based nonlinear optical techniques
in the mid- to far-ir spectral region for the investigation of polar dielectrics. In
particular, second-harmonic generation (shg)—despite being well-studied and
widely applied in the visible range—has so far not been fully explored in the
ir, mostly due to the scarcity of adequate ir laser sources. Having access to the
fhi fel, however, employing ir shg as a phonon spectroscopy becomes feasible
and could even pose a viable alternative or complement to already established
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Chapter 1. Introduction

techniques, such as Raman scattering or vibrational sum-frequency generation
(sfg) spectroscopy. In this work, the capabilities of second-harmonic phonon
spectroscopy are assessed in a comprehensive study of a well-known model
system before it is applied to study material systems with a high potential for
technological applications: nanophotonic metamaterials and multiferroic films.

The field of nanophotonics, for instance, focuses on the confinement of light
to subdiffractional length scales, circumventing Abbe’s fundamental limit and
thereby enabling novel functionalities like super-resolution imaging or photonic
circuitry. One particularly promising avenue towards these technologies lies in
the coupling of ir light to lattice vibrational modes. The resulting quasiparticle—
the phonon polariton—has recently attracted considerable research interest due
to its intriguing physics and high potential for technological applications.

Multiferroics, on the other hand, exhibit two or more ferroic orders, e.g., fer-
romagnetism and ferroelectricity, in one material. Individually, these material
properties are already widely used in data storage devices as well as in sensors
and actuators. Combining multiple ferroic orders in a single phase, however,
opens up technological opportunities for multifunctional, miniaturized, or more
energy-efficient devices. Here, the underlying symmetries which vibrational
modes are highly sensitive to, play a crucial role in determining their functional-
ities. In this sense, the present work positions itself at the intersection between
the development of novel nonlinear optical approaches with an ir fel and the
investigation of highly relevant materials in today’s research landscape.

In order to provide the necessary background, this introductory chapter (Ch. 1)
is followed by a brief historical and conceptual overview of second-order non-
linear phenomena and techniques (Ch. 2). Here, three prominent studies are
presented, each highlighting a specific aspect of nonlinear optical spectroscopy
and the unique insights it can provide. Moreover, two specific examples of non-
linear ir spectroscopy are shown which are of particular relevance to the present
work.

In Ch. 3, a theoretical framework for the description of nonlinear light-matter
interactions is established with a particular focus on second-order effects, de-
scribed by means of the second-order nonlinear susceptibility tensor, "(2). Most
nonlinear techniques, however, are also strongly affected by linear effects. For this
reason, Sec. 3.2 is dedicated to the description of the linear dielectric function,
�($), and specifically to its dispersive behavior at and around phonon resonances
in the ir spectral region. In anisotropic materials, this resonant behavior can give
rise to hyperbolicity, a currently very actively investigated phenomenon in the
field of nanophotonics which is also discussed in this section. Lastly, the ir res-
onant behavior in second-order nonlinearities is described in Sec. 3.3. Here, the
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involvement of anharmonic lattice parameters is explicitly discussed as they grant
quantitative access to phonon-phonon interactions.

The experimental realization of spectroscopic ir shg as well as ir-visible sfg
is described in Ch. 4, starting with the working principle of fels as well as the
specifics of the facility used in this work, the fhi fel (Sec. 4.1). Secs. 4.2 and
4.3 deal with the experimental setups themselves. Lastly, technical details on
sample temperature control for both, high- and low-temperature measurements
are given, facilitating phase transition studies.

In Ch. 5, a comprehensive ir shg study of the model oxide α-quartz is pre-
sented. This first demonstration of second-harmonic phonon spectroscopy in a
multimode system comprises a thorough analysis of ir shg spectra and azimuthal
dependencies at room temperature as well as a study of quartz’s α–β phase
transition and its signatures in the temperature-dependent ir second-harmonic
response. Moreover, shg spectra have been obtained at cryogenic temperatures,
showcasing the benefits, but also technical limitations of low-temperature second-
harmonic phonon spectroscopy. For an accurate analysis of the low-temperature
spectra, the ir dielectric function of α-quartz between 1.2K and 200K was deter-
minedusing ir reflectance spectroscopy. Notably, its low-temperature irdielectric
function has not been published in the literature prior to this work, but revealed
remarkably small damping rates in α-quartz’s hyperbolic bands, presenting it as
an attractive material system for nanophotonic applications.

The aspect of hyperbolicity is again picked up in Ch. 6where second-harmonic
phonon spectroscopy is employed for the characterization of a novel nanopho-
tonic metamerial. These so-called crystalline hybrids are composed of atomically
thin layers of standard semiconductor materials and exhibit unique vibrational
properties through the emergence of hybrid phononmodes. Those are aptly char-
acterized using ir shg and exhibit a strong dependence on the semiconductors’
layer thicknesses, resulting in a tunable dielectric response and pronounced hy-
perbolic bands. Overall, crystalline hybrids are presented as a versatile platform
for engineered nanophotonic metamaterials.

Attempting to exploit the intrinsic symmetry sensitivity of ir shg, Ch. 7
presents a study of structural phase transitions in multiferroic thin films. These
experiments, however, reveal a fundamental disadvantage of second-harmonic
phonon spectroscopy as an all-ir technique, namely the relatively large laser spot
sizes which become a limiting factor when investigating sub-micrometer struc-
tures, such asmultiferroic domains. To overcome this limitation, Ch. 8 discusses a
proof-of-principle fel-based ir-visible sfg generation experiment. Here, it is the
visible component limiting the spatial resolution while the ir-resonant behavior
is maintained. Lastly, an outlook towards future ir-visible sfg experiments is
given, including an imaging microscopy approach.
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Chapter 2.

Second-Order Nonlinear Optics
Concept

“Physics would be dull and life most unfulfilling if all physical
phenomena around us were linear. Fortunately, we are living in a
nonlinear world. While linearization beautifies physics,
nonlinearity provides excitement in physics.”

Yuen-Ron Shen, The Principles of Nonlinear Optics

This introductory chapter discusses the concepts and ideas behind nonlinear
spectroscopy on a fundamental level. This includes a brief history of the field of
nonlinear optics aswell as examples of howspectroscopists harness its capabilities
in different areas of scientific research today. In order to put the present work into
its scientific context, an emphasis is put on second-order processes which—as the
lowest-order nonlinearities—take on a prominent role in nonlinear spectroscopy
due to their relative simplicity and useful symmetry properties. Exploiting these
features is a central aspect of the research presented in this thesis.

2.1. A Brief Introduction to Nonlinear Optics

Spectroscopy is the study of the interaction between light andmatter. Under low-
light conditions, such interactions scale linearly with intensity. One macroscopic
physical quantity essential to light-matter interaction is the electric polarization
induced in the medium, P, which in linear optics is assumed to be proportional
to the electric field strength of the applied light, E [1]:

P = �0"E, (2.1.1)

where �0 is the free-space permittivity and " the medium’s electric susceptibility.
As light intensity increases, however, a plethora of new optical phenomena arise
which no longer depend linearly on the intensity of light. These nonlinear optical
effects—caused by the interplay of intense light with matter—form the basis of
nonlinear spectroscopy.
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Chapter 2. Second-Order Nonlinear Optics – Concept

Figure 2.1. First demonstration of optical second-harmonic generation. In 1961,
Franken et al. let a ruby laser beam at 6942 Å propagate through a quartz crystal and ob-
served ultraviolet radiation at 3471 Å [4]. In the original publication, however, no dot at
the second-harmonic frequency was visible as it was erased by a journal technician who
mistook it for a dust spot [10]. Reproduced from Ref. 4.

In 1960, Theodore H. Maiman demonstrated the first working laser [2] (based
on theoretical groundwork laidout byArthur L. SchawlowandCharlesH.Townes
two years earlier [3]) and thereby provided a light source of unprecedented in-
tensity, triggering a series of landmark discoveries: In 1961, Peter A. Franken et
al. famously reported the first optical shg in quartz (see Fig. 2.1) [4], giving birth
to the field of nonlinear optics. Shortly after—within less than two years—first
demonstrations of optical sfg [5], third-harmonic generation [6], optical rectifica-
tion [7], and difference-frequency generation [8, 9] followed.

These newly discovered nonlinear phenomena could no longer be described
by the linear nature of Eq. 2.1.1 and required an adjustment in form of a power
series expansion which allowed higher-order momenta of the electric field, E, to
be taken into account [11, 12]:

P = �0

(
"(1) · E + "(2) : EE + "(3) : EEE + · · ·

)
. (2.1.2)

Here, "(=) denotes the =th-order electric susceptibility and is a (= + 1)th order
tensor. The essence of nonlinear optics is well captured by the tensorial char-
acter of "(=) as it represents the involvement of multiple light fields for = ≥ 2
and reflects symmetry properties of the nonlinear medium. This enables non-
linear processes to reveal additional information about the medium’s electronic
structure, inaccessible by means of linear optics.

Early applications of nonlinear optics include frequency-doubling, mode-
locking [13], and &-switching [14] which fueled the development of tunable
and pulsed narrow-linewidth lasers in the 1970s [15]. This, in turn, provided
spectroscopists with the necessary tools to benefit from the possibilities that non-
linear optics offers to various scientific disciplines, including physics, chemistry,
biology, and material science.
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2.2. Second-Order Microscopy and Spectroscopy

2.2. Second-Order Microscopy and Spectroscopy

Today’s scientific landscape exhibits a wide range of highly relevant use cases
for nonlinear optical techniques. Prominent examples include second-harmonic
imaging of biological tissue [16–18], surface-specific ir microscopy using sfg
[19, 20] aswell as the generationof terahertz transients—aprocess basedonoptical
rectification [21]. In the following, we shall showcase three example studieswhich
take advantage of key concepts in nonlinear optics, such as symmetry sensitivity
and resonant enhancement.

Figure 2.2. Second-order microscopy and spectroscopy. A: A whitelight (le�) and
SHGmicroscopy image (right) of a MoS2 sample exhibiting monolayers (1L), trilayers (3L),
and folded bilayers (A, B, C). The SHG microscopy image can distinguish between the
di�erent stacking orders associated with the three folding orientations A, B, and C. B:
Temperature-dependence of two χ(2) tensor elements and topography of the antiferro-
magnetic spin structures (insets), indicating phase transitions at TN and TR. C: IR-visible
SFG spectra of a CCl4/OTS/quartz (squares), a hexadecane/OTS/quartz (triangles), and a
bare hexadecane/quartz interface (dashed line), showcasing surface-specific SFG vibra-
tional spectroscopy. Reproduced from Refs. 22–24, respectively.

In their 2014 study, Jiang et al. investigated molybdenum disulfide (MoS2)
bilayers by folding exfoliated monolayers in an origami-like fashion [22]. De-
pending on the folding orientation, the MoS2 bilayers take on various stacking
orders which—due to their different symmetry structures—cause contrasting
nonlinear responses as revealed by optical shg microscopy (Fig. 2.2a). Here, the
authors exploited the second-order technique’s intrinsic sensitivity to symmetry

7



Chapter 2. Second-Order Nonlinear Optics – Concept

to monitor the folded bilayers’ various stacking orders which, interestingly, lead
to strongly modified and tunable band structures [22].

In general, the behavior and performance of functional materials are often
closely linked to their symmetry properties, promoting second-order techniques
to be valuable tools to assess their properties and capabilities. In this context,
Fiebig et al. famously introduced visible shg microscopy as a potent tool to
study complex magnetic structures using hexagonal manganites as an example
[23]. These compounds enter an antiferromagnetic phase at their magnetic or-
dering (Néel) temperature, )n, which is always accompanied by a violation of
time-reversal symmetry, leading to a nonzero second-order susceptibility, "(2).
Utilizing shg microscopy, Fiebig et al. were able to determine the Néel tempera-
ture of HoMnO3 to be )n = 72 K due to an onset of the integrated shg signal as
shown in Fig. 2.2b. Moreover, by purposefully choosing an appropriate measure-
ment geometry, the authors could infer the specific spin structure in HoMnO3’s
antiferromagnetic phase [23]. In doing so, they also revealed a second phase
transition at )r = 41 K, involving a spin reorientation—as indicated by a change
in the contributing "(2) tensor element—as well as a topographical change in the
antiferromagnetic domain structure (see insets of Fig. 2.2b).

Moreover, second-order optical techniques’ sensitivity to symmetry—and in
particular to symmetry breaking—allows to selectively interrogate surfaces and
interfaces where the inversion symmetry is inevitably violated. This has been
demonstrated by the group of Yuen-Ron Shenwho employed ir-visible sfg vibra-
tional spectroscopy to investigate octadecyltrichlorosilane (ots) surfactant mono-
layers at buried interfaces [24].1 Fig. 2.2c shows the vibrational sfg spectra of
CCl4/ots/(amorphous) quartz, hexadecane/ots/quartz as well as bare hexade-
cane/quartz (without an ots layer) interfaces. Despite hexadecane’s strong bulk
absorption in this spectral range, the sfg spectra at the hexadecane and CCl4
interfaces appear nearly identical. This indicates that, in fact, only the interface is
probed and that the bulk contribution of hexadecane is negligible. Additionally,
sfg from the bare hexadecane/quartz interface without an ots layer has been
measured, showing no significant spectral features. These results confirm that
the sfg signal originates exclusively from the ots monolayer and demonstrates
the technique’s surface specificity.

Notably, this demonstration triggered a great number of follow-up studies,
making ir-visible sfg one of the most well-established surface spectroscopies to
date with a wide scope of applications. These include, for instance, probing
of liquid/liquid interfaces [27], chemical imaging [28], following ultrafast vibra-
tional dynamics at aqueous interfaces [29] as well as surface phonon probes in

1 The sfg study of ots was preceded by two studies on C–H stretch modes in methanol and pentadecanoic
acid, also performed by the Shen group [25, 26]. These studies were, in fact, the first demonstrations of sfg
vibrational spectroscopy.
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2.3. Infrared Second-Order Spectroscopy of Polar Dielectrics

polar dielectrics [30, 31]. Furthermore, second-order techniques also present a
powerful tool for studying the bulk properties in polar dielectrics. Thereto, the
following section highlights two important examples, highly relevant to the work
presented in this thesis.

2.3. Infrared Second-Order Spectroscopy of Polar Dielectrics

Here, two case studies of ir second-order nonlinear spectroscopy are presented.
They generally aim to acknowledge the importance to their respective fields, but
also constitute important pioneer work for this thesis.

Sum-Frequency Phonon Spectroscopy of α-Quartz

In 2008—20 years after their often-cited study on buried ots monolayers (see
Fig. 2.2c)—the research group of Yuen-Ron Shen published two back-to-back
articles in which the authors promote ir-vis sfg spectroscopy to investigate vi-
brational modes in the inversion-broken single crystal α-quartz. While one study
utilized the experimental degrees of freedom provided by the second-order tech-
nique to isolate the sfg signal originating from the surface of the polar dielectric
[30], the other comprehensively explores sfg vibrational spectroscopy as a probe
of its bulk phonon properties [32].

Figure 2.3. IR-visible SFG phonon spectroscopy of α-quartz. A: SFG phonon spectra
in the spp polarization geometry at various azimuthal angles, φ0. B: Azimuthal depen-
dence of the SFG signal in the same polarization geometry at the three observed reso-
nance frequencies. Reproduced from Ref. 32.

9



Chapter 2. Second-Order Nonlinear Optics – Concept

In the latter, the authors present ir-vis sfg spectra in α-quartz’s Reststrahlen
region [32]. Fig. 2.3a shows the B?? spectra (denoting B-, ?-, and ?-polarized
sfg output, visible input, and ir input, respectively) which feature three clear
peaks at zone-center transversal optical (to) phonon frequencies. Furthermore,
by measuring the sfg signal as a function of the sample’s azimuthal angle, a
distinct anisotropy pattern—closely linked to the crystal symmetry—is revealed
(Fig. 2.3b). With the aidof a theoreticalmodel, the authorsfit both, the spectral and
azimuthal dependencies of the sfg intensities, and extract resonant characteristics
of the observed phonon modes, such as resonant amplitudes and damping rates
[32]. Overall, the work presents the second-order nonlinear optical technique as
a capable tool to study the vibrational as well as symmetry properties of polar
dielectrics with broken inversion symmetry. This thesis largely focuses on the
investigation of this material class by means of the closely related technique ir
shg. The following example deals with the latter in particular.

Infrared Second-Harmonic Generation Spectroscopy

Notably, ir second-order spectroscopies have largely focused on sfg rather than
shg, despite the fact that both techniques access very similar symmetry and
resonance properties. In fact, the very first demonstration of ir second-order
spectroscopy used shg [33]. However, it was soon realized that sfg holds several
technical advantages over shg, such as detector sensitivity and availability of
suitable ir lasers. As a consequence, ir shg received considerably less attention
in the scientific community during the past two decades. However, one important
ir shg study ofGaAs by Fritz Keilmann’s group [34] showed that ir shg can access
additional information which link back to fundamental properties of the crystal
and higher-order lattice forces.

Fig. 2.4 shows the experimental data. The spectrum exhibits a clear maximum
around 4.5 THz—close to half the tophonon frequency ofGaAs. Theminimumat
approximately 5.3 THzmarks the zero-crossing of the second-order susceptibility,
"(2)($), and indicates a cancellationof its ionic andelectronic contributions. Based
on these results and through appropriate modeling of the "(2)($) dispersion as
well as linear dispersion effects,2 the authors were able to infer relative weights of
the contributingmechanisms to the second-order susceptibility [34]. In particular,
the results indicate a significantly larger relative contribution from a third-order
lattice potential anharmonicity compared to a second-order lattice dipolemoment
than previously predicted by theory [35].

It is clear that the full potential of ir shg has never been exploited—mainly due
to the restricted access to suitable laser sources. It is onemajor goal of this work to

2 Model descriptions for both, linear and second-order nonlinear optical effects—specifically, the "(2) disper-
sion model applied here—will be discussed in further detail in Ch. 3 of this thesis.
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2.3. Infrared Second-Order Spectroscopy of Polar Dielectrics

Figure 2.4. Terahertz SHG spectrum of GaAs. The second-harmonic signal is reso-
nantly enhanced at half the TO phonon frequency of GaAs. A minimum is observed at
5.3 THz and marks the zero-crossing of χ(2)(ω). Reproduced from Ref. 34.

fully explore its capabilities and limitations, using α-quartz as the primarymodel
system. For a proper theoretical framework, the following chapter will lay out
the theoretical descriptions of linear and nonlinear optical effects, specifically for
polar dielectrics in the ir spectral range.
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Chapter 3.

Infrared Second-Order Spectroscopy
Theory

This chapter lays out the theoretical framework for describing second-order non-
linear optical effects. This involves linear and nonlinear processes, both of which
play a significant role in nonlinear spectroscopy. A particular focus is put on po-
lar dielectrics in the mid-infrared (mir) wavelength region where optical phonon
resonances dominate all optical phenomena.

Sec. 3.1 establishes a general theoretical framework for nonlinear optics. Here,
the interaction of light with matter is divided into two basic processes. First,
an external electric field, E, induces an electric polarization, P, in the medium.
This is described by the so-called constitutive equation, relating E to P (Sec. 3.1.1)
via the nonlinear susceptibility (Sec. 3.1.2). Secondly, the induced polarization
itself—now acting as a source—causes the emission of a secondary electric field,
Eem, following Maxwell’s electromagnetic theory (Sec. 3.1.3).

Sec. 3.2 covers optical effects within the linear response limit. Those are
fully described by the medium’s complex dielectric function, �, which directly
relates to "(1) (Sec. 3.2.1). The dielectric function governs all linear optical effects,
such as absorption, transmission, and reflection. Also, in anisotropic media, the
interplay of different dielectric responses can cause unusual phenomena, such as
hyperbolicity which is discussed in Sec. 3.2.2. A complete derivation of Fresnel’s
transmission and reflection tensors for uniaxial crystals is given in Sec. 3.2.3.

Finally, in Sec. 3.3, the second-order nonlinear response of a medium in the
proximity of resonances is discussed. To illustrate the origin of resonantly en-
hanced nonlinearities—leading to, e.g., enhanced shg and sfg—the classical an-
harmonic oscillator is introduced as a simple, yet instructive, microscopic model
(Sec. 3.3.1). Secondly, and more concretely, Sec. 3.3.2 treats the dispersion of the
second-order nonlinear susceptibility, "(2), at and around optical phonon reso-
nances.
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Chapter 3. Infrared Second-Order Spectroscopy – Theory

3.1. Basics of Nonlinear Optics

A large number of nonlinear optical phenomena—including optical harmonic
generation and wave mixing—can be conveniently and accurately described
within the theoretical framework of a semi-classical approachwhere themedium,
composed of atoms and molecules, is treated in a quantum mechanical fashion,
whereas the optical fields are described by Maxwell’s classical theory [1]. In
this section, we introduce the tensor formalism of multiple orders of electrical
susceptibilities as well as the nonlinear coupled wave equations.

The theoretical groundwork that follows, largely draws from Guang S. He’s
and Song H. Liu’s “Physics of Nonlinear Optics” [1] and Yuen-Ron Shen’s “The
Principles of Nonlinear Optics” [36] as well as the author’s master’s thesis [37].

3.1.1. Optical Field-Induced Electric Polarization

The action of an external electric field, e.g., by means of laser radiation, on a
dielectricmedium causes a separation of its bound electric chargeswith respect to
the equilibrium state. These charge separations—on a microscopic level—can be
expressed in terms of the induced electric dipole moments, p, which collectively
form a macroscopic polarization, P:

P(C) =
#∑
8=1

p8(C), (3.1.1)

where # denotes the number of microscopic dipoles per unit volume. If the
external electric field is that of an electromagnetic wave, E(r, C), both, p8 and
P, are generally also functions of position and time. Under the electric dipole
approximation, however, i.e., assuming that the wavelength of E(r, C) is much
larger than the atomic radii in themedium,we canneglect the spatial dependence,
thus E(r, C) = E(C) and P(r, C) = P(C). By the principle of causality, P(C) must be a
function of E(C). In order to establish this relationship, we can express P(C) as a
power series:

P(C) = P(1)(C) + P(2)(C) + P(3)(C) + · · · + P(=)(C) + · · · , (3.1.2)

where the =th-order term is assumed to be a function of the =th power of E(C)
and reads [1, 38]:

P(=)(C) = �0

∞∫
−∞

dC1

∞∫
−∞

dC2 · · ·
∞∫

−∞

dC= '(=)(C1, C2, · · · , C=) : E(C − C1)E(C − C2) · · ·E(C − C=).

(3.1.3)
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3.1. Basics of Nonlinear Optics

Here, '(=)(C1, C2, · · · C=) represents the =th-order polarization response function of
themediumanda tensor of rank (=+1). The timedependence ofE(C−C1) toE(C−C=)
is due to the fact that the medium’s response is generally not instantaneous and
depends on the relative timing with respect to the applied field and not on the
absolute time. Also, per causality principle, '(=) must be zero for C1 to C= < 0.

If we assume our external light field to be a monochromatic plane wave at
frequency $, the Fourier transform of E(C) and P(C), respectively, simplifies to:

E(C) =
∞∫

−∞

d$′E($′) e−i$′C�($ − $′) = E($) e−i$C , (3.1.4a)

P(=)(C) =
∞∫

−∞

d$′P(=)($′) e−i$′C�($ − $′) = P(=)($) e−i$C . (3.1.4b)

Applying Eqs. 3.1.4a and 3.1.4b to 3.1.2 and 3.1.3 then leads to:

P($) = �0
[
"(1)($1) · E($1)
+"(2)($1,$2) : E($1)E($2) + · · ·
+"(=)($1,$2, · · · ,$=) : E($1)E($2) · · ·E($=) + · · ·

] (3.1.5)

Here, "(=)($1,$2, · · · ,$=) is the =th-order electric susceptibility tensor and es-
tablishes the fundamental relation between the =th-order induced polarization
and the electric field components, $= , in the frequency domain. Notably, in an
experimental context, E($1), · · · , E($=) represent the local fields which are subject
to transmission from air into the medium. This linear process is described by the
Fresnel transmission tensor which will be derived and discussed in Sec. 3.2.3.

Like the time domain response function, '(=), "(=) is a rank (= + 1) ten-
sor. Some general symmetry properties, specific to second-order susceptibili-
ties, "(2), are discussed in the upcoming section. Generally, time and frequency
domain descriptions of optical nonlinearities are equivalent. However, using
time-dependent response functions can be more convenient for certain types of
problems, e.g., those involving short laser pulses or a non-instantaneous response
of the medium. Frequency-dependent susceptibility tensors, on the other side,
are particularly useful when describing instantaneous processes far from atomic
andmolecular transitions with quasi-monochromatic light [39]. Within the semi-
classical framework, the essential issue in both pictures is to find an expression
for the nonlinear polarization in the form of the so-called constitutive equation,
e.g., Eq. 3.1.5, which, in turn, acts as a source term for the re-emitted light field,
following Maxwell’s equations.
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Chapter 3. Infrared Second-Order Spectroscopy – Theory

3.1.2. Second-Order Nonlinear Susceptibility Tensor

As stated by the frequency-domain constituitive equation (Eq. 3.1.5), the non-
linear susceptibility, "(=), connects the external electric fields with the induced
polarization. Here, we shall take a particular interest in the lowest-order nonlin-
earity, described by "(2). This second-order susceptibility mathematically takes
the form of a third-rank tensor, comprising 33 = 27 elements. The tensor product
in the second-order nonlinear polarization term, P(2)($), then yields the following
components which in summation form read:

%
(2)
8
($ = $1 + $2) = �0

∑
9:

"(2)
8 9:
($1,$2)� 9($1)�:($2) (3.1.6)

where indeces 8, 9, : denote the Cartesian coordinates, G, H, I. In the following,
some basic properties of second-order susceptibilities are discussed.

Spatial Symmetry

As an optical property of themedium, the susceptibility tensor should also reflect
the medium’s structural symmetry. Specifically, if a medium, e.g., a crystal, is
invariant under a certain set of symmetry operations, {S}, its "(2) tensor should
consequently also remain unchanged under these operations. Each symmetry
operation, S, then yields the expression [36]:(

î · S†
)
· "(2) :

(
S · ĵ

) (
S · k̂

)
= "(2)

8 9:
, (3.1.7)

where î, ĵ, k̂ denote unit vectors along the Cartesian coordinates. Such symmetry
considerations can greatly simplify the "(2) tensor. For instance, in the case of
inversion symmetry, i.e., the highest symmetry operation, with S · ê = −ê, it
is apparent from Eq. 3.1.7 that "(2)

8 9:
= −"(2)

8 9:
= 0 [36]. This implies that under

the electric dipole approximation, no second-order—or, in fact, any even-order—
optical effect can occur in centrosymmetric media. However, even for inversion-
broken crystals, often only few non-zero tensor elements remain. A (nearly)
complete list of symmetry classes and their corresponding independent, non-
zero "(2) tensor elements can, e.g., be found in Ref. 36.

Permutation Symmetry

A general symmetry relation for "(2)
8 9:

can be directly drawn from Eq. 3.1.6. As the
order in which the product of the electric fields, � 9($1)�:($2), is carried out does
not physically affect the induced polarization, we can deduce the so-called intrin-

sic permutation symmetry: "(2)
8 9:

remains unchanged under permutation of the
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3.1. Basics of Nonlinear Optics

indeces 9, : if the respective frequency arguments are interchanged accordingly:

"(2)
8 9:
($1,$2) = "(2)

8: 9
($2,$1). (3.1.8)

This permutation invariance can be generalized to any higher-order susceptibility
[38]. In the special case of shg where the electric fields are indistinguishable
($1 = $2), the more general equality "(2)

8 9:
= "(2)

8: 9
holds true and can heighten

symmetry in the "(2) tensor, thus further reducing the number of independent
entries.

3.1.3. Maxwell’s Equations in Nonlinear Media

While the induced polarization is determined by the nonlinear susceptibility, the
subsequent formation of electromagnetic fields is governed byMaxwell’s famous
set of differential equations. For non-magnetic and dielectric media, they read
[40]:

∇ × E(r, C) = −�0
%H(r, C)

%C
, (Faradays’s law) (3.1.9a)

∇ ×H(r, C) = �0
%E(r, C)
%C

+ %P(r, C)
%C

. (Ampére’s law) (3.1.9b)

Here, H(r, C) denotes the magnetic field intensity, �0 and �0 the free-space perme-
ability and permittivity, respectively. Applying a Fourier transform, and the ∇×
operation on both sides, Eq. 3.1.9a gives:

∇ × ∇ × E(r,$) = ∇ × [i$H(r,$)] . (3.1.10)

Substituting Eq. 3.1.9b then leads to:

∇ × ∇ × E(r,$) = $2�0 [�0E(r,$) + P(r,$)] . (3.1.11)

In this equation, P(r,$) can be understood as a source term for the emission of an
electric field, Eem(r,$), and can be split into its linear and nonlinear components,
P(1)($) and Pnl($), respectively (cf. Eq. 3.1.5):

P($) = P(1)($) + Pnl($). (3.1.12)

For the linear component, depending on "(1)($) only, we invoke the dielectric
function, �($):

�($) = �0
[
1 + "(1)($)

]
, (3.1.13)
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Chapter 3. Infrared Second-Order Spectroscopy – Theory

which then leads to the so-called nonlinear wave equation:

∇ × ∇ × E($) − �0$
2�($)E($) = �0$

2Pnl($). (3.1.14)

In the linear regime, i.e. for sufficiently weak incident fields, we can assume
the nonlinear contribution to be negligible: Pnl($) ≈ 0. In this case, Eq. 3.1.14
reduces to a linearwave equation and the optical response of the medium is fully
described by its dielectric function, �($). The following section (Sec. 3.2) further
discusses the linear response regime.

If, on the other hand, the incident field is that of an intense light source, such
as that of a laser, Pnl($) must be considered and Eq. 3.1.14 becomes a nonlinear
differential equation. Here, the higher-order terms in Pnl($)—involvingmultiple
E-fields—introduce new frequency components. For example, a second-order
nonlinear process caused by two external fields, E($1) and E($2), which can be
expressed through their inverse Fourier transform (cf. Eq. 3.1.4a) [1]:

E($) = 1
2�

∞∫
−$

dCE(C)ei$C , (3.1.15)

creates additional frequency components at $ = $1 + $2, $1 = $ − $2, and
$2 = $ − $1:

P(2)($ = $1 + $2) = �0"
(2)($1, $2)E($1)E($2), (3.1.16a)

P(2)($1 = $ − $2) = �0"
(2)($ ,−$2)E($)E∗($2), (3.1.16b)

P(2)($2 = $ − $1) = �0"
(2)($ ,−$1)E($)E∗($1). (3.1.16c)

Here, the complex conjugate of E($) = E∗(−$) has been used [1]. Substituting
Eqs. 3.1.16a–3.1.16c into the nonlinear wave equation 3.1.14 creates a set of three
coupled differential equations that can, in principle, be solved for E($), E($1),
and E($2).

3.2. Infrared Linear Optical Response

In section 3.1.3, we have introduced the dielectric function, �($), as the physical
quantity that governs all linear phenomena in an optical medium, such as refrac-
tion, reflection, and absorption. This section specifically deals with the dielectric
response of a solid in the ir spectral regionwhere optical phonon resonances dom-
inate its dispersion (Sec. 3.2.1). Anisotropic materials combine different dielectric
responses along the principal axes which may lead to remarkable material prop-
erties such as hyperbolicity (Sec. 3.2.2). Finally, a complete derivation of reflection
and transmission coefficients for uniaxial crystals is given (Sec. 3.2.3), allowing
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the calculation of local fields. These—as further discussed in Sec. 3.2.3—play a
significant role in both, linear and nonlinear optical experiments.

3.2.1. Infrared Dielectric Function

Thedielectric functiondescribes amedium’s linear response to an external electric
field and is defined by Eq. 3.1.13. More specifically, �($) acts as a proportionality
factor, connecting the external electric field, E($), with an electric displacement
in the medium, D($) = E($) + P($) = �($)E($). For nonresonant interactions,
�($) is a purely real quantity and relates to the refractive index via =2 = �. In
the presence of material resonances, however, an imaginary component arises,
representing absorption losses [41]:

�($) = �1 + i�2. (3.2.1)

Here, �1 and �2 denote the real and imaginary part of the dielectric function,
respectively. In this section, we discuss the dispersion of �($) in the so-called
Reststrahlen region of polar crystals, i.e., themir spectral rangewhere optic phonon
resonances determine the dielectric response.

Generally, the dielectric response is determined by resonant excitations in the
material. These resonant contributions can range from lattice vibrations in the
mir (∼1013Hz) to electronic resonances in the visible range (∼1015Hz). When
considering the mir spectral range—well below any electronic resonances—�($)
can be expressed as:

�($) = 1 + "∞ + "ion($), (3.2.2)

where "∞ contains the non-resonant electronic and "ion($) the resonant ionic,
i.e., optical phonon contributions. An expression for the latter can be derived
from a simple one-dimensional damped oscillator model [42]. Here, a harmonic
electric field, �(C), excites a harmonic oscillator with mass <, charge 4, damping
�, and resonance frequency $to. The equation of motion then reads [42]:

< ¥G + <� ¤G + <$2
toG = 4�1 e−i$C . (3.2.3)

The subscript to indicates the transversal optical mode which can couple to a
transverse electric field. Solving Eq. 3.2.3 with the standard Ansatz G = G0 e−i$C

yields [42]:

G =
4

<

�1e−i$C

$2
to − $2 − i�$

. (3.2.4)

With the induced polarization written as:

% = #4G, (3.2.5)
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Chapter 3. Infrared Second-Order Spectroscopy – Theory

where # denotes the number of harmonic oscillators per unit volume, and
Eqs. 2.1.1 and 3.2.2, we can express �($) as [42]:

�($) = �∞ +
(
#42

<�0

)
︸ ︷︷ ︸
≡(

1(
$2

to − $2 − i�$
) , (3.2.6)

where �∞ = 1 + "∞. As indicated in Eq. 3.2.6, it is often useful to replace the
term #42/<�0—acting as a response strength in a microscopic picture—by a
generalized macroscopic oscillator strength, (. This oscillator strength, in turn,
can be treated as a dimensionless parameter, e.g., when fitting experimental
data, or calculated using a quantum mechanical model. According to Maxwell’s
equations, longitudinal modes mark the zero-crossings of the dielectric function
[43]. Therefore, if we consider the real part of Eq. 3.2.6, we can identify the
zero-crossing of Re �($) at $LO as the longitudinal optical (lo) mode frequency
[42]:

$2
lo = $2

to +
(

�∞
. (3.2.7)

Solving the above expression for ( and substituting into Eq. 3.2.6 then yields the
classical Lorentz model of the dielectric function:

�($) = �∞

(
1 + $2

lo − $2
to

$2
to − $2 − i�$

)
. (3.2.8)

Evaluating the low-frequency limit, �(0), of Eq. 3.2.8 directly leads to the well-
known Lydanne-Sachs-Teller relation [44]:

�(0)
�∞

=
$2

lo
$2

to
. (3.2.9)

Fig. 3.1 shows real and imaginary parts of the dielectric function of a single-
mode polar crystal with finite damping in the Reststrahlen region (Eq. 3.2.8)
together with its reflectivity, ', under normal incidence which reads:

' =

�����
√
�($) − 1√
�($) + 1

�����2 . (3.2.10)

Upon inspection of Eq. 3.2.8 and Fig. 3.1a, it is apparent that Re [�($)] takes on
negative values for $to < $ < $lo. This spectral region—often referred to as the
Reststrahlen band—plays a particular role in the field of ir spectroscopy [45, 46].
Here, the polarization in the crystal is in antiphase with the driving field, causing
a screening of the radiation. As a result, light propagation in the crystal is strongly
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3.2. Infrared Linear Optical Response

suppressed and reflectivity close to unity (see Fig. 3.1b). Im [�($)] peaks at $to
where light couples to the to mode and is absorbed. At the low-frequency limit
($ = 0), and the high-frequency limit ($→∞), �($) converges towards �(0) and
�∞, respectively.
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Figure 3.1. Dielectric function near an optical phonon resonance. A: Between cor-
responding TO and LO phonon frequencies, ωTO and ωLO, respectively, the real part of the
dielectric function, ε1, is negative (blue shade), leading to a strongly attenuated wave in-
side the material. B: This results in a region of near-perfect reflectance, the so-called Rest-
strahlen band (red shade).

A common generalization of the classical oscillator dispersion (Eq. 3.2.8) is the
summation over an arbitrary number of oscillator modes [42]:

�($) = �∞
©­«1 +

∑
9

$lo2
9
− $to2

9

$to2
9
− $2 − i�9$

ª®¬ , (3.2.11)

where the index 9 labels the 9th oscillator mode. If we consider the undamped
case, � = 0, it is clear that the dielectric response in Eq. 3.2.11 has poles at all $to 9 ,
and—as per definition—crosses zero at all $lo 9 .

For this reason, it is suitable to use a factorized form of the dielectric function
[47]. Such a formula is given by the four-parameter semiquantum (fpsq) model
[48–51] which adjusts for zero-crossings (poles) of each mode by zeros in its
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respective factor’s numerator (denominator). It reads:

�($) = �∞
∏
9

$lo2
9
− $2 + i�lo 9$

$to2
9
− $2 − i�to 9$

. (3.2.12)

Notably, this formula accounts for independent damping rates for to and lo
oscillation modes, �to 9 and �lo 9 , respectively, whereas the classical dispersion
assumes a single shared �. In fact, for a single vibrational mode (9 = 1), the
identity of Eqs. 3.2.8 and 3.2.12 yields �to = �lo [43].

With the aid of either the classical oscillator (Eq. 3.2.11) or the fpsq model
(Eq. 3.2.12), it is in principle possible to predict all linear optical effects in the
Reststrahlen region for multimode systems. In anisotropic crystals, the dielectric
function mostly takes the form of a diagonal second-rank tensor—exceptions
being the monoclinic and triclinic crystal families—with generally independent
entries along all three principal axes, each of which yields a different dispersion
behavior:

�($) =
©­­­«
�GG($) 0 0

0 �HH($) 0
0 0 �II($)

ª®®®¬ . (3.2.13)

The interplay of multiple independent dielectric components may give rise to
intriguing effects and phenomena. One that has recently attracted particular
interest in the photonics community [52] is discussed in the following section.

3.2.2. Hyperbolicity

Hyperbolicity describes the joint occurrence of both, positive and negative real
parts of the principal dielectric components in a givenmaterial and spectral range.
For the sake of simplicity, we here consider uniaxial crystals which reduces the
dielectric tensor to its in-plane and out-of-plane components, �⊥ = �GG = �HH and
�‖ = �II , respectively (cf. Eq. 3.2.13). The hyperbolicity condition then reads:

Re �⊥ · Re �‖ < 0. (3.2.14)

An intuitive understanding of the properties of hyperbolicmaterials ismost easily
gained by picturing isofrequency surfaces in momentum space. These are given
by:

:2
G + :2

H

�⊥
+ :

2
I

�‖
=

($
2

)2
, (3.2.15)

where : denotes the wave vector, $ the frequency, and 2 the speed of light. For
hyperbolic materials, Eq. 3.2.15 describes an open hyperboloid as opposed to
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Isotropic
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(�‖ < 0 < �⊥)
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Figure 3.2. Isofrequency contours in momentum space for isotropic and hyper-
bolic materials. The ky = 0 cuts show that, unlike isotropic materials, hyperbolic materi-
als sustain open isofrequency surfaces, giving rise to highly directional large-momentum
modes. Asymptotes under the hyperbolic angle θ (dashed lines) mark the hyperboloids’
directionality at high momenta.

isotropic materials whose isofrequency surfaces resemble closed spheres. Gen-
erally, the hyperbolicity condition (Eq. 3.2.14) gives rise to two types of hyper-
bolicity, depending on whether one (�‖) or two (�⊥) dielectric components are
negative. Fig. 3.2 shows cuts at :H = 0 through the isofrequency surfaces in
:-space of an isotropic material as well as type i and type ii hyperbolic materi-
als. Most notably, the :-space topologies in hyperbolic materials—unlike their
isotropic counterparts—support unbound wave vector states which, for large :,
are well-described by the hyperboloids’ asymptotes with slope [53]:

tan� = i
√
�⊥/�‖ . (3.2.16)

Here, � denotes the so-called hyperbolic propagation angle. One immediate
physical consequence is that these large-: states sustain an exceedingly high
spatial frequency which—combined with their rigid directionality—is very well-
suited for subdiffractional imaging and nanolithography applications. In fact,
several efforts in this field have been made recently, based on both, naturally
hyperbolic materials as well as metamaterial approaches [52–54]. Examples for
both will be discussed in Chapters 5 and 6 of this work, respectively.

3.2.3. Fresnel Reflection and Transmission Tensors

Once the dielectric tensor of a material is known, it is possible to predict all linear
optical phenomena. For instance, the relation between an external electric field
and the local electric fields inside the material as well as the electric field of the
reflected beam are determined by the Fresnel tensors of transmission and reflec-
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Chapter 3. Infrared Second-Order Spectroscopy – Theory

tion, respectively. These solely dependon thematerial’s dielectric tensor and—for
anisotropic media—take the form of diagonal, second-rank tensors themselves
[55].

In the ir spectral region, these local field corrections, like the dielectric func-
tion itself, are highly dispersive and play a significant role not only in linear
measurements, but also in nonlinear spectroscopies. For instance, the second-
order nonlinear polarization in an shg process generally reads:

Pshg(2$) ∝ "(2)($,$) : [!1($)E1($)] [!2($)E2($)] , (3.2.17)

where !1(2)($) is the local field correction, i.e., Fresnel transmission tensor ele-
ment, to the first (second) incident beam, described by its incident electric field
vector, E1(2)($).

Here, we will derive the elements of the Fresnel transmission tensor of a 2-cut
uniaxial crystal, i.e., the optic axis is perpendicular to the interface. Other cases,
such as that of an 0-cut crystal whose optic axis is oriented either perpendicular
or parallel with respect to an incoming B-polarized light field, can be derived
analogously. A full treatment of the latter can be found in Appx. A, along with
a full derivation of the corresponding Fresnel reflection coefficients. A summary
of all Fresnel elements as well as a discussion of their behavior in the Reststrahlen
region is presented at the end of this section.

G

I ‖ 2

ki kr

kt


t

Ei Er

Et


i 
r
air
uniaxial crystal

Figure 3.3. Reflection and transmission: wave vector scheme. Wave vectors, k, and
electric fields, E, for reflection (transmission) of p-polarized light at (through) a c-cut uni-
axial crystal. Superscripts i, r, and t mark, respectively, incoming, reflected and transmit-
ted beams.

In the following, k denotes the complex wave vector, E and H its electric
and magnetic field vectors, respectively, � and � the dielectric function and the
magnetic permeability, respectively, and 
i the angle of incidence. Also—without
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3.2. Infrared Linear Optical Response

loss of generality—the interface between air and the uniaxial crystal is set to be
the GH-plane of the laboratory coordinate system and the plane of incidence to be
the GI-plane as schematically shown in Fig. 3.3.

Transmission Coe�icients in c-Cut Uniaxial Crystals

The derivation of the Fresnel transmission coefficients will be carried out for
a ?-polarized external field (polarization parallel to the plane of incidence, i.e.
�H = 0) first. The analogous case of B-polarized incoming light with the po-
larization perpendicular to the plane of incidence (from German “senkrecht”:

perpendicular), i.e., �G = �I = 0, is treated subsequently.
In order to calculate diagonal elements of the Fresnel transmission tensor, we

invoke Maxwell’s equations in the following way:

∇ ×H = �
%E
%C

(Ampére’s law)

p-pol.
⇒


�G =

:I

2�$�G
�H

�I =
−:G

2�$�I
�H

, (3.2.18a)

∇ × E = −�%H
%C

(Faraday’s law)

p-pol.
⇒ �H =

−1
2�$� (:G�I − :I�G) , (3.2.18b)

where E and H are each proportional to ei(kr−$C). Making use of the conservation
of tangential field components at the interface for ?-polarized light results in these
boundary conditions:

�i
G + �r

G = �
t
G , (3.2.19a)

�i
H + �r

H = �
t
H ⇔ �r

H − �i
H = �

t
H − 2�i

H , (3.2.19b)

where the superscripts i, r, and t denote, respectively, the incident, reflected, and
transmitted beams. Since the electric fields of a ?-polarized beam do not have a
component along the H-axis, Eqs. 3.2.19a–3.2.19b solely include the G-components
of E and the H-components of H.

Using the boundary condition for �G (Eq. 3.2.19a) and plugging in the cor-
responding E-field components as given by Eq. 3.2.18a as well as :i

I = −:r
I (see

Fig. 3.3), and the boundary condition for �H (Eq. 3.2.19b), then yields:

�t
H =

2�⊥:i
I

�⊥:i
I + �0:

t
I︸         ︷︷         ︸

≡�

�i
H , (3.2.20)

where �⊥ = �G = �H and �‖ = �I denote the ordinary and extraordinary compo-
nents of the uniaxial medium’s dielectric function, respectively, and �0 ≈ 1 the
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dielectric constant of air. Using Eq. 3.2.20 and inserting it back into Eq. 3.2.18a
gives:

�t
G =

:t
I

(2�$)2�⊥
�

(
:i
I�

i
G − :i

G�
i
I

)
, (3.2.21a)

�t
I =

−:t
G

(2�$)2�‖
�

(
:i
I�

i
G − :i

G�
i
I

)
. (3.2.21b)

Geometrical relations (:i
G = 2�$ sin 
i, :i

I = 2�$ cos 
i, �i
G = �i cos 
i and

�i
I = −�i sin 
i, see Fig. 3.3) and the definition of � then lead to:

�t
G =

:t
I

2�$�⊥
�⊥2:i

I

�0:
i
I + �⊥:t

I

�i, (3.2.22a)

�t
I =

:t
I

2�$�‖
�⊥2:i

I

�0:
i
I + �⊥:t

I

�i. (3.2.22b)

With :i
I�

i = 2�$�i
G and :i

G�
i = −2�$�i

I , we finally get [56]:

�t
G =

�⊥
�⊥

2:t
I

�⊥:i
I + �0:

t
I︸              ︷︷              ︸

≡!GG

�i
G ,

�t
I =

�⊥
�‖

2:i
I

�⊥:i
I + �0:

t
I︸              ︷︷              ︸

≡!II

�i
I ,


(c-cut)

(3.2.23a)

(3.2.23b)

where !GG and !II are the Fresnel transmission coefficients and �⊥
�‖
≡ � is defined

as the anisotropy factor [57]. In order to explicitly calculate these transmission
coefficients, an expression for the complex wave vector :t

I is required. This
expression has been derived by Mosteller and Wooten based on trigonometrical
considerations and Snell’s law of refraction and reads [58]:

:
t,e
I = 2�$

√
�⊥ −

�⊥
�‖

sin2 
i, (c-cut) (3.2.24)

where the additional superscript e stands for extraordinary (polarization parallel
to the optic axis 2) which is a property of ?-polarized electromagnetic waves
traveling along the I-direction as opposed to ordinary B-polarized electromagnetic
waves (polarization perpendicular to optic axis 2, superscript o).

To derive the remaining Fresnel transmission coefficient !HH , we consider an
s-polarized wave for which Maxwell’s equations—analogous to Eqs. 3.2.18a and
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3.2.18b—give:

∇ ×H = �
%E
%C

(Ampére’s law)

s-pol.
⇒ �H =

−1
2�$� (:G�I − :I�G) , (3.2.25a)

∇ × E = −�%H
%C

(Faraday’s law)

s-pol.
⇒


�G =

−:I
2�$��H

�I =
:G

2�$��H
. (3.2.25b)

For an B-polarized beam, the conservation of tangential field components reads:

�i
H + �r

H = �
t
H ⇔ �r

H − �i
H = �

t
H − 2�i

H , (3.2.26a)

�i
G + �r

G = �
t
G . (3.2.26b)

Plugging Eq. 3.2.25b into Eq. 3.2.26b and using Eq. 3.2.26a finally gives an expres-
sion for the Fresnel transmission coefficient !HH :

�t
H =

2:i
I

:t
I + :i

I︸  ︷︷  ︸
≡!HH

�i
H , (c-cut) (3.2.27)

where :t
I takes the form of :t,o

I for an B-polarized beam and reads [58]:

:
t,o
I = 2�$

√
�⊥ − sin2 
i. (c-cut) (3.2.28)

For a treatment of 0-cut uniaxial crystals as well as the Fresnel reflection
coefficients, the reader is referred to Appx. A. The following section summarizes
the results and gives a short discussion of the Fresnel coefficients’ dispersive
behavior in the vicinity of phonon resonances.

Fresnel Coe�icients in the Reststrahlen Region

Tab. 3.1 presents an overview of all Fresnel transmission and reflection coeffi-
cients derived here and in Appx. A. It will be referred to in later chapters. All
Fresnel coefficients can be explicitly calculated if the ordinary and extraordi-
nary components of the dielectric tensor, �⊥ and �‖ , respectively, are known. In
the vicinity of optic phonon resonances, these are highly dispersive but well-
described by the fpsq model discussed in Sec. 3.2.1 and—in knowledge of the
phonon parameters—fully determine the dispersion of reflection and transmis-
sion at the interface.
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Table 3.1. Fresnel transmission and reflection coe�icients for uniaxial crystals.

2-cut 0-cut (2 ‖ G) 0-cut (2 ‖ H)

!GG
2:t,e

I

�⊥:i
I + �0:

t,e
I

2:t,o
I

�‖:
i
I + �0:

t,o
I

2:t,o
I

�⊥:i
I + �0:

t,o
I

!II
�⊥
�‖

2:i
I

�⊥:i
I + �0:

t,e
I

�‖
�⊥

2:i
I

�‖:
i
I + �0:

t,e
I

2:i
I

�⊥:i
I + �0:

t,o
I

!HH
2:i

I

:
t,o
I + :i

I

2:i
I

:
t,o
I + :i

I

2:i
I

:
t,e
I + :i

I

'GG −�⊥:
i
I − :t,e

I

�⊥:iI + :t,e
I

−
�‖:

i
I − :t,e

I

�‖:
i
I + :t,e

I

−�⊥:
i
I − :t,o

I

�⊥:iI + :t,o
I

'II
�⊥:i

I − :t,e
I

�⊥:i
I + :t,e

I

�‖:
i
I − :t,e

I

�‖:
i
I + :t,e

I

�⊥:i
I − :t,o

I

�⊥:i
I + :t,o

I

'HH
:i
I − :t,o

I

:i
I + :t,o

I

:i
I − :t,o

I

:i
I + :t,o

I

:i
I − :t,e

I

:i
I + :t,e

I

:
t,o
I 2�$

√
�⊥ − sin2 
i

:
t,e
I 2�$

√
�⊥ −

�⊥
�‖

sin2 
i 2�$
√
�‖ −

�‖
�⊥

sin2 
i 2�$
√
�‖ − sin2 
i

Fig. 3.4 exemplarily shows the calculated dispersions of the reflection and
transmission coefficients of a generic single-mode crystal in its Reststrahlen re-
gion. For simplicity, the crystal is assumed to be isotropic, i.e., �⊥ = �‖ . Promi-
nently, all three transmission coefficients (Fig. 3.4a) exhibit a minimum at the to
phonon frequency, generally causing a suppression of the local fields on reso-
nance. At the upper Reststrahlen edge, on the other hand, local fields along the I
and H directions are resonantly enhanced while the G-component is suppressed.
Notably, the features at the upper Reststrahlen limit are blue-shifted with respect
to the lo phonon frequency. This effect scales with larger incidence angles and is
also visible in the reflection coefficients (Fig. 3.4b) where the upper Reststrahlen
edge is equally shifted towards higher frequencies as compared to the 
i = 0°
case shown in Fig. 3.1.
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Figure 3.4. Fresnel coe�icients in a single-mode isotropic crystal around phonon
resonances. A: Transmitted fields are suppressed at the TO phonon frequency. B: The
upper Reststrahlen edge shi�s towards higher frequencies for larger incidence angles, αi.

3.3. Second-Order Nonlinearities at Resonance

While Sec. 3.2 dealt with the description of linear optical phenomena in the
spectral vicinity of phonon resonances, this section extends to the nonlinear
regime—focusing on second-order effects, such as shg and sfg. To this end, the
anharmonic oscillator model is introduced as an intuitive illustration of optical
nonlinearity. Furthermore, a model description for the dispersion of "(2)($) in
the Reststrahlen region is discussed.

3.3.1. Anharmonic Oscillator Model

The classical anharmonic oscillator model constitutes an instructive way to il-
lustrate the origin of higher-order optical effects in nonlinear media and will be
discussed here to provide amicroscopic view on nonlinear and, in particular, res-
onant second-order phenomena. The discussion largely follows that of Refs. 36
and 37.

We consider # classical anharmonic oscillators per unit volume, represent-
ing, e.g., core-bound electrons or ir-active molecular vibrations [36]. Under the
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influence of a driving force, �, their equation of motion reads:

d2G

dC2
+ � dG

dC + $
2
0G + 0G2 = �. (3.3.1)

Here, G denotes the spatial coordinate, � the damping rate, $0 the oscillators’
resonance frequency, and 0 an anharmonicity coefficient. We assume the driving
force, �, to originate from two applied electric fields, E1 and E2, at frequencies
±$1 and ±$2, respectively, acting on the electrons with charge 4 and mass <:

� =
4

<

[
�1

(
e−i$1C + ei$1C

)
+ �2

(
e−i$2C + ei$2C

) ]
. (3.3.2)

For small anharmonicities, 0, we can utilize a perturbation approach to describe
the solution for G [36]:

G = G(1) + G(2) + G(3) + · · · (3.3.3)

In this approximation, the first-order solution, G(1), is then obtained by disabling
the anharmonicity, i.e., setting 0 = 0, reducing the solution to that of a damped
harmonic oscillator (cf. Sec. 3.2.1) [36]:

G(1) =
4

<

[
�1

$2
0 − $2

1 − i�$1
ei$1C + �2

$2
0 − $2

2 − i�$2
ei$2C

]
+ c.c., (3.3.4)

where c.c. denotes the complex conjugate of the prior terms.

After extending the perturbation to the second order and approximating the
second-order term, 0G2 ≈ 0G(1)2, we obtain from Eq. 3.3.1 [36]:

G(2) = G(2)($1 + $2) + G(2)($1 − $2) + G(2)(2$1) + G(2)(2$2) + G(2)(0) + c.c. (3.3.5)

Here, the frequency components of G(2) read [36]:

G(2)($1 ± $2) =
−20(4/<)2 �1 �2(

$2
0 − $2

1 − i�$1

) (
$2

0 − $2
2 ∓ i�$2

)
× 1
$2

0 − ($1 ± $2)2 − i� ($1 ± $2)
e−i($1±$2)C ,

(3.3.6a)

G(2)(2$8) =
−0(4/<)2 �2

8(
$2

0 − $2
8
− i�$8

)2 (
$2

0 − 4$2
8
− 2i�$8

) e−2i$it, (3.3.6b)

G(2)(0) = − 0
(
4

<

)2 1
$2

0

(
1

$2
0 − $2

1 − i�$1
+ 1
$2

0 − $2
2 − i�$2

)
. (3.3.6c)
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with 8 = 1, 2. Assuming that the induced polarization can be written as P = #4G
(see Eq. 3.2.5), Eqs. 3.3.6a–3.3.6c clearly show the occurrence of new frequency
components of P at $1±$2, 2$1,2, and 0, due to the anharmonic interaction of the
electric fields with the oscillator [36]. The strength of this nonlinear interaction is
given by the anharmonicity, 0.

The anharmonic oscillator model readily predicts second-order optical ef-
fects, namely sum- and difference-frequency generation ($ = $1 ± $2), second-
harmonic generation ($ = 2$8), as well as optical rectification ($ = 0). Higher-
order terms in G (see Eq. 3.3.3) can be calculated iteratively following the per-
turbation approach and give rise to additional frequency components at $ =

=1$1 + =2$2 with =1, =2 ∈ N.

3.3.2. Resonant Enhancement

In the previous section, the anharmonic oscillator was introduced as an intuitive
example for the nonlinear interaction of two electric fields. Within this picture,
the strength of nonlinear interactions scales linearly with the anharmonicity, 0, in
the oscillator potential. In an optical medium, the anharmonicity of the electric
potential is quantified through higher-order terms in the electric susceptibility,
"(=) (cf. Eqs. 3.1.16a–3.1.16c). In the vicinity of material resonances, "(=) behaves
highly dispersive, often causing a strong enhancement of nonlinear optical effects
at the resonance frequencies.

In the case of dielectric crystals, the eigenstates of low-frequency lattice vibra-
tions are energetically well-separated from high-frequency electronic transitions.
The ir dispersion of "(2)($) in the vicinity of optic phonon resonances, but far
below any electronic transitions, has been investigated by Christos Flytzanis for
the simplest class of nonlinear crystals, namely the iii-v compounds. These have
the cubic 4̄3< (or zincblende) symmetry, only one independent nonvanishing el-
ement, "(2)GHI , and one phononmode [35]. In his comprehensive study, Flytzanis—
building on previous works [59–61]—considers three mechanisms leading to
nonlinear polarizations in the crystal:

1. Lattice-induced nonlinear polarization expressed in terms of Raman polar-
izability, first observed by Faust and Henry [61],

2. Phonon interaction through a second-order anharmonic electric potential,

3. Phonon interaction through a third-order mechanical anharmonicity.

His expression reads:

"(2)($1,$2) = "(2)∞ + "(2)fh ($1,$2) + "(2)e ($1,$2) + "(2)m ($1,$2), (3.3.7)

31



Chapter 3. Infrared Second-Order Spectroscopy – Theory

where "(2)∞ is the high-frequency second-order susceptibility and "(2)fh , "
(2)
e , and

"(2)m represent the contributions listed above. Flytzanis derives their frequency
dependence using a semiclassical approach [35]:

"(2)fh ($1,$2) ="(2)∞ �1

(
1

�($1)
+ 1
�($2)

+ 1
�($1 + $2)

)
, (3.3.8a)

"(2)e ($1,$2) ="(2)∞ �2

(
1

�($1)�($2)
+ 1
�($2)�($1 + $2)

+ 1
�($1 + $2)�($1)

)
,

(3.3.8b)

"(2)m ($1,$2) ="(2)∞ �3

(
1

�($1)�($2)�($1 + $2)

)
. (3.3.8c)

Here,�($) = 1−$2/$2
to−i�$/$2

to is the damped resonant denominator, causing
a steep "(2)($) enhancement at $ = $to. The three anharmonic contributions in
Eqs. 3.3.8a–3.3.8c depend on the coefficients �1, �2, and �3. These dimensionless
parameters are introduced as [35]:

�1 =

to
2E

(
/∗

"$2
to

)
, (3.3.9a)

�2 =
�(2)

2E

(
/∗

"$2
to

)2
, (3.3.9b)

�3 = −
)(3)

2E

(
/∗

"$2
to

)3
, (3.3.9c)

where E denotes the volume of the primitive cell," the reducedmass, and /∗ the
effective charge. Further, 
to is the to Raman polarizability, �(2) the second-order
dipole moment, and )(3) a third-order lattice potential. It has been demonstrated
by Eric Roman et al. through ab initio calculations that for iii-v Zincblende semi-
conductors, the contribution from the third-order lattice potential dominates over
that of the second-order lattice dipole moment: |�2/�3 | � 1 [62].

One goal of this thesis is to explore the ability of shg spectroscopy to exper-
imentally access the anharmonic lattice parameters described above. As will be
discussed in Ch. 5, this is exceedingly difficult in complex crystals like α-quartz
due to multiple contributing tensor elements and the strong impact of linear
optical effects.
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Chapter 4.

Second-Harmonic and Sum-Frequency
Generation Spectroscopy
Experiment

This chapter lays out the technical details of the experiments conducted in the
scope of this work. In large part, second-harmonic phonon spectroscopy has been
employed to study vibrational modes in crystalline solids. This nonlinear optical
technique requires a light source that provides sufficiently large ir fields while
being tunable and narrowband. An ir fel meets these requirements and serves
as the primary spectroscopic tool. To this end, Sec. 4.1 gives a brief review of the
Fritz Haber Institute (fhi) fel, its working principle, and specifications.

Sec. 4.2 discusses the implementation of ir shg as a spectroscopic method
in a noncollinear, reflective geometry and describes its experimental apparatus.
Sec. 4.3 briefly summarizes the realization of an ir-visible sfg experiment which
includes an fel-synchronized table-top laser system. This setup has been imple-
mented by Riko Kießling and technical details can be found in his doctoral thesis
[63]. Finally, details on sample temperature control, specifically sample heating
and liquid helium cooling, are given in Sec. 4.4.

4.1. The FHI Free-Electron Laser

The fel at the fhi inBerlin startedoperation in 2013 [64] andhasbeen continuously
running user experiments since. This section provides an overview of its basic
working principles as well as spectroscopically relevant information about this
unconventional light source. Parts of this section are taken from the author’s
master’s thesis [37].

4.1.1. Working Principle

Conventional lasers utilize electronic transitions in the gain medium—usually
gases, liquids, or solids—to achieve a population inversion which then enables
light amplification through stimulated emission [65]. Fels, in contrast, utilize the
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emission of synchrotron radiation from relativistic electrons in a strong periodic
magnetic field. The basic setup of an fel is schematically shown in Fig. 4.1. In this
simplifiedpicture, an electron accelerator produces a beamof relativistic electrons
which is then injected into an undulator, i.e., periodically arranged pairs of strong
permanent magnets with alternating polarities. Here, the electrons experience
a Lorentz force induced by the magnetic fields in the undulator, resulting in a
wigglingmotionwith the same spatial periodicity, �u, as the permanentmagnets.
At each bend of the relativistic electrons’ trajectory, the acceleratedmotion causes
the additional kinetic energy to be emitted in form of electromagnetic waves, i.e.,
synchrotron radiation.

Electron accelerator

Reflecting mirror

Undulator

Output mirror

Electron beam

Laser beam

Figure 4.1. Basic setup of a free-electron laser. Relativistic electrons are injected into
the undulator using bending magnets where synchrotron radiation is generated. From
reference [66].

In order for the synchrotron wave pulses from each turn to interfere construc-
tively, the following condition must be met [66]:

=� = 2
�u
ĒI
− �u cos�. (4.1.1)

Here, � denotes the optical wavelength of the synchrotron wave pulses, ĒI the
average velocity of the electron beam along the undulator axis, I, and � the angle
of the synchrotron pulse propagation with respect to I. The integer = represents
the interference order where = = 1 corresponds to the fundamental wavelength
and = > 1 to higher harmonics. A schematic of the electrons’ trajectory through
the undulator is shown in Fig. 4.2. The constructive interference of synchrotron
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radiation can be understood as an fel’s equivalent of a conventional laser’s spon-
taneous emission process.

⊙ ⊗ ⊙ ⊗
�H

⊙�u

�u cos�
�

I

G

Figure 4.2. Schematic of an electron beam’s trajectory in the undulator. Due to the
magnetic field (green), By, the electrons (orange) experience a Lorentz force, forcing them
onto an oscillatory trajectory. For the synchrotron pulses (red) to interfere constructively,
the phase advance must be a multiple integer of their wavelength, λ [67].

Consequently, the emitted light field now interacts with the electron beam,
resulting in a modulation of the spatial distribution of electrons along their prop-
agation direction—a process referred to as microbunching [68]. This feedback
mechanism causes an energy transfer either from the electron beam to the light
field (gain) or vice versa (loss), depending on their relative phase advance. If the
interference condition of Eq. 4.1.1 is met exactly, the phase advance is zero and
no net energy transfer occurs as absorption and gain compensate each other. This
situation is depicted in Fig. 4.3a. If, however, the electron energy is set slightly
above resonance as shown in Fig. 4.3b, a net amount of energy is transferred from
the electron beam into the light field, i.e., a gain state is reached and lasing sets
in. If the undulator is built inside an optical cavity, the light field does multi-
ple roundtrips, thus interacting repeatedly with the electron beam before being
outcoupled, resulting in strongly increased gain.

In practice, the electron energy is set such that the lasing regime falls in a
wavelength region of the synchrotron spectrum that corresponds to the desired
scan range. Variation of the magnetic field strength, �H , at a fixed electron energy
then allows to finely tune the amplified output wavelength while maintaining
the lasing state. This is achieved by controlling the undulator gap. During a
wavelength scan, the cavity length, !, is adjusted to match the expression:

! = !0 − @�, (4.1.2)

where !0 is the nominal cavity length, � the output wavelength, and @ a user-
defined value—the cavity detuning. Keeping @ constant over a wavelength scan
increases the accessible spectral range and maintains the emitted radiation’s rela-
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A At resonant energy:

C1

C2

B Slightly above resonant energy:

C1

C2

Phase corresponding to loss

Phase corresponding to gain

Electrons

Figure 4.3. Microbunching in phase space. The spatial distribution of a homogeneous
electron beam at time t1 is modulated by the optical field. Depending on the relative
phase advance of the electron beam and the light field, de- and acceleration of electrons
cause net energy absorption (red) or gain (green) at t2. A: The resonant case results in
zero net gain. B: An electron energy slightly above resonance leads to a positive net gain
[67].

tive bandwidth [37, 64]—an oftentimes important experimental parameter. Con-
trol over @ allows adjustment of the spectral bandwidth which directly relates to
the achievable pulse duration via the time-bandwidth product.

In nonlinear spectroscopy, short pulses are often advantageous as they yield
higher peak intensities and thus larger nonlinear signals. On the other hand,
shorter pulses come at the cost of a broader bandwidth and therefore reduced
spectral resolution. The optimal choice of @ therefore depends on the width of
the spectral features to be studied as well as the general signal levels in the system
at hand.

4.1.2. Specifications

This section summarizes the experimentally relevant specifications of the fhi fel
which are largely taken from Ref. 64. A schematic of its layout is depicted in
Fig. 4.4. A thermionic gridded electron gun emits electron pulses at 1GHzwhich
are subsequently compressed in a buncher cavity and captured by an accelerator
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Figure 4.4. FHI FEL layout. Two linear accelerators (linacs) generate relativistic elec-
trons with energies ranging from 15 MeV to 50 MeV. These are then, via isochronous
bends, injected into the undulator cavity where coherent IR radiation is generated.

system (Advanced Energy Systems), comprising two linear accelerators (linac 1
and 2). Linac 1 accelerates the electron bunches to a constant energy of 20MeV.
Linac 2 then accelerates or decelerates the electrons to any final energy between
15 and 50MeV before two isochronous achromats inject the electron beam into a
mir undulator [64]. Usually, the electron accelerator is operated at a micro-bunch
length of ∼1 ps at 1GHz repetition rate delivered in 10 µs long macro-pulses at
10Hz.

The 2.0m long mir undulator (sti Optronics) comprises 100 pairs (50 periods)
of NdFeB permanent magnets with a minimum gap of 16.5mm. It is built inside
the mir optical cavity, bound by two concave gold-plated copper mirrors—one
end mirror and one hole-outcoupling mirror. For optimal performance at a
specific wavelength range, the latter can be any of five mirrors with different
hole diameters, 0.75, 1.00, 1.50, 2.50, and 3.50mm, put in position by a motorized
mirror changer. The entire tuning range of the mir beamline extends from 3 to
50 µm. Its essential specifications are summarized in Tab. 4.1.

Currently, an extension of the fel setup is under construction. This upgrade
involves a second beamline with a far-infrared (fir)/THz undulator which ex-
tends the accessible wavelength range to 400 µm and can be run alongside the
mir beamline in a two-color-ir operation mode in which electron bunches are
alternatingly injected into the mir and fir/THz undulator.
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Table 4.1. Specifications of the MIR beamline at the FHI FEL.

Parameter Value

�u Undulator period 40mm
Number of periods 50
Undulator length 2.0m

!0 Cavity length 5.4m
Electron energy 15 to 50MeV

� Output wavelength 3 to 50 µm
Micropulse length 1 to 5 ps
Micropulse repetition rate 1GHz
Macropulse length 1 to 15 µs
Macropulse repetition rate 10Hz

4.2. Infrared Second-Harmonic Generation Spectroscopy

Employing ir shg as a spectroscopic technique requires an optical arrangement
that facilitates the separation of the generated second-harmonic signal from the
fundamental excitation beams. To this end, a noncollinear excitation scheme pro-
vides an elegant method as the shg light inherently emerges spatially separated
from the fundamental beams. A possible implementation is shown in Fig. 4.5.

Translation
stage

FEL beam

Reflectance
detection

SHG
detection

O�-axis
focusing
mirrors, f

Beam splitter

Sample

Figure 4.5. Schematic of the SHG setup. A linear translation stage ensures temporal
overlap between both excitation arms. The generated second-harmonic signal is cap-
tured by an MCT detector. Simultaneously, the linear reflectance signal is measured by
a pyroelectric detector.

Here, the fel beam enters the setup and is split into two excitation arms. A
rectangular gold mirror with a sharp upper edge serves as a beam splitter by
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geometrically separating the upper and lower halves of the fel beam, allowing
a wavelength-independent 50:50 split in the entire ir spectral range. The first
(unreflected) beam path leads to a 15° off-axis parabolic focusing gold mirror
(Edmund Optics) which then focuses the beam onto the sample. Meanwhile,
the second (reflected) beam—before being focused—is led through a motorized
linear translation stage (Newport) to adjust its relative path length with respect to
the first excitation beam. This is necessary to achieve temporal overlap of the fel
pulses. In both beam paths, the number of reflective optics has been deliberately
chosen to be even in order to minimize the impact of possible fel pointing drifts
on the spatial overlap of the two foci on the sample.

The sample itself is positioned at a 45° angle, resulting in incidence angles

i

1 = 30° and 
i
2 = 60° of the first and second excitation beam, respectively, in

a reflective geometry. With spatially and temporally overlapping fel pulses on
the sample, the shg signal emerges between both reflected fundamental beams
under 
r

shg = arcsin
[ (

sin 
i
1 + sin 
i

2
)
/2

]
≈ 43°. Another two off-axis focusing

mirrors recollimate and refocus the signal beam onto a liquid nitrogen-cooled
mercury cadmium telluride (mct) detector (InfraRed Associates). Simultane-
ously, the intensity of one (or both) reflected fundamental beams is measured
by a pyroelectric photodetector (home-built), providing linear reflectance spectra
alongside the nonlinear shg spectra.

In addition to spatially separating fundamental and nonlinear beams, a selec-
tion of spectral long-pass (lp) and short-pass (sp) edge filters are used for spectral
separation. This serves two purposes: First, lp filters placed in the incoming
fundamental beam prevent fel-intrinsic higher harmonics (cf. Eq. 4.1.1 for = > 1)
from being scattered and unintendedly detected by the mct. Secondly, sp filters
are positioned directly in front of the mct to keep stray fundamental light from
influencing the detected signal.

Polarization control of the ir is achieved through a set of wire grid polar-
izers (Thorlabs) which only transmit the ir radiation’s polarization component
perpendicular to the wires’ orientation. By using two wire grid polarizers in
sequence—oriented at 45° and 90°, respectively, with respect to the incoming
polarization—the polarization state can be changed from ? to B (and vice versa).
With a third polarizer, analyzing the detected shg beam, all possible polarization
configurations in a two-beam shg experiment can be achieved.

4.3. Infrared-Visible Sum-Frequency Generation Spectroscopy

Infrared-visible (ir-vis) sfg spectroscopy constitutes an attractive alternative to ir
shg as the generated nonlinear signal lies in the visible spectral range, enabling
the detection of individual photons, e.g., by means of highly sensitive photo-

39



Chapter 4. Second-Harmonic and Sum-Frequency Generation Spectroscopy – Experiment

multiplier tubes (pmts). As a second light source alongside the fel, a table-top
high-power Tb-doped fiber oscillator (fo) (Onefive) has been employed, provid-
ing near-infrared (� = 1052 nm), ∼100 fs long pulses of 50 nJ at a repetition rate of
55.5MHz [69]. Combining the ir fel with the table-top fo, however, requires the
pulses of both light sources to be in temporal synchronization. This is achieved
using a time-stabilized 2.99GHz radio frequency fiber link, connecting the fel
vault with the fo over a distance of ∼100m. The implementation of the synchro-
nization unit and the optical setup has been done by Riko Kießling. This section
only gives a short summary and full technical details are found in Refs. 69 and
63.

The experimental setup is schematically shown in Fig. 4.6. Here, the fo beam
is frequency-doubled to 526 nm using a barium borate (bbo) crystal. The relative
timing between the synchronized fel and fo pulses is set by adjusting the fo
beam’s optical path length with a linear translation stage (Newport). Then, both,
the ir and visible beams are focused onto the sample in spatial and temporal
overlap. The generated sfg signal is spectrally separated from the visible excita-
tion beam using a spectral filter and detected by a pmt (Thorlabs). The reflected
ir beam is refocused onto a pyroelectric detector (self-built), providing linear
reflectance spectra.

Translation
stage

FO beam
(λ/2 = 526 nm)FEL beam

Reflectance
detection

SFG
detectionOA Sample

Figure 4.6. IR-vis SFG excitation scheme. The SFG setup comprises an FEL-
synchronized, frequency-doubled table-top FO. The relative time delay between both
excitation beams is adjusted via a linear translation stage. The SFG signal is spectrally
separated from the visible excitation beam and detected by a PMT. Simultaneously, the IR
reflectance is captured by a pyroelectric detector.

Beam handling of the fel is done in analogy to the shg setup, comprising
polarization control using two consecutive wire grid polarizers (Thorlabs) and
spectral lp filtering for isolation of the fundamental wavelength. For the visi-
ble excitation beam, on the other hand, the polarization is rotated using a �/2
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waveplate while the detected sfg polarization is analyzed using a polarization
filter.

4.4. Sample Temperature Control

Studying a material’s temperature-dependent properties or phase transitions re-
quires precise control over the sample temperature. To this end, both, sample
heating and cryogenic cooling have been employed. In the following, technical
details on both implementations are given.

4.4.1. Sample Heating

In order to raise the sample’s temperature in a controlled manner, a probe heater
has been built, allowing to adjust the sample temperature to any value between
room temperature and 1025K. Fig. 4.7 shows a schematic of the construction. A
heatingwire is coiled aroundamolybdenumsampleholder and cappedbya stain-
less steel cover. Here, molybdenum has been chosen due to its highmelting point
and small thermal expansion. The sample itself is glued to the sample holder us-
ing a ceramic adhesive. The actual temperature is measured by two feeler gauges
close to the sample and provides feedback to a proportional–integral–derivative
(pid) controller (Schneider Electric Systems) which, in turn, adjust the heating
current to keep the temperature stable at a set target value within an error margin
of <2K.

Figure 4.7. Technical drawing of the sample heater. A heating coil is wrapped around
the molybdenum sample holder and capped by a steel cover (blue). The sample (red) is
glued to the sample holder. Two feeler gauges provide temperature feedback to the PID
controller.
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4.4.2. Cryogenic Sample Cooling

Some spectroscopic applications, on the other hand, demand sample cooling to
cryogenic temperatures. Possible scenarios include the need for larger signals due
to lower damping rates as well as phase transitions studies at low temperatures.
Such low-temperature applications require a cryogenic apparatus that facilitates
the experimental conditions. For this work, a helium bath cryostat (CryoVac) has
been employed. Its components are schematically shown in Fig. 4.8. The general
cryogenic setup comprises a sample chamberwhich connects to the liquid helium
(LHe) vessel via a heat exchanger. Here, a needle valve allows to finely adjust the
flow of cooling fluid from the LHe vessel to the heat exchanger. The LHe vessel
contains a volume of ∼6.5 L and is enclosed by a liquid nitrogen (LN2) vessel
of approximately ∼9 L, serving as a thermal shield. Both cryogenic vessels are
surrounded by a high vacuum on the order of 10=6 to 10=8mbar.

The sample itself is top-loaded on a sample rod equippedwith threemotorized
manipulators, allowing vertical, polar, and azimuthal alignment of the sample
inside the sample chamber. Two silicon diodes—one close to the sample and
another at the heat exchanger—provide temperature feedback for a pid controller
which regulates the current through two heatingwires, also located at the sample
mount and the heat exchanger. Optical access to the sample is provided by two
Thalliumbromidiodid (krs-5) and one diamondwindow at each of three ir access
ports. Copper slit apertures at each middle ir window minimize the amount of
external heat radiation introduced to the sample chamber.

Generally, the cryostat can be run in two possible modes of operation: as a
bath cryostat or as an evaporator, resulting in a combined temperature range of
1.2K to 325K:

Bath cryostat In a helium bath cryostat, the sample chamber is flooded with
LHe. Thereto, the needle valve is opened and LHe fills up the sample chamber
up to the fill level of the LHe vessel. As the sample is entirely surrounded
by LHe, the achieved temperature in this operation mode is ) = 4.2 K. This
“single shot” state can be maintained until the LHe in the sample chamber is
evaporated or refilled.

In order to achieve lower sample temperatures, ) < 4.2 K, the sample chamber
is, again, floodedwith LHe and additionally pumped from the helium exhaust
line, resulting in a lower temperature due to the reduced pressure. In this state,
temperatures as low as 1.2K can be reached. Slightly opening the cold valve
allows to maintain this state as more LHe is drawn into the sample chamber.
In order to set intermediate temperatures 1.2 K < ) < 4.2 K, a heating current
is applied to the sample heater using the pid controller.
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Evaporator In an evaporator, the sample chamber is continuously flooded with
helium gas. To this end, a heating current is applied to heat exchanger and
the cold valve is opened slightly. Thus, LHe from the reservoir evaporates at
the heat exchanger and a constant flow of helium gas—finely adjusted by the
needle valve—is released into the sample chamber. The sample temperature
can then be stabilized to any value 4.2 K < ) < 325 K at a precision of 0.1K,
using the pid-controlled sample heater and opening of the needle valve.

LHevessel

Needle valve

He out

Sample flange

LN2 in

Evacuation flange

Sample

Sam
plecham

ber

Heat exchanger

Vacuum

LN2 vessel

Needle valve drive

IR windows

Figure 4.8. Construction drawings of the helium bath cryostat. Helium from the
reservoir is fed through the needle valve and the heat exchanger into the sample cham-
ber, either liquid or gaseous. Hence, the cryostat can be operated as either a bath cryostat
or as an evaporator. Adapted from Ref. 70.
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Chapter 5.

Second-Harmonic Phonon Spectroscopy of
α-Quartz

Large parts of this chapter have been published in Refs. 71 and 72. The text strongly draws

from these publications.

Raman and linear ir spectroscopies are well-established and the most commonly
used techniques for the study of zone-center optical phonons in crystalline solids,
providing complementary information on the vibrational modes. However,
second-order nonlinear optical techniques provide a promising alternative ap-
proach (see Ch. 2). While shg has been widely applied in the visible spectral
region, e.g., for the study of electronic transitions [73, 74], sfg is the most well-
established technique in the ir range. In contrast, ir shg has so far received
considerably less attention in the scientific literature [33, 34, 57, 75]. One ap-
parent reason is the scarce availability of intense, tunable, and narrowband ir
light sources needed for such experiments. Nevertheless, ir shg holds several
potential advantages over sfg. For instance, the higher symmetry of the nonlin-
ear susceptibility tensor (Sec. 3.1.2) can reduce the number of independent "(2)

elements and thus simplify symmetry-selective measurements [36]. Moreover,
unlike sfg, the shg process generally includes a doubly resonant excitation and
thus a potentially improved phonon enhancement [57]. Finally, shg’s different
selection rules grant access to mode symmetries inaccessible by sfg [35].

The work presented in this chapter explores ir shg as a phonon spectroscopy,
making use of the ir fel at the fhi in Berlin. The goal is to identify the technique’s
unique capabilities as well as limitations. For this purpose, α-quartz serves as
a model system. While the fel’s wide tunability grants access to virtually all
of its optic phonon resonances, α-quartz’s high-temperature structural phase
transition provides an ideal case example for the technique’s potential for phase
transition studies. The following section summarizes α-quartz’s structural and
vibrational properties, essential for a comprehensive interpretation of the shg
phonon spectra. Further on, Secs. 5.2, 5.3, and 5.4 discuss the shg phonon
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spectra at room temperature, around quartz’s phase transition, and at cryogenic
temperatures, respectively.

5.1. Properties of α-Quartz

Quartz has the chemical formula SiO2 and is a naturally abundant mineral which
occurs in Earth’s continental crust [76]. To date, its single crystal form, α-quartz,
holds great technological importance—mostlydue to its useful piezoelectric prop-
erties [77]—and has been subject to a large variety of studies. These include sfg
[32], Raman [78, 79], and ir spectroscopies [80] as well as neutron [81, 82] and
x-ray scattering [83]. Quartz features a broken inversion symmetry, hence sup-
porting even-order nonlinear optical processes as well as numerous vibrational
modes. This makes it a well-characterized model system for nonlinear optical
techniques and a rich test ground for vibrational spectroscopies. Importantly, its
crystalline form undergoes a structural phase transition from trigonal α-quartz
to hexagonal β-quartz at a critical temperature of )c = 846 K. This aspect will be
picked up in Sec. 5.3 where high-temperature second-harmonic phonon spectra
are analyzed. First, this section provides a brief overview of α-quartz’s symmetry
and vibrational properties.

Crystal Structure and Symmetry

The crystal lattice of α-quartz is composed of SiO4 silicon-oxygen tetrahedra
where the oxygen atoms are shared with the neighboring tetrahedra’s silicon
atoms, leading to a net chemical formula of SiO2. As its crystal structure, shown
in Fig. 5.1, is uniaxial, quartz features unique dielectric responses along the

Figure 5.1. Crystal lattice structure ofα-quartz (SiO2) with Si atoms (green), O atoms
(red) and bonds (gray). The black box marks one unit cell. Le�: Overview of the crystal
structure. Right: View along c-axis. Rendered using Ref. 84 with data from Ref. 85.
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ordinary 0- and 1-axes, and the extraordinary (or optic) 2-axis.1 The primitive
cell of α-quartz comprises 9 atoms, resulting in a total of 27 phonon branches.
Applying symmetry selection rules leaves 13 nondegenerate phonon branches
along the ordinary axes and 9 branches along the extraordinary axis. Phonon
dispersion curves have been determined using neutron scattering [82] and are
shown in Fig. 5.2. In the following section, we focus on α-quartz’s ir-active
vibrational modes and their properties.

Figure 5.2. Phonon dispersion of α-quartz. The dispersion curves have been mea-
sured using neutron scattering at T=20 K. Le�: extraordinary phonon modes. Right: or-
dinary phonon modes. Reproduced from Ref. 82.

Infrared-Active Phonon Modes

Quartz features 8 ir-active optic phonon branches along its ordinary axes (�-type)
and 4 branches along its extraordinary axis (�2-type). While the �-type modes
are both, ir- and Raman-active, �2 modes are exclusively ir-active. A particular
comprehensive characterization of these modes’ properties has been done by
Gervais and Piriou [86]. In their work, the authors acquired ir reflectivity spectra
at several temperatures ranging fromroom temperature up to 975K, thus covering
the phase transition at )c = 846 K. The experimental data is shown in Fig. 5.3.

1 This anisotropy also causes a distinct hyperbolic response in α-quartz’s lower Reststrahlen region which will
be closely examined in Sec. 5.5.
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Figure 5.3. Experimental IR reflectivity spectra (open circles) at 7 di�erent tempera-
tures and fits according to Eqs. 3.2.10 and 3.2.12 (solid lines). From Ref. 86.

Fitting the normal incidence reflectivity spectra using Eq. 3.2.10 and the fpsq
model for the dielectric response (Eq. 3.2.12) directly yields to and lo phonon
frequencies as well as their respective damping rates as fit parameters. The
resulting room temperature phonon properties are summarized in Tab. 5.1 and
will be referred to later in this chapter when analyzing α-quartz’s ir shg response
at room temperature.

Notably, Gervais’ and Piriou’s high-temperature data show that upon the
α–β phase transition, �2-type modes labeled 9 = 1, 3 and �-type modes labeled
9 = 3, 5, 8 become ir-forbidden due to the heightened symmetry in the β-phase
[86]. As will be demonstrated in Sec. 5.3, this behavior is well-reflected in the
temperature-dependent ir shg spectra.

Second-Order Nonlinear Susceptibility and Second-Harmonic Response

The trigonal crystal structure of α-quartz is classified by the 32 point group
(Schoenflies �3) which generally has four unique, nonvanishing "(2) tensor com-
ponents [36]. For shg, however—due to its intrinsic symmetry, "(2)

8 9:
= "(2)

8: 9
—these
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Table 5.1. A2- (extraordinary) and E-type (ordinary) phonon mode properties of
α-quartz at room temperature. ΩTO(LO)j denotes the frequency of the jth TO (LO) phonon
and γTO(LO)j its respective damping rate. E-type modes j=1, 2 are beyond experimental
reach of Ref. 86 due to their low resonance frequencies. Data from Ref. 86.

�2-type modes �-type modes

9
Ωto9 Ωlo9 �to9 �lo9 9

Ωto9 Ωlo9 �to9 �lo9
[cm=1] [cm=1] [cm=1] [cm=1] [cm=1] [cm=1] [cm=1] [cm=1]

1 363.5 386.7 4.8 4.8 3 393.5 402 2.8 2.8
2 495 551.5 5.2 5.8 4 450 510 4.5 4.1
3 777 790 6.7 6.7 5 695 697.6 13 13
4 1071 1229 6.8 12 6 797 810 6.9 6.9

7 1065 1226 7.2 12.5
() = 295 K) 8 1158 1155 9.3 9.3

reduce to two (see Sec. 3.1.2):

"(2)000 = −"(2)011 = −"
(2)
110

= −"(2)
101

,

"(2)
021

= −"(2)
102

= "(2)
012

= −"(2)
120

.
(5.1.1)

These tensor elements determine the crystal’s shg response, in particular its
polarization and azimuthal angle dependence. In order to obtain an expression
for the latter, a transformation of the "(2) tensor from the crystal frame to the
laboratory frame is required. The "(2) elements in the laboratory frame, (G, H, I),
can generally be derived from the contributing "(2) tensor elements in terms of
crystal coordinates, (0, 1, 2), using:

"(2)
8 9:
=

∑
;<=

"(2)
;<=

(
î · l̂

) (
ĵ · m̂

) (
k̂ · n̂

)
, (5.1.2)

where (8, 9, :) and (;, <, =) are the basis vectors of the laboratory and the crystal
frame, respectively. Assuming a 2-cut α-quartz crystal, the coordinate trans-
formation for a rotation about the 2-axis, i.e., surface normal, takes the form:
â = x̂ cos! + ŷ sin!, b̂ = −x̂ sin! + ŷ cos!, and ĉ = ẑ. Applying the crystal to
laboratory frame transformation of Eq. 5.1.2 and summing over all "(2) elements
involved in a given polarization setting then yields the shg azimuthal angle de-
pendence for that particular measurement. By invoking Eq. 3.2.17, we can obtain
the azimuthal angle dependence in terms of the nonlinear polarization with field
corrections for shg, Pshg(2$), which for α-quartz is nonzero for all polarization
combinations. Here, we shall exemplarily show the resulting expressions for the
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B?? and ??? polarization, respectively, as these are relevant to the experimental
results presented later in this chapter:

PB??shg(2$) ∝

≡!eff
021︷                                                       ︸︸                                                       ︷[

!II($, 
i
1) !GG($, 
i

2) + !GG($, 
i
1)!II($, 
i

2)
]
"(2)
021
($,$)

+ !GG($, 
i
1) !GG($, 
i

2)︸                     ︷︷                     ︸
≡!eff

000

"(2)000($,$) sin
(
3!

)
,

(5.1.3a)

P???shg(2$) ∝ !GG($, 
i
1) !GG($, 
i

2)︸                     ︷︷                     ︸
=!eff

000

"(2)000($,$) cos
(
3!

)
. (5.1.3b)

Finally, the measured shg intensity is obtained by projecting the nonlinear po-
larization onto the electric field direction of the reflected shg beam, êshg, and
accounting for the transmission of the nonlinear polarization components at 2$
back into air:

�shg(2$) ∝
�� [!̃shg(2$)Pshg(2$)

]
· êshg

��2 /Δ:2, (5.1.4)

where !̃shg denotes the Fresnel tensor for the reflected shg beam, coming out
of the sample into air. Here Δ:2 =

��kt
shg − kt

1 − kt
2

��2 accounts for the wave vector
mismatch in reflection, withkt

1(2) being the first (second) transmitted fundamental
and kr

shg the reflected shg wave vector inside the crystal.
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Nonlinear Susceptibility Dispersion Model

In Sec. 3.3.2,wehave introducedFlytzanis’"(2)($)dispersionmodel for zincblende-
type crystals with a single phonon resonance. The multiple phonon modes in
α-quartz, however, require a generalized model description. In close analogy
to Flytzanis (Eqs. 3.3.7–3.3.8c), the multioscillator expression for the two unique
tensor elements relevant for shg in α-quartz, namely "(2)

021
and "(2)000 , read:
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Here, �8($) = 1 − $2/Ω2
to8 − i�to8$/Ω2

to8 is the resonant denominator of the 8th
phonon resonance and indices 9 and :(′,′′) run through α-quartz’s extraordinary
and ordinary phonon modes, respectively. Analogous to Flytzanis’ single mode
model, the resonant amplitudes in this generalized model can be written as
(cf. Eqs. 5.1.6a–5.1.6c):

�:1 =

:to

2E"(2)∞

(
/∗

"Ω:
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)
, (5.1.6a)
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to
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The three crucial quantities here are the Raman polarizability, 
:to, the electrical
anharmonicity, �(2)

:,9 , and the mechanical anharmonicity, )(3)
:,9,:′. Importantly, sfg

spectroscopy solely probes the first-order polarizability, i.e., Raman term [32], due
to different selection rules for ir-visible excitation. The latter is singly resonant
in the ir response and therefore does not probe the anharmonicity of vibrational
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potentials. In contrast, ir shg is doubly resonant in its ir response and thus pro-
vides access to mechanical and electrical anharmonicities of vibrational modes,
lifting the requirement for Raman-type interaction. The latter was argued to be
dominant in iii-v semiconductors [62] and experimentally shown to be significant
for the single-mode polar crystal silicon carbide [57]. For anisotropic multimode
systems, these higher-order anharmonicities are of particular importance as they
contain information about anharmonic coupling between the multiple phonon
modes. In the following, a detailed analysis ofα-quartz’s ir shgphonon spectrum
is presented.

5.2. Second-Harmonic Phonon Spectroscopy at Room Temperature

Experimental Details

The experimental arrangement resembles the one described in Sec. 4.2. The
investigated sample is an optically polished single crystal 2-cut α-quartz window
(crystal), i.e., the optic 2-axis perpendicular to the surface. For automated
azimuthal scans (rotation about the surface normal), the sample was mounted on
a motorized rotation stage (Newport). In order to cover the broad Reststrahlen
region of α-quartz,2 different parts of the spectrum were acquired in separate
fel beamtimes and measurement configurations. For the lower spectral region,
the fel electron energy was set to 23.5MeV, resulting in an fel tuning range
from 350 cm=1 to 850 cm=1. In this setting, 13.5 µm and 9 µm lp filters (lot)
suppress fel-intrinsic higher harmonicswhile ZnS/ms (KorthKristalle) andCaF2
windows (Thorlabs) act as sp filters to block scattered fundamental light from the
mct detector. For the upper spectral region, from 650 cm=1 to 1400 cm=1, the
fel’s electron energy was set to 31MeV. Here, 9 µm and 7 µm lp filters (lot)
as well as CaF2, MgF2 windows (Thorlabs), and a 7 µm sp filter were used. In
order to display the acquired data in a single spectrum, multiple overlapping
measurements were merged.

Experimental Results

The combined shg spectrum in the B?? polarization configuration (denoting B-
polarized shg output, and ?-polarized fundamental inputs) is shown in Fig. 5.4a.
The logarithmic plot shows sharp resonances whose amplitudes span approxi-
mately three orders of magnitude. These shg peaks can be largely attributed to
α-quartz’s �-type to phonon modes (cf. Tab. 5.1) whose spectral positions are

2 α-quartz has two optic phonon modes below 350 cm=1 (�-type modes 9 = 1, 2) which are not accessible with
this experimental setup due to the lack of appropriate filter optics in that wavelength region. Currently,
a prism compressor-based filtering unit is in development which would facilitate measurements in that
spectral range.
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Figure 5.4. Experimental SHG and reflectivity spectra of α-quartz at room temper-
ature. A: Strongly enhanced SHG signals are observed at TO phonon frequencies. B: Re-
flectivity spectrum in p-polarization and at an incidence angle αi = 60°. Regions of high
reflectivity clearly mark Reststrahlen bands.

indicated by blue markers. These strong enhancements are primarily due to a
combination of resonances in the nonlinear susceptibility, "(2)($) (Eq. 3.3.7), as
well as in the local field amplitudes which enter in form of Fresnel transmission
factors, !($) (Sec. 3.2.3), and the wave vector mismatch, Δ:($) (Eq. 5.1.4). The
interplay of these highly dispersive quantities is essential to ir shg as a phonon
spectroscopy and will be discussed in detail later on. Spectral features between
445 cm=1 and 620 cm=1, labeled i–iv, cannot be unambiguously attributed to �-
type phonon modes due to their very low signal levels and unusual temperature
dependence whichwill be analyzed in Sec. 5.3. Unlike the to phonon resonances,
lo modes cause merely subtle signatures in the shg response as will be argued
below when quantitatively analyzing the shg spectrum.

Simultaneously, reflectivity spectra were acquired in ?-polarization at an inci-
dence angle of 
i = 60° as shown in Fig. 5.4b. Here, spectral regions of particularly
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Table 5.2. Fit parameters from all acquired spp azimuthal scans. Quantitative
knowledge of the Fresnel transmission coe�icients allows extraction of the χ(2) ratio.

Label $ [cm=1]
���"(2)021 ��� /���"(2)000 ���

�3 400 0.186±0.014
�5 690 0.22±0.05
�6 795 1.46±0.19
�7 1069 2.6±0.3
�8 1171 0.11±0.08

i 445 0.32±0.05
ii 498 30±4
iii 545 2.5±1.2
iv 620 0.654±0.014

high reflectivity reveal α-quartz’s Reststrahlen bands between corresponding to
and lo phonon frequencies where the real part of the dielectric function takes
on negative values, resulting in strongly attenuated evanescent waves (Sec. 3.2.1).
Here, modes with small to–lo frequency splittings, i.e., small oscillator strengths
[46], do not form full Reststrahlen bands, but rather peak-like reflectivity features.

Additionally, the shg anisotropy behavior, i.e., azimuthal dependence, at all
resonances marked in Fig. 5.4a has been measured under two polarization con-
ditions: B?? and ???. Exemplarily, Fig. 5.5 shows the azimuthal scans at spectral
positions marked �3, �6, �7, and �8. Here, model fits using Eqs. 5.1.3a and 5.1.3b
are in very good agreement with the experimental data. While in the B?? polar-
ization configuration, the azimuthal scans depend on both uniquely contributing
"(2) tensor elements, "(2)000 and "(2)

021
, ??? scans solely depend on "(2)000 . This leads

to the observed three- and sixfold azimuthal dependencies, respectively, as ex-
pected from theory. Knowledge of α-quartz’s Fresnel factors (Sec. 3.2.3) allows
the extraction of relative "(2) magnitudes, i.e., the ratio

���"(2)021 ��� /���"(2)000 ���, from B??

scans. The fit results are summarized in Tab. 5.2.
Notably, the azimuthal behavior of the �6 mode in ??? polarization is highly

sensitive to slight misalignment of the detection polarizer which would lead to
an interference of the B- and ?-polarized shg components. Due to the relatively
large anisotropic component entering the B?? signal at this particular phonon
resonance (∝ !eff

021
"(2)
021

, cf. Eq. 5.1.3a) and a generally stronger shg signal for B??
compared to ???, a small polarization angle offset in detection has a considerable
impact on the measured azimuthal dependence. At the �6 resonance, this effect
is particularly pronounced because the B?? signal is nonzero at angles where ???
also yields signal. For this reason, particular care had to be taken when adjusting
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the polarization of the detected shg beam. This effect is much less pronounced
at the other phonon resonances as B?? signals are zero where ??? signals are
strongest.

Quantitative Analysis

The physical origin of the observed shg enhancements in Fig. 5.4 is threefold.
First, the highly dispersive second-order nonlinear susceptibility, "(2)($), typi-
cally peaks at to phonon frequencies, causing a strong shg enhancement over
several orders of magnitude [75]. Secondly, the shg signal is strongly modulated
by the dispersing Fresnel factors, !eff

021
($) and !eff

000($) (cf. Eq. 5.1.3a). Lastly, the
wave vector mismatch, Δ:($) (see Eq. 5.1.4), is highly dispersive and determines
the effective escape depth of the shg light, �? = 1/Δ:. For nonabsorbingmaterials
in a reflective geometry, �? is typically on the order of half the shg wavelength
and thus largely nondispersive. Here however, Δ:2 is highly dispersive due to
the strong absorption of to phonons which causes a large imaginary part of kt

1,2,
dominating Δ:2.

Considering α-quartz’s numerous phonon modes, the generalized model of
Flytzanis (Eqs. 5.1.5a and 5.1.5b) results in a very large number of free fit pa-
rameters, � 9,:

1,2,3, making a quantitative analysis of the shg spectra a challenging
task. In order to achieve a feasible fit routine, we simplify the generalized model
to include only �1 terms as well as cross-terms in �3 which contain spectrally
proximate phonon resonances, assuming those to be the main contributors to
the "(2)($) function. This leaves a reduced number of 19 independent �1 and
�3 coefficients as free fit parameters. This strongly simplified model, applied
to Eqs. 5.1.3a and 5.1.4, while lacking quantitative accuracy, reproduces nearly
every feature observed in the shg spectrum qualitatively as shown in Fig. 5.6a.
Moreover, from this analysis it is possible to extract the essential spectral shapes
of the two contributing "(2)($) functions which are plotted in Fig. 5.6b.

Fig. 5.6 illustrates the interplay of all dispersing contributions to the shg signal,
including the Fresnel factors (Fig. 5.6c) as well as the wave vector mismatch
(Fig. 5.6d). Taking the�7mode as an example, it becomes clear howcompensating
enhancement and suppression effects are at play: Fresnel contributions and wave
vector mismatch cause a significant suppression of the shg signal of about 10−3

and 10−1, respectively. Meanwhile, the "(2) enhancement at Ωto
7 of about 106

counters these effects, resulting in a measurable shg resonance. Notably, the
Fresnel factors can cause a spectral shift of the shg peak position with respect to
the actual phonon frequency. This is observed in �3 where a Fresnel suppression
acts on the shg signal at Ωto

3 . At the same time, both, Fresnel factors and wave
vector mismatch enhance the signal at a slightly higher frequency, effectively
causing a spectral offset between observed shg peak position and actual phonon
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frequency. This shows that an adequate interpretation of the shg spectra requires
a thorough treatment of the linear optical effects.

As mentioned above, only subtle signatures of lo phonon resonances are
observed in the spectral shg response. This stands in contrast to previouswork on
single-mode silicon carbide [75] andowes to a combinationof effects. First,weaker
modes, such as �-types 9 = 5, 8, reside on the tails of strong mode resonances
in the dielectric function which strongly suppresses their Fresnel resonances at
their lo frequencies. Secondly, out-of-plane Fresnel resonances (here, !II) are
generally found to be stronger than in-plane resonances (here, !GG and !HH) as
also seen in Fig. 5.6c. As we are largely sensitive to !GG and !HH for trigonal
α-quartz (cf. Eqs. 5.1.3a and 5.1.3b), Fresnel resonance effects around lo phonon
frequencies are reduced as compared to, e.g., hexagonal silicon carbide [75].
Nevertheless, peaks labeled �3, ii, and �6 are—at least in part—likely to originate
in lo phonon resonances.

5.3. High-Temperature SHG Spectra and Phase Transition

So far, we have analyzed the shg phonon spectrum of α-quartz at room temper-
ature. Due to its sensitivity to symmetry and vibrational resonances—carrying
symmetry information themselves—shg spectroscopy holds great potential for
the study of order-to-order phase transitions. In this section, we will explore the
temperature-dependence of α-quartz’s shg response, particularly in view of its
high-temperatureα–βphase transition. To this end, the samplewasmounted onto
a heating stage (Sec. 4.4.1). During this displacive phase transition at nominally
)c = 846 K, quartz changes from the trigonal crystal symmetry to a hexagonal
one (point group 622, Schoenflies �6) [86]. Interestingly, �-type phonon modes
labeled 9 = 3, 5, 8 become ir-forbidden in the β-phase due to structural changes
in the crystal [87].

Experimental Results

Figs. 5.7a and c show shg phonon spectra measured in the B?? polarization
configuration at temperatures 300K, 500K, 700K, 875K, and 950K. Notably, the
modes’ different azimuthal behaviors (Fig. 5.5) would limit the dynamic range of
some features in the shg spectrum, e.g., �3 or �7, if taken at a single azimuthal
angle. For this reason, shg data were acquired in two parts: at ! = 30° in the
low-frequency region from 350 cm=1 to 850 cm=1 (Fig. 5.7a), and at ! = 90° in the
high-frequency range from 750 cm=1 to 1350 cm=1 (Fig. 5.7c).
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Figure 5.7. Temperature-dependent SHG and reflectivity spectra of α-quartz. Due
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The temperature-dependent spectra reveal two immediate observations. First,
a clear decrease of the resonant amplitudes, in terms of shg peak heights, as well
as increased damping rates, in terms of peak widths, are observed at higher tem-
peratures. Secondly, shg peak positions shift with temperature. This behavior
originates from temperature-dependent changes of the phonon damping rates
and frequencies. Remarkably, some to phonon resonances exhibit a particularly
sudden drop in shg intensity close to the phase transition temperature)c = 846 K,
most prominently �5. Other resonant features, in contrast, show a gradual de-
crease up to the highest measured temperature—�6 for instance—or until the
shg signal drops below the detection limit, such as �7. This behavior is most
likely due to the α–β phase transition where phonon modes associated with �3,
�5, and �8 become ir-forbidden while �6 and �7 remain ir-active [86].

The simultaneously measured reflectivity spectra are shown in Figs. 5.7b and
d. In accordance with the shg peaks, Reststrahlen edges and peaks in the reflec-
tivity soften and shift spectrally with increasing temperature. Close to the phase
transition temperature, peak-like features associated with �-type modes 9 = 3, 5
disappear almost entirely, as does the dip-like feature in the upper Reststrahlen
band associated with the 9 = 8 mode, thereby being consistent with the shg data.
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Note that the reflectivity data are displayed on a linear scale whereas shg spectra
are plotted logarithmically to cover the large dynamic range in these signals. This
visual representation masks the fact that shg peaks are much more sensitive to
phonon damping than any of the reflectivity features.

Notably, shg peaks labeled i–iv in Fig. 5.4 even intensify with increasing
temperature. Here, the plateau-like feature labeled iv shows a peculiar behavior
with a pronounced signal drop above the phase transition temperature. These
observations are interesting and not entirely understood at this point. It should
be noted, however, that during the measurements a signal contribution due to
black-body radiation by fel-induced sample heating has been observed. This
effect gets more pronounced at elevated temperatures and has been accounted
for by subtracting background spectra, acquired at a large time delay between
the pulses in both excitation arms. Nevertheless, owing to the low signal levels
in this frequency range, the possibility of a thermal contribution to the shg signal
cannot be ruled out entirely.

Analysis

For a quantitative analysis of the observed spectral features—especially at high
temperatures—the observed shg peak positions and widths are compared to
temperature-dependent phonon data acquired through ir reflectivity measure-
ments by Gervais and Piriou [86]. To this end, resonant features in the shg
spectra have been fitted with a Lorentzian function, yielding center frequencies
and linewidths, $shg and Γshg, respectively, as well as amplitudes. Here, Γshg is
defined as the half width at half maximum (hwhm). These fit results are plotted
in Fig. 5.8 together with the phonon data from Ref. 86.

The comparison shows how the to phonon frequencies and damping rates
relate to the observed peak characteristics in the shg spectrum. In fact, the shg
peak positions mimic the temperature-dependent trends of their corresponding
to phonon frequencies considerably well, although offsets of up to 10 cm=1 are
observed, owing to the influence of Fresnel factors and the wave vector mismatch
as discussed in Sec. 5.2. This is also true for the shg peak labeled �6 which was
measured at two azimuthal angles, ! = 30° and 90°, displayed as closed and open
dots, respectively. Here, the two relevant Fresnel components, !eff

021
and !eff

000 , each
exhibiting different temperature dependencies, contribute differently to the shg
signal.

Remarkably, phonon damping rates are well represented by the shg peak
widths—in large parts even in good quantitative agreement with Γshg. This
is nontrivial as the shg spectra are considerably modulated by the dispersing
Fresnel factors, especially at phonon resonances. Yet, the data in Fig. 5.8a show
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that the shg peak widths provide a reasonable estimate of the phonon damping
constants for all modes observed.

Fig. 5.8b shows the fitted shg amplitudes. Clearly, the data show a continuous
decrease of the shg intensity with higher temperatures for all resonances. Above
the phase transition temperature, all resonance amplitudes vanish with the ex-
ception of the �6 mode which—as its center frequency and linewidth—shows a
kink-like behavior at the phase transition instead.

Attempting an estimation of the expected behavior of the resonant shg ampli-
tudes, the temperature-dependent amplitude of each phonon resonance is evalu-
ated to (/� where ( denotes that phonon mode’s oscillator strength (cf. Eq. 3.2.7)
and � its respective damping rate, using data from Ref. 86. As (/� enters the
Fresnel coefficients (Sec. 3.2.3) in terms of resonances in the dielectric function
to different orders and, similarly, contributes to "(2)($) (Eqs. 5.1.5a and 5.1.5b)
both, linearly and quadratically, several powers ((/�)# with # = 1...4 are plotted
alongside the experimental data in Fig. 5.8b. Here, ((/�)# is normalized to the
room temperature data.

Below the phase transition temperature, the resonant amplitudes of �3, �5,
and �8 follow the linear # = 1 curve, whereas �6 and �7 appear to decay more
quickly. Close to the phase transition temperature—expected in the rangemarked
by the gray shade in Fig. 5.8—(/� rapidly drops to zero for themodes �3, �5, and
�8 as these modes become ir-forbidden in the β-phase such that their oscillator
strength, (, vanishes. In fact, no shg signal is observed above )c for these modes.
For �6 and �7, on the other hand, (/� predicts appreciable amplitudes above)c as
these modes persist in the β-phase. Experimentally, �6 is indeed observed above
)c whereas �7 also vanishes—contradicting the expectation. However, a careful
examination of detection limits (dotted line in Fig. 5.8b) reveals that the resonant
amplitude of �7 would, in fact, fall below noise level above )c if it followed the
same trend as �6, i.e., dropping more rapidly than the power law prediction in
the β-phase. Strikingly, those modes which persist through the phase transition,
exhibit a temperature-dependence distinct from the other modes, i.e., closer to
# = 2, rather than # = 1. While this empirical observation is very interesting,
it is at this point not possible to isolate a single cause for this effect due to the
numerous contributions to the "(2)($) lineshape.

Discussion

In general, a quantitative analysis of the shg spectra turned out to be a challenging
task—in particular for two interfering "(2)($) contributions with many phonon
resonances. This is the case for the data shown in Fig. 5.4a, resulting in such a
large number of independent parameters that quantitative fitting is not feasible.
With sufficient signal-to-noise, however, a possible solution to this problem could
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be reached by utilizing the intrinsic symmetry properties of Eq. 5.1.3a. In Fig. 5.4,
data were recorded at an azimuthal angle ! = 30°, i.e., at the maximum signal
for many of the observed resonances (cf. Fig. 5.5). If, instead, shg spectra could
be acquired at ! = 0°, the contribution of "(2)

021
($) could be probed exclusively,

allowing a division by the linear quantities, !eff
021

and Δ:, to reveal the actual
"(2)
021
($) lineshape. Similarly, shg spectra in ???would grant access to the "(2)000($)

lineshape. At room temperature, insufficient signal levels prohibit measurements
in these configurations. However, considering the clear temperature trend of shg
signal levels observed in these experiments, measurements at low temperatures
might very well allow such an approach. The following section deals with shg
phonon spectroscopy of α-quartz at cryogenic temperatures.

5.4. Low-Temperature SHG Phonon Spectroscopy

For the low-temperaturemeasurements, theα-quartz samplewasmounted inside
a helium bath cryostat. Layout and details about the operation procedure of the
cryostat are described in Sec. 4.4.2. Here, the 2-cut sample was oriented at an
azimuthal angle of ! = 0° using the cryostat’s integrated motorized rotation
stage. Importantly, at ! = 0°, the expressions for the shg intensity in the B?? and
??? configurations (cf. Eqs. 5.1.3a and 5.1.3b), respectively, simplify to:

�
B??
shg(2$) ∝

��!̃shg(2$)
[
!II($, 
i

1) !GG($, 
i
2) + !GG($, 
i

1)!II($, 
i
2)
]︸                                                                    ︷︷                                                                    ︸

≡!eff
021

"(2)
021
($,$)

��2/Δ:2,

(5.4.1a)

�
???
shg (2$) ∝

��!̃shg(2$) !GG($, 
i
1) !GG($, 
i

2)︸                                  ︷︷                                  ︸
≡!eff

000

"(2)000($,$)
��2/Δ:2. (5.4.1b)

In these expressions, contributions from "(2)
021

and "(2)000 do not interfere in each
of the measurements, allowing for an isolation of the "(2) lineshapes through
division by the contributing linear quantities, namely the Fresnel coefficients
and the wave vector mismatch. Notably, at room temperature, measurements at
! = 0° were not feasible due to insufficient signal levels in B??—with one out
of two "(2) contributions effectively being switched off—and generally poor shg
yield in ???. At cryogenic temperatures, on the other hand, decreased damping
rates and, hence, sharper shg resonances, may enable these measurements.

Such an approach, however, requires good knowledge of α-quartz’s low-
temperature dielectric functionwhich fully determines the linear signal contribu-
tions. Since at the time of these experiments no study of α-quartz’s ir dielectric
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function at cryogenic temperatures could be found in the literature,3 a series of
linear reflectivity measurements had to be conducted in order to determine the
temperature dependence of �($) below room temperature. A comprehensive
description of this experiment as well as a thorough analysis and discussion of its
results will follow in Sec. 5.5. For now, α-quartz’s dielectric function at cryogenic
temperatures is assumed to be given.

Experimental Results

The shg spectra in B?? and ??? polarization at ! = 0° and ) = 1.5 K in the
lower and upper Reststrahlen region of α-quartz were acquired in separate fel
beamtimes and are shown in Fig. 5.9a. Clearly, the low-temperature shg spectra
reveal distinct features and resonances, even for these low-signal configurations.
Considering the observed noise levels, however, it becomes apparent that the
signal magnitudes of some shg resonances surpass the noise floor by only a
relatively narrow margin (less than one order of magnitude). This observation
suggests that weaker resonances—despite the decreased damping rates at low
temperatures—may still fall below the detection limit.

With the aid of α-quartz’s low-temperature dielectric function at 1.5K (see
Sec. 5.5), the linear contributions to the experimental shg spectrum can be
straightforwardly calculated (see Sec. 3.2.3). The relevant Fresnel factors (cf.
Eqs. 5.4.1a and 5.4.1b) as well as the inverse wave vector mismatch for both mea-
surements are shown in Fig. 5.9b and c, respectively. Dividing the experimen-
tally measured shg signal by these linear quantities finally yields the (absolute
squared) lineshapes of α-quartz’s uniquely contributing nonlinear susceptibility
elements, i.e.,

��"(2)
021
($)

��2 and ��"(2)000($)��2. These are shown in Fig. 5.9d.

Discussion

Upon closer inspection of the interplay between the linear quantities and the
extracted nonlinear "(2) contributions (Fig. 5.9), it becomes clear that the signal-
to-noise ratio encountered in these measurements does not allow for a reliable
determination of the "(2)($) lineshapes over the entire Reststrahlen region. This is
apparent, for instance, in the lower spectral rangebetween410 cm=1 and510 cm=1.
Here, calculations of both linear contributions,

��!eff
��2 and 1/

��Δ:��2, predict a strong
suppression at 454 cm=1, i.e., the 9 = 4 �-type phonon frequency, for both polar-
ization configurations. As a consequence, the extracted "(2)($) lineshapes reveal
a considerable enhancement atΩto4 , although no resonant information is present

3 The only reported low-temperature study of α-quartz’s dielectric function was limited to terahertz frequen-
cies [88].
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in the experimental data which, at that frequency, simply shows noise. Thus, the
extracted enhancement in "(2) is an artifact of the relatively high noise floor.

Possible reasons for the insufficient signal levels—despite the sharper reso-
nances at low temperatures—are twofold. One obvious experimental reason are
the multiple additional transmissive optics introduced to the beam path by the
cryostat. The two ir excitation beams each have to pass two krs-5 and one dia-
mond window, totaling in a reduced transmission of about a factor of 3. Roughly
the same intensity loss is inflicted on the generated second-harmonic beam before
reaching the detector. This effect can be partly compensated bymaking use of the
full fel power which—thanks to the extremely effective LHe-cooling—does not
provoke sample damage.

A second possible reason for the relatively weak shg response at resonance
may, however, be of physical nature and intrinsic to the decreased damping
rates at low temperatures. While low damping rates cause sharper and more
intense resonant enhancements in "(2)($), likewise resonances in the dielectric
function, �($), are amplified. These, in turn, directly increase the effect of the
linear signal contributions, in particular the Fresnel factorswhich typically cause a
suppression of the shg signal on resonance—as observed in the room temperature
data (cf. Fig. 5.6). This circumstance diminishes the effective signal-to-noise
advantage gained by the lowered damping rates.

In conclusion, the attempt to employ shg phonon spectroscopy at low tem-
peratures in order to determine isolated "(2)($) lineshapes—inaccessible at room
temperature—was partially successful. Stronger shg resonances produce appre-
ciable signal, allowing for an estimation of

��"(2)��magnitudes on these resonances.
However, insufficient signal levels prevent detection of weaker resonances and
therefore a full extraction of the "(2)($) lineshapes over the entire Reststrahlen
region. The latter would then enable a line fit using the generalized Flytzanis
model (Eqs. 5.1.5a and 5.1.5b) and—due to the greatly simplified fit procedure—
possibly even an extraction of anharmonic phonon mode coupling parameters
(see Sec. 5.1). A conceivable route to improve the sensitivity in this setup may be
the use of a LHe-cooled bolometer in place of the current mct detector [89].

Apart from α-quartz’s nonlinear properties, such as lattice anharmonicities
which are, in principle, accessible through shg phonon spectroscopy, its linear

optical properties are of prevailing relevance as well—not least because a thor-
ough analysis of nonlinear spectra requires detailed knowledge of the system’s
linear optical behavior, as clearly seen in this section.

A material’s linear properties might be of considerable scientific interest in
their own right. This is particularly true for α-quartz. In this regard, the following
section dealswithα-quartz’s dielectric properties at low temperatureswhich have
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already been used in this section, and explores a particularly interesting material
property which has not been discussed so far: its natural hyperbolicity.

5.5. Low-Temperature Dielectric Function of Hyperbolic α-Quartz

The Reststrahlen region of the uniaxial crystal α-quartz naturally features hy-
perbolicity, i.e., its diagonal permittivity tensor has both, positive and negative
principal components, such that Re(�‖)Re(�⊥) < 0 [90, 91] (see Sec. 3.2.2). The re-
sulting isofrequency surfaces inmomentum space resemble open hyperboloids—
as opposed to, e.g., closed spheres for isotropic media—and thus support high-:
waves [53, 92–95]. These states of light, thanks to their high spatial frequency, can
be utilized in nanophotonic devices for, e.g., subdiffractional imaging or nano-
lithography using so-called hyperlenses [96, 97]. Moreover, α-quartz exhibits both,
type i and type ii hyperbolic bands in close spectral proximity, adding to its design
flexibility for nanophotonic applications.

Despite these intriguing properties, low-temperature studies of α-quartz’s di-
electric function have been limited to the terahertz range [88] prior to this work.
Above room temperature, Gervais and Piriou performed an extensive ir reflec-
tivity study on α-quartz which allowed a determination of the high-temperature
dielectric function and served as reference in Secs. 5.2 and 5.3. In the following,
an experimental study of α-quartz’s ir dielectric function at low temperatures is
presented, ranging from 1.5K to 200K, with a particular focus on its pronounced
hyperbolicity.

5.5.1. Low-Temperature Dielectric Function

For an experimental determination of the dielectric function, we follow Gervais’
and Piriou’s approach by acquiring a series of ir reflectivity spectra. For this
purpose, we utilize the autocorrelator geometry of the shg setup (Sec. 4.2) where,
instead of the second-harmonic beam, both reflected fundamental beams, incident
at 30° and 60°, are detected by two pyroelectric photodetectors.

The sample studied here is an optically polished α-quartz H-cut single crystal
(MaTecK), i.e., with the optic 2-axis parallel to the surface plane. This arrangement
allows both, the ordinary �-type and the extraordinary �2-type ir-active phonon
modes to be probed either exclusively or simultaneously—depending on the
orientation of the 2-axis which can be adjusted via the sample’s azimuthal angle
and the fel beam polarization. Sample cooling is achieved using the helium bath
cryostat described in Sec. 4.4.2.
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Figure 5.10. Experimental reflectivity spectra of α-quartz at 1.5 K. Model fits (solid
curves) are in good agreement with the experimental data (gray dots). Depending on
the configuration, the measurements are either exclusively sensitive to ordinary E-type
modes (blue and orange), the extraordinary A2-type modes (red), or both (green).

Experimental Results

In this measurement series, spectra in all possible combinations of the sample’s
2-axis orientation (vertical and horizontal), the fel beam polarization (? and
B), and the incidence angle (30° and 60°) were acquired at four temperatures:
1.5K,20K, 100K, and 200K. Exemplarily, Fig. 5.10 shows the experimental reflec-
tivity data for all geometries and both incidence angles at) = 1.5 K. As in Fig. 5.4,
Reststrahlen bands are very pronounced, especially for phononmodes with large
to–lo splittings, i.e., high oscillator strengths [46]. Eachmeasurement configura-
tion, i.e., ?- or B-polarization with horizontal or vertical 2-axis orientation, results
in a specific direction of the ir electric fields with respect to the principal crystal
axes and thus probes either one of the two unique dielectric tensor elements, �⊥
and �‖ , exclusively, or both simultaneously. For instance, B-polarized reflectivity,
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with 2 ‖ G as well as ?-polarized reflectivity with 2 ‖ H (blue and orange curves in
Fig. 5.10, respectively) are exclusively sensitive to the ordinary �-type modes and
hence solely probe �⊥. Similarly, B-polarized reflectivity with 2 ‖ H (red curve)
probes the extraordinary �2-typemodes, thus �‖ . Comparing these spectra of ex-
clusive sensitivity to �⊥ and �‖ (e.g., blue and red curves in Fig. 5.10, respectively)
reveals α-quartz’s pronounced uniaxial anisotropy as a result of different num-
bers of ir-active modes and significant frequency shifts among its principal axes.
On the other hand, ?-polarized reflectivity with 2 ‖ G (green curve) is sensitive
to both principal components. This becomes apparent as the reflectivity spectra
show features attributable to both, �- and �2-type modes, the former being more
pronounced for the rather grazing 60° incidence angle, i.e., for a larger incoming
out-of-plane field component.

Data Fitting

For a theoretical descriptionof the acquireddata,we can readily invoke theFresnel
reflection coefficients derived in Sec. 3.2.3 (see Tab. 3.1). Here, all dispersive
quantities are ultimately dependent on the dielectric tensor elements, �⊥($) and
�‖($), which themselves are well-described by the fpsq model (see Eq. 3.2.12).
Finally, the ?- and B-polarized reflected light intensities are, respectively, given
by:

�? = |'GG�i cos 
i |2 + |'II�i sin 
i |2 , (5.5.1)

�B =
��'HH�i

��2 , (5.5.2)

where 'GG , 'HH , and 'II denote the Fresnel reflection tensor elements (Tab. 3.1)
and �8 the incident electric field. This leaves the to and lo phonon frequencies,
Ωto9 and Ωlo9 , their respective damping rates, �to9 and �lo9 , as well as the high-
frequency contributions, �∞⊥ and �∞‖ , as the only independent variables entering
the model through the fpsq equation (Eq. 3.2.12). The experimental data have
been fitted using this model with a nonlinear least squares regression procedure
applied globally to the entire data set for each temperature, yielding the frequen-
cies and damping rates of both, �- and �2-type phonon modes, as well as the
high-frequency contributions, �∞⊥ and �∞‖ , as fit results.

It should be noted that the fpsq model can result in the imaginary part of the
dielectric function, Im(�), taking on negative values in case of large differences
of the lo and to phonon damping rates, Δ�9 = �lo9 − �to9 [43]. In order to avoid
this unphysical regime of the model, a penalty to negative Im(�) values is applied
during the least-squares fitting routine.

The fits are in good agreement with the experimental spectra across the entire
data set. Noticeable deviations can be observed in the lower frequency region
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from 450 cm=1 to 550 cm=1 which are suspected to originate from two parasitic
spectral contributions. First, the cryostat windows, although being wedged,
cause a Fabry-Pérot-like spectral modulation on top of the measured raw data.
This modulation happens to be particularly pronounced at the lower Reststrahlen
region at 
i = 60° and becomesmore prominentwhere signal levels are constantly
high, i.e., in Reststrahlen bands. Secondly, CO2 bendingmodes in air cause strong
ir absorption peaks in this spectral region which is minimized by flooding the
optical setup with N2 gas. Both of these unwanted effects are being corrected
for by measuring reference spectra in B- and ?-polarization using a bare gold
mirror as a nominally perfect ir-reflector in place of the sample and dividing the
raw reflectivity spectra by their corresponding reference. Nevertheless, a certain
spectral contribution remains and is observable in the corrected spectra. The
modulations, however, do not have a strong influence on the fit procedure as
positions and widths of Reststrahlen edges remain largely unaffected.

The resulting fit parameters from all measurements, i.e., �- and �2-type
phonon frequencies and damping rates, are summarized in Tab. 5.3. Here, damp-
ing rates falling below the fel linewidth of Δ$ ≥ 2 cm−1 are indicated as “<2.0”.
Values for �∞⊥ and �∞‖ are averages over all four measured temperatures as the
values do not show any significant temperature dependence.

Discussion

The temperature dependence of the fit results specified in Tab. 5.3 is plotted in
Figs. 5.11 and 5.12 togetherwith the values determined byGervais andPiriouwho
studied the dielectric properties of α-quartz at high temperatures [86]. Overall
the low-temperature data from Tab. 5.3 are largely consistent with Gervais’ and
Piriou’s previous work as the extension of the low-temperature results to the
high-temperature values from Ref. 86 is rather gradual. Notably, the majority of
modes still experience a significant decrease in damping rates below 295K. In
particular, the spectrally lower �-type 9 = 3, 4 and �2-type 9 = 1, 2 modes which
cause α-quartz’s pronounced hyperbolicity, experience a reduced damping rate
by nearly a factor of 2 as compared to room temperature.

In order to describe the temperature dependence of both, phonon frequen-
cies and damping rates, we here employ a power law fit with the vertex at
)c = 846 K [98] to the entire temperature range, including Gervais’ and Piriou’s
high-temperature data:

H 9()) =
���H 9(0 K) + :

√
)c − )

��� , (5.5.3)

where, H 9 denotes either the phonon frequency, Ω9 , or the damping rate, �9 of
the 9th mode. The fitted curves are also plotted in Figs. 5.11 and 5.12 as solid
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Table 5.3. Results for the low-temperature phonon mode frequencies and damping
rates used as free parameters to fit the experimental reflectivity spectra. Values for ε∞
have been averaged over all temperatures.

9 )
[
K
] �2-type modes �-type modes

ΩTO9
�TO9

ΩLO9
�LO9

ΩTO9
�TO9

ΩLO9
�LO9[

cm−1] [
cm−1]

1 1.5 360.7 <2.0 384.8 <2.0

–
20 360.1 <2.0 384.8 <2.0

100 360.9 <2.0 384.3 <2.0
200 361.2 2.1 385.2 <2.0

2 1.5 497.9 3.1 553.6 2.8

–
20 498.4 3.6 554.4 3.3

100 498.0 3.2 553.1 3.1
200 496.8 4.7 552.2 4.0

3 1.5 773.7 5.4 789.9 6.3 391.5 <2.0 403.0 <2.0
20 774.4 5.6 789.9 6.5 392.1 <2.0 402.8 <2.0

100 774.1 5.8 789.9 7.1 391.9 <2.0 403.0 <2.0
200 775.3 5.9 788.8 6.8 392.4 <2.0 402.8 2.6

4 1.5 1073.0 6.2 1238.7 12.4 454.0 2.6 510.5 <2.0
20 1072.7 3.5 1241.2 11.2 452.4 3.4 510.4 2.3

100 1072.8 4.9 1239.2 11.1 453.6 2.2 510.0 2.1
200 1070.9 5.3 1239.6 11.5 451.2 4.0 508.8 2.8

5 1.5

–

695.9 4.9 698.4 4.0
20 695.8 4.9 698.5 4.5

100 696.0 4.2 698.1 3.9
200 695.3 5.6 697.7 5.0

6 1.5

–

797.2 4.8 810.0 4.3
20 797.2 4.4 810.2 5.0

100 796.9 5.1 809.9 4.1
200 796.5 6.0 809.1 5.2

7 1.5

–

1063.7 6.1 1230.7 8.2
20 1062.9 6.3 1231.9 10.9

100 1063.9 6.8 1231.2 12.0
200 1063.0 7.1 1230.0 12.1

8 1.5

–

1157.2 6.2 1154.9 6.1
20 1156.9 6.9 1154.4 6.2

100 1157.0 6.2 1154.9 6.0
200 1157.0 7.2 1154.8 6.3

�∞‖ = 2.334 �∞⊥ = 2.296
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Figure 5.11. Thermal evolution of E-type phonon frequencies and damping rates.
Le�: Phonon frequencies and Right: damping rates of the ordinary E-type phonon
modes. Curve fits are indicated by solid lines. Literature values are taken from Ref. 86.

lineswhich describe the temperature-dependent behavior ofΩ9()) and �9())with
good accuracy.

Having knowledge of the temperature-dependent phonon frequencies and
damping rates, the dielectric functions, �⊥($) and �‖($) can now be straightfor-
wardly calculatedwith the aidof the fpsqmodel (Eq. 3.2.12). A fullyparametrized
and temperature-dependent dielectric tensor based on the power law fits to the
data acquired in this work as well as Gervais’ and Piriou’s high-temperature data
can be calculated using the Python JupyterNotebook ormatlab script supplied in
Ref. 99. Notably, the validity of these scripts is restricted to the wavelength range
studied here (350 cm=1 to 1380 cm=1) as well as quartz’s α-phasewhere the power
law fits describe the data with high accuracy. This simple model, however, fails
to describe the resonant behavior of damping rates at )c and leads to instabilities
of the fpsq model above )c.
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Figure 5.12. Thermal evolution of A2-type phonon frequencies and damping rates.
Le�: Phonon frequencies and Right: damping rates of the ordinary A2-type phonon
modes. Curve fits are indicated by solid lines. Literature values are taken from Ref. 86.

Exemplarily, the real and imaginary parts of �⊥($) and �‖($) are plotted at
) = 20 K in Fig. 5.13. Here, light and dark gray shades mark type i and type ii
hyperbolic bands, respectively. Especially in the lower spectral region, between
360 cm−1 and 550 cm−1, pronounced hyperbolic bands of both types emerge.

5.5.2. Natural Hyperbolicity in α-Quartz

In order to assess the suitability of these hyperbolic bands for nanophotonic
applications, such as hyperlens designs, the quality factor, &, is introduced as a
figure of merit (fom). It reads [100, 101]:

& =
$d Re(�)

d$
2 Im(�)

�����
�=−2.

(5.5.4)

For comparability, & is determined in all hyperbolic bands in the lower spectral
region between 361 cm=1 and 554 cm=1 at Re(�) = −2. This is in accordance with
the common practice in the field of plasmonics where Re(�) = −2 marks the
peak of the absorption in air due to a localized surface plasmon resonance [101].
Another important property of hyperbolic materials is the ratio �⊥/�‖ as it defines
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Figure 5.13. Dielectric functions of α-quartz at 20 K. Le� axes (blue) indicate the real
part of the dielectric functions while the right axes (orange) indicate their imaginary parts
(on a logarithmic scale). Shaded areas mark type I (light gray) and type II (dark gray) hy-
perbolic bands. H1 and H2 refer to the two pronounced pairs of hyperbolic bands in α-
quartz’s lower spectral region. Q-factors are marked where Re(ε)=-2.

the rigid propagation direction of hyperbolic polaritons in the givenmaterial (see
Eq. 3.2.16) and plays a crucial role in the design of, e.g., hyperlenses [93]. For
this reason, Re(�⊥(‖)) at Re(�‖(⊥)) = −2 is evaluated alongside &. Both foms are
given in Tab. 5.4 for 
-quartz (SiO2) at 20K and 300K as well as hexagonal boron
nitride (h-BN) for comparison. Hexagonal boron nitride has recently been subject
to various studies, making use of its natural hyperbolicity and excellent&-factors
[93, 94, 101–104]. Here, we refer to h-BN as a benchmark system to evaluate

-quartz’s potential for nanophotonic device applications.

The comparison shows that α-quartz offers very good&-factors at low temper-
atures, surpassing those reported for h-BN at room temperature (see Tab. 5.4). It
shall be noted, however, that reflectivity-based methods only offer limited sensi-
tivity to the small off-resonance imaginary part of the dielectric function. Hence,
&-factors should be understood as estimates and a precise determination of the
polariton performance requires a more direct measurement. The analysis also
shows that α-quartz enables the high-: states characteristic for hyperbolic materi-
als in a distinctly different spectral range, i.e., between 361 cm=1 and 554 cm=1—as
opposed to h-BN which exhibits type i hyperbolicity from 760 cm=1 to 825 cm=1

and type ii hyperbolicity from 1360 cm=1 to 1614 cm=1. Furthermore, 
-quartz
sustains both, type i and type ii hyperbolic bands in close spectral proximity,
opening up additional design opportunities for nanophotonic devices. Also in
view of the hyperbolic polaritons’ propagation directions—defined by the ratio
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Table 5.4. Comparison of α-quartz’s hyperbolic regions, H1 and H2, at 20 K and 300 K,
with the naturally hyperbolic hexagonal boron nitride, comprising the parametrized TO
and LO phonon frequencies, Q-factors at Re(�) = −2, and Re(�⊥(‖))where Re(�‖(⊥)) = −2
for both principal crystal axes, based on the power law fits.

Material
α-quartz

h-BN [93]
h1 h2

) 20K 300 K [86] 20K 300 K [86] 300K

Ω⊥ (cm=1)
to 391.6 393.1 454.8 449.0 1360
lo 402.7 402.7 511.3 508.2 1614

Ω‖ (cm=1)
to 358.9 364.3 503.4 492.2 760
lo 384.4 387.2 555.3 550.6 825

&⊥ 464 87 214 91 221
&‖ 681 69 249 76 399

Re(�⊥)|Re(�‖)=−2 11.0 11.9 1.1 0.9 8.0
Re(�‖)|Re(�⊥)=−2 2.2 2.2 15.0 23.9 2.8

�⊥/�‖—α-quartz offers additional flexibility as its lower pair of hyperbolic bands
(indicated as “h1” in Fig. 5.13 and Tab. 5.4) exhibits similar properties as h-BN
whereas band “h2” provides significantly different values while being in very
close spectral proximity to h1. While the latter is also true at room temperature,
&-factors of hyperbolic polaritons experience a substantial improvement by at
least a factor of 2 as compared to room temperature, promising superior perfor-
mance of nanophotonic devices utilizing α-quartz’s hyperbolicity at cryogenic
temperatures.

5.6. Summary and Conclusion

This chapter introduced second-harmonic phonon spectroscopy as a highly sensi-
tive tool for the studyof phonon resonances in noncentrosymmetric polar crystals.
Using α-quartz as a model system, it has been demonstrated that the crystal’s ir-
active to phonon resonances cause steep enhancements in the shg signal which
can be detected across several orders of magnitude. The technique is facilitated
by an ir fel which provides the high peak fields and spectral sharpness required
for such an approach. Unlike linear spectroscopies—such as the simultaneously
acquired ir reflectivity—the nonlinear nature of ir shg opens up additional exper-
imental degrees of freedom which can be exploited through polarization control
in order to selectively access symmetry-related information about the sample at
hand. This becomes particularly apparent when investigating the shg signal’s
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azimuthal behavior. Depending on the applied polarization configuration, ei-
ther a six- or threefold symmetry is observed as either one or two interfering
second-order nonlinear susceptibility tensor elements are probed, respectively.

Moreover, second-harmonic phonon spectroscopy is shown to be highly tem-
perature-sensitive. As the sample temperature increases, phonon resonances
shift spectrally and soften due to increased damping rates. Both of these effects
are well-reproduced in the shg phonon spectra in terms of peak positions and
widths—largely in appreciable agreement with literature values. This is of par-
ticular interest in view of quartz’s structural α–β phase transition where certain
phononmodes become ir-inactive due to the heightened symmetry of the hexag-
onal β-phase. In fact, a sudden drop of shg intensity is observed for these modes
whereas one β-allowed mode shows a peculiar temperature dependence around
)c. This indicates a change in the crystal structure and promotes the technique’s
potential for the study of order-to-order phase transitions in general. This aspect
will be picked up in Ch. 7 of this thesis.

While careful analysis of the shg phonon peaks allows a largely accurate
estimation of phonon frequencies and damping rates, a quantitative analysis
of the spectral lineshapes turned out to be challenging. Here, a combination
of both, linear quantities—determining the local fields—as well as the nonlin-
ear susceptibility tensor elements—carrying information about, e.g., anharmonic
mode coupling—determine the detected shg intensity. Especially the latter intro-
duces a plethora of free parameters due to the numerous resonances in α-quartz,
rendering a quantitatively accurate fit procedure unfeasible. Additionally, the
strongly temperature-dependent damping rates cause a rapid drop in shg in-
tensity at high-temperatures, further impeding a quantitative assessment above
room temperature.

Attempting to overcome these limitations, experiments at cryogenic tempera-
tures have been implemented and performed. Taking advantage of the lowered
damping rates, it was possible to employ measurement configurations which in-
volve only one "(2) tensor element and would not yield appreciable shg signal at
room temperature, e.g., ??? or B?? at ! = 0°. Due to the relative simplicity of
these spectra, it is in principle possible to extract "(2)($) lineshapes by dividing
out the linear spectral contributions. While this approach allows to estimate "(2)

magnitudes on stronger resonances, the experimental setup still lacks the sensi-
tivity required for a complete determination of their lineshapes across the entire
spectral range.

In general, a careful quantitative analysis of the shg phonon spectra requires
good knowledge of the linear signal contributions, determined by the sample’s
dielectric ir response. While α-quartz’s dielectric properties are well-studied at
room-temperature and above, at the time these experiments were performed no
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report of its low-temperaturedielectric ir responsewas found in the literature. For
this reason, and to enable an interpretation of the low-temperature shg phonon
spectra, a series of ir reflectivity spectra were acquired. A global fit procedure of
the experimental data allowed an extraction of α-quartz’s phonon properties and
thus its in-plane and out-of-plane dielectric functions between 1.5K and 200K.
Here, a careful analysis of the strongly anisotropic dielectric response revealed
multiple spectral bands of pronounced hyperbolicity. It is shown that at low
temperatures, these hyperbolic bands exhibit remarkably high quality factors,
presenting α-quartz as a promising naturally hyperbolic material and a viable
candidate for nanophotonic applications.

While naturally hyperbolic materials, such as α-quartz, provide a straightfor-
ward way to sustain hyperbolicity, they often lack flexibility, e.g., in the appli-
cable wavelength range since phonon frequencies and, hence, their ir dielectric
response arematerial properties and as such hardly tunable. In this regard, meta-
material approaches offer a welcome alternative as these allow to purposefully
alter the dielectric properties, for instance by varying geometrical parameters of
the system or the constituent materials themselves [96]. The following chapter
discusses the use of atomic-scale superlattices composed of polar semiconductors
as a platform for tunable ir nanophotonic materials.
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Chapter 6.

Controlling the Infrared Dielectric Function
through Atomic-Scale Heterostructures

Large parts of this chapter have been published in Ref. 105. The text strongly draws from

this publication.

The field of nanophotonics focuses on the confinement and manipulation of
light at the nanoscale. While in the visible spectral range, this can for instance be
achievedusingpolaritons supported innoblemetals [106], nanoscale confinement
in the ir is more challenging due to the much longer free-space wavelengths
[52, 107]. In return, however, ir nanophotonics offers a multitude of potential
technological advancements, including super-resolution imaging [108], enhanced
ir spectroscopy [109], and free-space signaling and communications [110]. One
promising approach towards realizing such technologies is through the use of
surface phonon polaritons (SPhPs)—the surface-bound electromagneticmodes of
a polar material, resulting from the coupling of light with optical phonons [101].
One significant benefit of SPhPs is that they exhibit substantially lower losses than
their well-studied metal-based counterparts, surface plasmon polaritons (SPPs),
due to the much longer scattering times of optic phonons compared to those of
electrons in metals [111]. In this sense, low-loss SPhPs constitute an attractive
alternative to SPPs whose intrinsic losses have so far limited their broad usage in
many practical applications [101].

SPhPs, however, are only supported in the relatively narrow Reststrahlen
bands of polar dielectrics, such that, once a particular material system is cho-
sen, the spectral characteristics of the SPhPs it supports are fixed. Fig. 6.1 shows
an exemplary SPhP dispersion in the Reststrahlen band of a generic polar semi-
conductor. Although a large number of polar materials exist in nature which
combined cover almost the entire mir to terahertz spectral range [112], any one
given material only supports SPhPs in its own specific narrow band.

In this chapter, an approach towards modifying and broadening the spec-
tral range for SPhPs is demonstrated both, experimentally and theoretically, by
employing atomic-scale superlattices (sls) composed of commercially available
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Figure 6.1. Dispersion relation of bulk and surface phonon polaritons. While bulk
phonon polaritons develop upper and lower polariton branches outside of the highly re-
flective Reststrahlen band, SPhPs are exclusively limited to frequencies between the TO
phonon frequency and the cuto� frequency, ωS, within the Reststrahlen band.

iii-v semiconductors.1 Combining two materials to form a sl strongly affects the
chemical bonding, electrostatic, and lattice constants at and around the interfaces,
leading to modified vibrational modes [114, 115]. Moreover, confinement effects
can occur, giving rise to phononmodes which oscillate predominantly in onema-
terial [114], or new vibrational states which span both materials. Also, interface
phonon modes may be supported whose vibration is localized to the interfaces
between the individual layers [116].

As the sl layer thicknesses approach the length scale of only a few atomic
monolayers, chemical bonding at the numerous interfaces plays an increasingly
prominent role in the formation of phonon modes in the sl. These, in turn,
directly impact the dielectric response of the sl. In the following, such atomic-
scale sl structures will be referred to as crystalline hybrids (xhs) as their dielectric
response deviates significantly from those of its constituent materials [117, 118].

A detailed description of the specific xh structures studied here will be given
in Sec. 6.1. Sec. 6.2 then deals with the characterization of the unique vibra-
tional modes emerging in such sls using second-harmonic phonon spectroscopy
and demonstrates their strong dependence on the atomic-scale layer thicknesses.
These hybridmodes give rise to a distinct dielectric response which is investigated
experimentally and theoretically in Sec. 6.3. Most notably, the xh structures stud-

1 The iii-v’s refer to a class of semiconducting compounds of group iii (mostly Al, Ga, In) and group v elements
(mostly N, P, As, Sb). They are commonly used in light-emitting diodes (leds), diode lasers, photodetectors,
and solar cells [113].
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ied here feature pronounced hyperbolic bands which are discussed in Sec. 6.4
with regard to the hyperbolic polaritonmodes they support. Finally, a conclusion
is given in Sec. 6.5.

6.1. Crystalline Hybrids

The concept ofxhs isdemonstratedbyemployingmultiple atomic-scaleAlN/GaN
sl structures, grown along their optic 2-axis using molecular beam epitaxy (mbe),
on semi-insulating SiC substrates.2 Both, AlN and GaN, have the hexagonal
wurtzite crystal structure and are anisotropic with �1-type and �1-type phonon
modes, oscillating parallel and perpendicular to the crystal’s 2-axis, respectively.
Their bulk phonon frequencies are summarized in Tab. 6.1, along with those of
the SiC substrate. As bulk compounds the three materials have similar ir re-
sponses with overlapping Reststrahlen bands. These are shown in Fig. 6.2b as
calculations based on the values in Tab. 6.1.

Table 6.1. A1 (extraordinary) and E1 (ordinary) phonon frequencies and high-
frequency permittivities of bulk AlN, GaN, and the SiC substrate. Values are taken from
Refs. 119–121.

Material
Out-of-plane In-plane

$to $lo
�∞,‖

$to $lo
�∞,⊥[cm=1] [cm=1]

AlN [119] 614 893 4.0 673 916 4.3
GaN [120] 533 735 5.3 561 743 5.3
SiC [121] 783 964 6.7 798 966 6.5

Two representative xh structures were grown for the experiments presented
in this chapter which in the following will be referred to as samples a and b:

Sample A This xh structure consists of 50 alternating AlN and GaN layers with a
∼50 nm thick AlN buffer layer between the xh and the SiC substrate. Notably,
this sample was deliberately not rotated during the mbe growth process, such
that a gradient in the Al- and Ga-flux caused a significant variation in the
corresponding layer thicknesses across the SiC wafer surface. As a result,
AlN and GaN layer thickness values range from ∼2 to 3 nm, depending on
the position on the sample. A cross-sectional scanning transmission electron
microscope (stem) image of sample a is shown in Fig. 6.2c. At the particular
position shown in the stem image, each layer is ∼2 nm thick.

2 Sample growth and preparation has been performed by D. Scott Katzer at the us Naval Research Laboratory
in Washington, d.c. (usa).
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Figure 6.2. STEM images and IR reflectance spectra of AlN/GaN atomic-scale super-
lattices. a: Illustration of the AlN/GaN superlattices on a SiC substrate. b: Calculated IR
reflectance spectra of bulk AlN, GaN, and SiC at normal incidence. c and e: Cross-sectional
high-angle annular dark-field STEM images of samples A and B, respectively. Here, AlN and
GaN layers appear as dark- and light-gray bands, respectively. d and f: Experimental IR
reflectance spectra (blue) incident at 65° and macroscopic calculations (dashed orange)
based on the bulk properties of AlN and GaN. Reproduced from Ref. 105.

82



6.1. Crystalline Hybrids

Sample B The second xh structure consists of 500 atomically thin, alternating
layers of AlN andGaNwith thicknesses of∼1.2 nm and 1.4 nm, corresponding
to about 4 and 5 atomic monolayers, respectively. As this sample was rotated
during growth, the layer thickness distribution across the sample surface can
be assumed to be uniform. Both, stem (Fig. 6.2e) and x-ray diffraction (xrd)
measurements imply chemical intermixing at the interfaces, but a generally
high degree of chemical segregation.

The optic phononmodes in sl structures composed of polarmaterials [122]—and,
more specifically, iii-nitride materials [123–128]—have been extensively studied
and described by both, microscopic and macroscopic models [116]. For layer
thicknesses well above atomic length scales, the sl ir response is generally as-
sumed to be adequately described by macroscopic electromagnetic models as,
for example, the transfer-matrix method, based on the layers’ bulk dielectric
functions [91]. If, in addition, the sl layer thicknesses are much smaller than
the wavelength of the applied light, a particular simple macroscopic description
applies, known as the effective medium approximation.

If, however, the layer thicknesses of the sl are reduced to only a few atomic
monolayers, macroscopicmodels no longer describe the sl’s phononmodes accu-
rately as the atomic-scale interactions in such xhs modify the phonon modes in a
fundamental way. For instance, the nowprominent effects of the interfacial bonds
impose different boundary conditions and the lattice constants of the epitaxially
grown layers deviate significantly from their bulk values.

This point is illustrated by the experimental ir reflectance curves of both
samples, a and b, shown in Figs. 6.2d and f, respectively, alongwith the calculated
reflectance of the sls using the macroscopic transfer-matrix approach based on
the bulk dielectric properties of AlN and GaN. The comparison clearly exposes
the macroscopic model’s inability to describe the xh’s ir response accurately. The
discrepancy is even more pronounced for sample b which features thinner and
a higher number of layers and hence more prominent interface and confinement
effects.

These results constitute an initial demonstration of the xh concept, highlight-
ing the qualitatively different ir response of atomic-scale sl structures as opposed
to sls withmesoscopic layer thicknesses which are well-described by conventional
approaches, such as the transfer-matrix formalism or the effective medium the-
ory. In order to gain a more quantitative picture of the xh’s ir response, the
following section discusses the structure’s optic phonon modes which determine
the poles and zeros of its ir dielectric function as well as the spectral extent of its
Reststrahlen bands.
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6.2. Optic Phonon Modes and Tunability

A quantitative determination of the optic phonon modes in the xh using linear
ir techniques, e.g., Fourier-transform infrared (ftir) spectroscopy, is challenging
due to the highly reflective nature of the SiC subtrate’s Reststrahlen band as
well as the multiple Reststrahlen bands of the xh itself. Here, second-harmonic
phonon spectroscopy constitutes a suitable tool as it allows to aptly determine and
identify phonon modes in multimode systems on a nominally flat background
as demonstrated in Ch. 5 for α-quartz. While for α-quartz, the ir shg spectra
showed primarily peaks at to phonon frequencies with large contrast [71], in the
xh system also lomodes produce pronounced shg peaks. This is due to so-called
Berreman modes emerging in thin dielectric films close to zero-crossings of the
dielectric function (epsilon-near-zero condition), e.g., at lo phonon frequencies
[129–131]. These modes exhibit extreme subwavelength confinement and strong
field enhancements, causing pronounced peaks in the shg spectra [132].

The ir shg and reflectance spectra taken at three representative locations on
sample a with varying AlN and GaN layer thicknesses are shown in Fig. 6.3.
The shg spectra show, in addition to phonon resonances of the xh itself, also
peaks corresponding to the SiC substrate as well as the AlN buffer layer (blue
and orange shades in Fig. 6.3, respectively). These resonances, however, are
easily identified as they occur at the bulk phonon frequencies of SiC and AlN
and are invariant against the changing layer thicknesses at different positions on
the sample. In contrast, phonon peaks originating from the xh structure vary
strongly in their spectral position. Specifically, the xh is observed to support two
�1-type to phonon modes around ∼575 cm=1 and ∼630 cm=1 as well as three �1-
type lo modes, one around ∼735 cm=1 and two between 840 cm=1 and 880 cm=1

(green shade in Fig. 6.3). Remarkably, these modes show significant frequency
shifts of more than 10 cm=1 even for these small layer thickness variations on the
Ångström-scale.

One possible reason for the strong layer thickness dependence of the phonon
frequencies in the xh is the development of significant strain across the sample.
In fact, it has been reported in the literature that lattice strain may cause phonon
frequency shifts in AlN/GaN sls [123, 133]. For the xh structure at hand, a quan-
titative determination of the in-plane-strain using xrd reciprocal space mapping3

showed that the observed phonon frequency shifts are mostly consistent with
the measured in-plane-strain [105]. This would provide a direct means to tune
phonon frequencies in the xh via lattice strain, depending on the AlN/GaN layer
thickness ratio. Apart from lattice strain, however, layer thicknesses can also po-
tentially influence phonon frequencies through modified interface bonding and

3 The xrd characterization and reciprocal space mapping were performed by Neeraj Nepal and Matthew
T. Hardy at the us Naval Research Laboratory in Washington, d.c. (usa).
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abruptness, and phonon confinement. The impact of these additional parameters
is still to be determined in future research.

Nevertheless, a description of the modified dielectric function solely based
on strain-induced phonon frequency shifts is incomplete as it does not explain
the additional phonon modes observed in both xh samples. In order to further
investigate the effects of modified chemical bonding at the interfaces, we now
turn to sample b where the layer thicknesses are reduced to just a few atomic
monolayers. Here, interface and confinement effects are expected to become even
more prominent.

6.3. Infrared Dielectric Response

The induced and modified phonon modes in the xh structures directly impact
its ir dielectric response. To account for the interfacial and confinement effects
which play a more significant role in few-monolayer xh structures, sample b
is treated as a whole and its dielectric response determined for the entire xh
film. To this end, the in- and out-of-plane dielectric functions are extracted
from ir ellipsometric reflectance spectra.4 Notably, spectroscopic ellipsometry
of the basal-plane-oriented uniaxial xh is insensitive to its �1-type to phonon
modewhich, instead, was determined using Raman spectroscopy and fixed at the
resulting 552 cm=1 in the ellipsometric least-squares fit. The real and imaginary
parts of both, �⊥($) and �‖($), are shown in Figs. 6.4a and b, respectively. The
extracteddielectric response shows that the xh is strongly anisotropic and exhibits
multiple Reststrahlen bands along both principal directions as a result of the xh-
induced and shifted optic phonon modes.

In order to gain qualitative insight into the vibrational character of the xh’s
phonon modes, the experimental data are compared to density functional pertu-
bation theory (dfpt) calculations—an ab initio method to incorporate atomistic
details, e.g., the effect of interface bonds. In these calculations,5 the layer thick-
nesses are set to span 4 atomic monolayers of AlN and 5 monolayers of GaN
in each period as this largely conforms to the layer thicknesses determined by
stem in sample b (see Fig. 6.2e). Also, the lattice constants are assumed to be
fully relaxed. As a result, the dfpt calculations yield a set of phonon frequencies
and vibrational patterns, a full list of which can be found in Appx. B. On the
basis of these dfpt-derived phonon frequencies, it is now possible to calculate
the theoretical ir dielectric response of sample b using the fpsq model described

4 The ir ellipsometry measurements and fitting procedures were carried out by Joshua D. Caldwell, Ioannis
Chatzakis, Alexander J. Giles, and Daniel C. Ratchford at the us Naval Research Laboratory, Washington,
d.c. (usa).

5 dfpt calculations were performed by Pratibha Dev [HowardUniversity, Washington, d.c. (usa)] and Thomas
L. Reinecke [us Naval Research Laboratory, Washington, d.c. (usa)].
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in Sec. 3.2.1 (Eq. 3.2.12). Here, damping rates, �, of all phonon modes were em-
pirically chosen to be 10 cm=1. The resulting dfpt-based dielectric functions are
shown in Figs. 6.4c and d.

In addition, effective medium calculations of the xh’s dielectric response are
employed. This approach is based on the average of the GaN and AlN bulk
dielectric functions,weightedby their relative layer thicknesses in the sl structure.
Comparing the effective medium calculations, shown in Figs. 6.4e and f, with the
experimental data shows that the macroscopic approach fails to predict several
important features of the xh’s ir response as atomic-scale interactions remain
unaccounted for in this theoretical framework. In contrast, good qualitative
agreement with the experimental data is found with the dfpt-derived dielectric
function.

Upon closer inspection of the experimental ir response, two distinct Rest-
strahlen bands are found in the in-plane dielectric function, �⊥($): one narrow
region from572 cm=1 to 599 cm=1 and another from629 cm=1 to 807 cm=1. Similar
Reststrahlen bands are found in the dfpt-derived dielectric function, but with a
redshift of∼15 cm=1 with respect to the experimental data. This is typical fordfpt
calculations and can be attributed to the choice of the exchange-correlation func-
tional [105]. The calculated vibrational pattern associated with the lower Rest-
strahlen band, illustrated in Fig. 6.4g, closely resembles a GaN-confined mode.
The vibrational pattern associated with the upper in-plane Reststrahlen region
(Fig. 6.4h), on the other hand, is predominantly confined to the AlN layers, but
oscillates most strongly at the AlN/GaN interfaces.

The experimental out-of-plane dielectric function, �‖($), is dominated by a
broad Reststrahlen band extending from 536 cm=1 to 740 cm=1. The correspond-
ing vibrational pattern from dfpt shows that the phonon mode involves the
displacement of nitrogen atoms in both layers. Although the nitrogen atoms’
displacement is larger in the GaN layers, the phonon mode exhibits an extended
character overall. Two additional minor Reststrahlen bands are observed within
�‖($): one extending from 769 cm=1 to 791 cm=1 and the other from 828 cm=1

to 859 cm=1. Here, the dfpt-derived vibrational patterns indicate that their as-
sociated modes involve atomic movement in both layers, but larger oscillation
amplitudes in the AlN layers due to their lighter reduced mass (see Appx. B).

Comparing the in- and out-of-plane ir dielectric functions, it becomes clear
that the xh behaves strongly anisotropic and gives rise to both, elliptical and
hyperbolic bands [134] due to its multiple Reststrahlen regions. Unlike most
hyperbolic systems, however, the xh exhibits a wide spectral range, over which
both, positively and negatively valued permittivities are highly dispersive. This
also causes extreme birefringence in excess of unity over a large portion of the
spectrum. For instance, the birefringence, defined as Δ= = =‖ − =⊥, reaches
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a maximum of ∼10 at 527 cm=1, but drops rapidly to ∼=8 at 566 cm=1. This
offers a useful opportunity to engineer hyperbolic spectral bands through careful
selection of materials, layer thicknesses, and epitaxial mismatch.

One common concern, when employing sl designs to modify the ir dielectric
response, especially at the atomic scale, is the introduction of optical losses as
these determine their polariton performance and, ultimately, their applicability.
In order to quantify the optical losses, we here consider the damping parameter,
�, of the various xh modes in comparison to those of the bulk constituents, AlN
and GaN. While fits to the xh dielectric function yield values in the 10 cm=1 to
25 cm=1 range, ellipsometry measurements of bulk AlN and GaN films revealed
damping rates of∼15 cm=1 for AlN and∼5 cm=1 for GaN. Therefore, the damping
rates in the xh structure can be considered to be on the same order as those
of its constituent materials, allowing a modification of its ir response without
introducing a dramatic increase in optical losses. For a more direct validation of
themodifiednanophotonicperformanceof the atomic-scale sl structure, however,
the following section presents a closer investigation of the xh polariton modes
themselves.

6.4. Polariton Performance

A more definite test of validity to the extracted dielectric response discussed in
the previous section is the ability tomake accurate predictions of the xh polariton
modes. To this end, transfer-matrix calculations [91], based on the experimen-
tally determined ir dielectric function, have been employed. Specifically, the
imaginary part of the reflection coefficient, A? , has been evaluated which peaks
at polariton resonances [103] and thus allows to track their dispersion relations.
The results are shown as false color maps in Figs. 6.5a and b. For the small wave
vector values, shown in Fig. 6.5a, multiple branches of strongly dispersing surface
polaritons are observed.

In order to validate the transfer-matrix calculations, Otto geometry prism-
coupling experiments have been performed, providing experimental access to
the polariton dispersion for small wave vector values, i.e., close to the light line
(cf. Fig. 6.1).6 Details on the experimental technique can be found in Ref. 135.
In short, a high-refractive index prism—here, krs-5 (= ≈ 2.4)—in total internal
reflection provides the in-planemomenta necessary to couple to SPhPs. Scanning
thewavelength of the fhi fel through the xh’s Reststrahlen regionwhile detecting
the reflected fel intensity results in reflectance spectra with distinct dips within
Reststrahlen bands at SPhP frequencies. Varying the fel beam’s incidence angle,

6 Transfer-matrix calculations and Otto-type prism-coupling experiments have been performed by Nikolai
C. Paßler.
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Figure 6.5. Theoretical polariton dispersion of the XH. a, b: Imaginary part of the
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files for localized excitation of type I (c, e, f) and type II (d) hyperbolic polariton modes.
Reproduced from Ref. 105.

�ext, and consequently the in-planemomentum, : = $/2= sin�ext, allows to excite
SPhPs along their dispersion. The extracted positions of the reflectance dips in
the Otto geometry, marked as red dots in Fig. 6.5a, are in very good agreement
with the transfer-matrix-based predictions. This corroborates the validity of the
transfer-matrix calculation as well as the experimentally determined ir dielectric
response it is based on.

At larger wave vectors, shown in Fig. 6.5b, strongly confined hyperbolic and
elliptical polariton modes emerge in the xh film as expected from the hyperbolic
and elliptical regions in the xh’s ir dielectric response (Fig. 6.4a), respectively.
Specifically, three type i hyperbolic bands (555 cm=1 to 571 cm=1, 599 cm=1 to
625 cm=1, and 830 cm=1 to 860 cm=1) are observed, showing a pronounced mode
progression—typical for hyperbolic polariton modes in thin films [103]. Addi-
tionally, one type ii hyperbolic band is found between 740 cm=1 and 770 cm=1 as
well as one elliptical band from 572 cm=1 to 599 cm=1. Due to the rapid dispersion
of the xh’s highly anisotropic dielectric tensor, the associated polaritonmodes not
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only vary strongly among these different bands, but also within each band. This
is in stark contrast to most other hyperbolic systems where the positive dielec-
tric component is typically constant [53, 93, 103, 136]. To illustrate this behavior,
the optical field profiles of the various polariton branches have been simulated.7

Four representative examples are shown in Figs. 6.5c–f. Here, it is apparent that
the strong dispersion of both dielectric components results in hyperbolic modes
whose propagation angle [137–139] and length vary drastically within only small
spectral intervals.

Notably, this gives rise to two independent tuning mechanisms of the polari-
tonic dispersion in xh systems: (i) modification of the optic phonons through the
individual atomic-scale layer thicknesses which can alter the positions, widths,
and number of the xh polaritonic bands. (ii) The total sl stack thickness, i.e.,
the number of sl layers which changes the dispersion of the modes within each
polaritonic band. Through these mechanisms, the xh concept provides a flexible
platform for nanophotonic applications. An additional benefit of the xh approach
is that a heterostructure of two materials for a deliberately modified ir response
also allows to potentially maintain and combine the mechanical, electrical, or
optoelectronic properties of the individual constituents.

6.5. Conclusion

In this chapter, atomic-scale heterostructures composed of well-established semi-
conductors have been introduced as a promising route towards engineered ir
nanophotonic materials, using a AlN/GaN sls as a model system. As the sl layer
thicknesses approach the order of a few atomic monolayers, new optic phonon
modes emerge in the metamaterial, leading to a distinct ir dielectric response
which differs qualitatively from those of its bulk constituents. Thus, the resulting
hybrid does not behave as an effective medium of two bulk materials, but rather
as a new material—featuring its own phonon modes and dielectric properties.

Importantly, the metamaterial approach allows to deliberately modify the ir
response by varying the individual atomic-scale layer thicknesses as well as the
total xh film thickness. Specifically, it has been demonstrated using shg phonon
spectroscopy that marginal changes to the AlN and GaN layer thicknesses lead
to significant frequency shifts of the sample’s hybrid phonon modes. This pro-
vides a control mechanism to manipulate the xh’s optical constants, broaden
Reststrahlen bands, and, ultimately, tune polariton modes without substantially
increasing optical losses. The particular xh system studied here has a unique,
strongly anisotropic ir dielectric response, featuring multiple Reststrahlen bands

7 Optical field profileswere calculated by JosephR.Matson andMatthewT.Hardy at the Vanderbilt University
in Nashville, Tennessee (usa), using cst Studio Suite and its frequency domain solver.
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which give rise to pronounced elliptical and hyperbolic spectral regions. These
are highly dispersive and show extreme birefringence with Δ= in excess of unity
over a wide spectral range, reaching peak values above 10. This may offer oppor-
tunities in various application spaces, including on-chip optical elements [140]
and polarization control for waveguides [141].

Transfer-matrix calculations of the xh’s polaritonic response based on its di-
electric function predict numerous SPhP branches which are in excellent agree-
ment with experimental probes. Further, for larger wave vectors, the calcula-
tions predict multiple volume-confined type i and ii hyperbolic polariton modes,
enabling hyperlens designs for super-resolution imaging and nanolithography
[96, 142] with enhanced spectral flexibility thanks to the xh approach.

In the following chapter, we will consider another technologically relevant
class of functional materials and how second-harmonic phonon spectrocopy can
be employed for the characterization of its vibrational and symmetry properties.
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Chapter 7.

Nonlinear Infrared Spectroscopy for Phase
Transition Studies in Multiferroics

Today’s technological landscape presents numerous examples of ferroic materi-
als being used in sensors, actuators, and data storage devices. For instance, large
amounts of digital data is stored in ferromagnets while ferroelectrics and ferroe-
lastics are widely used in mechanical and acoustic sensors. In this context, it is
not surprising that multiferroics—materials exhibiting multiple ferroic proper-
ties in a single phase—offer technological opportunities for multifunctional and
miniaturized devices and are of immense research interest.

These multiferroic states of matter are accompanied by structural phase tran-
sitions which lead to the joint occurrence of two or more ferroic orderings at
a certain temperature and pressure. Many multiferroic materials subjected to
current research feature phase transitions which are not yet fully understood
due to the lack of suitable characterization techniques. Here, second-harmonic
phonon spectroscopy which has been shown to be sensitive to structural phase
transitions in Ch. 5, could provide new physical insight into currently stud-
ied multiferroic materials. While visible shg has been successfully applied to
probe multiferroic phases and domains [73, 143], no ir shg studies of multifer-
roic materials are present in the literature. Its intrinsic sensitivity to symmetry
as well as atomic structure through optical phonon resonances—carrying sym-
metry information themselves—however, could prove to be a valuable tool in
the determination of symmetry properties and structural changes at and around
multiferroic phase transitions. Moreover, most multiferroic phases emerge at
cryogenic temperatures—a measurement regime in which ir shg is particularly
sensitive due to generally decreased phonon damping rates (see Sec. 5.4).

The goal of the work presented in this chapter is to explore the feasibility of
ir shg as a spectroscopic tool for the study of phase transitions in multiferroic
materials. The following sectiongives a brief overviewof themultiferroicmaterial
class. Sec. 7.2 introduces the specific material system studied here, i.e., HoMnO3
as a member of the orthorhombic manganites. Finally, Sec. 7.3 describes the
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experimental setup and presents the results which are then critically discussed
in Sec. 7.4.

7.1. A Brief Introduction to Multiferroics

The spontaneous alignment ofmagneticmoments in a solid is commonly referred
to as ferromagnetism (from Latin ferrum: iron) and is a well-known phenomenon
in physics. Similarly, the spontaneous ordering of electric dipole moments is
named ferroelectricity [144]—in close analogy to ferromagnetism as both effects
behave much alike, for instance with regard to their hysteretic switching between
two stable states under the influence of a conjugate electric or magnetic field,
respectively [145]. Typical hysteresis curves of a ferromagnet and a ferroelectric
are shown in Fig. 7.1. Ferroism in general describes any spontaneous, switchable
internal alignment. Apart from ferromagnetism and -electricity, examples of pri-
mary ferroic orderings also include ferroelasticity—describing strain states which
are switchable via an external stress field—aswell as ferrotoroidicity, i.e., toroidal
moments which can be switched by crossed electric andmagnetic fields [146]. To-
day, electric polarization in ferroelectrics and magnetization in ferromagnets are
widely used in data storage applications where opposite orientations represent
binary data bits, “0” and “1” [147].
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Figure 7.1. Ideal hysteresis curves of a ferromagnet and a ferroelectric. Ferroic ma-
terials exhibit a spontaneous internal alignment which can be switched by an external
field. The most common ferroics are ferromagnets (le�) and ferroelectrics (right) whose
internal magnetization and polarization can be hysteretically switched by external mag-
netic and electric fields, respectively, as shown here.

Multiferroics are materials which combine two or more ferroic orders. When
introduced in 1994 [148], the term multiferroic described materials which com-
bine multiple ferroic orders in the same phase. Today, however, multiferroism
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mostly refers to the coexistence of ferroelectricity and ferro-, ferri-, or antiferro-
magnetic order in either single- or multiphase materials [145]. If the ferroelectric
and magnetic phases emerge independently, the multiferroic is denoted as type
i, whereas type ii multiferroics indicate the joint occurrence of both ferroic or-
ders. From a technological viewpoint, multiferroics are highly intriguing. For
instance, combining a magnetic with an electric bit would allow the design of
four-state memory elements [149]. Alternatively, and perhaps more interest-
ingly, a coupling of ferroelectric to magnetic states—so-called magnetoelectric
coupling—could lead to novel functionalities. For instance, electric-field control
of the ferromagnetic state could lead to smaller, more energy-efficient devices by
avoiding electric currents—associated with waste heat and relatively long build-
up times—in favor of voltage pulses.

Unfortunately, multiferroics are inherently rare. Phenomenologically, this is
not surprising as, in order to sustain an electric polarization, a ferroelectric has
to be insulating while magnetic materials, on the other hand, are most often
conducting metals [146]. In a conventional ferroelectric material, cations experi-
ence a displacement away from the center of their surrounding anions, breaking
centrosymmetry and causing the dipole moment. This type of ferroelectricity is
energetically favorable if the cation has an empty 30 shell [150]. By contrast, mag-
netic materials require unpaired electrons in a partially filled 3 shell and thereby
obstruct such displacive ferroelectricity.

One way to lift this seeming contradiction is provided by complex oxides
which constitute the most-actively studied class of multiferroics today. These
compounds are comprised of two ormore transition-metal ions as well as oxygen.
The intermediate ionic–covalent nature of the transition-metal–oxygen bonds
cause a strong polarizability while the transition-metal’s localized 3 electrons
facilitatemagnetic order [146]. Among the complex oxides, amaterial system that
has received particular attention, are the rare-earth manganites. The following
section gives a brief overview of this material class and presents details on the
manganite samples studied here.

7.2. Orthorhombic Holmium Manganite and Simulations

The rare-earth manganites are compounds with a chemical formula of 'MnO3,
where ' represents a rare-earth element. They crystallize in either a hexagonal
(space group%632<) or an orthorhombically distorted perovskite structure (space
group %=<0), depending on the size of the rare-earth ionic radii. Generally,
for radii smaller than that of Dy, i.e., A' < ADy with ' = Y, Tm, Yb, Lu, Er, the
manganites are hexagonal, whereas larger A' lead to the formation of perovskite-
like “orthomanganites” [151, 152] whose crystal structure is schematically shown
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in Fig. 7.2. Notably, DyMnO3 and HoMnO3, with A' ' ADy, can be synthesized in
both crystal structures, depending on the growth conditions [151].

Figure 7.2. Crystal structure of the orthorhombic manganites, o-RMnO3. Here,
green spheres represent R3+ cations, purple spheres Mn3+ cations, and red spheres O2-

anions, respectively. Views are along the principal a (le�) and c (right) axes. Reproduced
from Ref. 153.

The multiferroic samples studied here are orthorhombic holmium mangan-
ite (o-HoMnO3) films of varying thicknesses (17.8 nm, 25.0 nm, 52.5 nm, and
100.0 nm), grown on YAlO3 substrates along the biaxial crystals’ 1 axes ([010]).1
The orthorhombic manganites are known to exhibit pronounced electromagnetic
coupling [154–156] and, thus, are of particular research interest. Moreover, these
materials exhibit two structural phase transitions, marking the onset of antifer-
romagnetic and ferroelectric order at )afm ≈ 39 K and )fe ≈ 25 K, respectively
[157].

Second-harmonic phonon spectroscopy has been shown to be sensitive to
the structural α–β phase transition in the multimode oxide quartz (see Ch. 5).
Similarly, the ferroelectric phase transition in rare-earth manganites is accompa-
nied by a breaking of inversion symmetry to which second-harmonic phonon
spectroscopy can be highly sensitive. For the interpretation of second-harmonic
phonon spectra, however, good knowledge of the sample’s linear ir properties
has been shown to be most useful (see Ch. 5), but so far no report of the vibra-
tional properties of o-HoMnO3 has been published in the literature. Therefore,
we instead turn to the isostructural, but well-studied orthorhombic manganite
TbMnO3 for simulations of the manganite’s linear optical response, especially
in view of the influence of the varying film thicknesses and the substrate’s own
dielectric response. To this end, calculations for four TbMnO3 film thicknesses—
in accordance to the o-HoMnO3 samples—on a YAlO3 substrate as well as the

1 The o-HoMnO3 samples were grown by Christoph W. Scheider and Kenta Shimamoto at the Paul Scherrer
Institute (psi) in Zurich (Switzerland).
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substrate itself have been performed using a transfer-matrix approach [91]. These
calculations are based on experimental phonon data of TbMnO3 [158] and dfpt
calculations of the YAlO3 substrate [159].
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Figure 7.3. Simulated reflectance spectra for TbMnO3 films on a YAlO3 substrate.
The spectra have been calculated for four di�erent TbMnO3 film thicknesses as well as
the bare substrate with the principal c (A) and a (B) axes aligned horizontally using a
transfer-matrix approach [91]. Based on TbMnO3 phonon data from Ref. 158 and YAlO3
DFPT calculations from Ref. 159.

The simulated reflectance spectra are shown in Fig. 7.3a and b for ?-polarized
light incident at 60° along the crystal’s principal 2 and 0 axes, respectively. No-
tably, the reflectance spectra are dominated by the response of the YAlO3 sub-
strate, whereas the TbMnO3 film causes rather subtle variations in form of dips
within the YAlO3 Reststrahlen bands or peak-like features in the tails. However,
the data clearly show the effect of the TbMnO3 film thickness on the reflectance as
both, dips and peaks, become more pronounced as the manganite film thickness
increases. This allows a clear distinction between spectral features caused by the
TbMnO3 film and the substrate. For the isostructural o-HoMnO3, a comparable
behavior is expected, although phonon frequencies are likely to be shifted.
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7.3. Experiment

In order to confirm the trends observed in the simulated reflectance spectra, this
section discusses the corresponding experiment on o-HoMnO3 films as well as a
field-cooled ir shg experiment.

7.3.1. Thickness-Dependent Reflectance

In order to identify spectral positions of phonon resonances in o-HoMnO3, a series
of reflectance spectra has been obtained for varying manganite film thicknesses
as well as the bare substrate. They are shown in Fig. 7.4a and b.

Again, as with the simulated spectra of TbMnO3 on YAlO3 shown in Fig. 7.3,
the reflectance of o-HoMnO3 is dominated by the substrate’s response while
the manganite itself causes peak-like features outside and dips within the Rest-
strahlen bands of YAlO3. Upon inspection of the substrate’s reflectance, however,
significant discrepancies of the Reststrahlen band positions with respect to the
simulated spectra in Fig. 7.3 are noticeable, making a direct comparison of the
TbMnO3 simulations with the experimental o-HoMnO3 data difficult. This is
likely due to shifted phonon frequencies in the dfpt calculations for the substrate
[159] the simulations are based on, which is typical for dfpt calculations of this
kind.

In order to resolve this issue and to ensure comparability, another set of
transfer-matrix calculations is performed. This time, the fpsqmodel (Eq. 3.2.12) is
used to fit the experimental reflectance spectra of the bare substrate. For simplic-
ity, an isotropic pseudo-crystal is assumed in each principal direction. Typically,
the out-of-plane components of the dielectric tensor only add insignificant fea-
tures to the reflectance [127]. Consequently, the reflectance is mainly determined
by the in-plane dielectric component aligned parallel with the laser polarization.
For this reason, a theoretical description of the experimental reflectance spectra
with such a simplified model is warranted as the remaining dielectric compo-
nents are negligible in their contribution to the detected signal. Tab. 7.1 lists the
resulting phonon parameters which best describe the substrate’s reflectance and
the simulation results are plotted in Fig. 7.4c and d.

With the modified description of the substrate’s dielectric response, the sim-
ulations of TbMnO3 closely resemble the experimental spectra of o-HoMnO3,
with minor frequency shifts of the manganite film features, as expected. As with
the simulations, modulations on top of the bare substrate’s response are clearly
identified as signatures of o-HoMnO3’s phonon resonances and are marked ac-
cordingly in Fig. 7.4a and b as orange-shaded areas. Specifically, a spectrally
narrow o-HoMnO3 feature around 380 cm=1 along the 2 direction as well as
broad features in both sample orientations between ∼550 cm=1 and ∼610 cm=1
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Figure 7.4. Experimental and simulated reflectance spectra of o-HoMnO3 and
TbMnO3 films on YAlO3 substrates, respectively. The experimental spectra have been
obtained for four di�erent o-HoMnO3 film thicknesses as well as the bare substrate. The
principal c (A) and a (B) axes are aligned horizontally at an incidence angle of 60° in
p-polarization. Spectral features specific to the o-HoMnO3-film are marked by orange-
shaded boxes. Analogous transfer-matrix calculation of TbMnO3 films based on Ref. 158
and the experimental substrate data are show in C and D.
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Table 7.1. Phonon parameters fitted to describe the experimental reflectance of the
YAlO3 substrate assuming a simplified isotropic pseudo-crystal.

For 2 ‖ G For 0 ‖ G

Mode
Ωto9 Ωlo9 �to9 �lo9 Ωto9 Ωlo9 �to9 �lo9

[cm=1] [cm=1]

1 445 478 6 5 370 372 6 6
2 485 580 5 7 391 393 3 3
3 554 552 6 6 432 465 5 5
4 – 477 500 5 5
5 – 502 555 5 5
6 – 555.5 577 5 5
7 – 577.5 610 5 5
8 – 615 620 5 5

are found. For the employment of ir shg spectroscopy, these signatures give a
good indication as to where resonant enhancements of the nonlinear signal can
be expected.

7.3.2. Field-Cooling

The general setup of cryogenic ir shg spectroscopy has been described in Ch. 4.
In order to perform ir shg measurements on o-HoMnO3 in its multiferroic phase,
however, a series of technical issues has to be addressed. For instance, upon
entering an ordered phase, ferroic materials form domains, i.e., regions of uni-
form orientation of the ferroic ordering parameter. In the case of o-HoMnO3’s
ferroelectric phase, these can have widths on the order of 10s of nanometers
[160]. The smallest feasible ir fel spot size, on the other hand, is on the order of
a few hundred micrometers. As ferroelectric polarizations develop in opposite
directions in their respective domains, the net shg yield from the effective shg
source volume would average to zero. One possible way to overcome this limi-
tation posed by the small domain sizes is to employ the practice of field-cooling
[157, 161]. This technique involves an external poling voltage, *pol, applied via
two electrodes on the sample’s surface. The resulting electric field, Epol, causes a
biased domain formation during the phase transition towards a preferential di-
rection along Epol and, thus, a nonzero ferroelectric net polarization—detectable
via ir shg. For this purpose, Cr (30Å)/Au (1500Å) electrodes were deposited
on the 100 nm thick o-HoMnO3 sample along its principal 0 axis, using vapor
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deposition with an electrode distance of 3 = 300 µm.2 A construction drawing
as well as a photograph of the poling setup are shown in Fig. 7.5. Here, 3 was
chosen to maximize the poling field while leaving a sufficiently large area on the
sample unobstructed by the electrodes for the ir shg probe. Another experimen-
tal limitation is posed by the cryostat setup. Considering the specification of the
electrical feedthroughs to the sample chamber as well as the risk of a short circuit
within the sample chamber due to the lowered breakthrough voltage in liquid
helium, the poling voltage was limited to *pol ≤ 300 V. This results in a poling
field of �pol = 10 kV cm−1 which—according to literature [157]—is expected to
suffice for effective field-cooling of the manganite films at hand.

Figure 7.5. Poling setup of the o-HoMnO3 sample. Le�: Construction drawing of the
o-HoMnO3 sample with gold electrodes. Right: Photograph of the cryostat head with the
mounted o-HoMnO3 sample and connected electrodes. Also, gold and α-quartz samples
are mounted for reference measurements as well as the YAlO3 substrate.

7.3.3. Results

For the ir shg measurements, the 100 nm thick o-HoMnO3 film was mounted
in the cryostat and the maximum poling voltage of *pol = 300 V was applied.
Then, the sample was gradually cooled down from 78K to 1.8K. Despite these
measures to induce a nonzero ferroelectric net polarization, no onset of detectable
ir shg signal was observed. A thorough discussion of the possible reasonswill be
given in Sec. 7.4. Instead, a series of temperature-dependent reflectance spectra
was obtained with either the 0- or 2-axis aligned horizontally in ?-polarization
under an incidence angle of 60°—analogous to the spectra shown in Fig. 7.4. The
results for 300K, 78K, 30K, and 1.8K are shown in Fig. 7.6.

2 The vapor deposition was carried out by Sven Kubala at the Physical Chemistry Department of the fhi.
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Figure 7.6. Temperature-dependent reflectance spectra of o-HoMnO3 films on a
YAlO3 substrate. The spectra have been obtained for four di�erent temperatures. The
principal a axis is aligned horizontally at an incidence angle of 60° in p-polarization. Spec-
tra are o�set for clarity and spectral features specific to the o-HoMnO3 film are marked by
gray-shaded boxes.

Bothmeasurement configurations reveal temperature-dependent trends, most
prominently seen in the substrate’s Reststrahlen bands. Here, frequency shifts
as well as broadening and softening of Reststrahlen edges are present—the latter
due to the expected increase in phonon damping rates at higher temperatures.
The spectral features specific to the o-HoMnO3 film itself which have also been
observed in the room temperature spectra in Fig. 7.4, are marked by gray-shaded
boxes, namely one peak between 380 cm=1 and 390 cm=1 as well as broad dips
in the substrate’s Reststrahlen band from 550 cm=1 to 610 cm=1 in both sample
orientations. While these features persist through the entire temperature range
from 1.8K to room temperature, frequency shifts and shape modulations can
be observed. It is likely that finer temperature steps than those employed here,
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could reveal a critical behavior of the associated phonon frequencies and damp-
ing rates around the phase transition temperatures of o-HoMnO3—comparable
to Gervais’ and Pirou’s results [86] on α-quartz (see Sec. 5.5). Even though such a
linear approach is expected to be sensitive to structural phase transitions in terms
of phonon-related signal variations, nonlinear techniques, such as ir shg, would
provide a much more distinct indication in form of a signal onset due to the sym-
metry breaking at thephase transition. Moreover, the signal’s characteristics carry
information about the crystal symmetries and changes involved. The following
section discusses possible causes as to why the ir shg measurement did not yield
any detectable signal as well as possible ways forward to implement a nonlinear
ir spectroscopy for the study of phase transitions in multiferroic samples.

7.4. Discussion and Conclusion

The attempt to employ second-harmonic phonon spectroscopy for the study of
phase transitions in multiferroics turned out to be very challenging and no dis-
cernible shg signal could be detected. Various aspects need to be considered
when discussing the lack of observable shg. The most fundamental experimen-
tal limitation to be named here is the comparatively large spot size of the ir fel
excitation beam which exceeds the extent of typical ferroelectric or multiferroic
domains by several orders of magnitude. This, in turn, necessitates the applica-
tion of a poling field in order to enforce a preferred polarization direction of the
ferroelectric domains and thus a gaugeable net polarization.

The poling voltage itself was limited by the experimental environment within
the helium bath cryostat, mostly due to the lowered breakthrough voltage in
liquid helium. It is possible that a larger poling voltage would lead to a larger
net polarization and ultimately push the ir shg signal above detection level.
For instance, by decreasing the electrode distance, a larger poling field could
be achieved. This, however, would be at the cost of the effective probing area
and, thus, shg signal. Another experimental parameter which could be further
explored is the sample film thickness. For this experiment, the 100 nm thick film
was chosen as it provides the largest available shg source volume and is expected
to be in a relaxed strain state which largely sustains bulk-like behavior. For
thinner films, on the other hand, it has been shown that below a certain threshold
thickness of ∼30 nm [157], significant strain develops which can strongly affect
the transition temperatures of the multiferroic phase as well as the associated
order parameters such as the ferroelectric polarization [162, 163]. In this regard,
an increased ferroelectric polarization in a thinner film may compensate for the
reduced shg source volume and possibly lead to a detectable shg signal.
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Overall, however, the experiment presented in this chapter instructively ex-
posed a fundamental limitation of second-harmonic phonon spectroscopy. The
long mir and fir wavelengths strongly restrict the spatial resolution of any ir
shg measurement and therefore poses significant practical constraints on which
sample systems can realistically be studied with this approach. Also, the limited
sensitivity of currently available ir detectors can further hinder already challeng-
ing experiments as seen in this chapter. One promising route towards lifting
these restrictions while maintaining nonlinear optical as well as ir-resonant capa-
bilities, is the implementation of an ir-visible sfg scheme. The following chapter
presents a an initial proof-of-principle sfg experiment, using the familiarα-quartz
as a model system (see Ch. 5).
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Chapter 8.

Sum-Frequency Generation Phonon
Spectroscopy of α-Quartz

Despite being closely related to ir second-harmonic spectroscopy, from an ex-
perimental point of view, ir-visible sfg spectroscopy distinguishes itself in a few
key qualities. In combining ir and visible excitations as well as signal detection
in the visible, some of ir shg’s fundamental limitations—as encountered in the
previous chapter—can be avoided. Specifically, the spatial resolution of sfg is de-
termined by its visible excitation beam, allowing for substantially tighter focusing
compared to ir shg where ir laser spot sizes have been shown to be a limiting fac-
tor when studying micrometer-scale multiferroic domains (see Ch. 7). Secondly,
highly sensitive detectors for the visible spectral range are widely available and
facilitate single-photon detection, e.g., using pmts, or even microscopic imaging
with a charge-coupled device (ccd) camera.

This chapter exemplifies ir-visible sfg phonon spectroscopy as an alternative
approach towards fel-based nonlinear optical spectroscopy to ir shg. The goal is
to assess its feasibility in a basic proof-of-principle experiment using α-quartz as
a model system which has already been well-characterized, particularly in view
of its nonlinear ir properties in Ch. 5. Moreover, an outlook will be given on
how the capabilities of the currently implemented sfg experiment can be further
improved and expanded.

The ir-visible sfg setup used here has been developed and implemented by Riko

Kießling [63] with whom these experiments were performed.

8.1. Proof-of-Concept Experiment

The general setup of an fel-based ir-visible sfg experiment has been described
in Sec. 4.3. Here, the studied sample was a 2-cut α-quartz crystal. The nonlinear
properties of α-quartz have been laid out in Sec. 5.1. The lower intrinsic symme-
try of sfg, however, leads to additional unique "(2) elements compared to shg.

105



Chapter 8. Sum-Frequency Generation Phonon Spectroscopy of α-Quartz

Specifically, the contributing elements for sfg read (cf. Eq. 5.1.1) [36]:

"(2)000 = −"(2)011 = −"
(2)
110

= −"(2)
101

,

"(2)
012

= −"(2)
102

,

"(2)
021

= −"(2)
120

,

"(2)
201

= −"(2)
210

.

(8.1.1)

In analogy to the calculations carried out in Sec. 5.1 (Eq. 5.1.3), this leads to a
nonzero sfg intensity for all polarization combinations of the incoming ir and
visible beams as well as the sfg signal. Here, we specifically measure the polar-
ization conditions BBB, B??, and ?B?. They read [32]:
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Here, $vis(ir) and 
i
vis(ir) denote the frequency of the visible (ir) excitation beam

and $sfg the sum-frequency. Notably, while the BBB configuration involves only
one "(2) tensor element, namely "(2)000 , B?? and ?B? each probe three tensor el-
ements. Combining these three polarization conditions allows to probe all of
α-quartz’s unique "(2) contributions listed in Eq. 8.1.1.

The experimental spectra are shown in Fig. 8.1. In each measurement config-
uration, the azimuthal angle, !, was set to yield the maximum sfg signal. All
spectra reveal a distinct peak at α-quartz’s ordinary �4 to phonon resonance. At
the frequency of the �5 to resonance, on the other hand, no enhancement is ob-
served directly. Instead, sfg peaks for ?B? and BBB are observedwith a significant
blue-shift of ∼35 cm=1 with respect to the to phonon frequency. This is likely
due to the influence of Fresnel enhancement (see Fig. 3.4) and the wave vector
mismatch term associated with the �5 mode. Additional sfg peaks are observed

106



8.1. Proof-of-Concept Experiment

around ∼535 cm=1 in the B?? and ∼610 cm=1 in both, BBB and B??, which are also
assumed to originate from the linear signal contributions.
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Figure 8.1. IR-visible SFG phonon spectra of α-quartz. Polarization conditions psp,
sss, and spp yield distinct SFG peaks at α-quartz’s ordinary TO phonon resonances or as-
sociated Fresnel and wave vector mismatch enhancements. Azimuthal angles, φ, were
chosen to maximize the SFG signal at each measurement configuration.

In order to confirm the pronounced influence of linear optical quantities, we
specifically turn to the spectrummeasured in the BBB polarization configuration as
its relative simplicity, i.e., involvement of only one "(2) component (see Eq. 8.1.2a),
allows for a clearer decomposition of linear and nonlinear signal contributions.
Invoking Eq. 8.1.2a and the expression for the !HH Fresnel transmission tensor
element from Tab. 3.1 as well as the wave vector mismatch leads to the spectral
dependence of all linear quantities involved. Here, the �($) dispersion at optical
wavelengths is assumed to be constant [164]. The ir-dispersive quantities are
plotted in Figs. 8.2c and d. For the "(2)000($) dispersion, a simple model based on
Eq. 3.3.7 is employed. For sfg, however, only the �1 Raman polarizability terms
(Eq. 5.1.6a) contribute to the resonant "(2)($) behavior. Therefore, we here ne-
glect all �2 and �3 terms (Eqs. 5.1.6b and 5.1.6c), connected to higher-order lattice
forces to which ir-visible sfg is insensitive. A fitting procedure then adjusted the
�1 parameters such that the expression in Eq. 8.1.2a best reproduced the experi-
mental data. This results in the "(2)000 lineshape shown in Fig. 8.2b, contributing to
the sfg spectrum shown in Fig. 8.2a, together with the experimental data. Here,
it shall be noted that the fit procedure is very sensitive to the relative sfg peak
amplitudes and, while generating a qualitatively good description for the com-
paratively simple BBB spectrum, it lacks quantitative accuracy. This is especially
true when describing the more complex B?? and ?B? spectra (not shown here).
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Chapter 8. Sum-Frequency Generation Phonon Spectroscopy of α-Quartz

As a full quantitative description of the experimental data is beyond the scope of
this proof-of-principle experiment, we shall in the following rely on the model fit
solely for a qualitative analysis of the linear and nonlinear signal contributions.
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Figure 8.2. Decomposition of the IR-visible SFG signal of α-quartz. Only one χ(2) ten-
sor element (B) enters the SFG spectrum in sss polarization (A). In addition, linear op-
tical quantities, namely the Fresnel transmission factor (C) as well as the wave vector
mismatch (D) strongly a�ect the appearance of SFG peak positions. Note the logarith-
mic scales in all graphs.

The decomposition of the BBB spectrum shows that sfg peaks which cannot be
assigned to α-quartz’s to phonon frequencies, specifically around 615 cm=1 and
835 cm=1, originate in enhancements in the wave vector mismatch term, 1/Δ:2.
Additionally, "(2) enhancements close to to phonon frequencies, for instance at
∼ 705 cm−1, appear slightly blue-shifted due to on-resonance suppression in both,
!HH($) aswell as 1/Δ:2—an effect that has also been observed in the ir shg spectra
of α-quartz (see Sec. 5.2).

Generally, the presence of sfg resonances caused by the Fresnel factors as well
as the wave vector mismatch appears to be rather prominent. A possible reason
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8.1. Proof-of-Concept Experiment

is that the detected sfg beam propagated through the α-quartz crystal before
being reflected at the sample’s backside and then back into air. This results in
a prolonged propagation through the crystal and thereby increases the effect of
the linear optical quantities in Eqs. 8.1.2a–8.1.2c—primarily Δ:. In an alternative
detection scheme, aimed to capture the sfg signal generated and reflected at the
front face of the sample, "(2)-induced enhancement effects are likely to become
more prominent and thus allow for a more direct probe of the sample’s phonon
resonances through "(2) enhancements.
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8.2. Outlook

The experimental results outlined in this chapter demonstrate a successful first
proof-of-concept fel-based sfg experiment. The acquired spectra show clear
signatures of α-quartz’s �-type to phonon modes—comparable to the all-ir shg
spectra presented in Ch. 5. It should be noted, however, that the latter can grant
access to higher-order lattice anharmonicities (see Eqs. 5.1.6a–5.1.6c) whereas ir-
visible sfg—being only singly ir-resonant and having different selection rules—
solely probes the Raman polarizability (Eq. 5.1.6a) and consequently requires
resonances to be Raman-active. In the particular case of α-quartz, this means
that sfg is only sensitive to the �-type vibrational modes which are both, ir- and
Raman-active while shg generally only requires ir-activity and can therefore, in
principle, also probe α-quartz’s �2-type modes.

On the other hand, ir-visible sfg spectroscopy enables strongly improved
spatial resolution and sensitivity thanks to its visible in- and output beamswhich
considerably widens its application range and may even open up more elaborate
detection schemes. In fact, an fel-based ir-visible sfg wide-field microscope is
currently indevelopment [69] (see Fig. 8.3) andhas shownpromising initial results
on SiC nanostructures. Such an approach could allow to revisit investigations
of multiferroic domains like those presented in Ch. 7, but also unlock further
application spaces, including surface chemistry [165] and even biological systems
[166].

Figure 8.3. Schematic of an FEL-based wide-field microscopy setup. Here, a relay
imaging scheme prevents optical distortion under oblique incidence. In addition, so� fo-
cusing immensely reduces the risk of inflicting sample damage. Reproduced from Ref. 69.
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Chapter 9.

Summary and Conclusion

In this thesis, the potential of ir second-harmonic spectroscopy for the study of
vibrational properties of polar dielectrics using an ir fel has been explored. To
this end, a noncollinear autocorrelator-type excitation scheme has been imple-
mented which enables temporally and spatially coherent shg while geometri-
cally separating the second-harmonic from the fundamental beams. As an initial
demonstration of this experimental setup, a comprehensive study of the well-
characterized multimode system α-quartz has been performed. The acquired
shg spectra show distinct peaks, primarily at α-quartz’s to phonon frequencies,
caused by resonantly enhanced second-order nonlinear susceptibilities, "(2)($),
which can be detected over several orders of magnitude. A careful analysis of
these spectra showed that alongside the nonlinear "(2) contributions, the linear

optical quantities—ultimately determined by the highly dispersive ir dielectric
function, �($)—play a major role in the formation of the spectral ir shg response
as well. An accurate interpretation of second-harmonic phonon spectra therefore
requires good knowledge of the sample’s dielectric properties. Its high sensitivity
combined with the narrow linewidth and wide tunability of an ir fel qualifies
ir shg as a viable alternative technique to already established phonon spectro-
scopies such as Raman or neutron scattering.

Importantly, the nonlinear nature of shg opens up additional experimental
degrees of freedom which allow to selectively probe symmetry properties of the
studied system. Specifically, by measuring the shg intensity as a function of the
sample’s azimuthal angle, distinct six- and threefold patterns are observed in dif-
ferent polarization configurationswhichdirectly relate toα-quartz’s trigonal crys-
tal structure. In principle, the ir shg approach also grants access to higher-order
lattice anharmonicities through contributions to the nonlinear susceptibility—
inaccessible by, for example, sfg. These are closely linked to phenomena such
as phonon-phonon mode coupling and are thus of scientific interest. In prac-
tice, the extraction of these quantities has turned out to be challenging due to
the numerous phonon modes in α-quartz which prevent a unique determination
of the many free fit parameters. For simpler systems, however, accessing these
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anharmonic lattice parameters may very well be feasible as it has already been
demonstrated for single-mode systems such as GaAs [34] or SiC [75].

The intrinsic sensitivity to crystal symmetry triggered temperature-dependent
follow-up experiments with a particular focus on quartz’s α–β phase transition.
Here, the temperature-dependent phonon frequencies and damping rates are
well-reproduced in the ir shg spectra and largely in good quantitative agreement
with literature values. Around the phase transition temperature of )c = 846 K,
some phonon modes disappear entirely as they become ir-forbidden under the
higher hexagonal symmetry in β-quartz while others show a critical behavior.
These results present second-harmonic phonon spectroscopy as a potent tool for
the study of structural phase transitions, owing to its intrinsic sensitivity to sym-
metry as well as to phonon resonances which also carry symmetry information.

While quartz’s vibrational properties at room and higher temperatures have
been extensively studied prior to this work, only few studies at low temperatures
havebeen reported in the literature. Yet, second-harmonicphonon spectroscopy—
especially at cryogenic temperatures—benefits fromsignificantly loweredphonon
damping rates and therefore generally higher signal levels. This has been exper-
imentally verified by setting up a cryogenic ir shg experiment using a helium
bath cryostat. In fact, liquid helium cooling enabled the acquisition of ir shg
spectra in measurement configurations which probe only a single "(2) element
and would therefore allow the determination of the respective "(2)($) lineshape
by dividing out the linear signal contributions. This way, it was possible to deter-
mine the "(2)($) lineshapes around strong resonances while weaker resonances
still fell below detection level due to additional transmissive optics introduced
by the cryostat as well as increased Fresnel suppression on-resonance at lower
temperatures which partly negate the improved "(2) enhancement.

These results, once again, confirmed the importance of the linear ir properties
when employing shg phonon spectroscopy. As no study of α-quartz’s low-
temperature ir dielectric function was found in the literature prior to this work,
a series of ir reflectivity measurements has been conducted. By applying a
global fit procedure to these linear spectra, measured in various geometries on a
H-cut α-quartz crystal, the low-temperature ir dielectric function was extracted
and revealed remarkably low damping rates in α-quartz’s naturally hyperbolic
spectral bands at cryogenic temperatures. These, in turn, lead to high quality
factors, i.e., low optical losses, for so-called hyperbolic polariton modes which
have attracted considerable interest in the nanophotonics community as they are
able to support subdiffractional imaging and nanolithography applications.

While α-quartz’s natural hyperbolicity constitutes an intriguing opportunity
for nanophotonic systems and devices, here, an alternative approach has been
pursued by studying atomic-scale semiconductor superlattices. These metama-
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terials were shown to exhibit a distinct dielectric ir response, qualitatively dif-
ferent from each of the polar semiconductor materials they are composed of.
Their unique optical properties originate in the emergence of hybrid phonon
modes due to modified chemical bonding at the many layer boundaries as well
as phonon confinement effects within each of the atomically thin layers. Here,
second-harmonicphonon spectroscopywas able to aptlyprobe thehybridphonon
modes and quantify their strong dependence on the heterostructure’s layer thick-
nesses. Corroborated by dfpt and transfer-matrix calculations, the crystalline
hybrids approach presents itself as a versatile platform for user-designed hyper-
bolic metamaterials.

In further exploring the potential of fel-based nonlinear optical spectroscopy
for the study of functional materials—especially in view of structural phase
transitions—an investigation of the multiferroic material o-HoMnO3 by means
of ir shg has been attempted. This experiment proved very challenging due to
the large ir spot sizes with respect to the sub-micrometer multiferroic domain
sizes. Despite the applied field-cooling approach, no discernible shg signal could
be observed, revealing a fundamental constraint of the all-ir technique.

One possible way to work around the limitations of ir shg while maintain-
ing its nonlinear optical and ir-resonant qualities, is to employ ir-visible sfg
spectroscopy. Here, the spatial resolution is determined by the visible excitation
beam. Additionally, the still visible sfg signal is easily detected using pmt de-
tectors or even imaged by ccd cameras. As a first proof-of-principle experiment,
sfg spectra from the well-studied model system α-quartz have been acquired. It
has been shown that even though ir-visible sfg does not probe the electrical and
mechanical lattice anharmonicities due to different selection rules than ir shg,
it provides very comparable information on the sample’s vibrational modes and
symmetries. In return, it offers a considerably wider scope of applications, owing
to its improved spatial resolution and potential for imaging microscopy.

In perspective, second-harmonic phonon spectroscopy has been shown to be
a valuable tool for the study of polar dielectrics as it is highly sensitive to the
breaking or change of crystal symmetries and can grant access to lattice parame-
ters which are not easily accessible by other optical techniques. These capabilities
are extremely useful when investigating order-to-order phase transitions and are
likely to provide valuable physical insight in future research. In the course of
the present work, however, fundamental limitations of this technique have been
encountered. First and foremost, the all-ir excitation scheme considerably limits
its minimal spot size and thus its achievable spatial resolution. Secondly, the
inferiority of currently available ir detectors with regard to quantum efficiency
compared to detectors in the visible, further hinders a broader application and
the development of more sophisticated detection schemes.
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Looking forward, the development of an fel-based ir-visible sfg imaging
microscope would open up wide range of applications while harnessing the
qualities of ir-resonant nonlinear optics. Furthermore, with the upgrade of the
fhi fel to a two-color-ir operation mode currently under construction, ir-ir sfg
experiments with two tunable ir excitation beams become feasible. To the best
knowledge of the author, such measurements have not been attempted before
and could possibly provide unique insight into, e.g., phonon-phonon coupling
mechanisms. In fact, ir-ir sfg can be understood as a variation of ir shg with
lifted excitation beamdegeneracy. Therefore, the theoretical framework for ir shg
presented in Ch. 3 as well as the experimental results of Ch. 4 lay the foundation
for novel approaches of this kind.
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Appendix A.

Derivation of Fresnel Coe�icients in
Uniaxial Crystals

In Sec. 3.2.3, the Fresnel transmission coefficients for 2-cut uniaxial crystals are
derived. Supplementary, we will here—in an analog fashion—derive the equiv-
alent transmission coefficients for two particular 0-cut geometries as well as the
reflection coefficients for all three geometries.

Transmission Coe�icients for a-Cut Crystals

For an 0-cut anisotropic crystal, we here consider two special cases: (i) The
crystal’s optic axis, 2, is aligned parallel to the G-axis and (ii) to the H-axis
(cf. Fig. 3.3). Conveniently, case (i) can be treated analogous to the 2-cut ge-
ometry: For ?-polarized beams, �⊥ replaces �‖ as the out-of-plane component
and vice versa for the in-plane-component. For B-polarized beams, on the other
hand, the geometry is identical to the 2-cut situationwhere only the in-plane com-
ponent, i.e., �⊥ is interrogated. This leads to the following Fresnel coefficients for
case (i) (cf. Eqs. 3.2.23a–A.0.9b and 3.2.27):
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Using the same approach, we directly find an expression for !HH in case (ii)
where 2 ‖ H. Here, an B-polarized beam only sees the in-plane component,
namely �‖—as opposed to �⊥ in the 2-cut geometry. Therefore (cf. Eq. 3.2.27):
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2:i
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I
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with (cf. Eq. 3.2.28):

:
t,e
I = 2�$

√
�‖ − sin2 
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Lastly, we consider a ?-polarized beam for case (ii). In this geometry, both, in-
and out-of-plane components are described by �⊥ and the beam does not interact
with the extraordinary �‖ component at all. Thus, the crystal can effectively be
regarded as an isotropicmedium (� = 1). From these considerationswe obtain the
following expressions for !GG and !II which solely depend on �⊥ (cf. Eqs. 3.2.23a–
A.0.9b):
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where :t,o
I reads (cf. Eq. 3.2.24):
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Reflection Coe�icients

In the same fashion, we can straightforwardly derive the Fresnel factors for
reflection—again, starting with a 2-cut crystal. As before, for the transmission
coefficients, we invokeMaxwell’s equations (Eqs. 3.2.18a–3.2.18b) and the bound-
ary conditions for the interface (Eqs. 3.2.19a–3.2.19b). Now solving for�r
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of �t

H (Eq. 3.2.20) gives:
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Inserting the above expression into Eq. 3.2.18a yields:
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Applying the same geometrical considerations as before (:i
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I leads to the following Fresnel reflection coefficients
for ?-polarized beams:
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with :t,e
I given by Eq. 3.2.24. Analogously, we invoke Eqs. 3.2.25a, 3.2.25b, and

3.2.26a (solved for �r
H) for B-polarized beams to obtain:
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Here, :t,o
I is given by Eq. 3.2.28.

From these expressions, we can once again infer the analogous coefficients for
the two special cases in an 0-cut geometry that have been discussed earlier for the
transmission factors, i.e., 2 ‖ G and 2 ‖ H. The results are summarized in Tab. 3.1.
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Appendix B.

Full Set of DFPT-Derived Phonon Modes of
XH Sample B

The dfpt calculations assume an infinite AlN/GaN sl along the [0001] direction
with 4 and 5 atomic monolayers of AlN and GaN in each period, respectively—
closely approximating the layer thicknesses of sample b. For these numbers of
monolayers, the constituent layers have opposite parity. Thus, in order to achieve
appropriate bonding at the interfaces, it is necessary for the simulated unit cell to
comprise two layers of each material, resulting in # = 36 atoms and 3# − 3 = 105
phononmodes. Among them, 35 are doubly degenerate �-type symmetrymodes
and 35 �-type modes. The simulation results are listed in Tab. B.1. Here, modes
1–17 represent folded acoustic modes whereas modes 18–35 are optic phonon
modes. Notably, numerousmodes listed here do not contribute to the ir dielectric
function due to their negligible to–lo splittings, i.e., oscillator strengths.

In addition to the in-plane�-typemodes number 27 and 34, shown in Figs. 6.4g
and h of Sec. 6.3, respectively, 4 out-of-plane �-symmetry mode patterns with
high oscillator strengths are shown in Fig. B.1, namely mode numbers 18, 30,
32, and 34. Here, mode 18 which contributes to the lower Reststrahlen band of
�‖($), does not showaparticular layer-confined character. Above, �‖($) exhibits a
complex vibrational character originating in a number of different phononmodes.
These modes appear to be weakly localized to the AlN layers.
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Figure B.1. Phonon vibrational patterns of the A-type out-of-plane modes. Here,
blue, orange, and gray spheres represent Ga, Al, and N atoms respectively, and red arrows
indicate atomic displacement. Reproduced from Ref. 105.
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Table B.1. Summary of the DFPT-calculated TO and LO phonon frequencies in XH sam-
ple B. Modes 1–17 represent folded acoustic modes whereas modes 18–35 are optic
phonon modes.

Mode
�-type �-type

$to $lo $to $lo
[cm=1] [cm=1]

1 16.22 16.22 47.07 47.07
2 48.59 48.59 63.95 63.95
3 61.32 61.32 112.97 113.55
4 68.4 68.41 126.53 126.74
5 94.43 94.43 181.27 181.27
6 97.93 97.93 183.75 183.75
7 115.82 115.83 226.06 226.25
8 121.36 121.36 242.84 243.09
9 133.91 133.91 271.08 271.08

10 140.98 140.98 291.13 291.13
11 146.25 146.25 306.54 306.55
12 159.74 159.74 320.59 320.65
13 160.62 160.62 327.04 327.04
14 196.8 196.8 407.39 408.67
15 197.04 197.05 408.88 408.88
16 225.23 225.23 490.68 491.17
17 225.25 225.25 491.15 491.15

18 545.21 546.5 537.6 698.87
19 545.58 545.58 664.9 664.9
20 550.24 550.24 665.47 665.47
21 550.24 550.28 674.37 673.93
22 552.67 552.67 674.85 674.85
23 552.71 553.21 684.14 684.14
24 555.89 555.9 685.66 685.64
25 555.89 555.89 694.32 692.35
26 558.38 558.38 694.63 694.63
27 559.96 582.72 698.67 698.67
28 593 593.13 726.5 726.5
29 593.01 593.01 726.72 726.74
30 601.17 601.17 756.47 773.99
31 601.22 601.39 774.24 774.24
32 609.83 610.86 799.44 816.4
33 610.07 610.07 816.41 816.41
34 615 784.16 816.42 844.91
35 615.36 615.36 845.82 845.82
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bbo barium borate
c commercial
ccd charge-coupled device
dfpt density functional pertubation theory
fel free-electron laser
fhi Fritz Haber Institute
fir far-infrared
fo fiber oscillator
fom figure of merit
fpsq four-parameter semiquantum
ftir Fourier-transform infrared
h-BN hexagonal boron nitride
hwhm half width at half maximum
ir infrared
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