
Chapter 2

General Labeling:

Label-Number Maximization

The problem of label placement is usually divided into point, line, and area
labeling, depending on the kind of features to be labeled. However, the problem
can be formulated independently of the shape of features. Two interesting
subproblems have been studied. In both cases, an instance consists of a set of
features and a set of label candidates for each feature.

1. The Label-Size Maximization Problem: Find the maximum factor σ such
that each feature gets a label stretched by this factor and no two labels
overlap. Compute the corresponding complete label placement.

2. The Label-Number Maximization Problem: Find a maximum subset of the
features, and for each of these features a label from its set of candidates,
such that no two labels overlap.

The decision versions of both problems are NP-hard in general [FW91,
FPT81]. The label-size maximization problem can be solved in polynomial
time if all features have at most two label candidates. Then the problem can
be encoded as a 2-SAT formula and tested for satisfiability in time linear in the
number of pairs of intersecting candidates [EIS76]. This was already observed
in [FW91]. If the label candidates of a feature overlap in a certain manner,
polynomial time algorithms are known for any constant number of label can-
didates per feature [PZC98, SvK99], and even for an infinite number of label
candidates per feature [KSY99].

In recent years, especially the point-labeling problem has achieved some
attention in the algorithms community. For maximizing the number of points
that are labeled with axis-parallel rectangles, the current status of the problem
is described in Chapter 3. For problems related to maximizing the size of
rectangular or circular labels for point features, refer to Chapter 4. In this
chapter we investigate the general label-number maximization problem.

12 Chapter 2. General Labeling: Label-Number Maximization

Methods that have been used for label-number maximization so far are
heuristical; they include simulated annealing [CMS95, ECMS97, Zor97] and an
algorithm that uses maximum-cardinality bipartite matching between features
and cliques of intersecting label candidates [KT98]. Both approaches will be
discussed in more detail in Section 3.2.

We propose a new framework for the general label-number maximization
problem. It leads to a heuristical algorithm that is easy to implement, and, for
point labeling, yields better results than the matching heuristic of [KT98] and
similarly good results as simulated annealing, but obtains them much faster,
see Section 3.2. Our framework is related to a concept suggested in the artificial
intelligence community under the name constraint satisfaction, which was inde-
pendently introduced into the discrete mathematics community by Knuth and
Raghunathan under the name problem of compatible representatives [KR92].
The difference of our approach to that of the artificial intelligence community
is that we try to maximize the number of variables (features) with a conflict-free
assignment, while their objective is either to list all assignment tuples without
conflicts [MF85], to minimize the number of conflicts [FW92], or to find the
maximum weighted subset of constraints that still allows an assignment.

Since constraint satisfaction is NP-hard in general, the artificial intelli-
gence community invented so-called network-consistency algorithms. These
algorithms establish a form of consistency; i.e. they use local arguments to
exclude values from the domain of a variable that cannot be part of a global
solution. Network-consistency algorithms can be seen as a preprocessing step
to backtracking since they often reduce the search space very effectively.

We develop the notion of r-irreducibility, a new form of local consistency
that is comparable to consistency in classical constraint satisfaction. We give
an algorithm, EI-1, that achieves 2-irreducibility in O(d3e) time using O(de)
space, where d is the maximum domain size and e the number of pairs of
variables whose values are in conflict with each other. The domain of a variable
corresponds to the set of label candidates of a feature in label placement. The
value of a variable is nothing but a label candidate, and for us, two values are
in conflict with each other if the corresponding candidates intersect.

While d is considered to be a small constant in point labeling (usually four
or eight), there are many applications in artificial intelligence where d can be
very large. Thus we take the size of d into account in this chapter. Note that
k, the number of pairs of intersecting label candidates, is of O(d2e).

In addition, we present an algorithm, EI-1∗, for general label-number maxi-
mization that is based on EI-1. This algorithm first establishes 2-irreducibility.
Then it repeatedly makes a heuristical decision and restores 2-irreducibility un-
til each feature is either labeled or known to constrain too many other features
and therefore not labeled at all. Given the value conflict graph, EI-1∗ requires
O(d3e) time and O(de) space like EI-1.

Our new framework is called maximum variable-subset constraint satisfac-
tion. Our hope is that EI-1∗ or other efficient algorithms based on higher

12

Section 2.1. Label Placement and CSP 13

degrees of irreducibility will substitute simulated annealing for the wide variety
of problems that fit into our framework. Experiments in the context of point
labeling indicate that EI-1∗ is not only fast but also very effective in practice,
see Section 3.2.

This chapter is structured as follows. In Section 2.1 we give a quick introduc-
tion into the issues relevant for label placement that have been investigated by
the artificial intelligence community. We consider classical constraint satisfac-
tion problems (CSP) and a generalization, namely Max-CSP. In Section 2.2 we
extend classical CSP to maximum variable-subset CSP where the label-number
maximization problem can easily be formulated. In Section 2.3 and 2.4 we de-
fine irreducibility and describe our 2-irreducibility algorithm EI-1. Finally, in
Section 2.5 we present our algorithm EI-1∗ for the general label-number maxi-
mization problem.

2.1 Label Placement and CSP

A constraint satisfaction problem (CSP) is defined as follows. Given a set of
n variables v1, . . . , vn, each associated with a domain Di and a set of relations
constraining the assignment of subsets of the variables, find all possible n-tuples
of variable assignments that satisfy the relations [MF85]. Variable domains are
restricted to discrete finite sets, and often only binary relations are considered.

Graph coloring is a special case of a CSP where the variables are nodes,
the domains a given set of colors, and binary relations express the fact that a
node cannot have the same color as any of its neighbors. Since graph coloring,
i.e. deciding whether the nodes of a graph can be colored with the given set of
colors, is NP-complete, one cannot expect to solve general CSPs in polynomial
time [MF85]. For this reason, the class of network-consistency algorithms has
been invented. These algorithms use local arguments to exclude values from
the domain of a variable that cannot be part of a global solution. Network-
consistency algorithms can be seen as a preprocessing step to backtracking since
they often reduce the search space very effectively.

An m-consistency algorithm removes all inconsistencies among all subsets
of m of the given n variables. For the special cases of m = 1, 2, and 3,
polynomial-time algorithms have been suggested. They are called node-, arc-,
and path-consistency algorithms, respectively.

This framework can be used nearly one-to-one for attacking the label size
maximization problem. When maximizing simultaneously the sizes of all la-
bels, one can do a binary search on conflict sizes, i.e. label sizes for which label
candidates start to touch. For each conflict size, one then tries to find a com-
plete labeling. Obviously, a feature can be seen as a variable, the set of label
candidates of a feature then corresponds to the variable domain and intersec-
tions between label candidates are the constraining binary relations. Instead of
computing all satisfying variable assignments, finding one is usually sufficient
in the map-labeling context. This allows to reduce the search space dramati-

13

14 Chapter 2. General Labeling: Label-Number Maximization

cally since a variable can immediately be assigned an unconstrained value from
its domain if there is such a value. The algorithm for label size maximization
suggested in [WW97] exploits this simplification.

When maximizing the number of labeled features, label sizes are fixed and
one cannot give up and try a smaller label size as soon as it turns out that there
is no complete labeling for the current label size. Systems where one cannot
expect to find a complete solution, i.e. a non-conflicting variable assignment,
are called over-constrained systems. In such systems one has to be content
with imperfect solutions. Most effort in the CSP community has been directed
to finding solutions that violate as few constraints as possible [FW92, Jam96,
JFM96]. When labeling maps, such violations would result in label over-plots
and thus poor legibility. It would be possible to take the output of an algorithm
that minimizes the number of violated constraints and then do some post-
processing. In order to get rid of the violations, one could drop a subset of the
variables and resign from labeling the corresponding features. Unfortunately
the problem of finding the largest violation-free subset of variables corresponds
to the maximum independent set problem and is thus NP-hard.

A related problem, Max-CSP, has also been investigated. There, one is in-
terested in finding a maximum (weighted) subset of the constraints such that
there is an assignment that satisfies them all. In order to reduce label-number
maximization to Max-CSP, one adds a new value 4 to the domain of each
variable. 4 has a unary constraint of low weight; i.e. it only constrains it-
self. A variable that is assigned 4 then corresponds to an unlabeled feature in
our setting. For general Max-CSP, however, even arc consistency is NP-hard
[SFV95].

Therefore we take a different approach. We first extend classical CSP in
order to be able to express the label-number maximization problem within
this new framework, see Section 2.2. Then, in Section 2.3 we develop a new
form of local consistency, namely r-irreducibility. In Section 2.4, we present
an algorithm, EI-1, that achieves 2-irreducibility in O(d2e) time using O(de)
space, where d is the size of the variable domains and e the number of binary
relations. Finally, in Section 2.5 we give a simple algorithm that finds near-
optimal solutions for problems within our framework by combining EI-1 with
a heuristic. This algorithm has proven to be very effective in practice, see
Section 3.2, where we apply it to the point-labeling problem.

2.2 Maximum Variable-Subset CSP

Let us start by giving a formal definition of classical CSP [SFV95].

Definition 2.1 (CSP) An instance of a constraint-satisfaction problem
(CSP) is a triple (V,D, C) where V is a set of n variables, D a collection of
domains, one for each variable, and C a set of constraints. A domain Dv of a
variable v is a (finite) set of values of v. A constraint C ∈ C is given by a pair

14

Section 2.2. Maximum Variable-Subset CSP 15

(VC , RC) where VC ⊆ V is a subset of the variables and RC ⊆ Πv∈VC
Dv is a

relation on the variables in VC .

A solution of a CSP is a function π that maps each variable to a value of
its domain such that all constraints are satisfied, i.e. Πv∈VC

π(v) ∈ RC for all
C ∈ C.

In classical CSP one is either interested in finding one or in listing all solu-
tions. We extend classical CSP in order to be able to better formulate label-
number maximization. In the following definition we assume that no variable
domain contains an element 0.

Definition 2.2 (MVS-CSP) A solution of a maximum variable-subset CSP
(MVS-CSP) (V,D, C) is a function π that assigns every variable v in V to a
value of its domain Dv or to 0 such that all relevant constraints are satisfied,
i.e. for all C ∈ C if 0 6∈ π(VC) then Πw∈VC

π(w) ∈ RC .

The size |π| of a solution π is the number of variables v in V that π assigns
a value π(v) ∈ Dv. In MVS-CSP an optimal solution is a solution of maximum
size. A solution of size |V | is called a complete solution,

In our definition we drop a constraint C = (VC , RC) completely if any of
the variables v in VC is mapped to 0. The reason for this part of our definition
is that the restriction of C imposed on the variables in VC \ {v} depends on the
value of v, thus we cannot make any assumption about which combination of
values of VC \ {v} is excluded by C. It makes sense to require that VC is in a
sense minimal, in other words that there is no v ∈ VC such that the projection
of RC to {x} ×Πw∈VC\{v}Dw is identical for all values x ∈ Dv.

Definition 2.2 transfers the decision or enumeration problem of classical CSP
into an optimization problem.

For label placement only binary constraints are relevant, i.e. |VC | = 2 for all
C ∈ C. Given two features f and g of a label-placement instance, these binary
constraints encode which pairs of label candidates b and c of f and g intersect,
respectively. Thus we can use a simpler definition.

Definition 2.3 (binary MVS-CSP) An instance of a binary MVS-CSP is a
triple (V,D,R) where R is a set of predicates Rvw on (Dv ∪{0})× (Dw ∪{0}),
one for each pair (v, w) of variables. For x = 0 or y = 0 Rvw(x, y) is always
true. A solution π must fulfill Rvw(π(v), π(w)) for all v 6= w ∈ V .

Given a binary CSP, constraint information can be encoded conveniently by
any of the graphs that we define in the following.

Definition 2.4 (variable/value constraint/conflict graph) We say that
a value x of a variable v constrains a value y of a variable w if Rvw(x, y)
is false. Let R∗

vw(x, y) be the symmetric predicate that is true if Rvw(x, y) and

15

16 Chapter 2. General Labeling: Label-Number Maximization

Rwv(y, x) are true. Then x and y are in conflict if R∗
vw(x, y) is false. We say

that w excludes a value x of v if all values of w constrain x.

We say that a variable v constrains (is in conflict with) a variable w if there
is a value in the domain of v that constrains (is in conflict with) a value in

the domain of w. The variable constraint graph
−→
G(V,

−→
E) has an arc for each

pair (v, w) where v constrains w; the variable conflict graph G(V, E) has an
edge for each pair {v, w} where v is in conflict with w. In the value constraint

(conflict) graph
−→
GD (GD) there is a vertex for each variable-value pair [v, x]

with v ∈ V and x ∈ Dv, and an arc (edge) between two such pairs [v, x] and
[w, y] iff Rvw(x, y) (R∗

vw(x, y)) false.

The question whether an instance of MVS-CSP has a complete solution
corresponds to classical CSP. Thus the decision version of MVS-CSP, namely Is
there a solution of size s?, is NP-hard as well. Note that MVS-CSP corresponds
to maximum independent set on GD if we make the values of each variable into
cliques, i.e. if we add edges between [v, x] and [v, y] for all v ∈ V and x, y ∈ Dv

with x 6= y.

In order to approach classical CSP in spite of its NP-hardness, the notion of
consistency has been developed. An instance is m-consistent if all m-element
subsets W ⊆ V are consistent, i.e. if for each value x in the domain of any vari-
able w in W there is a complete solution for W that maps w to x. m-consistency
introduces a scale between totally inconsistent and perfectly consistent. Node-,
arc-, and path-consistency algorithms achieve 1-, 2-, and 3-consistency in poly-
nomial time [Mac77]. For backtracking algorithms, achieving arc- or path-
consistency is an important preprocessing step that reduces checking the same
inconsistent variable assignment repeatedly. In the extreme, for each v ∈ V
and each x ∈ Dv a |V |-consistent instance yields a complete solution that maps
v to x.

The input to network-consistency algorithms comprises usually the variable
constraint graph, the domain of each variable, and for each arc (v, w) of the
graph a method that returns the value of Rvw(x, y) for all pairs (x, y) ∈ Dv×Dw.
The variable constraint graph can be transformed into a value constraint graph,
but the latter might need up to a factor of O(d2) more storage, where d is the
(maximum) size of the variable domains.

2.3 Irreducibility

The potential of network-consistency algorithms is our motivation for transfer-
ring the concept of consistency to MVS-CSP. In our setting, we refer to it as
irreducibility, which we define as follows.

Definition 2.5 (reducible, redundant) Given a binary MVS-CSP
(V,D,R) and a subset W ⊆ V , a variable v ∈ W is W -reducible iff
there is a value x ∈ Dv such that for all solutions π of W with π(v) = x there

16

Section 2.3. Irreducibility 17

is a solution π′ of W with π′(v) 6= x and |π′| ≥ |π|. For all w ∈W , π′(w) must
be either equal to π(w) or not in conflict with any values of variables in V \W ,
i.e. R∗

vw(y, π′(w)) for all v ∈ V \W and all y ∈ Dv. If such solutions π′ exist,
x is called W -redundant.

W ⊆ V is irreducible iff there is no v ∈ W that is W -reducible. V is
r-irreducible iff all r-element subsets W ⊆ V are irreducible.

Note that r-irreducibility implies i-irreducibility for all i < r. Node-, arc-,
and path-irreducible will be used as synonyms for 1-, 2-, and 3-irreducible. If
all constraints are symmetric, we will use edge-irreducible instead of arc-irredu-
cible. The notion of reducibility helps us to remove redundant values from
variable domains and thus reduce the search space for an optimal solution.

Lemma 2.6 Let π be an optimal solution of a binary MVS-CSP (V,D,R). If
there is a subset W ⊆ V and a variable v ∈ W that is W -reducible, then there
is an x in the domain Dv of v such that (V,D′,R) has a solution of size |π|,
where D′ = {Dv \ {x} | v ∈ V }.

Proof. We assume that (V,D′,R) has only solutions strictly smaller than π. If
π(v) 6= x then π would also be a solution to the reduced instance, contradicting
our assumption. Thus π(v) = x. Then, by definition of reducibility, there must
be a solution π′ of W with π′(v) 6= x and |π′| ≥ |πW | where πW is the restriction
of π to W . For each w ∈W , π′ must either fulfill π′(w) = π(w) or R∗

vw(y, π′(w))
for all v ∈ V \W and all y ∈ Dv. Let ρ be the following function on V .

ρ(u) =

{

π(u) for all u ∈ V \W ;

π′(u) otherwise.

We show that ρ is a solution of the reduced instance. Let v, w ∈ V with
ρ(v) = y 6= 0 and ρ(w) = z 6= 0. We must show that y and z are not in conflict.
This is clear if {v, w} ⊆ V \ W and if {v, w} ⊆ W since ρ equals π and π′

on the respective subsets of V , and π and π′ are solutions on V \W and W ,
respectively. Thus it is enough to consider the case v ∈ V \W and w ∈W . On
the one hand this implies π(v) = ρ(v) = y. On the other hand, we have either
π(w) = π′(w) = ρ(v) = z or R∗

uw(a, π′(w)) for all u ∈ V \W and all a ∈ Du.
In the first case y and z are both part of solution π and therefore cannot be in
conflict. In the second case, too, y and z are not in conflict since v 6∈ W and
thus R∗

vw(y, π′(w)).

Since |ρW | = |π′| ≥ |πW | and ρV \W = πV \W we have |ρ| ≥ |π|, which
contradicts our assumption. r

|V |-irreducibility gives us direct access to an optimal solution.

Lemma 2.7 In a |V |-irreducible binary MVS-CSP (V,D,R) all variable do-
mains contain at most one value, i.e. |Dv| ≤ 1 for all variables v ∈ V .

17

18 Chapter 2. General Labeling: Label-Number Maximization

Proof. Suppose there is a variable v ∈ V with |Dv| > 1 and v is not V -
reducible. There are two possibilities. Either there is an optimal solution πopt

of V that maps v to a y ∈ Dv or all optimal solutions map v to 0. In the second
case let πopt be one of these solutions, and set y to 0.

In either case there is a value x ∈ Dv \ {y} and for all solutions π of V with
π(v) = x there is a solution π′ of V (namely πopt) with π′(v) 6= x and |π′| ≥ |π|.
Thus v is V -reducible since the additional condition, namely R∗

vw(y, π′(w)) for
all v ∈ V \V and all y ∈ Dv, is trivial for V -reducibility. Hence our assumption
is contradicted. r

2.4 An Edge-Irreducibility Algorithm

Mackworth [Mac77] proposed an algorithm, AC-3, that achieves arc-consistency
in polynomial time, see Figure 2.2. With Freuder [MF85] he showed later that
AC-3 requires at least Ω(d2e) and at most O(d3e) time, where e is the size
of the variable conflict graph and d the size of the variable domains, which
are assumed to be of equal size for all variables. AC-3 does not assume that
constraints are symmetric. It uses O(de) storage.

The heart of AC-3 is a procedure Revise that, given a pair (v, w) of vari-
ables, eliminates all values from the domain of v that are excluded by w, see
Figure 2.1. AC-3 uses a stack to keep track of all pairs of variables that po-
tentially need revision. Initially the stack is filled with all arcs of the variable
constraint graph. Until the stack (or a variable domain) is empty, AC-3 re-
peatedly draws a pair (v, w) from the stack, calls Revise(v, w), and, if Revise
removed a value from the domain of v, adds all arcs (u, v) to the stack.

The task of Revise is simple. It makes the arc (v, w)-consistent by removing
all values of v that are excluded by w and therefore cannot be part of any
complete solution. Without any additional data structures Revise requires
O(d2) time. The time complexity of AC-3 follows from the fact that Revise is
called at most d times for each of the e edges of the variable constraint graph.

Later, Mohr and Henderson introduced the notion of support [MH86]. A
variable-value pair [v, x] supports the value y of a variable w if Rvw(x, y). (We
will switch between value and variable-value pair depending on which is more
convenient.) As soon as [v, x] loses its last support from a variable w that
constrains v, x must be removed from the domain of v. Mohr and Henderson
gave an algorithm, AC-4, that is based on this idea. For each variable-value
pair [v, x], AC-4 keeps track of the number kv,x of values that support [v, x]
and maintains a list Sv,x with all values that [v, x] supports. Using these data
structures yields AC-4’s optimal time complexity of O(d2e). However, they are
also responsible for the fact that AC-4 requires O(d2e) storage. In addition,
average and worst case runtime behavior of AC-4 do not differ much. These
disadvantages made AC-3 in spite of its inferior time complexity favorable in
many applications [Bes94].

18

Section 2.4. An Edge-Irreducibility Algorithm 19

Revise(v, w)

deleted ← false
for each x ∈ Dv do

for each y ∈ Dw do
if Rvw(x, y) then exit inner loop end

end
if ¬Rvw(x, y) then

Dv ← Dv \ {x}
deleted ← true

end
end
return deleted

Figure 2.1: The procedure Revise makes the arc (v, w) consistent.

AC-3(V,D,R)

E ← { (v, w) | v, w ∈ V, ∃x ∈ Dv, y ∈ Dw : ¬Rvw(x, y) }
Q← E
while Q 6= ∅ do

(v, w)← Q.pop()
if Revise(v, w) = true then

for each u ∈ V such that (u, v) ∈ E do
Q.push((u, v))

end
end

end

Figure 2.2: The third arc-consistency algorithm AC-3.

Bessière found out that it is not necessary to maintain counters and that
it is enough to keep one support for each of the O(de) arc-value pairs [Bes94].
His algorithm AC-6 exploits these observations and takes advantage of a total
order on the values in each domain. AC-6 needs less storage than AC-4, namely
O(de). Although it shares the time complexity of O(d2e) with AC-4, it needs
less predicate evaluations than both its predecessors AC-3 and AC-4. Shortly
after, Bessière, Freuder, and Régin suggested improvements of AC-6 that led to
AC-7. This algorithm requires even less predicate evaluations than AC-6 while
keeping the asymptotic space and time complexity of its predecessor [BFR95].

Unfortunately the concept of support does not work in the context of MVS-
CSP. If a variable-value pair [b, 1] loses support from a variable c, this only
means that not both [b, 1] and a value y ∈ Dc can be part of a solution. However,
it does not imply that an optimal solution will not map b to 1. It does not even
imply that there is an optimal solution that does not map b to 1 as the example

19

20 Chapter 2. General Labeling: Label-Number Maximization

in Figure 2.3 demonstrates. There, variables are represented by boxes and their
values by circles. Conflicting values are connected by edges; all values have
degree 3 in the value conflict graph, except the values of c that have degree 4.
While the optimal solution (indicated by bold circles) has size 4, all solutions
that map b to 2 (or 0) have size at most 3.

1
2

c

b
1

2

e

d
1

2

a

1 2

1 2

Figure 2.3: Example where the only value (b, 1) that is lacking support on an
edge (namely {b, c}) is in the only optimal solution (indicated by bold circles).

From now on we will only consider CSPs with symmetric constraints, i.e. for
all v, w ∈ V and x ∈ Dv, y ∈ Dw we have Rvw(x, y) = Rwv(y, x) = R∗

wv(y, x).
For this reason we will avoid saying [v, x] constrains [w, y] since this induces a
direction, but rather say [v, x] and [w, y] are in conflict. Since constraints are
assumed to be symmetric, arc-irreducibility becomes edge-irreducibility accord-
ing to our notation.

Since AC-3 is not based on the concept of support, we can rewrite Revise
and use AC-3 to achieve edge-irreducibility. For classical CSP, Revise takes
O(d2) time. For our purpose, however, its task becomes more involved. Given
two variables v, w, Revise must check whether v is {v, w}-reducible. To decide
whether we can remove a value x from Dv, for each solution π of {v, w} with
π(v) = x we must find a solution π′ of {v, w} with π′(v) 6= x and |π′| ≥ |π|.
π′(w) must either equal π(w) or not be in conflict with any values of variables
in V \ {v, w}. For π′(v) the latter condition must hold.

Using brute force, we could do the following. For each of the O(d) values x
of v, we enumerate each of the O(d) possible solutions πy that map v to x and
w to some y ∈ Dw∪{0}. For each πy we search for a solution π′

y that maps v to
a value x′ 6= x and fulfills the conditions stated above. To find such a solution
π′

y we go through all O(d2) pairs of values (x′, y′) with x′ ∈ (Dv∪{0})\{x} and
y′ ∈ Dw. For each pair we check R∗

vw(x′, y′) and whether x′ and y′ (if y′ 6= y)
are not in conflict with any values of variables in V \ {v, w}. If this test can
be done in constant time Revise requires at most O(d4) steps. Then AC-3
achieves edge-irreducibility in O(d5e) time.

Clearly this rough estimate can only serve as an upper bound. We can
definitively do better. Our approach is as follows. We give a list of three rules,

20

Section 2.4. An Edge-Irreducibility Algorithm 21

each of which consists of the description of a certain conflict situation and a
recipe of how to resolve it. We show that (a) only redundant values, i.e. values
that prove the reducibility of a variable, are removed, (b) if all rules are applied
exhaustively, the remaining instance is edge-irreducible, and (c) the application
of each rule takes O(d2) time. Given Lemma 2.6, (a) implies that the size of
the optimal solution remains the same until arc-consistency is achieved.

Let v and w be two variables in V , v 6= w. For each of the three rules
below there is a figure depicting a typical situation in which the rule applies. In
Figures 2.4 to 2.6 variables are represented by boxes and their values by circles.
Conflicting values are connected by edges. Short line segments not ending in a
circle indicate that the value from which they emanate might constrain further
values possibly of other variables. The values that are removed after applying
a rule are indicated by dotted circles.

x x′
1 x′

2

v

w

Figure 2.4: rule A1

x

v

w

y

Figure 2.5: rule A2

x

v

w

y

Figure 2.6: rule A3

(A1) If there is a value x ∈ Dv and a subset X 6= ∅ of Dv \ {x} such that all
x′ ∈ X are at most in conflict with values of w, and for each value y of w
that x does not constrain, there is a value x′ ∈ X that does not constrain
y either, then remove x from Dv.

Special case (X = {x′}): If x′ is only in conflict with values of w and
those form a subset of the values that are in conflict with x, then remove
x from Dv.

Special sub-case (X = {x′} and x′ has no conflicts): Then remove all
values x 6= x′ from Dv. (This rule yields node-irreducibility.)

(A2) If there are values x and y of v and w, respectively, that are not in conflict
with each other and with values of variables other than v and w, then
set Dv = {x} and Dw = {y}.

(A3) If there is a value x ∈ Dv that is excluded by w, and there is a value
y ∈ Dw that is only in conflict with values of v, then remove x from Dv.

Special case (Dw = {y}): If y is only in conflict with values of v, then
remove all these values from Dv.

Lemma 2.8 If any of the rules A1 to A3 are applied to two variables v and w,
only {v, w}-redundant values are removed from the domains of Dv and Dw.

21

22 Chapter 2. General Labeling: Label-Number Maximization

Proof. Given the situation described in rule A1, we have to show that x is
{v, w}-redundant. Let π be any solution for v and w that maps v to x. If A1 is
applicable there is a subset X 6= ∅ of Dv \ {x} that contains a value x′ that is
only in conflict with values of w, but not with π(w). (For π(w) = 0 this is true
for any x′ ∈ X.) Then π′(v, w) = (x′, π(w)) is a solution of the same size as π,
and x is redundant.

For A2 we can argue as follows. Since {x, y} is a complete solution for {v, w},
it is obvious that all other values of v and w are redundant before applying A2.

Considering A3, a solution π for v and w that maps v to x must map w to
0, hence it cannot be larger than a solution π′ that maps w to y. This shows
that x is redundant. r

Lemma 2.9 After rules A1 to A3 have been applied exhaustively to an instance
(V,D,R), the resulting instance (V,D′,R) is edge-irreducible.

Proof. If |V | < 2 then there is nothing to show; arc-consistency is defined
for pairs of variables. (Still, the special sub-case of A1 would have removed
all but one value of the only variable, and the resulting instance would then
be (node-)consistent.) Thus let |V | ≥ 2. We assume that there is a subset
W = {v, w} ⊆ V and that v is W -reducible in (V,D′,R). Then, due to the
definition of reducibility, there is a value x ∈ Dv such that for all solutions π
of W with π(v) = x there is a solution π′ of W with π′(v) 6= x and |π′| ≥ |π|.
π′(w) must be either equal to π(w) or not in conflict with any values of variables
in V \W . For π′(v) the latter condition must hold. We have to consider the
following three cases.

Case 1: Dv = {x}
All y ∈ Dw must be in conflict with x, otherwise there would be a solution
π of W with π(v) = x and |π| = 2, and all solutions π′ of W with π′(v) 6= x
would have size at most one, contradicting our assumption.

Thus x is excluded by w, and all y ∈ Dw must be in conflict with values
of variables u ∈ V \ W , otherwise we could have applied A3. Then,
however, a solution π with π(v) = x has size one, while all solutions π′

with π′(v) 6= x have size zero, since π(w) 6= ∅ would be in conflict with
values of variables in V \W . Thus x is not W -redundant, which yields
the contradiction.

Case 2: |Dv| ≥ 2 and there is a value y ∈ Dw that is not in conflict with x.

Then for each such y there is a solution πy of W with |πy| = 2, namely
πy(v, w) = (x, y). Due to our assumption for each πy there must be
a solution π′

y of W with π′
y(v) 6= x and |π′

y| = 2. π′
y(w) must be

y, and y must constrain values of variables in V \ W , otherwise A2
would have applied and all values of v and w (among them x) would
have been removed—except π′

y(v) and π′
y(w). Let X = {π′

y(v) | y ∈

22

Section 2.4. An Edge-Irreducibility Algorithm 23

Dw and y is not in conflict with x}. The condition of case 2 guarantees
that X 6= ∅. All x′ ∈ X are at most in conflict with values of w; this
is due to the restrictions imposed on each solution π′

y. In this situation,
however, A1 would have been applicable: for each value y of w that is
not in conflict with x we have an x′ ∈ X that does not constrain y since
x′ and y are both part of solution π′

y. Thus x would have been removed
from Dv, which contradicts our assumption.

Case 3: |Dv| ≥ 2 and x is excluded by w.

Then a solution π of W with π(v) = x has size one. Due to our assumption
there must be a solution π′ of W with π(v) 6= x and size at least one.
Suppose x′ := π′(v) 6= 0. Then x′ is at most in conflict with values of w,
and those form a subset of the values that are in conflict with x. Thus the
special case of A1 would have applied and x would have been removed.

Hence π′(v) = 0 and y := π′(w) 6= 0. In this case, however, A3 would
have applied and x would have been removed from Dv, contradicting our
assumption.

r

Lemma 2.10 Suppose there is an oracle that answers question of the type
“Given two variables v and w and a value x ∈ Dv, does x constrain at most
values of w?” in O(d) time, and suppose that the predicate Rvw(x, y) can be
evaluated in constant time for any x ∈ Dv and y ∈ Dw, then applying any of
the rules A1 to A3 to a pair of variables {v, w} requires at most O(d2) time.

Proof. Let v and w be the two variables under consideration, and let αvw(x)
be the answer of the oracle applied to the variables v and w, and to a value x in
Dv. For rules A1 and A3, we show that their application to (v, w) is in O(d2),
then obviously the same holds for (w, v).

Our algorithm for A1 is sketched in Figure 2.7. We assume that Dv and Dw

are given as lists and that we can store an integer entry b(y) with each y ∈ Dw.
We initialize these entries with zero. Let X be a subset of Dv. Initially X is
empty.

Our algorithm consists of two phases. In the first phase we collect in X all
values x ∈ Dv for which αvw(x) is true, and set the entries b(y) for each y ∈ Dw

to the number of x ∈ X with Rvw(x, y) true. The fact that each b(y) equals
this number is an invariant of our algorithm. In the second phase we actually
remove the values from Dv for which A1 applies.

In phase 1 we go once through all values x of v. If αvw(x) is true, we append
x to X and go through Dw incrementing all b(y) for which Rvw(x, y) holds. If
after this procedure X = ∅, we cannot remove any value and stop.

In phase 2 we go through Dv once more and test which values x ∈ Dv we
can remove given the entries b(y) of each y ∈ Dw. In order to do so, for each

23

24 Chapter 2. General Labeling: Label-Number Maximization

Algo A1(v, w; Dv, Dw, αvw, Rvw)

// phase 1: initialize the data structures X, a(Dv), and b(Dw)
X ← ∅
for each y ∈ Dw do b(y) = 0
for each x ∈ Dv do

a(x)← αvw(x)
if a(x) then

for each y ∈ Dw do if Rvw(x, y) then b(y)← b(y) + 1
X ← X ∪ {x}

end
end
// phase 2: remove values from the domain of v
for each x ∈ Dv do

if a(x) then threshold ← 0 else threshold ← 1 end
can remove ← true
for each y ∈ Dw do

if Rvw(x, y) and b(y) ≤ threshold then can remove ← false
end
if X 6= {x} and can remove then

Dv ← Dv \ {x}
if x ∈ X then

for each y ∈ Dw do if Rvw(x, y) then b(y)← b(y)− 1
X ← X \ {x}

end
end

end

Figure 2.7: The algorithm that implements rule A1.

x ∈ Dv we go through Dw and check whether X covers each y ∈ Dw that is
not in conflict with x, i.e. if there is an x′ ∈ X that is not in conflict with y
either. If we want to remove a value x ∈ X, we additionally have to make sure
that X \ {x} covers the same subset of Dw as X. The conditions for x ∈ X
(x 6∈ X) are fulfilled if the entries b(y) for all y ∈ Dw with Rvw(x, y) are greater
than 1 (0). If this is the case and X 6= {x} holds, then we remove x from Dv.
If additionally x ∈ X, we decrement the appropriate entries b(y) and remove
x from X. The condition X 6= {x} ensures that we do not remove the last
value x′ of X. This can only happen if x′ is excluded by w. Keeping x′ in X
is necessary to remove—in accordance with the special case of A1—all other
values in Dv \X that are excluded by w.

Note that we do not attempt to find the set X with minimal cardinality
such that X covers all y ∈ Dw that are not in conflict with x. This would
enable us to remove the maximum number of values x from Dv. However,
such an attempt would correspond to solving the set-cover problem, which is

24

Section 2.4. An Edge-Irreducibility Algorithm 25

NP-complete in general [Kar72]. One cannot even expect that set cover can
be approximated within a factor of ln N , where N is the size of the set to be
covered [Fei96]. Our objective is only to remove enough values of v such that
no {v, w}-redundant value of v remains.

For a time bound of this algorithm, observe that we need to ask the oracle
O(d) times, and for each of the O(d) values of v we have to go through the
O(d) values of w at most three times. This yields a time complexity of O(d2) as
desired. (The necessary operations on the set X can be done in constant time
each if X is implemented by Boolean entries associated with each x ∈ Dv and
by a counter that keeps track of the current size of X.)

The algorithm for A1 is correct for the following two reasons. First, when-
ever we remove a candidate x, the current set X and the current Boolean entries
of the values of w constitute a proof guaranteeing that A1 applies: the entry
of each y ∈ Dw that x does not constrain is marked true, thus there is a value
x′ ∈ X that does not constrain y either. (If |X| = 1, and both x and the only
element of X constrain all values of W then we can still remove x according to
A1.) Note that we append to X only values x for which αvw(x) is true.

Second, if no value is removed, there are two possibilities. If the algorithm
terminates with X = ∅ then all values of v are in conflict with values of variables
in V \ {w} and A1 does not apply.

If X 6= ∅, suppose there is a value x ∈ Dv and a subset X ′ 6= ∅ of Dv \ {x}
with the properties required for applying A1. We claim that then our algorithm
for A1 then would have removed x from Dv. There are two cases.

Case 1: x is in conflict with values of variables in V \ {w}.
Then αvw(x) is false, and x is only considered during phase 2. Since we
assume that x is not removed, there must have been a value y ∈ Dw with
Rvw(x, y) true and b(y) = 0. Due to our assumption, there must be a value
x′ ∈ X ′ with Rvw(x′, y) and αvw(x′) true. If this is the case, however, b(y)
would have been greater than 0 when our algorithm processed x′ during
phase 2. The entries b(·) are never decreased from 1 to 0. Thus our
assumption is contradicted.

Case 2: x is at most in conflict with values of w.

Then there must be a value y ∈ Dw with Rvw(x, y) and b(y) = 1 that
prevented x from being removed in the second pass through Dv. Since
b(y) corresponds to the number of values x′ in X with Rvw(x′, y) true,
X did not contain such a value except x itself. During the second pass,
no new values are added to X, and when the algorithm terminates, X
contains all values of Dv with αvw(x) true that have not been removed.
Thus X ′ must be a subset of X. Since x 6∈ X ′ there is no value in X ′ with
Rvw(x, y), which contradicts the assumption.

The algorithm for A2 is simple. We mark each value of v and w with the
answer of the oracle. Then for each pair (x, y) of values of v and w with αvw(x)

25

26 Chapter 2. General Labeling: Label-Number Maximization

and αwv(y) true we check whether Rvw(x, y) holds. If this is the case, we stop
and delete all values of Dv and Dw other than x and y.

Applying A3 is also easy. For each value x of v we go through all values y
of w and check αwv(y) and Rvw(x, y). If Rvw(x, y) is false for all y ∈ Dw and
there is one y with αwv(y) true, then we remove x from Dv.

It is clear that the algorithms for A2 and A3 are correct and do not require
more than O(d2) time. r

Lemma 2.11 There is an algorithm, EI-1, that given an instance (V,D,R) of
a MVS-CSP achieves edge-irreducibility in O(d3e) time under the conditions
stated in Lemma 2.10.

Proof. The structure of EI-1 is very similar to that of AC-3. First we put all
e edges of the variable conflict graph G(V, E) on a stack Q. While Q is not
empty we take an edge {v, w} from the stack and call Revise(v, w). Revise
applies rules A1 to A3 until no further value of v and w can be deleted. Note
that our Revise is symmetric; while the procedure of Mackworth makes the

arc (v, w) of the (directed) variable constraint graph
−→
G consistent, we make the

edge {v, w} of the (undirected) variable conflict graph G irreducible.

If Revise eliminates values of v or w, we have to ensure edge-irreducibility
of all edges of G that are incident to v and w, respectively—except {v, w}.
Therefore we put these edges on Q and continue by calling Revise for the
following edge on Q.

Actually there is another point where EI-1 differs from AC-3 due to the
difference between arc-consistency and edge-irreducibility. Edge-irreducibility
induces node-irreducibility; but in the algorithm sketched so far we do not take
variables without conflicts into account at all. To each of these variables we
must apply the special sub-case of rule A1, i.e. we must remove all of its values
except one. Obviously this can be done in O(dn) total time given the variable
conflict graph.

The algorithm EI-1 is correct for the following reasons. Due to the initial-
ization of Q each edge {v, w} is made irreducible at least once. An edge can
only become reducible if (a) the domain of v or w changes or (b) a value of v
or w loses its last conflict with values of variables other than v and w. Both
kinds of changes are triggered by the removal of a value; namely a value of v,
w, or of a variable u that is adjacent to v or w in G. In the latter case it is
obvious that EI-1 puts {v, w} on Q and makes {v, w} irreducible again later.
If a value of v or w is removed, Revise was called for either {v, w}, {v, s},
or {t, w}, where s is a variable adjacent to v and t a variable adjacent to w
in G. Lemma 2.9 guarantees that {v, w} is made irreducible since we apply
our rules A1 to A3 exhaustively. In the other two cases EI-1 puts {v, w} on
Q since {v, w} is incident to {v, s} and {t, w}, respectively. Later, when EI-1
takes {v, w} from Q, the irreducibility of {v, w} is reestablished.

The time bound of O(d3e) that Mackworth and Freuder [MF85] gave for

26

Section 2.4. An Edge-Irreducibility Algorithm 27

AC-3 applies to EI-1 as well. In Lemma 2.10 we proved that one application
of rules A1 to A3 costs O(d2) time given the oracle mentioned there. Suppose
we had such an oracle. We call an application of A1 to A3 successful if it leads
to the removal of a value of at least one of the two participating variables.
The rules are applied at most dn times successfully and for each edge {v, w}
at most 2d + 1 times unsuccessfully, namely once for the edge we put on Q
during initialization, and once for each of the 2d values we potentially remove
from v and w. We can assume that G is connected otherwise we can treat
each component separately. Thus e ≥ n − 1, and the runtime of EI-1 sums
up to O(e+(dn+2de)·d2) = O(d3e) if we assume the existence of the oracle. r

It would be simple to implement the required oracle to run in O(d) time if
we were willing to accept a storage consumption of O(d2e). In this case we could
compute explicitly the value conflict graph GD, see Definition 2.4. Computing
GD from the given variable conflict graph costs O(d2e) time and space. Recall
that the oracle αvw(x) has to tell whether the value x of the variable v is only
in conflict with values of the variable w. Given GD the oracle’s answer is “no”
if the length of the adjacency list of [v, x] is greater than the size of the domain
of w. Otherwise the adjacency list of [v, x] is short. Thus we simply have to
check to which variable each entry of the list refers and answer “yes” if each
of these variables is w, “no” otherwise. Since the domain of w has at most d
elements, the oracle’s answer can obviously be determined in O(d) steps.

However, for large values of d (and n) such an approach would consume too
much storage. Instead, we take advantage of ideas that Bessière used in order
to speed up AC-6 and to lower its space requirements as compared to AC-4
[Bes94]. As mentioned before, AC-6 stores at most one support for each arc-
value pair, while AC-4 stores all supports. Recall that a value x of a variable

v has support on an arc (v, w) ∈ −→E if there is a y ∈ Dw with Rvw(x, y) true. If
x has no support on (v, w), x cannot be in the solution of a classical CSP and
is therefore removed from the domain of v.

The data structure that AC-6 uses to keep track of which value has support
on which arc works as follows. For each arc-value pair [(v, w), x] with x ∈ Dv

and (v, w) ∈ −→E , AC-6 keeps a list Sv,x of all variable-value pairs that [v, x]
supports. If x is removed from the domain of v, all [w, y] in Sv,x must get new
support. If it turns out that there is none, y must be removed from the domain
of w. The other “trick” Bessière introduced is that he does not go through all
values of v when looking for new support for [w, y]. He observes that it is useless
to check values of v that have been checked before. Instead, he assumes that
the domains are given as lists, i.e. with an arbitrary but fixed total order, and
only checks those values z of v that succeed x in the domain list of v. Thus, for
each arc-value pair [(w, v), y], he can bound the time required for searching new
support for y by O(d). Since there are O(de) arc-value pairs, his support data
structure can be initialized and maintained in O(d2e) total time using O(de)
space. The following lemma shows how we can use these ideas for a space- and
time-efficient oracle data structure for EI-1.

27

28 Chapter 2. General Labeling: Label-Number Maximization

Lemma 2.12 There is a data structure that implements the oracle of
Lemma 2.10 for EI-1. It takes O(de) storage and can be maintained in O(d2e)
total time during the execution of EI-1.

Proof. For each edge-value pair [{v, w}, x] with {v, w} ∈ E and x ∈ Dv, we
keep a witness (i.e. a kind of support) [u, z] for the answer “no” of the oracle.
The witness testifies that the value x of v is in conflict with the value z of a
variable u 6= w. Like in Bessière’s case, it is enough to have one such witness
per edge-value pair, and it is useless to check twice whether a value is a witness
for a given edge-value pair. Thus we can apply his ideas.

We keep a list Wu,z with all variable-value pairs for which z is a witness. In
addition, we store a Boolean entry with every edge-value pair [{v, w}, x] that
encodes αvw(x), the answer of the oracle. Suppose all these entries are correct
before we remove the value z of a variable u. After the removal, for each [v, x]
in the list Wu,z we must find a new witness or change its Boolean entry if no
further witness exists. We can do this exactly as Bessière’s search for new
support, i.e. in O(d) time. The initialization is similar to his as well — except
that we do not remove values without witness, but only change their Boolean
entry. The Boolean entries require O(de) storage; so do the lists of type Wu,z.
Thus our witness data structure can be maintained in O(d2e) total time using
O(de) space. r

Now it is clear that EI-1 requires no more than O(de) storage. Combining
Lemmas 2.11 and 2.12 yields our main result concerning the algorithm EI-1.

Theorem 2.13 Given an instance (V,D,R) of a MVS-CSP, the algorithm EI-
1 achieves edge-irreducibility in O(d3e) time if all predicates Rvw in R can be
evaluated in constant time for any v, w ∈ V , x ∈ Dv, and y ∈ Dw. EI-1 requires
O(de) storage.

2.5 A General Label-Placement Algorithm

In this section we suggest a new algorithm for the general label-number maxi-
mization problem. Our algorithm is a combination of EI-1 and a heuristic that
removes additional candidates. The heuristic chooses a candidate c according
to the conflict number of c, i.e. the number of candidates of other features that
c intersects.

Our algorithm is simple, but has turned out to be very effective. In Sec-
tion 3.2 we give experimental results obtained in the context of point labeling.
Our hope is that EI-1∗ or other efficient algorithms based on higher degrees of
irreducibility will substitute simulated annealing and other iterative methods
of gradient descent for the wide variety of problems that fit into the framework
of maximum variable-subset constraint satisfaction.

We proceed as follows. Given an instance of a maximum label-number
problem (F,D), where F is a set of n features and D contains a set Df of at

28

Section 2.5. A General Label-Placement Algorithm 29

most d candidates for each feature f ∈ F , we first compute the candidate conflict
graph Gcand, the equivalent to the value conflict graph GD in Definition 2.4.
In Gcand there is a vertex for each feature-candidate pair and an edge for each
pair of intersecting candidates that belong to different features.

We use Gcand to maintain the conflict number for each candidate. Our
invariant is that the conflict number of a candidate c is always equal to the
degree of c in Gcand, i.e. to the number of edges incident to c. If we remove
c from our label-placement instance, we decrement the conflict number of all
candidates whose vertices are adjacent to that of c. Then we delete the vertex
v(c) corresponding to c and the edges incident to v(c) from Gcand.

Recall that Revise needs constant-time access to the relation Rfg for each
pair of candidates of f and g. If an intersection test for a pair of candidates
can be done in constant time, we can compute the candidate conflict graph
in O((dn)2). It requires O(k) space where k is the number of edges in the
graph. If we are given the feature conflict graph (the equivalent to the variable
conflict graph in Definition 2.4) we can use a data structure similar to the
witness data structure suggested in the proof of Theorem 2.13. With this data
structure we can initialize and maintain the conflict number of all candidates
in O(d2e) time using O(de) space. For large values of d this is better than
transforming the feature conflict graph into a candidate conflict graph that
requires O(k) ⊆ O(d2e) space.

This observation is useful for high-quality point labeling if each point has a
large set of candidates and each candidate is an axis-parallel rectangle1. If for
each point the union of its initial label candidates forms an axis-parallel rectan-
gle1, one can compute the feature conflict graph in O(e+n log n) independently
of d. An alternative would be to allow an infinite number of candidates and use
algorithms for so-called slider models, see Section 3.3.

In case label candidates have more complex shapes with at most s edges and
an intersection test needs f(s) time for some function f , computing the candi-
date conflict graph takes O(f(s)(dn)2) time in general. To ensure fast access to
Rfg, the graph can be stored in an adjacency matrix. This requires O((dn)2)
space. However, a careful revision of the proof of Lemma 2.10 shows that
constant-time access to Rfg is only needed in loops over all pairs of candidates
[b, c] of f and g, respectively. Thus representing GD by ordered adjacency lists
suffices. Since time and space for constructing and storing the conflict graph
are application-dependent, we assume for the following time and space bounds
that Gcand is given.

Next we interpret the maximum label-number problem (F,D) as a MVS-
CSP (F,D,R) by identifying each feature with a variable and each candidate
with a value. We set Rfg(b, c) to false if candidate b of feature f overlaps
candidate c of feature g (g 6= f), or if this combination is not desired due to
some other application-dependent restriction.

Given (F,D,R), we use EI-1 to achieve edge-irreducibility, then remove a

1there are similar results for other shapes of constant complexity

29

30 Chapter 2. General Labeling: Label-Number Maximization

candidate c of some feature f by means of a heuristic, and call Revise(f, g)
for each feature g that was in conflict with f . This process is repeated until
each feature has at most one candidate left and no candidates are in conflict
any more.

We suggest the following two heuristics for determining the candidate c that
is to be removed next. Both base their decision on the conflict number of c.

RemoveTroubleMaker removes the candidate with the greatest conflict num-
ber, either locally, i.e. among the candidates of the current feature, or globally.
For the local version, the next feature either is the successor of the current
feature in a list containing all features, or it can be a feature that still has the
maximum number of candidates (MaxCandNumber).

TakeGoodChild does in a sense the opposite of what RemoveTroubleMaker
does. Among the candidates of the current feature f this heuristic selects
the candidate c with the smallest conflict number, puts c in the solution, and
removes all other candidates of f and all those that intersect c. Again, the
search for c can be local or global. For the local version, the next feature
is either the successor of f in F or a feature with the minimum number of
candidates.

Let EI-1∗ be the algorithm that combines EI-1 with RemoveLocalTrouble-
MakerMaxCandNumber, i.e. the local version of heuristic RemoveTroubleMaker
and selection according to MaxCandNumber. EI-1∗ operates on a given candi-
date conflict graph.

Using no data structures other than doubly connected lists, EI-1∗ requires
O(d2n) total time to repeatedly select the next candidate to be removed. Re-
moving all of these candidates can cause at most O(de) unsuccessful applications
of the rules A1 to A3, using ideas and terminology of the proof of Theorem 2.13.
Since the rules are applied at most O(nd) times successfully, and each applica-
tion requires O(d2) time, EI-1∗ has a time complexity of O(d3e).

We conclude with the following lemma. It is simple, but important for
applying the concept of edge-irreducibility in practice. A formal proof is omitted
since the basic ideas have been sketched above. The proof would use Lemma 2.9
and Lemma 2.10.

Lemma 2.14 Given an instance of a maximum label-number problem (F,D),
where F is a set of n features and D contains a set Cf of at most d candidates
for each feature f in F , and given the corresponding candidate conflict graph
Gcand, there is an algorithm, EI-1∗, that finds a solution π of (F,D) in O(d3e)
time and requires O(de) space, where e is the number of pairs of features with
conflicting candidates.

Let the predicate Rfg(b, c) be true iff candidate b of feature f does not inter-
sect candidate c of feature g, and let R be the set of predicates Rfg, one for each
pair {f, g} ⊆ F of features. Then π is optimal if for the MVS-CSP (F,D,R)
edge-irreducibility implies |F |-irreducibility.

30

