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Abstract

In this work, we examine literature on creating visualizations for the performance of
machine learning classifiers, with our target group being users with limited machine
learning experience. The underlying data is taken from Wikipedia, and more specifically
ORES - Wikimedia’s service, which employs a machine learning model to score edits
and articles. The interface also expands on PreCall’s implementation, and features
multiple interactive components allowing the user to dynamically adjust parameters and
see the immediate change in the classifier’s performance. After providing a summary
of the relevant literature, we go over the ORES API and its relevant endpoints and
parameters. Then, we outline the most popular ways to visualize a machine learning
classifier’s performance. Following that is a thorough description of our target group,
goals, and requirements, as well as the reasoning behind each design decision. Finally,
there is an overview of the design and development process and we conduct a feedback
session with a machine learning expert with background in ORES, and the feedback we
receive is mostly positive, with some suggestions for improvement.
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1 Introduction

1.1 Motivation

Wikipedia, the Free Encyclopedia is the most popular online encyclopedia in the world.
At the time of writing, Wikipedia is receiving 1.8 edits per second, and there are 572
new articles coming out every day.1 However, with such a frequency of new edits and
articles, the need for some kind of a review process arises.

Understandably, a portion of these new edits are acts of vandalism - ”the addition,
removal, or modification of the text or other material that is either humorous, non-
sensical, a hoax, or that is an offensive, humiliating, or otherwise degrading nature”.2

Since it would be humanly impossible to manually review every single new edit or article
published on Wikipedia for possible vandalism, the website relies on automated quality
control tools, most of which employ Machine Learning classifiers.[7]

Machine Learning is not a new field in computer science, but it has recently gained
a lot of popularity in part because of improved hardware performance. Machine Learn-
ing allows us to automate complex tasks without explicitly defining the behaviour of
the program, and models show a lot of promise across multiple areas, such as speech
recognition, image classification, and playing games. However, mostly machine learning
experts have the necessary experience needed to create and use such models. Develop-
ing visual interfaces for machine learning applications could be an approach to integrate
non-experts in the field of machine learning.[4]

1.2 Context

Detecting and dealing with vandalism on Wikipedia is a task, where the domain knowl-
edge of machine learning non-experts would be useful. ORES was developed to address
this.3 ORES is a web service for Wikimedia projects, which provides an API, allowing
access to already trained machine learning models, which are able to rate, for example,
whether an edit is an act of vandalism, or grade the overall quality of a Wikipedia article.
However, having strict quality control policies for the automated tools can lead to new
users feeling discouraged to contribute, because edits they made are being automatically
reverted without additional feedback.

Thus, ORES made it part of its goal to help with the integration of new users, for

1https://en.wikipedia.org/wiki/Wikipedia:Statistics
2https://en.wikipedia.org/wiki/Vandalism_on_Wikipedia
3https://ores.wikimedia.org/
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example by providing a model, which judges whether an edit was made in good faith.
ORES also provides statistics and APIs, encouraging users to explore and experiment
with the underlying model.[7] Despite its efforts though, ORES’ documentation is some-
what lacking and users with limited machine learning experience could have trouble
understanding the terminology and the functionality of the ORES classifiers.

A project which aims to make the ORES API more accessible is PreCall.[6][9] PreCall
features a thorough documentation of ORES’ vandalism detection model - its param-
eters, API endpoints and performance statistics. PreCall also features an interactive
user interface, which visualizes some of the API’s parameters, thus allowing a user with
limited machine learning experience to still understand these parameters and the per-
formance of the underlying machine learning model, while the interactive elements allow
the user to see how the classifier’s performance behaves when adjusting the settings.

1.3 Goal of this research

This research builds heavily on both ORES and PreCall, and could be regarded as an
extension of PreCall, expanding on the feedback received during its evaluation. The
goal is to create a visual interface, which would allow a developer with limited machine
learning experience to understand the performance of ORES, explore the training data
set, and pick a suitable setting for their needs. In addition, a central point of this
research is not to inconvenience the user with parameters they do not fully understand,
and which are not crucial to the adjusting the model’s functionality. This would ensure
that users need less time and mental effort to learn to understand the interface and its
underlying concepts.

1.4 Structure of the thesis

Section 2 provides a concise description of the research used as a basis for this project, as
well as a summary of the most popular methods for visualizing and evaluating classifier
performance. The subsection for ORES also provides a short explanation of the ORES
API - its relevant endpoints, parameters, and expected results. Section 3 provides a
thorough explanation of the goals, requirements and design rationales behind this re-
search, as well as the process we carried out in order to make those decisions. Section 4
describes the implementation phase of this project - the approach and the encountered
challenges during this phase. Section 5 describes a simple evaluation of the application.
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2 Background

The need for automated quality control tools on Wikipedia, and the solutions, which
machine learning classifiers could provide, have been highlighted in the Introduction.
However, bot developers on Wikipedia rarely have the extensive machine learning expe-
rience or the appropriate hardware required to train, test, and deploy their own machine
learning models. Thus, there was a need for some kind of tool which would provide
machine learning as a service, while remaining usable by users with limited machine
learning experience. ORES was developed by Halfaker et al. and was designed to fill
the requirements described above.[7]

2.1 ORES

ORES is a web service, providing machine learning as a service for Wikimedia projects.4

On the technical side, ORES gives access to labelled training data sets, or allows volun-
teers to help with the expensive task of labelling and categorizing raw data. Furthermore,
users can commission custom classifiers, which are in turn deployed at an API endpoint,
where anyone can request a scoring of both edits and articles, and get a result in real
time. Currently ORES provides 78 classifiers in 37 different languages.[7]

However, the ORES team view their creation as a solution to a socio-technical chal-
lenge. Namely, allowing a more open access to machine learning tools for Wikipedia,
and encouraging new editors to keep contributing edits, reverts, and new articles. For
example, ORES intentionally does not provide any preset or ”gold standard”, as its goal
is to encourage users to inspect the classifiers for themselves. Similarly, some of the
available classifiers, such as the goodfaith one for instance, gauge whether an edit has
been made in good faith. The data could be used to give an encouraging personalised
message or a helpful tip, to users, whose edits did not meet Wikipedia’s standards, but
were still made with good intentions.

2.1.1 API

The ORES API has been described in great detail in the PreCall paper.[9] However, for
clarity, the most important endpoints and parameters will be summarized in the current
section. Model-specific API calls will be made from the context of the damaging model,
as it is the main focus of this research. More API calls, which won’t be summarized
here, can be found on ORES’ homepage.5

4https://www.mediawiki.org/wiki/ORES
5https://ores.wikimedia.org/v3#/scoring
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Classifiers

While ORES provides multiple classifiers, this research focuses on the damaging model
- a probabilistic classifier, which gauges whether an edit is an act of vandalism. It’s a
fairly uncomplicated classifier, which takes a single or a batch of edits as an input and
for each edit returns a probability that the edit causes damage to Wikipedia.6

Scoring edits

The primary way to use ORES would be for users to submit edits or articles to be scored
according to a certain model. Since Wikipedia gets multiple new edits per second, ORES
supports receiving batches of edits, and tries to keep a minimal response time.

Scoring a single edit is relatively simple - the user can set which wiki and which model
they want to use. In addition they can specify which edit they want classified by entering
its ID, as found on Wikipedia. Below you can find the API call syntax and an example
call.

https : //ores.wikimedia.org/v3/scores/ wiki / edit / model

https : //ores.wikimedia.org/v3/scores/enwiki/56782332/damaging 7

Scoring multiple edits requires a somewhat different request structure. The model
must be specified first, and then one enters the edits to be scored by separating them
with a ”|” character. Below is an example request to score two edits.

https : //ores.wikimedia.org/v3/scores/enwiki?models = damaging&revids =
6123521|9125123 8

6https://meta.wikimedia.org/wiki/Objective_Revision_Evaluation_Service/damaging
7Clickable link: https://ores.wikimedia.org/v3/scores/enwiki/56782332/damaging
8Clickable link: https://ores.wikimedia.org/v3/scores/enwiki?models=damaging&revids=

6123521|9125123

4
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Classifier Performance

Since the process of scoring a revision consist of assigning it a probability that it is
damaging, we need to pick a concrete threshold value, such that when it is exceeded, we
can classify the edit as damaging. One of the ways to do that would be to look at ORES
API endpoint for classifier performance statistics. The API returns a JSON object with
different threshold values, and multiple evaluation metrics for each threshold value. The
API call looks like this and listing 1 shows an example response. The parameters one
can replace are the following:

https : //ores.wikimedia.org/v3/scores/ wiki /?models = models /&model info =
statistics. metric

https : //ores.wikimedia.org/v3/scores/enwiki/?models = damaging&model info =
statistics.thresholds 9

One can replace wiki with ”enwiki” for the English language Wikipedia, or Wikipedia
in any other language. The user can point to a single model to be evaluated, but can also
input multiple models by separating them with a ”|”. Finally, metric is a placeholder for
an evaluation metric one would like to see statistics for. This project uses exclusively
”threshold”, but for other option please refer to the next section, titled ”Evaluation
metrics”.

The API request returns a list of multiple threshold values with a step of 0.001. Each
threshold has a corresponding set of performance (evaluation) metrics. The evaluation
metrics do not directly contain the number and distribution of confusion classes such as
percentage of true positives however. Instead, the response consists of metrics, derivative
of the confusion classes.

9Clickable link: https://ores.wikimedia.org/v3/scores/enwiki/?models=damaging&model_

info=statistics.thresholds

5
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1 "enwiki": {

2 "models": {

3 "damaging": {

4 "statistics": {

5 "thresholds": {

6 "true": [

7 ...

8 {

9 "!f1": 0.939 ,

10 "!precision": 0.992,

11 "!recall": 0.892,

12 "accuracy": 0.888 ,

13 "f1": 0.324,

14 "filter_rate": 0.868,

15 "fpr": 0.108 ,

16 "match_rate": 0.132,

17 "precision": 0.204,

18 "recall": 0.785,

19 "threshold": 0.267

20 },

21 ...

Listing 1: Example JSON repsonse from ORES showing the evaluation metrics for
threshold = 0.267
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Evaluation metrics

The metrics returned by the ORES API are important for evaluating the effectiveness
of the model with its current threshold settings. However, people with limited machine
learning knowledge will have a difficult time understanding what the metrics represent.
The most relevant evaluation metrics are shortly described below. For a more in-depth
description please refer to the PreCall paper.[6]

� Precision represents the percentage of correctly classified damaging revisions of all
performed classifications. In essence, the precision is a metric of the ability of the
classifier to avoid false positives. The recall represents the percentage of correctly
classified damaging edits, from all real world damaging edits. Thus, the recall is a
metric for the model’s ability to avoid false negatives. This paper describes these
two metrics in greater detail in section 2.2.3.

� The accuracy metric represents the model’s ability to correctly classify both dam-
aging and good edits, in contrast to precision and recall, which measure only the
ability to classify damaging edits.

� Filter rate and match rate show the percentage of samples predicted to be posi-
tive and negative respectively.

� The false positive rate, or fpr for short, is the probability that the model will
incorrectly classify a sample as damaging.

Optimization query

Helping users find a suitable threshold setting for their use-cases is one of ORES’ primary
goals. Thus they are providing an API endpoint, which allows users to specify evaluation
metrics and their desired values in the form of a condition. ORES will then mathemat-
ically compute the threshold, which satisfies these conditions best. An optimization
query looks the following way: 10

https : //ores.wikimedia.org/v3/scores/ wiki /?models = model

&model info = statistics.thresholds.true.%27 minimum/maximum %20

metric 1 %20@%20 metric 2 %20 <= / >= %20 metric2 value %27

10The percentages are URL encodings for white space and single quotation marks, so the final part of
the optimization query looks like ’Maximum recall @ precision > 0.95’

7
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� wiki - Fetch statistics for which Wikipedia. Example: ”enwiki”refers to the English
Wikipedia.

� model - Choose a model, or specify multiple, and separate them with a ”|”.

� mininum/maximum - Whether to have a the lowest possible or highest possible
value of metric 1.

� metric 1 - The metric to maximize or minimize.

� metric 2 - A second metric which to keep above or below a certain value.

� <=/>= - Upper or lower bound of metric 2

� metric 2 value - Choose a value between 0 and 1 to keep metric 2 above or under.

One can verbosely express an example API call as ”Maximize the recall, while keeping
the precision above 0.95” This query for instance will give us such a threshold setting,
that will make sure that we catch the most possible acts of vandalism, while keeping the
number of false positives low. 11

11An example request could look like this:
https://ores.wikimedia.org/v3/scores/enwiki/?models=damaging&model_info=

statistics.thresholds.true.’maximumrecall@precision>=0.95’

8
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2.2 Visualizing Classification Error

One could describe the tuning of Machine Learning classifiers as an iterative process.
The process usually involves adjusting the classifier’s hyper parameters, feeding it the
training data, and finally evaluating its performance using a separate dataset. These
steps are often repeated multiple times until the desired performance is achieved. The
most well-established visualizations are Confusion Matrices, ROC curves and Precision-
Recall curves and they all fulfil different requirements and visualize different aspects
of the classifiers.[5][8] This section summarises the most important features of these
performance visualization methods.

However, similarly to Machine Learning as a whole, mostly machine learning experts
are able to fully understand the information given by an evaluation metric, and also un-
derstand the implicit biases of the chosen performance visualisation method. Meanwhile
end users with limited machine learning experience often do not ”fully understand the
errors and their implications” and may even ”mistrust or misuse classifiers”[2] There are
two additional performance visualisation methods described in this section, who were
specifically created to be easily understood by end-users with limited machine learning
experience.
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2.2.1 Confusion Matrix

One of the most common ways to visualize the performance of classifiers is the so called
Confusion Matrix. The Confusion Matrix uses a table layout with a number of rows and
columns corresponding to the number of classes the classifier uses. The rows represent
the distribution of the predicted classes from the classifier, while the columns represent
the actual real world distribution.[11]

For instance, a confusion matrix visualising a binary classifier’s performance would
have two rows and columns. Typically the rows would be ”positive” and ”negative”, rep-
resenting the classes as assigned by the classifier. The columns in turn represent whether
these predictions are ”true” or ”false”. Thus, the true positives and true negatives are the
correctly predicted classes, while the false positives and false negatives represent, as the
name suggest, incorrectly classified samples. When evaluating a model’s performance,
the lower the percent of false positives and false negatives, the better the model.

Figure 1: A confusion matrix for a three-class problem. Retrieved from the Encyclopedia
of Machine Learning.[11]

A Confusion Matrix is a great tool for visualizing the performance of binary and multi-
class classifiers (see example on figure 1), as it allows the user to see which classes the
model is having trouble differentiating. However, confusion matrices only help evaluate a
single configuration state of the model. Furthermore, for binary classifiers, end-users with
limited knowledge in machine learning might have trouble understanding the meaning
behind the class labels (such as ”true positives” and ”false negatives”).[2]

2.2.2 ROC Curve

Many classifiers (probabilistic classifiers) assign a probability to each sample that the
sample belongs to a certain class. The probability is usually a numeric value, and the
higher that value is, the more certain it is that the sample is a member of a class. By
specifying a threshold value, one could use a probabilistic classifier as a binary classifier.
Say we have classes X and Y and we are calculating a probability that a sample belongs
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to X. We also set a threshold of 0.75. Then, if the probability assigned to a sample is
higher than 0.75, then the sample is assigned to class X, otherwise it’s Y.

Modelling the performance of such a classifier with a confusion matrix would be inef-
ficient, as the confusion matrix could show the performance only for a specific threshold
value. A far better visualization, which would also convey the change of performance
for various threshold values would be a so called ROC Curve (receiver operating char-
acteristic curve).

This type of visualization is a two-dimensional graphical plot, where the X and Y axes
represent the false-positive and true-positive rates respectively. In addition there is a
line plot, which denotes the intersection of these two rates. (See fig. 2) For instance,
a classifier might have a true-positive rate of 0.8 and a false-positive rate of 0.5 for
a certain threshold setting. That means that an actual ”positive” sample has an 80%
chance of being correctly classified as ”positive”, while an actual ”negative” sample has
a 50% chance of being falsely classified as ”positive”. Depending on the task, such a
performance is not ideal. It is generally valid, that the closer a ROC curve lies to the
top-left corner of the plot, the better the classifier performance is.

Figure 2: An example of an ROC curve. Each point has its corresponding threshold
setting as a label next to it.[5]

An advantage of ROC Curves is that they provide information on the classifier’s
performance which is not dependent on the number of class instances in the test dataset.
For instance if one were to add 1000 ”positive” new data points in the test set, without
adding any new ”negative” ones, a confusion matrix will change, but an ROC curve will
not.[8]
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2.2.3 Precision-Recall Curve

Figure 3: An example precision-recall curve by the python machine learning visualiza-
tion library Yellowbrick.12It visualizes the typical trade-off, where as the recall
increases, the precision falls.

The Precision-Recall curve has the same structure as the ROC curve, but it portrays
the relationship between other metrics. In this case, both precision and recall are metrics
which capture the ratio of the correctly predicted classes (true positives) to other classes.
For instance, precision is the ratio of the true positives to the total number of classes the
classifier assigned as ”positive” (true positives and false positives). Recall on the other
hand is the ratio of true positives to the real world positive classes (true positives and
false negatives).

precision =
tp

tp + fp
recall =

tp
tp + fn

Precision-Recall curves have a similar advantage as ROC curves - namely, they can
visualise classifier performance for the whole threshold range, while remaining unchanged
when adding more samples to the test data set. The difference to ROC curves though,
is that precision-recall curves are more informative when one has an unbalanced dataset
- few positive and many negative classes for example.[10] When evaluating a model
with such a curve, the closer the curve is to the top-right corner, the better the model.
However both ROC and Precision-Recall curves have the disadvantage that they are very
difficult for non-experts to understand, as they feature domain-specific metrics, and the
threshold plot is implicit.[2]

12https://www.scikit-yb.org/en/latest/api/classifier/prcurve.html
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2.2.4 PreCall

An attempt to make classifier performance evaluation easier for non-experts has been
made in the PreCall project. PreCall is a visual interface for ORES, developed by Tom
Gülenman and published by Christoph Kinkeldey.[9] The goal of the project is to visual-
ize the performance of ORES ”damaging”model, with the addition that the visualization
should be interactive and easy to understand by people with limited machine learning
experience.

Figure 4: PreCall’s visual interface[9]

The interface features multiple interconnected interactive components - when the user
interacts with one of them, all others change accordingly. The main interaction takes
place in the radar chart and the threshold bar. In the radar chart, the user has access to
a few model quality metrics, where they can adjust the precision, recall, or false positive
rate. The functionality of the threshold bar is simple - it’s a slider where the user can
choose a desired threshold, for which to visualize the classifier’s performance.

Finally, on the bottom side of the interface there is an alternative visualization of a
confusion matrix. The labels such as ”true positives” and ”false negatives” are named in
such a more intuitive way. The percentages are also represented by blue or red-coloured
icons. The color represents the classifier predictions, while the shapes represent the
actual classes. However, in PreCall’s evaluation, users described this visualization as
”confusing”.

PreCall is important for this work, as the paper publication includes a thorough
documentation of ORES - API endpoints, parameters required and metrics returned.
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Furthermore, this work will reuse parts of PreCall’s code base, in order to speed up
development.

2.2.5 CLASSEE

CLASSEE is another project developed in the context of making visualizations to convey
classifier performance to users with limited machine learning experience. In their paper,
Beauxis et al. test multiple classifier performance visualizations among machine learning
experts, math experts, and non-experts.[2] The research found, that confusion matrices
and ROC curves are more difficult for end-users to understand. Instead Beauxis et al.
propose a bar chart histogram as an alternative. (See fig.5)

Figure 5: A bar chart histogram for classifier performance.[2]

The bars represent the class distribution, where each predicted class has a different
color, and the positive classes are above the zero-line, and the negative classes - below it.
Depending on the classifier, true negatives can often be excluded from the visualization,
as they are rarely relevant and would just clutter the visualization.[2]

This work often references the CLASSEE paper, as the insights how end-users interact
with classifier performance visualizations, and what they understand or don’t understand
are important for the current research. Furthermore, for the development of this interface
we used the bar-chart histogram from CLASSEE as one of the main components.
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3 Conception

This section describes the process before the development phase of the interface. It
identifies the type of audience that will use the interface, it describes the goals the
interface wants to achieve and specifies the requirements. The design section in turn
describes the iterations of the planning process, as well as the rationales behind every
decision taken during it.

3.1 Goals

Identifying the target audience is a key moment of a project’s design phase. When
it comes to machine learning classifiers for Wikipedia, this project builds both on the
technology and philosophy of ORES. ORES has been designed to ”push even further on
the crucial issue of who is able to participate in the development and use of advanced
technologies” and has been built to support ”an open-ended set of community efforts
to re-imagine what machine learning in Wikipedia is, and who is it for”[7]. Thus both
PreCall and this research are targeting the same audience. Kinkeldey et al. describe
them as volunteers, who ”do not have deep enough technical expertise in machine learn-
ing terms and practices, and therefore, they lack the expertise to develop the machine
prediction models necessary to power quality control tools”[9].

Having a target audience in mind makes specifying the goals much easier. We want
to create a visual interface, which will help users (non-technical experts) to better un-
derstand the functionality of machine learning classifiers, and more specifically, ORES’
”damaging” model. However, we want to adhere to ORES’ philosophy of an open-ended
approach and want to give the user freedom to explore the data set and settings for
themselves without providing any presets or default settings.

Since access to this interface will be provided as an in-person service, we expect users
to come to find a threshold setting for their model once or mostly twice, and we cannot
expect them to spend longer than one or two hours. Thus the interface needs to be easy
to understand and use from the first time, so that the users feel comfortable using it as
quickly as possible.

The interface needs to be interactive. We believe that after observing the relationships
between different components and ORES metrics, the user can get a better grasp on how
the classifier work and how different parameters affect the classifier’s performance.

Finally, while as a result of the first requirement the interface will be lacking many
domain-specific words or visualizations, it is still important than we don’t omit all of
them. We expect that the user would want to visit multiple services or try alternative
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ways to find a suitable threshold for their use-case, and it is most certain that they will
encounter language and concepts, specific to the domain of machine learning. Thus, our
interface needs to help the user learn basic domain-specific concepts.

16



3.2 Design rationales

Having defined a set of requirements the interface needs to fulfil, helps us delve deeper
in the design phase of the project, and make decisions on how the interface is going to
look like and what its functionality will be. The requirements are needed in order to
both guide and constrain every single decision we take. Reaching the design rationales
described in this section was an iterative process. We started with a ”low-fidelity proto-
type” of the interface, which we reworked multiple times, analysing at every step what
works, what could be better, and what should be abandoned.

Figure 6: Initial prototype design, featuring a histogram, selector view, and precision
and recall sliders.

Figure 6 represents the initial design of the interface. The focal point is the histogram,
as proposed by CLASSEE. To the right is a bar chart representation of a confusion
matrix for the current threshold setting. The sliders are interactive, so the user can drag
them and adjust the desired confusion distribution. The top of the interface features a
precision and a recall slider, as inspired by PreCall.

The feedback from this iteration was that the precision and recall sliders are excessive.
They are too similar to PreCall and at the same time they are too domain specific for
technical non-experts to understand. A proposed histogram improvement was that the
bars be connected, in order to show the user that they are part of the same data space.
An additional interesting idea was to implement gradients, which would signify the
concentration of edits between two threshold values (e.g. 0.7 and 0.8). All of these
issues were addressed in the second iteration (Figure 7)

After discussing the second prototype, some further improvements were required. We
decided to opt for more consistency, thus the histogram bars were to be split in two
groups - true positives stacked on top of false negatives, and false positives stacked on
top of true negatives. This would ensure a consistent look with the selector view. At
this point we also decided to add two more components - the confusion matrix and the
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Figure 7: Second prototype design.

edit viewer. (The rationales behind these components are described in section 3.2.2).
The layout of these components also played an important part in the discussions. It was
decided that the histogram would not be the main interaction point, and instead the
selector view should be the focal point of the interface. Figure 8 shows the final interface
layout.

Figure 8: The final prototype layout. Featuring the selector view as the focal point, and
the addition of a standard confusion matrix and an edit viewer.

3.2.1 General decisions

Domain specific concepts

PreCall’s interface featured components, where the user could adjust the desired pre-
cision and recall settings. However, we decided to keep the parameters which the user
has access to to a minimum. The main reason for this is that the feedback from one
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of the prototypes was that these parameters are domain-specific and users with limited
machine learning knowledge might need a lot of time to understand what these metrics
represent. Similar measures we can take to reduce the domain-specific concepts the user
encounters is to rename the model’s classes in a more intuitively understandable way.
For instance ”true positives”could be replaced by ”edits correctly classified as damaging”.

True negatives

When using a bar chart to visualize classifier performance, such as the histogram or
the selector view (See section 3.2.2), one can decide to not display the true negatives, as
they are often not especially relevant for the performance evaluation, and can clutter the
interface.[2] We tried that in one of the iterations of the low-fidelity prototype. However,
since we have technical non-experts as our target group, we need to make sure that the
interface provides all the relevant information to them. It would be wrong to make
the assumption that the users will find the true negative bar irrelevant. Thus, we have
decided to intentionally keep it, even though it might clutter the interface somewhat.

3.2.2 Components

Having the requirements in mind, we decided on four interactive components to be part
of the final interface design: A histogram, based on the CLASSEE project by Beauxis
et al.[2], a selector view, which would be a close-up of a certain threshold setting, a
standard confusion matrix, and an edit viewer, which would showcase concrete edits.

The histogram and selector view were designed as a pair - the histogram visualizes the
”big picture”, while the selector view showcases the current setting, and initially both of
them were supposed to be the main interactions of the interface. However, after a few
iterations, we discovered, that the interaction the histogram provides is rather limited,
so the focal point of the interface should be the selector view.

Selector view

The selector view is very similar to a confusion matrix, in the sense that it shows the
distribution of true positives, false positives, true negatives and false negatives for a
certain threshold value. However the visualizations resembles that of a bar-chart - each
metric is visualised by a bar. More specifically, the bars would be stacked in groups of
two, where the top bars would grow upwards and the bottom would grow downwards.
Initially the idea was that every bar in the selector view would have a handle, so that
the user can adjust whether they want more or less of that certain class. However, after
testing this approach we wanted to make it clear to the user that there is a special
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relationship between certain confusion classes - namely the sum of true positives plus
false negatives, and false positives plus true negatives are constant. Thus, we decided
that instead of dragging each bar to make adjustments, the user can instead drag the
”zero-line”, so that the bar remains constant, just the colours distribution changes. Both
bars’ handles should be connected by a line, in order to convey to the user that changing
the value of one of them, will also update the other.

Histogram

Based on the research by Beauxis et al.[2] which concluded that end-users are most
comfortable with understanding classifier error via a bar-chart, we decided to include
one in our interface. The histogram would show the confusion distribution for the whole
range of threshold values available. Figure 5 represents the initial design of the histogram
we chose. However, after the decision to include a Confusion Matrix, we decided that
we should keep our visuals consistent. Thus, the histogram should resemble both the
selector view and confusion matrix more closely, so the false positives won’t be stacked
on top of the true positives, but would rather be on the side parallel to them. (See figure
9)

Figure 9: From the different histogram designs which CLASSEE provided, we this is the
one we chose.[2]

The histogram would also include a vertical bar, which would show which setting is
currently selected, and would also be draggable so that the user can select a desired
threshold setting in that view.
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There was a lot of discussion regarding the position of the histogram on the interface.
The consensus was that the histogram is supposed to function as a map of sorts, so it
should always be in view, but it shouldn’t be the focal point. The best way to achieve
this would be to place the histogram on top of the page, taking the whole width.

Confusion Matrix

Initially we thought of explicitly not including a confusion matrix, as they require some
domain knowledge to be understood, which we specifically wanted to avoid. However,
it occurred to us, that even if the user has limited machine learning experience, almost
all ways to visualize classifier performance used in other services would feature some
domain-specific visualization style. Thus we decided that we wanted to help users learn
some basic domain-specific concepts and terminology.

Since confusion matrices are easier for end-users to understand in comparison to ROC
curves,[2] we decided to include one in the interface. The confusion matrix will also
feature some interaction, in the form of buttons for each class, where the user can either
increase or decrease the percentage of samples they want in the current class.

Edit viewer

The rationale behind the final component is that thus far all of our components convey
information through numbers and relations of numbers. However, threshold settings and
true positive rates could be abstract, so we needed something which the user could relate
to the real world. Thus, the decision to include an edit browser, where the user could
search for real edits with a desired probability to be damaging.

However, the idea of manually searching for edits and thresholds seemed way too com-
plex, and we also thought it would be more interesting to display edge cases - damaging
edits, which when the user increases the threshold a bit would be classified as harmless
edits. We believe that this component would help the user understand the significance
of the difference between various threshold values.
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4 Prototype

This section describes the structure of the prototype, as well as the decisions taken and
challenges encountered during the implementation phase. The section should also serve
as a simple documentation of the project, describing important objects and functionality.

PreCall was developed as a Javascript React13 prototype. Since this project is intended
as a successor of PreCall, it was developed in React as well and it reuses a portion of
PreCall’s code base. React is a Javascript framework, built specifically for the task of
developing user interfaces. Since Javascript programs run in the browser, React allows
users to build platform-independent applications. React also renders visual components
asynchronously and uses the concept of ”state”, where it only re-renders components
whose ”state” data structure has changed. This is an extremely useful feature, especially
for a project like PreCall and its successor, where there are interconnected visual ele-
ments, with expensive data processing function behind them. The source code of the
prototype can be found on Github.14

Notation

The development process will be described component-wise. React Components will be
in bold text, functions() will be in italic, and states and props will be underlined.

13https://reactjs.org/
14https://github.com/emomicrowave/PreCall
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4.1 Structure

Figure 10: Structure of this project. Components in black were reused from PreCall.
Components in orange were taken from PreCall and modified, whereas com-
ponents in green are new. The dashed arrows show what kind of values does
each component update.

Figure 10 shows the object structure of this program, and the color-coding represents
whether a component was taken directly from PreCall, modified, or implemented from
scratch. Top-level components taking care of the initial API call (OresApi) and the
Application wrapper (App) were unchanged, as this project uses the threshold statistics
from ORES’ ”damaging” model.

The Visualizations class acts both as a graphical container for rendering the compo-
nents, as well as a ”manager” of sorts, in the sense that it processes the data from the
currently manipulated component, and updates all others. The visual components are
a Histogram, a Selector View15, a Confusion Matrix, and an Edit viewer (all of which
are described in section 4.2.2).

ConfusionUtil however is not a visual component, but more of a helper class, that
stores and calculates confusion values. Its functionality is described in greater detail in
the following section.

15Corresponds to SelectorBars.js in the source code
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4.2 Implementation

4.2.1 Backend Functionality

OresApi

Described as PreCall’s power source,[9] this class performs a single GET request to ORES
to obtain the statistical data for the ”damaging” model. It is important to mention that
the data is fetched only once on start up, and is then passed directly to the Visualiza-
tions component as an array of thresholds and their corresponding evaluation metrics
(precision, recall, etc.). It wasn’t necessary to change this component’s implementation,
as we are working with the same ORES data as PreCall.

Visualizations

In React, when updating the state of a component, the program will also update the
state of all child components and re-render them on the screen. Therefore, if you have
multiple components which should be updated at the same time, the best practice would
be to implement them as children of the same parent component: Visualizations in this
case.

PreCall’s implementation featured a setNewValues() function, which when given a
single metric and its value (precision, recall or threshold), would use it as an index to
find its corresponding data points in the data array, and would update the state, so that
all components would re-render. However, since in this project multiple components are
requesting values for true positives or true negatives, which are not explicitly provided
by the ORES API, a somewhat different function was required, which would also search
all the possible confusion distributions.

The function is called updateEverything() and uses the ConfusionUtil component to
find suitable confusion distributions in order to update the state of all components.
Updating the state of a React component will trigger the re-rendering of the component
itself, which will, by extent, update the rendering of all the child components.

Since the Visualizations component is already instantiated in App, and that’s the
instance that has the relevant state, creating new instances in the child-components
wouldn’t be a good practice. Instead access to the updateEverything() function is pro-
vided as a callback property to each child component.
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ConfusionUtil

Almost every component requests confusion data of some sorts. The Histogram requires
the confusion matrix for each threshold value, and the SelectorView and ConfusionMa-
trix display the classifier performance for the current threshold setting. That is why
there was a need for a separate component which would handle calculating and storing
all confusion values.

Many functions in this Component were reused from PreCall’s ConfusionFilter class.
However, access to the component functions needed to be made public, in order for
multiple components to be able to access them. When calling the class’ constructor, the
program iterates over each possible threshold and computes the corresponding positives
and negatives. This is done in the calculateConfusion() function (see Listing 2).

1 // "data" variable contains the threshold statistics from the ORES API

2 calculateConfusion(data) {

3 for (let i = 0; i < data.length; i++) {

4
5 //save threshold

6 this.thresholds.push(data[i]. threshold);

7
8 // necessary constants

9 const filters = this.round (100 * data[i][’filter_rate ’]);

10 const matches = this.round (100 * data[i][’match_rate ’]);

11
12 // calculate confusion values

13 const tp = this.round(matches * data[i][’precision ’]);

14 const fp = this.round(matches - tp);

15 const tn = this.round(filters * data[i][’!precision ’]);

16 const fn = this.round(filters - tn);

17
18 //fill arrays

19 this.allTPs.push(tp);

20 this.allFPs.push(fp);

21 this.allTNs.push(tn);

22 this.allFNs.push(fn);

23 }

24 }

Listing 2: calculateConfusion()

The most important function in this class is setConfusion, which when given a confu-
sion class (e.g ”true positives”) and a value, would search the array of all possible class
values for the closest match, and would return the index (See Listing 3). This function is
called by updateEverything in Visualizations every time a component requests a change
in the confusion distribution.

1 setConfusion(confusionValue , wantedValue) {

2
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3 //get the full array of TPs , FPs , TNs or FNs from state , depending

on what Button has been clicked

4 let fullArray = [];

5 if (confusionValue === ’TP’)

6 fullArray = this.allTPs;

7 else if (confusionValue === ’TN’)

8 fullArray = this.allTNs;

9 else if (confusionValue === ’FP’)

10 fullArray = this.allFPs;

11 else if (confusionValue === ’FN’)

12 fullArray = this.allFNs;

13
14 let wantedIndex;

15
16 if (this.isNumber(wantedValue)) {

17 //user passed value in %

18 let closest = Infinity;

19 wantedIndex = 0;

20
21 //find index of closest existing value to the one specified by

user

22 for (let i = 0; i < fullArray.length; i++) {

23 if (Math.abs(wantedValue - fullArray[i]) < Math.abs(

wantedValue - closest)) {

24 closest = fullArray[i];

25 wantedIndex = i

26 }

27 }

28 } else {

29 return

30 }

31 return wantedIndex;

32 }

Listing 3: setConfusion()
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4.2.2 GUI Description

Histogram

Figure 11: The final version of the histogram, including a threshold slider.

The first and top-most component is a Histogram. The design rationale behind this
component was to use it as a map of sorts, that would show the user the current threshold
setting and provide an overview of the possible confusion distributions over the whole
dataset.

The visual style of the histogram has been achieved with the pre-made component
called ”Grouped stacked histogram”, provided by the DevExtreme framework.16 DevEx-
treme is a huge suite of widgets for responsive UI design and provides various pre-made
visual designs, as well as the necessary backend functionality to process the visualized
data. From the multiple libraries or frameworks which provided pre-made Histograms,
DevExtreme’s implementation was easiest to use, while providing most control.

The data for the histogram is processed once at the start of the program, and consists
of all possible thresholds and their corresponding confusion classes. In order to achieve
the look of the CLASSEE Histograms, the values of false and true negatives have been
multiplied by −1. This way, the bars representing both values would be stacked under
the true and false positives respectively and would be pointing downwards.

Plotting all of the 1000 possible thresholds would heavily clutter the interface, that’s
why the Histogram has the reduce property. Provided with the numeric value of n, the
histogram will only draw every n-th element, making the visualization much more tidy.

In order to visualize the current setting, the Histogram features a vertical bar, which
reflects the current position in the dataset (current threshold value), but can also be
dragged, so that the user can explicitly change the threshold from there. Since the bar

16https://js.devexpress.com/Documentation
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is a ConstantLine component directly provided by DevExtreme and cannot be dragged
itself, to achieve the dragging effect we use the react-draggable17 component to create a
handle which the user can interact with.

In order for the handle to be able to influence the threshold and vice versa, we needed
to manually track and adjust the position of the handle. We are also keeping track of
whether the react component’s render() method is called from an internal or external
state update - because we need to also change the threshold handle’s position on an
external state update.

Selector view

Figure 12: Two selector sliders allowing the user to directly adjust the current confusion.

The selector view features two instances of the Selector Slider components, and thus
represents an alternative confusion matrix visualization, inspired by CLASSEE.[2] The
selector sliders are essentialy the ”ThresholBar” from PreCall, however the visuals and
the source data have been adjusted for the needs of this project. Since in the design
rationales we decided that we needed to highlight the constant relationship between true
positives and false negatives, and false positives and true negatives, instead of dragging
the columns to set new values, the user should drag the difference between them. This
functionality could easily be implemented by two sliders.

17https://github.com/STRML/react-draggable
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The Selector view acts as a wrapper for the two sliders, and features a simple update()
function, which registers which slider was just updated, and sends the appropriate metric
and value to the updateEverything() function in Visualizations. The domain of the sliders
is calculated once on start up, where the left slider allows values between zero and the
sum of true positives and false negatives. Similarly the right slider allows values between
0 and the sum of false positives and true negatives. Since slider implementations can
usually store a single value, the left slider stores the true positives, and the right - the false
positives. However, all the confusion classes can correctly be displayed by subtracting
the current slider value from the highest possible value allowed.

The two sliders are instances of Selector Slider, which in turn is a modified version of
PreCall’s Threshold slider. However, since we have two instances, we needed some way
of setting different colors and positions for both sliders. Initially the idea was to provide
them as properties. However, this approach would require to significantly alter the code
provided by PreCall’s implementation, thus risking introducing bugs or even breaking
the component. Thus, we set the id of each slider, and then the slider instance performs
a check for what is the id, and sets the style accordingly.

In order to make it clearer to the user, that interacting with one slider, will change
the value of the other one as well, we decided to connect the handles with a line. In
order to implement this functionality we used an SVG HTML Component, where we
draw a line and explicitly set its Cartesian coordinates. For the X coordinate, we just
needed to calculate the offset according to all the parent container’s sizes and margins.
The same needed to be done for the Y coordinate, with the addition of multiplying it
with the current slider position, in order for the two handles to appear connected.

Confusion matrix

Figure 13: A standard confusion matrix with buttons for each class.
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As already indicated in the Design rationales (section 3.2.2), we needed to implement
a standard confusion matrix to help the user learn some concepts specific to the domain
of machine learning. A further requirement was that the Confusion Matrix is interactive,
so that the user can enter adjust the values of confusion classes they want. The latter
was almost entirely implemented by the Confusion Filter component in PreCall.

The Confusion Filter is a component developed for PreCall, and its functionality
hasn’t been changed. Each confusion filter represents a cell of the confusion matrix.
There are some additional features such as a plus and minus button, where the user
can increase or decrease the current confusion value. The most important functions
are pmConfusion(), which handles the clicking of the buttons and either incrementing
or decreasing the corresponding value by 0.1. Then, there is setConfusion which is
essentially the same as in Confusion Util (see section 4.2.1), with the difference that
instead of returning an index it calls updateEverything().

Since the interactivity requirement is satisfied by the Confusion Filter, we just needed
a class to instantiate 4 confusion filters and style them appropriately so they look like a
standard confusion matrix. This is precisely the role of the Confusion matrix component:
it acts as a wrapper for multiple Confusion Filter components, providing them with a
callback function (updateEverything()) and taking care of rendering and styling.

Edit viewer

Figure 14: The implementation of the edit viewer.
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As per the decision in the design rationales, we also implemented an edit viewer. The
idea behind it was to allow a user to relate a threshold value to a real world example.
The approach was to display an edit, whose damaging probability is extremely close to
the currently selected threshold.

In order to achieve that, we used the dataset ORES was evaluated on,18 and since
the dataset consisted of only the revision ids and whether they are damaging or not, we
needed to submit the ids to the ORES API for scoring.

The implementation was rather straightforward - load the edit ids and damaging prob-
abilities from a file and sort them according to probability. Then, we use a binary search
to find the closest probability to the current threshold, fetch the edit from Wikipedia,
and display the contents. Wikipedia has a function which allows the users to compare
two revisions. By substituting the revid in the following URL, Wikipedia returns a diff
between the specified and the previous edit. In order not to make too many requests to
Wikipedia, a timer was implemented ensuring that a request is made only if the current
threshold hasn’t changed for 2 seconds.

https : //en.wikipedia.org/w/index.php?diff = prev&oldid = revid 19

Furthermore, the edit viewer allows the user to pick whether they want to see a
damaging or a harmless edit. In order to achieve that we needed two different dataset
files so that searching for a suitable edit is easier. Since the edit viewer fetches the edit
with a damaging probability closest to the current threshold, this allows the user to view
the ”edge case” - namely if the threshold value was a little higher or a little lower, the edit
would be classified differently. We are certain this will help the user better understand
the consequences of their preferred threshold setting.

4.2.3 Challenges

Performance issues

Probably the biggest challenge we faced has been performance issues. The function up-
dateEverything() is rather expensive computationally and because of the multiple sliders
it gets called each small step any slider takes. An additional contributing factor to the
bad performance was that every time the user would interact with the Histogram or
the Confusion Matrix, updateEverything() would update the state of other components.
However, during the state update of the Selector View, updateEverything() would be

18https://github.com/wikimedia/editquality
19Clickable link: https://en.wikipedia.org/w/index.php?diff=prev%26oldid=7156231
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called again. The result of this behaviour was that when the user would interact with
the Histogram’s threshold slider, for each step the slider makes, the expensive updateEv-
erything() would be called twice.

In order to solve this, we implemented a timer and added a caller parameter to upda-
teEverything(). This way we could ensure the function is only called every 25ms, which
made all sliders behave smoother. Furthermore we added a check, so that the function
makes sure it hasn’t been called by the Histogram or the Confusion Matrix in the last
100ms, and only then gets executed.

Another improvement which helped a lot was using binary search when searching for a
concrete or a closest threshold value. With these changes, the application’s performance
was noticeably better and all the interactive components behaved more smoothly.

Component layout

The layout of the application has been planned ever since the iterative design phase.
However, after implementing all of the components we noticed that the user needed to
constantly scroll up or down in order to view all of the components at once. For example
if the user wanted to interact with the Histogram, they wouldn’t be able to see the Edit
viewer and vice versa. After much tweaking of CSS settings and changing scale and
layout, we decided that the best solution would be to shrink the Histogram horizontally,
and displaying the Confusion Matrix to the right of it. This way all components would
be visible at the same time and the layout of the whole application does not break.
Figure 15 shows the final look of the visual interface.

Figure 15: The final view of the program.
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5 Feedback

During the implementation phase of this project, a feedback session was performed.
We invited a machine learning expert with background in the development of ORES
to a conference call. The App was deployed on Heroku20 and the expert had time to
familiarize themselves with the application. The session was free-form in the sense that
we described our target group, our design rationales, and our process, while the machine
learning expert gave us feedback based on their experience with Wikipedia users and
ORES.

The feedback we received was mostly positive, although there were suggestions for po-
tential improvements. Each component was described as useful and easy to understand,
when regarded separately, with the edit viewer receiving special praise for being a way to
relate a threshold value to a real-world feature. The histogram and selector view being
scaled version of one another also received compliments, although the expert admitted
that it took them a while to understand the relationship between both. A possible reason
is that the scales are different, while the selector sliders have the same size, the blue-red
bar on the histogram is way smaller than the dark-light-grey one, contributing to visual
clutter and confusion.

A improvement was suggested regarding the data density - the expert explained that
many Wikipedia bots use a threshold setting > 0.85 in their configurations,21 so it
would’ve been useful if one could zoom in or have a finer selection when interacting
with thresholds close to 1, as according to him this range is ”the most interesting”.
However, the expert correctly recognized the relationships of the selector sliders, i.e that
interacting with the false-positives (right) slider would produce smaller changes on the
true-positives (left) slider. This allows the user to fine-tune the desired amount of true
positives and thus the desired threshold value.

20https://stark-journey-35616.herokuapp.com/ - (Try refreshing the page if the App doesn’t load
on the first try.)

21https://github.com/wikimedia/operations-mediawiki-config/blob/master/wmf-config/

InitialiseSettings.php#L25969-L26318

33

https://stark-journey-35616.herokuapp.com/
https://github.com/wikimedia/operations-mediawiki-config/blob/master/wmf-config/InitialiseSettings.php# L25969-L26318
https://github.com/wikimedia/operations-mediawiki-config/blob/master/wmf-config/InitialiseSettings.php# L25969-L26318


6 Conclusion and outlook

6.1 Conclusion

This research proposes a visual interface, allowing users (primarily Wikipedia bot devel-
opers) with limited machine learning knowledge to better understand the functionality
and parameters of ORES’ ”damaging” model, and to easily choose a suitable threshold
value for their needs. The design decisions for this interface are based on the insights
gained from PreCall and other relevant literature about visualizing classifier perfor-
mance. The interface features a bar chart histogram, which visualizes confusion classes
across all possible threshold settings, an interactive selector view and standard confu-
sion matrix, where the user can adjust the current confusion distribution to their needs,
and an edit viewer, which displays a real Wikipedia revision in order to highlight the
consequence of the currently selected threshold setting. The evaluation consisted of a
free-form trial and discussion with a machine learning expert with background in ORES.

6.2 Outlook

Including, as Kinkeldey et al. would describe them, technical non-experts[9] in the field
of machine learning is an important step to adoption. More and more developers need
to find and address issues in machine learning applications, despite not having thorough
theoretical background.[3] In addition, a more accessible machine learning understanding
would mean that users could apply their extensive domain knowledge from other areas
in order to develop advanced multi-purpose applications. A way to address that would
be to develop visualizations for machine learning models.[4] And in general, the field of
Human-Computer Interaction needs more research in order to reveal which assumptions
about users’ interaction with machine learning models are true, and which are false.[1]

From the already conducted evaluation of the interface proposed in this paper, simple
improvements would be to add a way to adjust the desired data-range, so that the user
could for example focus on thresholds above 0.85, and to add visual aids in order to
convey the connection between the histogram and the selector view. Conducting further
evaluations with multiple technical non-expert participants will undoubtedly highlight
potential improvements of this interface. On a larger scale, the proposed interface could
be used with alternative datasets, both related and unrelated to Wikipedia, in order
to evaluate the interface’s usefulness in providing understanding for general machine
learning problems. It would also be interesting to expand this current interface for
multi-class probabilistic problems. In general we are confident in the potential of our
software, and would be excited to see further developments.
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