
Qualitative Analysis
of Knowledge Transfer
in Pair Programming

✽

Dissertation zur Erlangung des Grades
eines Doktors der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich Mathematik und Informatik
der Freien Universität Berlin

vorgelegt von

Franz Zieris

Berlin
2020

Gutachter:
Prof. Dr. Lutz Prechelt, Freie Universität Berlin, Deutschland
Prof. Dr. Paul Ralph, Dalhousie University, Kanada

Datum der Disputation: 01. Oktober 2020

Abstract

Pair programming (PP) is the practice of two developers working closely together on
one computer to solve a technical task. It is used by developers in industry in order to
tackle difficult problems, to produce code with better design and fewer defects, and to
learn together and from another. The transfer and acquisition of knowledge is central
to all these expectations, but whether and how they actually come to pass is an open
question.

My goal is to understand the mechanisms of knowledge transfer in PP in order to
formulate practically relevant results and advice for software developers.

I perform a qualitative analysis based on the Grounded Theory Methodology and
the Base Layer for pair programming research. I analyze 27 industrial PP sessions
recorded in ten companies: The developers work on their everyday tasks covering
different aspects of software development, with whom and for as long they want,
totaling 40 hours of material. I performed supporting field observations and ad hoc
interviews in two of the companies.

My results are a detailed bottom-up conceptualization of knowledge transfer pro-
cesses in pair programming, ranging from individual utterances, over knowledge trans-
fer episodes, to overall session dynamics that are shared across different types of
pairings. In particular, I find that:

1. Knowledge is transferred in basically all PP sessions, not just in supposed
“expert/novice” constellations.

2. Knowledge regarding the software system is by far the most commonly trans-
ferred type, and most developers appear familiar with transferring it to or from
the partner and to acquire it together.

3. General software development knowledge is also transferred between partners,
but less than system knowledge and only after the pair dealt with its system
knowledge needs.

4. Additional types of knowledge, such as application domain concepts, were not
explicit topics but merely showed up as identifiers in the source code.

5. Pairs that maintain a shared understanding of the system and software develop-
ment in general may have short, but highly productive focus phases; others may
suffer from a breakdown of the pair process when such a shared understanding
is lacking. A missing shared plan, reduced workspace awareness, or language
barriers further reduce their togetherness.

I validated the high-level concepts with practitioners from four companies—two from
the original data collection and two additional—and developed three ideas for how to
put my results to use in everyday software development.

3

Zusammenfassung

Die Idee der Paarprogrammierung (PP) besteht darin, dass zwei Softwareentwick-
ler gemeinsam an einem Computer an einer technischen Aufgabe arbeiten. In der
Berufspraxis wird sie eingesetzt um schwierige Probleme anzugehen, um bessere Pro-
grammentwürfe und Programmcode mit weniger Defekten zu erzielen, und damit
Entwickler Neues gemeinsam oder voneinander lernen können. Der Transfer und
die Aneignung von Wissen ist zentral für all diese Erwartungen; ob und wie sie aber
tatsächlich erfüllt werden, ist eine offene Forschungsfrage.

Mein Ziel ist es, zunächst zu verstehen wie Wissenstransfer bei der PP tatsäch-
lich funktionert, um dann praktisch relevant Ergebnisse für Softwareentwickler zu
formulieren.

Meine qualitative Analyse basiert auf der Methode der Grounded Theory und der
Basisschicht für Paarprogrammierungsforschung. Ich habe 27 industrielle PP-Sitzungen
mit einer Gesamtlaufzeit von 40 Stunden analysiert. Das Material stammt aus zehn
Firmen, wobei die Paare bei ihren alltäglichen Softwareentwicklungsaufgaben mit
selbstgewählten Partnern und selbstbestimmter Sitzungsdauer aufgezeichnet wurden.
Unterstützend habe ich in zwei der Firmen Feldbeobachtungen und Ad-Hoc-Interviews
durchgeführt.

Das Ergebnis meiner Arbeit ist eine Bottom-Up-Konzeptionalisierung von Wissen-
stransferprozessen bei der Paarprogrammierung, angefangen bei einzelnen Äußerun-
gen, über Episoden vonWissenstransfer bis hin zu einer Gesamtdynamik, die Sitzungen
verschiedener Paarkonstellationen gemein ist. Meine Erkenntnisse im Einzelnen:
1. Wissenstransfer erfolgt in allen PP-Sitzungen, nicht nur in Konstellationen

eines vermeintlichen “Experten” mit einem “Neuling”.

2. Wissen über das Softwaresystem wird mit Abstand am häufigsten transferiert.
Die meisten Entwickler scheinen den Austausch und den gemeinsamen Erwerb
dieses Wissens gewohnt zu sein.

3. Wissen über Softwareentwicklung imAllgemeinenwird ebenfalls in PP-Sitzungen
transferiert, allerdings in einem geringeren Maße als System-Wissen und auch
erst dann, wenn das Paar seinen Bedarf an System-Wissen geregelt hat.

4. Weitere Wissensarten, wie etwa Wissen über die Anwendungsdomäne, waren
keine ausdrücklichen Themen in den Sitzungen, sondern traten lediglich in
Form von Bezeichnern im Quellcode in Erscheinung.

5. Paare, die im Laufe ihrer Sitzung ein gemeinsames Verständnis von ihrem kon-
kreten Softwaresystem und von Softwareentwicklung allgemein erarbeiten
und pflegen, können kurze, aber sehr produktive Fokus-Phasen haben. Der
Paarprogrammierungsprozess kann allerdings auch völlig zusammenbrechen,
wenn ein solches gemeinsames Verständnis zu schwach ist und der Zusammen-
halt des Paares weiter geschwächt ist durch das Fehlen eines gemeinsamen
Plans, durch mangelndes Gewahrsein des Arbeitsplatzes (etwa bei räumlich
verteilter Paaprogrammierung, aber auch durch zu kleine Schrift), oder durch
Sprachbarrieren.

Ich habe die wichtigsten Konzepte meiner Arbeit sowie drei konkrete Ideen zu ihrer
Einbettung in den Entwicklungsalltag mit Praktikern aus zwei der ursprünglichen
Unternehmen sowie zwei weiteren Firmen erfolgreich validiert.

5

Every honest researcher I know admits he’s just a professional amateur.
He’s doing whatever he’s doing for the first time. That makes him an amateur.
He has enough sense to know that he’s going to have a lot of trouble,
so that makes him a professional.

– Charles F. Kettering

❖

Acknowledgements
First of all, I would like to thank Lutz Prechelt formany years of encouragement and support, for
giving me every freedom to do what felt right to me, for always being open for late-afternoon
discussions not only about research, and for providing the most thorough, honest, and valuable
feedback I could hope for. Many thanks go to Paul Ralph, who agreed to be the second reviewer
for this colossus of a thesis and who gave me excellent feedback in a very short time.

Special thanks go to Stephan Salinger, who not only spent nearly a decade of his life
studying pair programming and laying the foundation my work builds on, but also, long
ago, supervised my Master’s thesis in his freetime and introduced me to the topic of pair
programming and to qualitative research in the first place. In many ways, this work would not
have been possible without him.

I also want to thankmy other former AGSE colleagues Uli Stärk, Julia Schenk, Björn Kahlert,
Edna Kropp, Holger Schmeisky, Barry Linnert, Lena Barke, Kelvin Glaß, and Victor Brekenfeld
for many challenging, interesting, and fruitful research meetings. Much of the data I analyzed
and the know-how that goes into collecting it only exists because of the hard work of Laura
Plonka, Stephan Salinger, Holger Schmeisky, and Julia Schenk. Thank you!

None of this research would have been possible without the many unnamed software
developers who volunteered to have their pair programming sessions recorded and scrutinized,
took part in one of my workshops, or agreed to be interviewed. I greatly appreciate their
openness.

Furthermore, I want to thank the many researchers and practitioners withwhom I discussed
my ideas on many informal occasions and conferences over the years. I thank the Simula
Research Laboratory in Oslo, Norway and in particular Leon Moonen for welcoming me for a
three-month visit as well as the German Academic Exchange Service (DAAD) for funding it.

Many thanks go to my mother and to my wife whose proofreading skills saved me from
making a fool of myself.

I cannot overstate the impact ofmy familywho always supportedme through all these years:
My parents, who raised me by encouraging openness, curiosity, patience, and perseverance,
the love of my life and wife Anna, who sacrificed countless evenings and weekends we could
have spent together, and our son Levi, who is simply the best.

7

Contents
Abstract . 3
Zusammenfassung . 5
Selbstständigkeitserklärung . 463

List of Tables . 12
List of Figures . 13
List of Examples . 14
Notational Conventions . 18

1 Introduction 19
1.1 A Brief History of Pair Programming . 20
1.2 Motivation . 22
1.3 Goal of this Thesis . 24
1.4 Structure of this Thesis . 27

I Foundation 31

2 Related Work 33
2.1 Purpose and Structure of this Chapter . 34
2.2 Knowledge and Software Development . 34
2.3 Pair Programming . 40
2.4 Pair Work and Small Groups . 94
2.5 Summary of Related Work . 105

3 Qualitative Research Methods 107
3.1 Purpose and Structure of this Chapter . 108
3.2 Research Methods of the Social Sciences . 108
3.3 The Grounded Theory Methodology . 117
3.4 The Base Layer for Pair Programming Research 128

4 Research Goal, Method, and Data 139
4.1 Purpose and Structure of this Chapter . 140
4.2 Goal Definition . 141
4.3 Data Collection . 144
4.4 Case Descriptions . 160
4.5 Analysis Method . 165
4.6 Discussion of Overall Research Method . 178

II Results 181

5 Results Overview 183
5.1 Purpose and Structure of this Chapter . 183
5.2 Pair Programming Process . 183
5.3 Knowledge Transfer Episodes . 184
5.4 Pair Programming Session Dynamics . 185
5.5 A Recurring Example . 186

9

6 Process Fluency and Pair Togetherness 189
6.1 Purpose and Structure of this Chapter . 189
6.2 Dialog Structure in Pair Programming . 190
6.3 Fluency . 200
6.4 Togetherness . 222
6.5 Discussion of Related Work and Summary . 234

7 Knowledge Conceptualized 237
7.1 Purpose and Structure of this Chapter . 237
7.2 Knowledge Want . 240
7.3 Topic and Target Content . 244
7.4 Summary and Discussion of Related Work . 254

8 Knowledge Transfer Activities: Asking and Explaining 257
8.1 Purpose and Structure of this Chapter . 257
8.2 Asking Questions with Explanation Elicitors . 260
8.3 Providing Explanations . 272
8.4 Summary . 277

9 Episodes of Knowledge Transfer 279
9.1 Purpose and Structure of this Chapter . 280
9.2 Properties of Episodes . 282
9.3 Pull Mode . 289
9.4 Pioneering Modes . 291
9.5 Co-Production Mode . 295
9.6 Push Mode . 297
9.7 Summary and Discussion of Related Work . 300

10 Patterns of Episodes 303
10.1 Purpose and Structure of this Chapter . 303
10.2 Anti-Patterns . 304
10.3 Positive Patterns . 307
10.4 Summary and Discussion . 314

11 Session Dynamics 315
11.1 Purpose and Structure of this Chapter . 315
11.2 Individual Developers’ Knowledge Needs . 316
11.3 Pair Constellations . 319
11.4 Session Dynamics Prototypes . 321
11.5 Summary and Discussion of Related Work . 333
11.6 Grounded Theory of Knowledge Transfer Session Dynamics 335

III Evaluation and Conclusion 339

12 Actual Research Process 341
12.1 Phase 1: Initial Analysis of Base Activities . 342
12.2 Phase 2: Developing the Episode Concept . 342
12.3 Phase 3: Analysis of Pull Episodes . 343
12.4 Phase 4: New Knowledge TransferMode: Produce 343
12.5 Phase 5: First Round of Data Collection . 343
12.6 Phase 6: Considering Practitioner Relevance . 345
12.7 Phase 7: Give Up Naturalistic Approach? . 345

10

12.8 Phase 8: Discovery of Second Knowledge Dimension 346
12.9 Phase 9: Member Reflection and Selective Coding 347
12.10 Phase 10: Finishing the Thesis . 347

13 Evaluation 349
13.1 Purpose and Structure of this Chapter . 349
13.2 Member Reflection . 350
13.3 Eight Criteria for Qualitative Research . 356

14 Conclusion and Further Work 361
14.1 Research Contributions . 361
14.2 Practical Applications . 362
14.3 Further Work . 364

Appendices 365

A Own Publications 367

B Transcription Notation 371

C Pair Programming Sessions 373
C.1 Session AA1 . 373
C.2 Session BA1 . 385
C.3 Sessions BB1, BB2, and BB3 . 386
C.4 Session CA1 . 387
C.5 Session CA2 . 389
C.6 Session CA3 . 393
C.7 Session CA4 . 394
C.8 Session CA5 . 394
C.9 Session DA2 . 398
C.10 Session DA5 . 404
C.11 Session EA1 . 406
C.12 Session JA1 . 408
C.13 Session JA2 . 413
C.14 Session KA1 . 414
C.15 Session KB1 . 416
C.16 Sessions KC1 and KC2 . 416
C.17 Session MA1 . 417
C.18 Sessions OA1 and OA2 . 418
C.19 Session OA5 . 420
C.20 Session OA8 . 420
C.21 Sessions PA1 and PA2 . 424
C.22 Sessions PA3 and PA4 . 424
C.23 Data Mapping . 426

D Meta-Analyses 427
D.1 Technical Information . 427
D.2 Pair Programming Effect on Students’ Exam Scores 428
D.3 Pair Programming Effect on Students’ Assignment Scores 429
D.4 Pair Programming Effect on Quality . 431

Index . 433
Name Index . 441
Bibliography . 447

11

List of Tables

2.1 Reported pair programming adoption rates in industry 43
2.2 Reported percentages of developer time spent working in pairs 43
2.3 Selection criteria used by the four secondary studies on pair programming 52
2.4 Research topics and methods applied in pair programming research 53
2.5 Statistical results of meta-analyses on educational pair programming effects . . . 55
2.6 Overview of students’ self-reported learning achievements through PP 57
2.7 Significance of correlational studies on pair members’ skill levels 59
2.8 Knowledge-related questionnaire items from PP effectiveness studies 61
2.9 Statistical results of three meta-analyses on pair programming effects 64
2.10 Overview of recurring problems in qualitative-quantitative PP research 74
2.11 Overview of recurring problems in qualitative PP research 86
2.12 High-level summary of research results on pair programming 90
2.13 Knowledge types mentioned in PP studies . 92
2.14 Overview of knowledge coordination studies with pairs 101

3.1 Common traits of qualitative research . 114
3.2 Common qualitative research traits mapped to GTM 127
3.3 Object classification in the base layer . 133
3.4 Verb classification in the base layer . 135

4.1 PP session recording contexts . 146
4.2 Overview of available data . 151
4.3 Context and characterization of analyzed PP sessions 161
4.4 Mapping of ATLAS.ti elements to uses in my analysis process 175
4.5 Common traits of qualitative research in my research process 180

6.1 Further differentiation of the base concepts . 191
6.2 Fluency and its three levels . 201
6.3 Overview of Focus Phases . 205
6.4 Togetherness and its three degrees . 223

8.1 Properties and types of Explanation Elicitors . 261
8.2 Types of Explanations . 272

9.1 Properties of knowledge transfer Episodes . 283
9.2 Characteristics of knowledge transferModes . 288

10.1 Elements and types of Episode Patterns . 313

11.1 Concepts to characterize programming pairs and their session dynamics 323
11.2 Related work on knowledge-relevance in software engineering 334

13.1 Member reflection activities . 352
13.2 Summary of member reflection . 356

B.1 Transcription notation . 371

C.1 Mapping of Plonka’s data . 426
C.2 Mapping of Salinger’s data . 426

12

List of Figures
1.1 First description of pair programming as a practice, by James Coplien (1994) . . . 22

2.1 Overview of memory systems . 36
2.2 “We don’t practice pair programming”, anecdote by Salinger (2013) 42
2.3 Knowledge-related pair programming mechanisms expected by practitioners . . 45
2.4 Different types of effect sizes and meta-analyses . 50
2.5 Overview of secondary studies on pair programming 52

3.1 Reciprocal and layered nature of communicative knowledge 111
3.2 Grice’s Maxims . 112
3.3 What is axial coding? Or: The mystery of the “subcategory”. 122
3.4 Timeline of early pair programming publications in my research group 128
3.5 Classes of explicit knowledge in the base layer . 137

4.1 Plot of a PP session: execution, knowledge transfer, and decision making 141
4.2 Data collection protocol: overview of data collection activities 147
4.3 Still frame of a session recording . 148
4.4 PP session recording questionnaires . 149
4.5 Classes of explicit knowledge in my work . 174
4.6 Using ATLAS.ti codes for concepts, properties, and property values 176
4.7 Comparison of ATLAS.ti and my own visualization 177

6.1 Code at the beginning of an episode of normal pair programming in OA8 202
6.2 Code before the Focus Phase in CA5 . 206
6.3 Code after the Focus Phase in CA5 . 209
6.4 Relevant code changes before the Breakdown in OA8 211
6.5 Code before the Breakdown in OA8 . 211
6.6 Code after the Breakdown in OA8 . 217

7.1 Jigsaw puzzle metaphor of knowledge concepts . 238

8.1 Overview of knowledge transfer activities . 260

9.1 Stages and outcomes of Episodes . 285

10.1 Overview of the beginning of session DA2 . 304
10.2 Overview of the beginning of session JA1 . 307
10.3 Overview of the beginning of session CA2 . 308
10.4 Overview of the beginning of session EA1 . 309

11.1 Initial Constellations of the pairs in the analyzed sessions 320
11.2 Visualizing session trajectories . 321
11.3 Three different strategies of dealing with a Primary Gap 324
11.4 Three different strategies of dealing with a Secondary Gap 326
11.5 Trajectory of sessions with a G Opportunity . 327
11.6 Trajectory of sessions starting with Complementary Gaps 329
11.7 Trajectory of sessions starting with a Two-Sided G Gap 332
11.8 Grounded Theory of knowledge transfer session dynamics 336

12.1 Example of a memo . 344

13.1 A G-S chart . 350

13

13.2 Example of a G-S chart in practice . 355

A.1 Timeline of my research group’s pair programming research 369

C.1 Relevant excerpts of the Java code before Focus Phase #4 373
C.2 Relevant excerpts of the Java code after Focus Phase #4 374
C.3 Relevant excerpts of the Objective-C code in the middle of Focus Phase #5 375
C.4 Relevant excerpts of the Objective-C code at the end of Focus Phase #5 375
C.5 Relevant excerpts of the Java code before Focus Phase #1 394
C.6 To-scale representation of 60-second Focus Phase #1 395
C.7 Relevant excerpts of the Java code after Focus Phase #1 396

D.1 Meta-analysis of PP effects on exam scores . 428
D.2 Meta-analysis of PP effects on assignment scores . 429
D.3 Meta-analysis of PP effects on assignment scores of Zacharis (2011) 430
D.4 Meta-analysis of PP effects on quality . 431
D.5 Meta-analysis of PP effects on quality of Zacharis (2011) 432

List of Examples

3.1 Coding with Base Concepts (DA5, 22:50–24:30) . 136

4.1 Good or Bad Behavior? (AA1) . 142
4.2 Knowledge Reconstructed From Interactions (CA2, 10:07–20:21) 171
4.3 Expressing Opinions (CA4, 34:25–34:41) . 173

5.1 The “Raw Data” of the Recurring Example (JA1, 02:29–06:15) 186

6.1 Agreeing to Proposal Through Action (CA2, 10:14–10:47) 192
6.2 Reacting to Question With Answer (CA2, 19:54–20:00) 193
6.3 Reacting to Question With ‘Improper’ Answer (CA2, 28:16–28:33) 193
6.4 Self-Referential Activity without Partner Involvement (CA2, 31:17–31:57) 194
6.5 Self-Referential Activity With Partner Involvement (CA2, 32:41–33:07) 194
6.6 Corrective Activity (CA2, 35:21–35:39) . 195
6.7 Corrective Activity (CA2, 37:52–38:18) . 195
6.8 Expected Common Ground (CA2, 37:15–37:30) . 196
6.9 Unrelated Proposal (CA2, 43:02–43:26) . 197
6.10 Non-Actions (CA2, 55:41–55:49) . 197
6.11 Following One’s Own Initiative (CA2, 1:14:07–1:14:42) 197
6.12 Not Clearing Up (CA2, 16:45–17:05) . 198
6.13 Five Types of Base Activities (JA1, 04:09–06:15) . 199
6.14 Normal Pair Programming (OA8, 49:10–51:19) . 201
6.15 A Focus Phase (CA5, 19:12–20:11) . 205
6.16 Breakdown with Seemingly Unhelpful Partner (OA8, 13:42–41:42) 210
6.17 Breakdown Due to Huge Knowledge Gaps (OA1, 59:36–1:08:53) 219
6.18 Asking for Intention (DA2, 1:14:25–1:14:44) . 224
6.19 Clarifying Intentions (CA5, 1:19:58–1:20:16) . 224
6.20 One Shared Plan (CA5, 17:28–18:20) . 226
6.21 High Togetherness (CA2, 28:14–28:23) . 227
6.22 Splitting Up (DA2, 40:03, 1:24:25, 1:35:42, & 1:41:17) 228
6.23 Reading Documentation (KC2, 14:12–15:04 & 53:54–54:24) 229

14

6.24 Maintaining Workspace Awareness (JA1, 53:56–54:34) 231
6.25 Maintaining One Shared Plan (AA1, 25:39–28:00) 232
6.26 Dealing With Conflict (CA5, 23:20–24:20 & 43:34–43:57) 233

7.1 Knowledge Wants, Topics, and Target Contents (JA1, 02:29–06:15) 239
7.2 Internal Knowledge Want During Implementation (AA1, 16:20–16:42) 241
7.3 Incidental Internal Knowledge Want (AA1, 1:05:29–1:05:38) 241
7.4 Explicit Topics and Target Contents (MA1, 05:13–11:16) 242
7.5 From Internal to Collective Knowledge Want (AA1, 08:58–11:08) 243
7.6 Uncovering Task Requirements (DA2, 09:23–18:57) 245
7.7 Clearing Up Architectural Misconception (CA2, 19:30–20:37) 245
7.8 Rationale for Data Type (KB1, 15:54–16:27) . 246
7.9 Inquiring about GUI Technology Stack (DA2, 01:54–02:46) 246
7.10 Getting to Know Relevant Classes (KA1, 51:17–53:37) 247
7.11 Open Bugs? (KA1, 59:23–1:00:01) . 247
7.12 How to Start a Manual Test (CA2, 44:08–45:52) . 248
7.13 Understanding Failed Network Calls (BA1, 01:33–04:00) 248
7.14 Template Method Design Pattern (DA2, 1:36:35–1:37:58) 249
7.15 Inner Classes in Java (DA2, 1:29:55–1:30:25) . 250
7.16 Deleting Folders Under Version Control (CA2, 26:11–27:01) 250
7.17 OSGi Class Loading (DA2, 1:30:49–1:35:15) . 251
7.18 Talking About Developer Backgrounds (DA2) . 252
7.19 Talking About the Company (DA2) . 252
7.20 Domain Knowledge as Background Information (JA1, 05:03–05:19) 253
7.21 Application Domain Knowledge Explained (KA1, 54:00–54:29) 253
7.22 Domain Concept as Identifier (KA1, 1:00:05–1:01:24) 253
7.23 Hypothesis to Satisfy Internal Knowledge Want (JA1, 06:00–06:12) 254

8.1 Knowledge Transfer Activities (JA1, 04:15–06:15) 258
8.2 Intentional Elicitation or Incidental Trigger? (CA2, 47:10–47:21) 262
8.3 Frustrating Improper Asking (JA1, 08:27–09:19) . 263
8.4 Ignored Improper Asking (DA2, 12:52–13:21) . 263
8.5 Insufficient Improper AskingWith Low Togetherness (JA1, 28:44–29:18) 265
8.6 Direct Asking with Open Questions (JA1, JA2) . 265
8.7 Direct AskingWith Possible Answers (DA2, 01:54–02:06) 266
8.8 Asking to Show Application (DA2, 09:23–09:37) . 266
8.9 Asking to Show Source Code (CA2, 10:07–10:47) 266
8.10 Refer to Common Ground as Context for Question (JA1, 05:00–05:48) 267
8.11 Imply Question by Referring to Common Ground (JA2, 13:41–14:25) 267
8.12 Translating German Modal Particles (JA1, 05:48–05:53) 268
8.13 Simple Step with Almost Revealed Conclusion (DA2, 18:17–18:57) 268
8.14 Conclusion Drawn From Simple Step (JA1, 09:32–10:01) 269
8.15 Conclusion Not Drawn From Simple Step (JA1, 28:57–29:47) 269
8.16 Misunderstood Optimistic Proposition (OA8, 10:35–10:49) 270
8.17 Propositions to Demonstrate Understanding (JA1, 27:47–28:42) 271
8.18 Pessimistic Proposition in Disbelief (CA2, 11:32–11:55) 271
8.19 Present New Fact After Improper Asking (AA1, 59:12–59:25) 273
8.20 Present New Fact After Direct Asking (KB1, 02:39–02:58) 273
8.21 Present New Fact to Correct Understanding (AA1, 28:26–28:33) 273

15

8.22 Refer to Common Ground for Obvious Explanation (CA2, 10:58–11:26) 274
8.23 Conclusion Not Drawn From Simple Step (JA1, 14:35–14:58) 275
8.24 Entice to Simple Step After Presenting New Fact (JA1, 24:16–24:44) 275
8.25 Present New Fact and Refer to Common Ground (MA1, 13:26–13:41) 276
8.26 Entice to Simple Step as Indirect Criticism (OA8, 50:12–52:52) 276
8.27 Entice to Simple Step in Direct Criticism (AA1, 19:44–20:13) 277

9.1 Illustrating Episodes (JA1, 04:15–06:15) . 281
9.2 Start Episode With Oblivious Interrupt (CA2, 10:46–11:56) 283
9.3 Start Episode With Careful Interrupt (CA1, 00:55–01:22) 284
9.4 Start Pushing at the Right Moment (CA1, 12:10–12:47, 13:57–14:32) 284
9.5 Ignored Episode (JA1, 40:29–40:42) . 285
9.6 Resigned EpisodeWith Explicit Topic (DA2, 10:11–10:26) 286
9.7 Resigned EpisodeWith Tacit Topic (CA2, 1:03:46–1:04:12) 286
9.8 Unnecessary Episode (DA2, 15:02–15:15) . 286
9.9 Postponed Episode (CA2, 1:05:29–1:05:38) . 287
9.10 Pull Episode Switching to Pioneering (CA2, 52:26–53:44) 287
9.11 Pull Episode Switching to Co-Production (JA1, 22:59–23:48) 287
9.12 Asking for Code, Non-Verbal Reaction (CA2, 10:42–10:54) 290
9.13 Pulling for Guidance (CA1, 06:17–07:05) . 290
9.14 Peril of not Sharing Pioneering Intention (CA2, 1:15:59–1:16:43) 292
9.15 Silent PioneerWho Talks (CA1, 19:57–21:01) . 292
9.16 Irritating Silent Pioneer with Low Togetherness (JA1, 19:13–19:39) 293
9.17 Necessary Pioneering w/o Knowledgeable Partner (AA1, 13:10–14:13) 293
9.18 Necessary Pioneering Despite Knowledgeable Partner (AA1, 49:53–52:16) 294
9.19 Dealing with Interrupts Seamlessly (AA1, 1:43:40–1:47:42) 295
9.20 Co-Production with High Togetherness (AA1, 11:19–11:45) 296
9.21 Together or Not? (AA1, 1:23:27–1:25:13) . 297
9.22 Socratic Issue Push (JA2, 18:38–19:43) . 298
9.23 Why Push? (PA3, 29:53–31:37) . 299

10.1 Discussion of Recurring Example: MultipleWants (JA1, 04:15–06:15) 303
10.2 Long, Winding Way to Understanding Requirements (DA2, 01:54–18:57) 305
10.3 Return After Finished Sub Pull (JA1, 04:08–06:33) 308
10.4 Return After Resigning a Catalyzed Pull (CA2, 10:07–11:58) 308
10.5 Easy Return from Short Sub Pull (EA1, 04:23–13:45) 309
10.6 Negotiating the Scope (JA1, 13:15–13:43) . 310
10.7 Limiting Scope for Focus (CA5, 19:12–20:11, 47:11–47:22, 1:21:57–1:22:20) 311
10.8 Limit Scope of Partner’s Pioneering (BB1, 16:47–19:06) 312
10.9 Trying to Limit Scope of Partner’s Push (JA1, 58:23–59:32) 312

11.1 Recurring Example: Foreshadowing the Session Dynamics (JA1) 316
11.2 Greenfield Development (BB1, BB2, BB3) . 322
11.3 Bringing Partner Into Ongoing Work (EA1) . 324
11.4 Prepared Interview Mode (MA1) . 325
11.5 Closing the Primary Gap Painfully (CA2) . 325
11.6 Pairing-Up Throughout (AA1) . 326
11.7 Initially Misunderstood Teaching (PA3, PA4) . 328
11.8 G Opportunity Not Seized (CA1) . 328

16

11.9 Embracing a Difference (JA1) . 330
11.10 Easy-Task Jump-Start with G Opportunity (DA2) 330
11.11 It’s not easy! (KC2) . 331
11.12 Breakdown (OA1, OA2) . 332

C.1 Focus Phase #4 (AA1, 1:53:20–1:54:56) . 373
C.2 Focus Phase #5 (AA1, 1:55:45–1:57:04) . 375
C.3 Focus Phase #6 (AA1, 1:57:38–2:00:55) . 376
C.4 Coding Surprises (AA1, 27:20–32:32) . 377
C.5 Coding with Base Concepts (DA5, 22:50–24:30) . 404

17

Notational Conventions
• Typewriter font: Source code snippets or constructs from programming languages,
e.g., for-loop.

• Small Caps: Informal concepts that are used in literature or which I introduce myself as
shorthands for some ideas, e.g., Pair Pressure or Naturalistic Inqiry.

• Blue sans-serif font: Theoretical concepts that are the result of my qualitative analysis of
knowledge transfer in pair programming, e.g., Focus Phase.

• Blue italic serif font: Theoretical concepts that are the result of qualitative analyses per-
formed by other researchers, e.g., explain_knowledge.

• Light-red sans-serif font: Identifiers of analyzed pair programming sessions, e.g., CA2.
• Green-ish/purple-ish sans-serif font: Identifiers of pair programmers, e.g., C1 and C2.

I use different types of quotation marks:
• “Italics in double quotes” : A direct quotation from a concrete source such as literature, an
interview, or a pair programming session, such as developer C5 who said “M-hm, we will
see.” See Appendix B for the full transcription scheme.

• ‘Italics in single quotes’: A pseudo-quotation, something that someone could have said
or thought, such as developer C5 who might have thought ‘I don’t want to deal with this
now!’.

• “Upright text in double quotes”: A reference to a commonly used term without a specific
source, as in saying that there are developers say they are “pair programming”.

• ‘Upright text in single quotes’: Figurative use of speech, as in saying that people ‘store’
information in memory.

18

Chapter 1 Introduction

It is not once nor twice but times without number that
the same ideas make their appearance in the world.

– Aristotle

1.1 A Brief History of Pair Programming . 20
1.1.1 Collaboration from the Very Beginning. 20
1.1.2 Programming Groups . 20
1.1.3 Programming with a Partner . 21
1.1.4 Pair Programming as a Practice . 21

1.2 Motivation . 22
1.2.1 Knowledge and Knowledge Transfer in Software Development 23
1.2.2 Common Research Questions. 23
1.2.3 State of Research . 23

1.3 Goal of this Thesis. 24
1.3.1 Goal Formulation and Characterization . 25
1.3.2 Scope . 25
1.3.3 Research Approach and Initial Definitions . 25
1.3.4 Is this Software Engineering?. 26

1.4 Structure of this Thesis . 27

The term “pair programming” refers to two distinct ideas. The first idea is probably as old as
programming itself and did not have a name for a long time: Tackling a difficult programming
task with a partner makes it easier to solve. I myself experienced this in eleventh grade, together
with a friend for CS homework assignments. Nobody suggested this to us and I had never
thought about it until recently—it just felt natural. Perhaps most software developers can tell
such a story: Similar anecdotes reach as far back as Fred Brooks in the 1950s (and beyond),
and are now retrospectively called “pair programming”. This work mode sparked scientific
interest driven by an economic question, which to this day has no conclusive answer: Is the
code quality produced by a pair higher and the total time spent less as to justify paying two
developers to do the work of one?

The second idea dates back to the 1990s: Pair programming (PP) was no longer only an
ad hoc work mode chosen for individual tasks. It became a named practice that is integral to a
larger software development process and has effects reaching far beyond a single programming
task, potentially changing the way how development teams produce software systems. But let
us start at the beginning.

19

CHAPTER 1. INTRODUCTION

1.1 A Brief History of Pair Programming

1.1.1 Collaboration from the Very Beginning

Ada Lovelace is generally considered to be the first ‘programmer’. In 1843, she translated
and—more importantly—commented a French description of Charles Babbage’s Analytical
Engine.1 The resulting “Notes” remain the most complete description of the engine today, and
by adding her ideas, she not only surpassed Babbage’s original plans but was “the first person to
have crossed the intellectual threshold between conceptualizing computing as only for calculation
on the one hand, and on the other hand, computing [through] symbolic substitution” (Fuegi &
Francis, 2003). In Note D, Lovelace characterized the difficulties of ‘programming’:

It must be evident how multifarious and how mutually complicated are the considerations
which the workings of such an engine involve. There are frequently several distinct sets
of effects going on simultaneously; all in a manner independent of each other, and yet to a
greater or less degree exercising a mutual influence. To adjust each to every other, and
indeed even to perceive and trace them out with perfect correctness and success, entails
difficulties whose nature partakes to a certain extent of those involved in every question
where conditions are very numerous and inter-complicated [. . .].

Lovelace, written in 1843, cited in Babbage (1889, p. 36, emphasis in orginal)

In today’s terms, Lovelace and Babbage were writing a program to calculate Bernoulli numbers
and designing the hardware to run that program at the same time: “She was programming the
machine. She programmed it in her mind, because the machine did not exist” (Gleick, 2011, p. 119).
Although Lovelace is clearly the author of the Notes, they are considered to be the result
of collaborative efforts of her and Babbage (Toole, 1996). The two “sent letters by messenger
back and forth across London at a ferocious pace [. . .] and met whenever they could” (Gleick,
2011, p. 115). It appears that programming has always been complicated, and from the very
beginning, it was a collaborative effort.

1.1.2 Programming Groups

Well over one hundred years later, Jerry Weinberg framed programming as a social activity in
his book The Psychology of Computer Programming:

Programmers do not ordinarily work in isolation. Although an individual programmermay
find himself assigned the task of writing a program, even then he has other programmers
to whom he may turn for help—and who, at the same time, may be turning to him.

Weinberg (1971, p. 45)

As Weinberg later remembered on multiple occasions (e.g., in interviews from 2011 and 2016),
he learned how to program from Bernie Dimsdale in the late 1950s, who in turn learned it
from John von Neumann. According to Weinberg, Dimsdale and von Neumann already “pair
program[med]” in the 1940s—on paper (cited by Coplien, 2015). However, Weinberg (1971)
originally described von Neumann’s programming style in the context of egoless programming—
i.e., detaching programmers from their work for better judgment—as something that sounds
more like a code review than actual programming as a pair:

1The story of Babbage’s plans, his trouble with British authorities, and how he ended up meeting Ada Lovelace
is convoluted. Fuegi & Francis (2003) and Gleick (2011) shed some light on it.

20

1.1.3 Programming with a Partner

A programmer who truly sees his program as an extension of his own ego [. . .] is going to
be trying to prove that the program is correct—even if this means the oversight of errors
which are monstrous to another eye. [. . .] John von Neumann himself was perhaps the
first programmer to recognize his inadequacies with respect to examination of his own
work. [. . .] [H]e was constantly asserting what a lousy programmer he was, and [. . .] he
incessantly pushed his programs on other people to read for errors and clumsiness.

Weinberg (1971, pp. 55–56, emphasis added)

Educator Paul H. Cheney (1977) was probably the first to use the term “pair programming”—in
an experiment comparing its effect on exam scores to that of individuals. However, Cheney’s
pairs were modeled after Weinberg’s programming groups, meaning each programmer would
write a program of her own, then exchange it with the partner, and have it checked for errors.

1.1.3 Programming with a Partner

The earliest account of a true collaborative effort of programmers working on a joint task
is probably an industrial experiment by Randall W. Jensen (2003) conducted in 1975. Jensen
compared the productivity and error rates of “two-person programming teams” to historical
data of individuals. However, Jensen did not publish his report until 2003, so it is P.J. Plauger
who is sometimes said to have ‘invented’ pair programming as a professional technique in
the late 1970s. Larry Constantine visited Plauger’s company Whitesmiths, Ltd. and observed
programmers routinely working in pairs, though it is not clear which role Plauger played in
establishing this culture:2

At each terminal were two programmers! [. . .] The room buzzed with a steady stream of
questions about the algorithm or whether an initial value was correct, suggestions about
how to break out of a loop, or drawing attention to a syntax error or test done in the
wrong order or a missing case. [. . .]
Plauger assured me that this was their chosen mode for working. [. . .] I came to think of
this model for programming teamwork as the “Dynamic Duo.”

Constantine (1995, p. 118, emphasis added)

Other developers also chose to work with a partner: Reenskaug & Skaar (1989) report on a
Smalltalk system comprising 75,000 lines of code for which they had “found that two persons
working together on one workstation are very productive since they challenge each other’s clear
thinking and immediately document the results of this thinking” . Williams & Kessler (2002)
collected a number of historical pair programming anecdotes, including that of Richard Gabriel
who recalls that “[p]air programming was a common practice at the M.I.T. Artificial Intelligence
Laboratory when I was there in 1972–73 [. . .] [W]e’d sit next to each other in front of his or my
terminal” (ibid., pp. 11–12).

1.1.4 Pair Programming as a Practice

So far, the idea of programming with a partner had remained a work mode that programmers
occasionally engaged in on a per-task basis, but was not yet an institutionalized development
practice: A named activity that goes beyond ad hoc usage, for which there is an agreement of
when and how it is supposed to be done. This began to change in the 1990s. Coplien (2015)
recalls talking to Ward Cunningham and Paul Chisholm at the OOPSLA conference in 1993
about programming with a partner, after which he decided to formulate the pattern Developing
in Pairs (see Figure 1.1) and presented it at the PLoP conference in 1994.

2I was not able to find a first-hand report from Plauger, but there are second-hand mentions by Jeffries et al.
(2001, p. 88), Constantine (2011), and Coplien (2015).

21

CHAPTER 1. INTRODUCTION

Pattern: Developing in Pairs
Problem: People are scared to solve problems alone.
Context: Code ownership has been identified and development is proceeding.
Forces: People sometimes feel they can solve a problem only if they have help.
Some problems are bigger than an individual. Too many people can’t sit in front
of a keyboard and screen. Effort goes up nonlinearly with number of people.
Solution: Pair compatible designers to work together; together, they can produce
more than the sum of the two individually.
Resulting Context: A more effective implementation process. A pair of people is
less likely to be blindsided than an individual developer.

Figure 1.1: First description of pair programming as a practice as opposed to a mere work
mode, presented by James Coplien at the PLoP conference in 1994, printed in Coplien (1998,
p. 294).

When Kent Beck (1999) first formulated Extreme Programming (XP), he made pair programming
one of the twelve practices. Beck introduces it as code reviews taken to an “extreme level”
(ibid., p. xv). The idea is, that “[a]ll production code is written with two people looking at one
machine, with one keyboard and one mouse” . He describes two roles in this practice: The
developer with keyboard and mouse thinks about the implementation, while her partner thinks
strategically about the overall approach (ibid., p. 58). While this describes programming pairs
as rather asymmetric, Beck offers a second, more nuanced characterization that emphasizes
the communicative nature of the practice later in the book:

It isn’t one person programming while another person watches. [. . .] Pair programming is
a dialog between two people trying to simultaneously program (and analyze and design
and test) and understand together how to program better. It is a conversation at many
levels, assisted by and focused on a computer.

Beck (1999, p. 100, emphasis added)

To Beck (ibid., p. 97), pair programming is the central XP practice, as it “ties the whole [XP]
process together” . He mentions a number of benefits that affect different aspects of a team’s
development process, including product quality, information flow, discipline, and developer
satisfaction (Beck, 1999, pp. 30, 67, 102; Beck & Andres, 2004, p. 42). Beck is also aware of a
number of caveats and preconditions that should be met in order to reap the full potential of the
practice: Pair programming “is a subtle skill” and some developers may refuse to pair altogether
or with certain partners (Beck, 1999, pp. 100–101); developers need to understand their system,
should have effective coding standards, and should be well-rested to avoid unfruitful discussions
and slow progress (ibid., p. 67).

To summarize, pair programming (PP), at its core, is the idea of two software developers
working together on a technical task. This idea is very likely as old as programming itself, and
was popularized as an XP practice in the early 2000s.

1.2 Motivation

In this section, I briefly discuss the roles of knowledge and pair programming in software
development, a number of common research questions, and the current state of research
regarding these questions. Based on this, I formulate the goal for my thesis in Section 1.3.

22

1.2.1 Knowledge and Knowledge Transfer in Software Development

1.2.1 Knowledge and Knowledge Transfer in Software Development

In a sense, software development “is the progressive crystallization of knowledge into a language
that can be read and executed by a computer” (Robillard, 1999). It involves a lot of knowledge:
Programming languages, design patterns, algorithms, system architecture, requirements, pro-
cedures for debugging and testing, and much more. In practice, usually not all of the relevant
knowledge is readily available to the developers. As Armour (2000) puts it: “the hard part of
building systems is not building them, it’s knowing what to build—it’s in acquiring the necessary
knowledge. [. . .] [S]oftware development [. . .] is a knowledge-acquiring activity.”

One way for practitioners to acquire the relevant knowledge is to work in pairs. Asking
industrial software developers from different companies why they pair program, Plonka et al.
(2012a, Sec. VII) found knowledge transfer to be an important reason. All-pair-programming
companies such as Pivotal Labs use pair programming as the essential practice to remove and
avoid knowledge silos where only one team member knows about some system or technology
(Sedano et al., 2016). Begel & Nagappan (2008) surveyed practitioners at Microsoft and report
a number of perceived pair programming benefits, many of which relate directly or indirectly
to knowledge and knowledge transfer, such as spreading of code understanding, learning from
the partner, or fewer bugs. Put differently, many of the reasons why developers choose to
pair-program relate to the following expected effects:

• To make use of their combined knowledge to work on tasks which would be more
difficult for either of them alone.

• To make use of their combined competence to acquire any lacking knowledge faster
and more reliably than they would alone, which is helpful for debugging situations and
catching defects in the making.

• To learn together and from another, e.g., in training scenarios and to avoid knowledge
silos in mature teams.

1.2.2 Common Research Questions

Although all these expectations seem plausible, empirical evidence remains to be presented. It
is safe to assume that no two software developers are equally and perfectly knowledgeable
in all regards. Consequentially, some knowledge transfer and knowledge acquisition can be
expected to occur in any pair programming session.

Questionnaires about developers’ reasons to work in pairs (Plonka et al., 2012a, Sec. IV) and
perceived PP effects (Begel & Nagappan, 2008, Sec. 4) cannot accurately capture actual events,
but indicate that combining existing knowledge and the ability to acquire new knowledge in
pair programming has a positive effect on the technical outcome and on the pair members’
abilities to work on future tasks.

In describing pair programming, Beck (1999, pp. 30, 102) addresses the question of how such
effects come to be only implicitly: He expects knowledge transfer to just happen because PP is
“conversational” in nature, i.e., it cannot be done without communicating. As a consequence,
developers would talk about many different things and knowledge will spread in the team,
in particular knowledge about the code, the overall software system, and about development
practices.

1.2.3 State of Research

I discuss the existing body of research on pair programming and other related work in detail
in Chapter 2. Here, I merely provide a shorter overview to motivate my work.

23

CHAPTER 1. INTRODUCTION

In the early 1990s, researchers began to publish studies on pair programming with profes-
sional software developers. These studies were motivated by the expectation that collaboration
may have a positive effect on problem-solving. They addressed PP from an economic perspec-
tive: Is the cost of two developers working on one job compensated by higher quality and/or
less time needed?

Typically, these studies were designed as controlled experiments. A meta-analysis by
Hannay et al. (2009) showed that for single tasks, overall, programming in pairs appears
to have a small positive effect on quality, and a medium negative effect on required effort.
More importantly, there is significant between-study variance, i.e., individual studies reported
different, sometimes even contradicting effects, indicating that additional factors—such as
expertise, task complexity, amount of training in PP, or motivation—play a role and were not
accounted for.

Despite the apparent practical relevance of knowledge transfer in pair programming, there
are only few studies which address this topic directly. There is only a handful of studies
considering a learning or knowledge-sharing effect of pair programming beyond a single task.
Some gave questionnaires to students (e.g., Cockburn &Williams, 2001) or software developers
(e.g., Palmieri, 2002) who report perceived learning and knowledge-spreading effects. Others
tried to determine directly whether knowledge was transferred or acquired (e.g., McDowell
et al., 2003) by comparing end-of-term test results of students who worked on their assignments
either in pairs or alone (they found no significant difference). I am not aware of any industrial
study in this vein.

To understand how knowledge transfer in pair programming works, actual sessions need to
be observed or recorded and then analyzed, which only few researchers did. Bryant et al. (2008)
looked at the abstraction levels of individual utterances in industrial sessions and demonstrated
that both partners, overall, tend to talk on all the levels, high and low. Plonka et al. (2015)
identified six “teaching strategies” which professional software developers use in pairs with
members who have different levels of knowledge, such as “nudging and physical hints” or
“gradually adding information” . These strategies, however, are limited to the particular excerpts
that Plonka et al. selected for their detailed analysis—in particular to sessions with (a) a clear
expert-novice constellation, and (b) the explicitly declared purpose of transferring knowledge,
and (c) to episodes in which the expert tries to teach the novice. Considering the supposed
importance of knowledge in software development, such a focus cannot be expected to cover
all relevant knowledge-related behavior.

In summary, the existing body of software engineering literature acknowledges the im-
portance of knowledge in software development and expects knowledge transfer to occur
between the members of a programming pair, but has yet to provide a coherent description of
how this works and how practitioners may improve their knowledge transfer.

1.3 Goal of this Thesis

Software developers and managers alike expect pair programming to be a means to avoid
knowledge silos and spread skills in the team (see Section 1.2.1). Two decades of research
on pair programming focused almost exclusively on the economic aspects, and could neither
provide a conclusive economic answer nor an explanation of how knowledge actually gets
transferred in pair programming (see Section 1.2.3). In practice, however, it seems that software
developers do not wait for an economic answer, but choose to pair program anyway (see the
long history of pair programming in Section 1.1).

24

1.3.1 Goal Formulation and Characterization

In Chapter 4, after discussing related work, I will formulate my goal, scope, and research
approach in detail. What follows is the executive summary.

1.3.1 Goal Formulation and Characterization

The goal of my thesis is shaped by a lack of understanding in research on the one hand, and on
the other hand by the practical relevance for software developers who use or consider using
pair programming in their professional environments. It is hence twofold and consists of a
knowledge-seeking part and a solution-seeking part (Stol & Fitzgerald, 2018, Table 3):

Goal 1: Understand how knowledge transfer works in pair programming in industrial
settings, in particular how developers deal with what they individually and collectively
know and do not know, i.e., what the underlying mechanisms are of the exchange of
existing knowledge and the acquisition of new knowledge.

Goal 2: Formulate results in a way that is comprehensible and relevant for software
developers, allowing them to reflect on their own process and identify which mechanisms
work well and which are problematic.

1.3.2 Scope

I focus on pair programming as it occurs in industrial settings. My research is concerned
with pair programming as a work mode as opposed to a practice, i.e., the phenomenon of
two software developers working together on a task and not the strategic decision to use
this work mode routinely or based on some other criteria. I do not attempt to answer the
question whether PP is worth doing, whether its benefits outweigh its costs. Instead, I start
my investigation at a point where developers already made the decision to pair program and
study how knowledge transfer then happens.

Consequentially, the unit of interest for me is the individual pair programming session
with professional software developers who chose to work on some task in the context of an
industrial project. I do not study the pair, their team, nor the project as such. The pair’s reason
to engage in a PP session, the developers’ history, the constraints and peculiarities of their
project may echo in their session, but are not my research subject, and neither are any effects
of the PP session on the pair’s abilities, the product’s quality, or the project’s success.

I exclude contrived settings such as homework assignments, coding katas, or recruiting
sessions. These settings all have a make-believe or game character which, even if source code
from actual software projects is involved, may affect the developers’ motives.

1.3.3 Research Approach and Initial Definitions

Given how little is known about how pair programming actually works,my research is empirical
and exploratory in nature. Consequentially, there is no fixed research question, but more an area
of interest: How do pair programmers deal with what they know and what they do not know?
To this end, I collect data in industrial settings, with professional software developers working
in pairs on their everyday tasks. Moreover, my approach is qualitative and theory-building in
nature, rather than quantitative or theory-testing.

However, even an exploratory empirical investigation needs at least a rough understanding
of the phenomena of interest to begin with. The notion of knowledge transfer is not easy to
define adequately, in part because defining knowledge is deeply philosophical matter.

25

CHAPTER 1. INTRODUCTION

An important distinction here is between (a) knowledge as the condition of knowing some-
thing and (b) knowledge as the object being known. Epistemology is concerned with what it
means to “know something”, i.e., with knowledge in the first sense. The common—though not
undisputed—notion of knowledge as “justified true belief” (see, e.g., BonJour, 2010, pp. 23–24)
takes this stance. In contrast, knowledge definitions such as “permanent structure of information
stored in memory” (Robillard, 1999) point at the close relationship between knowledge and
information. For my research, which is limited to the world of software engineering, I do not
need a universally accepted definition of knowledge, but an appropriate characterization of
what “knowledge” and “knowledge transfer” means in the context of pair programming. For
my research, a distinction between knowledge and information is not necessary.

Definition

Knowledge is information (i.e., a proposition pertaining to a part of the reality such as an
object or an event) that the pair members consider relevant for their software development
context, including their current task and the software project it is embedded in.

In this sense, knowledge is an object, something which a developer can possess. When the
according information is not available to her, there is a gap in knowledge. Examples for
knowledge in this sense include:

• Long-lived knowledge that is (potentially) relevant beyond a single session, including
information about the source code, its constraints, specific technologies, usage of devel-
opment tools, but also about specific tasks, requirements and requirement prioritization.

• Short-lived knowledge such information about the current session’s goal, what has been
done already, possible solutions (product- and process-wise), what the developers know
about these, and the developers’ attitudes regarding these solutions.

Definition

Knowledge Transfer is any attempt of the developers to close a gap in knowledge, either
by exchanging existing knowledge or by acquiring new knowledge.

Note that, for my research, these definitions are mere starting points which are based on
practitioners’ colloquial use of the phrase knowledge transfer in the context of pair programming.
Finding more appropriate notions and operationalizations is part of this thesis.

1.3.4 Is this Software Engineering?

Software Engineering as a discipline is concerned “with the technical processes of software de-
velopment but also with activities such as software project management and with the development
of tools, methods and theories to support software production” (Sommerville, 2007, p. 7). Pair
programming is a part of how software developers work in industry, either because it is a
practice of their software development process, a planned activity, which developers engage in
strategically, or it is a spontaneous work mode, e.g., after asking a colleague for help.

Enabling software developers to take more informed decisions when it comes to whether
or not to employ PP, and if so, how to improve, is therefore a software engineering goal. Since
the idea of pair programming is universal, any such result may have practical relevance for a
large number of contexts independent of particular software domains and technologies.3

3Some conditions apply: Developers who do not physically share a workspace, for example, cannot directly
employ the ‘on one machine’ idea. Distributed Pair Programming, then, requires some non-trivial technical setup
and affects the development process (see, e.g., Schenk, 2018).

26

1.4. Structure of this Thesis

1.4 Structure of this Thesis

I divide my thesis into three parts. Chapters 2 to 4 are the foundation with a discussion of
related work and methodology, as well as my own research method and data:

Ch. 2 Pair programming (PP) has been studied since the early 1990s. Most studies regard
PP as an alternative to programmers working alone and have a quantitative interest
in comparing these two work modes in terms of time spent or resulting quality.
Qualitative studies ask how pair programming works, and what its consequences
are, e.g., for teams or companies trying to introduce it.
My discussion of their findings and limitation shows that quantitative studies fail
to provide a conclusive answer as to which work mode is superior, while most
qualitative studies either lack a rigorous research method or are concerned only with
a narrow aspect of the practice without providing starting points for further studies.
To complete the picture, I also briefly discuss the notions of knowledge and knowledge
transfer as well as the research of cognitive and social psychology regarding small
groups and pair work in general.

Ch. 3 To overcome the methodological shortcomings of existing PP research, Salinger &
Prechelt (2013) propose the base layer, a framework for qualitative research on pair
programming. The base layer facilitates the analysis of recorded pair programming
sessions, which are the data source of choice if the inner workings of the pair
programming process are to be understood. I explain the base layer after discussing
the basis of qualitative research in the social sciences in general and the Grounded
Theory Methodology in particular.

Ch. 4 Here, I describe my own implementation of this methodology. My analysis is based
on full-length recordings of everyday PP sessions from industrial settings. The
recordings comprise the pair’s dialog, screen content, and webcam video. Part of the
analyzed sessions stem from earlier studies (Plonka, 2012; Salinger, 2013; Schenk,
2018); others I collected during research stays in three different companies, during
which I also did interviews and field observations of everyday work.

Chapters 5 to 11 contain my results, mostly in the shape of concepts (set in blue sans-serif font)
to characterize different aspects of pair programming processes:

Ch. 5 My concepts are highly interconnected, which hinders a linear write-up. This chapter
presents the most important concepts in a nutshell. Readers interested in only some
of the full-fledged results of the later chapters should read this first.

Ch. 6 The first area of results concerns the general pair programming process. Howwell two
software developers work as a pair at any moment is described by the pair’s Fluency.
Arguably, high Fluency is more desirable than low Fluency—the first potentially
culminating in highly productive Focus Phases, the latter being susceptible to a
Breakdown of the pair process.
A pair’s Togetherness describes how ‘in tune’ its members are, and determines how
fluent their process can be. Two factors influencing a pair’s Togetherness are the
members’ shared understanding of the software system and of software development in
general. To avoid low Togetherness, pairs have toMaintain it; transferring knowledge
about the system and about software development is one way to do this.

Ch. 7 Here, I clarify the meaning of knowledge the context of PP sessions. I distinguish
three knowledge concepts: (1) The Knowledge Want, which arises from a perceived
knowledge gap and is the driving force for starting explanations, asking questions,
or examining source code or artifacts; (2) the Topic of a knowledge transfer, which

27

CHAPTER 1. INTRODUCTION

needs to be understood by both developers—at least to some degree—for a knowledge
transfer to be successful; and (3) the Target Content, which is the very piece of
information which is (or would be) able to fill the knowledge gap that gave rise to
the Knowledge Want. I distinguish two types of knowledge which characterize most
Topics and Target Contents in PP sessions: System-specific S knowledge and general
software development knowledge, or G knowledge.

Ch. 8 Each instance of knowledge transfer in a pair programming session is comprised of a
number of individual activities, the atoms, which together constitute the knowledge
transfer. Roughly speaking, there are questions and answers, or more conceptually,
Explanation Elicitors and Explanations. In practice, however, these two categories
are not mutually exclusive and contain a number of peculiar types.

Ch. 9 On a higher level, all knowledge transfer in PP sessions occurs in Episodes which
each pertain to a single Topic. An Episode is propelled by one pair member in a
specific Mode: In Push and Pull Mode, existing knowledge is transferred from
and to the propelling pair member, respectively; in Production Mode, new knowledge
is acquired, either by one pair member alone (Pioneering Production) or with both
partners engaged in the Topic (Co-Production).

Ch. 10 In a complex environment such as software development, there may be many knowl-
edge gaps that need to be addressed, some of which the pair only becomes aware
of along the way. Some pairs may get into trouble because they Branch Wildly by
starting new Topics without finishing off open ones. Others keep their slate clean by
Returning Explicitly when a Sub-Episode is done and through Scope Limiting where
they do not get sidetracked in the first place.

Ch. 11 Then, I integrate all these pieces to a grounded theory of knowledge transfer in
pair programming. I consider the PP session as a whole and identify six Initial
Constellations of the pair regarding its members’ task-specific Knowledge Needs.
Although the details vary and pairs may have different Target Constellations (such
as solving a problem fast or educating the partner), all analyzed pairs follow the
same overall session dynamic: First, they address their Primary Gap, which is their
relative difference in system understanding, then they address their Secondary Gap,
which is what they both do not yet understand about the task-relevant parts and
aspects of the system. Only then, with S Knowledge Needs out of the way, may pairs
actively engage in transferring G knowledge. I call a relative difference in this regard
“the G Opportunity” since not all pairs use it. If both pair members lack relevant
G knowledge, however, progress becomes much more difficult and the pair may
struggle with a Breakdown.

In Chapters 12 to 14, I evaluate my results and discuss implications for further work:
Ch. 12 I arrived at these results after a long research process during which I amended my

analysis focus multiple times. In this chapter, I reiterate the process and key decisions
I made along the way.

Ch. 13 I discuss and evaluate my research based on eight quality criteria for qualitative
research (Tracy, 2010). Most of them (Worthy Topic, Rich Rigor, Sincerity, Signif-
icant Contribution, Ethics, and Meaningful Coherence) are addressed at various
places throughout this document. I summarize them again and also discuss how
I addressed the criteria of Resonance and Credibility through member reflection,
through workshops, interviews, and hands-on evaluation with practitioners from
companies.

Ch. 14 I conclude my thesis with a summary and discussion of further work.

28

1.4. Structure of this Thesis

I provide additional information in the following appendices:
• Appendix A summarizes my publications and their relation to parts of this document.
• Appendix B explains the transcription notion used in the examples throughout this thesis.
• Appendix C contains the original transcripts of the analyzed pair programming sessions
for all the excerpts used in the examples throughout this thesis along with additional
information on the developers, their tasks, and their companies.

• Appendix D provides technical details on statistical meta-analyses I performed as part of
my literature study.

There is also an index for concepts and important terms (page 433) and a name index (page 441).

29

CHAPTER 1. INTRODUCTION

30

Part I

Foundation

31

Chapter 2 Related Work

It is well to read everything of something
and something of everything.

– Henry Brougham

2.1 Purpose and Structure of this Chapter . 34
2.2 Knowledge and Software Development . 34
2.2.1 Epistemology: Philosophy of Knowledge. 35
2.2.2 Knowledge Concepts in the Cognitive Sciences . 35
2.2.3 Knowledge in Software Engineering . 36

Two Notions of Expertise in Software Development • Types of Knowledge Relevant for
Software Development

2.2.4 Summary and Definitions . 39
2.3 Pair Programming . 40
2.3.1 Practitioner Perspective . 40

What is Pair Programming? • Industrial Adoption Rates • Expected Effects and Mecha-
nisms • Practitioners’ Observations on Knowledge Transfer • Summary

2.3.2 Overview of Pair Programming Research . 48
“Industrial” vs. “Educational” Studies • Properties ofDifferent ResearchDesigns •Approaching
the Body of Research on Pair Programming

2.3.3 Pair Programming in Education . 54
Learning Effectiveness of Pair Programming • PairCompatibility • Pair Process • Summary
of Pair Programming in Education

2.3.4 Pair Programming with an Industry Focus. 62
Controlled Experiments on Pair Programming • Studying Pair Programming as a Prac-
tice •Qualitative-Quantitative Studies on the Pair ProgrammingWorkMode •Qualitative
Analyses of the Pair Programming Work Mode • Summary of Industrial PP Research

2.3.5 Summary of Pair Programming Research . 89
Effectiveness • Types of Knowledge • Task Suitability • Pair Constellations • Pair Process

2.4 Pair Work and Small Groups . 94
2.4.1 Pair Work on Distinct Tasks . 94

JointDecision forVisual Perception Task •Understanding a Complex System •Understanding
a Simple System

2.4.2 Small Groups and Knowledge Processing . 97
Coordination and Shared Cognition • Effectiveness • Exemplary Studies

2.4.3 Summary of Psychological Research on Pair Work 103
2.5 Summary of Related Work . 105

33

CHAPTER 2. RELATED WORK

2.1 Purpose and Structure of this Chapter

The goal of my research is to understand how knowledge transfer works in pair programming
in order to advise practitioners in industry. In this chapter, I discuss related scientific literature—
mostly, but not exclusively from the field of software engineering.

To clarify what I mean when saying “knowledge” and “knowledge transfer”, I first discuss
notions used in philosophy, the cognitive sciences, and software engineering in Section 2.2.

Section 2.3 then covers the body of literature on pair programming, including practition-
ers’ experience reports as well as scientific studies from industrial and educational settings.
I summarize what is already known and what remains to be found out to motivate my research
goal, but also characterize the pros and cons of the different employed research methods to
inform the choice of my research approach.

For an additional perspective, I discuss studies on pair work from social and cognitive
psychology in Section 2.4. These studies use pairs either as the convenient extension of a
more difficult-to-study individual or as the smallest of all groups. This research is more theory-
oriented than software engineering research and has identified shared cognition as a central
concept of what makes groups effective. However, it is less concerned with the mechanisms of
realistic pair work and more with the outcomes of artificial experimental tasks and falls short
of providing detailed explanations of what actually happens when pairs work together.

2.2 Knowledge and Software Development

What do I mean when I say “knowledge” and “knowledge transfer”? The purpose of my work
is to advise software developers. A common manner of speaking among practitioners is that
of transferring knowledge through pair programming. Here, knowledge appears as some sort of
object that can be passed on: Prior to a PP session, only developer A had some knowledge;
after the session, it has been transferred to developer B who now also has that knowledge. In
addition to possessing it, software developers also acquire and make use of their knowledge.
In the following subsections, I briefly survey the literature of three of the many fields that
use the term “knowledge”—philosophy, the cognitive sciences, and software engineering—
to formulate a preliminary knowledge-definition that captures the intuitive notion used by
software developers.

A side note: The term “knowledge transfer” is also used in economy and business adminis-
tration literature but refers to an organizational level, as in transferring knowledge from one
department to another. A metaphor used by Davenport & Prusak (2000) is that of a “knowledge
market” with buyers, sellers, and brokers. Knowledge transfer then occurs in the form of trans-
actions for which managers may establish an environment with opportunities (a marketplace)
as well as cultural values and rewards for sharing knowledge (incentives to buy and sell):

How can an organization transfer knowledge effectively? The short answer, and the best
one, is: hire smart people and let them talk to one another. [. . .] Organizations often hire
bright people and then isolate them or burden them with tasks that leave no time for
conversation and little time for thought. [. . .] [V]arious knowledge transfer issues and
strategies [. . .] come down to finding effective ways to let people talk and listen to one
another.

Davenport & Prusak (2000, p. 88)

The focus in the according literature is on establishing such an environment, but not on the
interpersonal mechanisms that make up the actual transfer of knowledge—which is precisely
my research interest.

34

2.2.1 Epistemology: Philosophy of Knowledge

2.2.1 Epistemology: Philosophy of Knowledge

Philosophers take great care when speaking about knowledge. Epistemology is the branch of
philosophy concerned with the question what it means to truly know something. A common
definition of knowledge is based on the three Cartesian conditions (after René Decartes) and
commonly abbreviated as “justified true belief” (see, e.g., BonJour, 2010, pp. 23–24): Software
developer A may be convinced that some class Foo extends the class Bar (belief), because she
recently used both classes (justified), and class Foo actually happens to extend Bar (true).

For my purpose, that is, to understand how industrial software developers deal with what
they know and do not know during pair programming, the notion of knowledge as justified
true belief is impractical as it emphasizes aspects of knowledge that are irrelevant to me. In
particular, there are the following four reasons why I do not build upon this definition:1

• Developer A may not actually have such a justification, but still be convinced (true belief).
For knowledge transfer in a pair programming session, developer B may not ask for
a justification, and still believe the fact, e.g., because developer A is more experienced.
From a researcher’s perspective, distinguishing the cases of not having a justification and
not providing one could only be done through asking developer A, which is impractical,
especially when data is analyzed a long time after it was collected. For the developers,
such a distinction may not be relevant at all.

• Developer A may be less than absolutely certain (i.e., she is not really maintaining a
belief), which might be nevertheless good enough for her for practical purposes.

• Knowledge is not neatly compartmentalized as a collection of isolated facts which are
independently true or false. Instead, some aspect of what developer A believes may be
objectively false, which does not necessarily make what she believes to be true useless
for her software development task.

• In addition to explicit knowledge developer A is able to verbalize, there is also know-how,
which can be tacit knowledge (see next section). This is arguably relevant for software
development but would not be appropriately characterized as “belief”.

The above definition is mostly about the properties that make the difference between ‘truly
knowing’ and ‘just being convinced’ that Foo extends Bar. It is not about the difference
between ‘knowing about Foo’s and Bar’s relationship’ and ‘having no idea’, and not about
the practical implications of this difference.

2.2.2 Knowledge Concepts in the Cognitive Sciences

The cognitive sciences are concerned with cognition, i.e., how human beings perceive, make
sense of, and behave in their environment. Since their inception with the “cognitive revolution”
in the 1950s and 60s—accompanied by the advent of computers in academia—the cognitive
sciences have been framing the human mind as an information-processing unit, comprising
memory, programs, and central processor to run them (Weisberg & Reeves, 2013, pp. 13–19).
In modern understanding, all cognitive processes are knowledge-based, including ‘lower’
processes such as pattern recognition and attention (ibid., pp. 38–40). Where to direct one’s
attention depends on pre-existing knowledge about the world, as does reading letters and
words from a piece of paper. Here, I discuss some of the developed terminology which has also
been adapted in other fields (including software engineering) and which I will use to delimit
my notion of knowledge.

1This does not even cover the “Gettier Cases” (named for the three-page paper by Gettier, 1963) where the
justification is wrong but accidentally leads to a true belief (see BonJour, 2010, pp. 39–45).

35

CHAPTER 2. RELATED WORK

Episodic Memory Semantic Memory Procedural Memory Priming Conditioning

Declarative or
Explicit Memory

Non-Declarative or
Implicit Memory

Memory Systems

Figure 2.1: Overview of memory systems (based on Weisberg & Reeves, 2013, Figure 2.19)

In the cognitive sciences, there appears to be no clear-cut distinction between knowledge
and [a] memory: Both are used as labels for information that is retained in a memory system
(sometimes also called [the] memory) where it can affect future perception, decision making,
or behavior (Weisberg & Reeves, 2013, pp. 90 & 178). There are a number of distinctions of
memory systems, which are empirically backed-up by studies with patients suffering from
different types of memory loss, including the following two (ibid., p. 85, see also Figure 2.1):

• Declarative or explicit vs. non-declarative or implicit memory: The content of declara-
tivememory can be consciously accessed and verbalized,whereas non-declarativememory
can affect perception, behavior, and decision-making, too, but is not directly accessible.

• Semantic vs. episodicmemory: Both are part of the declarative memory, one comprising
general facts (not necessarily on a syntactic level, but more meaning-oriented, thus
semantic), the other ‘storing’ one’s own personal historical events or episodes.

The different memory systems serve different purposes and the stored information is labeled
accordingly, e.g., semantic knowledge or procedural knowledge (ibid., pp. 83–84). The knowledge
from non-declarative memory is also sometimes called tacit knowledge as it cannot be verbalized
by the one who possesses it. Overall, the notion of knowledge from the cognitive sciences is
rather broad. It covers semantic knowledge such as that Paris is the capital of France, episodic
knowledge such as how one ate breakfast this morning, and procedural knowledge such as
how to tie your shoelaces, how to recognize your spouse’s voice or the letter K. It also includes
other types of implicit knowledge such as the amnesiac patient who cannot explain why she
would not shake the hand of the doctor who pinched her the day before (conditioning, ibid.,
p. 91) or who has forgotten she just read the word “attach” but still completes the stem “at____”
accordingly (priming, ibid., p. 90).

A common notion to describe knowledge organization in memory are schemata, which
represent abstract forms of concrete experiences that allow to improve cognitive abilities (ibid.,
pp. 101–103). Widely known are the chess masters who are good at recalling rule-conforming
chess piece positions, but not random placements. Other experiments show that Scrabble
players identify letter combinations as words faster, musicians recall longer sequences of notes,
and visual artists recall more picture details (ibid., pp. 105–107). In all cases, the “experts” are
said to know basic patterns from their domain and only need to remember the differences to
the current stimulus.

2.2.3 Knowledge in Software Engineering

It appears to be common understanding in software engineering that software development
heavily relies on knowledge. Curtis (1984) sees the most important individual differences
between developers that affect overall productivity in their “knowledge bases” . Robillard (1999)
and Armour (2000) argue that all software development is, in essence, acquiring and codifying
knowledge. However, the exact nature of this so-important knowledge remains less clear.

36

2.2.3 Knowledge in Software Engineering

Robillard (1999) distinguishes two types of knowledge and argues that students of computer
science mostly possess semantic knowledge from textbooks and courses but lack practical expe-
rience in a real-world application domain.2 A similar distinction can be found in the grounded
theory of software developer expertise by Baltes & Diehl (2018) who distinguish knowledge
and experience as the two main components of expertise. Considering the terminology from
the cognitive sciences and the examples given in their article, I would roughly map these two
to explicit semantic knowledge and to non-verbal procedural knowledge, covering programming
language details, algorithms, data structures, and programming paradigms, etc., and the mental
remnants of, for example, having built both small and large systems, having worked on shared
code, respectively (ibid., Sec. 3.3).

Thus, the notion of expertise appears to be tightly coupled to that of knowledge. As Son-
nentag et al. (2006, p. 375) explain in the The Cambridge Handbook of Expertise and Expert
Performance, two notions of programming or software development expertise are used in
the literature: Expertise in terms of long years of practical experience and expertise as high
performance.

2.2.3 a) Two Notions of Expertise in Software Development

One conception of expertise relates to the idea that developers accruemore andmore knowledge
over the years. In this mindset, asking “What is it that expert programmers know that novice
programmers don’t?” (Soloway & Ehrlich, 1984) is a reasonable question. One type of such
knowledge appears to include schemata (see Section 2.2.2). Experiments by Shneiderman
(1976) demonstrated advantages of more experienced developers in recalling source code
line by line, the effects of which were less pronounced when the original statements were
shuffled. Soloway & Ehrlich (1984) then later hypothesized some of these schemata and called
them “programming plans” and “programming discourse rules” . They designed fill-in-the-blanks
programs which experienced programmers could more easily complete correctly if the program
was schema-conforming while their performance almost dropped to the level of the novices for
non-conforming programs. The common explanation goes like this: If a developer encounters
source code that matches one of the learned schemata, she can use top-down reasoning and
memorize larger, semantic chunks; without a matching scheme, she has to resort to bottom-up
reasoning and syntactic memorizing.

While studies with the mindset of expertise-as-experience appear to be concerned more
with programming and isolated algorithmic tasks, the conception of expertise as high perfor-
mance entails a perspective which pays more attention to software development involving
larger systems and richer contexts. It emphasizes the specificity of the situation a software
developer finds herself in. As Sim & Holt (1998) discuss, new team members or “software
immigrants” , even if they have good general software development experience, first need to
“naturalize” in their new environment and learn the peculiarities of the project, e.g., by working
on narrow tasks first or getting mentored. Zhou & Mockus (2010) define “developer fluency” as
the ability to work on every task in a project “accurately and rapidly” . Across ten projects they

2Robillard (1999, p. 88) explicitly employs the vocabulary of the cognitive sciences but is mistaken at one
point. His characterization of practical experience (e.g., “reusing a function” or “defining objects from specification
requirements”) as “episodic knowledge” is inappropriate, since episodic memory is part of explicit/declarative
memory, whereas practical know-how is mostly part of (implicit) procedural memory—as Robillard himself explains
earlier on the very same page. Remembering a concrete episode of how one reused a function in the past (i.e.,
episodic knowledge) is not as relevant as having done it multiple times and possessing the procedural knowledge to
do it again or the semantic knowledge to explain it.

37

CHAPTER 2. RELATED WORK

showed that it takes about three years until a software developer is fluent in a project, i.e., able
to work on even the most difficult and critical tasks.

So, software developers become experts (one type or the other) at least in part through
their knowledge. But what kind of knowledge is that and how do they acquire it?

2.2.3 b) Types of Knowledge Relevant for Software Development

Programming schemata appear to be tacit knowledge (Soloway et al., 1982), meaning that they
cannot be easily verbalized, which implies that they are acquired through practice rather than
explanation. Other strands of research allow to circle in on the question what other types of
knowledge, possibly explicit knowledge, developers need to possess.

Zhou & Mockus (2010, Sec. 4.1) are not explicit about what knowledge developers need to
acquire over the three-year period until they are fluent in their project, but some ideas can be
reconstructed from what the interviewed managers said makes tasks in their project difficult
and critical: Technology, domain/application, necessary interaction with or impact on other
developers and/or customers, impact on other parts of the system or the system’s architecture.

A survey by Li et al. (2015) sheds a bit more light on what types of knowledge are relevant
for being a “great software engineer” . The respondents—59 (very) experienced engineers from
10 different Microsoft divisions—would agree with Robillard’s separation of semantic and non-
declarative knowledge as they felt that “book knowledge” is not sufficient. The list of additional
knowledge areas corroborates what Zhou & Mockus’ interviewees emphasized: Great software
engineers need to be knowledgeable about the people and the organization around them, about
their technical domain, product, and competitors, about customers and business values, about
their tools, and about development processes and practices (ibid., Sec. IV.B).

The interview-based studies (Zhou & Mockus, 2010; Li et al., 2015; Baltes & Diehl, 2018)
do not explicitly discuss to which degree the knowledge they refer to might be characterized
as semantic knowledge (which can be verbalized) or as non-verbal tacit knowledge. In all these
studies, the effects of possessing knowledge were more important—developer fluency, the
ability to make effective decisions, and better quality of source code, respectively—which can
be achieved by semantic and tacit knowledge alike. Additionally, the interviewees in the above
studies provided personal accounts of what they felt was relevant, which does not necessarily
correspond with what actually matters in everyday software development.

In this vain, Sillito et al. (2008) analyzed what precisely software developers want to know
while they perform a change task. They recorded 12 sessions of students working in pairs for
45 minutes on assigned change tasks in an unfamiliar open-source project and 15 sessions of
(mostly solo) professionals who were asked to think aloud while working for 30 minutes on
their normal tasks. The researchers focused on “questions targeting the code base” and distilled a
catalog of 44 question types. Among these questions are both static concerns such as #8 Where
does this type fit in the type hierarchy?, which a fluent developer could be expected to know,
and dynamic concerns such as #31 Which execution path is being taken in this case?—strictly
speaking not properties of the code base, but of the running system with specific inputs—which
even an expert would not usually be expected to know right away all of the time. Consequently,
Sillito et al. discuss for each of the question types how well existing tooling supports these
information needs, concluding almost full support for the isolated and static question types
and only partial support for the complex and dynamic question types (ibid., Table 9).

Overall, Sillito et al. (ibid.) focused on information which is already encoded in the code
base and which tools may help extract. But, as Armour (2000) puts it, the software is only a
medium for storing knowledge which developers had to acquire in the first place. The tool of
Fritz et al. (2010) consequently goes beyondwhat it is already ‘in the code’ and helps identifying

38

2.2.4 Summary and Definitions

a knowledgeable colleague by automatically quantifying their respective knowledge levels
based on fine-grained code authorship and interaction information, thus acknowledging that
an important source for developers’ everyday information needs are other developers.

To come back to the original question on the notion of knowledge: There appears to be no
established conception of knowledge in software engineering that goes beyond the terminology
from the cognitive sciences. In software engineering, knowledge is something that gets the
job done. It may be explicit or tacit knowledge; it may be already ‘in the code’ and one might
provide tools to get it out, or there is another individual who carries it around in her head who
may get asked for explanations or for help.

My research is primarily about the latter case where a knowledgeable colleague is the main
source of information. However, both developers ‘extracting’ knowledge from existing source
code together is also an important aspect of many pair programming sessions. In Chapter 9, I
will call these cases Push/Pull and Produce, respectively. Regarding the types of knowledge
that are actually relevant in pair programming sessions, I identified two main types of explicit
knowledge: System-specific S knowledge and generic G knowledge (see Section 7.3.1).

2.2.4 Summary and Definitions

In philosophy, knowledge is (a certain type of) awareness of information. In the cognitive
sciences, knowledge is information retained in memory such that it can affect future behavior
and perception (which the knowing person is neither necessarily able to verbalize nor nec-
essarily aware of). In software engineering, knowledge is what is relevant for working on
software development tasks—be it tacit know-how or factual information.

Considering my goal of advising practitioners, I limit my research to explicit knowledge,
i.e., knowledge that can be verbalized. What developers do (or can) explain during pair pro-
gramming is explicit knowledge. What developers (can) do, e.g., coming up with design ideas or
having hunches where to look during debugging, is at least in part enabled by tacit knowledge.
Any rationales developers provide for their decisions and behavior are also explicit knowledge
(even if they are post-hoc rationalizations), but I do not dig deeper into what enables developers,
thus excluding tacit knowledge.

My definition of knowledge therefore builds on a notion of information that is closer to
computer science than to the cognitive sciences. I exclude information that is retained in a
software developer’s memory but which she cannot consciously access and verbalize.

In a strict sense, knowledge as information stored in one’s memory cannot be transferred—
only information in the form of an utterance or a signal can, which might end up as knowledge
once another person understands it. To simplify terminology, I gloss over the difference between
knowledge and information from here on:

Definition

Knowledge is information (i.e., a proposition pertaining to a part of the shared reality
such as an object or an event) which the pair members consider relevant for their software
development context, including their current task and the software project it is embedded
in. Knowledge in this sense may be lacking by either of the pair members.

Acquiring knowledge from a knowledgeable partner or acquiring it from source code—together
or alone—goes hand in hand in actual pair programming sessions (see Chapter 9). My broad
definition of knowledge transfer reflects that:

39

CHAPTER 2. RELATED WORK

Definition

Knowledge Transfer is then any attempt of the developers to close a gap in knowledge,
either by exchanging knowledge they already possess or by acquiring new knowledge
they still lack.

Note that in this sense, knowledge transfer refers to a process between developers and not—e.g.,
as Sonnentag et al. (2006, p. 378) use the term—to the application of something learned in one
context to another one.

2.3 Pair Programming

I approach the topic of pair programming by taking a practitioner’s perspective first (Sec-
tion 2.3.1): What does pair programming actually mean to software developers, how do they
think it works, what benefits do they expect? In Section 2.3.2, I give a primer on PP research
by characterizing the different contexts in which and the methods with which it is generally
studied. I then discuss the results and methodology of two largely separate areas of research:
PP in education and PP with an industry focus (Sections 2.3.3 and 2.3.4).

2.3.1 Practitioner Perspective

Software developers pair-program. Although reliable numbers are difficult to get by, it is safe to
say that one third of software developers at least sometimes works in pairs (I discuss industrial
adoption rates below). There are a number of assumptions and expectations regarding the
effects of pair programming and how they come to be. Much of the practitioner literature lacks
a clear terminology, so I attempt to establish one in this section.

2.3.1 a) What is Pair Programming? – Work Mode and Practice

For my discussion, I distinguish two different meanings of “pair programming” (PP). First,
there is PP as a work mode (sometimes also called a programming style or technique): Two
developers work closely together on a single technical task. Pair programming in this sense is
a decision made for an individual task. This idea can be traced back to the very beginnings
of programming (see Section 1.1). The second meaning of “pair programming” pertains to a
practice which is part of a software development process. This notion was established by Beck
(1999) in the context of Extreme Programming (XP) and it is based on the idea that the routine
application of the PP work mode has effects beyond single tasks.

Not long after XP was introduced, Williams & Kessler published their book Pair Program-
ming Illuminated (2002) which builds on Beck’s ideas and blends research results with practical
advice on how to pair-program. In their discussions, Beck (1999) and Williams & Kessler (2002)
mix aspects pertaining to pair programming as a work mode and as an established practice in
a process. In this section, I separate these two notions more clearly. (For brevity, I refer to the
two editions of Beck’s book as XP1 and XP2 below.)

When I refer to pair programming as a practice, I refer to the strategic decision of developers,
teams, and/or managers to work in pairs on some or even all tasks. The pair programming
work mode then is any occasion where two software developers actually sit down together
as the result of a tactical decision, either in an ad hoc manner or as the concrete form of the
practice. Note that the two notions are somewhat independent as teams may have agreed on
the practice without ever actually engaging in the work mode.

40

2.3.1 Practitioner Perspective

Work Mode: How and Why to Work as a Pair?
Beck describes two roles in a programming pair: One developer with keyboard and mouse who
thinks about the current implementation, the other thinking about the overall approach (XP1,
p. 58). Williams & Kessler (2002, pp. 3–4) went on to call the roles “driver” and “navigator”3 with
distinct responsibilities of writing code and looking for defects as well as strategic problems,
respectively. As empirical research has later shown, this notion is misleading (see discussion
on pages 72, 73, and 83). In fact, Beck himself already characterized the pair programming
work mode as a “dialog” : “It isn’t one person programming while another person watches” (XP1,
p. 100). Pair programming could not be done without communicating (XP1, p. 30), it is a “subtle”
but “learnable skill” (XP1, pp. 100 & 141).

Beck expects this work mode to have positive effects on the quality of the source code
(fewer defects and better design) and on the effort required to complete a task, as well as on
the developers’ knowledge levels and satisfaction. Behind these effects, he sees a number
of mechanisms which he alludes to throughout his XP books (although he does not make an
explicit mechanism-effect distinction). Williams & Kessler (2002, pp. 21–30) later provided a
number of labels which happen to map to Beck’s ideas quite well:

• Pair Reviews: Pairs are less likely to make mistakes. This saves debugging time while
completing the task, and it increases the source code quality (XP1, pp. 66–67; XP2, pp. 35,
94, & 98). In fact, Beck introduced the idea of pair programming in XP as code reviews
taken to an extreme level (XP1, p. xv).

• Pair Negotiation: Pairs produce more ideas, and in the process of agreeing on one
way to proceed they are forced to clarify uncertainties, which leads to clearer ideas, better
design, and ultimately higher quality (XP2, p. 42).

• Pair Courage: Pairs are more courageous when it comes to difficult refactorings, again
leading to a better design (XP1, pp. 66–67; XP2, p. 35).

• Pair Pressure: Pairs are less likely to abandon good development practices and they
stay focused on the task, improving the quality and reducing the time spent until the task
is completed (XP1, pp. 67 & 102; XP2, p. 42).

• PairDebugging: Pairs are less likely to get stuck on a problem,which lowers frustration
and makes PP satisfying (XP2, p. 42).

• Pair Learning: Working on a task together results in conversations and consequentially
learning about the particular software system and its parts as well as software development
in general (XP1, p. 102).

Note that while the expected effects have some empirical support in scientific studies (which I
discuss in detail in Sections 2.3.3 and 2.3.4), the underlying mechanisms are mostly plausible
ideas based on observations of reflective practitioners, but were not subject to scientific scrutiny.
My own research supports the existence of the Pair Learning mechanism as characterized
above (see Chapter 7).

The Practice: Embedding the Work Mode in a Project
The above mentioned effects relate to pair programming as a work mode. Pair programming as
a practice is then a strategic decision for when and how to employ the work mode in a project.
For Extreme Programming, Beck proposes the following rules:

• When? Pair programming is the default work mode in which all long-lived code is
produced in order to routinely get the mentioned benefits (XP1, p. 54; XP2, p. 57).

3Earlier names were “driver and non-driver” (Williams, 2000, p. 3) and “driver and observer” (Williams, 2001).

41

CHAPTER 2. RELATED WORK

• How? Pairs are not statically assigned, but rotate frequently in the team—after fixed
intervals or at natural breaks in the process—and developers chose partners based on
recent experience in task-relevant areas (XP1, p. 59; XP2, pp. 42–43).

The effects of such a PP practice build on the work mode effects: Through knowledge being
transferred between individuals in PP sessions (work mode level), knowledge may spread in
the team when the pairs rotate (practice level). Or as Beck puts it, “the right communications” in
the team keep flowing such that the developers learn about the system’s code as well software
development in general (XP1, pp. 30 & 102). To Beck, pair programming is the central practice
in XP as it “ties the whole process together” (XP1, p. 97).

An Important Difference
Beck’s XP books are not about how to actually implement the practices (see XP1, p. xvi).
However, Beck’s formulation to write all long-lived code in pairs stuck, and through the
popularity of Extreme Programming, the label “pair programming” received the connotation of
‘for everything, all the time’. Some criticize that XP “mandates” pair programming for everyone
(e.g., Stephens & Rosenberg, 2003, p. 137). Here is what Beck actually has to say to skeptics of
pair programming:

In my experience, pair programming is more productive than dividing the work between
two programmers and then integrating the results. [. . .] All I can say is that you should
get good at it, then try an iteration where you pair for all production code and another
where you program everything solo. Then you can make your own decision.

Beck (XP1, p. 101, emphasis added)

When talking to practitioners about “pair programming” in industry, it can make a difference
whether the framing is ‘Do you practice pair programming?’ or ‘Do you occasionally sit on
one machine to work together on certain tasks?’. These can be two very different things as the
anecdote in Figure 2.2 and survey results on PP adoption rates (see below) illustrate. Scientific
studies also have an implicit focus on either PP as a work mode (e.g., in controlled experiments,
see Section 2.3.4a) or PP as a practice (e.g., in observational field studies, see Section 2.3.4b).

“We don’t practice pair programming”
We once visited a software development company to explore possible ways to
conduct empirical research in an industrial setting. The head of development
assured us beforehand that they do not practice pair programming. At the company,
we had to wait for some time before the scheduled meeting, and sat down among
the developers. After five minutes, one developer called a colleague for help with
some problem. The colleague interrupted his work and moved over. Soon enough,
both developers engaged in a vivid discussion and took turns on the keyboard.
After about 25 minutes, the head of development was ready for our meeting—the
developers were still working together on one machine.

Figure 2.2: Anecdote by Salinger (2013, p. 21, original in German). The head of development
here is not necessarily oblivious of what happens in his department. It is quite possible that
he referred to “pair programming” as a prescribed practice, and not an occasional work mode.

2.3.1 b) Industrial Adoption Rates

While the above mentioned mechanisms and effects appear plausible, an empirical validation
is still necessary to determine the value of pair programming. One way to assess actual effects
rather than just expected benefits is to turn to economic settings, expecting that poor ideas

42

2.3.1 Practitioner Perspective

Survey Subjects 𝑛 = Scope Scale Rate

Cusumano et al. (2003) “industry contacts” 104 project binary 36%
Begel & Nagappan (2007) developers, testers,

managers
487 team rating 36%

Salo & Abrahamsson (2008) developers, managers 35 project rating 43%
Schindler (2008) developers, managers 61 project binary 46%
StackOverflow (2018) developers 57 075 individuals binary 28.5%

Table 2.1: Reported pair programming adoption rates in industry. The surveys differ in who
was asked (subjects) about pair programming usage on which level (scope) with what kind
of question (scale). Adoption rates coming from rating scales represent the share of those
who answered sometimes and above—Begel & Nagappan (2007) used levels yes, sometimes,
planning to, no, never will; Salo & Abrahamsson (2008) used the levels systematically, mostly,
sometimes, rarely, no.

will not be widely adopted and eventually discarded by developers. Possible questions could
be: How prevalent is pair programming in the industry? How often do developers employ it,
and why?

Source Ratio

Coman et al. (2008, Sec. 3.1 & 4) < 8%
DeMarco & Lister (2013, p. 61) 50%
Vanhanen & Korpi (2007, Tab. 7) 55%
Hulkko & Abrahamsson (2005, Fig. 3) 40–90%*

Table 2.2: Reported percentages of developer time
spent working in pairs. I calculated the ratios for
Vanhanen & Korpi (2007) and Coman et al. (2008)
based on information provided in their papers; see
page 70 for details. Hulkko & Abrahamsson (2005)
only report the pair portion of programming time,
not overall work time.

For individual teams, reported percent-
ages of developer time spent working in pairs
range from 8% to 90% (see Table 2.2). But
these numbers only refer to teams who work
in pairs at all. What about software develop-
ment industry as a whole?

In a number of surveys, pair program-
ming adoption rates in industry range from
36% to 46%. In the 2018 Stack Overflow Devel-
oper Survey, the number is as low as 28.5%
(see Table 2.1). These numbers, however, are
difficult to interpret for two reasons:

First, the pair programming adoption rate
is operationalized differently in these surveys.
Some surveys considered whole projects or teams as a unit, while others asked for individual
usage. Some surveys asked developers who can give first-hand accounts, others included
responses of managers as well. Some asked for a binary value as in ‘Do you use pair program-
ming?’ which could mean anything from daily PP to once a month, others used a rating scale
for more nuanced answers. The resulting numbers may roughly represent a share of developers
who sometimes pair program, but not a proportion of development time actually spent in pairs,
leaving the question of ‘How much PP, overall?’ more or less unanswered.

Second, since the distinction between pair programming as an occasional workmode and as
an established practice is not commonly made—at least not explicitly—the framing of the survey
questions is important for interpreting the answers (again, see Figure 2.2). Some particular
survey results might be explained through a conflation of work mode and (mandatory) practice:

• In the questionnaire used for the Stack Overflow 2018 survey, pair programming was
framed as a “methodology” among other options such as “Scrum” , “Lean” , or “ISO 9001 or
IEEE 12207” , evoking the idea of systematic usage as a practice and thus introducing a bias

43

CHAPTER 2. RELATED WORK

against counting the occasional work mode. A hypothetical developer who pair-programs
two hours a week in an ad hoc manner (i.e., not as a planned practice) may be discouraged
to say ‘Yes, we use pair programming’ in such questionnaires. (More recent Stack Overflow
developer surveys from 2019 and 2020 did not ask for pair programming.)

• Around 63% of Microsoft developers with recent PP experience state that “pair program-
ming is working well” for them and their partner, but only 48% said so with regard to
their team, and only 39% for their larger group (Begel & Nagappan, 2008, Fig. 3). The
researchers see this as an indication of a “grassroots” phenomenon with individuals who
adopt it, but who face difficulties convincing their management “to spread the practice” .
Possibly, the respondents thought of an ad hoc work mode for themselves and their part-
ner (high agreement), and of a mandatory practice for their team and larger group (lower
agreement). A valid interpretation of these numbers, however, is not possible without
understanding what it even means (to the respondents) that “pair programming is working
well for my team” /“my larger group” (ibid., Fig. 3).

• Among the reasons why pair programming is “not adopted” in some companies, Schindler
(2008, Table 10) lists “only with complex code” . One way to interpret this (paradoxical)
statement is that programming in pairs is indeed an employed work mode—even if “only
with complex code”—but it is “not adopted” as a systematic practice.

Considering that some survey respondents may have understood “pair programming” as a
systematic practice and hence stated that they do not use it even though they do occasionally
engage in a pair work mode, the reported adoption rates can be regarded as a conservative
estimate of the actual adoptions rates: Roughly one third of professional software developers
appears to work in pairs at least sometimes. This is reason enough to assume that there is at
least some actual positive effect to this work mode, and that finding ways to improve PP can
help many developers.

2.3.1 c) Expected Effects and Mechanisms

Some surveys cover the developers’ reasons to pair program, which puts relative weights to
the expected benefits mentioned by Beck (XP1, XP2) and Williams & Kessler (2002). Begel &
Nagappan (2008) and Schindler (2008) both report similar results with “fewer defects”, “knowl-
edge transfer”, and “higher quality” at the top of their respective lists of PP benefits mentioned
by practitioners. The relative importance of these aspects, however, is not conclusive: Entries
such as “permanent review” and “higher quality” are mentioned in both lists as separate and
independent PP benefits, indicating that the authors did not differentiate between mechanisms
and their effects. In this section, I make this distinction clear and identify the mechanisms that
practitioners and researchers expect to underlie the pair programming work mode.

Among all the nice-to-have benefits ascribed to pair programming, some appear to be the
prime reasons why developers choose to work in pairs. As reported by Hulkko & Abrahamsson
(2005, Sec. 3.2.1) who studied four teams for 5 to 8 weeks, developers found pair programming
to be especially useful for spreading system understanding, for complex tasks with many
dependencies, and for demanding tasks which no individual could do alone. Companies such as
Pivotal Labs have been employing continuous pair programming (i.e., 100% pair programming)
and overlapping pair rotation for two decades to spread knowledge, in particular about the
software systems, to remove and avoid knowledge silos in their projects (Sedano et al., 2016).
Plonka et al. (2015) showed that transferring knowledge from an “expert” to a “novice”, as
opposed to, e.g., completing some functionality, is the main purpose for some industrial PP
sessions.

44

2.3.1 Practitioner Perspective

Overall, knowledge and knowledge transfer appear to be of major importance to practi-
tioners. Indeed, many of the expected pair programming benefits directly or indirectly depend
on the pair members’ individual and collective knowledge. This may be obvious for benefits
like “can learn from partner” (Begel & Nagappan, 2008, Table 1), but also holds for others. In
the following Figure 2.3, I reconstruct three knowledge-related mechanisms which survey
respondents and researchers seem to assume. Software developers appear to pair-program
because they expect one or more of these to yield positive effects: Combine their existing
knowledge, Understand the rest together, and Learn together and from another.

Begel & Nagappan (2008, Table 1)
1. fewer bugs
2. spreads code understanding
3. higher quality code
4. can learn from partner
5. better design
6. constant code reviews
6. two heads are better than one
8. creativity and brainstorming
9. better testing and debugging
10. improved morale

Schindler (2008, Table 8)
1. permanent reviews
2. knowledge transfer
3. increased code quality
4. speedup
5. decrease of truck factor
6. increase of creative solutions
6. better design
8. increased motivation
8. more cost effective
10. less chance of interruptions
10. complex tasks more easily solved
10. integration is easier
10. increase of output
10. increased concentration

Mentioned PP Benefits Reconstructed Underlying Mechanisms

Combine: Use existing knowledge for current task
Knowledge which either partner already possesses does
not need to be newly acquired by the pair but can be com-
bined to work on tasks which would be more difficult for
each of them alone. A larger body of available knowledge
also allows for more ideas to be produced.

Understand: Acquire new knowledge for current task
The two developers acquire any lacking knowledge faster
and more reliably than they would alone, e.g., because of
their ability to remember more things. This is helpful for
debugging situations as well as catching defects in the
making (which both involve understanding the software
system and its possible states).

Learn: Acquire new knowledge for future tasks
The two developers learn together and from another, im-
proving their individual capabilities to work on future
tasks and thus lowering the collective risk of knowledge
silos.

Figure 2.3: Reconstruction of three knowledge-related mechanisms (right side) based on
corresponding positive pair programming effects that practitioners report in surveys (left
side, inward arrows). The mechanisms capture how the respondents (and the researchers)
apparently think that pair programming works. Some mentioned benefits are actually part of
the mechanisms rather than effects (outward arrows, text set in italics); others are vague or
do not correspond to a knowledge-related mechanism (no arrows, grayed out).

Learning from another is what is commonly called knowledge transfer in the context of pair
programming. Since Learning new things together as well as the Combine and Understand
mechanisms also involve the exchange, acquisition, and integration of information and ideas,
I consider them knowledge transfer in a broader sense. I will use the above identifiers as
shorthands to refer to the expected mechanisms throughout my discussion of related work.

45

CHAPTER 2. RELATED WORK

2.3.1 d) Practitioners’ Observations on Knowledge Transfer

Before I dive into scientific studies, I first turn to what practitioners have to say in surveys and
experience reports. Surveys are suitable for capturing respondents’ beliefs and opinions, but
less for facts. Asked about development practices, some may refer to their own current project
while others may think of something a colleague told them. Similarly, experience reports
may document interesting phenomena, but often lack methodical rigor and/or details in their
writing. Nevertheless, for understanding how pair programming is actually employed, these
two formats can help identify relevant phenomena and research questions.

Belshee’s (2005) experience report contains two compelling anecdotes of knowledge trans-
fer through pair programming. His team’s PP rules are: All the time and “promiscuously” , i.e.,
with frequent partner changes. The first anecdote pertains to a tiny piece of knowledge: In
the morning, one pair discovered a keyboard shortcut for accessing a paste stack (a history of
recently copied text fragments), which spread across the whole team of 11 developers by the
afternoon, supposedly through pair rotation only (ibid., Sec. 2.7). The other anecdote describes
the integration of a newly hired developer who—despite not knowing the programming lan-
guage or even the programming paradigms—lowered the team’s velocity for only one week,
was able to work alone on any task within three weeks, and even taught the next new-hire in
the fourth week (ibid., Sec. 3.1).

Like Belshee’s, there are more informal reports of practitioners[a–f] who reflected on their
process in individual projects, typically not long after they introduced pair programming for the
first time, but only some which provide details about knowledge or knowledge-transfer related
topics. Surveys among practitioners[g–i] which ask for general perceptions of pair programming
also contain relevant observations. Together, these sources point to five practically relevant
aspects of knowledge transfer in pair programming:

Practically Relevant Aspects of Knowledge Transfer in Pair Programming
A1 Effectiveness: Is pair programming effective in the sense that it produces the ex-

pected effects? In other words: Do pairs Combine their existing knowledge and
Understand missing parts together to produce code with fewer defects and better
design? Do the developers Learn together and from another?

A2 Types of Knowledge: What do the developers Combine, Understand, and Learn
while pair programming?

A3 Task Suitability: Are there some types of tasks for which pair programming is more
or less suited?

A4 Pair Constellations: Are there some types of pairs for whom pair programming is
more or less suited?

A5 Pair Process: How do pairs actually Combine, Understand, and Learn?

Here is what practitioners report regarding these five aspects:
A1 Effectiveness: Experience reports[a,b,c,f] and surveys[g,h,i] agree that PP is helpful for

transferring knowledge both in terms of individual learning and spreading knowledge in
a team. In Belshee’s paste-stack anecdote, one pair discovered and Learned the feature
at one point. This is effectiveness of pair programming as a work mode. For effectively
spreading knowledge in a team, partner changes should be frequent,[a,e] which is why

Key: aBelshee (2005) bPandey et al. (2003) cRasmusson (2003) dSharifabdi & Grot (2002) eTessem (2003)
fWood & Kleb (2003) gBegel & Nagappan (2008) hFitzgerald et al. (2006) iVanhanen & Lassenius (2007)

46

2.3.1 Practitioner Perspective

Belshee’s team made ‘promiscuity’ part of their practice. Code quality in terms of defect
count, readability, and maintainability is said to be better[f,g,h,i]—which can be interpreted
as observable effects of Combine and Understand.

A2 Types of Knowledge: PP appears suitable for transferring different types of knowledge
including simple tips and tricks (e.g., paste stack), understanding of programming lan-
guages, tools, and the software system (e.g., new-hire), as well as domain knowledge.[a,b,c,f,i]

A3 Task Suitability: Some reports draw a line between tasks that involve system under-
standing (e.g., those with complex code with many dependencies and/or old code) and
rote tasks which can be done as fast as typing.[h,i]

A4 Pair Constellations: Two pair constellations appear particularly valuable, and both of
them indicate the importance of knowledge transfer in pair programming: Junior-senior
constellations and pairs with complementary skills with regard to their task.[b,i]

A5 Pair Process: Some reports provide lists of things to avoid in PP sessions—probably based
on reflecting on bad first-hand experience—including not setting a clear objective for the
session, making and taking criticism personal, being always right, always agreeing, or
not sharing one’s ideas.[d,e,h] Belshee (2005, Sec. 1.5) does not see any problems: “[w]hile
two people are paired, they share knowledge [. . .] [K]nowledge transfer is automatic” .

I will use these practically relevant aspects as a structuring element throughout my discussion
of the results of empirical studies on pair programming.

2.3.1 e) Summary

The purpose of this section was to establish a pair programming vocabulary based on the voices
of practitioners. I reviewed and discussed experience reports and surveys, and introduced an
array of terminology to make tacit notions explicit:

• The term “pair programming” can refer to a work mode which is the (possibly ad hoc)
decision to work as a pair on a software development task, or to a practice which is a
strategic decision for when and how to employ the work mode (see Section 2.3.1a).

• On the one hand, there are effects expected by practitioners (including faster progress,
finding and preventing defects, better quality, and knowledge spreading) such that about
one third of them occasionally engages in the work mode, possibly as a manifestation
of a practice. On the other hand, there are purported mechanisms behind these effects:
Combine and Understand which affect the technical outcome, and Learn which affects
developers’ ability to work on future tasks.

• There are five practically relevant aspects of the pair programming work mode, which can
be considered individually: Its effectiveness, the types of situations (pairs and tasks) for
which it is suited, the types of knowledge that are relevant, and the underlying processes
that make it actually work.

Researchers by-and-large appear to share the practitioners’ expectations while designing their
studies. I hope making these distinctions explicit will prove useful in structuring the discussion
of related work and in understanding the status quo of research in this field.

In the next sections, I work through the scientific literature on pair programming in
order to inform my research interest: Understand how knowledge transfer actually works
in pair programming in industry (see Section 1.3.1). From here on, I focus primarily on pair
programming as a work mode, regardless of whether it is done as a tactical decision for only
one task or results from a strategic process-level decision.

47

CHAPTER 2. RELATED WORK

2.3.2 Overview of Pair Programming Research

Pair programming has been a research subject in both industrial settings and computer science
(CS) education formany years. These two areas set different priorities regarding the five aspects
A1 to A5 introduced above. I discuss the relevant differences between them in Section 2.3.2a.

Across the field, researchers use different research designs to study (different aspects of)
pair programming. Depending on the research question, different designs are more or less
suitable, affecting the credibility of the results. In my discussion of related work, I do not just
cite conclusions but also discuss the employed methods for a richer characterization of the
state of research. As a primer, I briefly discuss the characteristics of the research methods
commonly used in pair programming research in Section 2.3.2b.

In Section 2.3.2c, I describe how I organized my literature study and give an overview of
the body of research before I discuss concrete findings in Sections 2.3.3 and 2.3.4.

2.3.2 a) “Industrial” vs. “Educational” Studies

First of all, the notion of “industrial” and “educational” studies needs to be discussed. These two
domains are not neatly separated from another, and where exactly to draw the line depends
on the research goal, the subjects, and their context.
1. The research goal determines the type of research questions which individual studies

address. Educationallymotivated studies are concernedwith finding betterways to educate
students. They focus on learning achievements, social aspects, and student satisfaction.
Industrially motivated studies want to inform professional software development. They
are interested in gains in product quality and savings in development time and cost.

2. The study subjects are sometimes students, who are easier to access for many researchers,
but may have less experience, e.g., with complex code bases and development processes.
Other subjects professional software developers, who are more difficult and/or expensive
to recruit, but may possess more study-relevant experience.

3. For practical research questions, the subjects need to do something for which there needs
to be a context. On the one end of the spectrum are make-believe environments, such as
homework assignments or small projects in educational settings (but also coding katas
and recruiting sessions in companies). Here, working towards a technical goal is a means,
but not the actual purpose (which may be gaining practical experience with theoretically
learned concepts, or improving routine programming, or assessing job applicants). The
same applies to environments which are specifically designed by a researcher for a study
with small and isolated tasks. At the other end of the spectrum are contexts which existed
before a researcher entered the scene. Here are industrial and other projects with a bigger
time frame, more involved people, and more dependencies.

In theory, studies could be positioned anywhere along these dimensions. In practice, these
dimensions are not completely independent from another. There might be a natural fit, e.g., for
an educational research goal, it makes sense to use students as subjects. Studies with an industrial
research goal often rely on student subjects as a “convenience sample”, which is debated in
the SE community (e.g., in Salman et al., 2015). Whether or not a particular “industrial” or
“educational” study is relevant for my research depends on the three dimensions as follows:

• Although my own research goal is industrial, there is no reason to exclude studies
with an educational goal—in particular since studies on students’ learning achievements
presuppose the Learn mechanism, i.e., pair programmers learning together and from one
another, improving their capabilities to work on future tasks.

48

2.3.2 Overview of Pair Programming Research

• I expect no fundamental differences between student and professional subjects for my
research. After all, individuals can assume both roles, e.g., as students working during
their studies or experienced professionals studying part-time.

• I expect artificial and industrial contexts to differ in two relevant ways: The subject’s
motivations differ (e.g., because they expect to work on similar tasks again in the near
future) and the amount and diversity of knowledge necessary to work on isolated tasks
is smaller than in large projects. Hence, I focus on studies in realistic contexts, where
different knowledge types and the effectiveness of the Combine mechanism—instead of
just Understand—can be studied (aspects A2 and A1). However, I do not categorically
exclude artificial tasks, for which the researchers are possibly omniscient. This enables
them to assess the effectiveness of the Learn and the Understand mechanism.

2.3.2 b) Properties of Different Research Designs

There are different ways to collect data from which to draw conclusions about reality:4

• In controlled experiments, a situation is described by a number of variables, one or
more of them are varied as independent or input variables, while the others are kept the
same to measure an effect on one ormore dependent or output variables. Quantitative data
and statistical analysis then allow to test for causal relationships between the variables. If
the measured difference between the groups is large enough to become visible against the
variation within the groups, a statistically significant result may be reported, often in the
form of an effect size. In my discussion of quantitative studies, I will cite (or, if possible,
calculate) relative differences using intuitive scales as 10% faster or 5% higher exam score
rather than just the standardized effect size which makes studies with different scales
comparable, but is less intuitive (see Figure 2.4 on effect sizes).
Some studies set the work mode (pair vs. solo) as the input variable, give the same task to
all subjects, and measure differences in product quality or time to completion, which could
then be attributed to the application of the pair work mode. Other studies let all subjects
work in pairs and vary the difficulty of the tasks to test its influence. Either way, controlled
experiments can only show causal relationships and effect sizes for already understood
and operationalized phenomena (such as time spent, lines of code written), but do not tell
which other variables to consider as moderators (such as task complexity, development
experience, pair programming skill, personality attributes, office environment, etc.). With
relevant moderator variables left uncontrolled, otherwise rigidly controlled experiments
yield inconclusive results.

• In surveys, subjects are asked for their personal experiences, beliefs, and opinions on a
matter. Correlational statements can be made based on such data, but causal relationships
cannot be established. There is no guarantee that subjects report truthfully and accurately,
so surveys are not suitable to determine facts about the events that actually take place in
pair programming sessions, but are sometimes the only practical proxy. However, if the
reporting subjects are able to reflect on their practice, they may provide some ideas for
relevant aspects (see Section 2.3.1d above).

• In observational studies, researchers observe subjects directly or indirectly and attempt
to record facts about events as they take place. Such studies may use tools to automatically
collect data, e.g., all interactions with a computer program, or rely on a researcher to
take fieldnotes. (See Lethbridge et al., 2005, for an extensive overview of many more
ways to collect data in the field.) The resulting data tends to be detailed, and allows for

4See Stol & Fitzgerald (2018) for a comprehensive overview. I focus on methods used in PP research.

49

CHAPTER 2. RELATED WORK

An effect size is the strength of the relationship of two variables, say, between developers working
either alone or in pairs and the quality of the produced software. There are several ways to express
an effect size. Themean difference 𝑫 is an unstandardized effect size. Such a measure is accessible
to intuition if the scale is commonly known. In contrast, a standardized effect size is scale-free,
which allows comparison across studies. A commonly used measure is Hedges’s 𝒈: It is the ratio
of the mean difference and the pooled standard deviation corrected by a factor for small sample
sizes. The idea is that a large mean difference is less meaningful for noisy data. A third type is the
means’ ratio 𝑹, which can be used if the data is on a ratio scale with a natural zero point.

In a hypothetical study comparing assignment scores between a solo and a pairing group of sizes
𝑛1 = 𝑛2 = 10, with means𝑋1 = 9 and𝑋2 = 11 points, and with standard deviations 𝑠1 = 3 and 𝑠2 = 2.5
points, the three effect sizes pan out as follows:

𝐷 = 𝑋2 −𝑋1 = 2 𝑔 =
𝐷

𝑠𝑝
⋅ 𝐽 =

𝐷
√
(𝑛1−1)𝑠21+(𝑛2−1)𝑠22

𝑛1+𝑛2−2

⋅ (1 − 3
4(𝑛1+𝑛2−2)−1) ≈ 0.69 𝑅 =

𝑋2

𝑋1
≈ 1.22

The mean ratio 𝑅 of 1.22 can also be expressed as a relative mean difference 𝑫%: A change of
+22% (calculated as 𝐷% = (𝑅 − 1) ⋅ 100). The 𝑔 value, however, is less intuitive: It merely states that
the two groups’ means are 0.69 standard deviations apart. Kampenes et al. (2007) compared 284
effect sizes reported in software engineering research and propose the following categories: An
effect with 0.00 ≤ 𝑔 ≤ 0.376 is small, 0.378 ≤ 𝑔 ≤ 1.000 is medium, and 1.002 ≤ 𝑔 ≤ 3.40 is large.

Either type of effect size, generically referred to as 𝑌 , can be reported as a point estimate 𝑌 , which
is a single value that comes close to the true effect size, or as a confidence interval (CI) that
very likely contains the true effect size. The width of the interval depends on the standard error
of the effect size, which in turn is the square root of the effect size’s variance: 𝑆𝐸𝑌 =

√
𝑉𝑌 . (The

formula for the variance depends on the type of effect size.) Assuming the effect size is normally
distributed, the boundaries of the 95%-CI are given by: 𝑌 ± 1.96 ⋅ 𝑆𝐸𝑌 (with 1.96 being the area
under the standard normal distribution between the 2.5 and 97.5 percentile). In the hypothetical
study, the confidence intervals would be as follows:
95% CI𝐷 = [−0.42, 4.42] 95% CI𝑔 = [−0.17, 1.56] 95% CI𝑅 = [0.96, 1.56] or [−4%,+56%]

When the CI does not contain zero, the difference it said to be statistically significant at a certain
level (here 𝛼 = 1 − 95% = 0.05). Hence, the difference in the hypothetical study is not significant.

Meta-analyses combine the results from multiple studies. The summary effect size 𝑀 is the
weighted mean of the individual effect sizes 𝑌𝑖 . If the studies are functionally identical, one may
assume that they all estimate the same underlying effect in a fixed-effect model. Here, studies
with narrow confidence intervals—typically the studies with more subjects—get a larger weight,
which is just the inverse of their effect size variance𝑊𝑖 =

1
𝑉𝑌𝑖

.

If the studies had different populations, followed different procedures, etc., assuming one common
effect is not reasonable. A random-effects model assumes a (normal) distribution of true effect
sizes. To include information on different effect sizes, the weights𝑊 ∗

𝑖 are more balanced, increasing
the impact of small studies with wide confidence intervals (and decreasing the impact of large
studies with narrow intervals). The CI around a random-effects model summary effect𝑀∗ is always
wider than around a fixed-effect model summary effect𝑀 .

Heterogeneity is a property of the set of primary studies which gets higher when the primary
studies’ CIs overlap less. In a fixed-effect model, it can be used to assess the assumption of a common
underlying effect; in a random-effects model, it is used to set the strength of the weight balancing,
giving far-off studies more impact. Some heterogeneity is to be expected in any meta-analysis, e.g.,
due to differences in experimental setups and subject selection criteria (Higgins et al., 2003). The
𝐼 2 statistic measures heterogeneity as a ratio (the ratio of the not-expected, the so-called excess
variance, to overall variance) and thus makes different meta-analyses comparable.

Figure 2.4: A brief introduction to effect sizes and meta-analyses based on Borenstein et al.
(2009), Introduction to Meta-Analysis, in particular chapters 4, 8, 11–13, and 16.

50

2.3.2 Overview of Pair Programming Research

qualitative-quantitative analysis (i.e., manually coding phenomena in order to perform
statistical analyses on the annotations) and in-depth, qualitative analysis to understand
how some phenomenon such as pair programming unfolds.

Both industrial and educational studies could, in theory, employ all these approaches, but there
are practical considerations involved. Designing a controlled experiment in the context of a
large project would be more expensive than an experiment with small isolated tasks, as there
have to be (at least) two experimental conditions, such as two otherwise identical projects—or
better: groups of projects—which can be compared.

The research approaches differ in how close they are to their phenomena of interest. For
studies with an industrial research goal, controlled experiments might be tempting because of
their seemingly clear results, but at the same time they might be far removed from anything
professional software engineers encounter in their daily lives, because of isolated tasks, short
time frames, developers not having (or needing) much pre-existing knowledge, etc. (which
may be more or less of a problem, depending on the research topic). Here, the experiment is
not the real world. In educational settings, however, the setup of a controlled experiment can
be quite ‘natural’, e.g., if the students either work in pairs or alone for one semester on their
normal homework assignments. Surveys, among professionals as well as students, may a have
connection to real-world events (e.g., recent experiences of the respondents), but are better
at recording beliefs and opinions rather than objective facts about these events. Responses
that look like facts may or may not pertain to real events—either way, the researcher usually
cannot validate them. Observational studies aim for more rigor at capturing aspects or the full
breadth of specific real-world events, such as the cases in case studies (Yin, 2014, pp. 31–35).

2.3.2 c) Approaching the Body of Research on Pair Programming

The existing PP literature is mostly covered by four secondary studies: In terms of the number
of primary studies, there are two large ones, Salleh et al. (2011) and Vanhanen & Mäntylä
(2013), and two smaller ones, Hannay et al. (2009) and Estácio & Prikladnicki (2015), which
together cover 258 different primary studies (see Figure 2.5).

Roughly speaking, Salleh et al. (2011) focused on pair programming in education, whereas
Vanhanen & Mäntylä (2013) looked at industrial software development. As discussed in Sec-
tion 2.3.2a, there is no canonical way to separate these two areas. As can be seen in Figure 2.5,
there is in fact a small overlap between the two studies. Hannay et al. (2009) looked exclu-
sively at quantitative results regarding pair programming effectiveness; Estácio & Prikladnicki
(2015) reviewed studies on distributed pair programming (DPP), i.e., the idea of two software
developers working closely together without sharing a physical workspace. The area of DPP
were explicitly excluded by the two large secondary studies. The explicit and implicit selection
criteria for each of the four secondary studies on pair programming are summarized in Table 2.3.
Table 2.4 summarizes the research topics and methods commonly used to investigate the five
aspects.

Salleh et al. (2011) provide a systematic literature review (SLR) of studies on pair pro-
gramming as an educational tool in higher education, which are mostly concerned with the
effectiveness of Learning through PP and with pair compatibility. Here, effectiveness (A1) is
often studied in experimental designs. Salleh et al. provide a quantitative synthesis which I
extend with the data from two additional studies, showing an overall positive effect of PP. Pair
compatibility (A4) is addressed through experiments and surveys. Here, however, the authors’
qualitative synthesis is not convincing (details follow in Section 2.3.3b), so I searched for further
primary studies and provide one of my own. The aspects of relevant knowledge types (A2)
and task types (A3) remain implicit: Most of the time, students worked on their homework

51

CHAPTER 2. RELATED WORK

Co-located PP
Distributed PP

Industry Education
Vanhanen & Mäntylä (2013)

n=154

Salleh et al. (2011)
n=74

Estácio & Prikladnicki (2015)
n=33

Hannay et al. (2009)
n=18

Figure 2.5: Overview of the 258 primary PP studies surveyed by the four secondary studies.
Vanhanen & Mäntylä (2013) focused on PP in industry, Salleh et al. (2011) on PP in education.
Because of their hybrid nature, four publications are cited in both overview articles. Estácio
& Prikladnicki (2015) focused on distributed pair programming, which the other two large
reviews explicitly excluded. Hannay et al. (2009) performed a meta-analysis of experimental
studies on PP (colored in purple). Table 2.3 lists their respective selection criteria.
This figure is based on the secondary studies’ bibliographies. Salleh et al. (2011) excluded
one of their 74 primary studies, but do not mention which one; Estácio & Prikladnicki (2015,
Sec. 5) refer to “34 papers” throughout their manuscript, but list only 33 “Papers extracted
from the SLR” in their Appendix A.

Secondary Study Industry/Education PP Mode

Research Goal Subjects Context

Salleh et al. (2011) educational (students) (artificial) co-located
Vanhanen & Mäntylä (2013) industrial professionals both co-located
Hannay et al. (2009) industrial both (both) (both)
Estácio & Prikladnicki (2015) both (both) (both) distributed

Table 2.3: Selection criteria used by the four secondary studies on pair programming. The
three dimensions to distinguish industrial from educational research are discussed in Sec-
tion 2.3.2a. Implicit criteria (effective, but not explicitly mentioned by the authors) are put in
parentheses.

52

2.3.2 Overview of Pair Programming Research

Aspect PP in Education PP with an Industry Focus

Effectiveness
(A1)

Combine & Understand:
Code quality Exp
Duration/effort Exp

Combine & Understand:
Code quality Exp PF
Duration/effort Exp

Learn:
Quiz/assignment/exam scores Exp
Perceived learning/satisfaction Sur

Learn:
Perceived knowledge levels PF

Knowledge Types
(A2)

– Knowledge relevant for PP PF QQ
Knowledge acquired through PP PF
Knowledge used/transferred in PP Q

Task Suitability
(A3)

– Task complexity Exp
PP usage per task PF
PP usage throughout project PF

Pair Constellations
(A4)

Personality Exp Sur
Skill level Exp Sur

Personality Exp
Experience Exp PF Q
Knowledge level PF

Pair Process
(A5)

Communication amount Exp QQ Communication amount PF
Type of communication QQ Q
Pair activity patterns Q
Cognitive processes Q
Conflict handling QQ
Driver/navigator roles QQ Q

Table 2.4: Research topics andmethods applied by the publications cited in this chapterwhich
investigate the five practically relevant aspects of knowledge transfer in pair programming.
Research designs: Exp (controlled) experiment, Sur survey, PF project-level field study (which
considers PP as a practice), QQ qualitative-quantitative and Q purely qualitative study (both
considering PP as a work mode).

assignment and learned about whatever their CS courses were about. The pair programming
process itself (A5) was not a topic in the SLR, so I looked for (and found) information in their
cited papers and in additional sources. The details of all this I report in Section 2.3.3.

Vanhanen&Mäntylä (2013) did amapping study of pair programming in industry which
contains no synthesis of the primary studies’ findings. Instead, the researchers (1) rated each
individual result from each study, (2) grouped the studies under six topics and 18 subtopics, and
(3) characterized the quality of what is known concerning each of the (sub)topics. Across all
154 primary studies, Vanhanen & Mäntylä (ibid., Sec. 4.2) identified 608 instances of relevant
information concerning these topics. However, 430 (or 71%) of those instances were only rated
as “fair” , i.e., consisting of descriptive data from experience reports as opposed to more rigorous
case studies or experiments (ibid., Table 12), leaving only few studies with credible findings.
I already discussed experience reports and practitioner surveys in Section 2.3.1d, which led
to the five aspects (A1 to A5) relevant for my work. There are studies addressing all of them,
some referenced and already evaluated by Vanhanen & Mäntylä, others I found myself. The
effectiveness of pair programming (A1) is mostly studied through controlled experiments. In
contrast to educational experiments which focus on Learning effects, industrial experiments
are concerned with technical outcomes such as code quality and development effort, which
can be interpreted as effects of Combine and Understand. In most experiments, however,
the context is artificial which diminishes the effect of pre-existing knowledge thus effectively
robbing experienced developers of any effect from the Combine mechanism.

53

CHAPTER 2. RELATED WORK

The third secondary study on my list, Hannay et al. (2009), is a meta-analysis of such
experiments, from both industrial and educational settings. I extend their meta-analysis with
data from additional studies.5 For aspects A2 to A5, which are mostly addressed through
observational studies (using an array of different methods), no synthesis has been done yet,
so I used Vanhanen & Mäntylä’s mapping study to (1) identify studies which are decidedly
on-topic and (2) looked for possibly relevant studies which contain credible observations on
any of the five aspects without having made it their main topic. Additionally, (3) I looked for
further material published more recently. I present the results of my literature work grouped
by research method in Section 2.3.4.

The SLR by Estácio & Prikladnicki (2015) is concerned with distributed pair program-
ming (DPP), a variant of the work mode where the two developers do not physically sit in front
of the same computer, but use some tool to collaborate from different desks, offices, or even
countries. Both large secondary studies explicitly excluded DPP studies from their literature
search (Salleh et al., 2011, Sec. 2.4; Vanhanen & Mäntylä, 2013, Sec. 3.3). Many DPP studies
are concerned with bridging the communication gap between the two separated partners
and focus on tool support—Estácio & Prikladnicki (2015, Table 5) list no fewer than 11 tools
which were specifically developed for DPP. Empirical studies (with one exception) took place
in educational contexts, often in the form of experiments and sometimes surveys comparing
either distributed with co-located pair programming or DPP with solo work regarding code
quality, productivity, and academic performance (A1). I discuss the individual studies in the
appropriate places in Sections 2.3.3 and 2.3.4. The studies discussed by Estácio & Prikladnicki
do not address the other aspects A2 to A5.

2.3.3 Pair Programming in Education

Salleh et al. (2011) surveyed 74 studies on PP, which they selected based on their research goal
to inform educators in higher education. All of these studies—naturally—were conducted in
educational settings and used students as subjects.

According to Salleh et al., PP research in education has two main topics. The first concern
is determining the effectiveness of PP as a pedagogical tool. These studies compare pair pro-
gramming against solo programming in the context of homework assignments or some larger
project. They are ultimately interested in the effectiveness (A1) of the Learn mechanism, i.e.,
effects of PP on the individuals’ knowledge. These effects are measured either directly through
quizzes, assignment scores, exam grades, or through students’ self-assessments and satisfaction
in comparison with non-pairers. Roughly speaking, knowledge is regarded as an outcome of
pair programming in this type of studies. I discuss them in Section 2.3.3a.

In Section 2.3.3b, I discuss the second topic, which is that of pair compatibility (A4) and
its influence on the effectiveness. These studies do not compare pair programming with
solo programming, but focus on the influence of students’ skill levels, and their learning and
communication styles on their pair programming sessions in terms of session effectiveness,
satisfaction, and self-assessed pair compatibility. Here, at least for studies interested in the role
of student’s skill levels, knowledge is regarded more as an input of pair programming sessions.

The aspect of the actual pair programming process (A5) is not explicitly addressed in
the SLR. In Section 2.3.3c, I discuss what researchers in education tacitly appear to expect to
happen in pair programming and the few studies which actually looked into it.

5Note that I did not conduct a structured literature search to include all quantitative PP studies that were
published after Salleh et al.’s and Hannay et al.’s periods (1999–2007 and 1998–2007, respectively). Rather, I
pragmatically extended their respective meta-analyses with quantitative results from studies which I came across
in my general search for related work.

54

2.3.3 Pair Programming in Education

2.3.3 a) Learning Effectiveness of Pair Programming (A1)

There are basically two ways how researchers try to determine whether students learn in
educational pair programming sessions: One is through experimental designs with students’
quiz answers, assignment scores, or exam grades as dependent variables, the other is through
surveys asking for a personal account from the students’ perspective.

Experimental Designs
Canfora et al. (2004, 2005) and Bellini et al. (2005) conducted a number of controlled experi-
ments. The researchers designed a software system and issued system understanding quizzes
before and after students worked for two hours with UML diagrams as well as the system’s
specification either alone or in pairs. They show that, overall, “pair designing” led to a better
understanding of the system’s design.

Such a specifically designed system allows researchers to develop quizzes to test the
students and to directly measure a change in knowledge levels. Most experimental designs
only look at the outcome in terms of assignment and exam scores, assuming that if paired
students get better grades than solo workers, some Learning must have happened along the
way. Although some studies found no significant effect and others even reported significant
negative effects of pair programming, the meta-analysis by Salleh et al. (2011, Sec. 3.4) yielded
a small positive effect on final exam scores (Hedges’s 𝑔 = 0.16) and a medium positive effect on
assignment scores (𝑔 = 0.67). I amended their meta-analyses with the data from two additional
studies and more intuitive measures; see Table 2.5 for the results and Appendix D for the
technical details.

Variable Studies Subjects Rel. Mean Diff. Het.
𝑘 𝑛 𝐷% 95% CI 𝐼 2

Exam Score 12 2 067 +4.2% [+0.3%, +8.2%] 72%
Assignment Score 7 1 263 +11.3% [+5.0%, +18.0%] 83%

Table 2.5: Statistical results of two meta-analyses on educational pair programming effects,
based on the data collected by Salleh et al. (2011, Sec. 3.4, Fig. 4 & 5) and two additional studies
(see Figure 2.4 for an explanation of 𝐷% and Appendix D for calculation details). The effects
are all in favor of pair programming: about 4% higher scores in exams and more than 11%
higher scores in assignments. Heterogeneity is high in both cases, meaning that the effect
sizes vary a lot between the individual studies. In the exam score studies, the subjects were
individuals; in the assignment score studies, some subjects were pairs, others were individuals.

This first additional study is a controlled experiment conducted by Cheney (1977), which is not
discussed in any of the secondary studies on pair programming. To the best of my knowledge,
Cheney was the first to use the term “pair programming”, although with a slightly different
meaning. He randomly assigned 120 students to two conditions: Those in the “individual
programming” group had to write six programs alone, while students in the “pair programming”
group started alone but then exchanged the first versions of their respective programs with
their partner who would check the code for errors and repeat the process with as much
communication as needed. The pairs were allowed to hand in just one solution for both
partners. The scores of the individually taken final exams showed a significant difference in
favor of the “pair programming” group.

The second addition is an experiment by Zacharis (2011) in which he compared 65 solo-
working students with 64 who worked in distributed pair programming (DPP) mode on four
homework assignments. He found only small and not statistically significant effects on the

55

CHAPTER 2. RELATED WORK

students’ assignment (in favor of pair work) and exam scores (in favor of solo work). (Zacharis
did find significant differences with regard to productivity and quality, which I discuss along
with other experiments interested in these economic factors in Section 2.3.4a.)

Considering all these studies together, pair programming has a positive effect on exam
and assignment scores, about 4% and 11%, respectively (see Table 2.5 and Appendix D). This
difference potentially helps explaining the findings of Hanks (2008) who compared the assign-
ment and exam scores of 116 students who worked either in co-located or in distributed pairs.
The only significant effect was a negative effect of distributed working on the assignments
scores for one out of three classes; there were no significant differences in exam scores. Since
there was no group of solo programmers, there can be no 1-to-1 comparison to the above
meta-analysis. However, one interpretation would be that DPP imposed too many difficulties
on the students (negative effect in assignments), which did not affect the exam scores since
pair work during the semester does not affect the final exam scores much anyway (small effect
on exam scores).

Self-reported achievements
Salleh et al. (2011, Sec. 4.5) summarize that PP is satisfying for students in part because it helps
them increase their knowledge. Evidence for this conclusion comes from surveys which a
number of studies either used as their main instrument for collecting data or as an auxiliary
source. Salleh et al. did not conduct a detailed analysis in this regard, so I provide one of my
own, covering the studies cited by Salleh et al. (2011) and Estácio & Prikladnicki (2015).

Some studies simply recorded that knowledge transfer supposedly happened. With regards
to the share of students who report such a knowledge transfer effect, there is a notable
difference between surveys in which the students bring up the topic of increased knowledge
by themselves as an answer to an open question and those in which there were closed questions
asking students to agree or disagree, which (depending on the framing of the question) might
induce a bias towards a conforming answer. In questionnaires with open questions asking for
general benefits of pair programming, between 30% and 47% percent of students explicitly list
effects related to knowledge transfer (see Table 2.6 for details). In questionnaires with closed
questions such as ‘I learned more/faster/better about X because I worked with a partner’, those
with a binary scale (agree/disagree) got around 85% agreement rates by the students, whereas
the rates from studies using scales with more degrees in between range from as little as 48% to
as much as 94% of students who ‘agreed’ or ‘strongly agreed’ (see Table 2.6 for details). Overall,
at least half of the students report that they learned more about their courses’ subjects in pairs
than they would have working alone. Of course, these surveys do not record matters of fact,
but only perceived effects at best.

Other studies went beyond treating knowledge transfer as a binary property and looked at
the breadth and depth of transferred knowledge. Vanhanen & Lassenius (2005) asked students
for their perceived knowledge levels after having worked in four-developer project teams
either with or without having pair-programmed. The authors correlated students’ self-reported
understanding across software modules with self-reported involvement in development and
found differences between the pairing team and the solo team: Pair programmers, on average,
understood 4.5 out of 10 packages at least “quite well” , as opposed to 3.4 packages for the solos.
However, due to the small sample size (one team per condition, four developers each), this
difference is not statistically significant.

Summary
Studies with an experimental design and those capturing students’ own experiences point in
the same direction: The Learn mechanism is effective (A1) in that students feel they learned

56

2.3.3 Pair Programming in Education

Study Scale Agreement Subjects (𝑛 =)

Williams & Kessler (2000, Sec. 4) binary 84% 20
Freeman et al. (2003, Table 4) binary 86%, 86% 106
Janes et al. (2003, Sec. 3.2) binary 80% 15
Chaparro et al. (2005, Sec. 5.4) rating 48%, 55%, 65% 58
Hanks (2006, p. 114) rating 50% 115
Howard (2006, Table 2) rating 78%, 88% 74
Zacharis (2011, Table VII) rating 94% 64
Xu & Rajlich (2005, Table V) rating (0–5) 𝑥 = 3.8 4
Zin et al. (2006, pp. 167–168) rating (1–4) 𝑥 = 2.06 147
Edwards et al. (2010, Table 2) rating (1–4) 𝑥1 = 3.16 𝑥2 = 2.79 ≈ 100
VanDeGrift (2004, Table 1) rating (1–5) 𝑥1 = 3.2 𝑀1 = 3

𝑥2 = 3.5 𝑀2 = 4
293

Freeman et al. (2003, Fig. 2) open 47% 106
VanDeGrift (2004, Table 2) open 30% 293

Table 2.6: Students’ agreement rates from surveys with close-ended questions in the form
‘I learned more/faster/better about X because I worked with a partner’ and open-ended questions
asking for PP benefits in general. Agreement rates for rating scales represent ‘(strongly) agree’
responses. More than one agreement rate indicates multiple similar items.
Edwards et al. (2010) did not report the exact number of subjects. Four studies mapped their
rating scales (= higher is more agreement; = lower is more agreement) on interval scales
and only report the median (𝑀) and/or mean values (𝑥).

something and that it has a positive impact on how much students learn—at least in terms of
assignment scores, not so much exam scores.

2.3.3 b) Pair Compatibility (A4)

Instead of comparing pair programmers with solo programmers, some educators compared
different types of pairs, expecting that not all constellations work equally well (A4). Salleh
et al. (2011, Table 4) list 14 possible factors of a pair’s compatibility which may influence
their effectiveness. Most of these factors were subject to three or fewer primary studies,
leaving personality and actual skill level as the most studied ones. I discuss findings regarding
both factors below as they may be relevant for understanding knowledge transfer in pair
programming.

Personality Types
Most primary studies looking at the pair members’ personality types did not produce signifi-
cant effects, with only a few indicating that pairs with different personality types are more
productive (ibid., Sec. 3.3). As of 2011, there had been no agreement on whether homogeneity
or heterogeneity of personalities is better (ibid., Sec. 4.4).

Salleh et al. (2014) consequentially performed a series of four experiments investigating
the effect of three of the Big Five personality factors (conscientiousness, neuroticism, and open-
ness) on the academic performance (in terms of assignment scores and exam results) as well
as satisfaction and confidence of students working in pairs. (Note that pair programming
is part of the context here, not an independent variable.) Their first experiment compared
conscientiousness-wise heterogeneous pairs to those with a similar elevation, which did not

57

CHAPTER 2. RELATED WORK

show a significant difference in academic performance. The other three experiments only
considered homogeneous pairs, i.e., with both partners scoring low, medium, or high on con-
scientiousness, neuroticism, or openness, respectively. Since students cannot be randomly
assigned to a trait level, these last three were quasi-experiments, each of which was designed to
study the effects of one personality trait. The only significant difference the authors found was
a better academic performance of students who scored high on openness compared to medium
or low scorers.6 However, since a higher openness level is considered beneficial for academic
performance anyway—as the authors themselves note (Salleh et al., 2014, Sec. 8.2)—the ob-
served effect is not necessarily related to pair programming. Although the authors considered
studying pairs comprising a more and a less open student (ibid., Sec. 6), to the best of my
knowledge, no such study has been done yet.

Findings from a different study suggest an advantage of different personalities (Sfetsos et al.,
2013). The 20 pairs with differentMBTI temperament types achieved significantly higher design
and correctness scores in their lab assignments than the 20 homogeneous pairs.7 Furthermore,
there was a strong positive correlation (𝑟 2 = 0.839) between the pairs’ scores and the amount of
communication in their session which was self-recorded by the students during their sessions
on paper by counting their “communication transactions” . However, it is not clear what to make
of this result: The granularity of these “transactions” appears to be rather coarse as the average
session with a length of 105 minutes had only about 16 of them (ibid., Table 5). The authors do
not provide detail on the pairs’ actual interaction, so it is not clear which circumstances led
to more or less recorded transactions and what the students learned along the way beyond
technically solving their task.

Overall, the personality (dis)similarity of student pairs appears to have some effect on how
they work together.

Skill Level
The pair members’ respective skill level—in terms of programming experience or academic
performance—is another common research interest for educators. Intuitively speaking, a too
large difference between pair members may pose a problem as a more skilled student might
get bored or frustrated by her less skilled partner who might in turn be overburdened. Salleh
et al. (2011, Table 4 & Sec. 3.3) see a “consensus” in the form of a “significant positive effect [of]
actual skill level [similarity on] effectiveness and/or pair compatibility” . This characterization,
however, cannot be justified by the findings of the primary studies they cite, because:
a) Not all cited studies employed quantitative methods to yield ‘significant effects’.8

b) Not all cited studies actually considered (1) pair similarity. Other studies had different
skill level notions as they analyzed the effect of (2) a single pair member’s experience
(which may point to compatibility-related effects indirectly), or of (3) the sum of the pair

6Calculated from Salleh et al. (2014, Table 11) using Borenstein et al. (2009, Eq. 4.30–4.36): relative mean
differences between pairs with low and high openness is +9% in assignments (95%-CI: [−2%,+22%], Hedges’s
𝑔 = 0.34) and +18% in exams (95%-CI: [+4%,+34%], Hedges’s 𝑔 = 0.54).

7Calculated from Sfetsos et al. (2013, Table 5) using Borenstein et al. (2009, Eq. 4.30–4.36): relative mean
difference between homogeneous and heterogeneous pairs for scores is +150% (95%-CI: [+100%,+213%]). Hedges’s
𝑔 = 3.09 is very large (in the 99-percentile of software engineering effect sizes, see Kampenes et al., 2007).

8Cliburn (2003, Sec. 5, aka S15) closes with an informal observation on his introductory programming classes
that “pair programming works best [. . .] when partners are at the same ability level” , after assigning partners based
on their grades. Van Toll et al. (2007, Sec. 5, aka S58) report on a single student who worked in four different pair
constellations, for which he experienced some learning in constellations of slightly different prior experience, no
learning with comparable prior experience, and constant frustration with much more experience. I was not able to
obtain the full-text of Cao & Ramesh (2004, aka S11), but according to the paper’s abstract, this is an “exploratory
study” that “collected qualitative data” rather than a quantitative one with a statistical analysis.

58

2.3.3 Pair Programming in Education

Study [ID] Subjects
(𝑛 =)

Skill Level Notion Dependent
Variable

Sig.
Corr.?

Canfora et al. (2005) [S8] 28 (1) similarity of educa-
tional background

quiz score (✓)

Williams et al. (2006) [S63] 1 320 (1) relative skill levels
(midterm, SAT)

perceived
compatibility

(✓)

Gevaert (2006) [S74] 28 (2) solo performance pair satisfaction ✗

Müller & Padberg (2004) [S42] 19/19 (2) experience of less/
more experienced pair
member

implementation time ✗/✗

Müller & Padberg (2004) [S42] 19 (3) total pair experi-
ence

implementation time ✗

Madeyski (2006) [S68] 35/31 (3) mean pair experi-
ence

external code quality
(with/without TDD)

✗/✓

Table 2.7: Characteristics of correlational studies (IDs from Salleh et al., 2011) looking into
pair members’ skill difference (1), individual skill levels (2), and collective skill levels (3).
Subjects for notions (1) and (2) are individuals; for notion (3), the subjects are pairs.
Symbols: ✓—one study reports a significant correlation; ✗—most studies do not report signifi-
cant correlations; (✓)—two studies havemixed results: Canfora et al. (2005) report inconsistent
rank-sum statistics making it impossible to validate their claims, Williams et al. (2006) report
significant correlations only for a part of one out of three courses.

member’s individual experience (which completely masks any differences between, say, a
high-low and a medium-medium pair).

c) The cited studies which did employ statistical means to test for significant correlations
between some notion of skill level and some measure of effectiveness overwhelmingly
did not report significant effects (see Table 2.7).

Since the secondary study cannot be relied on in this regard, I discuss the primary studies
individually, grouped by their notion of “skill”.

Skill in Terms of (1) Pair Similarity Canfora et al. (2005) compared the levels of system
understanding of pair members in different constellations of students with “scientific” and
“non-scientific” educational backgrounds based on individually taken quizzes. The authors
claim that mixed pairs performed worse than pairs of students with the same background
(ibid., pp. 1480–1481). According to the reported rank-sum statistics (ibid., Table 2), individuals
from the 5 scientific pairs indeed performed significantly better than individuals from the 4
mixed pairs and the 5 non-scientific pairs. The reported statistics for the comparison of mixed
pairs and non-scientific pairs, however, are inconsistent,9 so the authors’ conclusion cannot be
validated. And even if the statistic results are correct, the experiment did not compare actual
skill levels (as implied by Salleh et al., 2011) but educational backgrounds. The reported 𝑝-value
(0.020), however, indicates some difference between the groups (assuming it was calculated
correctly). Quite possibly the different educational backgrounds of the pair members in the

9According to Canfora et al. (2005, Tables 1 & 2), 𝑛1 = 8 individuals came from mixed scientific/non-scientific
pairs and 𝑛2 = 10 from non-scientific pairs, for which the authors report rank-sums of 𝑅1 = 135 and 𝑅2 = 75. This
cannot be true because for a total of 𝑁 = 𝑛1 + 𝑛2 = 18 ranks to be filled, 𝑅1 + 𝑅2 should equal 𝑁 (𝑁 + 1)/2 = 171,
but is actually 135+ 75 = 210: There are not enough ranks to get rank-sums this large. This is possibly a copy-paste
error, as the rank-sum values are the same as in the table row above which compares two larger groups.

59

CHAPTER 2. RELATED WORK

mixed pairs made their communication more difficult. The actual process (A5), however, was
not looked at by the researchers.

Williams et al. (2006)10 analyzed pair programming in the context of a number of university
courses and relied on 1,320 students’ assessments of whether they felt “very compatible” , “ok” ,
or “not compatible” with their assigned partner.11 The authors tried to predict compatibility
through a number of variables such as learning styles, self-esteem, and also actual skill level.
They did find a small number of significant correlations for some instances of one out of three
courses, but overall conclude that compatible pairs cannot be proactively created based on
differences in actual skill levels (ibid., Sec. 3.3.2). On the flipside, each of the over 1,300 students
was assigned to three to four different partners over time and only 7% of the pair constellations
were self-assessed as “not compatible” in the first place (ibid., Table 3), so it does not appear
particularly urgent to find a way to create compatible pairs.

Skill in Terms of (2) Individual and (3) Collective Skill Levels While Canfora et al. (2005)
and Williams et al. (2006) considered the (dis)similarity of pair members with regard to their
educational background and skill levels, other correlational studies looked at individual and
collective skill levels, which are not suitable for answering questions about pair compatibility.
These studies are nevertheless relevant for understanding knowledge transfer as they deal
with the pair members’ exhibited skills which can be considered a result of their individual
and collective prior knowledge.

Gevaert (2006, Sec. 4.1.1 & 5.5) found no significant correlation between individual perfor-
mance scores of 28 students and the satisfaction they attributed to their 60 minutes of pair
work. Müller & Padberg (2004) conducted two experiments on the influence of prior experience
on development performance with a total of 19 programming pairs. They neither found a
statistically significant correlation between total pair experience and time taken to complete
implementation tasks (ibid., Sec. 4.1), nor between the individual experience levels of either
the less or more experienced pair member and implementation time (ibid., Sec. 4.3). Madeyski
(2006) performed an experiment with 66 programming pairs and found a significant correlation
between a pair’s mean programming experience in years and external code quality (but not
for pairs who employed test-driven development).

Summary Overall, there is only little and only inconclusive evidence for assessing the effect
of pair members’ skill levels on their effectiveness and satisfaction. For the experimental tasks
given to student pairs, prior knowledge or solo performance of the pair members may or may
not have an effect on how well the pair performs. Although intuition and anecdotal evidence
suggest that large differences in pair members’ skill levels may hamper the pair process, reliable
evidence is lacking.

The results of a study by Wilson et al. (1992), which is not referenced by any of the
secondary studies, indicate that having a programming partner lessens the impact of each
pair member’s capabilities. The authors correlated the scores of 10 student pairs with 14 solo
students on a 60-minute programming task with their respective university grades. While the
solos’ grades significantly correlated with their programming scores (𝑟 = 0.46, 𝑝 < 0.1), the
correlation was not significant and weaker for the pairs (𝑟 = 0.26, 𝑝 > 0.1).

10Although Salleh et al.’s SLR references Katira et al. (2004, 2005) and Williams et al. (2006) as separate studies
(S28, S29, and S63), the last publication includes all data and findings from the earlier ones.

11Although Williams et al. (2006, Sec. 3) speak of compatibility data of 1,350 students, 30 students in the OO
class never actually worked in pairs (ibid., Sec. 2.2.3 & Table 2).

60

2.3.3 Pair Programming in Education

2.3.3 c) Pair Process (A5)

Bellini et al. (2005) noted on their pair design experiment, “[w]orking in pairs could be seriously
affected by the way pair’s members achieve cooperation” (see discussion on page 55). Starting
with the first pair programming experiment (Cheney, 1977, my discussion on page 55) and
continuing with most of the above mentioned studies, the authors do not discuss the actual
process of the programming pairs. In principle, to communicate “as much as they desire” (ibid.,
p. 2) could amount to as little as exchanging pieces of paper with source code, having very little
resemblance with “pair programming” in the common sense. Asking (or allowing) students to
work in pairs is not necessarily the same as students actually working in pairs—and even if
they do, their work styles may differ drastically.

Sfetsos et al. (2013, my discussion on page 58) report a strong positive correlation between
a pair’s amount of communication and its programming score. While none of the above
mentioned studies attempted to explain what actually happenswhen two students pair program,
some allude to an internal process—which becomes visible, e.g., in the wording of the closed
survey questions which point to some mechanisms the educators probably had in mind:
VanDeGrift (2004) specifically asked for the importance of giving explanations, while Freeman
et al. (2003) make a distinction between explaining and receiving an explanation (see Table 2.8).
Xu & Rajlich (2005, p. 11), who did not directly observe their students’ pair programming, state
that “knowledge is constantly exchanged between partners, which include [sic] those concepts
learned in the classroom, tool usage tips, programming language, design skill, and debugging
techniques” . It is not clear, however, whether this is a hypothesis or a finding from their analysis
of students’ survey answers (in which case it would also be a partial answer to A2).

Study Questionnaire items

Freeman et al. (2003, p. 6) I learned more from explaining my work to my partner.
I learned more because my partner explained their work to me.

VanDeGrift (2004, pp. 3–5) I gained more understanding of concepts in the course by
explaining them to my project partners.

Table 2.8: Items from questionnaires used in studies on pair programming effectiveness in
education which hint at internal mechanisms suspected by the administering educators.

Overall, the primary studies surveyed by Salleh et al. (2011) do not provide insight into what
the PP process looks like in educational settings and how precisely learning effects come to
be. A study from the late 1980s, however, did exactly that. In two individual studies, Webb
& Lewis (1988) followed a qualitative-quantitative approach: They recorded and analyzed
the conversation of students in groups of three and two who worked on beginner level tasks
in the programming languages LOGO and BASIC. Webb & Lewis categorized the individual
interactions, aggregated the counts to different “peer interaction variables” and correlated
these with learning achievement measures acquired through a post-test. They summarize their
findings as follows:

The specific behaviors in these studies that were found to be positively related to some
achievement outcomes were giving explanations, giving input suggestions, receiving re-
sponses to questions, receiving input suggestions, verbalizing planning and debugging strate-
gies to peers, and to some extent, receiving explanations. These behaviors should be en-
couraged in the classroom. The behavior found to be negatively related to achievement
was receiving no help when needed. This behavior should be discouraged.

Webb & Lewis (1988, p. 198, emphases added)

61

CHAPTER 2. RELATED WORK

In other words, students who exchanged explanations, communicated their plans, and followed
each other’s computer interactions learned more; students whose partner did not provide help
when necessary learned less. Simply put, for knowledge transfer to happen, students need to
communicate.

The results from a more recent study point in the same direction even though its setup
severely inhibited the collaboration of the pair members. Rodríguez et al. (2017) randomly
assigned 54 students to pairs and gave them a one-hour task with a graphical programming
language. The pair members were seated in separate rooms, one of them being the designated
driver who would share her screen with her partner. A text chat was their only means of
two-way communication. The researchers annotated the chat logs and correlated counts of
different message types and technical success. They conclude that “feedback of any kind” as
well as “meta-comments” were properties of highly successful pairs’ communication (ibid.,
Sec. 6).

2.3.3 d) Summary of Pair Programming in Education

For CS students, working in pairs on small tasks such as their homework assignments and
programming exercises in lab sessions appears to have a positive impact on assignment scores
and exam grades, indicating that pair programming is effective in terms of increasing the
understanding of concepts taught in class (A1, A2). Subjective accounts support this conclusion,
since more than half of the students who worked in pairs report such an effect in surveys.
Knowledge transfer in the sense of learning together and/or from another generally appears
to occur during pair programming.

Pair constellations (A4) in terms of students’ personalities and actual skill level were con-
sidered by a number of studies which, overall, did not show a clear effect on pair programming
effectiveness—a formal meta-analysis has not yet been conducted. Both heterogeneous and
homogeneous pairs appear to function more or less. In the single largest study involving over
1,300 students in over 5,000 pairings only 7% of the pairs rated themselves as incompatible.

What actually happens when students are told (or allowed) to work in pairs is not under-
stood. In particular, the extent and kind of collaboration (A5) is not looked at by most studies.
The medium positive effect of PP on assignment scores, for example, could also be explained by
the phenomenon of disjunctive group tasks in which the best individual solution counts for the
pair, which only requires minimal communication. Indeed, the effect of pairing on the exam
scores, for which students are assessed individually, is only small in comparison. How the
overall knowledge transfer effect comes to be in educational settings, is by-and-large an open
question except for the findings of Webb & Lewis (1988) which indicate that working closely
together (i.e., exchanging explanations, communicating one’s plans, following each other’s
computer interactions) is more learning-effective than not interacting with one’s partner.

2.3.4 Pair Programming with an Industry Focus

The mapping study by Vanhanen & Mäntylä (2013) makes an assessment of the state of
industrial PP research regarding six overarching themes, some of which are mostly concerned
with pair programming as a practice, others focus more on pair programming as a work mode.
However, the authors do not provide a synthesis of individual research results. I used their
mapping study as one source to identify possibly relevant studies. The relevant criterion for
this section was to include studies on the pair programming work mode that used data from
industrial contexts or at least pursued an industrial research goal (as opposed to studies with
make-believe settings and the goal of improving students’ learning, see Section 2.3.2a).

62

2.3.4 Pair Programming with an Industry Focus

In the next sections, I discuss relevant pair programming studies grouped by their research
design, each with different strengths and weaknesses (see Section 2.3.2b). A controlled ex-
periment is the only research design which, in principle, allows to show causal relationships.
I discuss pair programming experiments in Section 2.3.4a. For industrial software engineering
research goals concerning process-related topics such as pair programming, however, con-
trolled experiments are difficult to design such that they resemble real-world settings: Context
and/or subjects are often not industrial.

Other empirical approaches, however, work well with industrial contexts and subjects.
I already discussed the practitioner perspective through experience reports and surveys in
Section 2.3.1d. Observational field studies dig deeper into what actually happens instead of
relying on subjective accounts alone. Some of these try to count, measure, and analyze already
understood aspects of software development processes in a quantitative fashion either on a
project-level, considering PP more as a practice (Section 2.3.4b), or in more detail on a work
mode-level (Section 2.3.4c). Others dissect the software development process, investigate the
details of what actually happens, and formulate qualitative theories (Section 2.3.4d).

2.3.4 a) Controlled Experiments on Pair Programming

In most experiments on pair programming, developers work on specifically designed tasks
either alone or in pairs (independent variable) and the effects on economic metrics for quality,
duration (i.e., time passed), or effort (immediate cost) are measured. These experiments are
essentially programming contests between pair programmers and solo programmers. Unlike
studies from educational settings (Section 2.3.3a), industrial experiments are less interested in
the effects of the Learn and Combine mechanisms, since what the developers bring to the
table and what they take from a session is usually less important than the technical outcome.
In a sense, experiments that start with an existing system are more interested in the effects of
the Understand mechanism.

Some experiments also go beyond mere effectiveness (A1) and consider moderating vari-
ables such as task complexity, programmer expertise, and personality (hinting at A3 and A4),
expecting that pair programming does not have uniform effects under all conditions.

Quality, Duration, & Effort
Hannay et al. (2009) performed meta-analyses of the results from a total of 18 experiments
on the effectiveness of pair programming with regards to quality, duration, and development
effort.12 To make the individual results comparable, the authors considered the standardized
effect sizes for which they report both a point estimate and a 95% confidence interval (see
Figure 2.4). To measure the degree of inconsistency between the studies, they also calculated
the 𝐼 2 statistic (again, see Figure 2.4).

I extended Hannay et al.’s original meta-analysis regarding quality with the statistical
results of two additional primary studies. The first study is by Wilson, Nosek, et al. (1992) who
performed controlled experiments involving a small number of professionals and students who
worked on a programming task for 60 minutes showing a positive effect of pair work on quality.
This experiment is functionally similar to Nosek (1998), whose data from an experiment with
a 45-minute time cap was already part of the meta-analysis.

The second study is by Zacharis (2011) who compared the technical outcomes of four
homework assignments of 64 students working in pairs with those of 65 students working
alone (see also my discussion on page 55). He found no significant difference in duration, a

12Although some of these experiments were conductedwith students (see Figure 2.5), they all share the (industrial)
goal of informing practitioners.

63

CHAPTER 2. RELATED WORK

Variable Subjects Studies Std. Effect Size Het.

𝑛 𝑘 𝑔 95% CI 𝐼 2

Quality 698 17 0.53 [0.15, 0.90] 87%
Duration 403 11 0.53 [0.13, 0.94] 70%
Effort 361 11 -0.52 [-1.18, 0.13] 85%

Table 2.9: Statistical results of three meta-analyses on pair programming effects based on
the data collected by Hannay et al. (2009, Sec. 3.2 & Tab. 2). I included the statistical results of
Wilson et al. (1992) and Zacharis (2011) in the meta-analysis for quality (see Appendix D for
the technical details). Subjects in the primary studies were individuals, pairs, or whole teams
who solo- or pair-programmed (Hannay et al., 2009, Tab. 1 & Fig. 1). The primary studies
used different scales, so Hannay et al. (2009, Sec. 2.5) report standardized effect sizes and
no raw mean differences. Here, a positive effect size is also ‘positive’ in an economic sense,
e.g., a positive effect on duration means less wall-clock time. The confidence intervals for the
summary effect sizes are wide and between-study variance (or heterogeneity) is very large.

significant 57% increase in effort, and a significant 50% decrease in defect count, i.e., an increase
in quality (Zacharis, 2011, Sec. IV). The validity of these numbers is questionable since (a) the
explicit goal was for the students to learn how to write clean object-oriented code (rather than
being as fast as possible), and (b) all data (including defect count and timing) was collected by
the students themselves (ibid., Sec. II). As the author himself states, it is not even clear whether
the students discovered the defects before or after testing (ibid., Sec. IV.B). I included Zacharis’
quality-related data in my meta-analysis nevertheless (see Appendix D for details) because
these validity threats affect both solos and pairs. I was not able to include the time-related data
in my meta-analysis, because Zacharis (ibid., Table II) only reports mean values for pairs and
solos, but no variance or standard deviation.

Overall, pair programming appears to have a positive effect on quality and on duration
(elapsedwall-clock time), but a negative effect on effort (person-hours). However, the confidence
intervals for the respective effect sizes are wide, indicating quite some uncertainty regarding
the size of the effects and—in the case of effort—even direction (see Table 2.9). Heterogeneity
measures are high, indicating that this variance likely comes from differences in the real
effect size rather than random error. Hannay et al. (2009, Sec. 4) conclude that moderating
factors (such as general programming expertise, complexity of the worked-on tasks, prior pair
programming experience, the developers’ motivation, whether they worked in a team context)
might be relevant. I agree with their assessment: The inclusion of the quality-related data
of Wilson et al. (1992) and Zacharis (2011) led to a larger summary effect size and a wider
confidence interval compared to the original analysis, meaning that, overall, pair programming
appears to have a positive effect on quality, but the extent varies a lot between contexts.

In contrast to the experiments focusing on the economic questions, Beck does not explicitly
talk about the immediate costs of pair programming in his XP books. This is likely because he
does not see PP as a work mode that competes against solo work in programming contests. To
him, PP is a practice, an integral part of a software development method that pays off through
“reduce[d] project risk, improve[d] responsiveness to business changes, improve[d] productivity
throughout the life of a system, and add[ed] fun to building software in teams” (XP1, p. xvi). As
such, pair programming has effects that reach far beyond a single programming task. Hannay
et al. (2009, Table 2) attempted a subgroup analysis separating results from experiments where
pair programming was done on isolated tasks and where it was part of a larger, long-running
project. However, there was only a small number of experiments with a project context and

64

2.3.4 Pair Programming with an Industry Focus

the meta-analysis did not show significant effects of pair programming on quality, effort, or
cost for this subgroup.

Hannay et al. (ibid., Sec. 4) conclude that a simple comparison of pair programming and solo
programming is not meaningful as the usefulness of this work mode apparently depends on the
context. Two context properties considered relevant for characterizing software development
situations in general and pair programming in particular are the expertise of the developers
and the complexity of the tasks they are working on.

Expertise & Task Complexity
The single largest industrial PP experiment by Arisholm et al. (2007) involved 295 professional
software developers and was designed to determine the moderating role of task complexity
and developer expertise on the effectiveness of pair programming. The developers (hired con-
sultants) performed three incremental changes to an existing system unknown to them. The
researchers prepared two software systems with different architectures to test two levels of
task complexity (a simple centralized vs. a more complicated delegated control-style). The
pairs were formed with similar expertise based on the consultants’ pay grade (junior-junior,
intermediate-intermediate, and senior-senior). Dependent variables were the correctness of the
produced changes (as a binary variable), as well as the duration and effort needed to complete
the tasks measured in minutes (ibid., Sec. 3.6.1). Results from individually taken pre-tests allow
to adjust these variables to account for individual differences which were not part of this
experiment (ibid., Sec. 3.6.3). The statistical analysis and calculation of effect sizes is based on
the adjusted means (i.e., accounting for individual differences), which makes the comparisons
of, say, pairs and solos or juniors and intermediates more fair but less accessible to intuition.

• Moderating role of task complexity: The pairs were significantly faster than the solos
only in the simple system, and produced significantly higher quality only in the complex
system (ibid., Sec. 4.1).
It should be noted that the pairs’ unadjusted mean performance (i.e., actually delivered
quality and wall-clock time) was more or less the same regardless of the task complexity
(80% vs. 83% correctness and 64 vs. 62 minutes duration, ibid., Tables 9–11), while com-
plexity did affect the solos, who worked slower but more correct in the simple system
(68% vs. 51% correctness and 98 vs. 72 minutes, ibid., Tables 9–11).

• Moderating role of developer expertise: Expertise did not moderate the effect of pair
programming on duration in a consistent way: Pair programming appearedmost beneficial
for intermediates and least for juniors (ibid., Sec. 4.1). But, again, the unadjusted means
(ibid., Table 9) make clear that this effect is mostly due to the solos whose intermediates
were slower than their juniors (104 vs. 92 minutes), whereas senior pairs were faster than
intermediate pairs who were again faster than junior pairs (51 vs. 61 vs. 81 minutes).
With regard to correctness, juniors benefited most from pair work, while the effects for
intermediates and seniors were not significant (ibid., Sec. 4.1). The unadjusted means
(ibid., Table 11) yet again show more consistency in the pairs than the solos (80–84% mean
correctness for pairs across all pay grades opposed to 48–75% correctness for solos).

• Interaction of expertise and complexity: There appears to be an interaction between
the two moderators, e.g., with junior pairs producing a correct solution with 84% (adjusted
mean) probability compared to just 34% when working alone (ibid., Table 11). However,
this interaction could not be formally tested (ibid., Sec. 4.1).13

13This has to do with the nonrandom assignment of developers to the two conditions of solo and pair work,
which ultimately precludes some kinds of analyses. See Arisholm et al. (2007, pp. 72 & 75) for details.

65

CHAPTER 2. RELATED WORK

Overall, despite the large sample size, the statistical analysis did not produce conclusive results
on the moderating role of either task complexity and developer expertise (Arisholm et al., 2007,
Sec. 4.1).14 However, even if not formally shown, it appears that the solo developers’ perfor-
mance depends far more on their expertise and task complexity than the pair programmers’
and that pair programming reduces the overall variance of the outcome. This is similar to the
lack of a significant correlation between university grades and programming scores in a pair
situation reported by Wilson et al. (1992) (my discussion on page 60).

As Arisholm et al. (2007, Sec. 5.3.3) note, task complexity is not absolute but depends
on the experience of the developer. In this sense, Lui & Chan (2003, 2004, 2006) combined
task complexity and developer experience and studied the effectiveness of pair programming
under increasing routineness of the task in their “repeat programming” experiments: Solo and
pair programmers implemented solutions for the same task multiple times from scratch. In
the first round, pair programmers completed their project considerably faster than the solo
programmers (410 vs. 635 minutes). In both work modes, the time to completion decreased
over the rounds, but the pairs’ advantage diminished by the fourth round (272 vs. 285 minutes).
Although such a setting is completely artificial, these results suggest that working in pairs can
be beneficial when there are requirements yet to be understood and a viable design yet to be
found (the Understand mechanism).

Pair Member’s Personalities
Hannay et al. (2010) analyzed additional data collected in the experiment by Arisholm et al.
(2007). In addition to the independent variables task complexity and developer expertise, they
also considered the developers’ personalities (in terms of the pair’s mean elevation and its
members’ difference regarding each of the Big Five traits) and their country of location. Along
with the dependent variables used in the first analysis (correctness and duration), additional
ordinal variables were included to characterize the technical quality of a pair’s work result
(e.g., adherence to object-oriented principles, extensibility, and cost effectiveness).

The univariate analysis (i.e., considering one independent variable at a time) showed only
small effect sizes of personality traits compared to those of expertise and task complexity. Even
themultivariate analysis involving all independent variables showed only few significant effects
and “considerable unexplained variance” , which can indicate both missing and included, but
disturbing variables (Hannay et al., 2010, Sec. 6.2). In an exploratory analysis, the researchers
applied a decision tree analysis in which they iteratively split the data points according to
a threshold value on one independent variable in order to maximize the significance of the
effect on a dependent variable (ibid., Sec. 6.3). Among all personality variables, the difference
in a pair’s extraversion was the “most general significant predictor” (ibid., Sec. 6.3), i.e., in
many decision trees, splits along this dimension were significant. On the one hand, Hannay
et al. do not characterize the effect of a larger intra-pair extraversion difference, i.e., whether
homogeneous or heterogeneous pairs are “better” in any way—there is just some effect. The
researchers appear to have no idea what the effect might be either, since extraversion difference
was the only personality variable for which their univariate model did not contain a hypothesis
(ibid., Fig. 1). On the other hand, extraversion difference only ranks forth behind task complexity,
country, and expertise anyway (ibid., Table 7), so the researchers conclude it is not worth
allocating resources to personality-based match-making in industry (ibid., Sec. 7.1).

14Arisholm et al. (2007, Tables 9–11) did find overall effects of pair programming: a significant effect on effort in
favor of solo programming (on average 84% more effort with pairs, 95%-CI: [61%, 110%]) along with nonsignificant
effects on duration and correctness in favor of pair programming (on average 8% less duration with pairs, 95%-CI:
[−19%,+5%] and 28% higher chance of correct solution with pairs, 95%-CI: [−44%,+192%]). These results are part
of the meta-analyses by Hannay et al. (2009).

66

2.3.4 Pair Programming with an Industry Focus

Discussion: Limitations of Pair Programming Experiments
In the experiments discussed above, two groups of subjects were asked to work on identical
tasks, with the developers in the experimental group working in pairs and those in the control
group alone. With subjects being randomly assigned to the groups and all other aspects being
equal, any difference in the dependent variable—such as code quality or time spent—could
then be attributed to the pair programming work mode. Arisholm et al. (2007) conducted a
well-designed experiment, and their writing contains abundant information. I therefore refer
to their experiment during my discussion of three categories of problems which such research
designs for this particular research interest have.

Problem Category 1: Number of Unknown and Uncontrolled Factors The meta-analyses
of Hannay et al. (2009) have not shown clear effects of pair programming, but mere tendencies
with a lot of variance. To explain this variance, moderating variables first need to be identified
before they can be systematically addressed in an experimental setup. Even the large (and
presumably very expensive) experiment by Arisholm et al. (2007) which was specifically
designed to understand two (possibly) moderating variables could not provide a conclusive
answer.

After more moderating variables have been identified, systematically addressing them the
same waywould require a large number of experiments ormanymore subjects. For comparison:
Arisholm et al. had twelve groups (2 work modes × 2 complexity levels × 3 experience levels)
and expected a medium-sized effect which led them to a minimum of 14 observations per
group, or 168 subjects in total, to get a minimum statistical power of 0.8 (ibid., Sec. 3.1). For
more moderating variables and smaller effects, the number of necessary observations grows
even larger.

Problem Category 2: Unrealistic and Unfair Comparisons If Beck (1999) is right and pair
programming is indeed a “skill” , prior exposure to this work mode is a relevant moderator
for pair programming effectiveness. In the experiment by Arisholm et al. (2007, Sec. 3.3),
developers in only five out of 98 pairs had any PP experience, which is a type of difficulty not
to be expected among industrial development teams who at least sometimes pair. Additionally,
the pairs in the experiment were formed by the researchers such that both developers were
on the same level of expertise. This is something industrial teams could aim at, but does not
appear to be a natural limitation.

Most experimental tasks do no take long and are based on small programs. The ‘system’
the developers in the large experiment worked in was quite small: Even the ‘complex’ version
had only 12 classes with 287 lines of code and the average pair completed their three tasks
in little over an hour (ibid., Tables 9 & 12). Such studies can only account for the short-term
effects of pair programming, but not for, say, building up shared knowledge in a team. Quality
is commonly measured in number of defects or even reduced to a binary value (ibid., Sec. 3.6.1).

The software system in the experiment was unknown to the subjects, meaning they had
to rely exclusively on their software development skills to understand it from scratch—which,
again, is a type of task difficulty that is not representative of everyday industrial software
development. Any effect that might result from one partner being already familiar with at
least some parts of the system (the Combine mechanism) cannot arise in such setups.

Yet, even within the confined setup created by the researchers and the large number of
subjects recruited, the authors conclude that they “are still far from being able to explain why
we observe the given effects” (ibid., Sec. 6.5).

Problem Category 3: Pair Programming as a “Black Box” Even if more elaborated (and
expensive) experiments were conducted which controlled for more moderating variables, used

67

CHAPTER 2. RELATED WORK

larger systems, and covered longer time frames: The design of such studies still assumes that
PP is something that developers can simply apply when told to do so, like being exposed to
either one or another stimulus.

However, even with similar expertise, task difficulty, training, etc., there is no canonical
way how to do PP : Do the pair members first brainstorm on a number of possible ideas, discuss
them in detail, and then follow an agreed upon plan? Or do they follow the ad hoc idea of one
developer until they hit a dead end and then switch? Or does one developer basically work
alone, while the other watches silently? It is not realistic to assume that all pairs follow the
same process (or at least processes with similar effects on time, quality, etc.).

Based on what is (not) known about the moderating variables that make pair programming
more or less effective, it is not clear how a fair benchmark would look like. Without such
understanding, programming contests between pairs and solos are of limited scientific value.
To gather more insights, it appears more reasonable to study pair programming under natural
conditions, where and when it used by the people who eventually decide whether or not to
apply a practice anyway: the developers.

2.3.4 b) Studying Pair Programming as a Practice

Unlike controlled experiments, experience reports and observational studies pertain to real
software development events—with all the phenomena that naturally occur, but that would not
be easily thought of (and then adequately recreated) in a laboratory setting. Before I discuss
observational field studies that followed a rigid method for collecting and analyzing data, I first
come back to the experience report by Belshee, from which I already cited the two anecdotes
of knowledge transfer in a pair-programming-only team (the viral paste stack and the quickly
naturalizing new-hire, see my discussion on page 46).

On the Benefits of Fieldwork
Belshee (2005) performed an informal quasi-experiment in his software development team.
The whole team pair-programmed all the time and switched partners often according to one
of two switching styles: In the fixed style, one developer stays on the task until it is completed
and gets a new partner every switch cycle; in the alternating style, each developer stays on a
task for two switch cycles, starting as a beginner with an expert partner, then becoming the
expert with a new beginner partner, and finally going on to the next task as a beginner again.
The team tried both styles with various rotation rates ranging from less than an hour to three
days. They made two key observations with regard to their overall productivity in terms of
story points per week and proportion of unanticipated work items such as bugs: (1) for rates
less than an hour, the fixed style is better; (2) the alternating style is consistently better for
slower rates, with peak productivity at 90 min, and slowly flattening out with longer times
between the switches.

Belshee does neither explicitly mention the number of data points nor concrete productivity
measures. However, it is not the quasi-experiment per se, the precise point of break-even of
the rotation styles, nor the gradient of the productivity curve that are interesting; rather, it is
Belshee’s interpretation: The overall effectiveness of a pair gets smaller the longer they work
together on a task, because they lack “the beginner’s mind” of a fresh pair member. However,
developers need some time to build up enough understanding of the task and must not switch
tasks too early. For short cycles, having one developer become (and stay) an expert on the task
(fixed style) is the only way for task-relevant knowledge not to get lost between pair switches.
Short cycles in the alternating style led to the ‘new pair’ having to interrupt the developer who
just left the task too often. With intervals larger than one hour, however, enough knowledge

68

2.3.4 Pair Programming with an Industry Focus

transfer from the expert partner to the beginner partner has taken place to increase the latter’s
level of expertise sufficiently such that a designated expert is no longer needed.

Belshee’s findings illustrate the importance of studying naturalistic settings (a point I will
come back to in Section 3.2.2): He observed his colleagues dealing with the different rotation
styles and rates and ultimately ‘discovered’ the two competing mechanisms of (a) the need
to build up task-relevant knowledge in order to be productive and (b) “the beginner’s mind”
which increases a pair’s efficiency.

The study by Chong & Siino (2006) is another case in point: In development teams which do
or do not employ pair programming, they analyzed the interrupt behavior—which is unlikely
to be observed in laboratory settings. They report that both solo and pair programmers get
interrupted by others three to four times per hour (ibid., p. 31), but pairs have the advantages of
(a) providing their surrounding with cues on when an interrupt might be minimally disruptive
through their ongoing conversation and (b) being able to carry on the work with one developer
while the partner deals with the interrupt (ibid., p. 34). Furthermore, in comparison to solo
developers, pairs appear to get interrupted more with technical questions than by social
interactions such as jokes and chit-chat (ibid., p. 33).

Observational Field Studies on the Project Level
Some researchers collect data in software development teams who employ pair programming
as a practice, usually relying on more than one data source. Although the pair process itself
(A5) is not much of an issue here, some analyses may allow to learn something about the
effectiveness of the PP work mode (A1) and the kind of situations it is used in (A2 to A4).

The research group around Silliti and Succi published six studies (2008, 2009, 2011, 2012,
2013, 2014) in which they analyze different aspects of software development based on 14months
worth of automatically collected data from a team of 17 software developers who occasionally
employ pair programming. Their data collection tool records developer activities in terms of
timestamp, currently focused class ormethod in the integrated development environment (IDE),
and window title outside the IDE. In the beginning of a programming session, the developers
would enter into the tool the issue they intend to work on, whether they work as a pair, and if
so, with whom; after 25 minutes, a notification would pop up, asking whether the developer(s)
want to take a break, continue the task, or work on another one (Coman et al., 2014, Sec. 3.2). In
the individual analyses, the researchers look at the frequency and amount of pair programming
over time in general and per task (Coman et al., 2008, 2014), frequency of expert/novice pair
constellations over time (Fronza et al., 2009), developer attention (Sillitti et al., 2012), and defect
density (Phaphoom et al., 2011; di Bella et al., 2013, who also incorporate information from
the version control system). For their particular team, which consists of 2 newly hired and 15
experienced team members, the researchers report the following findings pertaining to PP:

• Effectiveness (A1): To assess the effect of pair programming on source code quality in
terms of defect density (corresponding to the Understand mechanism), Phaphoom et al.
(2011) and di Bella et al. (2013) calculate a time-based ‘pair programming ratio’ formethods
that were changed in the context of user story implementations and defect removals.15
The authors consider methods with any ratio greater than zero to be the result of “pair
work” . On average, such methods had lower defect rates than purely solo-programmed
methods. The difference, however, was small and not statistically significant (di Bella
et al., 2013, Sec. 6).

15Despite their automated data collection, the researchers could extract the necessary data (i.e., which developer
(pair) touched which specific methods when and for how long) for only 8% percent of the defects and 9% of the
user stories. In absolute terms, these are 39 defect corrections and 144 user story implementations touching a total
of 377 and 1,904 methods, respectively (di Bella et al., 2013, Table 13 & Sec. 3.6).

69

CHAPTER 2. RELATED WORK

• Task Suitability (A3): On days where developers pair-programmed—which they did less
than once every five workdays—they did so for roughly 40% of their development time,
leading to an overall PP ratio of less then 8% (based on data from the first three months of
the observation period, Coman et al., 2008, Sec. 3.1 & 4). About five out of six issues were
worked on completely alone; for the rest, the issue-owning developer worked together
with a partner at least once (Coman et al., 2014, Sec. 4.2), for which the authors describe
different solo/pair patterns, such as mainly solo with few pair sessions or first pair then
solo sessions (ibid., Sec. 4.3).16
This could be interpreted as an indication that the developers, by far, did not deem all their
tasks suitable for pair programming. Furthermore, as there are different patterns of pair
programming usage per task, suitability may not be a static binary property. However,
the researchers neither analyze the characteristics of different types of tasks nor the
developers’ motivations to (not) work in pairs, which could depend also on external
factors and just as well have little to do with the tasks as such.

• Pair Constellations (A4): The two newcomers to the team appear to have went through
a four-phase process (Fronza et al., 2009, Sec. 6): For the first month, they pair-programmed
half of their time, mostly with pre-existing teammembers. Then they workedmostly alone
for two months, before working in pairs again most of their time for five months—this
time mostly among themselves. Afterwards, the newcomers’ pairing frequency and choice
of partners became indistinguishable from the original team members. The researchers
interpret these four phases as (1) training sessions for knowledge transfer, (2) consolidation
of knowledge, (3) maturation, and (4) complete integration.
Although this interpretation appears plausible, no additional data was collected which
could support it (such as records of the developers’ actual intentions). Different pair
constellations (in terms of the developers’ knowledge of the project) may have different
properties which make developers seek or avoid them. But, again, no additional data to
go beyond a simple newbie/expert dichotomy was analyzed to answer this question.

Although the research group recorded large quantities of data during pair programming
sessions, none of it is particularly helpful for understanding how pair programming actually
works (A5) and which types of knowledge are important (A2). Even when assuming the
collected data is correct in terms of pair constellations and session duration, the developers’
particular goals and interactions in each of these sessions were not recorded.17

Two other (at least partially) industrial studies included developer interviews to capture
their views as well as first-hand observations of PP sessions: Hulkko & Abrahamsson (2005)
describe four projects (three of which with commercial interest) with a duration of 5 to 8
weeks. The developers were a mix of students and professionals who were encouraged to
work in pairs. The researchers collected data through “pair programming sheets” which they
asked the developers to fill out and through team interviews at the end of the projects. PP
sessions were also observed in one of the four cases. In the other study, Vanhanen & Korpi
(2007) followed a team of four developers for a little more than 14 weeks. Their developer
interviews, time-tracking, and everyday observations were mostly concerned with PP as a
practice, i.e., the high-level decision when and how to work in pairs. Additionally, they asked

16In these studies, a “session” refers to a stretch of data collection of 25 minutes at most.
17The only analysis in this publication series which looked at what actually happens during a PP session focused

on developer attention: Pair programmers spent more time in the IDE and less in the e-mail client & web browser;
they also switched programs less often (Sillitti et al., 2012, Sec. IV.A). Pairs stayed almost twice as long on a task
(ibid., Sec. IV.C), averaging close to the team’s pop-up window enforced “session limit” of 25 minutes.

70

2.3.4 Pair Programming with an Industry Focus

the developers for their subjective knowledge levels per module over the observation period.18
Their findings, grouped by the five aspects, can be summarized as follows:

• Effectiveness (A1): While a lower defect density was expected for code written by pairs
(a possible effect of the Understand mechanism), no such effect could be consistently
observed: In one case, there was virtually no difference, while in another project rela-
tive defect densities differed by a factor of six in favor of pair programming (Hulkko &
Abrahamsson, 2005, Sec. 3.2.2).
Pair programming appeared to be an effective means for knowledge transfer in the team
(an effect of the Learn mechanism): Despite a growing system, the subjective knowledge
levels showed little changes to the team averages while the variance (characterizing
intra-team differences) decreased over time (Vanhanen & Korpi, 2007, Sec. 6.3).

• Types of Knowledge (A2): Both studies agree, based on first-hand observations and
interviews, that code knowledge or system understanding was the most relevant type
of knowledge for the developers (Hulkko & Abrahamsson, 2005, Sec. 3.2.1; Vanhanen &
Korpi, 2007, Sec. 5.3). All developers felt their system knowledge improved due to pairing,
two out of four felt they learned their tools better (Vanhanen & Korpi, 2007, Sec. 6.3).

• Task Suitability (A3): About three quarters of the programming time was spent in pairs
(72% in Vanhanen & Korpi, 2007, Sec. 5.1; 40–90% in Hulkko & Abrahamsson, 2005, Fig. 3).
The PP ratio was lower for easy activities (Vanhanen & Korpi, 2007, Sec. 5.1), and also lower
in later iterations (Hulkko & Abrahamsson, 2005, Sec. 3.2.1). Based on their data (mostly
the interviews), Hulkko & Abrahamsson (ibid., Sec. 3.2.1) conclude that pair programming
is especially useful in the beginning of the project for gaining understanding of the system,
for tasks which are too complex for any individual developer, and for tasks involving
code with many dependencies.

• Pair Process (A5): Vanhanen & Korpi (2007, Sec. 5.3) noted continuous communication
during the sessions: If one developer knew her way around the problem-relevant code
already, she took the lead and would explain her actions.

The findings from observational field studies on knowledge-related aspects of pair program-
ming can be summarized as follows: Pair programming appears to be effective for knowledge
transfer (for perceived knowledge levels, at least; effects on technical outcomes appear simi-
larly elusive as in the controlled experiments discussed in Section 2.3.4a); there are different
types of knowledge that may be transferred (in particular about the system, possibly also
about tools); communication is crucial in pair programming; and not all task types and pair
constellations may be suitable for pair programming (knowledge intensity of the task and
knowledge distribution in the pair may play a role).

2.3.4 c) Qualitative-Quantitative Studies on the Pair Programming Work Mode

With the exception of a few reported first-hand observations of PP sessions in the field studies
discussed in Section 2.3.4b, pair programming is often treated as a “black box” (Plonka, 2012,
pp. 5–6; Salinger, 2013, p. 42): Many studies consider the effects of pair programming (e.g., on
quality or effort), either in comparison with solo programming or based on external factors
such as task complexity and developer expertise, but disregard the developers’ interactions
that make up a pair programming session and eventually produce these effects.

In the next two sections, I discuss studies which focus on the inner workings of pair
programming sessions, i.e., mostly considering A5, but other aspects as well. Such studies all

18This design is similar to an earlier educational study by the same first author (Vanhanen & Lassenius, 2005) in
which pair programming had a non-significant positive effect (my discussion on page 56).

71

CHAPTER 2. RELATED WORK

start with a qualitative analysis, which means that they deal with unstructured data (such as
audio or video recordings), annotate (or “code”) fragments thereof, and thereby assign some
meaning to it. The studies differ in what comes next: Qualitative-quantitative studies (discussed
in this section) aim a complete coding of the data in order be able to treat it as quantitative data
which can then be statistically analyzed. In contrast, purely qualitative studies (discussed in
Section 2.3.4d) are geared towards the discovery and deep understanding of relevant phenomena.

Conflict Handling
Domino et al. (2003) studied how conflict handling styles reflect on pair performance. They
recorded seven pairs of part-time students with industry experience who worked on three
programming tasks (length between 20 and 45 minutes). The researchers used a rating form to
capture the number of “conflict episodes” , whether these pertained to the task or to the pair’s
relationship, which conflict handling style was employed (integrating, obliging, dominating,
avoiding, or compromising), and whether and how the conflict was resolved. Other measures
were the “faithfulness to the pair programming method” (‘measured’ as amount of interactions
on a 5-point scale), the pair’s overall work pattern (read-plan-work, read-separate-combine, or
split-work), and the individuals’ “general cognitive ability” (ibid., Sec. 4.1–4.2).

The statistical analysis led to no significant results. However, based on an informal discus-
sion of the best and the worst pair, the authors note that the two extreme pairs had comparable
cognitive abilities, but differed in their style of collaboration: One pair member of the worst
pair dominated the sessions more and more over time, conflicts were not resolved but avoided,
until the other pair member completely withdrew (ibid., Sec. 4.3). I analyzed similar, but less
extreme cases and call this a Breakdown (see Section 6.3).

Driver and Navigator Roles
Freudenberg (née Bryant) et al. (2004, 2006, 2008; see also the first author’s PhD thesis, Freuden-
berg, 2006) performed qualitative-quantitative analyses of industrial pair programming, i.e.,
professional software developers working on their everyday tasks. A common theme of these
analyses were the roles of driver and navigator which are sometimes used to “explain” pair
programming (see Section 2.3.1a). The researchers developed different coding schemes, coded
individual utterances in session transcripts, and then counted occurrences across developers
and sessions.

In the first study, Bryant (2004) analyzed 14 one-hour sessions from one company for which
she coded all individual utterances with one of eleven codes such as question or suggestion.
The researcher notes differences between developers with and without pair programming
experience: The utterance type frequencies of “expert pair programmers” do not depend on
whether they were driving or not, while having the keyboard does have an effect on pair
programming novices (ibid., Sec. 5.2). Bryant et al. (2006, 2008) therefore excluded developers
with less than six months of pair programming experience from their further analyses.

In the second study, Bryant et al. (2006) analyzed 23 one-hour sessions from four different
companies with regard to the degree of collaboration concerning different types of tasks such
as refactor or configure environment. Overall, 93% of all tasks were dealt with collaboratively,
i.e., both partners verbally contributed some new information (ibid., Sec. 4). The analysis also
yielded the relative frequencies of the twelve task types. The most prevalent type (with 613
out of 2,735, or 22% of all tasks) was comprehension [of the code] (Freudenberg, 2006, p. 143),
which relates directly to knowledge transfer in the sense of the Understand mechanism.

Their last study (Bryant et al., 2008) covered 24 one-hour sessions for which they coded
all 14,886 utterances according to their level of abstraction (syntax, detailed, program blocks,

72

2.3.4 Pair Programming with an Industry Focus

bridging, real world, and vague) to finally put the driver-navigator metaphor to test.19 Their
analysis revealed no significant difference between the drivers’ and the navigators’ respective
histograms (ibid., Sec. 5.1). The authors interpret this as evidence that these two roles do not
generally talk (and think) at different levels of abstraction (ibid., Sec. 5.3). Purely qualitative
studies would later investigate this further (see Section 2.3.4d, page 83). Note, however, that
Bryant (2004, Sec. 5.2) explicitly excluded unexperienced pair programmers because of their
different abstraction level histograms. In other words: There may be role differences for PP
beginners.

Plonka et al. (2011) analyzed 21 industrial pair programming sessions recorded in four
different companies.20 They found that one pair member had the driver role for the vast
majority of the duration of most sessions. However, the labels driver and navigator were not
meaningful for one third of the pair programming time during which the developers mostly
communicated verbally without any computer interaction. Role switches occurred, on average,
about 15 times per hour, and most of the time they were initiated by the navigator and without
verbal communication. Plonka et al. also employed purely qualitative methods on the same
data; I discuss that research on pages 81 and 84.

Pair Members’ Personalities
Walle & Hannay (2009) investigated the effect of the pair members’ personalities on their
communication, based on the audio-recordings of 44 PP sessions21 from the large experiment
done by Arisholm et al. (2007, my discussion on page 65). The researchers used a Big Five
personality test to determine the mean elevation of the pair per trait as well as their difference
(similar to Hannay et al., 2010, discussed on page 66). Walle & Hannay (2009, pp. 204–205)
coded the sessions on two levels: Based on the pair’s discourse, they segmented a session into
interaction sequences which they categorized as one out of ten task focus types, such as Code
Comprehension, Compile and Test, Programming, or Other relevant tasks. Since they focused on
problem-solving during programming, they selected all Code Comprehension and Programming
sequences to be then coded in detail according to how they began, their interaction pattern,
their cognitive level, how they ended, and their result.

The researchers aggregated these codings into 44 data points (one per session) each with 10
dimensions characterizing the pair member’s personalities and 60 dimensions characterizing
their communication (so-called “collaboration categories”).22 They conducted a decision tree
analysis (ibid., pp. 209–210, again similar to Hannay et al., 2010, discussed on page 66), which
iteratively splits the data points according to a threshold value on one of the independent
variables (here: personality dimensions) to maximize the significance of the effect on some
dependent variable (here: collaboration category). They tested a number of hypotheses and
made the following observations:

• Personality does affect the type of cooperation. All five personality factors significantly
influence the time spent on one or more collaboration categories; three personality factors

19An earlier version of this article was also published at a conference (Freudenberg et al., 2007).
20These recordings are part of a larger repository of PP sessions to which multiple researchers contributed and

which I describe in Section 4.3.
21The sessions’ duration is not reported, but is probably between 20 and 50 minutes: Arisholm et al. (2007,

Table 9) report a mean work duration of 63 minutes for all three tasks—two warm-up tasks and the main task—the
last of which was the only one analyzed by Walle & Hannay (2009, p. 204).

22The coarse coding led to ten dimensions (one for each task focus type), the detailed coding added another
20 (that is how many different predefined values there were). For each of these 30 dimensions, the researchers
considered relative frequencies and absolute time spent, bringing the total to 60 communication dimensions. The
10 personality dimensions come from the Big Five dimensions, each represented with pair mean value and pair
difference.

73

CHAPTER 2. RELATED WORK

also significantly influence the frequency of one or more collaboration categories (Walle
& Hannay, 2009, Table 2). However, given that 10 personality measures were put against
60 collaboration categories, some statistically ‘significant’ influence (with 𝑝 < 0.05 or
1 in 20) is to be expected.

• Variability in personalities increases the amount of communication-intensive collab-
oration. Pairs with different personality scores had significantly more communication-
intensive collaboration, e.g., an elaborative or responsive interaction pattern as opposed
to nonresponsive or stonewalling interaction pattern (ibid., pp. 210–211). Differences in
extraversion had the biggest impact on the occurrence of communication-intensive col-
laboration (ibid., p. 211), which appears to be mostly due to more time spent on off-topic
sequences and cross-purpose interaction pattern (i.e., both developers talking about different
things at the same time), and lower frequency of nonresponsive interaction pattern (ibid.,
Table 3). This makes the extraversion difference effect detected by Hannay et al. (2010,
discussed on page 66) more tangible.

The other tested hypotheses could not be supported by the data: Collectively high extraversion
of the pair does neither lead to more communication-intensive collaboration nor to more
metacognitive statements; furthermore, higher agreeableness of the pair does not lead to more
off-topic communication (Walle & Hannay, 2009, p. 211).

Discussion: Problems of Qualitative-Quantitative Approaches
The qualitative-quantitative studies presented above share a number of problems: Their re-
search process is more or less intransparent in that their respective coding schemes and/or
coding scheme development processes are not discussed in detail and are inadequate for
understanding the pair programming process.

Possibly Problematic Areas

Qualitative-Quantitative PP Studies Type 1: Scheme
Development

2: Rich
Codes

3: Rich
Data

4: Pair
Process

Bryant et al. (2004, 2006, 2008) M K (✓) (✓) (✓) ✗

Domino et al. (2003) M U ✗ (✓) ✓ ✗

Walle & Hannay (2009) M U (✓) (✓) (✓) ✗

Plonka et al. (2011) M K (✓) ✗ ✓ ✗

Table 2.10: Overview of recurring problems in qualitative-quantitative PP research. Here, all
studies involved multiple pairs (M) who either work in existing projects/context known (K)
or unknown to them (U). See main text for detailed description of the problem areas. In the
respective areas, the studies have ✓ – no problems, (✓) – some problems, or ✗ – considerable
problems.

Problem 1: Coding Scheme Development Process Domino et al. (2003, p. 48) used a “pre-
established rating form” with five conflict handling styles, five levels of interaction amount, and
three work patterns. The conflict handling styles correspond to five scales of an established
inventory forwhich the participants filled out a questionnaire (ibid., p. 47). It is unclear, however,
how the researchers related a participant’s general self-assessment to her concrete behavior
exhibited in a specific conflict episode. The three work patterns appear out of thin air.

The coding schemes used by Bryant et al. (2004, 2006) and Walle & Hannay (2009) are at
least in part assembled from various literature. The coding scheme presented in Bryant (2004,
Table 2), for example, is described as an extension of a list of “typical pair interactions” observed

74

2.3.4 Pair Programming with an Industry Focus

by practitioner Wake (2002, pp. 72–73), but without an explanation which amendments were
made for what reason. Incidentally, this point is elaborated on in the author’s PhD thesis
(Freudenberg, 2006, p. 37): One change was motivated by making the researcher’s work easier,
such that the coding “did not require any attempt on the part of the coder to ascertain the implicit
motivation behind the question (i.e. whether it was a request for help, or, for example, a test of
knowledge)” . The coding schema used in Bryant (2004) therefore appears to address the surface
structure of the developers’ utterances, but not necessarily their meaning.

The coding scheme used by Walle & Hannay (2009, p. 205) is the result of combining two
preliminary coding schemes, the first of which was assembled from various sources, while
the second scheme was “developed on the basis of samples of [the] audio recordings” . Large
parts of the resulting coding scheme were inherited from the existing sources, with only a few
amendments based on their own data. It is not clear, however, what the driving force behind
amending the existing schemes was: Having enough labels to code whole sessions exhaustively
or having a rich set of concepts to adequately capture and distinguish relevant phenomena.
This leads directly to the second problem.

Problem 2: Inadequate Coding Scheme In the studies, it is not clear whether the distinctions
manifest in the coding schemes are actually relevant for the data at hand. To give an example
from Bryant et al. (2008, Sec. 5.1) which was concerned with the levels of abstraction of the
pair members’ utterances: Of the almost 15,000 utterances, 57% were classified as vague and
only 43% could be assigned to an abstraction level. The majority of those is on the mid-range
level program block while the extreme low- and high-levels are rare. This indicates that the
coding scheme is exhaustive in that it could cover all utterances, but not rich as a single or very
few categories serve as a default label for most phenomena, which is not helpful in explaining
how pair programming actually works.

Domino et al. (2003) and Walle & Hannay (2009) do not provide enough information
on their coding process and/or result (e.g., in the form of descriptive statistics) to make an
assessment in this regard.23 The coding scheme used by Plonka et al. (2011) is presented in
detail and it is rather technical (with codes such as D1.isDriving, DriverInitiated switch, or
verballyInitiated switch), which is not rich either.

Problem 3: Limited Accuracy A minor problem pertains to the limited recording of the
actual events. Bryant et al. (2008) and Walle & Hannay (2009) worked exclusively with audio-
recordings or transcripts thereof, not knowing what the developers looked at or pointed to on
their screen. Without this crucial context, understanding what the developers talk about is
(even more) difficult for the not-involved researcher. Bryant et al. (2008, Sec. 5.1) explicitly
state that they classified some utterances as vague simply because they could not determine
their abstraction level based on the transcript alone.

Problem 4: Disregard Process The three lines of research of Domino et al., Walle & Hannay,
and Bryant et al. all aimed at a statistical analysis, which means that their conclusions depend
on the consistent application of their coding schemes in order to produce reliable data to
analyze. Consequentially, the researchers who used more than one coder were concerned with
inter-agreement (Domino et al., 2003, Sec. 4.2; Walle & Hannay, 2009, Sec. 3.4), which is only a
measure of how consistently a coding scheme can be applied (e.g., by staff exclusively hired
for coding), but does not speak of its relevance.

23Literally the only piece of concrete information on the contents of the analyzed sessions is that the pairs, on
average, spent 18.9% of their time Programming Aloud (Walle & Hannay, 2009, Fig. 3).

75

CHAPTER 2. RELATED WORK

Ultimately, all these studies condensed whole pair programming sessions into single data
points (7, 24, and 44 data points, respectively) to perform statistical analyses on, but did not
actually characterize the underlying processes.

Summary of Qualitative-Quantitative Studies
Studying the pair programming process with a predefined perspective, i.e., by focusing on the
application as opposed to the development of a coding scheme, and then statistically analyzing
the resulting codings appears to either produce no significant differences where some were
expected (Domino et al., 2003; Bryant et al., 2008; Walle & Hannay, 2009, p. 211) or to produce
so many of them to not see the forest for the trees (Walle & Hannay, 2009, p. 210). Nevertheless,
a number of qualitative results on pair constellations and the pair programming process (A4
and A5) can still be summarized:

• Program comprehension is a large part of what happens during pair programming sessions
(Bryant et al., 2006; Walle & Hannay, 2009).

• Pair performance does not depend on individual cognitive abilities alone; instead, a
dominating partner and the avoidance of conflicts may be problematic (Domino et al.,
2003). The pair members’ personalities affect their collaboration; in particular, differences
in their personalities appear to lead to more verbal communication (Walle & Hannay,
2009). Also, whether or not developers have experience with the pair programming work
mode affects how they work together (Bryant, 2004).

• The roles of “driver and navigator” are generally not evenly distributed among the pair
members, i.e., one developer controls keyboard and mouse more than 60% of the time.
However, for one third of the time, nobody touches the input devices, so the two roles do
not apply here (Plonka et al., 2011).

• Both pair members verbally contribute to the vast majority of the tasks dealt with in a
session (Bryant et al., 2006). The levels of abstraction pair programmers actually talk at
do not correspond to who is “driving” and who is “navigating” (Bryant et al., 2008).

Due to the research design that brought them forth, neither of these results explain how pair
programming actually works, but merely point to directions that full qualitative analyses (i.e.,
those not aiming at the testing of hypotheses but the development of theories) may investigate.

2.3.4 d) Qualitative Analyses of the Pair Programming Work Mode

As I will discuss in Section 3.2, qualitative research methods aim at discovering relevant
phenomena, at developing theories instead of testing pre-formulated hypotheses. They develop
rich theoretical concepts to describe or explain phenomena of interest. Apart from a number
of core features, qualitative research methods differ in the very basic assumptions they make
about their subject (see Section 3.2 for details). The schools of qualitative research used to
study pair programming include Distributed Cognition, Ethnomethodology and Ethnography,
and the Grounded Theory Methodology. In this section, I discuss the according studies, which
mostly look at the pair programming process (A5) and, to a lesser degree, pair constellations
and knowledge types (A2 and A4). First, however, I discuss so-called Protocol Analysis studies.

Method: Protocol Analysis
In psychology, protocol analysis is a method for studying cognitive processes that relies on a
protocol which “provides a running series of responses that can be used to infer the sequence of
mental states” , e.g., in the form of eye movements or computer interactions (Anderson, 1987,
p. 472). Typically, though, these protocols record verbal utterances of subjects who were asked
to “think aloud” while working on some task. In software engineering research, the appeal of
studying a pair of programmers lies in that the two subjects, at least in principle, express their

76

2.3.4 Pair Programming with an Industry Focus

respective thoughts anyway, making their think-aloud natural. Psychological experiments that
use a protocol of events contrast with studies which are only concerned with the outcome of a
cognitive process (Crutcher, 1994, p. 242). “Protocol analysis” is hence a slight misnomer as it
refers to the way data is collected, and not to how it is analyzed.

Maintaining a Body of Concepts Xu et al. (2005) compared the cognitive processes of two
student pairs with programming experience (“intermediates”) and one “expert” pair who all
worked on the Bowling Game kata.24 In the transcripts, the researchers identified and counted
domain concepts the developers considered, discussed, and included in or removed from the
source code. While the experts revised their solution, by adding concepts and removing obsolete
ones, the students mostly only added new concepts. In their code, the experts deleted methods
and classes, while the students adhered to their initial design and tried to fit in new concepts
(ibid., Sec. 4.1). Xu et al.’s “knowledge” notion is a bit peculiar, as the they do not differentiate
between the concepts in a pair’s discourse and those embedded in the source code. To them, a
proposal such as “We have to delete the old method for getScore()!” decreases “the number of
concepts in the knowledge of [the] pair” (ibid., Fig. 2 & 3). Apart from this idiosyncrasy, I see
two major threats to the validity of the comparison with the experts:

• Invalid Data: The expert pair’s session was not recorded by the researchers. Instead,
the transcript comes from the book Agile Software Development: Principles, Patterns, and
Practices, where it is introduced as “a pretty faithful reenactment of a programming episode”
(Martin, 2002, p. 43). Its faithfulness probably refers to the rough outline of the design
process but not to the accuracy of the verbal utterances.25 As Xu et al. (2005, Sec. 4.1)
themselves note, the experts’ “dialogue is edited from the original recorded data [. . .]
[p]hrasing is more mature and better articulated” . But at the same time they characterize
the expert’s discourse as “more coherent and richer” than the students’, who in turn “often
referred to more than one concept in one phrase”—which affects how Xu et al. calculate their
concept counter. As the many verbatim examples in my thesis will illustrate, incoherent
utterances in spontaneous speech are not unusual, even for experienced developers.

• Unfair Comparison: The students had no prior experience with either pair programming,
refactoring, test-first development, or the “domain” of scoring a bowling game (ibid.,
Sec. 3.3 & 3.4). It is not clear whether the students were tasked with just meeting the
specification of counting bowling scores, or whether they were also required to refactor
their code (to whatever end) and write tests first. Since the students were equipped with
reading material on all three practices (ibid., Sec. 3.5), I assume they had to do all at once.
But this is an unfair comparison with the “experts”, who decided during their session
what the scope should be (scoring a single game rather than a whole league of players),
to write tests first, and to refactor along the way—and with at least one pair member who
“used to be a pretty good bowler” (Martin, 2002, pp. 44 & 47).

Overall, this study does not add much to the understanding of the pair programming process
(A5)—which is not all that surprising given the authors were primarily interested in the
underlying cognitive processes for which pair programmers were just a means to an end.26

Activity Patterns A study by Cao & Xu (2005), in contrast, had an explicit PP focus. They
video-taped pair programming sessions of six pairs during a nine-week project of students
with three years work experience average. The developers were assigned to a high, medium,

24See http://codingdojo.org/kata/Bowling/
25As Martin (2002, p. 43) writes: “We made lots of mistakes while doing this. Some of the mistakes are in code, some

are in logic, some are in design, and some are in requirements.”
26This characterization was also independently made by Salinger (2013, p. 41).

77

http://codingdojo.org/kata/Bowling/

CHAPTER 2. RELATED WORK

or low competence level (based on their performance in assignments, exams, and “interaction
with instructor”) which I abbreviate as HI, MED, and LO. Overall, they observed three pair
constellations HI-HI, MED-MED, and HI-LO, with two pairs each.27 Cao & Xu (2005, p. 3)
mention “protocol analysis” in their paper, but neither provide any details nor reference a
method paper or book. Their report does not reflect a particular interest in cognitive processes,
so it is unlikely they borrowed this term from psychology. Cao & Xu (ibid., pp. 4–8) discuss five
“activity patterns” (A5) which differ in their details depending on the pair constellation (A4):

• One Leader & Summarizing Results: There appears to be always one developer domi-
nating the session, depending on the competence and personality of the developers. In
MED-MED pairs, the leader is concerned with details; in HI-HI and HI-LO pairs, with the
goal and strategy for the session. Only HI-HI pairs frequently summarize their current
status mid-session and possibly adjust their goal.

• Ask for Opinions & Critique Partner’s Approach: HI- and MED-developers ask their
partners for opinions on how to proceed along the way. In HI-HI pairs, longer discussions
ensue; MED-MED pairs have simpler questions and fewer discussions. Both HI-HI and
MED-MED pairs frequently point out problems in each other’s proposals and work
together to refine them.
In HI-LO pairs, in contrast, the LO-partner cannot provide valuable responses and always
agrees, so the HI-partner eventually stops asking.

• Explanatory Activities: All developers try to make sense of what they are doing (Under-
stand mechanism). HI-HI pairs frequently add details to their current understanding,
correct misunderstandings, and fill respective knowledge gaps, whereas the MED-MED
pairs are not always able to fill the gaps.
The HI-partner in the HI-LO pairs explains most of her actions, as well as the design and
the code—she fills her knowledge gaps on her own. The LO-developer enjoys the session
(unlike their HO-partners), presumably because she learns a lot through the explanations
of her partner (Learn mechanism).

It appears as if knowledge transfer in the sense of Understand (i.e., faster comprehension
together) only occurs in HI-HI pairs, whereas Learn (i.e., leaving the session more fit for future
tasks) is limited to HI-LO pairs.

Method: Distributed Cognition
For an individual, cognition refers to the set of information processing abilities which includes
perception, memory, and reasoning (see Section 2.2.2). Distributed Cognition is the extension of
this metaphor to larger “functional systems” comprising multiple actors and artifacts working
together to achieve a common goal by propagating and transforming knowledge representations
(Rogers & Ellis, 1994, pp. 121–122). Examples for such “systems” include a crew navigating a
ship (Hutchins, 1989) and pilots in a cockpit flying an airplane (Hutchins & Klausen, 1998). A
basic assumption of Distributed Cognition is that such a system has ‘cognitive properties’ that
differ from those of the involved individuals: Knowledge is distributed and partially redundant,
so individuals need to constantly work on matching their individual knowledge with shared
knowledge through communication (Rogers & Ellis, 1994, p. 123).

Maintaining Common Ground Flor & Hutchins (1991, 1998) performed a detailed analysis
of a single pair programming session. From the perspective of Distributed Cognition, such a

27Three additional HI-LO pairs and one MED-LO pair dropped out of the project. It is not clear from the paper
how often each pair was recorded and how long their sessions lasted. At one point, the authors speak of “the video
tape of the two [HI-HI] pairs” ; later, it is “the videos of [MED-MED] pairs” ; eventually they say that they “taped one
working session of two [HI-LO] pairs” (Cao & Xu, 2005, pp. 4, 6, & 7, emphases added).

78

2.3.4 Pair Programming with an Industry Focus

programmer pair and their computer(s) form a single “system”. The pair had to add a whisper
command to an existing game unknown to them. In total, the pair performed 23 code changes
over 2:40 hours. Flor &Hutchins (1991) cover the first code change (with 71 analyzed utterances)
where the developers duplicate and amend a case block of three statements; Flor (1998) covers
code changes #9 and #10 (22 analyzed utterances).28

Many of the 71 analyzed utterances during code change #1 are mono-thematic (they deal
with keyboard commands for copying and pasting lines in the vi text editor), while many others
are incomplete (e.g., “well” , “well how do we” , “so we’ll call it”), so they are not particularly
representative of all programming activities. Nevertheless, Flor & Hutchins (1991) identify a
number of properties of the system pair programmers and their computer :

• One property is inherent to programming and not specific to the pair situation: The
developers copied and modified a piece of existing code. In Distributed Cognition termi-
nology, this is Reuse of System Knowledge since the source code in a computer file is a
representation of knowledge within the system, which another part of the system (here: a
programmer) retrieves and reuses.

• Three additional properties are not specific to programming situations: (a) The two
developers have a Shared Goal, both want to reuse an existing case block. (b) Many
statements of the pair members are not fully specified, but still understood by the partner.
This Efficient Communication is possible because the physical setup and their shared
goal provide enough context for interpretation. (c) Both pair members engage in a Joint
Production of Course of Action, meaning that the development process is not determined
by either of the two alone.
From the analysis it is not clear how the pair arrived at its shared goal—it just appears. As-
suming the pair had some negotiation prior to the recorded session, these three properties
are known aspects of conversations in general (Fiehler, 2005, pp. 1231–1232): (a) Negoti-
ating how to advance a conversation, (b) understanding each other in spite of incomplete
utterances, and (c) the overall course not being determined by any one participant alone.

• Three final properties are specific to pair programming. In particular, they hint at auxiliary
mechanisms that appear more basic than Combine, Understand, and Learn.
First, the pair as a whole is Considering more Alternatives, i.e., more than one plan for
their shared goal (manually copying the case block by typing vs. copying multiple lines
into a buffer and pasting them afterwards). Second, the pair has a Shared Memory for
Old Plans, which enables them to remember more chunks of information together than
either of them alone. Finally, there is a Division of Labor: Not typing appears to allow
for more free mental capacity.

It is unclear whether these findings are based only on the 71 utterances analyzed in the paper or
on thewhole PP session of 2:40 hours.29 Although these properties are grounded in observations
and are therefore true in the sense that additional observations would not invalidate them, it
is not clear how relevant these findings are to understanding pair programming in general:

28It was disturbingly difficult to extract these facts, as Flor & Hutchins (1991) use “change” for three (!) different
but related concepts: The task involved “ten required changes” (ibid., p. 43), meaning that ten program routines
needed to be written or amended. The pair did not conduct these logical changes en bloc, but as 23 fragments
which are listed in the appendix as “change #1 ... #23” (ibid., p. 60). The main article discusses only the first of these
fragments by rhetorically dividing it into seven subsections which are called “Change #1 ... #7” (ibid., pp. 45–53
& 62), but should have been properly named #1.1 to #1.7.

29Both Flor & Hutchins (1991) and Flor (1998) reference an unpublished technical report which supposedly
covers the whole session. It is not clear whether said report merely conducts the reconstruction of what happened
during the session on a technical level or whether this reconstruction also served as the basis for deriving the
above mentioned findings.

79

CHAPTER 2. RELATED WORK

After all, the whole analysis in Flor & Hutchins (1991) is based on the conversation of two
developers mostly fiddling with vi editor keyboard shortcuts to copy-paste five lines of code.

Flor (1998) covers an even shorter segment of the session in his second study: Based on 22
utterances, he identifies four types of relevant knowledge (task decomposition, code modifica-
tions associated with the (sub-)tasks, the system’s compositional structure, and the program’s
behavior). With two developers, however, discrepancies in the individuals’ representations
(and/or with the representations manifest in the source code) will occur and can be detected
and repaired. According to Flor, reconciling such differences or maintaining common ground is
a large part of what happens during pair programming. However, his concepts of transferring
representations between different “media” (the shared screen or “the verbal medium” consisting
of the developers’ utterances) through listening, talking, reading, and writing merely describe
what needs to happen in any Distributed Cognition system. Hence, they do not offer much
insight into pair programming as such.

Method: Ethnomethodology and Ethnography
Ethnographic studies assume that a group of humans develops a ‘culture’ over time. This term
is meant in a broad sense: it simply pertains to a set of behaviors and possibly also beliefs
that are deemed “normal” within the group. The key to understanding these behaviors as a
researcher is to immerse oneself in the natural setting and consider everything as ‘strange’. A
related type are ethnomethodological studies, which are concerned with the ‘methods’ used by
human beings to make sense of their surroundings in their everyday life.

Reading Rooksby et al. (2006) did a seven-week ethnographic study in a software company
on the role of reading during programming which the authors see as a special kind of reading:
The reading itself is occasioned (i.e., every reading episode pertains to a specific purpose),
its subject (the source code) is orderly and analyzable. Further, they claim that programmers
need to learn this special way of reading as part of learning how to program (in the terms
of ethnomethodology, it is a set of ‘methods’ used by programmers to make sense of their
everyday world). Two short excerpts from pair programming sessions are to support this point.
The pair members appear to immediately understand why their partner started reading certain
parts of the source, indicating that programmers not only share these ‘methods’ (a type of
knowledge, A2), but also rely on their partner to follow them. Apart from this general idea,
however, the authors introduce no concepts and discuss no general mechanisms; just like Xu
et al. (2005) and Sillito et al. (2008) (my discussion on pages 77 and 82, respectively), they used
pair programmers as a means to investigate programming in general.

Social Dynamics Chong et al. (2006 and 2007) performed ethnographic observations in teams
with a focus on how they pair-program. The researchers visited different teams once per week
for several months, wrote down observations, and recorded conversations of PP sessions. They
collected about 20 hours worth of material per team. Their first study on interrupt behavior
in a development team (my discussion on page 69) was concerned with pair programming
as a practice. In their second study, Chong & Hurlbutt (2007) describe a number of distinct
in-session behaviors of pair programmers. In particular, they report large behavioral differences
(A5) between pairs of developers with comparable levels of expertise and pairs with a larger
gap (A4). In equal pairs, the process is a “cohesive stream of discourse” in which both partners
“moved together between the various levels of strategic thinking and implementation detail” , while
a role separation in the style of driver and navigator would only be observed during “short
bursts of implementation” (ibid., Sec. 5.1). In contrast, when there was a large gap in expertise in
the pair, the more experienced developer dominated the session, while the partner’s behavior
depended on the context: New team members would ask many questions in their first sessions,

80

2.3.4 Pair Programming with an Industry Focus

but under time pressure, the less experienced pair memberwould become passive to not hamper
the technical progress by asking too many questions (ibid., Sec. 5.1). Chong & Hurlbutt (ibid.,
Sec. 6.2) summarize the types of contexts they deem suitable for pair programming (A3): To
ramp-up new team members, and when working with a relaxed schedule. They also list which
types of knowledge might be transferred best (A2): Design patterns, tool features, language
features. Their reported examples, however, only feature instances of code base explanations
so their statement may not be evidence-based but a conjecture.

Expert/Novice Behaviors Plonka et al. (2015) revisit the same material used in other studies
(which I discuss on pages 73 and 84) and employed Interaction Analysis, which is a form
of ethnographic analysis that relies on video recordings (Jordan & Henderson, 1995, p. 35).
Applying a number of heuristics, Plonka et al. (2015, Sec. 3.2.1) cut down the material from a
total of 37 hours to five excerpts of 4 to 6 minutes to analyze developer behavior in sessions with
a self-declared “expert/novice” constellation and the explicit goal of transferring knowledge.
They identified behaviors which are (a) employed by the expert when the novice is driving
and (b) employed by either developer when the expert is driving. In scenario (a), the expert
may nudge (make a suggestion instead of telling), prepare the environment beforehand (e.g.,
by opening a useful file), point out problems instead of telling the solution, gradually add
information if pointing out the problem does not work, or eventually give clear instructions
by dictating what to type or naming shortcuts (ibid., Sec. 4.1). In scenario (b), the novice may
ask for explanations (which may then be given verbally or by showing), while the expert may
verbalize her activities which might help the partner to understand the thought process (ibid.,
Sec. 4.2). However, even for experts, understanding code and thinking about the partner’s
suggestions at the same time can be challenging: Providing explanations takes some effort and
becomes slower when they are unrelated to the expert’s current activity (ibid., Sec. 4.4).

Plonka et al. (ibid.) do not explicitly discuss the types of knowledge that are transferred
(A2). However, in her PhD thesis, Plonka (2012, pp. 197–198) distinguishes the three following
types of topics: Programming techniques (coding standards and debugging techniques), IDE
and tools (keyboard shortcuts and how to use debugger), and existing code. They did not,
however, evaluate whether or not the novice does actually Learn something from the expert.
Rather, Plonka (ibid., p. 196) speaks of “learning opportunities” . In fact, at least for scenario (a),
when the novice is driving, all six given examples seem to illustrate how the expert does not
explicitly explain something, but makes sure the novice develops the ‘right’ design idea, does
not introduce defects, or does not forget to write a test, or she gives clear instructions without
any explanation. In terms of explicit knowledge transfer, i.e., one in which both developers
are consciously involved and can appreciate its effectiveness, Plonka et al. (2015, Ex. 7 & 8)
distinguish but two cases, which are each triggered by the novice asking a question: The expert
may provide a verbal explanation (about why some test cases do not adhere to the current
style policy) and the expert may show something (how to use the debugger).

Method: Grounded Theory Methodology
Many qualitative research approaches include assumptions on the phenomena of interest which
ultimately shape the findings (e.g., the notions of knowledge representations in Distributed
Cognition or culture in Ethnography). In comparison, the Grounded Theory Methodology
(GTM) imposes less structure on the results of a study. Its hallmark is the rigorous application
of a number of practices to structure the process of developing theories (consisting of concepts
and their relationships) which are entirely grounded in the underlying data. I discuss the GTM
in Section 3.3.

81

CHAPTER 2. RELATED WORK

Expert Behaviors Zarb et al. (2012, 2013) analyzed 31 videos of a single pair of professional
software developers (which were available on the online video platform Vimeo), and additional
11 sessions from industrial contexts. They conceptualized the professional pairs’ activities in
order to eventually teach students how to pair-program like experienced developers. They
identified three behavioral patterns: Restarting, which consists of deliberately unfocusing when
stuck and then coming back to make a strategic decision; Planning, in which it is important
to clarify each partner’s suggestions and to look things up, if need be; and finally Action, i.e.,
turning a plan into concrete changes, during which the driver should voice her thoughts while
the navigator should listen to the muttering of her partner.

Zarb et al. (2014) then conducted an experiment with students to test the usefulness of
these patterns: Seven pairs were equipped with the above mentioned patterns as guidelines, six
other pairs worked without further instructions. All pairs had to find and fix one logical defect
in as many given programs as possible within 45 minutes. Statistically, there was no significant
difference in the technical results, but a closing survey found higher “ease of communication”
and “perceived partner contribution” for the pairs equipped with the information material. The
researchers also asked the students whether they actually used the guidelines provided (they
said ‘yes’ for Restarting and Planning, less so for Action), but the students’ in-session behavior
was not recorded, so it is not possible to discern the effects of reading about the guidelines
from those of acting according to the guidelines.

Types of Information Needs Sillito et al. (2008) recorded a number of pair programming
sessions (as already discussed on page 38): 12 pairs of students working on assigned issues in
an open-source project for 45 minutes and one pair of professionals working on their everyday
task for 30 minutes. The researchers analyzed the types of questions developers ask about
the code base by employing pair programming as a vehicle to make the subjects’ thinking
aloud more natural. Sillito et al. (ibid., Sec. 3) characterize their analysis method as “a grounded
theory approach” , but do not offer more insights into what this actually meant in their case
and neither does the first author’s PhD thesis (Sillito, 2006, p. 4). I suspect their catalog of 44
generic question formats results from open coding only (which I explain in Section 3.3.3a).
Nevertheless, it provides a partial answer regarding aspect A2 (relevant knowledge types):
When it comes to source code, pair programmers want to know a lot. To give two examples:
There are no fewer than six question types pertaining to class hierarchies (types #6–#11) and
another six concerning control flow (types #12, #13, #24, #29, #30, and #31).

Two things, however, should be noted: First, the student pairs (who worked in a system
unknown to them) asked, on average, 20 questions about the code base per session (or once
every two minutes), whereas the professional pair (who also had only six months of experience,
but worked in their system) only asked a total of 5 questions about the code base, that is,
one question every six minutes (Sillito et al., 2008, Tables 3 & 4). Although one single pair is
not representative of industrial PP, it still appears that (a lack of) code knowledge was not
a dominant issue in this situation. Second, although the researchers attempted to limit their
analysis to questions concerning the code, the boundary gets blurry at times and touches
matters of design and possibly requirements, as question types such as #38 Where should this
branch be inserted or how should this case be handled? or #44 Will this completely solve the
problem or provide the enhancement? show. This indicates that during pair programming, just
as in software development in general, more types of knowledge than just code knowledge
may be relevant. In Section 7.3.1, I discuss additional knowledge types which I identified to be
relevant in industrial pair programming sessions.

82

2.3.4 Pair Programming with an Industry Focus

Explicit Knowledge Transfer Jones & Fleming (2013) recorded pair programming sessions of
seven pairs of students who worked 110 minutes on fixing a bug in the jEdit software. They too
limited their use of Grounded Theory practices to open coding (ibid., Sec. III.D). In their analysis
of the types of transferred knowledge (ibid., Sec. IV, addressing A2), the researchers identified
and categorized 43 episodes of one pair member teaching her partner about something. As their
examples make clear, they focused on explicit knowledge transfer in which both developers are
involved (unlike Plonka et al., 2015, discussed on page 81), making this the first study which
actually pinpoints the moments in PP sessions where the developers explained, understood, or
learned something (A5). Across most sessions, both developers taught their partner general
development knowledge (12× regarding development tools, 6× the programming language) and
project-specific knowledge (16× how to reproduce the bug, 9× about the existing code structure).
The researchers do not provide details on how they developed these four categories. From
their educator’s perspective, they especially highlight the tools category as such knowledge is
practically relevant but not generally taught in classes (Jones & Fleming, 2013, Sec. IV.C).

Driver/Navigator and Process Disruptions In their next analysis, Jones & Fleming (ibid.,
Sec. V) revisited the driver and navigator roles as analyzed by Bryant et al. earlier (see my
discussion on page 72), thus looking at aspects A4 and A5. Similar to Bryant et al. (2006)
they found that developers contribute ideas to the process regardless of their role. Unlike
Bryant et al. (2008), who found most utterances to be on a medium level of abstraction, Jones &
Fleming mostly observed a pattern they call backseat driving: The navigator proposes specific
actions rather than goals or strategies. In the majority of cases, the driver acted upon these
proposals without any discussion, which Jones & Fleming interpret as an indication for how
closely the partners worked together, allowing the navigator to make suggestions fitting right
into the driver’s course of action. Extreme forms of this have been reported earlier both by
practitioner Belshee (2005, Sec. 1.2) as “pair flow” and by researchers Chong & Hurlbutt (2007,
Sec. 5.1.2) as a “mode of [being] exceptionally in sync” . This interpretation is supported by their
analysis of disruptions in the pair process (Jones & Fleming, 2013, Sec. VI): Within 14 hours of
pair programming, there was only one instance of a pair member signaling that his partner
disrupted his train of thought: The partner pushed forward while he simply needed some time
to think.

In their analysis, however, Jones & Fleming (ibid., Fig. 2, Tab. IV) only categorized navigator
ideas as either “discussed” or “not discussed” , but not whether and how the driver’s ideas were
discussed. There is no example in their paper to illustrate how a discussion on the content level
(i.e., beyond “Say that again”) looks like. An alternative interpretation of their observation
would be that the respective driver simply did as told, without actively agreeing with her
partner, which would not be an indication of close collaboration. In my own research, I analyze
the pair programmers’ discourse in more detail, e.g., by distinguishing content-level discussion
from mere clarifications (see Section 6.2).

Other Pair Programming Roles As Bryant et al. (2008) found no quantitative difference
between the driver’s and the navigator’s abstraction level of speech, Salinger, myself, and
Prechelt (2013, prior to my PhD research) started a qualitative analysis of industrial PP sessions
from Plonka’s data set (discussed on page 73; see also Section 4.3). We developed a role meta-
model in which a role consists of multiple facets each of which corresponds to observable
actions. In this terminology, having the keyboard would be a facet that belongs to the postulated
driver role. However, we found other facets to be more relevant for understanding how a pair
process unfolds. We identified a number of facets and grouped them to three relevant roles:

83

CHAPTER 2. RELATED WORK

• TheWatchman recognizes hazards (detecting and mentioning issues) and sets priorities
(insisting that something is to be done now).

• The Task Expert passes on task knowledge explicitly (to her partner) and turns task
knowledge into proposals.

• The Spokesperson opens a dialog (about some concern beyond the pair), carries the
dialog forward and rounds off the dialog (by not accepting an end without resolution).

It should be noted that we analyzed only one pair of programmers. Here, one member assumed
the task expert role and the other was both watchman and spokesperson. This initial role catalog
was not developed further, but the knowledge advantage of a task expert would later resurface
in my PhD research as a common pair constellation (the Primary Gap, see Chapter 11).

Disengagement Plonka et al. (2012a) analyzed episodes of disengagement in industrial PP
sessions where one pair member was temporarily less involved in the process, i.e., where
the pair did not work as closely together as was reported by others (Belshee, 2005; Chong
& Hurlbutt, 2007; Jones & Fleming, 2013). This is the same data set they analyzed for other
publications (discussed on pages 73 and 81). Plonka et al. (2012a, Sec. V) used five indicators
for different levels of engagement from literature (e.g., mirroring the partner indicates basic
engagement while modifying the partner’s contribution indicates high engagement) to identify
episodes which lacked these indicators. The authors do not put a label on their method, but
analysis steps (investigation of the circumstances of such episodes, systematic comparison
with similar contexts without disengagement) resemble the GTM’s axial coding and theoretical
sampling (see Section 3.3).

Plonka et al. (ibid., Sec. VI) identified five circumstances leading to such disengagement:
(1) external interruptions which are dealt with by one pair member who then may have trouble
getting back into the process; (2) a division of work according to expertise where the less
knowledgeable developer zones out because the ‘expert’ took over; (3) simple tasks of which
the complexity is so low that the non-typing developer has nothing to look out for; (4) social
pressure which makes a less knowledgeable developer take herself back as to not slow down
the ‘expert’; and (5) time pressure due to which some developers may decide not to spend much
time on explanations but to focus on the technical task instead. While the authors discuss
concrete disengagement episodes excerpted from the recorded sessions for cases (1) and (2), and
describe how the ‘novice’ in case (4) avoided driving and stopped asking questions at some
point during the session, the empirical basis for the other two cases appears to be developer
interviews only: The practitioners stated that they could have split up the simple task (case 3),
and would have explained more if it were not for the time pressure (case 5). The researchers do
not discuss how the pair programming process in these cases actually unfolded, e.g., whether
one pair member was actually useless during supposedly ‘simple tasks’ or whether the ‘expert’
actually explained too little under time pressure for the ‘novice’ to learn something.

Process Patterns in Distributed Pair Programming Schenk (2018)30 analyzed video record-
ings of a three-day period of one pair of professional software developers working together in
a distributed setting totaling 16 hours of material. The pair used the IDE-plugin Saros which
allows both developers to navigate and edit freely on a shared code base in real-time. Her
analysis relied mostly on open coding, little axial, and no selective coding (ibid., p. 143), and
focused on two topics addressing what is possible for a good distributed pair (as opposed to
what the average pair can expect):

30Earlier results were published as a conference article (Schenk et al., 2014). Since the concepts reported there
were reworked significantly, I summarize the more recent state of research from Schenk’s PhD thesis here.

84

2.3.4 Pair Programming with an Industry Focus

First, Schenk explains how the pair deals with its lack of awareness, which is more or less
granted in a co-located case. Contrary to the expectation of seeing many related problems,
Schenk (ibid., Sec. 4.7.6) reports a close communication with little verbal synchronization effort
and concludes that the shared source code provides the pair with enough concrete identifiers
and line numbers which they can seamlessly embed in their dialog to make up for any lack of
awareness. She calls this “the magic of source code” (ibid., Sec. 5.3).

Second, Schenk discusses how the pair makes use of its freedom of independent navigation
and editing, and how they organize their activities beyond the postulated roles of driver and
navigator. Schenk (ibid., Sec. 4.5) reports five patterns of how the ‘navigator’ becomes active
as well: (1) Direct Fix is fixing a small issue without disrupting the partner’s train of thought;
(2) Jump In is putting an idea of the driver into action; (3) Check is reassuring oneself by
looking something up relating e.g. to the driver’s action; (4) Contribution is performing a
code change that relates to the driver’s action (such as adding a comment line to the method
currently under work); and (5) Local Solution is completing a sub-task of the driver’s work
(such as implementing a comparator for a sorting logic). All of these patterns could be more or
less feasible for co-located pairs as well, but would require more explicit handover of cursor
control. They can therefore be understood as advantages of distributed pair programming—if
the appropriate tools are employed and the developers are skilled enough.

Results of Qualitative Analyses of Pair Programming
Most qualitative studies are rich in detail in that they include many different aspects which
cannot be neatly compressed to a scalar such as an effect size in a controlled experiment.
Nevertheless, there are a number of themes which resurface in multiple reports. Combining
the studies discussed above, the scientific understanding from qualitative studies regarding
the five aspects of knowledge transfer pair programming can be summarized as follows:

• Process (A5): Communication is key if two software developers are to actually work
together on a problem. In good pairs, there is a constant stream of conversation, and their
collaboration occasionally gets very close (Chong & Hurlbutt, 2007; Jones & Fleming,
2013; Schenk, 2018). In order to stay closely together with their partner, pair programmers
do not stop communicating, not even when writing code or performing other actions
(Zarb et al., 2013; Plonka et al., 2015; Schenk, 2018). In particular, this means that they
establish and maintain their common ground, which includes both a mental model of the
system and a shared goal and plan (Flor & Hutchins, 1991; Flor, 1998; Zarb et al., 2013;
Schenk, 2018). This closeness may temporarily loosen under certain conditions when pair
members disengage (Plonka et al., 2012a).
The often mentioned roles of driver and navigator are only meaningful terms when
someone is actually typing, which is not the case throughout the complete sessions
(Chong & Hurlbutt, 2007; Salinger et al., 2013). In distributed PP, the line between the
roles is blurred even during coding with the many ways how the navigator can become
active in a non-obtrusive way (Schenk, 2018). Overall, both developers contribute to the
programming process in terms of ideas and discussions (Jones & Fleming, 2013).

• Pair Constellations (A4): While driver and navigator roles do not appear to bear much
weight, in many sessions, there still appears to be one dominating partner, e.g., the more
experienced pair member (Cao & Xu, 2005; Chong & Hurlbutt, 2007).
The exchange and consolidation of ideas appears to work best for high-competent pairs
and not for low-competent pairs (Cao & Xu, 2005).

• Types of Knowledge (A2): First of all, there is tacit how-to knowledge that relates
to programming in general (such as how to read source code) which becomes visible
in pair programming (Rooksby et al., 2006). Regarding explicit knowledge, which can

85

CHAPTER 2. RELATED WORK

be verbalized, there are different types of knowledge that are actually transferred in
pair programming sessions, including general programming knowledge and system-
specific/task-relevant knowledge (Sillito et al., 2008; Jones & Fleming, 2013; Salinger et al.,
2013).

• Effectiveness (A1): Knowledge transfer does happen in pair programming, e.g., in episodes
of knowledgeable developers explicitly (Jones & Fleming, 2013) or implicitly teaching each
other, for which there are a number of different strategies (Plonka et al., 2015), or through
fresh team members (or otherwise inexperienced developers) who ask their partner many
questions—at least unless the pair is under time pressure (Chong & Hurlbutt, 2007; Plonka
et al., 2012a, 2015).

Although the above list may appear like a cohesive body of knowledge on how pair pro-
gramming works, it should be noted that I was only able to write the above summary after
I conducted my own pair programming research for years and filter and consolidate pieces
from the, in fact, quite isolated studies.

Critique of Qualitative Analyses of Pair Programming
Among the qualitative studies discussed above there are a number of recurring problems
pertaining to their concrete research method, the nature of the results, and the conclusions for
further research and possibly practitioners. See Table 2.11 for an overview.

Possibly Problematic Areas

Qualitative PP Studies Type 1: Research
Method

2: Theory
Building

3: Allow
Building On

4: Practical
Insight

Flor & Hutchins (1991), Flor (1998) S U ✗ (✓) ✗ ✗

Xu et al. (2005) M N ✗ ✗ ✗ ✗

Cao & Xu (2005) M K ✗ ✗ ✗ (✓)
Rooksby et al. (2006) M K ✗ ✗ ✗ ✗

Chong & Hurlbutt (2007) M K ✗a ✗ ✗ (✓)
Sillito et al. (2008) M U ✓ ✗b ✗b ✓

Zarb et al. (2012, 2013, 2014) M K ✓ (✓) ✗ ✓

Jones & Fleming (2013) M U ✓ ✗ ✗ ✗

Plonka et al. (2011, 2012a, 2015) M K ✓ ✗ (✓) (✓)
Salinger et al. (2013) S K ✓ (✓) ✓ (✓)
Schenk (2018) S K ✓ (✓) (✓) (✓)
aAn earlier paper (Chong et al., 2005, Sec. 4) might give a clue: In their pre-study, they supposedly performed

open coding on their transcripts (from the Grounded Theory Methodology, see Section 3.3).
bProblem areas 2 and 3 pertain to PP, which was not a particular interest of Sillito et al. (2008).

Table 2.11: Overview of recurring problems in qualitative PP research. Studies involved
either a single (S) or multiple pairs (M) who worked in an existing project/context known (K)
or unknown to them (U), or started a new one (N). In the respective areas (see main text), the
studies have ✓ – no problems, (✓) – some problems, or ✗ – considerable problems.

The four possibly problematic areas are:
1. Research Method: Generally little information is provided about the actual research

process. Most qualitative studies use a coding scheme of some sort, but these are not
specific for pair programming or their generation is not described.

86

2.3.4 Pair Programming with an Industry Focus

2. Theory Building: Studies may be detailed in their examples (e.g., by providing verbatim
excerpts), but do not present rich concepts that have internal structure and variability,
and are connected to others. A coding scheme—after all, a collection of labels—is not a
theory.
For example, the novice-guiding “strategies” are all isolated and listed one after the other,
usually illustrated with one example. The only variation is in giving clear instructions,
which may come with and without explanations (Plonka et al., 2015, see also discussion
on page 81). A richer theory would address questions like Do experts try more than one
strategy? or Are there any constraints, or are the strategies up to personal taste?31

3. Allow Building On: Studies are concerned with narrow and isolated aspects and not
with understanding PP as a whole. Consequentially, these studies do not provide obvious
starting points for further research.

4. Practical Insight: Studies do not provide leverage points for formulating practical advice
for professional developers on how to improve their pair programming, i.e., being able to
achieve the expected benefits of this work mode discussed in Section 2.3.1c.

Starting Pair Programming Research from Scratch
Salinger (2013, p. 42) made similar observations in his discussion of the state of qualitative PP
research and set out to address these problems in his own research. Based on the Grounded
Theory Methodology, he performed a (very) detailed analysis of pair programming sessions
from both industrial contexts and from an experiment with students. He made three key
observations each of which led to a strategic decision concerning his research result:

• Observation 1: Pair Programming is Complex → Layered Research Strategy
Pair programming features several different phenomena which could be studied, too many
for any single study or even researcher, such that a naive approach without a particular
research focus led to outright “drowning” in concepts (Salinger et al., 2008).
Salinger’s conclusion was to not aim for a complete analysis of pair programming, but to
do the groundwork to structure an overall research process that is to advance in stages.
Starting from an utterance level analysis covering all that pair programmers do on its
‘atomic’ level, later studies could focus on only a certain type of phenomenon, certain
aspects, and/or coarser granularity. These ‘atoms’ of a pair programming process are the
base activities which are characterized by one or more base concepts. The set of all base
concepts and the rules when to apply them constitute the base layer.

• Observation 2: Flexibility in Verbal Expression → Reveal Intentions
Verbal communication constitutes a large part of pair programming sessions while inter-
action with the computer (e.g., to look up things and to modify source code) is often only
the culmination point of a prior discussion.
Base activities have meaning to the pair programmers, but the observable utterances can
have many shapes. Instead of addressing the dialog’s surface structure (as Bryant, 2004
did, e.g., by treating an utterance as a question regardless of whether the speaker already
knows the answer, see page 74), Salinger’s base concepts attempt to capture the primary
intention of the developers and thus do make a difference between, say, proposing to the
partner to click somewhere and actually explaining the rationale behind it (unlike Plonka
et al., 2015, discussed on page 81).

• Observation 3: Progression of Ideas→ Analyze Discourse

31It is important to note that I do not intend to diminish their efforts. Unlike many publications, their work
simply contains enough details to provide a concrete example.

87

CHAPTER 2. RELATED WORK

Base activities have an episode character in that they pertain to some discourse object
(such as a design proposal, or a proposal regarding the next tactical step) which the pair
members collectively deal with, e.g., by bringing up such proposal, dis-/agreeing to it,
amending it, challenging it, etc.
Salinger figured that this is an important property of a pair programming process, and
thus structured the set of base concepts accordingly. Overall, he identified 14 classes of
discourse objects and for each between one and seven verbs used by pair programmers to
operate on them, leading to an overall of 59 verb-object combinations, such as propose_step
or disagree_hypothesis.

It is important to note that the base layer is not meant to be used as a coding scheme (Salinger,
2013, p. 125; Salinger & Prechelt, 2013, p. 35). Apart from an existence proof of 67 different
base activities (that is, 59 human-human interaction activities mentioned above, plus 8 human-
computer interaction activities) and their internal taxonomy (e.g., propose_design has three
subtypes; explain_finding has seven), the base layer is first and foremost a methodological
contribution. The base layer is not meant to be ‘applied’ for a complete coding of PP sessions—
as would be necessary for a qualitative-quantitative study—but is a framework, a starting point
for qualitative pair programming research that avoids problem areas (1) to (3). I discuss the
base layer as such in Section 3.4 and my application of it in Section 4.5.2.

2.3.4 e) Summary of Industrial PP Research

Pair programming in industrial settings has been studied from a quantitative perspective
(Section 2.3.4a), where it is often compared with solo programming in time- and/or quality-
based contests (the latter is then reduced to a single scalar or even just a binary measure), which
show rough tendencies in favor of quality and against time but also indicate that moderator
variables are at play. Developer expertise and task complexity have been explicitly tested
as moderators but without yielding clear results. Overall, controlled experiments on pair
programming can only cover a small fraction of the software development world as they rely
on small programs and isolated tasks (with 300 lines of Java code already being ‘complex’), let
developers work in pairs who have no experience in this regard and who could not decide for
themselves whether they deem the pair work mode helpful for their particular task at hand.

Project-level field studies in industrial settings (Section 2.3.4b) could get around these
limitations, but tend to consider pair programming as a practice that is part of a software
development process and not record what actually happens during PP sessions.

Quantitative-qualitative analyses (Section 2.3.4c) condense a whole PP session into a single
data point, thus disregarding the actual process of pair programming and any differences
therein. Pretty much the only constructive advice for practitioners is that the metaphor of
driver and navigator is questionable because it is (a) not applicable for all activities that happen
during a session and (b) there is no significant difference in the levels of abstraction pair
programmers speak at while assuming these roles.

Qualitative analyses (Section 2.3.4d) produced a number of insights: There are recurring
activity patterns including explanatory or teaching episodes; there are activity bursts, where
the two pair members are exceptionally in sync; pair programmers may develop a shared
plan which incorporates ideas from both; communication is important to maintain common
ground throughout the session; there are differences in behavior depending on the developers’
competence levels and context (e.g., new to the team, time pressure, or task difficulty). However,
the theoretical concepts are rather coarse, come from isolated studies, which, at least in part,
are not as transparent with regard to their research process as to inspire much trust, and

88

2.3.5 Summary of Pair Programming Research

mostly lack obvious starting points for further research and ideas for how to eventually come
to results which are relevant for practitioners.

2.3.5 Summary of Pair Programming Research

I started my discussion of PP literature with a practitioner perspective: What benefits do
software developers ascribe to PP? A consolidation of practical books and surveys led to a
distinction between (potentially) observable effects and (sometimes tacitly) assumed mecha-
nisms that bring them forth: Pair programmers Combine their existing individual knowledge
to work on more difficult tasks while producing better designs, Understand a given situation
better together which catches defects in the making thus lowering defect counts, and Learn
together and from another for future tasks thereby spreading knowledge in the team.

In addition to the overall effectiveness of pair programming with regards to the above
mentioned mechanisms and effects (A1), practitioners are also interested in more nuanced
aspects: Are there differences in the types of knowledge, task types, or pair constellations that
affect the mechanisms (A2 to A4) and how do these mechanisms actually work (A5)?

Researchers in industry and education ask similar questions, but with different emphases
(Sections 2.3.3 and 2.3.4): Although it is plausible for all three mechanisms to have relevant
effects in both domains, educational research is more interested in the effectiveness of the
Learn mechanism, while the industry’s prime concern is economic effectiveness coming from
Combine and Understand. A high-level overview can be found in Table 2.12.

Below, I summarize what is already understood about knowledge transfer in pair program-
ming by combining both domains, what the open questions are, and summarize which of them
I contribute to in this thesis.

2.3.5 a) Effectiveness (A1)

Question Is pair programming effective in the sense that it produces the expected effects?

Results Overall, students and practitioners who pair program report positive effects. Meta-
analyses of actual data show positive trends for economic aspects such as quality and duration,
and students’ short-term learning. The results per expected mechanism are as follows:

• The Combine Mechanism: Case studies indicate that developers might choose their
programming partners based on their respective individual knowledge levels (see Sec-
tion Observational Field Studies on the Project Level on page 69). Whether or not pairs
then actually combine their individual knowledge in educational or industrial practice is
not clear. I am not aware of any study that investigates effects of developers pre-existing
knowledge levels in pair work, e.g. on design quality.
In general, in many experimental tasks, developers either start from scratch or in a
system unknown to them, so there is little relevant pre-existing knowledge that could be
Combined anyway (see Section Unrealistic and Unfair Comparisons on page 67).

• The UnderstandMechanism: For investigating the Understand mechanism, work-
ing in an unknown system or starting from scratch is less of an issue. Both educational
and industrial meta-analyses show positive effects of pair work: Students get better as-
signment scores (see page 55), professional developers are faster (in terms of wall-clock
time, not person hours) and produce higher quality code (see page 64). However, both
industrial experiments and more realistic project-level field studies show mere trends and
struggle with unexplained variation (see pages 64, 69, and 71).
While the effectiveness of PP for code understanding is not clearly demonstrated in
experiments and project-level field studies, qualitative studies at least show that the need

89

CHAPTER 2. RELATED WORK

Aspect PP in Education PP with an Industry Focus

Effectiveness
(A1)

Combine & Understand:
Mixed neutral to positive ef-
fect on code quality, and
mostly positive effect on time
spent. But: Little relevance in
educational settings.

Combine & Understand:
Experiments show positive effect on quality and
duration, but negative on effort. But: A lot of un-
explained variance in experiments and project-
level field studies. Either insignificant or huge
quality effects in industry.

Learn:
Neutral to medium positive
effect on assignment scores
and less on exam scores. At
least half of students report
more learning due to pairing.

Learn:
Over time, developers’ perceived knowledge
levels increase. Knowledge transfer happens
through teaching (explicitly and implicitly) and
asking (if time pressure allows).

Knowledge Types
(A2)

– Code knowledge is necessary for doing PP and
is acquired during PP; general programming
knowledge also gets transferred.

Task Suitability
(A3)

– In experiments, PP appears to dampen effects
of task complexity on effort and quality, mak-
ing it less beneficial for simple tasks. In practice,
PP is less used for easy tasks and more for com-
plex tasks, those involving system understand-
ing and many dependencies, in particular early
in projects.

Pair Constellations
(A4)

In general, incompatible pairs
are rare. Regarding person-
ality, neither homogeneous
nor heterogeneous are consis-
tently better.

Personality has some effects, but less than differ-
ences in task complexity and expertise have. In
experience-wise homogeneous pairs, junior and
intermediate developers appear to benefit more
from PP than seniors; large differences in experi-
ence make PP difficult. New team members first
pair with experienced colleagues.

Pair Process
(A5)

More communication, feed-
back, and meta-communica-
tion correlate with learning
achievements. But: Only few
studies.

There is constant communication in PP sessions.
Driver and navigator do not talk (and likely:
think) at different levels of abstraction, and both
contribute to almost all topics. Nevertheless, one
developer appears to dominate. Cognitive abili-
ties alone do not make PP work if the pair does
not handle conflicts.

Table 2.12: High-level summary of research results on pair programming (as a work mode)
with regard to the five practically relevant factors. See Sections 2.3.3 and 2.3.4 for details.

to understand the code base is indeed addressed in pair programming sessions: All pairs
appear to try to Understand, even though not all succeed (page 78); some student pairs
asked questions about the code base about once every two minutes (see page 82); overall,
code comprehension is the most prevalent topic in industrial PP (page 72).

• The Learn Mechanism: Positive learning effects of pair programming can be mea-
sured in students’ assignment, quiz, and exam scores (see page 55); learning achievements
attributed to PP are self-reported in educational surveys (see Section Self-reported achieve-
ments on page 56), as well as industrial experience reports, surveys, and project-level field

90

2.3.5 Summary of Pair Programming Research

studies (see Sections 2.3.1c and 2.3.1d and page 71). I am not aware of a truly industrial
experiment showing an effect of pair programmers’ increased knowledge levels.
Yet again, qualitative studies do not directly address the effectiveness, but do show that
pairs use learning and teaching opportunities: The main purpose of some industrial pair
sessions is knowledge transfer (see page 81). In pairs with knowledge gaps, the more
knowledgeable partner provides explanations (see pages 77 and 83) as well as more subtle
learning opportunities (page 81), while the less knowledgeable partner such as a new
team member asks questions (page 80).

Open The economic effects have much unexplained variation. Additionally, measurements
in realistic settings are rare, fair comparisons of lab settings and reality are difficult.

Contribution I do not address the question of overall pair programming effectiveness. Instead,
I characterize the mechanisms underlying knowledge transfer in pair programming based on
in-depth analyses of industrial PP sessions (see Chapters 8 to 11).

2.3.5 b) Types of Knowledge (A2)

Question What do the developers Combine, Understand, and Learn while pair programming?

Results Table 2.13 lists five knowledge types that have been reported by various publications.
By far the most often mentioned type is knowledge about existing code and the software
system itself. Developers do indeed feel that this type of knowledge is the most relevant for
pair programming sessions (see page 71). Studies that looked into actual PP sessions found
that having code or system knowledge appears relevant for being a valuable pair member: If
only one pair member has such an advantage, she appears to take the lead in the session (see
pages 71, 78, 80, and 84).

Open Are there additional types of knowledge? Are there actual (as opposed to perceived)
differences in the relevance of the knowledge types in the context of a PP session?

Contribution I distinguish two main types of knowledge that are relevant in pair program-
ming sessions, system-specific S knowledge and more general G knowledge (see Section 7.3.1),
with gaps in S knowledge playing the bigger role in most analyzed PP sessions (see Chapter 11).

2.3.5 c) Task Suitability (A3)

Question Are there some types of tasks for which pair programming is more or less suited?

Results Teams do not use PP for all tasks (see page 70), which may indicate some, possibly
tacit, selection criterion. Although most studies are not explicit as to what the contents of the
pair sessions actually were, the reported task properties that motivate developers to work in
pairs all emphasize the importance of knowledge about the existing system, e.g., ramping up
new team members, being early in a project, or working with complex tasks involving many
code dependencies (pages 70, 71, and 80).

Actual task suitability, however, may be broader than is expected by practitioners. In an
experimental comparison of two architectural styles, pairs performed similar in both conditions
in terms of time to completion and average correctness of solutions, whereas the solos were
slower in the simple system and produced less correct solutions in the complicated system
(see page 65). I am not aware of a further distinction or characterization of tasks that has an
empirical basis and is relevant for pair programming.

91

CHAPTER 2. RELATED WORK

Knowledge Type Good Evidence Vague Evidence

Programming
language

Jones & Fleming (2013) 83 Xu & Rajlich (2005) 61
Chong & Hurlbutt (2007) 80

Tool usage Plonka (2012) 81
Jones & Fleming (2013) 83
Vanhanen & Korpi (2007) 71

Xu & Rajlich (2005) 61
Chong & Hurlbutt (2007) 80

Task decomposition &
bug reproduction

Flor (1998) . 80
Jones & Fleming (2013) 83

Existing code and
system

Flor (1998) . 80
Jones & Fleming (2013) 83
Sillito et al. (2008) 82
Plonka (2012) 81
Vanhanen & Korpi (2007) 71
Canfora et al. (2005) 55
Chong & Hurlbutt (2007) 80

Design patterns &
programming
techniques

Plonka (2012) 81 Xu & Rajlich (2005) 61
Chong & Hurlbutt (2007) 80

Table 2.13: Knowledge types mentioned in PP studies with either good or vague evidence.
Page numbers refer to my discussion of these studies.

Open Are there actual (as opposed to perceived) differences between different types of tasks?
What is the relation of task type and relevant knowledge?

Contribution I do not categorize software development tasks as such, but pair’s Target
Constellation in terms of Knowledge Needs that the pair wants to meet by the end of the
session and the session dynamics that develops from this (see Chapter 11).

2.3.5 d) Pair Constellations (A4)

Question Are there some types of pairs for whom pair programming is more or less suited?

Results Neither individual developer experience, skill level, cognitive abilities, nor personality
traits explain a pair’s effectiveness well. In educational settings, there is only little evidence for
pair programming effectiveness being significantly affected by the pair members’ respective
skill levels (see Section Skill Level on pages 58 to 60) while studies involving cognitive abilities
(see page 72) and studies on personality types are inconclusive (see Section Personality Types
on pages 57 to 58). The results of an industrial experiment—which only had homogeneous
pairs, i.e., both junior, intermediate, or senior—might indicate that working in pairs leads to
more consistency in produced quality regardless of developer expertise (see page 65). Again,
personality traits do not explain the pairs’ performances (see page 66).

Studies that look into the pair process also consider an expert/novice distinction (sometimes
with an intermediate level in between). Here, the constellation of two experts appears to be
beneficial, as it is the only one with longer discussions on how to proceed, proactive asking for
opinions and critiquing, consolidation of knowledge and filling the gaps, and summarizing the
status mid-session and readjusting the goal if need be (see Section Activity Patterns on page 77).
This observation begs two questions: First, there is the pragmatic aspect of whether there is

92

2.3.5 Summary of Pair Programming Research

nothing non-expert developers can do about it? Second, what is an ‘expert’ anyway? Is it the
academic performance and “interaction with instructor” as in the study that gave rise to these
characterizations? Or is it the pay grade as in the controlled experiments (see page 65)? The
literature on expertise in software development paints a multifaceted picture (Section 2.2.3a)
which is not reflected in the one-dimensional conceptions used in PP research.

Open What are relevant dimensions to characterize pair constellations, if developer experi-
ence, personality traits, and others are not helpful?

Contribution I do not characterize individual developers or pairs of developers, but a pair’s
Initial Constellation in terms of its members’ individual Knowledge Needs in the context of the
task at hand. Depending on the Target Constellation the pair wants to reach, their respective
knowledge gaps can pose challenges or opportunities (see Chapter 11).

2.3.5 e) Pair Process (A5)

Question How do pairs actually Combine, Understand, and Learn?

Results For PP to work and have positive effects, the pair members need to communicate.
Although this is merely postulated by most educators, the few who looked into it indeed found
a positive correlation of communication amount and learning effects (see Section 2.3.3c). In
industrial PP sessions, there is constant communication (see pages 71, 80, and 83) during which
the pair members maintain their common ground (page 80). Not resolving conflicts can lead to
one pair member withdrawing altogether (see page 72).

The only wide-spread model used to “explain” the pair programming process are the roles
of driver and navigator (see Section 2.3.1a). However, these role labels are only meaningful for
two thirds of the time when one developer actually touches mouse or keyboard (see page 73).
Even when one developer controls the keyboard, the other may “drive” the session forward
(see page 83). In practice, both pair members contribute to almost all of the topics dealt within
a PP session regardless of their “role” and there is no significant difference in the levels of
abstraction the two talk and, presumably, think on (see Section Driver and Navigator Roles on
page 72). Further analyses of what the communication of a pair looks like are scarce, and only
coarse patterns are described (see Section Expert Behaviors on page 82).

More detailed studies on knowledge transfer in pair programming are incomplete in that
they are limited to ‘implicit teaching’ but do not cover explicit knowledge transfer (see page 81),
focus on information needs and questions but do not address the answers (page 82), or focus
only on explanations but do not address what the needs or questions were (page 83).

Open What does the pair’s communication look like on a process level? How does what the
pair does and does not know affect them in their session, and how do they deal with it?

Contribution I distinguish different levels of pair programming process Fluency and analyze
five aspects of the partners’ Togetherness that enable a fluent process and productive collabo-
ration: A shared understanding of the software system and of software development in general,
one shared plan, good workspace awareness, and no language barrier (see Chapter 6). The
main chapters of this thesis pertain to two knowledge-related aspects: How do pair members
deal with what they (do not) know about the software system and about software development
in general, which I call S knowledge and G knowledge, respectively (Chapters 7 to 11).

93

CHAPTER 2. RELATED WORK

2.4 Pair Work and Small Groups

Software engineering researchers are not the only ones interested in how people work together.
Psychologists and sociologists both contribute to the field of “small group research”. Although
there is some debate on whether a pair of two people—or dyad, as it is often called in this
discipline—should already be considered a group, I follow the argument of Kipling D. Williams
(2010): “Dyads Can Be Groups (and Often Are)”. While other researchers often define a group
through attributes such as shared past and goal, cohesion and interaction, he sees these aspects
not as defining properties but as interesting factors that may affect a group, which to him is
just “two or more people” (ibid., p. 269). He further argues that dyads can be used to study a
wide range of group phenomena (ibid., pp. 270–271):

• Social facilitation: The mere presence of just one additional person increases the likeli-
hood of the dominant response, which may result in a better performance or in making
more errors.

• Social loafing: Individuals may reduce their efforts whenever they believe their work is
combined with that of others.

Williams’ list of group phenomena that are applicable to pair situations goes on: “conformity,
imitation, contagion, deindividuation, social comparison, compliance, obedience, bystander inter-
vention and related prosocial behaviors, social inhibition, stage fright, and even crowding” (ibid.,
p. 271).

I do not cover all possible group/pair phenomena here since I am only interested in the
aspect of knowledge transfer. The particular phenomenon of pair programming, however, does
not appear to be a common subject for psychologists. I already discussed all examples I know
of (e.g., Hannay et al., 2010, who looked for effects of individual personality traits on pair
performance, see page 66). Here, I therefore look at psychological studies that are close to
my area of interest, either because they consider the pair as an easier-to-study extension of
the individual with otherwise internal processes becoming observable (see Section 2.4.1) or
because they study knowledge transfer in groups of which the dyad is the smallest form (see
Section 2.4.2).

2.4.1 Pair Work on Distinct Tasks

There are a number of studies for which pairs worked on well-defined tasks with limited
freedom of action, at least in comparison to the breadth of software development activities. The
empirical studies I discuss in this section all involve pairs who work on some task. Although
they are all meticulous, none of them is particularly helpful for understanding how pair
programming works or how to study pair programming.

2.4.1 a) Joint Decision for Visual Perception Task

Bahrami et al. (2010) showed that interpersonal communication is rich enough to transfer the
subtle degrees in one’s confidence which are necessary to make an optimal decision together.

Setup
Two brief visual stimuli are presented to two subjects individually. The pair needs to reach
a joint decision on whether the first or the second image had a slightly higher contrast in
one of six areas. The subjects can communicate freely and for as long as they like. After they
announce their decision, the setup provides them with feedback and commences with the next
set of stimuli with a new random contrast difference until the subjects have worked through

94

2.4.1 Pair Work on Distinct Tasks

256 decisions (ibid., p. 2 of supplementary material). Overall, 51 (all male) dyads were subjected
to four different conditions: Experiment 1 as described above, experiment 2 with extra noise
on some stimuli (and 768 overall decisions to be made), experiment 3 without communication,
and experiment 4 without feedback (ibid., pp. 1–3 of supplementary material).

Results and Discussion
Their first observation is that the pairs perform better than either subject would have alone.
To explain this effect, the researchers did not analyze the actual communication but instead
used the individual responses to reconstruct each subject’s sensitivity and then fed this data
into different models to determine which of these predicts the actual joint decisions best.
They found that the actual pairs were better than simply flipping a coin on disagreement or
learning which pair member is better over time. Rather, they appear to communicate their
confidence and thus make better joint decisions. Through experiments 3 and 4, the researchers
also found that while allowing communication is necessary to achieve the pair effect, providing
feedback is not. However, since the actual interaction was not analyzed, it is still unclear how
the communication of each other’s confidence works.

2.4.1 b) Understanding a Complex System

Miyake (1986) studied the process of understanding a mechanical sewing machine.

Background and Proposed Model
The researcher had an existing understanding of the machine, and formalized it in six levels of
understanding: (Black box) mechanisms are realized by (white box) functions, which in turn
are realized by (black box) mechanisms one level below.

For the process of understanding, Miyake (ibid., pp. 156–157) postulates a sequence of six
standard moves that repeats for each level of understanding: (1) identify function 𝐹 on level 𝑛,
(2) question function, (3) search for mechanism𝑀 on level 𝑛 + 1 below, (4) propose mechanism,
(5) criticize mechanism, and (6) confirm mechanism. She predicts that moves in that order
should happen often (e.g., 𝐹(𝑛)→𝑀(𝑛 + 1)), that the reverse order should happen less often
(e.g.,𝑀(𝑛 + 1)→ 𝐹(𝑛)), and that other moves should not happen at all (e.g., 𝐹(𝑛)→ 𝐹(𝑛 + 1)
which would skip the mechanism). Overall, she characterizes the understanding process as a
back and forth between a stable state of understanding (steps 1, 4, and 6) and an unstable state
of non-understanding (steps 2, 3, and 5).

Setup and Results
Just like a number of studies on programming used pairs to make their think-aloud process
observable,Miyake (ibid., pp. 158–159) also relied on pairs to study the process of understanding.
She video-taped three pairs who approached the understanding task in three sessions without
a set time limit, with an overall duration of 60–65 minutes per pair (ibid., pp. 159–160).

Based on coded transcripts, Miyake (ibid., p. 166) concludes that understanding indeed
proceeds as predicted by her model. She explains the 17% non-predicted moves with limi-
tations of her data collection method: Moves back to already understood levels are due to
communication issues (e.g., making sure the partner understands the point) and the skipping
of levels represents non-verbalized thinking (ibid., pp. 166–167).

Discussion
Miyake appears to see the interaction of the pair as representative for the thought process
of an individual: She chose pairs because they make “a usually invisible process visible” (ibid.,
p. 159). Her model of how understanding progresses only speaks of the “subjects’ state of

95

CHAPTER 2. RELATED WORK

mind” in the singular form as if the pair as a whole goes through the steps of identifying,
questioning, etc. (Miyake, 1986, pp. 156–157). However, starting in the Results section, she
speaks of “visualiz[ing] the subjects’ moves” (seeing them as two individuals) and “the subjects’
thinking processes” (plural), i.e., she postulates mental states for each pair member individually
(ibid., pp. 162–167). Put differently, Miyake does not characterize the type of situation her
setup of pair understands sewing machine should represent: A situation of an individual trying
to understand something, or a pair situation? In fact, the article does not feature a Conclusion
section, but only a Discussion of miscellaneous other observations. I have three more concerns:

• For the analysis, each pair’s three sessions were considered as one continuous process,
but they do not reflect how understanding would naturally evolve: The pairs started with
pen and paper only, later were provided with a physical sewing machine, but did not have
a thread until the third session (ibid., p. 160). The researcher was also present during all
sessions to ask questions to clarify what was happening and to intervene and suggest
new ways to proceed if a pair was not making progress (ibid., p. 160).

• The researcher was able to come up with the particular levels because she knew the
subject well (which is not the case for understanding industrial pair programming). She
admits that her six levels are not canonical and adds “I use six levels simply because this is
all that is required by the data from my studies” (ibid., pp. 154–155). It is this sentence that
makes me wonder what came first: The model or the data?

• To me, it appears that the conceptualization that is most transferable from this study
to other contexts is the notion of the pair repeatedly switching back and forth between
understanding a bit, becoming aware of some non-understood part, and then working
towards a more stable understanding again. However, the proposed sequence of six steps
is generic (since both directions are ‘allowed’) and the analysis is too coarse: The three
consecutive steps of proposing, criticizing, and confirming a mechanism alternate between
stable and unstable, but all operate on the same level and are thus aggregated to the same
category of moves (𝑀(𝑛)→𝑀(𝑛) in Miyake’s terms). It comes as no surprise then that
this is the most populated category with 99 out of 287 total moves (ibid., Table V), which
effectively masks the supposedly crucial aspect of how a pair’s understanding progresses
between stable and unstable states.

2.4.1 c) Understanding a Simple System

Unlike Miyake (1986), Okada & Simon (1997) are explicit about the real-world situation their
study is to mimic: Collaboration in the context of scientific discovery.

Background and Setup
They compare the performance of undergraduate science students working alone or in pairs
on an understanding task that sets off the subjects in the wrong direction and requires them
to come up with an alternative hypothesis. The 27 male subjects32 had to identify a regulatory
mechanism of three ‘genes’ in a computer simulation. The sessions were audio- and video-
taped and the subjects were asked to make their thoughts, hypotheses, and justification explicit
to the camera as to ‘convince’ a viewer that they indeed solved the puzzle. The pairs had to
reach a consensus.

The researchers took the time until completion and rated the subjects’ final explanations
on a scale from 0 to 4, from not discovered the relevant effect at all to correctly identified two
genes as two types of inhibitors. Counting all possible input parameters, the subjects could

32Not only was it difficult to “get female subjects to participate” , but pilot studies also suggested that females had
“different discussion styles” , which the researchers left as further work (Okada & Simon, 1997, p. 115).

96

2.4.2 Small Groups and Knowledge Processing

perform 120 different ‘experiments’, five of which were strictly necessary to see the outcomes
that allow to formulate the correct solution and reach a perfect score of 4 points.

Results
Pairs reached significantly better average scores (2.89 vs. 1.67, ibid., Table 1). Differences in
individual performance, spent time, number and quality of conducted experiments, and number
of formulated (alternative) hypotheses did not explain the observed difference between solo
and pair performance (ibid., pp. 120–126). (Note that, similar to the qualitative-quantitative
studies on pair programming, the researchers aggregate all process information of a solo or
pair session into a single, high-dimensional data point, see page 75). The authors conjecture
that the pairs’ interaction itself is important, i.e., that pairs may be more effective in using
the available information from the experiments because they had someone to explain their
hypotheses and justifications to, which the solos lacked (ibid., pp. 127–129).

In a qualitative discussion, Okada & Simon (ibid., pp. 130–133) look closer into what the
relevant elements of these discussions might be. They identify five trigger conditions for
explanation requests (such as puzzling experimental outcome or disagreement with partner’s
explanation) and six activity patterns of reactions (such generating an idea or reviewing the
data). Okada & Simon (ibid., pp. 132–136) argue that such requests for explanations and the
resulting reactions are how the pairs “co-constructed new knowledge” . They discuss one episode
in detail, the pivotal points of which are one pair member first asking “Have we answered the
question?” and then “All we are doing is describing [. . .] what it will do every time [but] we don’t
know why” which led the partner to first note that they “have two other cases we have to account
for” and then come to see already available information in new light: “Oh, we have figured
out that they are controlled chemically [. . .]” (ibid., p. 143). Summarizing and questioning the
current state of understanding and then reaching a more stable state is similar to Miyake’s
notions of criticizing and confirming (see page 95 above).

Discussion
Yet again, both the setup and the researcher’s position are quite different from pair programming
and studying it in industrial settings: The task was carefully designed by the researchers which
allowed them to assess the quality of each individual step taken by the subjects; while the
subjects themselves had only 120 different experiments to run and could see a complete record
of all previous experiments and their outcome (ibid., p. 118).

Nevertheless, their experiment still shows that the outcomes of pair work are not easily
predicted by the individuals’ abilities and not even by the activities they perform on a technical
level. Rather, a pair’s interaction and the mutual influence the individuals have on each other
are what is relevant for understanding how the observed outcomes come about.

2.4.2 Small Groups and Knowledge Processing

As said above, I do not discuss the plethora of different group phenomena, but focus more on
those that closely relate to the economic view of pair programming in which two software
developers work on a technical task together expecting benefits for both their product and
their own capabilities (see Section 2.3.1c on Expected Effects and Mechanisms). For simplicity, I
use the terms “group” and “team” as synonyms in this section.

Traditionally, the effectiveness of groupworkwas studied in relation to structural properties
such as group size and composition, or nature of the task (Bossche et al., 2006, p. 492). Well-
known examples of task classification systems were developed by Shaw (1981, pp. 363–365),
who proposed six task dimensions such as difficulty or solution multiplicity, and Steiner (1972,

97

CHAPTER 2. RELATED WORK

pp. 16–18), who introduced terms such as disjunctive, conjunctive, and additive tasks, where the
group performance depends on best, worst, and average member’s performance, respectively.
The problem with such task taxonomies in particular is that real-world tasks (unlike laboratory
tasks) combine many different properties, while structural properties in general do not allow
for specific predictions, e.g., about where difficulties of a particular group process will lie
(Tschan, 2000, p. 143; Bossche et al., 2006, p. 492). As Bossche et al. (2006, p. 491) put it: “fruitful
collaboration is not merely a case of putting people with relevant knowledge together” . (Such
criticism of a ‘black-box’ perspective may ring familiar from my discussion of controlled
experiments on pair programming, see page 67).

2.4.2 a) Coordination and Shared Cognition

The consequence in group research was to consider the interaction processes themselves. The
central notion of what allows groupmembers to be productive together is that of coordination
(Wittenbaum et al., 1998, p. 177). As Gabelica et al. (2016, p. 35) summarize, coordination has
two different meanings for researchers: There is the output approach which considers the
state of a group being coordinated and there is the process approach which focuses on the
activities that lead to such a state. These two views are not completely disjoint but interact
which each other: Group processes lead to some state which in turn shapes future processes,
etc. Nevertheless, relevant concepts lean more towards one or the other perspective.

Output Approach: Coordination as a State
Cannon-Bowers & Salas (2001) summarize many different related concepts from the context of
team performance research under the term of shared cognition, which is, roughly speaking,
the group members’ shared conception of the problem and how to approach it that allows
them to work together. They introduce some terminology to capture the nuances. First, there
is the question of what is shared (ibid., pp. 196–198):

• Task-specific knowledge, e.g., a mental model of the task itself, allows coordinated ac-
tion of team members without much discussion because all have compatible expectations.
It can be generalized only to similar tasks.

• Task-related knowledge is more abstract and may be process-related, e.g., how to
approach certain issue. It needs to be similar among the members for them to be effective.

• Attitudes and beliefs are more generic in nature. With compatible perceptions about
the environment team members operate in, their cohesion and motivation may increase.

• Teammembers’ knowledge of each other including their knowledge levels regarding
certain topics, preferences, strengths, weaknesses—also called a team mental model—may
help with resource allocation and mutual compensation.
A related concept is that of transactive memory systems introduced by Wegner (1987,
pp. 191–194): Individual group members learn about the area of expertise of others and
then together form an information-processing system that has functions similar to a
single memory system (see also Section 2.2.2). Even without explicitly assigned roles,
groups can lessen the load of remembering certain things on any individual. Over time,
group members learn what they can expect others to remember and for which type
of information they themselves are the expert. New information is “channeled” to the
individuals most likely to remember it; for retrieval then, the assumed expert gets asked.

To relate these concepts back to software development: When developers talk about knowledge
transfer in the context of pair programming as a work mode, they mostly refer to task-related
knowledge, e.g., about how to approach a debugging problem, and to task-specific knowledge,
e.g., a mental model of the software system. In contrast, pair programming as a practice on a

98

2.4.2 Small Groups and Knowledge Processing

team level, i.e., how Beck (1999, p. 97) sees it when he refers to it as the central element that
“ties the whole process together” , refers more to shared beliefs and a team mental model (see also
Section 2.3.1a).

Secondly, Cannon-Bowers & Salas (2001, pp. 198–199) analyze what “shared” exactly means.
Different notions reflect the requirements of certain situations:

• Overlapping knowledge in the form of a ‘knowledge base’ for some task, e.g., between
a surgeon and a nurse.

• Almost identical knowledge, e.g., with regards to attitudes and beliefs in order to make
common interpretations.

• Complementary knowledge embodied in specialized roles, e.g., different experts whose
different perspectives are necessary for the task.

• Distributed knowledge across the team for situations that are too complex for a single
team member to manage.

In the context of industrial pair programming, speaking of knowledge transfer may refer to
building a knowledge base where long-term transfer between developers is intended, but also to
situations of complementary or distributed knowledge where the knowledge of two developers
is combined for immediate use. Identical knowledge in software development may come in the
form of shared understanding of the requirements, for example. Sharedness in this sense may
also be supported by pair programming, although other practices such as sprint plannings are
dedicated to such purposes and also involve more than just two team members.

Process Approach: Coordination as a Group Activity
Bossche et al. (2006, pp. 494–495) describe three processes—together called team learning
behavior—which a team needs to employ if it is to arrive at a shared cognition:
1. Construction: One team member describes the situation and how to deal with it and

thereby constructs meaning. The other team members actively try to understand it.
2. Co-Construction (Collaborative Construction): The team refines and combines individ-

ual meanings such that new meanings emerge.
3. Constructive Conflict: To go beyond mere mutual understanding of everyone’s posi-

tions, the team clarifies and negotiates different interpretations of the situation.
Gabelica et al. (2016, p. 37) add team reflexivity as another component that supports the
team learning behavior at various points before, after, and during task execution: Goals and
requirements are defined, a strategy is planned and adapted along the way to account for
newly arisen problems and intermediate products that do not meet the expectations, and
achievements and failures are reflected on to improve processes in the future.

How these processes actually pan out depends on many beliefs within the group, e.g.,
the psychological safety that speaking up in the group does not trigger negative reactions, the
interdependence of individuals’ work and benefits from that of the others, the social cohesion
that makes the members feel belong together, the task cohesion around shared commitment
to a common goal, and the group potency, which is the belief that the group can be effective
(Bossche et al., 2006, pp. 497–502).

2.4.2 b) Effectiveness

Hackman (1990, p. 4) acknowledges the differences between groups that are studied under
laboratory conditions and organizational work groups who are real, intact social systems
embedded in organizational contexts. He characterizes three dimensions of group effectiveness
whose relative weights are different per context (ibid., pp. 5–7):

99

CHAPTER 2. RELATED WORK

1. Meeting output standards, e.g., quantity, quality, timeliness; or performance for short
(Mathieu et al., 2000, p. 273).

2. Enhancing the capability of group members to work together in the future. Others called
this “team longevity” (ibid., p. 273) or viability (Bossche et al., 2006, p. 497).

3. Professional growth and well-being of the group members, also called “affective reac-
tions” (Mathieu et al., 2000, p. 273).

Relating back to my discussion of expected pair programming mechanisms and effects (see
Section 2.3.1c), the Combine and Understand mechanisms affect a pair’s performance, while
team viability and professional growth are two ways of looking at Learn effects.

2.4.2 c) Exemplary Studies

Even the narrow area of group phenomena described above gets rather complicated to study
in large teams. After all, each team member brings her own understanding to the table and
needs to maintain her own mental model of the team. Therefore, the “two-person team” or
dyad is often used as the “smallest and simplest form of teamwork and knowledge distribution”
(Gabelica et al., 2016, p. 34).33

I now discuss three empirical studies that build on the above sketched model of how teams
work to illustrate (a) the variation among such studies with respect to time frame, breadth of
investigated aspects, and chosen research instruments, and (b) the inappropriateness of such
approaches for understanding how knowledge transfer in pair programming actually works.
Individual studies vary along different dimensions:

• Level: Concrete task for several minutes vs. group assignment over several weeks
• Instruments to Measure Constructs: Self-reported (questionnaire items) vs. inference
from produced artifacts vs. characterization of behavior (rating form) vs. objective mea-
surements

• Relation of State and Process: Shared cognition as a product of group behavior vs.
process properties resulting from shared cognition (no study considered a circular or
reciprocal relationship)

The characteristics of three studies by Mathieu et al. (2000), Bossche et al. (2006), and Gabelica
et al. (2016), which all by-and-large support the general model of how teams coordinate their
knowledge described above, are summarized in Table 2.14.

Long-Running Group Task
Bossche et al. (2006, pp. 502–503) studied 75 teams of 3 to 5 students working on a group
assignment over a seven-week period whose task was to provide strategic advice for a company
in form of a whitepaper and a presentation. Their statistically tested model had four stages
(see also Table 2.14): (1) Team beliefs such as psychological safety and task cohesion positively
influence (2) team learning behavior, which leads to a better (3) shared cognition among the
team, which in turn leads to better (4) performance, viability, and learning/professional growth.

All constructs were measured with items in a questionnaire the subjects filled out in the last
week of their project (ibid., pp. 504–507). All individual correlations between the stages were
statistically significant as expected (ibid., pp. 509–510). From stages (1) to (3), the model’s fit
was “acceptable” , but to account for all stages (1) to (4), additional paths needed to be included
(ibid., pp. 510–513). In other words: The model is incomplete since the group beliefs of task
cohesion and group potency appear to also positively affect the team effectiveness in ways
that are not explained through team learning behavior and shared cognition alone.

33See also Flor & Hutchins (1991), discussed on page 78, who headlined their paper with “distributed cognition in
software teams” but studied merely a single pair of programmers.

100

2.4.2 Small Groups and Knowledge Processing

Study Level Staged Model with Constructs (and Instruments)

Mathieu et al. (2000) two-person teams, six
10-minute missions in
flight simulator

1. State: team & task mental models (matrix similarity)
2. Behavior: team process (rated based on video)
3. Outcome: performance (objective measurement)

Bossche et al. (2006) 3–5 person teams,
seven-week group
assignment

1. Beliefs: psychological safety, interdependence, social and task
cohesion, group potency (questionnaire)
2. Behavior: team learning behavior (questionnaire)
3. State: common understanding of task and how to approach it
(questionnaire)
4. Outcome: performance, viability, professional growth (ques-
tionnaire)

Gabelica et al. (2016) two-person teams,
four 15-minutes
missions in flight
simulator

1. Beliefs: task cohesion, group potency (questionnaire)
2. Behavior: team learning behavior, team reflexivity (question-
naire)
3. State: common understanding of task and how to approach it
(questionnaire)
4. Outcome: performance (objective measurement)

Table 2.14:Overview of knowledge coordination studies with pairs. Numbers in third column
indicate stages in statistically tested models. All aspects from one stage positively correlate
to all aspects of the next stage, with only few following exceptions in the studies of Bossche
et al. (2006) and Gabelica et al. (2016).

Discussion While questionnaires may be suitable for capturing beliefs (stage 1) and for some
aspects of team effectiveness (4), the teams’ actual behavior (2) was not observed, but addressed
with self-reporting items such as “Team members are listening carefully to each other” (ibid.,
p. 504). Furthermore, the state of shared cognition (3) was only measured once at the end of
the seven-week assignment and only indirectly with items such as “At this moment, this team
has a common understanding of the task we have to handle” (ibid., p. 506).

Although there were distinct questionnaire items for all three components of team learning
behavior (i.e., construction, co-construction, constructive conflict) and also for team effec-
tiveness (i.e., performance, viability, learning), they were all considered equal parts of the
higher-level constructs and not analyzed separately (ibid., Tables 1 & 2).

Short Specialized Group Task
Both Mathieu et al. (2000) and Gabelica et al. (2016) randomly assigned students to pairs (56
and 33 pairs, respectively) and trained them with a flight simulator: One pair member was
the ‘pilot’ flying the plane, the other had ‘co-pilot’ responsibilities like setting the speed and
gathering information. In both studies, the pairs flew multiple missions with predetermined
objectives for a total duration of 60 minutes (six missions at 10 minutes and four missions at
15 minutes). Both studies had objective criteria for evaluating the pairs’ performances (time
until completion, passed waypoints, etc.) and the statistical results of both overall support the
above discussed central role of shared cognition.

The studies do, however, differ in the underlyingmodels of how the performance is achieved
and whether a state of shared cognition is cause or effect of team behavior: For Mathieu et
al. (2000), (1) the pair’s shared cognition allows for better (2) process quality, which in turn
increases the (3) performance. Gabelica et al. (2016) extended the model of Bossche et al.
(2006, see page 100) and included team reflexivity behavior in stage (2) to account for the
previously unexplained effects of task cohesion and group potency on shared cognition, thus

101

CHAPTER 2. RELATED WORK

considering team beliefs and behavior as the origin of shared cognition (again, see Table 2.14
for an overview). The studies also differ in their operationalizations of relevant constructs:
Shared Cognition Gabelica et al. (2016) relied on a questionnaire with items such as “Our
team worked together in a well-coordinated fashion” or “We accomplished the mission
smoothly and efficiently” which came from a validated scale for testing the existence of a
transactive memory system.
Mathieu et al. (2000), in contrast, addressed the pair members’ respective task and team
mental models more directly: Prior to the study, the researchers identified 𝑛 aspects of
the specific task and of teamwork in general and let the team members fill out an 𝑛 × 𝑛

matrix to rate the relation of all aspects against the other. In concrete terms: Multiple
times between their missions, the subjects had to rate the relation of eight task-specific
aspects (e.g., intercept enemy is closely related with adjust airspeed, but not with so with
escape enemy) and of seven aspects of the pair (e.g., how strongly quality of information
relates with roles or with team spirit). The ‘sharedness’ of the mental models was then
defined as the similarity of the matrices.
Although this study attempts to measure the shared cognition directly, I doubt that a
weighted adjacency matrix showing all possible relations of aspects of teamwork is an
appropriate and rich enough representation of a “team mental model” which is about
“the knowledge, skills, attitudes, preferences, strengths, weaknesses, tendencies, and so forth”
of the teammates (ibid., p. 274). I am also not convinced that a high correlation of two
matrices indicates actual agreement between the subjects who filled them in.

Process Quality Mathieu et al. (ibid.) assessed the team process quality based on video
recordings of the pairs’ missions with a 21-item rating form addressing the pair’s coordina-
tion, cooperation, and communication with items such as “To what extent was information
about important events and situations shared within the team?” from “0 – not at all” to
“5 – to a very great extent” .
Similar to the qualitative-quantitative analyses of pair programming (see page 75), such
a scheme condenses each pair session to a single data point and disregards the actual
interaction along the way.

Team Beliefs and Behaviors Similar to Bossche et al. (2006), Gabelica et al. (2016) used a
questionnaire to assess task cohesion and group potency as well as team learning and
team reflexivity behavior. Yet again, a questionnaire is reasonable for addressing beliefs,
but less so for actual behavior.

Results The statistical results reported by Mathieu et al. (2000, p. 279) are similar to those of
Bossche et al. (2006) discussed above: From one stage of the model to the next, all proposed
connections had a significant positive correlation individually, while the model as a whole
has “substantial support” but still appears to miss some indirect effect. In particular, the pairs’
shared cognition with regard to the task appears to only affect the team process quality, but
not the overall performance.

Gabelica et al. (2016, pp. 43–44) also report an “almost acceptable fit” . In their data, group
potency did not have a significant effect on either team process, but appears to affect shared
cognition in some other way. Also, team reflexivity behavior was not significantly affected by
task cohesion (the other tested team belief, next to group potency), leaving its origins in the
dark. Finally, unlike the earlier study by Bossche et al. (2006), team learning behavior did not
predict shared cognition. In their discussion, Gabelica et al. (2016, p. 47) thus interpret team
learning behaviors as a relevant part of team reflexivity (which did affect shared cognition and
thus performance), but not as a direct factor for team performance.

102

2.4.3 Summary of Psychological Research on Pair Work

2.4.3 Summary of Psychological Research on Pair Work

To finish off this excursus into psychology, I summarize what can be learned about research in
software engineering and about pair programming in particular. My overall impression from
reading secondary literature is that the psychology research community’s practice of building
and refining a theory to explain different but related phenomena is far more advanced than
in software engineering—at least for the narrow area of group phenomena I touched in this
section. However, looking into (in part) well-cited empirical studies34 was sobering.

First, individual studies as recent as 2016 still resort to “two-person teams” as the “simplest
form of teamwork” to understand basic mechanisms of how performance is determined by
beliefs and behaviors, and yet conclude that team reflexivity, which had a significant positive
on team performance, “still has a great deal of unknown antecedents to be identified” (Gabelica
et al., 2016, pp. 34 & 45).

Second, the analyses are oriented towards statistical models which require means of data
collection that quantify social phenomena: Either questionnaires with rating scales are used to
check for the perceived existence, but not the actual manifestation and specific properties of
shared cognition and the team processes that lead to it (Bossche et al., 2006; Gabelica et al.,
2016); or subjects are required to fit their mental models into a fixed mathematical form such
as matrices (Mathieu et al., 2000). In fact, Bossche et al. (2006, p. 516) and Gabelica et al. (2016,
p. 49) are fully aware of these limitations and note that qualitative analyses of actual behavior
would help understanding the how? and why? better. So far, the actual team processes appear
to be some kind of blind spot and psychologists direct their attention elsewhere.

Third, whether cognitive psychologists employ the pair as an extension of the individual
to make otherwise internal processes observable (see Section 2.4.1) or social psychologists use
it as the smallest possible group to simplify their analyses (see Section 2.4.2), the performed
tasks are usually constricted and carefully chosen to fit the study’s purpose, e.g.:

• the flight simulation had two distinct roles to enforce some difference in the individuals’
cognition (Mathieu et al., 2000; Gabelica et al., 2016),

• the sewing machine is a complicated machine that can yet be completely understood in
detail within one hour (Miyake, 1986),

• understanding the simulated genetic regulatory mechanism requires to perform a (small)
set of predefined experiments and to entertain alternative hypotheses (Okada & Simon,
1997), and

• the visual perception task can be fully described in simple mathematical terms allowing
to devise and compare multiple models (Bahrami et al., 2010).

It is unclear how the results translate to tasks which do not have such restrictions and where
the group can find creative solutions.

Although the concepts of shared cognition and the processes leading to it are generally
applicable to individuals’ pre-existing troves of knowledge as well, all these tasks required
less than an hour of instruction. There are more ways in which they differ drastically from
pair programming in industrial software development: Commonly, software developers do
neither need to react to the real-time behavior of their system nor is their work done once
they understood something. Rather, they construct solutions for problems that (again, unlike
the experimental tasks) have no clearly defined goal or even clearly defined conditions to
decide whether a goal state has been reached. In industry, programming partners are not

34According to Google Scholar, Mathieu et al. (2000) and Bossche et al. (2006) were cited more than 2800 and 750
times, respectively (as of June 2020).

103

CHAPTER 2. RELATED WORK

randomly assigned, briefly instructed how to work on some task together which they have
little experience in and without the expectation to ever do it again.

Nevertheless,when studies from different researchers withmany years in between, covering
different aspects of teamwork with different operationalizations of the relevant constructs all
work with and find support for the same underlying model summarized above, that model and
its concepts may not be too bad. The following concrete research findings and more general
observations are also applicable to PP and PP research:

• No Black Box: Considering group size, composition, task type, and other external factors
alone is not enough to explain differences in group performances (see page 97).

• Rich Interaction: Pair performance is not simply the sum of the pairmembers’ individual
abilities and actions (see Section 2.4.1).

• Not Only Quantitative Methods: Statistical models do not explain how and why things
happen (see page 103).

• Central Concepts: Although there aremany nuances and details are not fully understood,
the state of shared cognition and the coordination processes to get there appear to be key
to understanding group performance (see Section 2.4.2a).

• Real-World Effectiveness: The mere technical performance is not all that matters for
real-world groups in organizational settings; there are also the individuals’ professional
growth and the group ability to work together in the future (see Section 2.4.2b).

104

2.5. Summary of Related Work

2.5 Summary of Related Work

Knowledge plays a central role in software development. In general, it takes new teammembers
about three years to acquire the necessary knowledge to become fluent in a project (see
Section 2.2.3).

Pair programming is a practice that software development teams may use to ramp up new
team members and to dissolve and avoid knowledge silos in mature teams. Even when it is
not employed strategically, software developers work in pairs on a per-task basis. Many of the
expected benefits boil down to the central role of knowledge through the following assumed
mechanisms: The pair members’ existing knowledge is put to use to work on difficult problems
and come up with better designs, lacking knowledge is required faster by a pair which is also
helpful for debugging and catching defects on the fly, and the developers improve their abilities
to work on future tasks (see Section 2.3.1c).

Whether,when, and how such effects come to be, appear to be difficult questions for software
engineering researchers. Even in controlled settings with carefully chosen development tasks
and under consideration of developer expertise as well as psychological traits, pair programming
effects on cost and quality show mere tendencies with a lot of variation left unexplained (see
Section 2.3.4a). Project-level case studies collect data in real software development projects,
but also fall short of explaining what makes pair programming work (see Section 2.3.4b). The
research situation is similar to that of group psychology, which also started with considering
structural aspects of groups (e.g., size, composition, task type) and could thus explain general
effects, but failed to make specific predictions and then focused more on the interaction
processes (see Section 2.4.2).

Qualitative-quantitative studies on pair programming codify certain predefined aspects of
pair programming processes (e.g., ‘driving’ times or communication properties), but all perform
statistical analyses on aggregated data thus disregarding the process itself (see Section 2.3.4b).
Again, the situation is similar in group psychology,where statisticalmodels are used extensively,
but often rely on group behavior getting reported after the fact by the subjects themselves
with a number of rating items (see Section 2.4.2c).

Qualitative studies in general are oriented towards developing rather than testing a theory.
Although more and more pair programming studies employ qualitative methods—even on the
topic of knowledge transfer in particular—they are often concerned with isolated and narrow
aspects without an eye on how an overall scientific understanding of pair programming may be
developed and how practitioners may eventually benefit from such insights (see Section 2.3.4d).
The few existing qualitative studies on knowledge transfer in pair programming either amount
to enumerating two types of relevant knowledge or consider pair behavior in expert/novice
constellations in general, but not knowledge transfer activities as such.

In summary, little is known about how software developers actually make use of their
knowledge and deal with what they do not yet know in everyday industrial pair programming
sessions. The goal of my thesis is to narrow this gap with a qualitative research approach.
I discuss the basic ideas and properties of qualitative research in Chapter 3; I define my goal,
discuss my method, and describe how I collected and analyzed which data in Chapter 4. The
results of my work then constitute Part II with Chapters 5 to 11.

105

CHAPTER 2. RELATED WORK

106

Chapter 3 Qualitative Research Methods

The origin of science is in the desire to know causes; and
the origin of all false science and imposture is in the
desire to accept false causes rather than none; or, which
is the same thing, in the unwillingness to acknowledge
our own ignorance.

– William Hazlitt

3.1 Purpose and Structure of this Chapter . 108
3.2 Research Methods of the Social Sciences . 108
3.2.1 On Understanding and Reconstructing . 109

Common Ground and Reciprocal Knowledge • Conversational Elements: Maxims, Turns,
and Speech Acts

3.2.2 Common Characteristics of Qualitative Research Methods 113
3.2.3 Variability of Qualitative Research Methods . 115
3.2.4 Quality Criteria for Qualitative Research. 115

3.3 The Grounded Theory Methodology . 117
3.3.1 Overview . 117
3.3.2 Collecting Data . 118

Theoretical Sampling • Theoretical Saturation

3.3.3 Analyzing Data . 119
Open Coding • Axial Coding • Conditional Matrix • Selective Coding • On Developing
Concepts: Theoretical Sensitivity • Writing Memos

3.3.4 Different GTM Versions . 124
Classic Grounded Theory • Constructivist Grounded Theory

3.3.5 Discussion of GTM as a Qualitative Research Approach 126
Meeting the Quality Criteria • Filling the Common Traits

3.4 The Base Layer for Pair Programming Research . 128
3.4.1 Auxiliary Practices for the Grounded Theory Methodology 129

Perspective on the Data • Concept Name Syntax Rules •Analysis Results Metamodel • Pair
Coding

3.4.2 The Base Layer in a Nutshell . 130
Layered Research Approach: Different Perspectives on the Data • Seven Key Deci-
sions • The Base Concept Set

3.4.3 Example Application of the Base Concepts . 135
3.4.4 Notion of “Knowledge” in the Base Layer . 137

107

CHAPTER 3. QUALITATIVE RESEARCH METHODS

3.1 Purpose and Structure of this Chapter

This chapter lays the groundwork for my own qualitative research method to be discussed in
Chapter 4. Qualitative research is neither a ‘fallback’ to a qualitative analysis after a statistical
test failed to show significant effects, nor is just any analysis of somehow unstructured or
qualitative data. It is a paradigm that affects how researchers analyze data, how to collect it,
which questions to ask in the first place, and how they understand their own role.

I explain the basic ideas of qualitative research methods, their commonalities, most
important differences, and quality criteria (Sections 3.2.2 to 3.2.4), after I introduced some key
terms from discourse analysis (Section 3.2.1). Although these are not necessary to understand
my research, they add clarity to the discussion later on because they make tacit knowledge
which every speaker of a natural language possesses explicit.

I build on the Grounded Theory Methodology (GTM), a universal qualitative approach
which is applicable to a variety of phenomena of interest (Section 3.3).

Although the GTM is open with regard to the research topic, its data analysis practices
were originally developed for interviews rather than direct observation. For previous studies,
colleagues frommy research group started collecting recordings of industrial pair programming
sessions, and developed auxiliary practices to analyze such data. I also build on the resulting
research framework, the Base Layer for qualitative pair programming research (Section 3.4).

3.2 Research Methods of the Social Sciences

Software development in general and pair programming in particular are social phenomena (see,
e.g., Weinberg, 1971, p. 45, cited on page 20). I therefore take a glimpse into the methodology of
the social sciences, starting with the work of German sociologist MaxWeber from the early 20th
century. (Note that the following is by no means a proper introduction of the methodological
debates of the 20th century.) Weber defined social action as:

[H]uman behaviour when and to the extent that the agent or agents see it as subjectively
meaningful: the behaviour may be either internal or external, and may consist in the
agent’s doing something, omitting to do something, or having something done to him. By
‘social’ action is meant an action in which the meaning intended by the agent or agents
involves a relation to another person’s behaviour and in which that relation determines
the way in which the action proceeds.

Weber (1922, p. 1), translated in Weber (1978, p. 7, emphasis in original)

In Weber’s sense, the meaning of an action is the meaning as intended by the agent, and is not
“to be thought of as somehow objectively ‘correct’ or ‘true’” (ibid., p. 7).

Austrian philosopher and sociologist Alfred Schütz furthered Weber’s thoughts in his
monographDer sinnhafte Aufbau der sozialenWelt (Schütz, 1932).1 In the 1950s, he characterized
the social sciences as follows:

The primary goal of the social sciences is to obtain organized knowledge of social reality
[. . .] the sum total of objects and occurrences within the social cultural world as experienced
by the common-sense thinking of men living their daily lives among their fellow-men,
connected with them in manifold relations of interaction.

Schutz (1954, p. 261, emphasis added)
1The title literally reads “The meaningful construction of the social world”. Schütz emigrated to the United

States and published in English under the names Schuetz and Schutz. His main work was translated into English
and posthumously published as Phenomenology of the Social World (Schutz, 1967).

108

3.2.1 On Understanding and Reconstructing

Like Weber, Schütz emphasizes the importance of the subjective meaning of human action:
The social reality is already interpreted and given “specific meaning and relevance structure” by
the human beings living in it—such as language, social conventions, and cultural institutions—
before a researcher starts studying it (ibid., p. 266). Any study on the social world needs to take
these mental constructs into account. Schütz contrasts this situation with “the natural science”
where it is up to the scientists to determine what is relevant for them as the observational
fields have no inherent relevance: “The world of nature [. . .] does not “mean” anything to the
molecules, atoms, and electrons therein” (ibid., p. 266).

In the social reality, most interaction builds on understanding one another which involves
interpreting each other’s behavior based on common-sense constructs, such as understanding
the language, understanding an utterance as a question, understanding what the question is
about, etc. (Schuetz, 1953, p. 17). This mutual understanding is not perfect, but it works suffi-
ciently well if the conversation partners share a cultural background and common experiences
(Schuetz, 1953, pp. 11–12; Przyborski & Slunecko, 2009, pp. 146–147).

In order to collect data, any empirical researcher concerned with social actions must either
communicate directly with the subjects or observe their interaction (Przyborski & Slunecko,
2009, p. 147). Hence, the researcher faces the same task of understanding and interpreting the
other’s behavior, for which Przyborski & Slunecko describe two options, each corresponding
to a research paradigm. In Schütz’s terms, both approaches of the social sciences deal with
second-degree constructs to organize their knowledge of the social reality. These are “constructs
of the constructs made by the actors on the social scene” (Schutz, 1954, p. 267).

• Quantitative approaches try to eliminate any interpretation on the part of the researcher.
This is achieved through standardized research instruments, which should produce objec-
tive, reliable, and valid data, e.g., by making sure all subjects understand survey questions
in precisely the same way (Przyborski & Slunecko, 2009, p. 147). The (second-degree)
constructs used by the researcher are manifest, e.g., in predetermined response categories
of questionnaires. Their construction is generally carried out in advance (ibid., p. 153).
On the one hand, pre-structuring the observations this way allows for statistical analysis;
on the other hand, such an approach may not appreciate the varying perspectives and
experiences of the subjects (Patton, 2002, p. 14).

• Qualitative approaches, in contrast, emphasize reconstructing the subjectively intended
meaning of the observed human beings through their actions and artifacts (Przyborski &
Slunecko, 2009, p. 153). These methods are therefore sometimes called reconstructive
methods instead (ibid., p. 144). Hence, in qualitative research, “the researcher is the in-
strument” (Patton, 2002, p. 14), who, in order to allow for an appropriate reconstruction,
is to collect as much of the actions or communication as possible (Przyborski & Slunecko,
2009, p. 148).

3.2.1 On Understanding and Reconstructing

Communication is a central aspect of qualitative methods in the social sciences, and it is in two
ways. First, social action always involves communication, i.e., understanding and interpreting
what the other (whose involvementmakes the action social) means to say or do. Communication
is therefore integral to the social phenomenon being studied, either directly, as communication
per se (as linguists do), or as part of another social action (such as software development).
Second, the researcher communicates with the subjects in order to collect data, either directly or
indirectly, e.g., in interviews or through observation. The key insight here is that understanding

109

CHAPTER 3. QUALITATIVE RESEARCH METHODS

what the subjects meant to say or do from a researcher’s perspective is not fundamentally
different from common-sense understanding in everyday conversation.

The abilities and the underlying knowledge that allow speakers of a language to understand
each other—and thus to communicate—is the concern of the linguistic branch of pragmatics
(Ehrhardt & Heringer, 2011, p. 11). Much of what is meant in everyday communication is not
explicitly said, as the following exchange illustrates:

A: “When did you two marry?”

B: “In Rome.” (ibid., p. 11)

On the surface, this exchange does not make sense: A asked for a point in time, but B answered
with a location. If, however, B and their spouse did spend some time in Rome in the past, and
B can rightfully assume that A knows when that was, B’s answer is perfectly fine (ibid., p. 11).
Pragmatics studies how speakers employ which kind of knowledge to augment what was said
to be able to understand what was meant (ibid., p. 18).

There are a number of concepts and findings from the field of pragmatics that are useful for
qualitative research in the social sciences in general and my research of knowledge transfer in
pair programming in particular. Note the special nature of pragmatics concepts: They all capture
tacit knowledge of the speakers of a language. Being aware of these concepts is not necessary
for reconstructing the meaning of the subjects’ interaction. Nevertheless, they provide a useful
vocabulary later on for explaining my reconstructions in a more comprehensible way and for
discussing my own concepts with respect to the existing literature.

3.2.1 a) Common Ground and Reciprocal Knowledge

Knowledge has an important role in communication. For example, in the exchange above, both
A and B (presumably) know that B is married and that B spent some time in Rome. This type of
shared knowledge is called common ground: “the propositions whose truth [the speaker] takes
for granted as part of the background of the conversation” (Stalnaker, 2002, p. 81). However, as
Ehrhardt & Heringer (2011, pp. 37, 40) point out, there is actually only individual knowledge
while referring to shared or collective knowledge is merely a normative notion: It is this fiction
which the involved speakers live in until proven otherwise that enables communication in the
first place.

Garfinkel (1967, pp. 1–34) also speaks of the indexicality of everyday language: Themeaning
of an utterance cannot be understood from its words alone, as they only refer to the specific
meaning intended by the speaker. In the exchange above, ‘Rome’ is indexical as it does not
(only) refer to the capital of Italy, but also to B’s biographical connection with it. A related
notion is that of deictic expressions which refer to something from the speaker’s point of
view or origo, e.g., when she says something like ‘this’ or ‘that’ (Ehrhardt & Heringer, 2011,
pp. 19–21). While communicating, the conversation partners constantly put themselves in the
position of the other, assuming her origo, e.g., by saying something like ‘I’m coming [to you]’
instead of ‘I’m going [towards you]’ (ibid., p. 38).

This changing of perspectives implies that conversation partners each maintain a mental
model of their own and of their partner’s knowledge, leading to reciprocal knowledge
that is the basis of human sociality (ibid., p. 38). Moreover, this reciprocal knowledge is
layered in the sense that A thinks what B might think about A’s knowledge (ibid., p. 38).2
Incorrect assumptions about what is common ground will inevitably happen and lead to

2Friedell (1969) introduces the notion of common knowledge between persons A and B, if A and B think it is true,
A and B think that both think that it is true, A and B think that both think that both think that it is true, and so on.

110

3.2.1 On Understanding and Reconstructing

misinterpretations of utterances and misunderstandings on one reciprocal knowledge level or
another (ibid., pp. 39–40). In a way, the purpose of communication is to extend, coordinate,
and adapt the common ground (ibid., p. 40). In Figure 3.1, I try to make these abstract ideas a
bit easier to grasp.

Alice Bob

Figure 3.1: Illustration of reciprocal and layered nature of communicative knowledge. Alice
knows and . She assumes that Bob already understood and explains () the match-
ing . Bob hears and understands Alice’s words, but he does not actually know . Instead,
he knows . He can infer that Alice assumed that he knows about some other piece ()
which fits to . He could start clearing up this discrepancy (e.g., by asking for , or by
describing).
The researcher’s perspective adds yet another layer of complexity, as only is observable
(and the partners’ actions before and afterwards).

3.2.1 b) Conversational Elements: Maxims, Turns, and Speech Acts

Grice’s Maxims

A general principle of understanding one another is described by a number of maxims
formulated by Grice (1975). I summarized them in Figure 3.2. Note that these maxims cannot
be be truly ‘violated’, but are metaphors for describing how communication works, i.e., the
maxims are descriptive, not normative (Ehrhardt & Heringer, 2011, p. 73).

The maxims are expectations, and when one speaker in a conversation appears to violate
one, her partner may start to think about alternative interpretations of her utterances that
do not violate them. In the Rome-exchange on page 110, B’s response may, at first, appear to
A as a violation of the maxim of relation since it does not answer the posed question. A may
then think about alternative explanations: Assuming B does consider ‘In Rome’ to be a relevant
response to the question, B must have either misheard the question, or their wedding indeed
took place in Rome at some point in time.

111

CHAPTER 3. QUALITATIVE RESEARCH METHODS

Maxims ofQuantity:
1. Make your contribution as informative as is required

(for the current purposes of the exchange).
2. Do not make your contribution more informative

than is required.

Maxims ofQuality:
Try to make your contribution one that is true.
1. Do not say what you believe to be false.
2. Do not say that for which you lack adequate evidence.

Maxim of Relation:
Be relevant.

Maxims of Manner:
1. Avoid obscurity of expression.
2. Avoid ambiguity.
3. Be brief.

(Avoid unnecessary prolixity.)
4. Be orderly.

Figure 3.2: The maxims formulated by Grice (1975, pp. 45–46). He grouped them in four
categories and formulated a “supermaxim” for the Quality category.

Turn Taking
A conversation consists of turns during which the respective speaker has the proverbial “floor”
and produces utterances (Yngve, 1970, p. 568, cited by Harrington, 2018, p. 135). Grice’s maxim
of relation captures the observation that consecutive turns are not randomly stringed together,
but have conditional relevance (Schegloff, 1968, p. 1083): One turn imposes some constraints on
what the partner’s next turn might be; together, they form a ‘whole’, and without the second,
something would be ‘missing’. Recurring patterns of turn and matching reacting turn are
called adjacency pairs (Schegloff & Sacks, 1973, p. 295), such as responding to a greeting with
a greeting, or, as in the Rome-exchange above, to a question with an answer.

Not all utterances constitute complete turns, though. During the turn of one speaker (who
occupies the “front channel”), the partner may signal her attention through back channel
behavior, that is short utterances (‘yes’, ‘m-hm’, and similar) which do not interrupt the partner’s
turn (Yngve, 1970, p. 568, cited by Harrington, 2018, p. 135).

Speech Acts
Philosophy of language offers a different perspective on what individual turns actually are. To
Austin (1962), saying something is doing something and he introduced the notion of speech
acts to capture this idea. He splits spoken language into the following layers:

• The locutionary act is the act of saying something. It is realized by three sub-acts: With
the phonetic act, the speaker produces a sequence of sounds, which, in the phatic act,
produce a syntactical English sentence, which, through the rhetic act, refers to something.
In the Rome-exchange, A’s phonetic act consists of producing the sounds /wen dId ju tu:
"mæri/, which corresponds to the English sentence ‘When did you two marry?’ (phatic
act), in which ‘you two’ refers to B and their spouse, ‘marry’ refers to a ceremony involving
these two, etc. (rhetic act).

• The illocutionary act is performed in saying something, such as asking a question, or
making a proposal. A simple notion would be that the illocution represents the intention
of the speaker, or the purpose of the utterance. However, Searle (1969, p. 70) points out
that there are also more subtle distinctions, such as relative position of speaker and hearer
(marking the difference between request and order), degree of commitment (expressing the
intention vs. promising), or expressed psychological state (expressing belief in a statement
vs. expressing intention in a promise).
In the example above, A’s illocutionary act is successfully performed when B understood
A’s intention: In saying ‘When did you two marry?’ A asked B a question.

112

3.2.2 Common Characteristics of Qualitative Research Methods

• Finally, the perlocutionary act is performed by saying something, such as eliciting an
answer, or informing the conversation partner. This entails all “effects upon the feelings,
thoughts, or actions of the audience, or of the speaker, or of other persons” , whether they
were intentional or not (Austin, 1962, p. 101).
In the example, A’s perlocutionary act consists in making B provide an answer.

Searle (1969, pp. 30–33) analyzed the concept of illocutionary acts in more detail and split them
up into an illocutionary force (such as to ask, to promise, to warn, to threaten, etc.) and the
propositional content (such as to come around, to quit smoking, etc.). Among other things,
this distinction makes the difference clear between the two ways a phrase as ‘I promise to come’
can be negated: ‘I do not promise to come’ is a negation of the illocutionary force and ‘I promise
not to come’ is a negation of the propositional content (ibid., p. 32).

For the perspective of an interpretative researcher who is to reconstruct what happens
in a social scene (see page 109), it is interesting to note how Searle legitimizes his linguistic
characterizations: In essence, he argues that he is qualified to provide these because (a) the
(English) language is governed by rules, and (b) he is a native speaker and has therefore
“mastered the rules” (ibid., pp. 12–15). In other words: He analytically tries to make his tacit
knowledge explicit. To give but one example: In a conversation, illocutionary acts can be
successful even if the illocutionary force is not explicit in the utterance but becomes clear from
the context (ibid., p. 68). Put differently, the illocutionary force of an utterance can always be
made explicit (ibid., p. 68), e.g., by a researcher. This falls under his principle of expressibility
which states that whatever can be meant can be said (ibid., pp. 19–21).

3.2.2 Common Characteristics of Qualitative Research Methods

There are many different qualitative methods. Patton (2002, pp. 81–135) compares no less then
16 “perspectives”—such as ethnography, ethnomethodology, hermeneutics, narrative analysis,
and others—each of which gave rise to multiple qualitative research methods. Two reasons for
this diversity are (a) roots in different disciplines (such as anthropology, philosophy, sociology,
or psychology) and (b) the tendency to chose (or, historically, develop) a research method that
suits the research topic (Flick et al., 2004, p. 8). Note that Patton’s structure is by no means the
only one proposed to categorize the qualitative research methods of the social sciences (for a
brief discussion, see Patton, 2002, pp. 79–80 & 131).

The methods share a number of core characteristics despite their variety. Patton (2002) and
Flick et al. (2004) offer similar lists of 12 such characteristics in their textbooks. In Table 3.1,
I provide a consolidated overview of what qualitative research is about in terms of research
perspective and topics, overall design and sampling, as well as data collection and analysis.

Qualitative research builds on qualitative data, often collected through interviews or
observations. Interviews provide the researcher with personal accounts of the subject’s
experiences, feelings, and opinions, while direct observation can lead to detailed descriptions
of the externally observable part of many different types of actions and interactions (Patton,
2002, p. 4). Some researchers see direct observation as the superior technique, as it is not
limited to what the subjects are aware of and able to express (ibid., p. 21). Others, however,
do not regard interviews and direct observation as two separate techniques, because they
are interwoven in actual field-work anyway (Lofland & Lofland, 1995, p. 19). Either way, the
subjects should be able—especially during interviews—to express themselves freely in their
terms, with the “character and contour” of their accounts being set by themselves rather than
the researcher (ibid., pp. 81, 85).

113

CHAPTER 3. QUALITATIVE RESEARCH METHODS

1. Naturalistic Inqiry in Everyday Situations (Patton-1, Flick-3, Flick-4)
Qualitative research is often concerned with everyday situations and/or everyday knowledge or
common sense. Consequentially, qualitative methods study real-world situations as they unfold
naturally. In contrast to laboratory settings, the researcher does not try to control the situation, there
is no predetermined course of action, and people are observed in a familiar environment.

2. Openness & Emergent Research Design (Patton-2, Flick-2, Flick-8)
A qualitative research method is selected based on the topic of interest, not the other way around.
The methods do not prescribe rigid observation practices, but demand openness in data collection
and analysis, and flexibility with regard to the research design when the understanding of the topic
deepens.

3. Purposeful Sampling (Patton-3, Patton-8, Flick-9)
Unlike for quantitative methods, statistical generalization from a sample to the population is not a
goal. Instead, qualitative studies look for information-rich cases that allow to deepen the researcher’s
understanding. Early in the process, each case is treated as unique and studied in great detail;
cross-case analyses follow later and are based on the well-understood individual cases.

4. Detailed, Thick, and Diverse Data (Patton-4, Flick-5)
Qualitative methods aim at data that is rich in detail. Two typical and somewhat complementary
ways of collecting data are in-depth, open-ended interviews and direct observation.

5. Importance of the Researcher (Patton-5, Patton-12, Flick-6)
Qualitative researchers get close to the phenomena of interest to capture as much detail as possible. In
general, the researcher’s own actions and observations in the field, their own thoughts and insights,
and their reflection on these are important for qualitative methods as opposed to an extraneous
influence which needs to be eliminated. Consequentially, the qualitative researcher is not objective.

6. Empathic Neutrality (Patton-6, Flick-7, Flick-10)
As the social reality is constructed by the human beings in it, it needs to be reconstructed by the
researcher. For this, the subjects’ perspectives need to be understood without judging them.

7. Context Matters (Patton-11, Flick-4)
Data should be collected in their ‘natural environment’, as the social, historical, and temporal context
of the socially acting subjects is important for interpreting and analyzing their actions.

8. Holistic Perspective (Patton-10, Flick-7)
Social phenomena are complex in the sense that they cannot be fully understood by taking them
apart, studying the pieces, and looking for simple cause-effect relationships. Qualitative methods
aim at understanding phenomena holistically including their complex relationships.

9. Discovery of Theories (Patton-9, Flick-12)
Patton (2002, pp. 55–58) characterizes the overall qualitative research process as “inductive analysis” :
a bottom-up process which starts with concrete and detailed observations, from which overarching
themes “emerge” , which in turn serve as a form of hypothesis to be examined in the light of newly
collected data. How this emergence precisely works depends on the particular research method. A
procedure commonly used in qualitative methods is abduction (Flick et al., 2004, p. 8). This means
that when the researcher notices a combination of features in her interpreted data for which there is
not yet an explanation, she ‘invents’ one (Reichertz, 2004, p. 161).

Table 3.1: Overview of qualitative research traits based on Patton (2002, pp. 39–66) and Flick
et al. (2004, pp. 8–9). The numbers, e.g., Patton-2 or Flick-8, refer to the items in the original
lists of traits of qualitative research. I excluded items Flick-1 (there is not one single method),
Flick-11 (qualitative research is predominately text-based), and Patton-7 (social systems are
ever-changing) here, because they are not defining criteria of qualitative research but only
describe the status quo.

114

3.2.3 Variability of Qualitative Research Methods

3.2.3 Variability of Qualitative Research Methods

As I mentioned above, there is no standard for how to organize the multitude of qualitative
methods. Patton (2002, p. 134) therefore proposes a scheme comprising six core questions to
characterize each particular research method. Any given qualitative method is opinionated
with regard to only some of them, leaving the other aspects to be filled by the researcher.
Unfortunately, Patton does not spell out any particular method along these lines. I illustrate
his six questions with examples I consider appropriate based on his characterizations:
1) Ontology: What do we believe about the nature of reality?

Logical positivism and other reality-oriented perspectives presume a single, verifiable
reality; constructivism assumes multiple, individually and socially constructed realities
(Patton, 2002, pp. 91–92, 96).

2) Epistemology: How do we know what we know?
Reality-oriented perspectives aim for objective truth and are concerned with eliminating
any influence of the researcher, and with validity, reliability, and objectivity (ibid., p. 93).
Constructivism states that, ultimately, all understanding is subjective and “truth” can only
be a consensus, but not an objective fact (ibid., p. 96).

3)
4)

Method: How should we study the world?
Involvement: How do we personally engage in inquiry?
Reality-oriented perspectives may use triangulation for increased credibility, test theo-
ries and try to establish causal relationships (ibid., p. 93). Phenomenology stresses the
importance of the researcher experiencing the phenomenon of interest as closely as
possible (ibid., p. 106); heuristic inquiry even demands of the researcher to have personal
experience and intense interest in the phenomenon (ibid., p. 107).

5)
6)

Philosophy: What is worth knowing?
Discipline: What questions should we ask?
Ethnography assumes that any group of people will over time develop a “culture” with
shared behavioral patterns and beliefs, and that these are worth understanding (ibid.,
p. 81). Orientational qualitive methods follow an ideology—such as Marxism, Freudiansim,
or feminism—that determines the perspective of all interpretation (ibid., p. 129).

3.2.4 Quality Criteria for Qualitative Research

While the set of traits I compiled in Table 3.1 above is descriptive in that it tries to capture what
qualitative research is, Tracy (2010) sets out to formulate “a pedagogical model” of normative
criteria of what qualitative research should be. She emphasizes that these “end goals” can be
met by different means and that each project, researcher, context, etc. may warrant a different
path (ibid., p. 837). For each goal, she gives an overview of possible means (ibid., pp. 840–848):
1. Worthy Topic: Research topic is relevant, significant, and interesting.

Addressing topics set by one’s discipline, events in society, or personal life is better than
choosing topics which are “convenient without larger significance or personal meaning” .

2. Rich Rigor: Descriptions and explanations are complex and ‘rich’.
The researcher should spent enough time in the field to collect enough appropriate data
and employ appropriate data collection and analysis procedures.

3. Sincerity: Researcher’s role (biases, goals, mistakes, etc.) is transparent.
Self-reflexivity means for the researcher to honestly consider themself as a research
instrument with strengths and weaknesses, biases, values, and goals, and to include the
first person perspective in writing. Transparency may be achieved through an audit trail

115

CHAPTER 3. QUALITATIVE RESEARCH METHODS

of all research activities and decisions, all interactions between researcher, subjects, and
research contexts, as well as giving credit to others where credit is due.

4. Credibility: Results are trustworthy enough for readers to act on them.
Thick description makes tacit aspects of a situation explicit with enough concrete detail
to ‘show rather than tell’. Triangulation and crystallization both involve using multiple
sources or types of data, multiple theoretical frameworks, or researchers, but differ in their
outcomes depending on the researcher’s ontology (see page 115). Triangulation assumes a
single reality from which “a more valid singular truth” is acquired, while crystallization
is more compatible with multiple constructed realities as it produces “a more complex,
in-depth [. . .] understanding of the issue” . Multivocality stresses the importance of ad-
dressing differences between subjects as well as between subjects and researcher. Member
reflection covers a broad spectrum of activities to involve participants, e.g., by “providing
opportunities for questions, critique, feedback, affirmation, and even collaboration” , going
beyond mere “member checking” which presumes a single verifiable truth. This also helps
to see whether the research is comprehended.

5. Resonance: The research influences, affects, or moves the reader.
Aesthetic merit may come from a way of writing that goes hand in hand with the content,
that is not boring and surprises the reader, and possibly includes personal story-telling.
Transferability means that accessible writing and rich descriptions allow the reader to
transfer the results to their own situation, despite them being bound to a specific and
possibly different socio-cultural context.

6. SignificantContribution: It extends knowledge, improves practice, generates research ideas.
Theoretically significant research applies existing concepts to new contexts, or extends
concepts, or provides new concepts for further research; heuristically significance means
to provide interesting suggestions for new research areas; practically significant research
is useful and empowering, or helps framing some problem in another way; and finally
methodological significance may come from new and creative ways of analyzing data
or by qualitative analysis of phenomena that so far have been only studied quantitatively.

7. Ethics: Effects of research actions on subjects and others are considered.
Procedural ethics is about the execution of the study and includes to “do no harm, avoid
deception, negotiate informed consent, and ensure privacy and confidentiality” . Situational
ethics mandates to go beyond the ground rules and adapt all considerations to the particular
social scene(s). Relational ethics is about the relationship of researcher and participants,
which should not only amount to using them as a data source, but also include returning
to the scene to share findings. Exiting ethics then means to think about how a written
report with, say, problematic findings may be perceived in a way that reflects negatively
on the participants or a certain demographic.

8. Meaningful Coherence: Theoretical framework, research method, and goals are aligned.
The study as a whole needs to make sense. Research question, findings, and conclusions
need to relate to reviewed literature and open questions of the discipline. Basic assumptions
of the theoretical framework need to be aligned with research activities (e.g., with the
assumption of multiple individually constructed realities, member checking does not make
sense). Any mismatches need to be explained.

116

3.3. The Grounded Theory Methodology

3.3 The Grounded Theory Methodology

Most qualitative methods were developed for a specific area of interest, for instance: “the
narrative interview [. . .] was originally developed for the analysis of communal power processes,
and objective hermeneutics [. . .] for studies of socializing interaction” (Flick et al., 2004, p. 8). This
is not just a historical fun fact, but has implications for researchers employing these methods
today:

Ethnography focuses on culture, ethnomethodology on everyday life, symbolic interaction-
ism on symbolicmeanings in behavior, semiotics on signs, hermeneutics on interpretations,
and phenomenology on lived experience. Their theoretical frameworks direct [the re-
searcher] to particular aspects of human experience as especially deserving of attention
in [their] attempt to make sense of the social world.

Patton (2002, p. 125)

The notable exception is the Grounded Theory Methodology (GTM): Although it, too, originates
from a specific research interest, it is not limited to it.3 It is a toolkit comprising procedures for
developing a theory from empirical data. The GTM is not about testing a theory or preconceived
concepts, but about developing concepts that capture relevant phenomena of social reality.

3.3.1 Overview

There are different versions of the GTM, in particular the Glaserian, the Straussian, and the
constructivist version. As Przyborski & Wohlrab-Sahr (2014, pp. 199–200) summarize, all
variants share five essential properties:
1. Theoretical Sampling: Data collection is oriented towards furthering the theory devel-

opment through information-rich cases, rather than aiming for statistical generalizability.
2. Theory-Oriented Coding: Data is coded not for the sake of coding but to develop

concepts which are over time integrated into a theory.
3. Constant Comparison: Particular segments of the data are not analyzed and coded once

and for all, but compared over and over again with new data. The same is done on the
concept level, always looking for relevant differences and similarities.

4. MemoWriting: Writing is an integral part of the research from the very beginning. The
researcher’s reflections, ideas, characterization of concepts, etc. are organized in written
form and continuously amended.

5. Process: Data collection, coding, and memo writing are connected and the researcher
switches between these activities in a non-linear fashion.

I see the three versions as follows: The original Glaserian GTMfirst defined these five properties,
Straussian GTM then proposed three different perspectives of how theory-oriented coding
should look like, and constructivist GTM challenged the positivist foundation of the other
versions, which is more of a cross-cutting concern that affects how to approach both data
collection and analysis.

In my analysis, I followed the Straussian coding procedures while assuming a constructivist
perspective. I discuss the details ofmy particular researchmethod togetherwith the formulation
of my research goal and data collection later in Chapter 4. Here in this section, I discuss the
basic ideas and aspects of the GTM that are important to my work, but I do not explain how
to perform a GT study in general.4 I first discuss the general idea of theoretical sampling

3The original research was about dying in hospitals. See Charmaz (2006, pp. 4–9) for more historical context.
4See the books by Glaser & Strauss (1967), Strauss & Corbin (1990), and Charmaz (2006) or shorter summaries in

English (Robson, 2002, pp. 492–497; Patton, 2002, pp. 124–129; Hildenbrand, 2004, pp. 17–23; Böhm, 2004, pp. 270–
275) and German secondary literature (Przyborski & Wohlrab-Sahr, 2014, pp. 190–223).

117

CHAPTER 3. QUALITATIVE RESEARCH METHODS

in Section 3.3.2 and then the Straussian coding procedures in Section 3.3.3. In Section 3.3.4,
I discuss the effects of a constructivist perspective using Patton’s six qualifying questions
(introduced in Section 3.2.3), before I take a step back in Section 3.3.5 to consider the GTM as
a whole through the lens of the nine common characteristics of qualitative methods and the
eight quality criteria (introduced in Sections 3.2.2 and 3.2.4).

3.3.2 Collecting Data

Fundamentally, in Grounded Theory Methodology “all is data” (Glaser, 2007, p. 57), e.g., notes
from observations, existing literature, or even quantitative data. Although Glaser (ibid., p. 53)
emphasizes that “[f]ield notes are preferable” , interviews are the predominant form in many
studies. Much of the practical advice on how to code the data (see next section) pertains to the
textual form of interviews and field observations, which should be transcribed on an is-needed
basis (Strauss & Corbin, 1990, pp. 30–31).

3.3.2 a) Theoretical Sampling

As rich concepts and dense relationships between them need to be developed from and grounded
in data (hence the name of the methodology), the necessary data is not and cannot be collected
in one single step before the analysis starts. Instead, these two concerns are interwoven: The
analysis starts as soon as the first data is collected and new data is collected whenever the
analysis goes into directions which the current data cannot satisfy. This mode of collecting data
is called theoretical sampling (Strauss & Corbin, 1990, Ch. 11) with the goal of providing
the researcher with information-rich cases. It contrasts with random sampling which is to
allow statistical inferences to the population.

Early during the analysis, such sampling should be pragmatic to provide the best oppor-
tunities to collect relevant and interesting data, which might come unexpected and entail
pivoting one’s interest while being on site (ibid., pp. 181–184). Later, the focus is more on
capturing variation of already identified concepts as well as on how situations evolve over
time (ibid., pp. 185–186). Towards the end of a study, data collection is no longer explorative
but becomes more selective as the researcher specifically looks for cases to either support the
theory or to provide a negative case which cannot be explained yet (ibid., pp. 187, 219).

3.3.2 b) Theoretical Saturation

A notion related to that final phase and the question when to stop collecting data is that of
theoretical saturation. To Glaser & Strauss (1967, p. 61), a concept is saturated when the
researcher cannot develop additional properties, that is, specify it in more detail, by collecting
additional data. As I see it, such a state can never be reached in a strict sense, as (a) there will
always be some detail which sets apart two concrete incidents and which is not yet part of
any concept, and (b) nobody can know whether the next incident would add a surprise aspect.
Strauss & Corbin (1990, p. 188) put it slightly more pragmatic when they say that “no new or
relevant data seem to emerge” . Charmaz (2006, pp. 113–115) characterizes saturation as when
“fresh data no longer sparks new theoretical insights” , but ultimately questions its usefulness as
a tool for the researcher who may settle too early for saturated but “modest claims” . Rather,
she should be “open to what is happening in the field and be willing to grapple with it” . These
three perspectives on theoretical saturation may be contrasted as follows: Glaser sees it as the
researcher’s ultimate goal, to Strauss, it marks the point when to stop collecting new data, and
Charmaz submits that it may not be a sufficient condition to achieve credibility.

118

3.3.3 Analyzing Data

3.3.3 Analyzing Data

Strauss & Corbin (1990) propose an analysis process which involves three coding procedures:
Open coding is about identifying relevant phenomena and conceptualizing their properties
(Section 3.3.3a); in axial coding, the strategies which humans consider and employ to deal with
certain phenomena as well as their consequences are identified (Sections 3.3.3b and 3.3.3c);
in selective coding the core concept, the phenomenon that the study is ‘actually’ about, is
identified (Section 3.3.3d). These three procedures are not sequential. Instead, the researcher
switches between them, taking different perspectives: Focusing on phenomena in isolation,
considering them in context, and considering them as a whole. In Section 3.3.3e, I discuss more
deeply the matter of what conceptualization means and how it works in the GTM.

3.3.3 a) Open Coding

On the level of open coding (Strauss & Corbin, 1990, Ch. 5), relevant phenomena are identified,
labeled, and categorized. Although this might sound trivial, it is certainly not. For once, in
social settings, there are no naturally separated phenomena ready to be labeled. For example, it
is up to the researcher to decide on both the granularity of data segmentation (e.g., individual
utterances/“transcript lines” or hour-long encounters of multiple people) and the focus of
attention (e.g., individuals or groups).

While comparing different exemplars, the researcher over time develops more abstract
concepts which are characterized by their properties (ibid., p. 69). A concept has properties,
for which a concrete instance has specific values giving it its “dimensional profile” . Strauss &
Corbin (ibid., p. 70) also call these “general properties” (of the concept) and “specific properties”
(of the instance).

As new exemplars are studied in detail, some of them will be similar to already analyzed
ones (and fall under the same concept) but at the same time be different in some way. To capture
these variations, the concepts are continuously revised, e.g., by introducing new properties,
which in turn requires the researcher to revisit already analyzed exemplars to see whether
the amended concept still fits to it or what their specific value regarding a newly introduced
property is. This process is called constant comparison (ibid., pp. 62–63).

3.3.3 b) Axial Coding

Straussian GTM builds on an “action oriented model” of social reality (Strauss & Corbin, 1990,
p. 123), that is the idea that humans employ strategies to deal with a certain phenomenon. Or,
in the words of the authors:

The purpose a grounded theory is to specify the conditions that give rise to specific sets
of action/interaction pertaining to a phenomenon and the resulting consequences.

Strauss & Corbin (1990, p. 251)

While open coding considers phenomena in isolation, axial coding considers human behavior
in response to such phenomena. To support an according analysis, Strauss & Corbin (ibid.,
pp. 99–107) propose the paradigm model for thinking about social action:

• Some causal conditions, e.g., somebody saying or doing something, or simply a chance
event, lead to a phenomenon that is experienced by the subject(s).

• In order to deal with such a phenomenon, humans employ strategies, which may be
individuals’ or a collective’s actions or interactions within a group. These are purposeful
in that the subjects want to deal with the phenomenon and they are processual, meaning

119

CHAPTER 3. QUALITATIVE RESEARCH METHODS

they may consist of sequences of actions and reactions. Although the term “strategy” may
hint at deliberate behavior, Strauss & Corbin also include reflexive behavior.

• Any chosen strategy will have consequences, e.g., on the involved people or the broader
context which in turn may cause some change in the phenomenon or a new one to arise.

• Through open coding, the phenomenon (and its causal conditions) may be character-
ized with arbitrarily many properties. Those relevant for the subjects dealing with the
phenomenon, the “specific set of perceived conditions” , are called context.

• The broader context that reaches beyond the particular phenomenon is what is meant by
intervening conditions which enable or preclude the subject from employing certain
strategies. The conditions may be on different levels of the conditional matrix, involving
e.g. the individuals’ biography or culture (see Section 3.3.3c).

Theoretical Critique of the Paradigm Model
While Glaser condemned the paradigm model as “forcing” the data to fit some pre-existing
conception (see Kelle, 2007, for a discussion), others see its role more pragmatically: The model
elements are not meant as placeholders that always need to be filled, but as a checklist to aid
the researcher in interpreting the data and identify possibly missing concepts and/or data
(Przyborski &Wohlrab-Sahr, 2014, p. 202). I follow the pragmatic line of reasoning, which is the
only reasonable thing to do, given Strauss & Corbin’s imprecise and handwavy descriptions:

• They are not clear as to what kind of causes they refer to. On the one hand, the researcher
should pay attention to participants using words such as ‘because’ or ‘due to’ which—
without consulting other data sources—point to perceived causes; on the other hand, the
researcher may also systematically look for events preceding some phenomenon which
leans more towards actual causes (Strauss & Corbin, 1990, p. 101).

• With regards to the strategies, they propose to also look for missing or failed actions
which “should” be “ordinarily” done in some situation (ibid., p. 104). They are, however,
not explicit as to the baseline of such a comparison, e.g., other analyzed situations, the
subject’s own report on the matter, or even the researcher’s own experience (which would
be similar to Searle’s argument legitimizing his linguistic characterizations, see page 113).
The only given advice on how to identify strategies is to look for “action oriented verbs or
participles” (ibid., p. 105) which again pertains to interviews and not to observations.

• The same issue continues for consequences. Not only should the researcher look for the
consequences of a “failure to take action” , but also for “potential” consequences and those
happening “in the future” (ibid., p. 106).

Practical Application of the Paradigm Model
Although a clear epistemological stance may not be Strauss & Corbin’s strong point (see also
Section 3.3.4), their proposed procedure of how to use the paradigm model adds structure to
the whole coding process which alternates between the exemplar level and the concept level:
1. The preparation for axial coding happens on the exemplar level, meaning that for concrete

events, the researcher asks questions like what is the subject dealing with (phenomenon),
how are they dealing with it (strategies), why is this happening (causal conditions), why
is the subject behaving this way (intervening conditions), and what is the outcome of
their actions (consequences). Strauss & Corbin (ibid., p. 77) call this to “open up the data” .

2. Axial coding proper then begins on the concept level with considering one concept as
the phenomenon and proposing a hypothetical connection to another concept, such as its
cause or strategy (ibid., pp. 107–108).

120

3.3.3 Analyzing Data

3. Such a hypothetical concept-level connection is then checked against all exemplars of
the involved concepts. Some instances will probably confirm the hypothesis, others will
point to not yet considered differences in the data (ibid., pp. 108–109).

4. To account for such differences, the researcher may introduce new properties to the
involved concepts. Not all properties that can be analytically distinguished during open
coding will play a role in the paradigm model. It is up to the researcher to identify those
properties that constitute the relevant context for the subjects’ behavior (ibid., p. 109).

5. With an established connection between a phenomenon-concept and another one, the
researcher may look for differences on the level of properties to further qualify the
relationship (ibid., pp. 110–111).

Strauss & Corbin (ibid., pp. 112–113) also emphasize that a particular strand of inquiry may
start from something that strikes the researcher as a strategy or a consequence which may be
tracked down through the data to fill in the other places of the paradigm model. The above
mentioned ‘checklist’ property of the paradigmmodel can come into effect in any of these steps:
The researcher may notice that concrete information on an event’s causes or consequences is
yet missing; or that a whole phenomenon-concept is yet lacking a strategy-concept; or that,
given their similar causal conditions, two different concepts are better to be understood as
variants of a more general one, etc.

A ‘rich’ grounded theory explicitly considers changes over time. The researcher basically
has two options to capture thesewith the paradigmmodel: First,with a single paradigm instance
that considers processual strategies that deal with a phenomenon over time (ibid., p. 104); or
second, with many paradigm instances connected end-to-end where the consequences of one
are part of the causal conditions of the next (ibid., p. 106). Either way, the overall purpose of
axial coding is to develop concepts to categories, which means to systematically consider their
causal and intervening conditions, employed strategies, and consequences through means of
the paradigm model (Strauss & Corbin, 1990, pp. 78 & 97; Corbin & Strauss, 1990, pp. 7–8, see
also Figure 3.3 for an excursus on common misconceptions).

3.3.3 c) Conditional Matrix

Strauss & Corbin (1990, pp. 161–171) propose the conditional matrix as an analytical tool to
systematically consider different levels of social contexts in which the phenomenon of interest
is embedded, such as the individual, a small group, a company, or a larger community.5 In
practical terms, they propose to subdivide the causes, intervening conditions, and consequences
from the paradigm model and to trace actions and their causes and consequences through the
different levels.

The example they give for illustrating this idea (ibid., pp. 168–171) reads a bit like an elab-
orate joke that builds on ever more general explanations why something particular happened.
It follows one incident from the “action level” over a total of seven levels such as “organiza-
tional level” and “community level” to the “nation level” : A physician cannot proceed with an
examination because there are no plastic gloves to be found in her size, because her unit and
any other are in short supply, as are all other hospitals, because a perceived AIDS epidemic led
to new national guidelines requiring plastic gloves for all contacts with patients.

To me, the point of the conditional matrix as a GTM-tool appears to be to make the
researcher aware that all phenomena are embedded in different levels nested contexts, but

5Strauss & Corbin (1990, Fig. 10.1) depict these levels as concentric circles which might be confusing for the
mathematically inclined who think of a matrix as something rectangular or table-like (I did). In general, however, a
matrix is, according to Merriam Webster, “something within or from which something else originates, develops, or
takes form” .

121

CHAPTER 3. QUALITATIVE RESEARCH METHODS

Przyborski & Wohlrab-Sahr (2014, p. 191) criticize a common reduction of Grounded Theory ideas
to mere classification and sorting of data. Over the last years, I spoke to researchers on multiple
conferences and read articles of authors who genuinely thought that axial coding is about defining
a taxonomy, with sub- and super-types for concepts. Although there is nothing wrong with a good
taxonomy and such a thing might even be part of open coding, it is not what axial coding is about
and I want to make my contribution in setting the record straight here.
Strauss & Corbin (1990) often use the term “subcategory” , which to a technical person may sound
like a subclass in object-oriented programming, but is not what the authors had in mind. Upon
introducing categories in the context of open coding, they say “at this point any proposed relationships
[between concepts] are still considered provisional” and point to the chapter on axial coding (p. 65).
The examples that follow before axial coding is introduced may indeed reinforce the ‘subclass’
notion in the reader: types of work is a subcategory of food orchestrator (pp. 67 & 71); body strength,
shaping, monitoring, training, and movement are all subcategories of building up the body (p. 85).
These are, however, mere “potential subcategories” (p. 87).
What a ‘proper’ subcategory might be is not made clear until the chapter on axial coding, where
finally a definition is provided. It clarifies, that for Strauss & Corbin, “subcategory” refers to the
elements of the paradigm model:

In axial coding our focus is on specifying a category (phenomenon) in terms of the conditions
that give rise to it; the context (its specific set of properties) in which it is embedded; the
action/interactional strategies by which it is handled, managed, carried out; and the consequences
of those strategies. These specifying features of a category give it precision, thus we refer to
them as subcategories. In essence, they too are categories, but because we relate them to a
category in some form of relationships, we add the prefix “sub.” (p. 97)

I interpret the talk of ‘potential’ or ‘provisional’ subcategories as referring to those which have not
yet undergone an examination in the light of the paradigm model, i.e., which are not yet labeled
as context, action, consequence, etc. As a concrete example to illustrate a subcategory as defined
above, they give the consequence of pain relief as a subcategory of pain after some action has been
taken (pp. 98 & 106). Differentiating different types of pain, such as high/low intensity pain and
back/lower leg pain, is achieved through properties and is the matter of open coding.

Figure 3.3: What is axial coding? Or: The mystery of the “subcategory”.

not all levels are relevant for a particular study. The conditional matrix basically amounts to
asking Why? until the answers are no longer relevant for the studied phenomenon. The levels
mentioned by Strauss & Corbin (1990, p. 162) are but one generic way of looking at things and
it is up to the researcher to identify the relevant levels for her particular research.

3.3.3 d) Selective Coding

During selective coding, the researcher more and more assumes the role of an author (Böhm,
2004, p. 273). The idea is to identify what the research ‘is about’, the core category. This might
be one of the categories that were developed during axial coding, or some previously unnamed
aspect that is central to multiple categories (ibid., pp. 273–274). This may even result in a
shifted focus from what was originally thought of as central (ibid., p. 273).

Strauss & Corbin (1990, pp. 119–125) propose to write a narrative that condenses the most
important aspects into a “story” , first descriptively, then analytically by giving the story itself
a conceptual name, identifying its properties, and arranging the other categories around it
according to the paradigm model. In addition to coming closer to (a written form of) a theory,
this process is meant to guide the researcher in systematically identifying gaps in the concepts
and/or data. Böhm (2004, p. 274) cites a GT study in the wake of the Chernobyl disaster which

122

3.3.3 Analyzing Data

illustrates how this can work: The core category had the two properties of subjective age (young
vs. old) and perceived threat (no vs. severe), which, after systematic consideration of all four
combinations, led to the discovery of the connection between feeling young and high perceived
threat because the combinations young/no threat and old/severe threat did not occur.

Robson (2002, p. 495) and Przyborski & Wohlrab-Sahr (2014, p. 211) note that focusing on a
core category and filling the gaps around it also disregards and excludes other phenomena from
further analysis—a point which Strauss & Corbin (1990, pp. 141–142) only make implicitly.

3.3.3 e) On Developing Concepts: Theoretical Sensitivity

Strauss & Corbin (1990, pp. 131–132) emphasize (and even rely on) insights to just happen
along the research process: “After being immersed in the data for months one can’t help but
note differences or the emerging patterns” . For all coding activities in a GTM study, theoretical
sensitivity (ibid., Ch. 3) is an important property on the part of the researcher: She needs to
be able to ask good questions to “open up the data” to detect meaningful differences in the
phenomena of interest, for which personal and professional experience can be a source as
well as familiarity with relevant literature (ibid., pp. 41–43, 77–79). But where does such a
sensitivity have its place in a scientific process? Although Strauss & Corbin (ibid., pp. 131, 148)
exclusively speak of switching between inductive and deductive thinking, Hildenbrand (2004,
p. 18) observes that the idea of logical abduction can be read “between the lines” . So what is
abduction, now?

Considered from a logical perspective, GTM (like most qualitative research methods) uses
all of induction, deduction, and abduction to reason about the relationship of concrete instances
and abstract concepts (also called types or rules elsewhere, Reichertz, 2004). Induction and
deduction are well-known logical notions: Deduction is the subordination of an instance (e.g.,
someone robbed the medicine chest) under a known type (all medicine chest burglars are drug
addicts) from which properties of the instance follow (this burglar is a drug addict)—if the
general rule is true, the result of its application is also valid (ibid., pp. 160–161). Induction is
the inference that an individual case (e.g., there are particular clues on a crime scene) belongs to
a known type (crime scenes of Mr. Jones have certain properties) from which properties of the
individual case follow (Mr. Jones is responsible for this crime scene)—which is only a probable
but not an obligatory form of inference (ibid., p. 161).

Both deduction and induction are based on associating observed instances to already
existing types. In this regard, abduction—popularized in the early 20th century by philosopher
Charles Sanders Peirce—is different in that it happens when the researcher encounters a
particular instance for which no suitable type exists yet and she therefore invents (or discovers)
a new one (ibid., p. 161). Abduction is about looking for “meaning-creating rules” which remove
“what is surprising about the facts” ; it is arguably a first step of scientific discovery after which
predictions can be derived deductively and facts can be searched to make the induction (ibid.,
p. 163). To complete the example above (unfortunately, Reichertz does not provide one): For
someone extremely naive, there might be no explanation for the surprising fact of some items
from the medicine chest went missing until a (new) concept such as the following is introduced
to them: theft by a drug addict for whom the contents are desirable beyond their original purpose.
But to come back to the original point of how theoretical sensitivity comes into play: It enables
the researcher to perform the logical abduction in a way that leads to relevant concepts which
then can be used in the inductive and deductive reasoning which Strauss & Corbin describe,
e.g., in the context of axial coding (see Section 3.3.3b).

The researcher introduces new explaining (or ‘theoretical’) concepts through abduction, and
then refines them and ensures their consistency through the process of constant comparison

123

CHAPTER 3. QUALITATIVE RESEARCH METHODS

(see Section 3.3.3a) which goes back and forth between inductive and deductive thinking and
takes place on the concrete phenomenon level as well as the concept level (Przyborski &
Wohlrab-Sahr, 2014, p. 204). Glaser & Strauss (1967, pp. 55–58) characterize the underlying idea
behind developing concepts with the GTM as simultaneously looking for relevant differences
between minimally similar contexts (e.g., to get a better understanding of the variety of a
phenomenon) and looking for similarities between maximally different contexts. Przyborski &
Wohlrab-Sahr (2014, p. 205) argue that this way of making comparisons basically supplants
theory verification/falsification done in theory-testing research approaches.

3.3.3 f) Writing Memos

Strauss & Corbin (1990, pp. 198, 203) characterize memos as “the written forms of our abstract
thinking about data” ; it is not about concrete incidents but about concepts. They distinguish
three types of notes which may be intermingled in any particular memo: Code notes contain
the ‘technical’ descriptions of concepts, their properties, and relationships to other concepts;
theoretical notes are reflections on the current concepts, potential further properties, ideas
from reading in literature, etc.; while in operational notes, the researcher considers on how
to proceed in data collection and analysis, which particular questions to address next (ibid.,
pp. 197–198, 205–208).

Memos are the immediate product of any analytic activity in a GTM study; writing memos
is an integral part of whole research process from start to end (ibid., p. 198). Whenever the
researcher is hit by an idea, both Glaser & Strauss (1967, p. 107) and Strauss & Corbin (1990,
p. 201) recommend to stopwhatever she is doing and to take the time to write it down, e.g.,when
a new observation does not fit the existing categories (this is the moment a logical abduction
happens, see previous section). Charmaz (2006, p. 72) calls memo-writing a conversation with
yourself, which produces new ideas and insights, and helps getting questions clearer.

Many of the practical considerations of Strauss & Corbin (1990, pp. 199–203) appear a bit
outdated and echo from an analog era of “color coded cards” and “putting type-written pages
into binders” , such as including dates and document references, underline concept names, and
keep multiple copies. Ultimately, the researcher should develop their own style, which may
include “computer programs” (ibid., p. 200). Nowadays, specialized software such as ATLAS.ti6
supports direct annotation of a variety of different data types (text documents, images, audio,
and video) and takes care of the house-keeping tasks of maintaining references between data
and concepts, as well as between concepts.

3.3.4 Different GTM Versions

Considering the six core questions along the answers to which qualitative research approaches
differ (see Section 3.2.3), the three GTM versions—“classic” Glaserian and Straussian GTM on
the one hand, Charmaz’s constructivist GTM on the other—all follow a general approach of
developing concepts from and grounded in data and thus more or less agree on theMethod
(How should we study the world?). All are relatively open regarding the researcher’s personal
involvement and the questions of what is worth knowing and which questions one should
ask (Involvement, Philosophy, and Discipline), meaning that these are areas to be filled
for any concrete study by the respective researchers.

Most notably, however, classic and constructivist GTM strongly disagree on the matters
of Ontology (What do we believe about the nature of reality?) and Epistemology (How do

6Introduced by Muhr (1994), it was originally meant for text interpretation (hence, “ti”), and has been extended
since then. Product homepage: https://atlasti.com/.

124

https://atlasti.com/

3.3.4 Different GTM Versions

we know what we know?), the effects of which I discuss in this section. Note this is not an
extensive review of the different schools of thought; Stol et al. (2016) discuss the differences
and implications for software engineering research.

3.3.4 a) Classic Grounded Theory

AlthoughGlaser and Strauss do not discuss their epistemology explicitly in their books, arguably,
their stance is that of absolute ontology (Charmaz, 2006, pp. 7–10), i.e., the assumption that
there is one single, verifiable reality governed by natural laws. Not by accident do they speak
of the “discovery of theory” (Glaser & Strauss, 1967, p. 1) where concepts “emerge” (Strauss &
Corbin, 1990, pp. 131–132) through the application of the coding procedures as if it is already
‘out there’, waiting to be found by an objective researcher who should maintain an “analytical
distance” , recognize and avoid bias, and obtain valid and reliable data (ibid., p. 18)—all of which
are hallmarks of epistemological positivism (see page 115). Time and time again it appears as if
Strauss & Corbin treat observations by the researcher and interviewee reports (whether on
actual events, or simply as what “someone [. . .] ordinarily would do” , ibid., p. 104) as equivalent
when it comes to studying social reality (see my list of critique on page 120).

A related issue is how the results of a GTM study should be evaluated. Strauss & Corbin
(ibid., Ch. 14) mention three areas: The validity, reliability, and credibility of the data, the
adequacy of the research process, and the empirical grounding of the findings.7 They do not
elaborate on the first area, but their criteria for the other two boil down to asking the researcher
to provide information on how the GTM coding procedures were applied: “The criteria are
meant as guidelines” , i.e., departing from them is allowable if it is warranted and explained;
and “indicate what your procedural operations were” (ibid., pp. 257–258).

3.3.4 b) Constructivist Grounded Theory

This contrasts with Charmaz’ Constructivist Grounded Theory. She argues that basic GTM
elements “such as coding, memo-writing, and sampling for theory development, and comparative
methods are, in many ways, neutral” (Charmaz, 2006, p. 9) in that they do not conflict with the
two central ontological and epistemological points she stresses.

Multiple Realities and Solipsism
First, all humans (that is, subjects and researchers) are not objective, but “make assumptions
about what is real, possess stocks of knowledge, occupy social statuses, and pursue purposes that
influence their respective views and actions” (ibid., p. 15). Consequentially, the researcher needs
to be aware that all data is constructed by people: Just as documents made by the subjects
are influenced by their social, cultural, and organizational backgrounds, all records created by
the researcher (e.g., interview or fieldnotes) are not simply ‘facts’, but are also a product of
directed attention and framing (ibid., pp. 16, 67). Charmaz (ibid., pp. 18–19) proposes to collect
enough background information on the involved settings, processes, and persons, and to make
sure to capture their multiple views.

Her second point is that the researcher cannot look into the subjects’ minds, but can only
try to enter their social settings and attempt careful interpretations, meaning she should not
assume that the subjects share the same tacit assumptions as herself (ibid., pp. 14, 19). Two

7Early in their book, Strauss & Corbin (1990, p. 23) also propose that a good grounded theory should “fit” the
particular area of everyday reality, it should be comprehensible and make sense to the studied subjects, should be
abstract enough and include variation to be applicable to related contexts, and provide control. However, they do
not explain how their GTM variant addresses these concerns.

125

CHAPTER 3. QUALITATIVE RESEARCH METHODS

concrete data collection guidelines that go beyond what Strauss & Corbin proposed are (a) to
address what the subjects consider interesting or problematic, and (b) to pay attention to their
particular use of language (Charmaz, 2006, p. 22).

Coding Procedures
Charmaz (ibid., pp. 42–60) proposes two original types of coding. During initial coding, the
researcher should stay close to the data and move quickly to find simple and precise codes. This
is similar to early-stage Straussian open coding, but Charmaz adds constructivistic rationales
for two coding techniques: Word-by-word coding may be helpful as it forces the researcher to
dig into the meaning of the subjects’ chosen words (ibid., p. 50), whereas line-by-line coding
may help uncovering tacit assumptions as it “frees you from becoming so immersed in your
respondents’ worldviews that you accept them without question” (ibid., p. 51).8 Focused coding
then covers larger amounts of data more selectively and addresses larger segments of data at
once (ibid., p. 57). It combines the aspect of more abstract concepts (or categories) of later-stage
Straussian open coding and the excluding property of selective coding.

Charmaz (ibid., pp. 62–63, 66) also critically comments on Straussian axial coding (involving
the paradigm model, see 3.3.3b) and Glaserian theoretical coding (who proposed 18 “coding
families”, see Glaser (1978), all of which serve a similar purpose to the paradigm model): Both
may be helpful in the analysis by allowing the researcher to code for the causes, contexts, and
consequences of subjects’ actions, but it may also limit the researcher and “lend an aura of
objectivity to an analysis” it does not deserve.

3.3.5 Discussion of GTM as a Qualitative Research Approach

To round off my discussion of the Grounded Theory Methodology, I reconsider the eight
general quality criteria (Section 3.3.5a) and the nine common traits of qualitative research
(Section 3.3.5b) to determine which aspects are covered by the method itself and which fall
onto the researcher to take extra steps.

3.3.5 a) Meeting the Quality Criteria

Charmaz (2006, pp. 181–183) discusses a number of criteria that go beyond Strauss & Corbin’s
concerns of data quality and accurate coding process description. She emphasizes the impor-
tance of the particular research discipline and the purpose of the particular study, and lists
four areas as “ideas” for what to look out for, each neatly summarized as a single question by
Stol et al. (2016, Table 1). All of Charmaz’s concerns can be found among the quality criteria
discussed in Section 3.2.4:

• Credibility: Is there sufficient data to merit claims?
(→ Rich Rigor, Credibility through thick description, Meaningful Coherence)

• Originality: Do the categories offer new insights?
(→Worthy Topic, Significant Contribution in the sense of theoretical significance)

• Resonance: Does the theory make sense to participants?
(→ Significant Contribution in the sense of practical significance, Credibility through
multivocality and member reflection, Resonance in terms of transferability)

• Usefulness: Does the theory offer useful interpretations?
(→ Significant Contribution in terms of practical, theoretical, and heuristical significance)

8I imagine the last point to be an issue especially when the researcher identifies herself with the subjects and/or
shares a common background. As Przyborski & Wohlrab-Sahr (2014, p. 16) point out, making one’s understanding
explicit gets more difficult the closer researcher and subject are biographically and culturally.

126

3.3.5 Discussion of GTM as a Qualitative Research Approach

Overall, Charmaz’s criteria address six out of eight criteria proposed by Tracy (2010), which
leaves two areas to the researcher: Sincerity and Ethics. I will later discuss my own research in
the light of Tracy’s quality criteria, which are more general than Charmaz’s.

3.3.5 b) Filling the Common Traits

Not all traits of qualitative research are explicitly addressed by elements of the Grounded
Theory Methodology. In Table 3.2, I summarized what Straussian and Charmaz’s GTM have to
offer with regards to the nine common traits of qualitative research I introduced in Section 3.2.2.

Trait Strauss & Corbin (1990) Charmaz (2006)

1. Naturalistic
Inqiry in Everyday
Situations

concerned with concrete experi-
ences from everyday reality [p. 23]

about events and experiences in the
participants’ lives [pp. 2–3]

2. Openness &
Emergent Research
Design

must not follow initial ideas too
rigidly, need to adjust [pp. 180–183];
open coding (3.3.3a)

flexible data collection and analysis
guidelines, follow interesting data
[pp. 2–3]; initial coding (page 126)

3. Purposeful
Sampling

theoretical sampling (3.3.2) similar to Straussian GTM [pp. 99–
108]

4. Detailed, Thick,
and Diverse Data

“diverse data” [pp. 23 & 180], col-
lected through means of theoretical
sampling (3.3.2)

capture details andmultiple perspec-
tives (page 125)

5. Importance of the
Researcher

memowriting (3.3.3f); theoretical sen-
sitivity (3.3.3e)

respect subjects, establish rapport
[p. 19];memo writing (3.3.3f); aware-
ness: research data is constructed,
too (page 125);

6. Empathic
Neutrality

implicitly: considering intervening
conditions during axial coding
(3.3.3b)

consider tacit assumptions, “careful
interpretation” (page 125)

7. Context Matters conditional matrix (3.3.3c) capture background information
on people, settings, situations
(page 125)

8. Holistic
Perspective

conditional matrix (3.3.3c); selective
coding (3.3.3d)

focused coding (page 126)

9. Discovery of
Theories

switching between coding proce-
dures & between abduction, induc-
tion, and deduction (3.3.3e)

similar to Straussian GTM [pp. 103–
104]

Table 3.2:Mapping of common qualitative research traits (Table 3.1) on elements of GTM
versions with references to my discussion or to the respective books (in square brackets).

Aspects like Openness & Emergent Research Design and Purposeful Sampling are clearly
emphasized in their GTM versions. Others, like Detailed, Thick, and Diverse Data, are, at
least for Straussian GTM, more of an assumption the rest of the methodology builds upon, but
not directly addressed. Rather, pieces of advice regarding data collection—such as to adjust
one’s focus while interviewing—seem primarily motivated by the prospect to “save time later”
since one “won’t need to reinterview or observe again in order to retrieve important missing data”
(Strauss & Corbin, 1990, p. 183).

127

CHAPTER 3. QUALITATIVE RESEARCH METHODS

Furthermore, although all GTM forms mention interviews as well as observations as
possible data sources, many concrete coding guidelines pertain to text or a “document” . For
example, Strauss & Corbin (1990, pp. 72–73, 81–84) list the following “variations on ways of doing
open coding” : (1) line-by-line, phrase-by-phrase, or single words, (2) sentence or paragraph, or
(3) entire document. Of course, Strauss & Corbin repeatedly mention that such a document
may be a “fieldnote” . But as Charmaz observed, all data is constructed by people (see page 125).
So, what am I learning about the subjects’ social reality from coding individual words or
phrases of my own fieldnotes? Charmaz (2006, p. 53) acknowledges the difference between
transcribed interviews with the subjects’ accounts, fieldnotes written by the researcher, and
general observations which “may not be amendable to line-by-line coding” . I discuss constructive
solutions from my research group for the resulting difficulties in Section 3.4.

Two related aspects are how to actually engage in Naturalistic Inqiry in Everyday
Situations and what the Importance of the Researcher entails. I consider both aspects to
be highly specific for each particular study, so I understand why neither Strauss & Corbin (1990)
nor Charmaz (2006) discuss these points beyond the bits I mentioned in Table 3.2. I therefore
consider it as my responsibility to deal with the aspects myself and add my own considerations
concerning how to collect data and my role as a researcher in Chapter 4.

3.4 The Base Layer for Pair Programming Research

My research group AGSE9 started studying pair programming in 2004 with the overall research
goal to identify and categorize behavioral patterns to inform practitioners. They started with
recordings of controlled setups with recruited students to compare pair and solo work as well
as different types of tasks. In early 2007 followed the first recording of an industrial PP session.

AGSE members Salinger, Plonka, & Prechelt (2008) describe a qualitative research approach
that extends the Grounded Theory Methodology by four auxiliary practices to deal with the
peculiarities of the data and the phenomenon under investigation. Plonka (2012, Sec. 4.8)
decided to use both quantitative and different qualitative data analysis approaches. I discussed
her work in Section 2.3.4 on pages 73, 81, and 84. Salinger (2013), in contrast, continued with
the GTM-based approach and developed the base layer, a framework for qualitative research
on pair programming. Salinger & Prechelt (2013) then published a translated and shortened
description of the base layer as a book. For brevity, I refer to that book as “BL”.

Year Publications

2008

2012

2013

⋮

Salinger, Plonka, & Prechelt (2008)

Plonka (2012, PhD)

Salinger (2013, PhD)

Salinger & Prechelt (2013) or BL

Aux. GTM practices
(Section 3.4.1)

Base Layer description
(Section 3.4.2)

Figure 3.4: Timeline of our early PP research. Solid arrows indicate reuse of ideas. Figure A.1
continues this chart to the present day.

9German acronym for “Arbeitsgruppe Software Engineering” (Software Engineering Work Group).

128

3.4.1 Auxiliary Practices for the Grounded Theory Methodology

3.4.1 Auxiliary Practices for the Grounded Theory Methodology

Salinger et al. (2008, pp. 13–14) describe their experience with applying Straussian GTM
practices on video recordings of pair programming sessions. Open coding (see Section 3.3.3a)
led to almost 200 different concepts within a few days, so they reflected on what has happened
and identified a number of problems:
(1) It appears too late to filter out some (aspects of) phenomena only in selective coding (i.e.,

after substantial open and axial coding, see Section 3.3.3d). Coding all verbal and facial
expressions, gestures, computer interactions, and so on led to an unmanageable amount
of codings. Too many concepts make it difficult to see the forest for the trees; Salinger
et al. feared to miss on relevant phenomena because of this.

(2) Straussian GTM is not explicit about its epistemology and the role of the researcher
(see Sections 3.3.4a and 3.3.5b). Neither were Salinger et al. during open coding and thus
mixed descriptive codes and interpretative ones, such as uses documentation vs. gains
knowledge of detail for the same PP situation.

The nature of the material (high-detail recordings of two software developers working on a
non-trivial task) added further complications which Straussian practices alone could not solve:
(3) Data segmentation: While (transcripts of) interviews can be relatively structured (e.g.,

by lines or by question), an hour-long pair programming session is not. Codes with differ-
ent granularity such as coarse handle problem and fine test defect fix were a consequence.

(4) Housekeeping: There are many different aspects to a PP session. The resulting multitude
of concepts needed to be grouped to keep it manageable.

To cope with these problems, Salinger et al. (ibid., pp. 14–18) propose four practices: Define
a Perspective on the Data, establish Concept Name Syntax Rules, define an Analysis Results
Metamodel, and Code in Pairs.

3.4.1 a) Perspective on the Data

To avoid “drowning” in concepts and potentially miss relevant phenomena in the data (prob-
lem 1) as well as to establish the role and position of the researcher (problem 2), Salinger et al.
(2008) propose to formulate a perspective by answering these three questions (see also Salinger,
2013, pp. 109–110):
1. “In which respects do you expect the data to provide insight?”

The answer to this is supposed to act as a filter telling the researcher when to stop.
2. “What kinds of phenomena do the researchers allow themselves to identify in the data?”

This determines the researcher’s epistemological standpoint.
3. “What type of result do you want the analysis to bring forth?”

Aiming for a coding scheme is cheaper than a full theory.
As Salinger (ibid., p. 110) emphasizes, such a perspective is not meant to restrict the researcher,
but to direct her attention: It should be regularly examined and, if need be, modified. Defining
such a perspective has also been adopted outside our research group, e.g., by Jones & Fleming
(2013, Sec. 1, see also discussion on page 83).

3.4.1 b) Concept Name Syntax Rules

In contrast to GTM concept names which should be “logically related to the data” they represent
and “graphic enough” to quickly remind the researcher (Strauss & Corbin, 1990, p. 67), but
have no fixed format, Salinger et al. propose to introduce a syntax for concept names. This
helps with problems (3) and (4).

129

CHAPTER 3. QUALITATIVE RESEARCH METHODS

3.4.1 c) Analysis Results Metamodel

To clarify what the things the GT researcher creates along their analysis are (and how they map
to the terms their respective analysis software uses), Salinger et al. propose to formalize the
structure of the analysis elements as a meta-model. As such, thinking about one’s meta-model
does not address any of the problems (1) to (4) directly, but helps to clarify thinking along the
way.

3.4.1 d) Pair Coding

To make sure the other practices have their intended effect, Salinger et al. propose to perform
GTM coding in pairs with another researcher. By doing so, concept definitions also become
more precise. Overall, this practice helps addressing all four problems (1) to (4).

Like the Perspective on the Data, the Pair Coding practice as proposed by Salinger et al.
has been explicitly adopted by researchers outside our group and even outside the software
engineering community, e.g., by Sobo et al. (2011).

3.4.2 The Base Layer in a Nutshell

The base layer is not meant to be used as a mere coding scheme for annotating PP sessions.
Rather, it is a research framework, a first step that aids researchers in identifying relevant
phenomena and setting directions for a long qualitative research process to eventually under-
stand pair programming as a whole. Below, I explain its origin, rationale, and most important
elements.

3.4.2 a) Layered Research Approach: Different Perspectives on the Data

Salinger (2013) applied practices from Straussian GTM (mostly open coding) and the four
auxiliary practices discussed above. Throughout Salinger’s PhD research, the impression that
pair programming is a complex phenomenon did not vanish. While Plonka (2012, Ch. 5–9)
dealt with this by addressing PP from a number of different angles, Salinger (2013) decided
to lay the groundwork for a long-term research instead, thereby addressing the problem of
qualitative PP research being not open for further work (see my discussion on page 87). Over
time, driven by empirical observations and reflection on the research process, he arrived at the
following Perspective on the Data (ibid., pp. 123–125):
1. Area of Interest: Understand what activities make up the pair programming process.

Conceptualize the basic activities of the individual pair members towards an extensional
definition of activity in the context of PP, i.e., to answer the question What is it that
developers do during PP? by enumerating all types. These concepts should serve as a
starting point for more specialized studies that focus on theory-building.

2. Epistemological Stance: The base concepts take a predominantly behavioristic perspec-
tive that is based on directly observable behavior. In particular, they are not concerned
with cognitive processes. Furthermore, there are no evaluations with regards to technical
progress in the PP sessions.

3. Result Type: The technical outcome is not a final coding scheme, but a set of concepts
that is to be understood as a framework to help researchers find further research focuses.
The individual concepts have only few properties (in the GTM sense, see Section 3.3.3a);
identifying relevant ones is left for further work.

Salinger describes the relationship between his base concept set and further research with a
layer metaphor: The base layer provides concepts to address all PP activities in a fundamental

130

3.4.2 The Base Layer in a Nutshell

sense. Further research may then layer on top and focus on some type of base activity and
develop more properties for addressing more subtle differences without having to reinvent the
wheel. Alternatively, specialized studies may shift their attention to a coarser granularity, e.g.,
addressing multiple base activities at once, possibly even consider the pair as a whole, again
adding another layer of concepts. At the time of his writing, of course, no such additional layer
existed, so nobody could know how exactly this layering would work in practice.

3.4.2 b) Seven Key Decisions

Salinger (2013) made a number of observations that led to seven key decisions shaping the set
of base concepts (see also BL, Sec. 2.3). I explain them below with instances from my related
work discussion for illustrating the difference they make.

(1) Verbal Communication over Computer Interaction There are fundamental differences
between a pair’s verbal communication and their human-computer interaction, especially
with respect to their complexity and variety. The base layer therefore distinguishes between
human-human interaction or HHI activities which are directed at the partner (social action, see
Section 3.2), and HCI/HEI activities (human-computer and human-environment interaction).
There are about 60 different HHI activity concepts and only 8 HCI/HEI concepts.

This contrasts with Flor (1998) who also studied pair programmers but generalized both
the computer screen and the pair’s communication to “medium” (see discussion on page 80).

(2) Capture Intentions The base concepts capture the illocutionary act of the pair program-
mers’ activities, that is, utterances are characterized as to what the speaker intends to do with
them rather than their surface structure (see also page 112).

This is unlike Bryant (2004) who considered utterances to be questions when they looked
like questions (see discussion on page 74).

(3) Emerging Segmentation of Data There is no natural segmentation of a pair’s discourse
into “sentences”, as e.g. Bryant et al. (2008) suggest (see discussion on page 72). The base
concepts have no strict built-in granularity; rather, the granularity of coded base activities relies
on (tacit) communication knowledge (see Section 3.2.1) and an understanding of software
development on part of the researcher. The same sequence of words, for example, when
uttered in different contexts, may be considered one explanation activity or as multiple partial
explanation activities with interspersed instructional activities what to do.

(4) Behavioristic Ideal Since understanding any social action, be it as a pair member or as
a researcher, requires some interpretation (again, see Section 3.2.1), a purely behavioristic
approach cannot work. However, there should be some directly observable evidence that makes
one’s interpretation reasonable.

An example by Plonka (2012, pp. 185–186) illustrates the different perspectives. A less
experienced pair member says “Ok, so this is done now, so we can move on to the next bit” to
which the more senior partner replies “We could also test that first” (translation by Plonka).
She characterizes this reaction as “nudging” , as a “strategy [. . .] to provide a subtle learning
opportunity” . It is entirely possible that the experienced pair member did exactly that. Salinger,
however, would characterize the situation closer to what is directly observable, e.g., as a rejected
proposal (coded as challenge_step, see below) or a rejected assessment (disagree_completion),
depending on the context. This also requires some interpretation, of course, but is less of a
stretch. To make all of this more palpable, I searched for the section in the recordings Plonka
referred to (she mentions neither session nor timestamp) and discuss the whole 100-second
episode in Example 3.1 on page 136.

131

CHAPTER 3. QUALITATIVE RESEARCH METHODS

(5) Model DiscourseWorld, not ActivityWorld There is a difference between talking about
someX (such as a design proposal) andX itself (e.g., putting the proposal into action by changing
source code). The base layer is mostly concerned with discourse objects, that is the things the
developers’ conversation is about. A step, for example, is something the developers refer to in
their conversation as an atomic unit of work, which is independent of whether they actually
perform it en bloc or even whether they perform it at all.

Xu et al. (2005), who counted the number of different concepts experienced and novice
programmers maintain in their PP session (see discussion on page 77), did not make such
a distinction: Creating and deleting classes or members in the source code was in a sense
equivalent to discussing such changes.

(6) Model Dialog Episodes Salinger noted a small number of types of recurring discourse
objects and typical lifecycle of being introduced, evaluated, and/or modified (and potentially
put into action). The concept name syntax rule (see Section 3.4.1b) of the base layer reflects this
and allows for sequences of codings that make episodes in the dialog visible. The general format
for all base concept names is <verb>_<object>, leading to codes such as propose_design and
amend_design. Overall, there are 16 discourse objects that mostly fall into two large categories,
each with 1 to 5 verbs, and a total of 13 different verbs.

(7) Reflect Relevant Phenomena The base concepts all address phenomena that are poten-
tially relevant for practitioners. Some of the discourse objects even reflect software development
terminology, such as design or requirement. Individual base concepts do not necessarily capture
pair programmer behavior that is very common (e.g., disagree_strategy was seen only once).
Rather, they capture relevant differences such as between the somewhat similar concepts
standard of knowledge and gap in knowledge (see discussion below). This, too, constrasts with
Bryant (2004) whose coding scheme is exhaustive in that all utterances can be coded, but not
necessarily rich in that it would capture relevant differences (see page 74).

3.4.2 c) The Base Concept Set

The perspective on the data and the seven key decisions led to a fine-grained analysis covering
all pair programmer activity on its ‘atomic’ level. The terminology is as follows:

• A PP session can be broken down to a series of base activities which the developers
individually perform. These are typically individual utterances (HHI, or human-human
interaction) or coherent streams of editing or navigation operations (HCI, or human-
computer interaction).

• Each of these is characterized by sometimes two or three, but usually only one base
concept. The whole set contains 58 HHI base concepts10 and 8 HCI base concepts. Each
base concept represents the primary intention of the developer who performs the base
activity. More precisely: All base concept names consist of an object and a verb, where the
verb represents the illocutionary force and the object part characterizes the propositional
content (see page 112).

• The base layer is the base concept set plus the rules for (a) when they apply to a concrete
instance and (b) how to segment the continuous stream of reality into activities. Addition-
ally, there are (c) guidelines for when and how to include new concepts and properties in
the base set and (d) some ideas on how to create additional concept layers (BL, Ch. 22–23).

10That is one concept less in the BL book than Salinger (2013) originally had: The rare remember_source of
information has been subsumed under the more general explain_knowledge (BL, pp. 209–210).

132

3.4.2 The Base Layer in a Nutshell

Throughout this thesis, I use the base concepts as a vocabulary to talk about PP processes.
However, the full description of all base concepts, their properties, and application rules span
over 150 pages in the BL book, so I will only discuss the parts here that are relevant for my
work and occur in my examples multiple times. In this sense, the remainder of this section is
like a dictionary and thus rather dull. The next Section 3.4.3 illustrates a practical application
of the base concepts.

Discourse Objects

The object part of the HHI concepts represents discourse object types. I discuss the most
relevant 10 of them, which fall into two large categories: product- & process-oriented concepts
and universal concepts. There are also HCI/HEI concepts, whose object is always sth (meaning
‘something’) and all variation is expressed through the accompanying verb as in examine_sth,
write_sth, etc.

Roughly speaking, these three categories can be characterized as (1) decision-making where
the developers discuss what they want to do on a technical, product-oriented side and on their
process-level, (2) knowledge transfer where the partners talk about their insights, about what
they know and do not know, things they suspect or are unsure about, and (3) execution where
pair programmers primarily interact with their computer.

HHI: Product- and
Process-Oriented Objects

(“Decision-Making”)

HHI: Universal Objects
(“Knowledge Transfer”)

HCI/HEI
(“Execution”)

design, requirement, step, strat-
egy, completion, state, todo

finding, hypothesis, standard of knowl-
edge, gap in knowledge, knowledge

sth

Table 3.3: Object classification in the base layer

The product- and process-oriented concepts are also abbreviated to P&P concepts:

• design: A property of a worked-on artifact the developers can decide on; could be as
local as a variable name or as global as an architectural constraint (BL, Ch. 4).

• requirement: A decision affecting the developers from outside their session (BL, Ch. 5).

• step & strategy: Consideration on how to proceed, on a tactical and a strategical level,
respectively (BL,Ch. 6 & 9). The difference between the two lies in how the developers refer
to it (model the discourse world, see key decision #5 on page 132): The same development
activity can be treated as something atomic (step) or as something consisting of multiple
parts (strategy) in their discourse.

• completion & state: Assessment on how far a step or strategy has been worked through
(BL, Ch. 7 & 10).

• todo: Consideration on what to do at some point in future (BL, Ch. 8).

133

CHAPTER 3. QUALITATIVE RESEARCH METHODS

The second category is called universal concepts because the developers may refer to
both product and process aspects or none of them, including various types of knowledge and
meta-knowledge:

• finding: A developer’s insight that the pair programmers talk about (BL, Ch. 12). Can be
a perceived event P (such as a finished full-text search), a discovered issue D (such as an
identified defect), or a thought T (such as an idea). All of these can either by catalyzed c
or uncatalyzed u depending on whether or not they are triggered by what the partner
just did or said, or what is visible on-screen. Note that the base concepts only refer to
the pair’s discourse: Some insights may remain completely private in the developers’
thoughts.

• hypothesis: Expressed uncertainty (BL, Ch. 13). This is unlike all other universal concepts
where the pair programmers present the information content as “true”. This can be a
hard-to-verify hypothesisHTV that goes beyond what the pair expects to be able to check,
a can-check hypothesis CC which the pair thinks could be assessed with little effort, or
doubted knowledge DK.

• standard of knowledge: Talk about meta-knowledge such as having or not having some
knowledge (BL, Ch. 14). Base activities pertaining to such a discourse object serve three
purposes: To prepare knowledge transfer PT, e.g., by stating how little one knows, to
acknowledge knowledge transfer AT, e.g., after the partner explained something, or to
refuse knowledge transfer RT, e.g., to justify not giving an answer to a question.

• gap in knowledge: A special type of meta-knowledge: a lack of knowledge shared by
both developers and that is relevant for the task (BL, Ch. 15).

• knowledge: Mostly pre-existing knowledge (see discussion below in Section 3.4.4), but
also a fallback category, e.g., for utterances for which it is not sufficiently clear whether
the speaker treats it as an insight (a finding) or as something she already knew before
(BL, Ch. 16).
Discourse objects in the base layer are plain. On the one hand, a previous HHI activity

itself does not become an object.11 Thus, there are no higher-level references, e.g., disagreeing
with a challenge_knowledge is no disagree_(challenge_knowledge) but still a disagree_knowledge:
The verb indicates the illocutionary force (here: not affirmative, not constructive), the object
indicates the episode it relates to.

On the other hand, discourse objects are anonymous and indistinguishable. There is no
index to distinguish two, say, step objects in a discourse. The base layer itself offers no means
of tracking the topics of discussions with ‘competing’ alternative proposal or ideas.

Verbs
There are two somewhat independent classifications of the verbs: First, individual utterances
can be initiative (such as a proposal) or reactive (such as an evaluation of a proposal). As a
manner of speaking, the according verb parts of the base concepts are also called initiative (e.g.,
propose) or reactive (e.g., agree), indicating their utterances are either predominantly one thing
or the other. Second, utterances may or may not introduce new aspects into the discourse.
Simple acceptance or rejection of ideas are unconstructive, rejecting with a counter-proposal,
for example, is constructive.
The base layer distinguishes four differentways to start a new discourse episode with initiative
verbs, each with a slightly different illocutionary force:

• propose is to make a proposal which consists of some informational content (such as a
design aspect for a propose_design), and optionally also carries a positive evaluation of

11HCI/HEI activities, however, can be become objects of the activity concepts, e.g., in a stop_activity (BL, Ch. 17).

134

3.4.3 Example Application of the Base Concepts

unconstructive constructive

initiative ask propose, explain, remember

reactive agree, disagree, decide amend, challenge

Table 3.4: Verb classification in the base layer

the speaker and also optionally a request to the partner to evaluate it. The combinations
of the optional properties lead to three types of propose activities (BL, Sec. 4.2.1):

OE to obtain evaluation (own positive evaluation and request for partner evaluation)
PI to provide information (own positive evaluation and no request to partner)
LO to look for orientation (no own evaluation, request to partner only)

All of design, requirement, step, todo, strategy, and hypothesis have be seen to be proposed,
which are all constructive, can ask for an evaluation, and carry one’s own evaluation.

• explain always includes a positive evaluation of the speaker and does not ask for
evaluation of the partner. It has been observed in combination with completion and state
as well as finding, standard of knowledge, gap in knowledge, and knowledge.

• remember is similar to explain in this regard but also carries the expectation that the
partner recognizes the content. In the latest version of the base layer (BL), there is only
the requirement object associated with this verb.

• ask has no information content (it is unconstructive) but requests the partner to produce
one. It has been observed in combination with design, step, strategy, standard of knowledge,
and knowledge. It appears sensible for requirement, completion, state, and todo, but less
so for finding, hypothesis, and gap in knowledge, because their characterizing properties
are not usually requested in conversations: One does not commonly ask someone to
present something as a new idea, with some uncertainty, or as a shared lack of relevant
knowledge.

Once a pair member introduced a discourse object into the dialog, the partner (or the original
speaker) may react to it with a reactive verb:

• agree and disagree are both unconstructive in that they do not add new aspects the to
the discourse object but simply accept or reject it as it is,

• decide is also an unconstructive agreement of one discussed option if there was more
than one,

• amend is an extension of the discourse object which implies agreement, and
• challenge is a counter-proposal which implies disagreement.

3.4.3 Example Application of the Base Concepts

Building on the base layer does not mean to just use the base concepts as a coding scheme.
They are a means to improve the researcher’s theoretical sensitivity as they enumerate illocu-
tionary forces (verbs) and types of propositional contents (objects) that are relevant in pair
programming. Using the base concepts is not about attaching a label to a line of transcribed
pair conversation, but about ‘opening up the data’ (Strauss & Corbin, 1990, p. 77, see discussion
in Sections 3.3.3b and 3.3.3e). This includes thinking about the developers’ intentions as well
as appropriate data segmentation (key decisions #2 and #3, see page 131).

To illustrate what such an application looks like, I searched for the original material that
Plonka (2012, pp. 185–186) excerpted to illustrate her teaching strategy of nudging (see also
page 131). The short form can be found here in Example 3.1; the line numbers are the same as
in the pair’s full exchange in the appendix (see Example C.5).

135

CHAPTER 3. QUALITATIVE RESEARCH METHODS

Example 3.1: Coding with Base Concepts (DA5, 22:50–24:30)
The two developers are in the process of writing a test case. They already introduced about 20 lines
of test setup which produces an array of objects and are now about to write the first assertion.

Coded Transcript Commentary
(1) D8: “(##for##) <*selects foreach

template from autocompletion*>
Well, I go through and if I find one,
what do I do with it?”

propose_designOE

D8 starts to write a for-loop and speaks along while the
IDE completes for her. This is clearly about the test case’s
design. Although D8 ends with a syntactical question, this
is not an ask_design because she presents a partial design
proposal (iterate over all objects until somematch is found),
which makes this a propose_design. She is positive about
this part and asks her partner to complete it: Type OE,
obtain evaluation.

(2) D2: “Actually, it should have
found exactly one. Normally,
it should be only one activity.”

disagree_design
+ explain_knowledge

D2 makes clear he disagrees with D8’s design proposal
without making one of his own (disagree rather than chal-
lenge). His rationale can be coded as explain_knowledge
(there is no concept that is more specific).

(6) D2: “Actually, yes, only that (!...!)
actually, it would be enough that
there is exactly one activity.”

amend_design

D2 proposes to insert an assertion that does not loop over
all objects but just checks the array size. The contextmakes
clear that he now refers more concretely to the source code
(design) and that he affirms and refines whatD8 said before
(amend rather than challenge).

(21) D2: “I hope, there is only one.
‘There can be only one.’ That’s the
Highlander principle.”

explain_knowledge

D2 states he has some reservations (again, there is no con-
cept more specific than knowledge). Since his joke (a 1980s
movie reference) is closely related to this, I segmented
his utterances as one explain_knowledge. An alternative
coding would have been a separate say_off topic.

(23) D8: “OK. This is done now. And
now <*inserts two empty lines*>
we go on.” explain_completion

After inserting the assertion statement, D8 evaluates their
current progress (completion): The matter of checking the
object array (either in a for-loop or as a single assertion)
is done, and the next thing can be addressed. However,
this ‘next thing’ is not mentioned; she does not make a
concrete proposal, so this is neither design nor a step.

(24) D2: “We can also test this first?”
propose_stepOE

D2, in contrast, does make a concrete proposal on the level
of a tactical work step. Again, the speaker himself evaluates
it positively and asks the partner to evaluate it, too: Type
OE, obtain evaluation.

(25) D8: “Yes? OK. <*deletes empty
lines*>” agree_step

D8 seems surprised by D2’s proposal, as if she expected
the session to take a different route (which she does not
verbalize), but agrees to it.

(26) D2: “You know, I have to admit,
I’m a bit nervous.”

explain_knowledge

D2 appears to justify his proposal to run the test case
before adding new logic. If his disagreement with D8’s
assessment of the situation was clearer, one could annotate
disgree_completion instead.

My interpretation of D2’s overall behavior would be as follows: D8 wanted to implement the
test case in a simple, but explicit way (a for-loop with assertions on each list item). D2 made
an additional assumption about the system’s behavior and proposed a shorter, but implicit test
implementation (checking the list length to be exactly one). He is, however, unsure whether his
hypothesis is true and therefore wants to run the test case before they add any more assertions.

136

3.4.4 Notion of “Knowledge” in the Base Layer

3.4.4 Notion of “Knowledge” in the Base Layer

Knowledge is an important concept in the Base Layer. A simple notion of “knowledge” would
be the awareness and understanding of facts, truths, and pieces of information (Salinger, 2013,
pp. 147–151). In this sense, however, all base activities could be considered as knowledge
transfer and be coded with explain_knowledge by default (BL, p. 110): An utterance such as D2:
“We can also test this first?” (see line 24 in Example 3.1 above) makes his partner D8 aware of
the fact that D2 wants to execute the test case. However, such an overly broad view does not
correspond well with what practitioners consider knowledge transfer (see Section 2.3.1c). In
order to be relevant (key decision #7 on page 132), the base layer’s knowledge concept is more
narrow.

The development of the base layer followed a behavioristic ideal, and a discourse-oriented
and intention-focused approach (see key decisions #2, #4, and #5 on pages 131 and 132). The
first consequence is that the base layer is limited to the part of developer knowledge that can
be communicated verbally or through sketches and gestures (Salinger, 2013, p. 147). Thus, it
considers only explicit knowledge. Salinger (ibid., pp. 148–150, 240–248) distinguishes three sets
of explicit knowledge that a developer possesses at a given point in time during a PP session.
1. The whole explicit knowledge a developer possesses, regardless of whether she ever

verbalizes it or not.
2. The subset thereof which the developer already uttered with the primary intention to

explain said piece. This excludes two things: (a) things that are never said and (b) things
that are part of P&P utterances (e.g., design or strategy, see page 133).

3. The subset thereof with all the pieces of knowledge that are explicitly addressed by one
of the universal concept classes (e.g., knowledge, finding, hypothesis, see page 134).

Figure 3.5 illustrates these three sets for a particular moment in a pair programming session.

Special cases can be repre-
sented by integer value 0.

A possible implementation
could check the input
parameter against 0.

Unix timestamp 0 is
equivalent to a point in
time on January 1st, 1972
in the Gregorian calendar.

This is not certain.
3. Aspects thereof that
are addressed by the
universal concepts

2. Parts thereof that are
uttered with the primary
intention of explaining

1. Explicit knowledge, includ-
ing things said only as part
of P&P activities or not at all

Figure 3.5: Three classes of explicit knowledge considered by Salinger (2013) during base
layer development, illustrated through pieces of knowledge in the (hypothesized) state of
mind of developer B1 when he says “Null is January, 1st of 1972, or something” . Such an
utterance is coded with the universal concept explain_knowledge.

The second consequence is that the base layer does not make a difference between actually true
statements and statements that are merely considered to be true by the involved developers and
are therefore possibly false (ibid., pp. 147–148). Such a differentiation is usually not practical
for a researcher anyway.

137

CHAPTER 3. QUALITATIVE RESEARCH METHODS

138

Chapter 4 Research Goal,
Method, and Data

The observer, when he seems to himself to be observing a
stone, is really, if physics is to be believed, observing the
effects of the stone upon himself.

– Bertrand Russell

4.1 Purpose and Structure of this Chapter . 140
4.2 Goal Definition. 141
4.2.1 Topic of Interest: Knowledge Transfer . 141
4.2.2 Type of Results: Vocabulary and Behavioral Patterns 142
4.2.3 Scope of Analysis: The Industrial PP Session . 143

Naturalistic Industrial Setting • Pair Programming: Two Developers Working on Shared
Task • Limits of Data Collection: Pair Programming Sessions

4.3 Data Collection . 144
4.3.1 Different Contexts and Headlines . 145
4.3.2 Generic Data Collection Protocol . 145

Overview • Recording Sessions • Questionnaires • Quick Analysis • Reflective Inter-
view • Field Observation & Ad Hoc Interviews • Team Workshops • Session Repository

4.3.3 Supporting Practices . 152
Motivation: Difficulties of Applying the Grounded Theory Methodology • Consider
Sessions as Cases • Long-Term Engagement with Companies • Evaluation with Practitioners

4.3.4 Discussion of Data Collection . 154
Limitation of Scope • Effects of Recording Infrastructure • Effects of Pre-Existing No-
tions • Summary of Data Quality

4.3.5 Selecting Data for Analysis . 157
Excluding Data • Theoretical Sampling

4.4 Case Descriptions . 160
4.4.1 AA1: Complementary Frontend and Backend Knowledge 160
4.4.2 CA2: Undiscussed Design Rationale . 162
4.4.3 DA2: A New-Hire’s Successful First Session . 163
4.4.4 JA1: Pair Review with Domain Expert and Programming Expert 163
4.4.5 OA1: The Impossible Task. 164

4.5 Analysis Method . 165
4.5.1 Perspective on the Data . 165

Area of Interest, Focus • Epistemological Stance
4.5.2 Coding . 167

Translating andTranscribing • Base Coding: Reconstructing IntendedMeaning • Reconstructing
Technical Information and Subjective Understanding •Conceptualizing Knowledge •Working
with the QDA Software ATLAS.ti

4.6 Discussion of Overall Research Method . 178

139

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

4.1 Purpose and Structure of this Chapter

In Chapter 3, I discussed the basic ideas underlying various qualitative research approaches,
their common traits and the ways in which they differ, as well as high-level quality criteria of
qualitative studies. Chapter 4 now is shaped by the common trait of Openness & Emergent
Research Design and by the quality criterion of Sincerity.

Unlike fixed method research that relies on preplanned procedures, such as controlled
experiments (Anastas, 2000, pp. 23–29; Wohlin et al., 2012, p. 9), there is no canonical order
of steps in qualitative research. Rather, the research design is emergent (see Table 3.1 on
page 114). Different activities affect each other: Reflecting on analysis results made me think
about realistic goals, understanding the motivations of companies and developers led to better
ways to collect data and to evaluate findings. I therefore discuss my research goal and method,
as well as the data I collected and analyzed data together in one chapter.

Sincerity means that the researcher’s role in the process is openly discussed, e.g., through
self-reflexivity of the researcher and through transparency of all research activities, interactions
with settings and subjects, as well as crediting others for their work (see Section 3.2.4 on
page 115), all of which I do in this chapter. I did not start my research in a vacuum. My research
group AGSE began investigating pair programming in 2004, first with students and later with
professional software developers. From these efforts, I inherited four things:
1. The overall research goal to inform practitioners. It is based on the assumption that

for a non-trivial software development practice (such as pair programming) there are
both beneficial and problematic ‘implementations’ in industrial contexts. By studying
practitioners one may understand what the differences are such that, ultimately, software
developers can be advised on how to employ the practice more efficiently.

2. Methodological insights on how to conduct qualitative research on pair programming
which first resulted in an extension of Straussian Grounded Theory Methodology by four
practices (perspective on the data, concept name syntax rules, analysis results meta-model,
pair coding) and then a framework called the base layer which is tailored for analyzing
recordings of PP sessions (see Section 3.4).

3. Existing data in the form of recorded industrial PP sessions. Between 2007 and 2008,
Salinger and Plonka recorded 28 sessions of developers working on their everyday tasks
in six different companies.

4. A data collection protocol (procedures and technical know-how) as well as audio- and
video equipment for doing such recordings.

Setting my own research goal, scope, and type of results was affected by practical consid-
erations, feedback from practitioners, and reflections on what can be validated (Section 4.2).
I amended the data collection protocol by three supporting practices (considering sessions
as cases, long-term engagement with companies, and evaluation with practitioners) and col-
lected data in additional industrial contexts, four of which are relevant for this work. I explain
all of these, my phases of theoretical sampling, along with a critical discussion of the data
collection as such in Section 4.3. In Section 4.4, I characterize the five PP sessions or ‘cases’
that turned out most suitable for illustrating my findings (see Appendix C for information on
all 27 analyzed sessions). I applied and adapted the coding procedures from Straussian GTM.
My epistemological stance as well as my means of reconstruction and qualitative analysis I
describe in Section 4.5. In Section 4.6, I summarize my overall research approach in terms of
the common traits of qualitative research and the differentiating aspects, as well as the general
quality criteria (introduced in Sections 3.2.2 to 3.2.4).

140

4.2. Goal Definition

4.2 Goal Definition

In terms of the quality criteria formulated by Tracy (2010, see discussion in Section 3.2.4),
my goal definition is influenced by identifying a worthy topic that is relevant and interesting
(Section 4.2.1) while aiming for a practically significant contribution that is useful or helps re-
framing some practical problem (Section 4.2.2). One aspect of rich rigor is to collect appropriate
data, which in my case are recordings of industrial PP sessions. I discuss the pros and cons of
this choice in Section 4.2.3.

4.2.1 Topic of Interest: Knowledge Transfer

After Salinger (2013) laid the groundwork for qualitatively analyzing pair programming by
developing the base concepts (see Section 3.4.2), two large areas for further studies emerged:
The first of which is decision making in pairs, which involves how pairs formulate and discuss
proposals regarding the technicalities of their work as well their process on a tactical and a
strategical level (addressed by the product- and process-related or P&P concepts, see page 133).
The second area is that of knowledge transfer in the sense of the universal concepts (see page 134).
Empirically speaking, neither area is more fundamental than the other: Fromwhat I had already
seen in industrial PP sessions, developers transfer knowledge in the context of decision making
and make decisions in order to transfer knowledge. Figure 4.1 illustrates how execution,
decision-making and knowledge transfer are interwoven throughout a PP session.

Execution
(HCI)

Knowledge Transfer
(Universal Concepts)

Decision Making
(P&P Concepts)

00:00 30:00 1:00:00 1:30:00 1:59:44

Figure 4.1: Plot of session KA1, with stretches of time colored according to the pair’s type
of activities. Grey areas are pauses in the pair programming process, waiting times, and
interrupts.

As discussed in Section 2.3.1c, many of the benefits practitioners hope to get as an effect of
working in pairs involve knowledge in some way. On the one hand, software developers bring
relevant knowledge to the table when they start working on a technical task allowing them to
complete it; on the other hand, developers may improve their knowledge while working on
some task by learning together or from each other. Motivated by its practical relevance and
little in-depth research so far (see Section 2.3.5), I want to understand how knowledge transfer
in this sense actually works.

Goal 1: Understand how knowledge transfer works in pair programming in industrial
settings, in particular how developers deal with what they individually and collectively
know and do not know, i.e., what the underlying mechanisms of the exchange of existing
knowledge and the acquisition of new knowledge are.

141

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

4.2.2 Type of Results: Vocabulary and Behavioral Patterns

In conversations with practitioners, simple models and dichotomies such as driver/navigator
(Williams & Kessler, 2002, pp. 3–4) or expert/novice (ibid., pp. 93–121) were not met with much
resonance. One engineering manager said to me that he found it “too simplistic” and “even
offensive” as it does not reflect his daily experience. I want to provide developers with terms to
speak about pair programming, to enable them to reflect on their own practice and understand
how others behave in similar situations. I characterize the variation of behavior instead of
telling developers how to pair program ‘right’.

Goal 2: Characterize the underlying mechanisms in terms of their process properties.
Formulate results in a way that is comprehensible and relevant for software developers,
allowing them to reflect on their own process and identify which mechanisms work well
and which are problematic.

I started out with the idea of identifying behavioral patterns and anti-patterns. However, based
on the data which can be reasonably collected and analyzed (see discussion below), only few
consequences of the respective behaviors can be observed and attributed to the developers’
decisions, thus making an assessment difficult. Using software engineering common sense, I
attempted to evaluate individual actions of the pair programmers, but in most cases, I was able
to come up with plausible explanations for why a seemingly problematic action can still be
beneficial, as the following example illustrates:

Example 4.1: Good or Bad Behavior? (AA1)
Developers A1 and A2 work on a bugfix in a system consisting of a Java frontend, in which A1
is more proficient, and an Objective-C backend, which is more familiar to A2. Throughout their
session, A2 would often look up implementation details in the Java code or try things out in the
running application—all of which the Java-part expert A1 already knew about or explicitly said
were not relevant for their current task. Now, is A2’s look-up behavior ‘good’ or ‘bad’?

One could argue that A2’s excursions are unnecessary and therefore a waste of time or even
that his partner A1 would be better off working alone. However, there are plausible positive effects
of such behavior: Even if the Java-part expert A1 thinks that a certain piece of code is irrelevant
for their task, he could be wrong and actually determining the reason why it is irrelevant (or not)
could help both developers. Also, even if the Java-part expert A1 thinks he knows how the system
behaves without trying it out, A2’s attempt to recreate a system failure (and having a procedure to
recreate it later at will) can be helpful for setting a baseline for the bugfix.

The developers do not make their reasoning explicit in the session. However, A1 does not
appear to be bothered by A2’s behavior. Rather, after brief protest, A1 would closely follow A2’s
reading and intersperse bits of information to make sure A2 understands the whole picture.

Ultimately, each pair programming situation is unique in that no pair of developers ever works
on the exact same task again with the same levels of understanding, prior knowledge, etc. There
is also no alternative reality to compare against in which the pair behaved differently. Grounded
Theory practices (in particular open coding and axial coding, see Sections 3.3.3a and 3.3.3b)
aid the researcher in identifying similarities and relevant differences across situations, and in
developing concepts to characterize purposeful human behavior. I focus on situations where
pair programmers explicitly deal with what they know and do not know. In terms of the
Straussian paradigm model (see Section 3.3.3b), identifying causal and intervening conditions,
as well as relevant context properties is doable for individual cases. And even though developers
do not usually explicitly explain their strategies to narrow their knowledge gaps, their behavior

142

4.2.3 Scope of Analysis: The Industrial PP Session

can be interpreted and recurring patterns can be conceptualized. The consequences of their
behavior, however, may only be traced within a PP session, but not to the relevant levels of
how PP affects the quality of the companies product or the developers’ individual capabilities
for future tasks (see discussion of expected PP effects in Section 2.3.1c).

I therefore characterize pair behavior not in terms of outcome, but by pointing out relevant
properties of their processes, so the practitioners reading or hearing my results can make up
their own mind. In general, it appears reasonable to give experienced software developers
the means to reflect on their process and let themselves decide what ‘good’ and ‘bad’ pair
programming behavior is.

4.2.3 Scope of Analysis: The Industrial PP Session

Salinger & Plonka each had different approaches in detail, but agreed on two basic decisions
which I follow as well: To base their analyses on audio and video recordings of PP sessions
(Plonka, 2012, Sec. 4.3.2; Salinger, 2013, Sec. 4.1) and to prefer data from industrial settings
(Plonka, 2012, Sec. 4.2; Salinger, 2013, Sec. 4.2.3 & p. 433).

4.2.3 a) Naturalistic Industrial Setting

Many prior PP studies are limited due to their contrived research contexts which differ in
relevant ways from industrial settings. There are, for example, unknown systems (developers
cannot bring in existing knowledge), small systems (there is not much to know about), lack of
social context (there is nobody to ask), little variability in developer experience (asking may
not help much), unfamiliar programming partners (not knowing how and what to ask), and
little prior exposure to pair programming (see also discussion on pages 67 to 68).

To overcome these limitations, PP research should take place in industrial settings with
professional software developers working on their everyday tasks. This also entails that develop-
ers work in their normal development environment, with partners they choose to work with,
at times and to an extent they decide.

I primarily rely on observation of developers working in pairs, as opposed to interviews.
To enable a thorough analysis, pair programming needs to be recorded. In particular, the pair
members’ interactions with one another and their computer(s) as well as the contents of their
screen(s) need to be captured in audio and video. The necessary recording infrastructure
somewhat reduces the naturalism of the observed session; I discuss the effects in Section 4.3.4b.

4.2.3 b) Pair Programming: Two Developers Working on Shared Task

Real-world software development activities are complex and sometimes evade simple defini-
tions. This is my pragmatic definition of pair programming:

• Number of Developers: There are two developers involvedwith the task. A pairmember
may also temporarily leave, and additional developers may temporarily join to help out
with some aspect. I exclude groups of three or more developers who work together
throughout on a task (“mob programming”).

• Alignment Towards Goal: The efforts of the developers are directed towards a joint
task. I exclude any planned division of labor (as in ‘I implement function A, and you do B.’),
or other circumstances where the developers sit physically close, but work on individual
tasks at their own speed.

• Type of Goal: The developers have a productive goal in that they work towards some
concrete improvement of a relevant artifact (such as discussing requirements and design,

143

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

implementing, testing, reviewing, debugging, refactoring, and reading documentation).
Diversity in terms of different programming pairs working on different types of tasks
in different technical domains is desirable, but I exclude activities like going through a
tutorial to improve one’s skills detached from any concrete task.

The developers may work on one machine exclusively, or on more than one machine as long
they are tightly coupled (as in distributed pair programming) or if one machine remains the
focus of attention most of the time whereas other laptops and such are used only briefly, e.g.,
to quickly look something up.

4.2.3 c) Limits of Data Collection: Pair Programming Sessions

Although the effects of developers learning from another through PP may go beyond a sin-
gle pair and beyond a single programming session (e.g., knowledge may spread across the
development team), I restrict the scope of my analysis to what happens during PP sessions.

In Section 2.3.1a, I introduced the distinction of pair programming as a work mode and pair
programming as a practice. My research is concerned with thework mode, i.e., every instance
of software developers working together as a pair on a technical task in the sense defined
above. I exclude the questions When do developers pair-program? and When should developers
pair-program?. My investigation starts at a point where the developers already made the
decision to work as a pair. Their decision, just as the project they work in, the task(s) they
work on, their software system, and their team structure all may ‘echo’ in their session and are
therefore helpful for understanding their activities, but are not prime concerns of my analysis.

The limitation of focusing on in-session behavior only, i.e., the time when developers
actually pair-program, is in part motivated by two pragmatic reasons: First, recordings of
industrial PP sessions were already available in my research group. This data was collected for
research interests that considered the PP session as the unit of analysis—as opposed to other
possibilities such as a single developer, a particular programming pair, a technical task, or a
software development team. Only late in the research process I realized the consequences
of this, which I discuss in Section 4.3.4. The second reason is that a thorough analysis needs
recordings, not just reports, and the technical side of recording just a single pair at a time is
already challenging and requires a lot of attention. Nowadays, the technicalities of recording
all activity within a software development team have become more feasible and some studies
have indeed been conducted. Socha et al. (2015, 2016) recorded 11 days of software development
with multiple video cameras and audio recorders resulting in six terabytes of data consisting of
thousands of photographs, 292 hours of screen captures, and 380 hours of video of developer
interactions. Nevertheless, analyzing such data with qualitative methods remains a monstrous
effort—and even then covers only one software development team from one company for
possibly less than a sprint.

Overall, I deem the limitation on in-session behavior to be not too strict, as any effects that
the PP work mode may have on the developers beyond the session need to have a manifestation
during the session, e.g., if they actually are to learn something through a session, something in
this regard needs to happen in the session. I am limited, however, in assessing the practical
importance of the acquired and exchanged knowledge.

4.3 Data Collection

Some of the data I analyze was collected by other researchers, some I collected myself. In this
section, I describe why and how the data I considered analyzing was collected. I also discuss

144

4.3.1 Different Contexts and Headlines

how I selected which PP sessions to analyze in depth. The sessions themselves I describe in
Section 4.4; my analysis method follows in Section 4.5.

Between 2007 and 2008, Salinger& Plonka collected pair programming data in six companies
(called A to F).1 After I joined the research group, I led data collections in four additional
companies (K, M, O, and P) and was involved in three more (J, L, and N). There were slightly
different headlines for all these industry cooperations. I discuss the most important differences
in Section 4.3.1.

Salinger & Plonka devised a protocol that served as the basis for collecting data in all
companies. The protocol is not to be understood as a rigid order of steps, but as a template
which needs to be filled with concrete tactical actions once the researcher is on site. I describe
the basic form (Section 4.3.2) and three practices that support the data collection (Section 4.3.3).
I critically examine the overall data collection approach (Section 4.3.4), before I explain how I
selected the particular data for my analysis (Section 4.3.5).

4.3.1 Different Contexts and Headlines

With each industry contact, there were slightly different sets of mutual expectations which
resulted from prior discussions with the partners and from evolved research interests in our
group. I discriminate three types of research interests here, because they shaped the researcher’s
behavior and likely the subjects’ behavior (because they knew why the researcher is around).
Table 4.1 then gives an overview of the individual contexts (and involved researchers) for each
such research “headline”.

• PP: Most companies were specifically approached with the intention to understand pair
programming. While for the first contacts there was no particular focus yet, Plonka (2012)
was interested in the driver and navigator roles (see discussion on page 73) and her data
collection at companies C to F was influenced by that (e.g., by the choice of the camera
angle, which I discuss later on page 156). Additionally, the data collection period was
branded to these companies as a “workshop” to help developers reflect on their PP process
(Plonka, 2009). Schenk (2018) was particularly interested in distributed pair programming
and chose her contacts J and L accordingly; I am interested in knowledge transfer and all
participants from companies K, M, O, and P knew that.

• Agile: Companies K and O were approached for a larger research effort to understand
agile software development in general. According data from these contexts was collected
and analyzed (see Zieris & Salinger, 2013, which is about company K). All particular PP
sessions, however, were recorded exclusively for the purpose of understanding knowledge
transfer in pair programming.

• Onboarding: Company N was approached for understanding their onboarding process,
i.e., how new hires are integrated into the company. Pair programming was not a des-
ignated part of that process, but a number of developers agreed to be recorded while
working in pairs. The recordings were therefore a window into the onboarding process
and were not made to understand pair programming.

4.3.2 Generic Data Collection Protocol

The data collection protocol is generic in two ways. First, it may be adapted in each particular
installment at a company on-site to deal with constraints, to seize opportunities, and to fit the
particular research focus of the researcher (see previous section). I discuss my own amendments

1See their respective PhD theses for details: Plonka (2012, pp. 59–68) and Salinger (2013, pp. 95–103).

145

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

Company Year Researchers Headline Focus

A 2007 Salinger PP –
B 2007 Salinger, Plonka PP –
C 2008 Plonka PP workshop, roles
D 2008 Plonka PP workshop, roles
E 2008 Plonka PP workshop, roles
F 2008 Plonka PP workshop, roles
J 2013 Schenk PP distributed PP
K 2013 Salinger, Zieris Agile & PP knowledge transfer
L 2014 Schenk PP distributed PP
M 2014 Zieris PP knowledge transfer
N 2016 Salinger, Schmeisky, Zieris Onboarding –
O 2016 Zieris Agile & PP knowledge transfer
P 2018 Zieris PP knowledge transfer, evaluation

Table 4.1: Contexts for PP sessions recorded by AGSE researchers. The research direction
(“headline” and “focus”) was set by the named researchers; I myself was involved in the
technical part of recording the sessions in all contexts from J to P. Sessions in three additional
industrial contexts (G, H, and I) were recorded with very low technical quality by students
with little oversight, so important context information is missing.

in Section 4.3.3. Second, the protocol is still more or less independent from any particular
research question regarding pair programming, as the resulting data can be reused for different
purposes (some conditions apply, which I discuss in Section 4.3.4).

4.3.2 a) Protocol Overview

After a company has been approached and probed whether the company would be open to have
some of their programming sessions recorded, the overall research goal, the procedure, extent,
and purpose of the main data collection are explained in a presentation for the development
teams. It is made clear that all participation is voluntary and that their individual agreement to
be recorded can be revoked at any point during a session. These are the steps for each session
recording (see also Figure 4.2):

• After a pair announces that it is willing to have their next pair session recorded, the
recording infrastructure is set up. The session recording is started once the developers
are ready (see Section 4.3.2b for details).

• Optionally, both developers fill out questionnaires before and/or after their session in
which the developers state their names, development and pair programming experience,
characterize the nature of their task, and whether it went as they intended (Section 4.3.2c).

• Afterwards, the researcher does a quick analysis of the material during which she looks
for peculiarities that catch her attention (Section 4.3.2d). The main purpose of this step is
to inform the next activity.

• The researcher then conducts a reflective interviewwith the developers on the day after
the recording. This activity serves different purposes, including collecting background
information and providing developers with feedback in return for them agreeing to
have their PP session recorded and scrutinized (Section 4.3.2e). These interviews are
audio-recorded.

146

4.3.2 Generic Data Collection Protocol

Main Data Collection

Session Recording (4.3.2b)

Pre- & Post-Questionnaire
(4.3.2c)

Quick
Analysis
(4.3.2d)

Reflective Interview (4.3.2e)

Pre-Workshop
(4.3.2g)

Approaching the
Company

Field Observations,
Ad Hoc Interviews (4.3.2f)

Post-Workshop
(4.3.2g)

Process per Company

Detailed Analysis
(4.5)

Session Repository
(4.3.2h)

Figure 4.2: Protocol overview. Highlighted activities involve data collection.

Parallel to the session recordings, the researcher makes other field observations, e.g., of
the general team activities such as the daily stand-up meetings or other ceremonies (see
Section 4.3.2f).

As a milestone—often, but not exclusively, at the end of the relationship with the company—
comes a presentation or workshop during which the company-specific findings are sum-
marized to a group of developers (possibly beyond the original development team) or to
process-inclined roles such as Scrum Masters or agile coaches (see Section 4.3.2g). This serves
the two purposes of passing on and validating the findings (member reflection, see page 116).

The detailed analysis then commences off-site (which I discuss later in Section 4.5). To
this end, all session recordings, notes from the quick analyses, interview recordings, and field
observation notes are organized in a repository, which serves as the basis for theoretical
sampling across different companies/contexts (see Section 4.3.2h).

4.3.2 b) Recording Sessions

The developers themselves decide when and for how long they want to be recorded. They
work on their own machines, in their normal environment, on their everyday tasks, and with
the partner they chose. Some pairs take breaks while a recording is still running, which I treat
as separate PP sessions if their break is 15 minutes or longer.2 Overall, the lengths range from
0:25 hours (session MA1) to 5:27 hours (session JA9), with a median length of 1:30 hours and
the vast majority running between 0:45 and 2:30 hours.

The session recordings as technical artifacts consist of a screencast of the pair’s monitor(s),
the pair’s conversation as audio, and a webcam video showing the pair members’ interaction.
These three sources are combined to a self-contained video file as illustrated in Figure 4.3. Both
webcam feed and screencast are captured at between 5 and 15 frames per second (depending
on hardware capabilities), which is enough to distinguish individual keystrokes, follow mouse
movements, and see the developers’ gestures. The final video resolution depends on the
developers’ display(s) and recording setup and ranges from 1024×768 to 2560×1440 pixels.

The recording process relies on one of three generations of hardware and software compo-
nents, the first of which was developed by Plonka & Salinger, the other two by me. The general

2One recording sitting in company D, for example, lasted 3.5 hours, but had a two-hour break after 31 minutes,
leading to the two PP sessions DA5 and DA6.

147

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

Figure 4.3: Still frame of a session recording (here: session CA2 at 18:39). The screencast is
in the background, the webcam video is layered on top.

setup works like this: The developers work on one machine, and screencast and webcam
feed are transmitted to another machine where they are recorded using TechSmith Camtasia;
I explain the details in a separate technical report (Zieris & Prechelt, 2020b, Appendix A). The
most relevant difference is that Generation 1 is an unattended recording which the researcher
only gets to see once the pair is done, while Generations 2 and 3 are an online recording which
allows the researcher to also watch the session live while it is still being recorded.

The way how the recorded PP sessions in companies C, D, E, and F came to be is less
naturalistic than described above. To the companies, the whole operation was branded as a
“workshop” to provide developers with reflections on their PP process for which they otherwise
would be too immersed in their ongoing work (Plonka, 2009, p. 3). Here, one work station was
set up for all pairs to use (Plonka, 2012, pp. 60–61) and the developers would put their names
on a list to choose either a morning or an afternoon slot to be recorded for a planned maximum
duration of 1.5 to 2 hours (Plonka, 2009, p. 4). Nevertheless, once a recording was started, the
developers (just as in all other companies) were left to work on tasks of their choosing for as
long as they wanted.

4.3.2 c) Questionnaires

In companies A to F, the developers were asked to individually fill out a questionnaire prior to
their session and another one afterwards. There were three versions of these questionnaires.
The topics of the respective items can be seen in Figure 4.4; the questionnaires themselves are
available online as part of a technical report (Zieris & Prechelt, 2020b).

148

4.3.2 Generic Data Collection Protocol

Task & Pair Items (“Pre-Session”)
1. Task classification (new functionality, extend

functionality, test cases, debugging, refactor-
ing, or other)

2. Short description of the task
3. Characterization of (expected) difficulties
4. Estimated time to completion

[added in version 3]
5. Why is task worth to be worked on by a pair
6. Professional software development experience
7. Pair programming experience

[added in version 2]
8. How well attuned to respective partner
9. Expectations towards the reflective interview

later on [added in version 2]

Process Items (“Post-Session”)
1. School grade for recent session
2. Compare progress with expectations
3. Divide session into phases
4. Name most important phases
5. Assess session-specific importance of each:

knowledge transfer, developing a strategy,
bug fixing, developing a design/an archi-
tecture, developing an algorithm, knowing
an API, having the right idea [removed in
version 2]

6. Points where pair constellation should
have been given up

7. Points where pair constellation was espe-
cially beneficial [added in version 2]

Figure 4.4: Shortened questionnaire items. There were three different versions: Version 1 was
used for companies A and B, version 2 for sessions CA1, CB1, CA4, and CA5; and version 3
for sessions CA2 and CA3 as well as for companies D, E, and F. Developers from companies J
and K received and answered the task & pair items (except 4, 6, and 9) via e-mail after their
respective sessions.

I did not use any pre-session questionnaires for my recordings because they contradicted
with my naturalistic approach to data collection (see discussion following in Section 4.3.4c).
In companies J and K, the respective researchers (that is, Schenk and myself) e-mailed ques-
tions to the developers after the session recordings to get demographic information and a
characterization of their task. In the other installments (N by Schmeisky; M, O, P by me), no
questionnaires were used. Instead, we asked the developers directly in the reflective interviews.

4.3.2 d) Quick Analysis

Shortly after a session was recorded, the researcher reviews the material for the first time.
(With Generation 2 and 3 of the recording infrastructure used in companies J to M, O, and P,
the PP session could be watched live by the researcher, thus allowing for the quick analysis to
start right away.) This step is not structured in a formal sense, but is open for any phenomena
that catch the researcher’s attention. It relies primarily on software engineering common sense
and a preliminary understanding of pair programming (a form of theoretical sensitivity, see
Section 3.3.3e). Possible aspects include (1) understanding what the pair did from a software
engineering perspective, (2) what went well and where they encountered problems, and (3) any
peculiarities in the pair’s process independent from the technical task.

Either way, the two purposes of this first glimpse at the rich data are (a) to have a grasp
of what happened in the session to have some common ground with the developers for the
reflective interview the next day (see next section), and (b) to collect open questions on the
context that may easily be answered while still being on site, but less so later in the analysis.

4.3.2 e) Reflective Interview

After the researcher had the time to look through the material at least once, she sits down with
the two involved developers for a reflective interview. Here, both developers get the chance
to speak about their experience in the session, possibly guided by their assessment in the

149

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

post-session questionnaire. The developers were assured that all contents of these interviews
would remain anonymous to their colleagues and superiors.

The original intention of these interviews was to provide the developers with a learning
opportunity (Plonka, 2012, p. 63) and thereby compensate them (and their employers) for partic-
ipating in the study (Salinger, 2013, p. 99). Plonka (2012, p. 63) also noted that these interviews
may help identifying phenomena that the developers themselves perceive as relevant.

From my own data collection, I came across two additional uses for these interviews.
First, the developers can be specifically asked for context details to make later sense-making
easier. Second, to the developers, these interviews are the most tangible outcome of this
research. Developers K2 and K3 remembered the contents of their first reflective interview
even six months later (see also Section 4.3.5b on my concrete data collection activities below);
developers O3 and O4 wanted to record another session to hear whether they ‘improved’ and
also motivated colleagues to be recorded too. In the terminology of Tracy (2010), this is a
form of member reflection (see page 116). It should be noted that I carefully avoided bringing
negative and positive connotations into the discussion, and emphasized that I do not know
what a ‘good’ or ‘bad’ PP session actually is.

Later still, it occurred to me to emphasize more the member reflection property of these
interviews to validate results from earlier analyses. The most recently recorded session could
provide concrete exemplars of general phenomena to be discussed directly with the involved
developers (details on how I approached this evaluation follow in Section 4.3.3d). Overall, the
reflective interviews should not be understood as data collection only, but also as validation of
results and preparation of further data collection (through motivating developers).

4.3.2 f) Field Observation & Ad Hoc Interviews

Although my research is focused on the developers’ in-session behavior, the pair’s socio-
technical context still needs to be considered for an appropriate interpretation of the events,
but at the same time cannot be expected to become observable from an isolated session
recording alone. Therefore, additional information on the context of each PP session needs
to be collected, e.g., on the organizational structure the developers work in, the domain, its
fundamental requirements and constraints, the nature of the task theywork on, theirmotivation
to work together on said task at this point in time.

In companies C to F, some of such information was collected through pre-session ques-
tionnaires, in other cases the reflective interviews posed an opportunity (see Sections 4.3.2c
and 4.3.2e above). In companiesO andP, I followed amore holistic approach and took structured
fieldnotes of the teams’ everyday software development and of discussions with developers at
the proverbial water cooler. For these, I brought in my own software development expertise
for small talk on technical issues which made it easier to not stand out as a researcher and get
‘close’ to the action.

4.3.2 g) TeamWorkshops

Presentations and discussions with a whole development team at once may take place before
and/or after the main data collection. These workshops are similar to the reflective interviews
(Section 4.3.2e) in that they also do not have a rigid structure and combine elements of data
collection (e.g., learning more about the particular context), preparation of data collection
(by motivating developers with initial insights), and validation (by running by concepts and
findings to check for resonance; details follow in Section 4.3.3d).

150

4.3.2 Generic Data Collection Protocol

4.3.2 h) Overview of Data in Session Repository

I organized all PP session recordings and additional data collected by my research group in
a session repository. Since the companies did not explicitly agree to being referenced by
name, I introduced unique identifiers to be used in publications (e.g., in Salinger & Prechelt,
2013; Schenk et al., 2014; Zieris & Prechelt, 2014, 2016, 2020a):

• Companies are represented by single letters: A, B, C, and so on.

• Sessions are grouped by their technical context (‘project’, each with a different set of
requirements and/or different technology stack) and then counted upwithArabic numbers.
CB1 is the first recording in the second project in the third company.

• Developers are identified through their company and Arabic numbers, such as C3.

I provide a mapping of how prior PhD theses by Plonka (2012), Salinger (2013), and Schenk
(2018) referred to the companies, sessions, and developers in Appendix C.23.

I summarize the contents of the repository in a technical report (Zieris & Prechelt, 2020b),
which also includes a technical description of the three generations of session recording setups
and a reprint of the handout that was given to company C in their post-workshop. Table 4.2
provides an overview of all available data.

Company Session Recordings Questionnaire Reflection Field Workshop
𝑛 IDs pre post Interviews Notes pre post

A 1 AA1 ✓ ✓ – – – –
B 4 BA1, BB1–3 ✓ ✓ – – ✓ –
C 6 CA1–5, CB1 ✓ ✓ (✓) (✓) – ✓

D 6 DA1–6 (✓) ✓ (✓) – – –
E 7 EA1–7 ✓ ✓ (✓) (✓) – –
F 4 FA1–4 ✓ ✓ (✓) (✓) – (✓)
J 9 JA1–9 – (✓) – – – (✓)
K 8 KA1–2, KB1–2, KC1–4 – (✓) (✓) – – (✓)
L 2 LA1, LB1 – – – – – –
M 1 MA1 – – – – – –
N 5 NA1–5 – – (✓) – – –
O 10 OA1–10 – – (✓) ✓ – ✓

P 4 PA1–4 – – ✓ ✓ ✓ –

Table 4.2: Overview of available data from all 13 companies per data collection activity. Data
may be ✓–complete, (✓)–partial, or non-existing. The standards for complete are as follows:
Questionnaires for all sessions were handed out and then filled out by both partners individ-
ually; reflection interviews are all audio-recorded; fieldnotes contain context information
and detail; for pre- or post-workshops, there are extensive notes or a written handout for the
company. Much of the data from interviews, fieldnotes, and workshops I classify as partial
because they are handwritten notes with no indication what are quotes/observations and what
are researcher ideas/hypotheses.

151

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

4.3.3 Supporting Practices

In addition to amending the purpose and adapting the implementation details of the data
collection steps discussed above, I also introduced three new ‘practices’. These are not isolated
activities, but address more crosscutting concerns. They aremotivated by difficulties of applying
the Grounded Theory Methodology to the available data and by differences between my
predecessors’ and my own research interest and goal.

4.3.3 a) Motivation: Difficulties of Applying the Grounded Theory Methodology

Establishing a relationship to a company which results in being able to collect data in the
fashion outlined above takes time. Theoretical sampling (see Section 3.3.2) in the sense of
collecting additional data the moment a research need arises might be feasible for an interview-
based study with subjects who can be easily accessed and asked regarding some topic deemed
irrelevant before. Finding an observation context with my desired properties, however, is
more difficult. At each company, my colleagues and I collected more data than would have
been strictly necessary to serve the research interest at hand to allow for later analysis once
a particular need emerges. The data is organized in a session repository (see Section 4.3.2h
above) which serves as one source for theoretical sampling. Strauss & Corbin (1990, p. 186),
too, recognize the problem of not having unlimited access and conclude that sampling more
by chance (i.e., availability) than choice can still be successful although it may take more time.

I already summarized the problems my research group encountered while first applying
open coding to video recordings of pair programming sessions (drowning in data, unclear
epistemology, inconsistent concept granularity, and too many aspects to consider) along with
four practices to counter them (see Section 3.4.1). The most important extension is the perspec-
tive on the data, in which the researcher (1) defines the area of interest, (2) makes explicit her
epistemological standpoint, (3) and sets the desired result type. I come back to this later in
Section 4.5 (Analysis Method).

During axial and selective coding, phenomena are no longer considered in isolation, but
analyzed with regards to their context, cause, intervening conditions, interaction strategies, and
respective consequences. Videos of pair programming sessions, however, are limited in that not
all consequences of the developers’ actions are on record, and even with reflective interviews
conducted afterwards, there are few personal accounts of causes and considered alternative
strategies. Follow-up questions in the interview are limited to what caught the researcher’s
attention in the quick analysis. The best I can do years after a PP session was recorded is to
compile all available information and try to reconstruct the setting. In other words, I consider
each session as a distinct case (first practice, see Section 4.3.3b). For collecting new data, I
tried to avoid a strategy of “smash and grab” in favor of “slow” and “careful” observation (Dey,
1999, p. 119, who formulated this as a critique of Glaser & Strauss, 1967) as part of a long-term
engagement with the companies (second practice, see Section 4.3.3c).

For Strauss & Corbin (1990), the evaluation of a GT study boils down to assessing data
quality and process quality (see Section 3.3.4a). I discuss them in Section 4.3.4 and Chapter 13,
respectively. As Charmaz (2006) and Tracy (2010) argue, there are other relevant quality criteria
as well, e.g., what they call resonance and practical significance, respectively (see Section 3.3.5a):
Do the results make sense to software developers who pair program and does it offer them
deeper insights about their work? While Charmaz (2006) does not add any thoughts on the prac-
tical form of such an evaluation, Tracy (2010, p. 844) speaks of providing the participants with
“opportunities for questions, critique, feedback, affirmation, and even collaboration” . I involved
practitioners in different ways (third practice, see Section 4.3.3d).

152

4.3.3 Supporting Practices

4.3.3 b) Practice: Consider Sessions as Cases

Plonka (2012) analyzed all sessions from companies C to F (except for DA1 which lacks the
webcam feed). However, none of the excerpts provided in her publications contain information
from which session, developer pair, or company it comes from. It appears that she treated all the
pair programming sessions as more or less interchangeable representatives of the phenomenon
of “Pair Programming in Industrial Settings” , which may be appropriate for her research interest
and chosen analysis approaches (see my discussion in Section 2.3.4 on pages 73, 81, and 84).

Similarly, Schenk (2018) analyzed eight consecutive sessions of one professional pair and
was concerned with phenomena relating to the pair’s distributed setting. All excerpts are
presented as timeless representatives of these phenomena regardless of their role in the overall
development process (see my discussion on page 84).

This contrasts with Salinger (2013). Despite employing mostly open coding of local process
phenomena, he provides detailed characterizations of the sessions as a whole (ibid., pp. 86–102),
and discusses multiple excerpts with session identifier and timestamp.

In my research, I also employ axial and selective coding which require to consider the
particular contexts in which the pair programmers find themselves. I therefore follow and
extend Salinger’s approach and consider each PP session as a unique casewith the pairmembers,
their task, and project forming the background in front of which all their actions need to be
interpreted. An overview and the descriptions of five ‘main’ cases follow in Section 4.4, the
other 22 sessions I characterize in Appendix C.

4.3.3 c) Practice: Long-Term Engagement with Companies

Each data collection phase in the companies C to F took place within five workdays. On the
last day of the “data collection week” , the researcher presented initial insights to the developers
(Plonka, 2012, p. 67).3 This is a tight schedule which, together with organizing up to three
recording sessions per day, leaves little room for field observations and data analysis. Recording
all data per company within one week (and virtually no pair constellation twice, see discussion
on page 156 below) also means that one-off behaviors cannot easily be detected as such. Plonka
(2009, p. 12) herself remarked regarding the data collection in company C that one session per
pair may not represent the pair well and a two-week time frame would be better.

In my own data collection, I wanted to cover longer time frames, spend more time on-site
without the pressure to get as many recordings done as possible. I also wanted to get back
to the developers after I had more time to perform more than just a quick analysis of their
material. In the end, I managed two establish two long-term connections (see Section 4.3.5b).

4.3.3 d) Practice: Evaluation with Practitioners

As defined as part of my research goal, the results need to be comprehensible for software
developers (Section 4.2.2 above). The research results pertain to different levels of abstraction:
individual activities or utterances, the pursuit of individual topics, and the overall setting and
trajectory of a pair programming session. Not all of these are equally accessible to developers.
In particular, the largest granularity should be relatable for most practitioners, but the fine
details do not need to. Consequentially, the research process needs to include activities to
perform this member reflection (see page 116).

I perform evaluations on two levels. First, I explain the high-level concepts to practitioners
with some personal PP experience during the aforementioned workshops as well as one-on-one

3There is no written record of these insights for companies D and E (see Table 4.2).

153

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

interviews and ask whether such things sound familiar to them. The downside of this approach
is similar to that of a survey (see Section 2.3.2b): The respondents may say they experienced
something, but there is no way of telling whether something like this actually happened to
them or whether it simply seems plausible to them. The second approach is more concrete
as I use the reflective interviews to talk with the developers about their recently recorded PP
session with my terminology. This way, I already know which concrete events the developers
and I refer to.

In both cases, I check which ideas ring a bell (as in ‘Ah, I know that one’) or sound interesting
to the other party (as in ‘I should try this’). The overall response was positive: My findings
resonate with practitioners in the abstract and as a means to reflect on their own process. These
discussions appear to be memorable, too: In company K, when I spoke to a pair of developers
in October 2013, they could still repeat the key ideas of our first discussion in May. Only late
in the analysis, the name of one central concept turned out to be misleading, and I changed it.
I report the details in Chapter 13, after I presented my results.

4.3.4 Discussion of Data Collection

The data collection procedure sketched above has a number of properties which affect the
data quality in terms of the kind of data which can be collected this way and the developers’
behavior.

4.3.4 a) Limitation of Scope

Due to the method’s design, the recordings will not reflect all kinds of relevant PP situations
that occur in practice. In particular, I expect the following gaps:

• Not all companies: Due to the naturalistic approach, I did not request developers to
pair-program and I did not target companies with little or no pair programming usage.4

• Not all developers: All recordings are voluntary and some developers may not want
to be recorded. In company P, for example, one team member was generally inclined to
working in pairs, but did not want to be part of the data collection, despite an emphatic
recommendation by a colleague who just had his first reflective interview.

• No short sessions: The majority of the sessions in the repository is one hour or longer,
with the shortest one being about 25 minutes long. In the team workshops (see Sec-
tion 4.3.2g), however, some developers reported of common session lengths of 10 or 15
minutes. Since the recording setup poses an overhead to the normal work flow, ad hoc
pairings are difficult to record. Furthermore, pairs that had already gone through orga-
nizing and setting up a recording then possibly work longer than they otherwise would
have.

• No tense situations: The mere presence of a researcher on site may be regarded as a
distraction. In companies O and P, there were multiple months between the first team
workshop and the start of the main data collection, and in both cases it was due to the
Scrum Masters wanting to postpone the research activity until a turbulent phase in
their respective project was over. A second data collection phase in company O did not
happen because of immense time pressure for the software developers—even though both
developers and Scrum Masters were very happy with the insights from the first round. It
is not clear whether any pair programming was done in these stressful phases.

4I briefly considered giving up this naturalistic stance by asking developers in non-pairing companies to pair in
order to collect session recordings of—presumably, due to a lack of practice—bad pair programming. I discuss such
tactical issues in Section 4.3.5b on my theoretical sampling process.

154

4.3.4 Discussion of Data Collection

There are other limitations of the data which are not strictly due to design, but due to practi-
calities of getting in contact with a company and traveling:

• WesternCultural Background:All companies are based in Germanywith the exception
of companyM which is in Oslo, Norway.

• Language Limitations:Most developers are native German speakers. The L-developers
are the only native English speakers, and theM- and O-developers use English as their
work language.

4.3.4 b) Effects of Recording Infrastructure

In companies A to D, my colleagues also equipped the developers’ IDEs with a plugin to
collect technical information on their current activities, focus, etc. (see Salinger, 2013, pp. 85 &
461–479). This led to some artifacts in the programming sessions. For instance, in CA2 where
the developers spend 1:20 minutes trying (and failing) to look up an ID from the issue tracker
on the remote development computer with the running IDE logger before tabbing out of the
remote desktop session to find the necessary information within five seconds on the local
machine which they first avoided to ensure continuous data collection. In session CA3, the
IDE is repeatedly unresponsive for 80 seconds totaling about one third (!) of the whole session,
which may have been due to a defect in the data collection plugin.

There are several instances of developers not working on their own machine and this
affecting their work: In sessions CA2 and BA1, the developers are irritated multiple times
because some IDE setting is not as they are used to; session DA2 starts with several minutes
of the pair waiting for an SVN update to complete since the workspace had not been used for
a while.

The recording infrastructure was not always fully compatible with the local circumstances
and the developers’ habits: In session EA1, the keyboard shortcut for stepwise debugging in the
IDE also paused the screencast recording. Not only did this lead to some gaps in the screencast,
but appears to have also confused the developers (as the continuous audio recording reveals).
All pairs in companies F appear to have used two monitors, but recording infrastructure
generation 1 was not able to capture both, so the screencast is incomplete.

Although the wireless microphones and webcam were supposed to not bother the develop-
ers, they occasionally fiddled with them, e.g., before leaving the desk for a minute and again
upon their return. One pair knocked over the webcam from its tripod; another pair took a
break together to get some candy and wandered beyond the wireless transmitter radius while
still talking about their task. Reports on how the subjects felt regarding the data collection are
available from the C developers only, some of which say they felt being watched while others
claim to have forgotten the camera after five minutes (Plonka, 2009, p. 12).

4.3.4 c) Effects of Pre-Existing Notions

There were pre-existing notions of what the social reality of industrial software development
looks like which were deeply embedded in the data collection process and affect its outcomes.

Not Recording All Aspects
The first such notion is pair programming itself. My research (and that of Plonka and Salinger,
for that matter) started with the text-book definition of ‘two developers jointly working on one
computer’. Neither of these quantities is fixed in everyday industrial development, but screencast
software, microphones, and camera angle are all set up for two developers on one computer.
Developers may suddenly open their own laptop or interact with other developers who are

155

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

out of reach of the microphones and/or beyond the camera angle (as is noted by developer D4
in session DA2 after a third developer joins the pair: “We need more microphones!”).

Another impact of the research interest on the way data was collected can be seen in the
sessions recorded by Plonka, who was initially interested in the driver/navigator metaphor
(Plonka et al., 2011; Plonka, 2012, Ch. 6). In order to easily see who is in control of keyboard
and mouse, the camera angle of sessions in companies C, D, E, and F centers on the developers’
hands and occasionally cuts off their faces. Sessions from companies A and B (recorded under
the lead of Salinger, 2013), company J (by Schenk, 2018), and K, M, O, and P (recorded by me)
focus on the developers’ faces instead.

In both cases, possibly relevant aspects of the PP process are not recorded making the
reconstruction more difficult. Without all screen contents, technical information is missing and
sense-making gets more difficult; without seeing the developers faces and viewing direction,
interpreting their behavior is more difficult.

Affecting Developer Behavior
The second, related notion is that a PP session pertaining to a task is a meaningful unit a
software developer’s workday. However, some companies (such as Q, with which I had contact
for evaluation interviews only and did not record any PP sessions) form pairs independent of
concrete tasks for multiple days on end during which the pair members indeed behave as one,
taking coffee breaks together without really starting or ending a “session”. In contrast, the data
collection procedure described above is session-centric. Questionnaires before and/or after the
recording frame the session in two senses. First, they introduce a ceremonial start and end:
In the beginning of sessions CA2 and EA1, the developers filling out the questionnaires was
accidentally recorded: It takes them more than nine minutes, which might be an unnatural
interrupt. Second, the pre-session questionnaire asked the developers to think about the work
time ahead. In particular, the questionnaire asked for task classification and description, a
characterization of the expected difficulties, and an estimated time to completion (see Figure 4.4).
Although this may yield valuable context information for the researcher, it may impose an
unnatural focus on the developers by making them think about aspects they would not have
thought about had it not been for the researcher. In newly collected data, I therefore refrained
from using pre-session questionnaires.

Another effect of session-centrism can be observed in multiple session recordings in various
companies: Pair members are occasionally interrupted by their colleagues with technical or
organizational concerns (as is also reported in the ethnographic study by Chong & Siino, 2006,
discussed on page 69). A common and unnatural reaction of the pairs in the recordings is to
send away the interrupter unsatisfied (as seen in session AA1 at 1:47:05) or to point out that they
just walked into a recording (as seen in session KA1 at 04:30), as if the pair wanted to protect
the integrity of the data collection and possibly their colleagues privacy.5 The recordings in
company E are peculiar in another way, which also possibly indicates an intention of the
developers to protect the data collection: The work station for the session recordings was set
up in a meeting room, such that the pairs worked completely secluded from the rest of their
team.

Such effects appear more pronounced in the recordings that were done under the “Un-
derstand PP” headline (see Table 4.1 on page 146). For instance, the pairings in companies
C to F do not appear to be holding up to the naturalistic ideal as only one of the overall 21

5Colleagues could only ‘walk in’ on a session recording because (a) in company K the webcam was not mounted
on a highly visible tripod but on the monitor (unlike in companies C to F, see discussion of camera angles on
page 156), and (b) the recording was done remotely with no researcher on-site to notice. This inadvertent ‘covert
recording’ of uninitiated colleagues is an ethical concern that only occurred to me while writing this document.

156

4.3.5 Selecting Data for Analysis

pairs was recorded twice. Although Plonka (2012, p. 67), who performed the recordings, states
that “forming of the pairs was done during their daily meeting or spontaneously throughout the
day” , I suspect that this statement describes the usual pair forming, but not how it was done
for the recordings, which looks more like carefully arranged pairings, even if possibly done
by the developers themselves to help the researcher. Indeed, in the final report handed out
to company C, Plonka (2009) mentions a list with a morning and an afternoon slot each day,
into which pairs could write their names if they wanted to be recorded (see also discussion on
page 148). In my own data collection in company P, the team at one point discussed how the
next pair should be formed based on what I at the time understood as organizational constraints.
However, when I asked about this in the next reflective interview, the developers revealed to
me that they intended to give another, previously not-recorded colleague the chance to also
benefit from the feedback I could provide.

In a sense, the employed data collection methodmay have interfered with a completely ‘nat-
ural’ formation of pairs. However, none of the pairs was asked by the respective researchers to
work in a certain constellation or on a particular task, so the data collection can be characterized
as reasonably naturalistic.

4.3.4 d) Summary of Data Quality

Notwithstanding the above limitations of the data collection the session repository still com-
prises diverse, realistic, detailed data. At the time of writing, it contains 67 recordings from
13 different companies featuring 57 different professional software developers who worked
together (mostly) co-located in 41 different constellations of (mostly) two members (see Zieris
& Prechelt, 2020b, for more details). In these sessions, the developers worked on their actual
industrial tasks for as long as they wanted, and in most cases also freely chose who to work
with and when to start. The exception here are the 23 sessions from companies C to E, where
the developers had to sign up for either a morning or an afternoon slot, and were possibly
inclined to workwith partners they would normally not pair with, expecting to learn something
in the reflective interview. For the same reason, it can also not be ruled out that the developers
in all companies worked in pairs more often for the recordings than normal.

All of the above concerns may affect the frequency of phenomena (such as more or fewer
conflict situations, more or less easy tasks, or more or less fatigue due to longer sessions), but
none of these appear likely to produce entirely artificial behavior. My qualitative research is
not concerned with the frequency of phenomena, but the above considerations would need to
be kept in mind by others for drawing conclusions that go beyond my own.

4.3.5 Selecting Data for Analysis

My analysis does not cover all available data; I discuss the reasons to exclude some sessions in
Section 4.3.5a. I also collected additional data according to the principle of theoretical sampling
once my analysis led me to not yet covered aspects, the phases of which I summarize in
Section 4.3.5b.

4.3.5 a) Excluding Data

I disregarded a number of sessions since they were beyond the scope of what I consider to be
“pair programming” (see Section 4.2.3b), and others because relevant data was missing.

• Sessions dealing with pet projects. This excludes session CB1 of developers C4 and C8
which has nothing to do with company C’s domain or product. Similarly, I disqualified

157

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

both sessions from the L context in which the respective pairs go through tutorials but
do not have a productive goal.

• Programming groups with more than two developers. This excludes sessions OA3 and
OA4 (four developers) as well as OA9 and OA10 (three developers).6

• Incoherent, mostly solitary activities. In the sessions from company N, the developers
were in the middle of an unstructured onboarding process and tried to configure their
development machines to fit the corporate standard. Although they were sitting next to
each other, they did not have a shared productive goal.

• Sessions lacking the webcam feed or one of two screens in a dual-monitor setup. This
excludes sessions DA1, OA6, and OA7 (no webcam) as well as all four sessions from
company F (missing second screen in dual-monitor setup).

4.3.5 b) Theoretical Sampling

My process of theoretical sampling from the repository of available sessions and collecting
new data from industrial partners can be divided into the following eight phases.

1. Readily Available Data
I started my analysis pragmatically with the sessions that were readily analyzable as video
files. When I began my work, these were sessions from three different companies, in particular,
sessions BA1, CA1–CA5, and DA2. (Session CB1 was also available, but I excluded it because
it is about a pet project only.)

2. All Technical Contexts
For more diversity of backgrounds, I went on to make sure to have at least one session from
each technical context. For a lack of a better criterion, I started with the earliest available
session: In case later sessions pick up on the technical work of earlier ones, I could advance
chronologically. This is how I selected sessions AA1, EA1, and JA1.

I also included JA2 (from the same context as JA1) because it was the first instance of a
developer pair being recorded twice with several days in between. The second such instance
were sessions BB1–BB3 featuring the same pair as session BA1. The according video files were
originally considered corrupt by Salinger, but I was able to mostly recover them and included
them in my sample.

3. First Long-Term Engagement
In 2013, company K posed the first opportunity to record my own data. Here, most interaction
with the subjects was done remotely (recording the PP sessions, administering the post-
questionnaires, and conducting the reflective interviews). This was also my first attempt of a
long-term engagement (see Section 4.3.3c): Overall, there were four recording dates with weeks
and months in between. Developer K2 took part in all of them, first together with K1 in March,
and then with K3 in May and again in October. I also presented some of my findings to a larger
group of developers from the company in a post-workshop in November, which motivated
another developer, K4, to record two sessions with K2 a week later.

For my analysis, I selected the first one to two sessions from each technical context: KA1,
KB1, and KC1 & KC2.

6Some included sessions (such as DA2, OA2, OA8) temporarily involve more than two developers for a few
minutes, but not throughout the session.

158

4.3.5 Selecting Data for Analysis

4. Non-German Context
Up to this point, all analyzed sessions involved native German speakers in German companies.
I spent three months in Oslo, Norway, getting in touch with the local software development
community in order to collect more diverse data. I contacted 56 companies, and eventually
established a single industry contactM where I recorded one session:MA1.

5. Reorientation?
The sessions which I analyzed up to this point covered what I felt was a broad spectrum:

• There were different types of software development tasks (discussing requirements and
design alternatives, planning work, implementing new functionality or tests, perform-
ing tests, exploring and demonstrating features, reviewing code, debugging, refactoring,
changing configuration, and reading documentation),

• with software developers being at their company for many years or in their first week,
• with those who never paired before and others who do it regularly,
• with knowledge-wise homogeneous as well as heterogeneous pairs.

However, all sessions had one thing in common: The pairs all made steady progress, possibly
with the occasional detour, but nothing that would throw them off the rails.

With my original goal in mind to identify beneficial and problematic behavioral patterns
(see page 142), I briefly considered giving up my naturalistic stance of only studying pair
programming as it actually happens. I considered looking for developers with either no or
only bad pairing experiences and specifically ask them to work in pairs hoping to get to see
what ‘bad pair programming’ looks like.

6. Second Long-Term Engagement
Before I could actually get into planning such a data collection with industrial partners, the
opportunity arose to observe pair programming at company O that claimed to do all software
development in pairs. Expecting to collect data from real pair programming experts, I went to
stay at the company on-site for four weeks in May and June 2016. I took my time getting to
know the company and the developers; the first of four recording dates only happened after
more than one week. To my surprise, the first two sessions OA1 andOA2 turned out to be very
frustrating for the pair as they made virtually no progress—and not only for technical difficulty,
but also because they apparently had trouble working as a pair under these conditions.

This was my second installment of a long-term engagement: I presented findings to the
Scrum Master at the end of June 2016, and revisited the company in August 2017 to talk to
developers, Scrum Masters, and the Product Owner about my consolidated findings (evaluation
with practitioners, Section 4.3.3d). I provided the ScrumMaster with a manuscript of my findings
and he made it a required reading for at least two developers before they left the company.

In my analysis, I included all sessions from company O that were not excluded for any of
the above criteria, i.e., OA1, OA2, OA5, and OA8.

7. Evaluation (1): Similar Context
Since it was not possible to kick off another round of data collection for evaluating my findings
in company O, I looked for further opportunities and found them in company P. After getting
in contact with the Scrum Master in October 2017, I started my interaction with developers in
February 2018 with a presentation of my findings to check them for resonance (evaluation with
practitioners, see Section 13.2.2). Received with some enthusiasm, I later stayed one week in
June 2018 to record four sessions PA1–PA4 with developers who had been to my presentation
andwith whom I discussed their upcoming and their previous sessions in terms of my grounded
concepts (evaluation with practitioners again, see Section 13.2.2).

159

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

8. Evaluation (2): Consulting Sector
All companies up to this point developed their own software, meaning that the technology
stack and aspects of the application domain are relatively stable for the developers—with
individual developers forming an exception, such as D4 who was in his first week when he
was recorded, or hired consultant O4. I therefore got in contact with consulting companies Q
and R where I did not record any pair programming sessions, but discussed my findings and
probed for relevant differences between in-house development and the consulting business.
I had a one-hour interview with a technical manager from company Q in January 2019; in
company R, I performed a workshop in March 2019 similar to the one I did at company P.
I discuss the outcome of these as part of my evaluation in Section 13.2.2.

4.4 Case Descriptions

Through the data selection process described in the previous section, I ended up analyzing 27 PP
sessions or cases. Brief characterizations can be found in Table 4.3. While the results presented
in the main part were derived from the whole set and I present in-depth excerpts from most
of the sessions to illustrate the nuances of my concepts, the main concepts can be explained
using only a handful of sessions. Since I recur to these five ‘main cases’ throughout my thesis,
I discuss them here in one place. The other 22, I characterize in less detail in Appendix C.

4.4.1 AA1: Complementary Frontend and Backend Knowledge

Company, Pair, and Software System
Company A develops a web-based Content Management System (CMS). The system has two
major components: There is an Objective-C backend (also called “CM” or “Kernel”) which
deals with business rules and SQL database interaction; and there is a Java frontend (also called
“GUI”) which interacts with the backend through an XML API and renders HTML output to be
displayed in a web browser.

Both developers A1 and A2 know their domain well and are generally experienced devel-
opers. Developer A1 has been a software developer for 10 years, the last 4 years at company A;
he knows the structure and individual classes of the Java frontend well and is familiar with
the Eclipse IDE and the Java programming language. His colleague A2 started professional
software development 7 years ago at company A; he is more familiar with the backend and the
SQL database, the VIM editor, the UNIX shell, and the Objective-C programming language.
However, each of them would also be able to work in the other part of the system. Both
developers have been pair-programming regularly for two years.

Session
The pair wants to resolve inconsistencies between four list views. Each list displays CMS
entities of a certain type (such as task or unreachable link) which can (among other things) be
“active” or “inactive”. In the list views, an entity’s icon and label should reflect its activeness,
but in some cases the icons did not match, sometimes the labels. The pair’s session can be
divided in five phases (2:22 hours in total):

• They understand and fix the implementations of three lists in the frontend (42 minutes).
• They understand and fix the implementation of the forth list which also involves changing
the backend and the XML API (40 minutes).

160

4.4.1 AA1: Complementary Frontend and Backend Knowledge

ID Start Time Length Pair Session Content

Company A: Content Management System (Java, Objective-C, SQL)
AA1 2007-01-26 13:43 02:22 A1 A2 Fix five similar bugs touching both frontend & backend

Company B: Social Media (PHP, JavaScript, SQL, HTML, CSS)
BA1 2007-09-14 13:38 01:46 B1 B2 Read foreign code, implement cache, discuss specification
BB1 2007-04-27 13:25 01:21 B1 B2 New feature from scratch (template); discuss requirements
BB2 2007-04-27 16:51 01:51 B1 B2 ↰impl. model, controller, template; discuss requirements
BB3 2007-04-27 18:58 01:32 B1 B2 ↰implement template, controller; discuss requirements

Company C: Graphical Geo Information System (Java)
CA1 2008-05-05 13:27 01:18 C1 C2 Implement new form in GUI (C1 already started)
CA2 2008-05-07 11:36 01:24 C2 C5 Architecture discussion (C5 already started), refactoring
CA3 2008-05-07 15:34 02:10 C6 C7 Implement context menu entry, incl. test case & refactoring
CA4 2008-05-08 10:25 01:34 C4 C7 Implement selection feature w/ special key-binding
CA5 2008-05-09 10:32 01:23 C3 C4 Implement feature to split graphical elements

Company D: Estate Customer Relationship Management (Java, XML)
DA2 2008-10-08 10:12 02:24 D3 D4 Planned feature impl., turned to widespread refactoring

Company E: Logistics and Routing (C++, XML)
EA1 2008-10-27 11:29 01:17 E1 E2 Step-by-step debugging of display error in the GUI

Company J: Data Management for Public Radio Broadcast (Java)
JA1 2013-01-31 14:05 01:07 J1 J2 Walkthrough of J2’s code, discuss possible refactorings
JA2 2013-02-13 10:51 01:15 J1 J2 Review of J2’s new API, define requirements

Company K: Real Estate Platform (Java, SQL, CoffeeScript)
KA1 2013-03-14 10:37 01:59 K1 K2 Dev. env. setup, discuss inter-system API design, 1st impl.
KB1 2013-05-02 13:45 00:53 K2 K3 Add new class tomodel, write and debug databasemigration
KC1 2013-10-29 11:24 00:59 K2 K3 Test env. setup, discuss test approaches for GUI feature
KC2 2013-10-29 12:59 02:01 K2 K3 ↰trying diff. test approaches, struggling w/ debugger

Company M: Data Analysis in Energy and Transportation Sector (SQL)
MA1 2014-10-16 11:42 00:25 M1 M2 Explanation of table model
Company O: Online Project Planning (CoffeeScript)
OA1 2016-06-01 10:51 01:24 O3 O4 Understand foreign component, try to read state for testing
OA2 2016-06-01 13:27 01:32 O3 O4 ↰try to set up (parts of) component for testing
OA5 2016-06-08 17:11 01:09 O1 O3 Bug fix: amend test cases, refactor prod. code, fix the bug
OA8 2016-06-15 13:47 01:16 O3 O4 Failing test: Investigate prod. and test code, correct mocks
Company P: Online Car Part Resale (PHP, SQL)
PA1 2018-06-05 11:24 00:58 P1 P2 Walkthrough of DB migration (written by P1), discuss req.
PA2 2018-06-05 13:35 01:30 P1 P2 ↰test of migration, debugging, refactor test cases
PA3 2018-06-06 12:23 01:31 P1 P3 Implement new API endpoint w/ tests (P3 already started)
PA4 2018-06-07 11:09 01:42 P1 P3 ↰implement DB access with OR-mapper

Table 4.3: Context and characterization of analyzed PP sessions. Some sessions continue
earlier ones (↰). The start time is the reference point for the timestamps given in the examples
in this document; the length column states how many hours and minutes later the pairs
concluded their session. SessionsMA1, OA1, OA2, OA5, and OA8 are in English, all others
are in German. Developers C4, C6, and O3 are female, all other are male. The respective pairs
are temporarily joined by additional developers in sessions DA2 (first 5 minutes by D7, then
12 minutes by D6), KA1 (8 minutes by K4), OA2 (14 minutes by O6), and OA8 (17 minutes
by O1).

161

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

• The pair discusses a second inconsistently rendered property (whether entities are “mir-
rored”), but decide to not address it now. They write down instructions for a manual “click
test” for their changes (19 minutes).

• They discuss when to address which open issues and discover a fifth inconsistent list
type. They fix it completely in the frontend and partially in the backend (18 minutes).

• Finally, they discuss multiple design options to address the fundamental problem which
precludes the fifth type from being fully fixed in the current architecture (23 minutes).

Along the way, they discuss the graphical interface with their product manager, help out
a colleague with her problem, and directly address smaller design issues with a number of
refactorings. The session as a whole is characterized by the two developers combining their
complementary frontend and backend knowledge to build up a common understanding of the
bugs.

4.4.2 CA2: Undiscussed Design Rationale

Company, Pair, and Software System
Company C develops a graphical geo-information system. The software is written in Java and
makes heavy use of object-oriented design, resulting in class names such as FeatureLayer
AttributeTableCellRendererFactory. Developer C2 has been a software developer for
9 years with more than 8 years at company C; his colleague C5 has 20 years of experience and
joined the company 2.5 years ago.

Session
The software has two variants (“Basis” and “Pro”) which involve three components (basis and
pro, as well as a common core). The relevant classes deal with a table-based dialog that allows
to configure attributes of graphical map elements. There are both standard and calculated
(“virtual”) attributes. The task is to add some table-related logic to the Basis version which is
generic enough to also work with Pro elements.

The developers discuss two approaches: C2 favors a simple solution,C5 already began with
a more indirect design. C5 moved an interface from pro to basis prior to the session (where
it can refer to other basis and the core components), and left an implementing class in the
pro component, which necessarily makes his design more complex. C2 mistakenly considered
the implementation to be in the basis module already and made his simpler design proposal
on these grounds. They work on the task for 1:14 hours:

• C5 presents his recent changes, the pair discusses their design options and they decide to
move the class to the basis module to follow C2’s simpler design (13 minutes).

• They perform the move operation and adapt involved interfaces and classes (21 minutes).
• They perform some manual tests, correct a small number of newly introduced defects,
and commit their changes (27 minutes).

• In the end, they discuss how to proceed with the overall task. During this discussion,
C5’s original (complicated) design resurfaces for which he appears to have some other
rationale which he is not able to explain to his partner (13 minutes).

Throughout the session, the developers have a similar understanding of the software system
but do not fully discuss all the discrepancies that come up.

162

4.4.3 DA2: A New-Hire’s Successful First Session

4.4.3 DA2: A New-Hire’s Successful First Session

Company, Pair, and Software System
CompanyD develops a large customer-relationshipmanagement system that is based on Eclipse
and comprises about 50 top-level modules written in Java. D3 has been with the company
for three months and has been pair programming since then. It is his first programming job
for which he started learning Java. D4 is in his very first week, started professional software
development one year ago, but has never pair-programmed before.

Session
The originally planned implementation of a new feature (a toolbar in the calendar module
of the application) turned into a small but widespread refactoring during which D4 (despite
being a new-hire) explains many things to D3. Their session of 2:23 hours has six phases.

• D3 explains the rough structure of the system and D4 asks many questions about various
system and company aspects, some related, others unrelated to their task (22 minutes).

• The pair has trouble finding the right place to start, they bringmore experienced colleagues
into the session, first D7 and afterwards D6. New-hire D4 and senior D6 together identify
a design flaw that precludes straightforward design and agree on extracting an abstract
superclass from a number of implementation classes using the Template Method design
pattern (Gamma et al., 1995, pp. 325–330) after which the senior D6 happily leaves the
session (17 minutes).

• The pair introduces an abstract class to be subclassed by a number of existing implemen-
tations (32 minutes, including a 13-minute stand-up meeting with the team).

• After some changes the pair notices that the existing implementations are spread across
different modules and they struggle to find a place where their new class can be accessed
by all of them (18 minutes).

• For the main part of the session the pair goes through almost 30 classes and execute the
same refactoring steps again and again. Along the way, new-hireD4 provides explanations
on various programming techniques and technologies (47 minutes).

• They conclude with a successful manual test of the application, commit their changes,
and discuss future design ideas (7 minutes).

After some turbulent setup period, the session is characterized by repetitive work during which
the new-hire learns enough about the system to keep going while teaching his colleague about
software development in general.

4.4.4 JA1: Pair Review with Domain Expert and Programming Expert

Company, Pair, and Software System
Company J develops and runs their software system to aggregate recordings of news segments
from a number of radio stations. Developer J2 started professional software development at
company J 2.5 years earlier; he is the main author of the software. Developer J1 works at a
consulting firm that regularly supports company J; he has been a software developer for a
little over six years and has been working in this particular context for eight months. Before
that, the two used to work together in the same office (but on different topics) for two to three
months until J2moved to a different city. They have been using distributed pair programming7
for about half a year.

7They use Saros (see https://www.saros-project.org/) which allows them to each work on their individual
machine with full control over their input devices. Source code changes are automatically synchronized in real-
time; the optional “follow mode” mirrors one developer’s scrolling and file switching to the partner’s IDE.

163

https://www.saros-project.org/

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

Session
Experienced consultant J1 is invited by J2 to help with refactoring a software system which J2
wrote several months earlier and which is unknown to J1. The session lasts 1:07 hours:

• J2 explains the overall structure of the software system: Each radio station provides a file
server access to where the live recordings of the news segments are continually written.
The processing per radio station then consists of determining the moment when a news
segment ends, fetching the finished recording, and eventually converting it to a different
format (8 minutes).

• The pair goes through the monitoring implementation for one such radio station: It
consists of a single method of 100 lines and 11 if-statements which are nested up to five
levels deep. They realize that the class basically implements a state automaton, and J1
learns that each radio station needs a slightly different one (22 minutes).

• They attempt to extract parts of the long function into subroutines, but understand that
their plan does not work because of the control flow (35 minutes).

• With nine additional station-specific situations and a planned functional extension they
conclude to rewrite the whole module from scratch in the future (2 minutes).

The developers combine their respective knowledge in the application domain and regarding
software development in general.

4.4.5 OA1: The Impossible Task

Company, Pair, and Software System
CompanyO is a self-proclaimed “all-PP company” which develops a web-based project planning
tool. The developers are a mix of directly employed personnel and a few hired consultants and
freelancers. They work with a newly introduced technology (React and Redux) which all of
them need to get familiar with. O3 joined company O a month ago and has been a software
developer for one year. O4 is a hired consultant with more development experience; he joined
the team five months earlier.

Session
The session revolves around a dynamic browser-based form: Interaction with one of its parts
may reveal new form parts or alter existing ones. A new feature pre-selects a specific value in
a drop-down menu. Developers O3 and O4 are tasked with implementing a test case to check
whether the pre-selection is effective. Their session spans 1:24 hours.

• O3 and O4 try to understand the structure of the fixture that is created in an existing test
case in order to find the property that contains the initial form field value so they can
write an assertion for it. Their means of inspecting the fixture is to insert console.log
statements into the test case and execute it. Each test run takes between 2.5 and 4 minutes,
so in the meantime they (a) prepare the next iteration of console.log statements in the
test logic, (b) work on two machines (O3’s computer and O4’s laptop) to look for ways to
make the output more informative, and (c) inspect the rendered form in the web browser.
They complete seven iterations of <log statement>→ <test run>→ <output> without much
insight, before they decide to take a break (48 minutes + break of 11 minutes).

• They concentrate more on reading and understanding the existing test and production
code and formulate ideas about where the initial value might be stored (19 minutes).

• They perform an eighth console.log-iteration to test their hypothesis. The test run
fails due to a compilation error and they decide to take a lunch break (6 minutes).

The session is frustrating for both developers as they have little applicable knowledge and
effectively make no progress.

164

4.5. Analysis Method

4.5 Analysis Method

My research is about what actually happens during pair programming rather than what
developers say and think about pair programming, so I primarily analyze the recorded PP
sessions; all other data sources (reflective interviews, questionnaires, ad hoc interviews) are
auxiliary. The building blocks of my analysis method are the following:

• From Straussian Grounded Theory Methodology (as described in Section 3.3):
– Theoretical sampling: Collect relevant data to inform theory development.
– Open coding: Understand individual concrete events and find conceptualizations.
– Axial coding: Identify strategies applied under certain conditions based on an action-

oriented model involving causes and consequences.
– Selective coding: Integrate theory and systematically consider context properties.
– Constant comparison: Achieve consistent and densely connected concepts through

coding data not once, but revisiting it when concepts change.
– Memo writing: Capturing observations, ideas, and insights in written form early on

and throughout the analysis process.
• Salinger et al.’s practice of defining a perspective on the data (see Section 3.4.1a).
• Salinger’s base layer (see Section 3.4.2) for making sense of the raw data.

In this section, I describe how I applied all of these (except for theoretical sampling, which I
already described in Section 4.3.5b).

4.5.1 Perspective on the Data

The perspective on the data is a practice that amends the Grounded Theory Methodology.
Salinger et al. (2008) proposed to define and adapt such a perspective over time to deal with
the difficulties of applying Straussian open coding to video recordings of pair programming
sessions. It consists of answering three questions:
1. “In which respects do you expect the data to provide insight?”

This defines the research interest and helps setting a filter to not go through all available
data with the finest granularity possible. I discuss my perspective in Section 4.5.1a.

2. “What kinds of phenomena do the researchers allow themselves to identify in the data?”
This determines the researcher’s epistemological standpoint. I discuss mine in Sec-
tion 4.5.1b.

3. “What type of result do you want the analysis to bring forth?”
I already discussed this in Section 4.2.2: I want to develop a vocabulary and formulate
behavioral patterns to enable practitioners to reflect on their pair programming processes.

4.5.1 a) Area of Interest, Focus

The general area of interest for which I expect to gain insights from studying recorded sessions
is how pair programmers deal with what they do and do not know (see Section 4.2.1). Taking a
perspective on the data and thus limiting one’s attention to certain phases and aspects of a PP
session (as opposed to a ‘complete’ analysis) is similar to choosing where to look at and what
to look for during a field observation. The difference is that the PP session is already recorded
and setting such a focus is therefore not final. As proposed by Salinger (2013, p. 110, see also
Section 3.4.1a), I reexamined and adapted my perspective along the way.

For my initial perspective, I followed the proposal of Salinger & Prechelt (2013, p. 30) which
is to start a study on knowledge transfer with phases where the two developers explicitly deal

165

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

with pre-existing knowledge, e.g., in dialogs consisting of pairs of ask_knowledge / explain_-
knowledge. As illustrated in Figure 4.1, knowledge transfer activities are not generally limited
to the beginning or the end of a session, but occur throughout.

I amended my perspective over time, as I described in Section 4.3.5b on my theoretical
sampling process. Each of the result chapters 6 to 11 takes a different perspective: The general
quality of the pair process, the practical meaning of knowledge in a PP session, and the general
activities pairs engage in to transfer knowledge on four levels of granularity. (Note that the
order of the chapters does not reflect the sequence in which I changed my focus; see Chapter 12
for the actual timeline.) In my analysis, I mostly focus on the individual developer in a pair
situation, but also on the pair as a whole dealing with a software development task. Although it
was not originally planned, part of my research was also concerned with the conditions under
which either notion of a pair (two individuals vs. one pair) makes more sense (see Chapter 6).

4.5.1 b) Epistemological Stance

I base my analysis on the developers’ observable behavior that is recorded in the video material
which I interpret based on:

• my own understanding of human communication in general and the German and English
language in particular,

• personal interaction with the developers (as recorded in the field notes and the reflective
interviews),

• my own theoretical and practical knowledge of software development, and
• reconstructed technical properties of the technical environment of the developers.

I assume the existence of an ‘objective reality’ when it comes to the technical aspects of the
software system the developers work in. It has certain verifiable properties, which can be
tested by the developers (which they sometimes do), but not by me.

I also acknowledge, however, the existence of ‘subjective realities’ which each of the
developers constructs individually. For example, to a developer, ‘My partner just asked me a
question’ may be true, but this is not an objectively verifiable truth like ‘This file has 102 lines’.
There is, however, a shared reality of the pair members which they construct and maintain
together, and its truths matter for their communication (see also Section 3.2.1a on the notion—
and fiction—of common ground). Of course, as an interpreting observer of a pair’s actions, I
construct my own reality as well, but I do not take part in their shared reality.

In concrete terms this means that the developers may think they understand each other
where they actually do not, and I may think I understand the developers but actually do
not, as well as the opposites and any combination of these. For me, there is no way around
this but to state that these types of misinterpretation may happen, but that I deem them
unproblematic for two reasons. First, I combine the above ‘data sources’ to resolve ambiguities,
e.g., in making sense of a cryptic developer utterance by reconstructing some technical detail
based on the video material or my own developer experience. I discuss such reconstruction
work in Section 4.5.2c below. Second, I usually do not rely on single occurrences for developing
a concept such that the effect of a few of them being ‘wrong’ is small.

Through constant comparison, instances in the data are not coded once and for all, but are
revisited whenever a concept is amended in someway. Occasionally, revisiting an already coded
segment led to a better understanding of the particular situation, e.g., in terms of intervening
conditions that could better explain why the developers behaved in one way or another (see
also Section 3.3.3b on axial coding). During my analysis, I wrote an operational memo for one
rare instance where my understanding changed in a meaningful way (see Appendix C.1.2).

166

4.5.2 Coding

4.5.2 Coding

In a qualitative analysis, coding means to make sense of the continuous stream of reality, to
think of a segmentation, to assign labels to capture meaning, and to consolidate and rework
the labels according to some procedure. Here, I describe how I practically applied the coding
procedures proposed by Strauss & Corbin (1990) and the details of my sense-making approach.

My overall analysis process exhibited two trends: The general trend of data analysis starting
out as exploratory and getting more and more focused on the one hand (ibid., p. 219, see also
Section 3.3.2a), and my change in perspective from knowledge transfer activities on a small and
on a larger scale on the other (see Section 4.5.1a). The first analysis steps and new observations
later in the process were more exploratory in nature and based on building understanding for
concrete situations in a bottom-up fashion, starting from individual utterances. Later phases
were more confirmatory and aimed at integrating my theory on all granularity levels. My
general approach to coding a PP session was as follows:
1. I watched the session as a whole to get an overall impression. For fresh data, this happened

during the quick analysis as part of data collection protocol described in Section 4.3.2d.
Here, I did not yet focus on knowledge transfer phenomena.
I performed the analysis directly on the video material, and not on a transcript. I discuss
the issues of transcribing and translating in Section 4.5.2a below.

2. For interesting, puzzling, or just ‘different’ phases, I performed base coding, i.e., I applied
the base concepts to reconstruct the developers’ intentions and get a better understanding
of what the pair is doing. I describe this process in Section 4.5.2b below.

3. With a basic understanding of what the pairs do, I focused on the parts of the session
during which knowledge or the apparent lack thereof played a role and switched to open
coding, which I did on different granularity levels: On the utterance level of the base
activities for which I developed new properties, and also in the form of new concepts
covering larger segments up to PP sessions as a whole.

4. Reconstructing the PP sessions’ technical background was sometimes necessary for open
coding in order to make sense of the developers’ behavior, but more often for axial coding
for which I encountered the following limitations due to the nature of my primary data
(see also Sections 3.3.3b and 3.3.3c on the paradigm model and conditional matrix):

• The causes of the phenomena the developers deal with may be traced back up to the
session start, but only seldom to larger contexts such as the team level.

• Strategies can only be seen in the form of actual behavior and not in the form of
merely considered-but-not-executed alternatives. In cases where pairs deal with
a phenomenon over time, multiple failed attempts might hint at the variation. On
rare occasions, when the recording researcher noted interesting behavior already
during the quick analysis, the developers possibly offer some introspection during
the reflective interview.

• Intervening conditions, such as biographical aspects that enable or prevent the devel-
opers from choosing some strategies, can be sometimes distilled from considering
behavior of the same developers in other sessions with a different task and possibly a
different partner. This allows to get a better understanding of what ‘normal’ behavior
for each developer is.

• Consequences are, like the causal conditions, limited to the scope of the session
recording. Again, the reflective interview may contain additional information—if it
occurred to the recording researcher to ask according questions.

Despite these limitations, the paradigmmodelwas helpful as its underlying action-oriented
perspective provides a clarifying lens (see also Charmaz’s pragmatic view on this matter,

167

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

discussed on page 126). In Section 4.5.2c, I explain how I approached the sometimes nec-
essary reconstruction of (objective) technical knowledge and the developers’ (subjective)
understanding.

5. With selective coding, tracking the individual developers’ knowledge levels throughout a
session became relevant and I also reflected more on what means to know something, for
the subjects (see Section 4.5.2d below) as well as me as a researcher (see Section 4.5.1b on
my epistemological stance above).

Throughout my coding process, I often switched between the perspectives described above.
During this process, I only kept concepts meeting the following criteria:

• There is a satisfactory operationalization. This excludes concepts which cannot be
pinned down to the recorded developers’ in-session behavior.
The pair’s session goal, for instance, may appear like a potentially relevant concept, but
my available data does not allow for a rich concept. Many pairs simply do not discuss
their goals, some may not even have anything goal-like, and others may have already
discussed their strategy prior to the recording. Without the necessary grounding, such a
concept would remain vague.

• The phenomenon is relevant for the PP session.Not everything that happens during
pair programming carries the same weight.
One example of a discarded concept-candidate is the scope qualification which marks the
difference between a given explanation referring to, say, ‘some’ or ‘most’ of the things.
Such a difference matters in a strict logical sense, but, as it turned out, not so much in the
verbal communication in a pair programming situation.

• It is relevant for my research interest. This excludes observations for which I did not
see a potential to get a deeper understanding of knowledge transfer in pair programming.
I do not have any concrete examples from my research for this criterion, because my
general research interest did not change much and I did not consider concept-candidates
outside of this interest.

I discuss the resulting concepts and my findings in Chapters 5 to 11.

4.5.2 a) Translating and Transcribing

In my research, two natural languages are involved: German as the mother tongue of many of
the recorded developers and myself, and the language in which most of the recorded sessions
were held; and English as a language that some developers chose for their sessions, and the
language in which I present my research results. I am generally confident to have a good
enough understanding of the languages spoken by the developers.

In this document, any originally English utterances are presented verbatim. I translated
all German utterances into English while attempting to reproduce the information density,
order and length of the information pieces contained in the utterances, as well as grammatical
(in)accuracy. In general, the two languages are grammatically similar. There are, however,
a few small, but relevant differences which I discuss in the appropriate place as part of my
results (see Section 8.2.5). Overall, I feel confident about my German-to-English translations;
the original German transcripts for all examples can be found in Appendix C.

All analysis steps were performed directly on the video material. Based on the excerpts I
did transcribe, I estimate the full transcripts of a PP session would fill between 20 and 30 pages
per recorded hour and would then only include the verbal channel, but neither the developers’
facial expression, gesture, and posture, nor the screen contents. Just as Plonka (2012, pp. 72–73)
and Salinger (2013, p. 106) before me, I decided to not transcribe whole sessions. Strauss &
Corbin (1990, pp. 30–31), too, propose to transcribe only as much as needed. For me, there

168

4.5.2 Coding

were three reasons to transcribe a passage: (1) to save the effort of reunderstanding individual
utterances with unclear pronunciation or high background noise when revisting the same
material later; (2) about a dozen times to get a better understanding of the precise order of
overlapping turns, i.e., who refers to what at times when both developers talk at the same
time; and (3) to prepare the examples contained in written reports such as this thesis.

Speech is not written language, as both have features that the other lacks (punctuation
marks, pitch, tempo, etc.). Consequentially, there is not one single way to transcribe sponta-
neous verbal speech. I roughly follow the transcription scheme which Salinger (2013, pp. 451–
459) developed. Its full notation as I use it can be found in Appendix B. In particular, my
transcriptions have the following properties:

• The transcript mostly captures the developers’ speech as a string of words that is grouped
to form sentences with standard punctuation, such as comma, full stop, and question
mark. Occasional additions are relevant human-computer interactions such as <*clicks
button*> and para-verbal expressions such as <laughing>.

• The transcript has a logical turn-by-turn structure even if there was some cross-talk in
the original dialog (see also Section 3.2.1b on turns). Developers and their utterances are
color-coded consistently throughout this document.

• Identifiers in the source code that are clearly referenced in an utterance are set in
monospaced font. Similarly, I highlight the emphasis of an utterance when the same
sequence of words could have a different plausible meaning without it.

• Stuttering, minor repairs, prosody, tempo, and non-standard pronunciation are not tran-
scribed as long as they appear to carry no special meaning to the speaker or the partner.

• Meaningful pauses are set in parentheses with one dot per second as in this two-second
pause (. .). Human-computer interaction without concurrent speaking is marked by
commas as in these five seconds (, , , , ,).

4.5.2 b) Base Coding: Reconstructing Intended Meaning

In interview-based qualitative studies, subjects speak to the interviewer about things they are
asked about and/or that are relevant to them. If need be, the interviewer may ask follow-up
questions or ask the subject to elaborate on some issue. A recorded pair programming session,
in contrast, proceeds without such outsider-oriented communication (just as any other direct
observation, for that matter). The developers themselves set the level of detail with which
they go into things. They only need to understand one another, and do not care about any
researcher for the most part.

During open coding, the GT researcher is to label a phenomenon as to ‘what it is’ or ‘what it
represents’ (see Section 3.3.3a), which may be clear for an involved party such as an interviewer
or programming partner, but not necessarily for an observing researcher. Whenever it was not
clear to me what happened at a point in a PP session, I applied what I call base coding as a step
before open coding.

When Salinger & Prechelt (2013) formulated the idea of a base layer for qualitative PP
research, they could not know how other research would build upon that foundation. For me,
the base layer, i.e., the base concept set and its rules, turned out especially helpful for open
coding in that it supported my theoretical sensitivity (see Section 3.3.3e). Applying the base
concepts helpedme reconstruct what the developers were actually doing in that a segmentation
of the data emerges through the application of the intention-revealing base concepts. This
process is not unlike what Charmaz (2006) describes as a benefit of word-by-word and line-
by-line coding: It helps working out the meaning of words the subjects chose and it helps

169

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

uncovering tacit assumptions (see discussion on page 126). I will now explain what I mean by
that.

Recall that each base concept represents a type of intention behind a software developer’s
action in a pair programming situation. The base concept set is a ‘list’ of things a developer
could mean. With a selection of a few plausible annotations in mind, the base layer provides
rules for making many common distinctions. An utterance like “We could simply convert that
thing to a normal id” (developer B2 in session BA1 at 15:30) could be both a propose_step or
a propose_design since it refers to a technical detail (design) but also implies a unit of work
(step). The base layer rules say that the central aspect should be coded (BL, Sec. 6.3.2). As a
researcher, I now have a specific question to answer which brings me closer to understanding
what is happening in the scene: Is the pair in the middle of planning their process (what to do,
in what order), or are they defining the design (what it should be like)?

I did not use the base layer as a coding scheme to get to a somewhat complete annotation
of a PP session, but to find helpful angles to look at the data. Refer back to Section 3.4.3 where
I illustrated how coding with the base concepts (that is, coding-as-a-process, not coding-as-an-
outcome) helped reconstructing that the ‘expert’ developer D2’s actions were very likely not
meant to teach his ‘novice’ partnerD8 something about writing tests, but to express uncertainty
regarding his own proposal.

4.5.2 c) Reconstructing Technical Information and Subjective Understanding

In some instances, a developer’s utterances made little sense to me (and also appeared to
have confused their partner) such that I could not figure out their intentions. According to
Grice’s maxims, such obscurity is usually not intentional, but points to misunderstanding or
some completely different communicative purpose (see Section 3.2.1b). When I suspected a
misunderstanding (either on my part or between the pair members), I started reconstructing
pieces of task-relevant knowledge as well as whether each of the pair members knows them at
every point in time during the PP session.

In Example 4.2 below, I give a concrete case of such a technical reconstruction which took
me more than one day of concentrated work. It was necessary to make sense of the developers’
utterances. In the beginning, I noticed some confusion between the two developers in session
CA2, e.g., with developer C2 asking “Is that so? Do we need this at all?” and C5 stammering
“I did (!...!) we have, we do need” and admitting “I don’t know what you are talking about right
now” , but I could not pinpoint their actual problem. Since I wanted to provide practitioners
with relevant insights into pair programming, I figured that dissecting the pair’s confusion
might be a learning opportunity for me.

This particular reconstruction helped me, first, to understand parts of the software architec-
ture and, second, that although it first appeared as if C5 knows less about the system (“I don’t
know what you are talking about right now”), it was in fact his partner C2 who was mistaken
about parts of it. Eventually, the analysis of such episodes led me to the characterization of
different Modes of knowledge transfer (see Chapter 9) and to the distinction between a latent
Knowledge Need and an acute Knowledge Want (see Sections 7.2 and 11.2).

Note that the contents of the example box may be difficult to understand. After all, it is the
essence of a conversation between two experts who need ten minutes to detect and clear up a
subtle misunderstanding about a complex software system.

170

4.5.2 Coding

Example 4.2: Knowledge Reconstructed From Interactions (CA2, 10:07–20:21)
This reconstruction comes from the beginning of session CA2. Concrete evidence from the session
is set in parentheses.
• The software has three subsystems, which I here call basic, pro, and core.
(The pair refers to all three identifiers and these correspond to package names of the Java classes they
review and edit throughout the session. This appears to be common knowledge for the pair.)

• The relevant classes deal with a table-based dialog to configure attributes of graphical map
elements. There are standard and calculated (“virtual”) attributes.
(They manually test this dialog. Both refer to the “virtual attributes” like to common ground.)
The following UML diagram represents the involved classes and their relationships:

IFeatureAttributeConfiguration

IVirtualColumn

basic

EditColumnAttributesAction

VirtualAttribute

VirtualColumnAttribute

pro

IColumnAttribute

core

«uses»

«uses» «implements»

«uses»
«uses»

«uses»

«uses»

The goal is to have the Configuration use the VirtualAttributes. This cannot be done
directly as the basic module cannot access the pro module.
(C5 opens the four source code files with bold names between 10:08 and 13:50 allowing the above UML
reconstruction even though neither developer talks about the relationships explicitly.)

• C5 alreadyworked on this task. He added the Column interface and changed the Configuration
and the Action, all of which is unknown to C2.
(At 10:08, C5 says, “I better show you what I did already.” and C2 asks to see the new interface; from 14:26
to 18:12, C2 reads the source code of the changed Action class.)

• C2 understands the usage of the commonly accessible IColumnAttribute, but thinks it is
too complicated. He proposes to have the Configuration depend on VirtualAttribute
directly.
(At 10:58, he asks, “Do we actually have a ColumnAttribute here? [. . .] Do we need this at all for the
visualization in the attribute table?” ; at 12:30, he says “I would have done a setVirtualAttribute
in the FeatureAttributeConfiguration” ; at 18:15, he continues, “I’d go the easy way and get the
VirtualAttributes directly from the AttributeConfiguration.”)

• C5, however, tries several times to explain that the current complicated design is due to not
wanting to move the VirtualAttribute from the pro-part of the system.
(He refers to some agreements with another colleague at 10:16 and 11:29, and again at 1:14:17; he attempts
to explain his design five times between 10:48 and 19:35.)

• C2 mistakenly deemed VirtualAttribute to be in basic and then realizes that it actually
lies in pro. In his alternative reality, C5’s design would indeed have been too complicated and
C2’s proposal of a direct dependency would be reasonable.
(At 20:20, the pair clears up the misconception: “The VirtualAttribute is here in pro.”—“In pro is the
VirtualAttribute?”—“Yes.”—“Ah, yes. I left it there, because we did not need it anywhere yet.”)

The reasons why C5 did not want to move the VirtualAttribute probably lie somewhere in
the discussion he had with the other colleague. However, that part of C5’s explicit knowledge
cannot be reconstructed from the pair’s in-session activities.

171

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

4.5.2 d) Conceptualizing Knowledge

To analyze knowledge transfer in pair programming, it is necessary to have some notion of
what it means for the developers to know something. I do not administer tests or ask developers
to self-assess what they know, but rely on the session recordings as my primary source for
determining what the developers do and do not know. More precisely, for the individual topics
that come up over the course of a PP session, I infer what each of the pair members already
knew in the beginning of the session, what she learns or understands along the way, and what
remains non-understood until the end. There are a number of ways to do this:

• With some base activities, in particular the universal concepts (see page 134), developers
directly address what they know and do not know:
– An ask_knowledge indicates the developer lacks some knowledge (and expects her

partner to possess it), while an explain_knowledge indicates the speaker possesses
knowledge (and expects her partner to lack it).

– The reaction to an explanation can also give clues: The developer who receives
an explain_knowledge may make clear she already knew (an agree_knowledge of
type known). Alternatively, acknowledging the explain_knowledge (e.g., through an
explain_standard of knowledgeAT) or simply not rejecting it indicates the developer
lacked knowledge before.

– A known lack of knowledge (which is meta-knowledge) may also become visible:
Occasionally, pair programmers express uncertainty in a propose_hypothesis, or
surprise by new discoveries with an explain_finding, or talk about their knowledge
level explicitly with standard of knowledge and gap in knowledge activities, e.g., in a
reaction to question they cannot answer.

• In addition to more or less concrete base activities, a developer’s lack of knowledge in a
relevant area may become visible through confusion, difficulty in assessing the partner’s
proposals, etc. (details follow as part of my results in Chapter 6).

• Topics that resurface multiple times indicate that the earlier exchanges may not have
been sufficient for the developer to acquire and retain the respective knowledge.

With the epistemological considerations of Section 4.5.1b in mind, whenever I say something
like ‘developer A knows X’, what I really mean is that ‘I have seen enough evidence in her
actions and interaction with her partner to be convinced that she would agree to: I know X.’8 This
interaction-based approach has a number of consequences:

• I only get to see knowledge that can be verbalized, i.e., explicit knowledge as opposed to
implicit knowledge (see Section 2.2.2). Although non-verbal knowledge transfer may be
possible, e.g., learning how to debug by watching an experienced engineer, it is not of my
concern.

• I only get to see knowledge-in-transfer that is actually verbalized, but not the larger body
of knowledge-in-use. Developers do not iterate through everything they know, so I cannot
reconstruct the full bodies of knowledge they possess. However, I can still characterize
the pair members’ knowledge levels with respect to the topics the developers talk about
in their session.

8This is similar to a knowledge definition provided by German linguists Ehrhardt & Heringer (2011, p. 37), which
they call “belief-knowledge” (German: “Glaubwissen”).

172

4.5.2 Coding

• Relative differences between the two developers’ knowledge levels are easier to see than
absolute knowledge gaps which are shared by both developers: Knowledge which one
developer puts to use but which the partner does not possess possibly leads to confusion
and then observable actions. However, to observe both developers not knowing something
requires one of them to address the unknown unknown to make it a known unknown.

• I am not concerned with an ‘objective truth’ that goes beyond what the developers con-
sider true or false. I take source code and other screen contents into account and can
sometimes detect misunderstandings, but there is no practical way to validate everything
the developers say. For my research, there is little to be gained from going after things that
both developers treat as true to identify the instances where they both are, in fact, mis-
taken.9 I therefore assume the developers know everything there is to know unless there
are reasons for me to believe otherwise. Programming partners working out conflicting
views, however, are an aspect of my research, as is illustrated in Example 4.2.

• I also do not categorically exclude opinions which developers occasionally express. As
Example 4.3 illustrates, a clear line between hard facts and personal opinions is difficult to
draw anyway. (I eventually did exclude opinions from my analysis for a lack of frequency:
The developers in my data rarely expressed opinions without also providing or pointing
out some factual information, see Section 6.4.4d.)

Example 4.3: Expressing Opinions (CA4, 34:25–34:41)
The pair is setting up a test case for which they need to provide a dummy event with a
DisplayPoint instance. C4 appears to dislike that class, but does not explain why. Her
partner C7 appears to agree anyway.

C4: “The DisplayPoint really sucks, you know.”

C7: “In what sense?”

C4: “Don’t like it. That’s such a crappy (. .) object <*opens class DisplayPoint*>”

C7: “<*reads code (, ,)*> Urgh.”

C4: “<*closes class DisplayPoint*> Anyway, doesn’t matter.”

Neither from their exchange nor from the class itself (a data class with three attributes and
no logic other than three getter methods) could I reconstruct where the pair’s aversion comes
from. It appears to be more a matter of taste: First, a DisplayPoint object can be easily
created (which they do in the next minute in a single line of code); second, C4 explicitly says
that it “doesn’t matter” .

In summary, the type of knowledge I address is the subset of a developer’s explicit knowledge
that can be reconstructed from the pair’s activities. This goes beyond the notion of knowledge
that Salinger (2013) settled on when developing the base layer (see Section 3.4.4) in that I also
address parts of a developer’s body of knowledge that she never verbalizes with the primary
intention of explaining it. Nevertheless, there will be task-relevant parts of a developer’s body
of explicit knowledge which cannot be reconstructed from the pair’s activities. See Figure 4.5
for a schematic overview.

9Uncovering mistakenly believed objective falsehoods may be necessary for other research interests, e.g., those
focusing on pair debugging which may involve false assumptions on part of both developers.

173

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

Some code was written by
outsourced developers and
has potentially low quality.

I went to the zoo yesterday.

Special cases can be repre-
sented by integer value 0.

A possible implementation
could check the input
parameter against 0.

Unix timestamp 0 is
equivalent to a point in
time on January 1st, 1972
in the Gregorian calendar.

This is not certain.
Aspects thereof that
are addressed by the
universal concepts

Parts thereof that are
uttered with the primary
intention of explaining

Task-relevant parts thereof
that can be reconstructed
from the pair’s activities

Explicit knowledge, includ-
ing things not addressed

or not task-relevant

Figure 4.5: Further subdivision (solid green ellipse) of the classes of explicit knowledge
discussed in Figure 3.5 (dashed blue ellipses), illustrated through the (hypothesized) pieces of
developer B1’s knowledge when he says “Null is January, 1st of 1972, or something” .
(Parts of the source code were indeed written by outsourced developers, as the team lead
told in a separate interview. I do not know whether B1 actually went to the zoo.)

4.5.2 e) Working with the QDA Software ATLAS.ti

Terminology and Features
I primarily worked with ATLAS.ti,10 a software for qualitative data analysis (QDA). It supports
audio and video files as well as text documents, which are all called primary documents.
Segments of primary documents are called quotations. Quotations from all primary documents
can be arbitrarily played back which makes comparisons of different parts of one PP session
or across PP sessions convenient.

Codes can be assigned to quotations (e.g., for open coding). ATLAS.ti supports connections
between quotations and other quotations (e.g., for axial coding on the exemplar level) as well
as between codes and other codes (e.g., for axial coding on the concept level). ATLAS.ti comes
with a number of tools to help with constant comparison, e.g., by listing all quotations that are
labeled with some code with the option to play them one by one.

Exemplars of most of these data types (in particular primary documents, quotations, codes,
code-code connections, and quotation-quotation connections) can be commented in a free text
field. Additionally, there are also stand-alonememos, which may be connected to other memos,
codes, and quotations.

Basic Usage
For each of the 27 analyzed PP sessions, the video files and auxiliary data (such as scanned
questionnaires or recorded reflection interviews) are imported as primary documents. After
the first review of a session (see page 167), I put a general summary of the session (like in
Section 4.4) in the comment field of the according primary document.

For relevant phenomena, I create a quotation and assign one or more codes to capture its
meaning with a concept, possibly characterized in more detail with specific properties. I use a
number of descriptive codes, e.g., one for each developer such as P.D3 for developer D3, which
allows to later select all coded segments of the same developer even across sessions. I added
comments to a quotation for one or more of these purposes:

10Product homepage: https://atlasti.com/

174

https://atlasti.com/

4.5.2 Coding

• Summary of reconstructed technical information and the pair’s action (especially for
segments of a minute or more).

• Notes for axial coding on exemplar level, e.g., discussion of particular causes and conse-
quences of the pair’s concrete behavior.

• Transcripts of difficult to understand utterances.
Most of the codes’ comments contain a short memo summarizing its purpose and theoretical
memos (see Section 3.3.3f on memo types). I coded links between quotations as part of axial
coding (e.g., two related phenomena following each other). Code-code links I used to capture
conceptual category-property relationships (see below) and for axial coding on the concept
level (causes, consequences, etc.), which effectively represent code memos. I used ATLAS.ti
“memo” feature for my operational memos.

With all coding activities considered, I reviewed each of the 27 selected PP sessions at
least two times in full. Sessions sampled early in the process and those with, at the time, new
phenomena have more detailed codings (such as CA2, JA1, andOA8, each with several hundred
segments), while sessions I analyzed during selective coding are notably less densely coded
(between a dozen and 50 coded segments). Overall, I created almost 2800 data segments and
coded 7700 labels, amounting to roughly one concept label and, on average, 2 to 3 qualifying
properties per segment. I summarize these uses in Table 4.4.

ATLAS.ti Element Count Use in Analysis

primary document 70 PP sessions (video files)
fieldnotes & questionnaires (PDFs)
reflection interviews (audio files)

primary document comment 27 session characterization
quotation 2 764 phenomenon, data segment
quotation comment 206 reconstruction notes

axial coding (exemplar level)
quotation-quotation link 789 axial coding (exemplar level)
code 416 concept

(generic) property of concept
descriptive markers (e.g., developer)

code comment 288 theoretical memos
code-code link 236 concept-property connection

axial coding (concept level)
code memos

coding (= code-quotation link) 7 685 concept indication
(specific) property of exemplar

memo 35 operational memos

Table 4.4: Mapping of ATLAS.ti elements to uses in my analysis process, including the
respective count of elements I created.

Limitations and Solutions
My first problem with ATLAS.ti was the lack of support for concept properties or prop-
erty values, which characterize concepts and phenomena in more detail, respectively (see
Section 3.3.3a). Fortunately, it is possible to define different types of code-code relationships.
I ended up using three different types of codes (representing concepts, properties, and property
values—all indistinguishable for ATLAS.ti). See Figure 4.6 for a concrete example.

175

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

Figure 4.6: Example of four ATLAS.ti codes
representingGT concepts, properties, and prop-
erty values. From top to bottom: Episode is a
concept of which there are occurrences in the
real world;Mode is a property of that concept;
Push and Pull are two of the values for this
property. In the data, there are no segments
coded with property codes, meaning there are
only instances of Episode, Push & Pull, but no
Mode-instances.

The second problem relates to my need for overlapping quotations: I coded the two
developers’ activities individually (which sometimes overlap) and I had concepts on different
granularity levels (where larger ones span multiple smaller ones).11 Each of these segments is
not only coded with a concept label, but also potentially with one or more qualifying specific
properties. ATLAS.ti provides a visual timeline displaying the quotations and assigned codes,
but the user interface appears to be designed for only a handful of codes and little overlap
between quotations. Since there is no filter option, all quotations and their assigned codes are
stacked on top of each other. The resulting visual mess is not informative (see Figure 4.7a), and
also makes the user interface increasingly unresponsive with more codings. Luckily, ATLAS.ti
data can be exported to an XML file containing all segmentation and coding information. To
get a better overview of my coded data, I wrote a visualizer tool that converts the XML export
to an SVG file, which allowed me to use x- and y-dimension, color, scale, text, and icons to
encode different meanings (see Figure 4.7b).12

11Although QDA software tends to obscure this, a phenomenon is not the same as a segment of raw data; it is
not simply all that happens during a time span, but pertains only to certain aspects of the subjects’ actions (see
also Salinger, 2013, p. 115). Consequentially, not all small segments happening during a long-running segment
automatically belong to it (e.g., one pair member may write down an idea while the other spends a long time
reading source code). I therefore explicitly coded connections between quotations to distinguish parallel from
embedded phenomena.

12Salinger (ibid., p. 114) encountered a similar problem. He, too, wrote a piece of software to create visual
representations of what he called tracks, a collection of related annotations on a timeline.

176

4.5.2 Coding

Figure 4.7: Comparison of ATLAS.ti and my own visualization for the first seven annotated
minutes of session JA1

Timecode
Waveform

Quotations
Annotated Codes and Quotation-Quotation Links (blue)

(a) View in QDA software ATLAS.ti. Time is going from top to bottom; elements from left to right: first grey stereo
waveform, then all quotations stacked and color-coded, then annotations for the quotations. The user interface is
clearly not designed for more than just a few overlapping quotations and more than a handful of annotations. Is is
not possible to filter this view (e.g., disregarding specific properties to focus on the concepts, or focusing on small
or large granularity only). Color and horizontal position of the quotations are set by the software.

(b) Plotted by my visualization tool. Time is going from left to right, developers are separated vertically. This view
shows high-level concepts as large blocks, smaller granularity as small blue and grey boxes; they are grouped by
developer and colored based on specific properties of the coded instance. I use similar visualizations in Chapter 10.

177

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

4.6 Discussion of Overall Research Method

I will now provide an overview of my research method in terms of the nine common traits of
qualitative research approaches, the six differentiating questions, and the eight quality criteria
(all introduced and discussed in Sections 3.2.2 to 3.2.4).

Where the Common Traits of Qualitative Research are in My Method

I already discussed the extent to which Straussian and Charmazian GTM directly address the
common traits of qualitative research in Section 3.3.5b. Two of the traits—how to engage in
Naturalistic Inqiry and the Importance of the Researcher—are hardly addressed by the
methodologies themselves, so I introduced various according elements of my data collection
method described in Section 4.3. Table 4.5 maps all nine traits to the corresponding elements
of my research process.

My Answers to the Six Differentiating Questions

In Section 3.3.4, I discussed the differences of the classic and constructivist GTM versions
regarding the six core questions. While theMethod (how to study the world?) is generally agreed
upon,Ontology (what is the nature of reality?) and Epistemology (how do we know?)mark the
biggest difference. I discussed my own position, which involves positivism for technical aspects
and constructivism for any social action, in Section 4.5.1b. For my research, the answers to the
related aspects of Philosophy (what is worth knowing?) andDiscipline (what questions should
we ask?) come my from field of software engineering: I want to understand how knowledge
transfer in pair programming works, such that practitioners can reap the benefits of this work
mode (see also Section 4.2.1). This also shapes my Involvement (how to personally engage?):
To the study participants, I am a visiting researcher, but also a developer. I learned that talking
to practitioners about software development helped establishing trust.

Meeting the Quality Criteria

As discussed in Section 3.3.5a, the eight quality criteria proposed by Tracy (2010) are a superset
of the criteria proposed by Strauss & Corbin (1990) and Charmaz (2006). I consider each of
them below:
1. Worthy Topic: Research topic is relevant, significant, and interesting.

Pair programming is a relevant topic in software engineering, and knowledge transfer as a
central expected benefit is not well understood yet (see Section 4.2.1).

2. Rich Rigor: Descriptions and explanations are complex and ‘rich’.
I used both existing and newly collected data that is rich in detail and comes from di-
verse contexts (Section 4.3.4d and Table 4.3). I performed in-depth qualitative analyses
(Section 4.5).

3. Sincerity: Researcher’s role is transparent.
Meeting this criterion is the main purpose of this chapter. To accurately reflect the interac-
tions between subjects, settings, and involved researchers (not only me), I . . .

• . . . discuss the generic data collection protocol that all involved researchers followed
in Section 4.3.2;

• . . . emphasize important differences, such as the different research “headlines” for
industry contacts in Section 4.3.1, the non-naturalistic workshop character in com-

178

4.6. Discussion of Overall Research Method

panies C to F on page 148, and the different versions of the pre- and post-session
questionnaires in Section 4.3.2c;

• . . . and describe my own data collection efforts in Section 4.3.5b. (The concrete timeline
of all my research activities follows in Chapter 12.)

To reiterate and appreciate the work of my colleagues:
• Laura Plonka, Stephan Salinger, Julia Schenk, and Holger Schmeisky established in-
dustry contacts and collected data (see Section 4.3.1 and Table 4.1).

• Laura Plonka and Stephan Salinger developed the original data collection protocol
(see Section 4.3.2).

• Laura Plonka and Stephan Salinger came up with Generation 1 of the recording
infrastructure (see page 147).

4. Credibility: Results are trustworthy enough for readers to act on them.
This thesis contains many examples from the analyzed sessions, at least one for each aspect
of my overall theory. I employedmember reflection at various points in the research process
(see Section 4.3.3d).

5. Resonance: The research influences, affects, or moves the reader.
During my research, I often spoke with practitioners, trying to understand which issues
are relevant to them and which means of (visual) representation resonate with them. I
then spent much time on compiling this document, tried out different ways to embed and
display examples, employ visual aids, etc., with the goal to make it an interesting read. I
hope to achieve naturalistic transferability through my in-depth examples.

6. Significant Contribution: It extends knowledge, improves practice, generates research ideas.
I deem my work to be theoretically significant as it both extends existing concepts (of the
base layer, see Section 6.2) and introduces many new ones which show the variation in
how pair programming processes unfold (see Chapters 6 to 11). Such variation was often
ignored by prior research which considered PP as something canonical (see discussion on
page 67 in Section 2.3.4a on PP experiments). However, practical significance is my main
goal: I come back to this in Chapter 13.

7. Ethics: Effects of research actions on subjects and others are considered.
Procedural ethics: All participation was based on informed consent (see page 146); one
developer explicitly opted-out of visual data collection, which, as far as I can tell, did not
reflect negative on him in the team (see page 154). No company or developer is identified
by name in any publication (see Section 4.3.2h). In addition, personal information from
particular PP sessions or reflective interviews was not transferred to colleagues or superiors
(see Section 4.3.2e).
Relational ethics: Both reflective interviews andworkshops weremeant to give something
back to the developers quickly (see Sections 4.3.2e and 4.3.2g).

8. Meaningful Coherence: Theoretical framework, research method, and goals are aligned.
I followed the coding procedures from Strauss & Corbin (1990) as they provide structure
for the analysis process. The action-oriented model that underlies the paradigm model
fits my topic well. Just as Charmaz (2006) described, the paradigm model provided clarity
during my analysis (see Section 4.5.2).
The positivist epistemological stance of “classic GTM” is not embedded in my pragmatic
application of Straussian coding procedures (see also Sections 3.3.3b and 3.3.4b). I there-
fore see no contradiction in following these procedures while still assuming a (mostly)
constructivist stance myself.

179

CHAPTER 4. RESEARCH GOAL, METHOD, AND DATA

1. Naturalistic Inqiry in Everyday Situations
• Minimally invasive in vivo recordings of industrial PP sessions (Sections 4.2.3a and 4.3.2b)
• Field observations (Section 4.3.2f)

Limitations:
• Some effects of recording infrastructure (Section 4.3.4b)
• Some effects of pre-existing notions (Section 4.3.4c)

2. Openness & Emergent Research Design
• Generic protocol is not rigid, but is adapted on site (Section 4.3.2)
• Recorded sessions allow for different analysis perspectives (Section 4.3.2b)
• Open-minded quick analysis to inform reflective interviews (Sections 4.3.2d and 4.3.2e)
• Adjustment of purpose of reflective interviews (Section 4.3.2e)
• Invention of long-term engagement and practitioner evaluation along the way (Sections 4.3.3c
and 4.3.3d)

• Adjustment of result type over time (Section 4.2.2)

3. Purposeful Sampling
• Theoretical sampling process in eight phases (Section 4.3.5b)

4. Detailed, Thick, and Diverse Data
• Video recordings of PP sessions with abundant detail (Section 4.3.2b), supported by question-
naires, interviews, field observations, workshops (Sections 4.3.2c and 4.3.2e to 4.3.2g)

• Repository of sessions from different companies/application domains, technology stacks,
developer experiences, and task types (Section 4.3.4d and Table 4.3)

5. Importance of the Researcher
• Focus of researcher during quick analysis (Section 4.3.2d)
• Conducting the reflective interviews (Section 4.3.2e)
• Reflection on effect of researcher headline and pre-existing notions on data collection (Sec-
tions 4.3.1 and 4.3.4c)

• Reflection on epistemology and effects of different languages (Sections 4.5.1b and 4.5.2a)
• Reflection on applicability of GTM (Section 4.3.3a)

6. Empathic Neutrality
• Reflective interviews to appreciate developer’s perspective (Section 4.3.2e)
• Base coding to actively consider developers’ intentions (Section 4.5.2b)

7. Context Matters
• Questionnaires, reflective interviews, field observation, and team workshops as different data
sources (Sections 4.3.2c and 4.3.2e to 4.3.2g)

• Consider sessions as cases rather than excerpts in isolation (Section 4.3.3b)

8. Holistic Perspective
• Consider sessions as cases rather than excerpts in isolation (Section 4.3.3b)

Limitation:
• Scope of pair programming session (Section 4.2.3c)

9. Discovery of Theories
• Grounded theory methodology with amendments (Section 4.5)

Table 4.5: Common traits of qualitative approaches (see Section 3.2.2) and where they are
implemented in my research process. See referenced sections for details.

180

Part II

Results

181

Chapter 5 Results Overview

I can’t recall who first pointed out that the word
‘explain’ means literally to ‘flatten out.’

– Philip Slater

5.1 Purpose and Structure of this Chapter . 183
5.2 Pair Programming Process . 183
5.3 Knowledge Transfer Episodes . 184
5.4 Pair Programming Session Dynamics . 185
5.5 A Recurring Example . 186

5.1 Purpose and Structure of this Chapter

Working in pairs makes software development easier and harder at the same time. On the
one hand, it gets easier because the programming partner might already know certain things,
which therefore do not need to be found out. Additionally, anything that the pair learns along
the way—names of classes, order of parameters, special values—is less likely to be forgotten.
On the other hand, it gets harder because the programming partner’s mind is opaque and there
is no direct way of exchanging information. No act of communication can be totally explicit, so
some common ground—which needs to be established and maintained (see Section 3.2.1a)—is
required between the participants.

In the following chapters, I present several observations of how professional software
developers transfer knowledge during pair programming sessions. This chapter is an overview
of the most important concepts that are the result of my analyses which together provide a
basic ‘vocabulary’. These concepts address a wide range of different phenomena: from aspects
of individual utterances to whole pair programming sessions; some are concrete and directly
observable, others are more abstract; some pertain to the individual programmer, others to
the pair as a whole. Most of the concepts are highly interconnected, such that linear writing
has to rely heavily on forward and backward references. In the next sections, I will therefore
paint the big picture without going too much into the details, hoping this will ease the reader’s
overall understanding.

5.2 Pair Programming Process

The concept of Fluency captures the process quality of a pair programming situation: Roughly
speaking, it is ‘how well’ the developers work as a pair. This is not necessarily the rate of
technical progress: A pair might be relatively slow from a technical perspective, but still have
a fruitful pair programming session. I distinguish three qualitative levels of Fluency: normal
PP, Focus Phases, and Breakdowns.

Normal PP is characterized by a steady process: Apart from occasional waiting times (e.g.,
compiler or test runs) or brief moments of silence, there is an ongoing stream of communication

183

CHAPTER 5. RESULTS OVERVIEW

between the two developers. Proposals are made, insights are shared, and—most importantly—
they are evaluated, i.e., agreed or disagreed to, discussed and amended. The pair recognizes
their inevitable misunderstandings (Section 3.2.1a) and tries to clear them up. Some pairs,
in some situations can go beyond this and reach a Focus Phase. During these, developers
are “exceptionally in sync with one another” (as also observed by Chong & Hurlbutt, 2007):
There are little to no pauses; developers sometimes even speak simultaneously; proposals
do not need to be fully verbalized because the partner understands them anyway; there are
no discussions, just agreement. Misunderstandings do not happen. At the other end of the
spectrum are Breakdowns: On the surface, such a process is really slow-moving, there are
prolonged periods of silence with no apparent activity. Looking deeper, it is no longer a pair
process: If a pair member makes a proposal at all, it is not evaluated or discussed by the partner,
making it unlikely to yield any of the expected benefits of working together with a partner
(see Section 2.3.1b). Sometimes both partners do actually produce ideas, but neither evaluates
them, and long stretches of time pass where nothing really happens. The developers also do
not attempt clearing up any misunderstandings.

The basis for a pair’s Fluency is its Togetherness, the degree to which a pair is working
“with one mind” (Williams et al., 2000). Togetherness is not directly observable, but its effects
and the pair’s activities toMaintain Togetherness are. With high Togetherness, it requires only
little effort of the pair’s members to make each other understood, which is one aspect of what
makes Focus Phases so fast. High Togetherness is not simply thinking the same all the time,
though. More to the point is a notion of compatible mental states such that misunderstandings
are rare. In a way, Togetherness is the ongoing mutual lack of being surprised by what the
partner says and does.

Fluency andTogetherness are general pair programming phenomena,which is why I discuss
them first in Chapter 6. They are, however, related to knowledge and knowledge transfer. On
the one hand, one way to Maintain Togetherness is to transfer knowledge: One developer
already worked on some module, and before her newly joined partner can get productive as
well, she needs to explain any important changes she already made; or two developers dig
through some stack trace together, alternating in who has the next idea how to proceed (a “tag
team” , see Bryant et al., 2008, Sec. 6.3), which requires some ‘resynchronization’ every now
and then, such that the partners “maintain a firm grasp of what is happening during the session
at a number of levels of abstraction” (ibid.). On the other hand, possessing shared knowledge
of the software system and software development in general enables their Togetherness and
thus Fluency. Knowing very little about the current system can lead to a Breakdown, if the
system is complex enough and/or involves unfamiliar technology, and the pair lacks the ability
to deal with such a profound knowledge gap. On the flipside, knowing very much about the
current system can lead to Focus Phases, if the developers clearly understand their task, have
a strategy to adhere to, and manage to follow a straight process while deferring side issues.

In summary, what the pair members know and do not know affects their Togetherness
and transferring knowledge is one way ofMaintaining Togetherness.

5.3 Knowledge Transfer Episodes

Software development involves dealing with knowledge gaps, and so does pair programming.
Every now and then, a pair member comes to perceive an urge to do something about a
particular knowledge gap, a Knowledge Want. From the researcher’s point of view, neither
the knowledge gap nor the Knowledge Want are directly observable. A Knowledge Want
pertains to a perceived knowledge gap, not necessarily an actual gap: After all, a developer

184

5.4. Pair Programming Session Dynamics

may be mistaken and provide explanations and pursue the clarification of some Topic where
her partner actually has no knowledge gap.

A Knowledge Want can take one of three forms. First, there are internal Knowledge Wants:
The developer feels she does not understand something, the knowledge gap needing attention
is her own (‘I want to know this’). To close the gap, she might start to ask questions, read in the
source code, or play around with the running program. Second, there are external Knowledge
Wants: The developer feels her partner has a misunderstanding or knowledge gap that should
be closed (‘I want you to know this’). In this case, she may start to offer explanations—without
being asked to do so. Finally, there are collective Knowledge Wants, where both developers
share a knowledge gap and both agree that it should be addressed (‘we want to know this’).
Collective Knowledge Wants can be closed by reading source code and thinking as well as
exchanging ideas and hypotheses.

The information that fills the underlying knowledge gap I call Target Content. There
are different types of Topics and Target Contents in pair programming sessions: Most of
them pertain to the specific software system the pair works in, which I call S knowledge,
others belong to the category of generic software development knowledge, or G knowledge.
I introduce the three basic knowledge concepts of Knowledge Want, Topic, and Target Content
in Chapter 7.

Developers actively pursue the clarification of a Topic through activities such as asking
questions, proving explanations, or interacting with the software and its source code. Both
asking and explaining are complicated activities which come in many forms. In Chapter 8, I call
them by their abstract function Explanation Elicitors and Explanations, of which I distinguish
five and three types, respectively.

In pair programming, there is typically only one pair member invested in each particular
Topic and her partner may or may not follow her lead. The whole of the activities she and her
partner engage in to clarify a particular Topic I call an Episode. The goal of such an Episode is
to satisfy the underlying Knowledge Want by transferring or acquiring the Target Content.
In other cases, the Propellor may end the Episode after she decided the Knowledge Want is
no longer worth pursuing. Depending on the number of interactions it takes to handle the
Knowledge Want, an Episode can be a few seconds or several minutes long.

There are different strategies how pair programmers approach internal, external, and
collective Knowledge Wants. An internal Knowledge Want, for example, may be pursued by
asking the partner for the Target Content. In other scenarios, the Propellor may dive right into
the source code without asking her partner. The way a particular Episode is carried out is its
Mode of which I distinguish four main ones: In a Pull Episode the partner is asked about the
Topic until the Target Content is transferred; in a Push Episode explanations are offered until
the partner appears to have understood the relevant Target Content; in Pioneering Episodes
one developer acquires the Target Content by herself; and in Co-Producing Episodes both
developers do this hand-in-hand. I discuss Episodes, the different ways they can start and end,
as well as theirModes in Chapter 9.

5.4 Pair Programming Session Dynamics

Each individual knowledge transfer Episode only deals with a single Knowledge Want. In the
course of solving a technical task together, typically many of these arise over time and lead to
dozens of Episodes. In session AA1, for example, I analyzed almost 90 of them. Some of these
Knowledge Wants arise from pending technical decisions or simply from opportunities to
address some general Topic just now. Quite often, however, dealing with one Knowledge Want

185

CHAPTER 5. RESULTS OVERVIEW

leads to another. I distinguish Sub-Episodes and Catalyzed Episodes. Sub-Episodes branch off
of a main Episode and should be, in the eyes of the developers, addressed before the original
Topic can commence. A Catalyzed Episode, in contrast, pertains to a Knowledge Want that
arises in the midst of another Episode and which the developer address right away even though
they do not deem it be strictly necessary at the moment. Depending on how the pairs handle
such new Knowledge Wants they may end up Branching Wildly with many open Topics or
they proceed in a more linear fashion when they Return Explicitly and make use of Scope
Limiting. I discuss these patterns in Chapter 10.

Zooming out further brings PP sessions as a whole into focus. I integrate all the above
mentioned parts in Chapter 11. Pairs do not start a session as ‘experts’ or ‘novices’ but with
session-specific Initial Constellation of Knowledge Needs which depends on their respective
pre-existing knowledge andwhat their tasks demand of them. Furthermore, not all sessions have
a purely technical goal, but may also involve explicit transfer of general software development
knowledge (G knowledge). The Knowledge Needs a pair wants to address in their session marks
their Target Constellation. With each knowledge transfer Episode they proceed a little on their
trajectory. Over all analyzed sessions, I identified six recurring Initial Constellations and a
shared overall session dynamic consisting of three steps. First, pair address their Primary Gap
which is their difference in system understanding (S knowledge). Then, they go about closing
their Secondary Gap, which is their shared lack of system understanding that is required to
productively work on their task. Finally, with the S Knowledge Needs out of the way, pairs
may actively start seizing their G Opportunity by transferring G knowledge from one partner
to the other.

5.5 A Recurring Example

Throughout all result Chapters 6 to 11, I will use the same excerpt from the beginning of
session JA1 as a recurring example to illustrate the respective chapters’ concepts. Each chapter
stands for a different analysis angle and I think coming back to the same data again and again
to see what else it has to offer not only resembles my research process but also allows the
reader to get somewhat familiar with at least a small portion of my complex data.

Unlike other Examples boxes in this thesis, the box below is a mere description of the events
in a pairs’ process without any discussion. As described in Section 4.4.4, the pair members
in question work in different cities and have an audio connection but cannot see each other.
The session recording, however, contains both developers’ screens and webcams, allowing to
analyze their facial expressions and gestures.

Example 5.1: The “Raw Data” of the Recurring Example (JA1, 02:29–06:15)
J1 is an experienced software developer who was invited by J2 to help with refactoring a software
system which J2 wrote several months prior. The software system (“the plugin”) aggregates
recordings of news segments from a number of radio stations (“waves”). Each radio station
provides a file server access (“shares”) to where the live recordings of the news segments are
continually written. The processing per radio station then consists of determining the moment
when a news segment ends, fetching the finished recording, and finally converting it to a different
format (“transcoding”).

In the excerpt below, J2 explains the static and dynamic architecture of the system, which
involves polling the file servers. J1 wants to know the size of the polling interval (which is 30
seconds), but J2 misunderstands the question. J2 thought he was asked How long are you polling?
(which is theoretically up to an hour until the next news segment starts, and practically about
seven minutes tops until the current news segment ends). The excerpt ends with the pair having
resolved this misunderstanding.

186

5.5. A Recurring Example

Since this is a distributed session and the developers do not see each other’s webcam feeds,
non-verbal actions such as nodding cannot be seen by the partner (but are part of the session
recording available to the researcher).

(1) J2: “Do you know the NewsPlugin, or don’t you know it?”

(2) J1: “<exhales audibly> Just show to it me again.”

(3) J2: “That with the news segments. I guess we should share it.”

The pair starts a Saros session (see footnote 7 on page 163) and J2 shares the source code. After 1:30
minutes and while the source code is still transferring to J1’s machine, J2 continues his explanation:

(4) J2: “OK, I can give you the big picture of what this plugin does, overall.”

(5) J1: “Yep.”

(6) J2: “In the end, the news recording of every hour pops out.”

(7) J1: “M-hm.”

(8) J2: “The way this works is that there are multiple processors, so there is the central plugin
and multiple processors which each handle one wave.”

(9) J1: <*nods*>

(10) J2: “For most of them, right after the full hour there is a check, if there is a new file on
the remote share.”

(11) “If so, the most recent file is selected and it starts checking how the file changes
size-wise.”

(12) J1: <*stops nodding, looks to his upper right*>

(13) J2: “I mean, it looks until the file does not get bigger anymore, then it is apparently ready.”

(14) J1: “M-hm”

(15) J2: “And then it is fetched and handed over to transcoding.”

(16) J1: “In what time window are you looking?”

(17) J2: “I start looking two minutes after the full hour, because then it’s guaranteed that
news files exist if any exist.”

(18) J1: “OK”

(19) J2: “And then monitor this file as long as needed until it’s ready. That can take up to
seven minutes, depending on the wave.”

(20) J1: “Hm ya but mh the time window for the change?”

(21) J2: “Yes, right, that is, er, time window for the change is variable, depends on how the
news go.”

(22) J2: “I can’t know that, right? You know, they always start a new file. When the news are
over, again a file is created. I mean, I basically never have more than the news.”

(23) J1: “Yes, no, I mean ’cause you said you look for so long until the size stops changing,
right?”

(24) J2: “M-hm”

(25) J1: “Then you need to plan for a time window in which a change could happen, right?”

(26) J2: “Yeah, well, until up to five before the hour. I really take my time.”

(27) J1: “<laughs> No, I really mean the size now, the size of the time window, I mean (!...!)
You wait for 10 seconds, then after 10 seconds you decide: In those 10 seconds nothing
has changed, so the file appears to be ready.”

(28) J2: “Ahhh, that’s what you mean. No, 30 seconds.”

(29) J1: “30 seconds, that’s what I wanted.”

(30) J2: “That’s 30 seconds long the time window. Now I got you.”

Example 5.1 (continued)

187

CHAPTER 5. RESULTS OVERVIEW

188

Chapter 6 Process Fluency and
Pair Togetherness

6.1 Purpose and Structure of this Chapter . 189
6.2 Dialog Structure in Pair Programming . 190
6.2.1 Dialog in the Base Layer. 190
6.2.2 Five Types of Base Activities . 191

Initiative Activity • Pair-Referential Activity • Self-Referential Activity •
Corrective Activity • Conversational Defect

6.2.3 Discussion of Recurring Example . 199
6.3 Fluency . 200
6.3.1 Foreword to the Fluency Examples . 200
6.3.2 Normal Pair Programming . 201
6.3.3 Focus Phases. 204
6.3.4 Breakdowns in Pair Programming . 210

No Progress as a Pair • No Progress at All

6.4 Togetherness . 222
6.4.1 Degrees of Togetherness: Understanding Intentions 223
6.4.2 Facilitators and Inhibitors of Togetherness . 224

Factor: Shared Understanding of the System • Factor: Shared Understanding of Software
Development • Factor: One Shared Plan • Factor: Workspace Awareness • Factor: Language
Barrier • Factors’ Interplay

6.4.3 Not Maintaining Togetherness . 228
By Choice • By Accident

6.4.4 Maintaining Togetherness. 230
Excluded Factor: Language • Excluded Factor: Workspace Awareness • Excluded Factor:
One Shared Plan • Excluded Type: Opinions

6.5 Discussion of Related Work and Summary . 234

6.1 Purpose and Structure of this Chapter

Unlike the results that will be presented in the following chapters, this chapter is not yet
specific to the knowledge transfer aspect of pair programming, but covers more fundamental PP
mechanisms. The observation which triggered this particular line of inquiry was the recording
of session OA1 in which the pair struggled for hours and made virtually no headway. This
session contrasted with others I had seen before, e.g., session CA5 in which the pair downright
raced through their task, producing one valuable code change after the other.

189

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

I introduce the concept of Fluency to describe the qualitative difference between these
ways of how pair programming sessions are carried out. A PP session’s Fluency is not constant,
e.g., pairs may recover from a Breakdown and work normal just a few minutes later; highly
productive Focus Phases are also limited to a few minutes at most, whereas the majority of
the session progresses normal Fluency. This variation can be explained with the programming
pair’s momentary Togetherness: It conceptualizes how well the developers understand each
other, or more precisely, the extent to which they are able to understand each other’s activities.
Unlike Fluency, a pair’s Togetherness is not directly observable, but is it put to test with
every base activity of a pair member: Resulting confusion or the lack thereof allow for an
operationalization. Furthermore, many of the things pair programmers do, including some
forms of knowledge transfer, can be interpreted asMaintaining Togetherness, basically making
sure both pair members are on the same page. A pair’s Togetherness influences its Fluency:
Low Togetherness may lead to undesirable Breakdowns, while high Togetherness may lead to
highly productive Focus Phases.

This chapter is structured as follows: In Section 6.2, I lay the foundation for operationalizing
Fluency based on properties of a pair’s base activities. A few observations and conceptualiza-
tions concerning dialog structures in pair programming processes are already manifest in the
Base Layer (BL). Most importantly, there is a distinction between initiative and reactive utter-
ances. I analyze different properties of reactive utterances (such as timeliness, evaluativeness,
appropriateness), and characterize base activities according to their role in the pair’s dialog as
either initiative, pair-referential, self-referential, corrective, or defective.

I then use patterns of base activities to operationalize three levels of pair programming
Fluency in Section 6.3: normal, Focus Phases, and Breakdowns. Note that a fluent development
process is not necessarily the same as a good development process: Subjectively successful
sessions might be non-fluent for longer stretches of time, and a fluent process does not
guarantee technical progress. However, from a software engineering stance, normal and Focus
Phases are arguably desirable, while Breakdowns are problematic.

In Section 6.4, I explain the concept of Togetherness, a quality of a pair at a point in
time. It is not directly observable, but positive and negative effects on a pair’s Fluency are.
Together with different strategies employed by pair programmers toMaintain Togetherness,
I characterize a number of facilitators and inhibitors that promote or hinder Togetherness:
(1) shared understanding of the system, (2) shared understanding of software development in
general, (3) one shared plan, (4) workspace awareness, and (5) language barrier. In a broad sense,
knowledge transfer in pair programming can be characterized asMaintaining Togetherness
concerning factors (1) to (4). The following Chapters 7 to 11, however, mostly discuss the
details of knowledge transfer in the narrower sense of factors (1) and (2), i.e., establishing and
maintaining a shared understanding of the system and software development in general.

In Section 6.5, I discuss other research related the phenomena discussed here.

6.2 Dialog Structure in Pair Programming

6.2.1 Dialog in the Base Layer

Pair programming, as Beck (1999, p. 100) remarked, “is a dialog” . And indeed, as Salinger &
Prechelt (2013) observed, pair programmer activities are not isolated, but may refer to the
partner’s (or one’s own) previous activities. Consequentially, one of the key decisions of the
base layer is tomodel dialog episodes: If a developer intends to make a connection to a previous
activity or its topic, this relationship should be encoded with a base concept (see also page 132).

190

6.2.2 Five Types of Base Activities

As a consequence, the base layer distinguishes initiative base activities (which bring up
some idea, proposal, or piece of knowledge through propose or explain) from reactive ones
(which refer to something brought up before with agree, amend, challenge, decide, or disagree)—
see page 134. However, this distinction is not actually employed in the base layer (BL, p. 49).

The way a reactive activity refers to a previous utterance may be explicit or implicit (BL,
p. 49). These references are on a pragmatic level, i.e., they do not necessarily exist in syntactical
form (e.g., by using identifiers), but are embedded in the meaning of the uttered words and
need to be understood by the developers. Normal communication always involves construction
by the speaker and reconstruction by the listener (see Section 3.2.1). Amazingly, in everyday
communication as well as in pair programming, this process works more often than not. And
when it does not work, mistakes can be detected and corrected, e.g., by asking for clarification.

The researcher, however, needs to reconstruct the meaning of the utterances without
being able to ask for clarification and therefore has to find other ways to get to a convincing
interpretation. Salinger & Prechelt (ibid., pp. 206–207) propose a number of method hints:
step back and consider more context, paraphrase, and peek into the future. Either way, such
reconstructions are not perfect and there is no guarantee that (a) all references intended (and
possibly understood) by the developers are also understood by the researcher, and (b) all
that was ‘understood’ by the researcher was actually intended this way by the developers.
I discussed this issue in Section 4.5 (pages 166 and 170 to 174).

6.2.2 Five Types of Base Activities

I refine the initiative/reactive distinction made in the base layer into five types of activities.
They are represented by mnemonic symbols which I use as nouns in the text and as markers
in the verbatim excerpts to follow. There are four conversational roles: An initial activity
starts a new thread of conversation, a pair-referential activity refers back to running topic,
a self-referential activity refers back to one’s topic without the partner being involved,
and a corrective activity is about clearing up a misunderstanding. The fifth type is the
conversational defect which marks a missing reaction in the conversation, though not all s

are necessarily problematic. Each base activity, regardless of its conversational role, and even
the absence of an activity where one would be expected, can be a . I discuss each type in
detail on the following pages; refer to Table 6.1 for a summary.

Symbol Short Description Symbol Mnemonic

Property: conversational role
Initiatives such as proposals, questions, or explanations; may
be expecting a reaction or non-expecting (Section 6.2.2a)

Start of something new

A reaction to a that both partners are involved in; may be
prompt or delayed, evaluative or non-evaluative, appropriate
or misled (Section 6.2.2b)

Arrowhead pointing to part-
ner’s previous activity

Referring to a in which the partner is not yet or not anymore
involved (Section 6.2.2c)

Arrowhead pointing to
one’s own previous activity

Attempting to clear up a misunderstanding (Section 6.2.2d) A point to make connection

Event: conversational defect
A missed connection in the dialog, e.g., not referring to an
expecting ; can be a non-action (see Section 6.2.2e).

A communicative thread
coming to a standstill

Table 6.1: Further differentiation of the concepts of the Base Layer (BL). The conversational
role extends the initiative/reactive distinction (see page 134); is a newly introduced aspect.

191

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

In the examples and descriptions to follow, I use the symbols extensively. In examples with
multiple conversation threads, I use indices to make the (reconstructed) references visible, as
in this sequence with two interleaved topics A and B: A– A– B– A.

Note that the examples given to illustrate the five types all come from session CA2 and
are (almost) in chronological order. I chose examples this way to avoid context switches for
the reader; the concepts were developed late in the process after I had analyzed all of the pair
programming sessions described in Section 4.4.

6.2.2 a) – Initiative Activity

Initiative activities, or for short, introduce some new aspect into the discourse. Most s carry
an implicit call to the partner to react to it in a certain way, such as proposals which request an
evaluation, questions which should be answered, and explanations which are directed at the
partner and should be acknowledged. (Such pairs of actions and expected reactions are called
adjacency pairs, see Section 3.2.1b).

This is a simplification, of course. Not all proposals are uttered with the expectation that
the partner evaluates them (see propose activities in mode PI provide information, see page 135).
The point is that the speaker of a usually appears to have an expectation of the dialog’s next
turn when she makes a proposal, asks a question, or gives an explanation, as can be seen in
Examples 6.1 and 6.3 below. I call such s expecting. Sometimes, however, a is indifferent
or non-expecting, as in Example 6.11 on page 197, where both developers utter some fact or
observation with no clear indication as to what they expect their partner to do with it.

Regardless of the nature of the implicit call, however, there is no guarantee that the partner
complies to it, as she might not interpret the as expecting, or might not be able or willing
to respond. Likewise, not requesting an evaluation with a non-expecting does not always
hinder the partner from providing one. This is a general property of speech acts (Austin, 1962,
p. 105, see also my discussion on page 112).

6.2.2 b) – Pair-Referential Activity

As soon as a has been started by one pair member, the partner may direct a reaction to the
original speaker. Such reactions and any further turn by either of the two referring to the same
are pair-referential activities, or . A shows that what was said before was understood

and referred to, and possibly also evaluated. This is basically what the base layer’s notion of
reactive utterances is about: verbs such as agree, amend, challenge, decide, and disagree. Here
are a few examples of how s can look like:

• Putting a proposal- directly into action indicates the developer understood and appreci-
ates it to some degree.

Example 6.1: Agreeing to Proposal Through Action (CA2, 10:14–10:47)
Early in their session, C5 starts to explain the changes he already performed alone. C2 guides
this explanation through a proposal (propose_step in turn 3), which C5 immediately puts into
action without verbally commenting on it (turn 4).

(1) A C5: “What I did [. . .], is to extend the IFeatureAttributeConfiguration
with an IVirtualColumn, where I can get an object, where you can get
the IColumns, where you might get to a Provider, or something.”

explain_knowledge
(2) A C2: “M-hm. Sure thing.” explain_standard of knowledge
(3) B C2: “Show them please, what they look like.” propose_step
(4) B C5: <*opens IVirtualColumn.java*> do_sth

192

6.2.2 Five Types of Base Activities

• Answering a question- also indicates the speaker understood it and refers to it.

Example 6.2: Reacting to Question With Answer (CA2, 19:54–20:00)
C2 is in the process of understanding C5’s recent changes. C2 asks about the current package
location of a class and C5 explains that he moved it already.

C2: “And the VirtualAttribute, where is it?” ask_knowledge
C5: “That one, I moved.” explain_knowledge
C2: “Ah, so we’re clear.” explain_state

C2’s last utterance refers to the same which both partners are involved in, so it is a , too.

• Some questions to answers are ‘improper’ in that they do not directly refer to the question
as such, e.g., with an explanation why the question is not worth answering (BL, pp. 154–
155). These are also s, since the reacting partner understood and evaluates the .

Example 6.3: Reacting to Question With ‘Improper’ Answer (CA2, 28:16–28:33)
C5 wants to use Eclipse’s “Change Method Signature” refactoring to ease the pair’s next
implementation step, but cannot remember the keyboard shortcut, and asks his partner about
it (turn 1). C2 understands the underlying idea, but doubts its benefits and reacts with an
improper answer (turn 2).

(1) C5: “Erm, do you know the (!...!) how I access the feature to change a method?”
ask_knowledge (propose_step)

(2) C2: “That doesn’t get you anywhere.” explain_knowledge (disagree_step)
(3) C5: “It does. In the method, once opened, I can turn the IVirtualColumn into

I (‼...‼)” challenge_knowledge + propose_design
(4) C2: “That doesn’t buy you much. But it’s ALT SHIFT C, do it with ALT SHIFT C.”

challenge_knowledge + explain_knowledge

Note that pair-referential does not imply affirmative:C2 clearly rejectsC5’s idea andC5 objects
C2’s assessment (disagree_step and challenge_knowledge, respectively), but both reactions
refer to C5’s original that both developers are involved in.

There is a continuum of developer activities between and : Both are directed at the partner
to some degree, while the novelty of what they introduce into the discourse varies. I distin-
guish these two types mainly for readability, not for distinguishing different levels of Fluency.
Occasionally, I annotate both and on one activity, e.g., when the developer starts a new
conversational strand based on a previous one.

6.2.2 c) – Self-Referential Activity

Sometimes a developer corrects, amends, or otherwise evaluates her own before the partner
reacts to it. I call these activities self-referential or . If the partner did already react but the
speaker did not yet acknowledge her partner’s involvement, an amendment of one’s own is
also a (as opposed to a). Relevant for self-referential activities is that—from what the
researcher can tell—the speaker is in a sense ‘alone’ in her , as is shown in the next example:

193

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

Example 6.4: Self-Referential Activity without Partner Involvement (CA2, 31:17–31:57)
C5 has performed the “Change Method Signature” refactoring he proposed in Example 6.3, which
resulted in a number of compilation errors, which the pair started to go through one by one. After
fixing the first error, the pair gets interrupted for a few seconds, after which C2 appears to zone
out and C5 focuses on the second error alone:

(1) C5: <*opens the file with the next compilation error from their list, sets text cursor
next to the error*> do_sth

The pair gets interrupted for 10 seconds, both look back at the screen afterwards:
(2) C5: “<*moves cursor along the line with the error*> OK” examine_sth
(3) C2: <*starts to look around the office*>

(4) C5: “Oh, I expected he would change this one, too.” explain_finding
(5) C2: <*looks around the office*>

(6) C5: <*manually renames a method*> “Mhm” <*undoes the renaming, lets the IDE
generate an empty method body instead*> write_sth + mumble_sth

(7) C2: <*still looks around the office, eventually looks back at screen*>

After the interruption, C5’s picks up on his own , while C2 did not get involved in any way. C2
does not react to C5’s explain_finding in turn 4, and C5’s two attempts to fix the compilation error
in turn 6 remain unseen by C2. In fact, C5 does not even seem to be aware that C2 is not paying
attention for about 20 seconds.

If, on the other hand, the partner is already involved with the respective and the original
speaker acknowledged this involvement, she is no longer ‘alone’ and I assume all further
activities of the two developers to be pair-referential , as is illustrated in the next example:

Example 6.5: Self-Referential Activity With Partner Involvement (CA2, 32:41–33:07)
The pair worked through all but one compilation error. C5 opens the class with the last one and
proposes a code change shortly after.

(1) C5: <*opens the last compilation error instance*> do_sth
(2) “Erm (.) ah, ok, we need to change them. (##VirtualAttributes##)”propose_design
(3) C2: “And rename them” amend_design
(4) C5: <*changes the type of a class variable to VirtualAttibutes and renames it to

virtualAttributes.*> write_sth

The pair had planned to go through all compilation errors. This is the last one on their list, so in
this context the act of opening the file (turn 1) is effectively a like ‘Let’s find out what needs to
be done here’, even though neither of the two said a word. I characterize C5’s propose_design in
turn 2 as a because his partner is not yet involved in the .

C2’s involvement only becomes evident with his amend_design in turn 3. This is why I consider
C5’s next turn 4—where he acknowledgesC2’s involvement by puttingC2’s proposal into action—a
pair-referential instead of a self-referential .

6.2.2 d) – Corrective Activity

If a partner recognizes some sort of misunderstanding between herself and her partner, she
may attempt to repair this with a corrective activity. Such misunderstandings might be due to
misread or simply not understood intentions, or due to one partner not possessing knowledge
that was considered common ground by the other.

Neither one developer’s perception of a misunderstanding nor the misunderstanding itself
can be directly observed, only the actions of the pair members dealing with it. For the involved

194

6.2.2 Five Types of Base Activities

developers, the detection can happen in two places: Internally (a developer notices something
in herself) and externally (a developer notices something in her partner).

Internal Detection of Misunderstanding
Upon trying to understand her partner’s base activity, the developer may notice that she lacks
information to react properly and then ask for it explicitly.

Example 6.6: Corrective Activity (CA2, 35:21–35:39)
C5 proposes to move a class to a different package, but his partner C2 is not able to interpret the
meaning of “this” .

C5: “We need to move this as well.” propose_design
C2: “Where are you? In what class? Or in which module?” ask_knowledge
C5: “What I did is, there is (‼...‼)” explain_knowledge
C2: “In which module are you right now?” ask_knowledge
C5: “I moved the Factory, with which I create these VirtualColumn, or these IVirtual

Column, I also moved to basis.” explain_knowledge
C2: “Ah, I see.” explain_standard of knowledge

Note that C5 does not directly answer C2’s question, but explains the broader context of what
they did in the previous minutes, presumably to make sure to clear up any misunderstanding.

The developer may also have trouble understanding the partner’s base activity altogether. A
repair can then be as simple as a ‘pardon?’—a request to repeat what was said before.

Example 6.7: Corrective Activity (CA2, 37:52–38:18)
Both developers read in the source code and C2 seems a bit lost. In the excerpt below, C5 therefore
starts explaining what the current class is about. C5 does not use the full class name and C2 does
not understand the explanation, which leads to series of corrective activities.

C5: “This is another implementation, which does not use the Abstract.”
explain_knowledge

C2: “(.) Another implementation of FeatureAttributeConfiguration?”
ask_knowledge

C5: “Yes, yes.” agree_knowledge
C2: “Which does not use what?” ask_knowledge
C5: “Which does not use the abstract class we adjusted.” explain_knowledge
C2: “(. . .) Ok, so we need to adjust it here?” propose_designOE
C5: “<with relief> Yep, exactly.” agree_design

External Detection of Misunderstanding
The original speaker might catch on cues in her partner’s that make her start a :
1. Timeliness: A may be prompt, coming immediately after the , indicating it was easy

for the partner to understand and respond to it; or it may be delayed for some time,
indicating to the original speaker that it took her partner a bit longer to understand the
and/or to formulate a response, possibly because of a wrong or lack of understanding.

2. Evaluativeness: The base layer discriminates between constructive and unconstructive
activities (BL, p. 49), i.e., those that add new aspects into the discourse (such as amend
or challenge) and those that merely make a judgment (such as agree or disagree). Both
imply that the reacting speaker (1) understood the and (2) evaluates it. I call such s
evaluative.

195

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

There are, however, s which do not evaluate the , but merely acknowledge that it
was made. From the researcher perspective, it is usually hard to distinguish whether the
reacting partner did not understand the or whether she did understand it, but does not
evaluate it. I therefore do not distinguish these cases and call all such s non-evaluative.

3. Appropriateness: A may be appropriate, or it may bemisledwhen the partner did not
understand the original . Note that this is not objective appropriateness: I characterize a
as appropriate when the partner (for the moment) behaves as if it was appropriate.

A developer who receives a which is delayed, non-evaluative, or misled—or no reaction at
all (in a sense maximally delayed and non-evaluative)—may start a , e.g., by rephrasing her
to make the partner understand her intention or by providing additional information to

make sure that what she falsely assumed to be common ground will be understood by both pair
members. The next example shows a after a prompt and appropriate, but non-evaluative .

Example 6.8: Expected Common Ground (CA2, 37:15–37:30)
C5 is faced with the choice between two methods—getColumnAttributes and getAllColumn
Attributes—and asks his partner about it, presumably expecting C2 to possess the necessary
background knowledge to make the choice. C2 appears to understand the design proposal, but is
not able to make a judgment, so his reaction remains non-evaluative. C5 makes his choice, and
explains what the difference between the options was.

C5: “OK, that one needs all, right? Think so.” propose_designOE
C2: “No idea (‼Yes‼) what it does. Ok.” explain_standard of knowledgeRT
C5: “<*chooses getAllColumnAttributes*> (. .) That’s for getting a unique name for

the attribute.” explain_knowledge
C2: “M-hm. I see. Ok.” explain_standard of knowledgeAT

The base concept indices are explained in Section 3.4.2c (pages 134 and 135): C5’s proposal is of
mode obtain evaluation (OE), i.e., requesting the partner to make a judgment while expressing a
positive evaluation himself; C2 first refuses the knowledge transfer (RT); after C5’s explanation, C2
acknowledges the knowledge transfer (AT).

Additional references while developers are in the midst of correction (as in Example 6.7) are not
coded as or : The actions are just part of an attempt to repair each other’s understanding of
the first ‘level’ of reciprocal communicative knowledge (see Section 3.2.1a); I do not discriminate
higher levels.

In the base layer, neither misunderstandings nor corrections are explicitly addressed. In
fact, Salinger & Prechelt propose the researcher should consider the partner’s reaction in case
the original speaker’s primary intention is difficult to reconstruct—which only works if the
partner correctly understood the intention (BL, p. 206).

6.2.2 e) – Conversational Defect

Sometimes developers do not refer to the current at all. There are several forms such a
missing link, a defect, can take in a conversation. None of these phenomena are addressed
by existing concepts or properties in the base layer.1

• One partner may start a new without making clear its relation to the previous (e.g.,
whether it is meant as a counter-proposal), as in the next example:

1In their pair study, Okada & Simon (1997, Table 7) identified disregard of the request as one of six reaction
patterns following a request for explanation. See also discussion on page 96.

196

6.2.2 Five Types of Base Activities

Example 6.9: Unrelated Proposal (CA2, 43:02–43:26)
After the refactoring is finished and the IDE does not list any more compilation errors, C5
proposes to start the application to check whether they broke anything. C2 has a different
idea regarding an API extension, which he outlines without acknowledging C5’s proposal.

(1) A C5: “Now, we’re error-free again.” explain_state
(2) A C2: “OK.” agree_state
(3) B C5: “Now (, , , ,) what I’d be interested in now, if we check the GUI, (‼Wait a

second‼) if the GUI still works.” propose_step
(4) B C C2: “I’d like to build a method to get them as raw as they are (‼M-hm‼) and

then I’d like to take a look at the thing with the dialog and so on.”
propose_strategy

(5) C C5: “OK.” agree_strategy

C2 does not take a clear stance on C5’s proposal to check whether the application is still
working. The “thing with the dialog” might be a reference to the GUI as well, but judging
from C2’s own words it is not clear whether he understood C5’s proposal. Quite possibly, he
was not even listening to C5 (“Wait a second”). If C2 really had testing the GUI in mind at
this point (the following events in the session do not make this clear), it was an idea that
was independent from C5’s, so a connection to C5’s B is missing.
Note that—just like in software—a defect does not necessarily lead to a failure: C5 does not
object C2’s interjection and this particular in their conversation does not appear to be
problematic for their process.

• There might be no reaction whatsoever, as in the next example, where the was clearly
expecting an evaluation:

Example 6.10: Non-Actions (CA2, 55:41–55:49)
C2 has moved the text cursor to the position of an unnecessary if-block which the pair
previously talked about. He asks C5 about this, does not get any reaction, and then deletes
the statements.

(1) C2: “This we wanted to delete, with the equals null?” propose_designOE
(2) C5: “(. .)”

(3) C2: “Am I right?”

(4) C5: “(. . .)”

(5) C2: <*deletes the lines in question*> write_sth

C5 remains silent both times and stares at the screen, possibly thinking about the implications.
The following events do not allow for a conclusive interpretation of his behavior.

• The developer might continue some older of her own, without relating to the most
recent actions, as in the following example:

Example 6.11: Following One’s Own Initiative (CA2, 1:14:07–1:14:42)
C2 tries to explain the problem he sees with the next steps towards the implementing of the
currently planned design, while C5 (again) tries to formulate an argument in favor of the
design he started prior to the session, but which the pair undid during the last hour. Neither
of the two actually reacts to what the partner just said, they merely fill each other’s pauses.a

(1) A C2: “Well, our problem (.) is (. .) that we don’t have FeatureProxies per se
<*looks at C5*> (. .) for our case.” explain_knowledge

(2) B C5: “Well, you know I talked to <**lead developer**> yesterday (‼or do we?‼)
about this.” explain_knowledge

(3) A C2: “<*looks at screen*> (.) although (!...!)” examine_sth

197

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

(4) B C5: “<*pulls a sheet of paper towards him*> Which explains what I did with
the Column earlier.” explain_knowledge

(5) A C2: “Although (, , ,) well, I mean (!...!) (. . . .)” examine_sth

Note that both A and B are non-expecting: There is no question to be answered and no
proposal to be evaluated, but just a fact being stated without a clear indication what the
partner is supposed to do with it. On a technical level, C5’s first utterance might actually
have a connection to C2’s assessment (e.g., something like ‘we wouldn’t be in this mess if we
just followed my original design’), but neither does C5 make it explicit, nor does C2 seem to
understand the utterance in this sense.

aJones & Gerard (1967, cited by Argyle et al., 1981, p. 223) call such an interaction pseudo-contingent.

Example 6.11 (continued)

The -property is independent from the types previously discussed: Any action of the other
four types (and even non-actions) can be a as well.

The relevant criterion for a is that the developer had time to understand the previous
turn but does not react to it as would be expected under “normal” communication conditions
(i.e., both speaking the same language, being conscious about what they do, not engaging in
any other non-literal use of language, etc., Searle, 1969, p. 57). Accordingly, there is another
type of , in which the developer does recognize one of the markers mentioned above (e.g.,
taking longer than normal and react delayed or only react in a non-evaluative fashion, see
Section 6.2.2d) but does not engage in a . In the majority of the analyzed sessions, there were
very few instances of this type, such as the one in the next example. Sessions OA1 and OA8,
however, are exceptional in that they contain several such non-correcting s. I discuss the
resulting Breakdowns in Section 6.3.4.

Example 6.12: Not Clearing Up (CA2, 16:45–17:05)
Early in the session, the pair looks at a method which C5 changed prior to the session. C2 did not
know the source code and started reading. He discovered that a variable was initialized several
statements before it was used the first time, and moved the initialization statement to the last
possible point. In the excerpt below,C5 disagrees with C2’s change as it does not fit with his design
idea, and he explains that currently the change is not technically wrong, but it will be wrong in
the near future.

(1) C5: “Well, as it is now, it has no effects, because the other things are not working yet.
But if we keep that order, the moment this <*points to statement*> gets active, if
we implement it the way I thought, this would run into an error.”explain_knowledge

(2) C2: “<indifferent> It is right then.” agree_knowledge
(3) C5: <*turns around sharply, looks at C2, gasps (‼...‼)*>

(4) C2: “OK, but now let’s have a look <*takes mouse again, and continues reading in
code*>” propose_step

(5) C5: “M-hm” agree_step

C2’s indifferent reaction comes as a complete surprise for C5, as if C2 has no idea what C5 just said
but just agreed without thinking to get going again. C5 appears as if he is about to say something
(turn 3) but is cut off by C2. The lies in C5 not insisting on a clarification (turn 5) despite the
apparent differences between his and C2’s understanding. This matter remains unresolved.

Note that even though the color and the name “defective activities” may suggest that s are
‘bad’, they are basically a marker of violated expectations. They may occur in normal PP
and even during Focus Phases without indicating much harm—just like not every defect in a
software causes it to fail.

198

6.2.3 Discussion of Recurring Example

6.2.3 Discussion of Recurring Example

The recurring example from session JA1 does not show all five base activity types, but it
illustrates the breadth of and phenomena. (See Example 5.1 for technical background.)

Example 6.13: Five Types of Base Activities (JA1, 04:09–06:15)
J2 starts an explanation () and J1 listens. All following turns are pair-referential activities ().

(4) J2: “OK, I can give you the big picture of what this plugin does, overall.”

(5) J1: “Yep.”

(6) J2: “In the end, the news recording of every hour pops out.”

(7) J1: “M-hm.”

(8) J2: “The way this works is that there are multiple processors, so there is the central
plugin and multiple processors which each handle one wave.”

(9) J1: <*nods*>

(10) J2: “For most of them, right after the full hour there is a check, if there is a new file on
the remote share.”

(11) “If so, the most recent file is selected and it starts checking how the file changes
size-wise.”

(12) J1: <*stops nodding, looks to his upper right*>

(13) J2: “I mean, it looks until the file does not get bigger anymore, then it is apparently
ready.”

(14) J1: “M-hm”

(15) J2: “And then it is fetched and handed over to transcoding.”

Subsequently, after J1’s question (), J2 over and over provides answers () without seeing any
misunderstanding. J1, however, rephrases and reframes his question () until J2 also acknowledges
the misunderstanding () and provides the required information.
(16) J1: “In what time window are you looking?”

(17) J2: “I start looking two minutes after the full hour, because then it’s guaranteed that
news files exist if any exist.”

(18) J1: “OK”

(19) J2: “And then monitor this file as long as needed until it’s ready. That can take up to
seven minutes, depending on the wave.”

(20) J1: “Hm ya but mh the time window for the change?”

(21) J2: “Yes, right, that is, er, time window for the change is variable, depends on how the
news go.”

(22) “I can’t know that, right? You know, they always start a new file. When the news
are over, again a file is created. I mean, I basically never have more than the news.”

(23) J1: “Yes, no, I mean ’cause you said you look for so long until the size stops changing,
right?”

(24) J2: “M-hm”

(25) J1: “Then you need to plan for a time window in which a change could happen, right?”

(26) J2: “Yeah, well, until up to five before the hour. I really take my time.”

(27) J1: “<laughs> No, I really mean the size now, the size of the time window, I mean (!...!)
You wait for 10 seconds, then after 10 seconds you decide: In those 10 seconds
nothing has changed, so the file appears to be ready.”

(28) J2: “Ahhh, that’s what you mean. No, 30 seconds.”

(29) J1: “30 seconds, that’s what I wanted.”

(30) J2: “That’s 30 seconds long the time window. Now I got you.”

199

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

Equipped with the vocabulary introduced in this section, different levels of pair programming
process quality, or Fluency, can be characterized.

6.3 Fluency

Fluency is an observable property of the pair programming process. I distinguish three levels:
• Normal PP is normal in the sense that most of the analyzed pair programming sessions
are this fluent most of the time: There are no long pauses between base activities and
developers evaluate each other’s initiatives. Misunderstandings occur and are cleared up.

• Focus Phases are episodes that are faster than a normal process. There are virtually no
pauses between the base activities and both developers are able to focus entirely on the
current task without the need to correct misunderstandings.

• A Breakdown is an episode during which there is no real pair process. The developers
neither request nor provide an evaluation of their respective ideas. Misunderstandings
occur and they are not repaired. There are long intervals of silence between the base
activities.

Each of these levels is characterized by a pattern of base activities (see Table 6.2).
Fluency is not the same as the rate of technical progress: The pair may struggle with a

difficult problem, which requires them to take multiple attempts, but still have a fluent pair
programming process in which they produce, evaluate, and decide on ideas together. The
beginning of session JA1, for example, has a lengthy exchange between developers J1 and J2
during which very little technically relevant information is transferred (see Example 6.13), but
it is fluent and an example of normal PP.

6.3.1 Foreword to the Fluency Examples

A word of warning: The examples in the following sections are special in a number of ways.
First, they each cover several minutes of session time, which is considerably longer than
most examples in this document. This is due to the process nature of the Fluency concept
which cannot be reasonably illustrated in short exchanges. Second, I provide much technical
background information from the respective PP session before I actually present the transcript.
This information is necessary because the pair’s dialog does not only contain conversational
references (marked by the icons , , etc.) but also technical references, which I mark with
boxed numbers 1 , 2 , etc. My intention is to enable the reader to come close to understanding the
developers’ utterances and actions the way their respective partner could. Third, the passages
are transcribed in great detail, including gestures and computer interactions (HCI activities).
The transcripts are coded with base concepts to make the speakers’ (reconstructed) primary
intentions clear. Each of the examples spans multiple pages, so you better get comfortable.

The three Fluency levels also vary along another dimension: the ease withwhich an outsider
can understand the developers’ activities and utterances. During a Focus Phase, the developers
do not need many words to understand each other—many things remain implicit which leaves
fewer clues for the reconstruction. In normal PP, the developers usually understand each
other, and when they do not, misconceptions are cleared up, i.e., things are made explicit that
otherwise would remain implicit, which means more clues for me as the researcher. During a
Breakdown, however, miscommunication is not cleared up, so the pair members’ confusion
becomes observable, but more difficult to fully reconstruct.

The relative scarcity of verbal cues in Focus Phases and Breakdownsmakes reconstructing
the developers’ behavior more ambiguous, sometimes leaving more than one plausible inter-

200

6.3.2 Normal Pair Programming

Concept Description/Characterization

Fluency Property of the pair process, characterizes both the rate at which the pair performs
base activities and the degree to which these activities refer to each other. I
distinguish three levels:

– normal PP
Section 6.3.2

The s request an evaluation or are otherwise directed at the partner, who re-
acts with evaluative and prompt s. There are only few s and rarely any s.
Occasional s are normal, they clear up misunderstandings.

– Focus Phase
Section 6.3.3

The s are less directed at the partner but more at the pair as a whole; s are
prompt (sometimes they start even before the is finished, because the partner
understood the already) and evaluative, usually affirmative, e.g., in the form
of proposals put directly into action. Misunderstandings and s are very rare,
making s mostly unnecessary. Both partners are usually involved in the s, so
rarely happen.

– Breakdown
Section 6.3.4

The s do often not request an evaluation or lack a clear indication how the partner
is supposed to react; there are many s and s. If the partner gets involved in an
, the s tend to be delayed and non-evaluative. Most prominently, s are scarce,

misunderstandings that underlie misled or missing reactions are not addressed
and cleared up.

Table 6.2: Fluency and its three levels

pretation. In the respective examples, I will generally provide only one interpretation, instead
of iterating all the ways the pair members might have (mis)understood each other. My goal is
not to provide a bit-perfect linguistic coding of the respective episodes, but a characterization
of the general process properties, which lies in the pair being able to understand each other
easily without many words or the pair failing to clear up misconceptions, respectively.

In first discuss normal PP in Section 6.3.2 as a baseline, then characterize howwell pairs can
work during Focus Phases in Section 6.3.3, before I discuss Breakdowns as the other extreme
in Section 6.3.4.

6.3.2 Normal Pair Programming

In normal PP, both developers produce and evaluate ideas, and the overall process is fluent in
the sense that there are no long pauses between the base activities and the pair as a whole
gets a better understanding over time. This does not mean that the pair members agree with
each other all time: Negatively evaluated proposals, for example, do not automatically lower a
pair’s Fluency if the partner is able to articulate her disagreement and the original speaker
understands it. Misunderstandings concerning the partner’s intentions also happen, but this
happens in everyday communication as well. In normal PP, the developers detect and repair
those misunderstandings. The beginning of session JA1 (see Example 6.13 on page 199) is one
example; the following excerpt from session OA8 is another:

Example 6.14: Normal Pair Programming (OA8, 49:10–51:19)

Session Background
The software has a calendar with draggable events represented by horizontal bars. When such a
bar is dragged, a ‘ghost’ is displayed under the user’s cursor. Multi-day events are defined by a
start and an end date; they may extend over weekends but are measured in workdays. The ghost
of such an event therefore has a variable length depending on how many weekends it covers. For
a smooth animation, the rendering logic depends on where the user grabs the bar.

201

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

This logic is currently broken and is to be fixed by developers O3 and O4. At this point in
their session, they are in the process of writing a test case to automatically reproduce the faulty
behavior. The pair spoke English in their session, which neither of them can speak effortlessly,
but which is their strongest common language. The transcript below is verbatim.

Technical Background
The source code (see Figure 6.1) shows the relevant properties of the event bar’s data structure:
1 start and end of the event determine its duration, 2 offsetFraction is the relative grabbing
position (ranging from 0 to 1), 3 offsetDays is the zero-based index of the event day that
corresponds to the value of offsetFraction. The pair knows these identifiers, but is not fully
aware of the meaning of all of them. The consideration of weekends 4 is done elsewhere.

There was an existing test case (5 , code lines 94–100 in Figure 6.1) for a three-day event
being grabbed right in the middle (offsetFraction:0.5) for which the correct day index would
be offsetDays:1 (day 0 is in range 0 to 0.33, day 2 is between 0.67 to 1.00). The pair already
copied that test case, set the event’s start and end nearly a month apart, and changed the
offsetFraction to 0.95 to simulate grabbing the bar near its end.

94 dataModel.getStart.returns moment ’2000-03-04’
95 dataModel.getEnd.returns moment ’2000-03-07’
96 rowView.emit ’dragstart’, offsetFraction: 0.5
97
98 expectedDragProperties = sandbox.match
99 offsetDays: 1

100 expect(timeline.setDragProperties).to.have.been.calledWith expectedDragProperties

103 dataModel.getStart.returns moment ’2016-06-02’
104 dataModel.getEnd.returns moment ’2016-06-29’
105 rowView.emit ’dragstart’, offsetFraction: 0.95
106
107 expectedDragProperties = sandbox.match
108 offsetDays: 1
109 expect(timeline.setDragProperties).to.have.been.calledWith expectedDragProperties

Figure 6.1: Relevant excerpts of the test code written in CoffeeScript. The original test case is in lines
94–100, the copied (and not yet completely adapted) test case starts in line 103.

What happens
The pair understands that they need to set a specific expectation value in code line 108 (see
Figure 6.1), realize they do not yet know the meaning of the field “offsetDays” (aspect 3), and
come up with an idea how to figure it out. In their dialog, they refer to all aspects 1– 5 .

(1) A O4: “<*moves cursor to line 108*> And the
offset is?” ask_design

O4 asks for a specific value of 3 to expect
in the test case.

(2) A O3: “Erm, offsetDays would be (.) a lot.
Because, like the difference between these
two guys <*points to start and end dates*>,
right?” propose_hypothesis

O3 only gives a characterization.

(3) B O4: “What was the meaning of offset
Days?” ask_knowledge

O4 takes a step back and ponders the
meaning of 3 .

(4) B O3: “It’s the distance <*holds up two index
fingers*>. (. .) So, how big is the bar <*points
at screen with two fingers*>.”

explain_knowledge

O3 believes that “offsetDays” refers to
the duration of the event (which would
be aspect 1).

Example 6.14 (continued)

202

6.3.2 Normal Pair Programming

(5) B O4: “No, it’s an offset, not a duration or
width.” challenge_knowledge

O4 finds O3’s explanation implausible.

(6) B O3: “‘Offset’ is distance, so it’s like distance
<*mimics growing and shrinking distance
between her two index fingers*> (. .) so the
distance that goes from the beginning of the
bar to the end of the (.) bar, I think.”

propose_hypothesis

O3 argues in favor of her explanation, but
she now sounds less convinced.

(7) B O4: “<*hovers lines 94 and 95 in the previous
test case’s setup*> No, it must be three or
five days here in this. But it’s 1! <*selects
the assertion in line 99*>”

challenge_hypothesis

O4 found a counterexample in 5 (the orig-
inal test case). He probably meant to say
‘No, then it would have been three or five
days in this test.’

(8) C O3: “(.) (Erm, has it to do something
with the weekend?)” propose_hypothesis

O3 half-heartedly hypothesizes that 4
may explain the low number of 1.

(9) B C O4: “<*hovers line 96*> (#zero point five#)
(.) <*hovers lines 94 and 95*> three days”

think aloud_activity

O4 ignores O3’s hypothesis. Instead,
he re-reads the values for 2 (offset
Fraction, “zero point five”) and 1 (event
duration, “three days”) from 5 (original
test case).

(10) D O3: “But we can check that if we console-log
these. <*looks at O4*>” propose_step

O3 wants to instrument the production
code and play around. It is not clear
whether “that” refers to her weekend-
hypothesis (4) or the field’s meaning (3).

(11) O4: “Hm?” Either way, O4 does not comprehend her
idea.

(12) D O3: “We can check that, if you console-log,
erm, so this, the real variable value, here in
the <**production code file**>, we can like
console-log the (. .)” propose_step

O3 points O4 to the production code to
make her idea easier to grasp.

(13) D O4: <*switches to production code*> do_sth O4 follows along.

(14) D O3: “that object that has the offsetDays
(.)” amend_activity + propose_step

O3 directs her partner to right location.

(15) D O4: <*scrolls down*> do_sth O4 navigates to the calculation.

(16) D O3: “yeah, we can console-log this. <*looks
at O4*>” agree_activity + agree_step

O3 repeats her idea to print out the field’s
value (3).

(17) D E O4: “(. . .) In the test, we have to think about
what the right value is before we start the
test. <*looks at O3*>”

disagree_step + explain_knowledge

O4 argues against O3’s proposal. He
seems to think that she wants to make
the test green by recording the current
(faulty) behavior and simply declaring it
‘correct’ in the test case.

(18) O3: “Right, but like, what’s the meaning in
the real life of offsetDays? <*looks at
O4*>” agree_knowledge + propose_step

O3 starts another attempt of her explana-
tion, as O4 did not understand her idea.

(19) O4: “This is what I want, I’m (thinking
about).” explain_standard of knowledge

O4 recognizes his original question re-
garding 3 .

Example 6.14 (continued)

203

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

(20) O3: “<nods> So, in order to do that I would
say, let’s check these values. Let’s console-
log this.” propose_step

Now that they are on the same page, O3
repeats her proposal.

(21) O4: “Ah, you mean on the <*hovers the cal-
endar view with cursor*>, when I make a
manual test, we log it out.”

explain_standard of knowledge

O4 rephrases the idea to make sure he got
it this time.

(22) O3: “Yeah, exactly. <*looks at O4*>”
agree_standard of knowledgea

O3 acknowledges O4 understanding her
idea.

(23) O4: “Ok (. .) to have feeling what it, what
the meaning of this is.”

explain_standard of knowledge

O4 drives the point home by circling
back to his original question of the field’s
meaning.

(24) O3: “Exactly.” agree_standard of knowledge Which is what O3 had in mind.

aThe base layer does not contain the concept agree_standard of knowledge as according phenomena were
rare and the more general agree_knowledge was sufficient (BL, p. 142). I introduce this concept here because
of key decision #6Model dialog episodes (BL, pp. 40–41, discussed on page 132), as the pair clearly has a dialog
episode around O4’s standard of knowledge.

Example 6.14 (continued)

To summarize the key properties of normal pair programming:
• Both developers produce ideas and the s are expecting. In Example 6.14, see the ask
activities in turns (1) and (3), and the propose and explain activities where the respective
speaker looks at their partner in turns (10) and (17). O3’s half-hearted propose_hypothesis
in turn (8) is the only exception.

• Both developers evaluate ideas. The s following the s are prompt and evaluative; there
are no long pauses between the subsequent s either, and few s and s (again, the think
aloud period of turns (8)–(9) being the only exception).

• Misunderstandings are detected and dealt with by s; see the two times O4 did not
understand O3’s proposal (turns 11 & 17).

This level of pair programming Fluency sets the baseline for characterizing episodes where the
pair comes close to “working with one mind” , the Focus Phases, as well as the other extreme of
Breakdowns where pair is no longer an appropriate characterization.

6.3.3 Focus Phases in Pair Programming

Focus Phases arementioned inmultiple publications on pair programming by both practitioners
and researchers. Here are a few examples:

• Williams et al. (2000, p. 20) characterize pair programming in general as “two programmers
[who] are like a unified, intelligent organism working with one mind” .

• Belshee (2005, Sec. 1.2) calls it “Pair Flow” where “the solution and problem spaces are
shared between the minds of the participants” who then work “significantly better” .

• Chong & Hurlbutt (2007, Sec. 5.1.2) note that pairs “sometimes slipped into a mode of
behavior where they were exceptionally in sync with one another” . They add that it “was
always recognizable from the incomplete verbal utterances between the two participants” .

• Salinger et al. (2008, p. 20) have observed pair phases which are “characterized by a high
density of communication acts referring to just one narrow issue” .

In contrast to Williams et al. (2000) and Belshee (2005), both Chong & Hurlbutt (2007, Sec. 5.1.2)
and Salinger et al. (2008, p. 20) note that such a mode only lasts for a short duration. These

204

6.3.3 Focus Phases

sources neither provide a detailed characterization or give concrete examples nor do they
address how such a mode may arise.

I have identified the Focus Phase as a phenomenon which fits these characteristics. During
a Focus Phase the pair members appear to not need much evaluation of ideas: proposals are
made, immediately approved, and put into action (e.g., - or - -). There are hardly any
misunderstandings, so are not necessary.

Session & Time Notes

#1 CA5 19:12–20:11 Stripping down of copy-pasted code, see Example 6.15
#2 20:32–21:42 Continuation of Focus Phase #1: Pair works through remaining 20 lines

of copy-pasted code in the same manner (about 35 base activities, not
discussed here). The pause between Focus Phases #1 and #2 is due to
C3 typing only with his index fingers and that is how long it takes him
to complete a TODO comment.

#3 26:32–28:06 Again five minutes later during which the pair integrates the (hull for
the) new feature in existing structures in normal PP. Now, the pair
inspects three different classes, decides on one abstract class to extend,
adds about ten lines of remaining integration code such that they only
need to add the actual geometry logic, and removes two blocks of now
unused code (about 40 base activities, not discussed here).

#4 AA1 1:53:20–1:54:56 The pair adds two new parameters to a constructor and amends the
calls (see Example C.1)

#5 1:55:45–1:57:04 The pair adds two new properties to backend response message (see
Example C.2)

#6 1:57:38–2:00:55 The pair discusses design options; they perform no code changes and
do not even read code during this period (see Example C.3)

Table 6.3: Overview of the Focus Phases I identified in my data. Note that I did not system-
atically search for examplars.

Since my research topic was not the quality of PP processes but the mechanisms of knowledge
transfer in pair programming, I did not systematically search for Focus Phases, but only report
on six exemplars that caught my attention along the way (see Table 6.3): Three in session
CA5 and three more in session AA1. Here, I discuss one concrete Focus Phase of one minute
length where the pair in session CA5 quickly strips down existing code (Example 6.15). For
two further Focus Phases, I provide the full transcripts and notes in the appendix: One where
the pair from session AA1 adds logic to existing code for two minutes (Example C.1), and the
other to illustrate that changing source code is not necessary for a pair to have a Focus Phase:
Late in session AA1, the pair develops and discusses multiple design ideas for about three
minutes (Example C.3).

Example 6.15: A Focus Phase (CA5, 19:12–20:11)

Session Background
Company C develops a graphical geo-information system. A new feature should allow users to
cut existing geometries (such as points, lines, polygons) into parts by drawing arbitrary shapes
across them. Developers C3 and C4 already found the right place in the class hierarchy of existing
geometry-altering actions and copy-pasted the method body of an existing action into a new class.

Technical Background
Figure 6.2 shows the relevant parts of the source code after the pair has copy-pasted it.

205

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

31 protected void execute(final Component parentComponent) {
32 final Message message = (Message) validator.validate();
33 if (message != null) {
34 SwingMessageIndicator.showMessage(parentComponent, message);
35 return false;
36 }
37
38 final EditOptions editOptions = new EditOptions(new MapModelSelection(snapThemeModel));
39 final IScaleRange scaleRange = new ScaleRange(0, getFeatureLayer().getBaseScale());
40 editOptions.setScaleRange(scaleRange);
41 try {
42 final EditGeometryType editGeometryType = getEditStrategy().getEditGeometryType(
43 getFeatureLayer());
44 editOptions.setGeometryType(editGeometryType);
45 }

68 return true;
69 }

Figure 6.2: Relevant excerpts of the Java code before the Focus Phase. The code has just been pasted
and does not yet compile.

There are five relevant technical aspects:
1 The original signature declared a boolean return value, whereas the new signature has none

(Java void), so code does not yet compile due to the return values in lines 68 and 35.
2 The Validator code (lines 32–36) is not necessary for the new functionality.
3 The SnapThemeModel code (line 38) is necessary.
4 The FeatureLayer code (line 39) is also necessary.
5 The EditGeometry code (lines 41–45) needs to be changed: Instead of determining the edit

GeometryType programmatically, it can be hard-coded to POLYGON or MULTI_POLYGON.

What happens?
In less than a minute, the pair understands all five technical aspects and performs the necessary
changes. Code line numbers in the transcript below refer to the original state as in Figure 6.2; see
Figure 6.3 for the final state of the code.

1 Clean-Up of Return Values (19:12–19:20)

(1) A C3: “OK, there are a lot of things we don’t
need, or don’t have.”

examine_sth + explain_completion

After briefly looking at the pasted code, C3
concludes that they are not done yet for their
feature.

(2) A C3: <*cursor to line 68, deletes return
statement, cursor to line 19*> write_sth

C3 deletes the last return and brings the
cursor back up.

(3) B C4: “You can just return here <*points
to line 35*>” propose_designPI

C4 suggests to reduce the first return state-
ment to a value-less return.

(4) B C3: <*cursor to line 35, deletes value
false*> write_sth (agree_design)

C3 silently navigates to line 35 and puts the
proposal into action.

2 Validator Code (19:20–19:29)

(5) C C4: “Though, if you think about it, we
don’t actually need it.” amend_design

C4 broadens the scope to the whole Validator
code (2nd “it”), deeming it unnecessary.

(6) C C3: “<*cursor along line 32*> Probably,
this again turns out to be (.) it depends
(!...!) (#validator#)”

agree_design + examine_sth

C3 understands the reference and possibly
thinks about how validation could look in
their case.

Example 6.15 (continued)

206

6.3.3 Focus Phases

(7) C C4: “Could be we need it. Then we can
get it back anyway.” propose_strategyPI

C4 admits that the Validator code might
eventually turn out to be necessary, but pro-
poses to restore the code if need be, implicitly
suggesting to remove the code now.

(8) C C3: “Yes, would get rid of it. <*deletes
lines 32–37*>”

agree_strategy + amend_design

C3 agrees with her reasoning and deletes the
respective statements.

3 SnapThemeModel Code (19:29–19:32)

(9) D C3: “OK, snapThemeModel <*cursor
along line 38*> we need that.”

examine_sth + propose_designPI

C3moves the cursor to the SnapThemeModel
code and reaches the conclusion to keep the
code in place.

(10) D C4: “We need that.” propose_designPI C4 proposes the same in unison with C3.

Note that neither developer makes their reasoning explicit, but both behave as if the conclusion
was obvious.

4 FeatureLayer Code (19:32–19:46)

The program statements in code line 39 create a ScaleRange object which determines the
spatial resolution used in calculations, which in turn affects the precision with which user inputs
are captured. The planned feature (splitting geometries) needs all participating objects (existing
geometries from a featureLayer and new shapes to split them) to operate with the same
precision, so the code in question must be kept.

(11) E C3: “(#featureLayer baseScale#) <*cursor
along line 39*>” examine_sth

It takes C3 slightly longer to reach a verdict
this time.

(12) E C3: “Guess we need, too, ’cause what we
split <*makes a cutting gesture, looks to
C4*>we put a new line automatically into
a polygon and that should have exactly
its input precision.”

propose_designPI + explain_knowledge

C3 explains the featureLayer must be
kept because it provides the precision. His
propose_design is not expecting an evalua-
tion (type PI “provide information”, as all pro-
pose so far); he only looks atC4 in the course
of the following explanation.

(13) E C4: “<nods> M-hm.” agree_design C4 is now involved in the , too.

(14) E C4: “We do need the featureLayer
we’re editing, yeah.”

explain_standard of knowledge

C4 rephrases C3 explanation.

(15) E C3: “Exactly.” agree_knowledge C3 in turn agrees to C4’s explanation.

5 EditGeometryType (19:46–20:01)

As the pair reaches the EditGeometry code, they start completing each other’s thoughts and
sentences.

(16) F C3: “The (#editStrategy getGeometry-
Type#), that’s wrong.” explain_finding

C3 quickly finds the existing code it is not
suitable for their new feature.

(17) F C4: “That is in either case (!...!)”
propose_designPI

(18) F C3: “Here we always use (!...!)”
propose_designPI

Both speak at the some time and both pro-
pose to use a fixed value instead of calling
a method.

(19) F C4: “POLYGON, right” amend_design C4 thinks this value should be POLYGON.

Example 6.15 (continued)

207

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

(20) F C3: <*types ‘EditGeometryType’ in line
42, a list of enum values opens*>

write_sth

C3 uses the auto-completion to enter
the name of the enumeration type Edit
GeometryType.

(21) F C3: “(##dot##), er, that’s the question”
disagree_design

Seeing the possible values, C3 has second
thoughts regarding the POLYGON proposal.

(22) F G C4: “MULTI?” challenge_design C4 proposes the more general MULTI_
POLYGON as an alternative.

(23) G C4: “Nope.” disagree_design C4 immediately retracts her idea.

(24) G C3: “That remains to be decided whether
we (!...!)” propose_todo

C3 remarks that the choice might not be triv-
ial and alludes to postponing it.

(25) F C3: “Well, we can simply use POLYGON
for now. <*selects “POLYGON” from list
of enum values*>” decide_design

(26) F C4: “Let’s start with POLYGON.”
decide_design

C3 proposes POLYGON as a temporary so-
lution. C4 comes to the same conclusion
at the same time.

(27) F C3: <*deletes lines 42–43*> write_sth C3 removes remaining EditGeometry code.

(28) F C4: “Right.” agree_design It is not clear whether C4 acknowledges C3
reaching the same design conclusion (25),
or C3 putting this decision into action (27).

Note that it appears clear to both developers that “MULTI” (22) refers to MULTI_POLYGON
although there are three MULTI_ options available. Right after this excerpt, at 20:22, the pair
explicitly refers to MULTI_POLYGON for the first time, which makes clear what they were talking
about earlier.

Leaving a TODO comment (20:01–20:11)

(29) H C4: “There’s still a bracket”
explain_findingDc

C3’s recent edit (27) left an unpaired paren-
thesis in the code.

(30) G J C3: “Maybe leave TODO_NOW here <*calls
“TODO_NOW” macro between line 41
and 42*>” write_sth + propose_designPI

C3 picks up on his propose_todo (24), an-
nounces to put a TODO_NOW comment in the
code to revisit the topic later, and calls the
according macro. Note that this is not a
since C3 had no time yet to react to H.

(31) H C4: “still a bracket (.) too much, at the
end” amend_finding

C4 figured that C3 might have not got her
finding and repeats it with more detail.

(32) H C3: “<*cursor to line 43, deletes left-over
parenthesis*> Too much, yes <*cursor
back to TODO line*>”

write_sth + agree_finding

C3, however, had already started moving the
cursor to the position of the left-over paren-
thesis and then deleted it. I interpret his word
repetition as a reparation.

Example 6.15 (continued)

208

6.3.3 Focus Phases

(33) H C4: “M-hm” agree_finding

(34) J K C3: “Er, you’ve always added the CAD?”
propose_designOE

The TODO_NOW macro call (30) inserted
C4’s user name (they work on her machine)
and from 15 minutes earlier, C3 remembers
C4’s commenting style of prefixing com-
ments with a ticket ID (which all start with
“CAD”). His proposal is in mode OE (obtain
evaluation), so he is expecting feedback.

(35) K C3: <*types ‘CAD-660’*> write_sth

(36) K C4: “M-hm.” agree_design

(37) K C3: “Six-sixty was it?” ask_knowledge

(38) K C4: “M-hm.” agree_knowledge

C3 apparently remembered the ticket ID
but nevertheless validated both style and
number with C4.

C4 does not explicitly refer to C3’s adding of the TODO comment (J), but she looks at the screen
the whole time, watching C3 type. Based on her behavior concerning K and beyond this excerpt,
I assume that she fully understands and appreciates whatC3 is doing and what the TODO comment
he is about to write will be about.

Remember: All of the above happened in less than 60 seconds. Although their utterances and
actions were presented in a linear format, C3’s and C4’s turns often overlapped, i.e., they spoke
simultaneously several times, but without any real misunderstandings along the way. Additionally,
C3 used the keyboard constantly, navigating and editing while he spoke and listened to his partner.
Figure C.6 in Appendix C condenses the whole Focus Phase with all its concurrency into one
detailed image.

protected void execute(final Component parentComponent) {
final EditOptions editOptions = new EditOptions(new MapModelSelection(snapThemeModel));
final IScaleRange scaleRange = new ScaleRange(0, getFeatureLayer().getBaseScale());
editOptions.setScaleRange(scaleRange);
try {
// TODO_NOW (<**C4’s account name**>) 09.05.2008: CAD-660
final EditGeometryType editGeometryType = EditGeometryType.POLYGON;
editOptions.setGeometryType(editGeometryType);

}

Figure 6.3: Source code after the Focus Phase, less than 60 seconds after Figure 6.2

Example 6.15 (continued)

The two developers in Example 6.15 have a perfect understanding of both what the original
code they copy-pasted did and what the new class ought to do, so deciding which parts they
actually need to keep, delete, or amend takes very little time. Their Focus Phase illustrates the
following general properties:
1. Following each , there are no long sequences; all s are prompt. The EditGeometryType

sequence is an exception (turns 16–28), but its s are constructive, i.e., they add new ideas
to the discourse.

2. Proposal- s are mostly in mode PI (provide information), i.e., they are non-expecting—and
are positively evaluated with agree or amend activities anyway.

3. The partner gets involved quickly in any , i.e., there are only few s, which could even
count as mid-sentence self-corrections.

4. There are only few s, and the only instance (turns 31–33) was not even necessary but
more of a precaution, as C3 already understood his partner’s first attempt.

The six Focus Phases are the only instances I identified in my data. This is not to say that this
Fluency level is unique for the particular pairs C3/C4 and A1/A2. Since understanding pair

209

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

Fluency was not at the core of my thesis, analyses of further sessions are left as further work.
Judging from the instances I analyzed, I can still provide some further characterization:

• Focus Phases do not simply occur, but it appears that some conditions must be met and
that the pair needs to undertake some preparatory work to enable this level of Fluency.

• Pairs only enter Focus Phases for short time spans of a few minutes maximum (see
Table 6.3); this pace cannot be kept up for whole sessions. In the reflective interview C3
and C4 both said that the overall tempo of their session CA5 was high, possibly too high,
and therefore exhausting.

• Nevertheless, developers seem to enjoy this high Fluency: At the end of the 90-second
Focus Phase #4 (see Example C.1), when A2 removes the FIXME comment, A1 utters a
pleased “Not bad” as if he is actually surprised how far they got in little time. At the
end of Focus Phase #3 (not discussed here), C4 celebrates “There, now you can kick the
IOException!” and mimics a dance move; C3 is happy, too: “Poof, it’s gone. Nice how
this shrivels.”

6.3.4 Breakdowns in Pair Programming

In normal PP (Section 6.3.2), developers verbally refer to each other’s proposals and make
evaluations. During a Focus Phase (Section 6.3.3), developers seem to understand each other
despite much decreased verbosity. In some situation, however, developers do not evaluate
each other’s initiatives and there are long periods of silence. The Fluency is low and the pair
programming process is broken down.

6.3.4 a) No Progress as a Pair

Both Breakdown specimen discussed here come from the pair O3/O4 but originate from two
different sessions. The Breakdown in Example 6.16 is from session OA8 and happened just a
few minutes before to the normal PP episode already discussed in Example 6.14. Here, both pair
members produce hypotheses for why an existing test case started failing after recent changes
in the production code. However, they do not manage to mutually understand and discuss
their ideas. Even though there is little to no disagreement on which tactical steps to take next,
the conclusions drawn from their observations differ and are not reconciled. Ironically, O4
has the correct idea within seconds, but since O3 inadvertently keeps distracting him with
non-relevant proposals, it takes the pair 28 minutes to add two lines of mocking code in the
tests. In addition, O4 appears to understand that some of O3’s proposals and interpretations
are wrong but does not explain what he thinks of them.

Example 6.16: Breakdown with Seemingly Unhelpful Partner (OA8, 13:42–41:42)

Session Background
Prior to the session, the developers O3 and O4 changed the implementation of a method to work
with different primitive operations but did not adapt the mock object used in the tests. At first, the
pair is accompanied by developer O1, before he leaves the group for a scheduled meeting. The
developers speak English in this session, which is neither developer’s native language but their
strongest common language. The transcript below is verbatim. This excerpt ends eight minutes
before Example 6.14 where O3 and O4’s pair programming was normal.

Technical Background
The old logic relied on the duration()method, whereas the current logic subtracts getStart()
from getEnd() instead (see Figure 6.4). In the test logic (see Figure 6.5), duration()was mocked,

210

6.3.4 Breakdowns in Pair Programming

but not getStart() and getEnd(), so the calling logic receives no valid value to calculate the
output and the assertion in the test case fails.

Old Logic
offsetDays = Math.floor dataModel.duration().asDays() * offsetFraction

Current Logic
durationInDays = dataModel.getEnd()?.diff dataModel.getStart(), ’days’
offsetDays = Math.floor durationInDays * offsetFraction

Figure 6.4: CoffeeScript code for the old and the current production logic, both return integer values
for offsetDays. The current logic uses an existence operator (“?”) to check whether getEnd() is
callable before it calls the diff method. (In the actual source code, durationInDays is calculated in
a separate method, which I inlined here for readability.)

94 dataModel.duration.returns
95 asDays: sandbox.stub().returns 3
96 rowView.emit ’dragstart’, offsetFraction: 0.5
97
98 expectedDragProperties = sandbox.match
99 offsetDays: 1
100 expect(timeline.setDragProperties).to.have.been.calledWith expectedDragProperties

Figure 6.5: Relevant excerpts of the CoffeeScript test code before the Breakdown. Lines 94–95 are the
test setup (where the duration method is mocked), line 96 is the execution (which no longer uses the
duration method), and 98–100 is the assertion (which now fails). See Figure 6.6 for the state of the
code 28 minutes later.

For problem analysis, the developers need to understand the following four facts:
1 The assertion (in line 100) does not directly compare two integers, but uses a matcher

mechanism to test whether an object’s field offsetDays has an expected integer value (lines
98–99). Understanding this is necessary for comprehending the failing test’s error message
which includes a dump of the whole object.

2 On the current production code, the assertion fails because the actual value of offsetDays
is NaN (Not a Number) instead of the expected 1.

3 The test fails because getEnd() is not defined in the mock object (lines 94–95): The defect
is in the test code, not the production code.

4 CoffeeScript’s existence operator (“?”) returns undefined for uncallable functions (here: the
undefined getEnd()). Performing calculations on such a value in JavaScript (here: multipli-
cation) yields the value NaN, not-a-number.

The three facts 1 2 3 are system-specific knowledge (S knowledge), 4 is system-independent
general software development knowledge (G knowledge).

Once these four facts are understood, the problem solving part is easy: Provide mock imple-
mentations for getStart() and getEnd() such that their return values are three days apart.

What happens
The excerpt below has multiple parts. At first, all three developers (O1, O3, O4) develop individual
hypotheses for the test failure. O1 and O3 both suspect a defect in the production code while O4
thinks the problem is in the test code. O4 is overruled, and the group looks into the production
code. Although there is quite some confusion and little technical progress, the process can still be
characterized as normal, since there are s, i.e., attempts to clear up misconceptions.

The Breakdown happens in the second part after O1 left the group for a scheduled meeting.
The Breakdown needs to be seen from the two remaining developers’ perspectives: On the one
hand,O4 now gets to pursue his hypothesis and search for the problem in the test code, but because

Example 6.16 (continued)

211

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

he is effectively unable to explain it to O3, she keeps distracting him from checking the hypothesis
and implementing the fix. On the other hand, O3’s hypothesis is neither invalidated by the checks
O4 performs, nor appreciated by O4, as he mostly ignores her. Eventually, after 28 minutes that
lie between the states shown in Figures 6.5 and 6.6, O4’s hypothesis turns out to be technically
correct (and, from what I can reconstruct, O3’s ideas are mostly wrong)—but neither developer
could have known this from the onset.

Part 1: Deciding on the First Expedition (13:42–17:53)

The excerpt starts with the three developers O1, O3, and O4 reading the error message of the
failed assertion.

(1) A O4: “(#setDragProperties#) (, ,) the
offsetDays has <*selects part of the
console output*> (,) not-a-number. (. .)
Ok?” explain_finding

O4 reads the error message of the failed
assertion and understands 2 , i.e., that the
field offsetDays has the special value
NaN instead of 1.

(2) A B O3: “Because, because it doesn’t have any
arguments anymore. We changed the
function. So, it says that it should be, it
was expecting some arguments there and
didn’t receive any arguments. I would, can
you go to the code, to what we changed?”

amend_finding + propose_step

O3 provides a hypothesis for how the fail-
ure comes to be and suspects the defect
to be in the production code. She possi-
bly thinks that NaN is some sort of default
value for a function’s parameters if it gets
called without arguments.

(3) B O4: “<puzzled> We just changed the cal-
culation.” challenge_finding

O4 does not think they removed the argu-
ments of any function call.

(4) B O3: <*nods*> agree_finding

(5) A C O4: “Maybe it’s not defined, the result is
not defined, maybe. (, , , , , ,) <*moves cur-
sor to test code*>” propose_hypothesis

O4 starts to formulate his hypothesis sus-
pecting 3 . UnlikeO3, he appears to be sus-
picious about the test code.

(6) C D O1: “Not-a-number is the result here of
offsetDays, so it’s not-a-number, is the
result (‼...‼)” challenge_hypothesis

O1 has been reading the test output until
now. He now corrects O4’s imprecise for-
mulation that “the result is not defined” .

(7) C D O4: “<*hovers definition of duration
mock*> Maybe, maybe, we have to give
the start and end point for the data
Model.” amend_hypothesis

O4 does not react to O1, but instead hy-
pothesizes 3 , i.e., that the mocked data
model needs more logic.

(8) C D O1: “<annoyed> Can you look here?
<*points to screen*> offsetDay is NaN,
not-a-number <*looks at O4*> (‼Yeah‼) A
number is expected and we don’t return a
number.” explain_finding

O1 wants to make sure that O4 under-
stands 2 , the test failure, correctly—not
knowing that he already does—and repeats
his correction.

(9) E O1: “<*looks at O4*> It might just be like
we missed the brackets and pass a func-
tion or something. That might already be
(!...!)” propose_hypothesis

O1 goes on to formulate another hypothe-
sis, which is similar to what O3 appears to
suspect. Both expect the production code
to contain a defect.

(10) C O4: “My idea is that (‼...‼)” O4 attempts to reiterate his hypothesis, but
gets cut off.

(11) C E O3: “Yeah, I don’t know which arguments
we are passing right now.”

agree_hypothesis

O3 sees a similarity between her hypothe-
sis and O1’s.

Example 6.16 (continued)

212

6.3.4 Breakdowns in Pair Programming

(12) E O1: “So let’s have a look at the function
setDragProperties.” propose_step

O1 proposes to take a look at the produc-
tion code.

They follow O1’s proposal, and end up searching for and then looking at the code under test for
the next three minutes. Then O1 leaves the group for a scheduled meeting.

Part 2: First Experiment (17:53–25:53)

(13) C F O4: “<*hovers changed production code*>
dataModel.getEnd() is not defined in
the test, I guess.” propose_hypothesis

O4 sees his hypothesis supported that the
test execution triggers a method call that
is not mocked (3).

(14) F O3: “But if it calls this function (!...!)”
disagree_hypothesis

O3 possibly thinks that calling an unde-
fined function would produce a different
error message (and is unaware of the exis-
tence operator “?”).

(15) F O4: <*(.) switches to test code,
hovers mock definition (, , , , , , , , , , , , , , , ,
,)*> examine_sth

O4 does not react to O3’s disagreement,
but instead silently switches to the test
code, reads it for 40 seconds.

(16) F G O4: “(I have an idea.) <*switches to pro-
duction code, inserts console.log state-
ment (, , , , , , , , , , , , , , , , ,)*>”

explain_standard of knowledge

O4 introduces a debugging statement in
the production code. Right before the cal-
culation is performed, O4 prints out the
dataModel object.

(17) G O3: “You can also use, like, the debug (~)
for the test.”

propose_step + amend_activity

Upon seeing the logging statement, O3
convinces O4 to use a browser-based de-
bugger.

O4 has some trouble getting this setup running, and it took the pair nearly six minutes to see the
output of the console.log statement (19:40 to 25:26). Neither O4 nor O3 appear to find valuable
information in there, so while deciding where to put a breakpoint they look at the test code and
the assertion again. The transcript picks up at this point:

(18) H O3: “So the way I see it now, this is getting
an object, but it was expecting a number.”

explain_finding

O3 appears certain (not an hypothesis).
Technically, she is wrong; she does not un-
derstand the matcher assert logic 1 .

(19) H O4: “<*hovers assertion*> The expectation
is that offsetDays is 1. And offset
Days is not-a-number. This is the value.”

challenge_finding

O4 reiterates the failure 2 , but does not
address O3’s misunderstanding of the
matcher logic 1 . To O4, 1 is transparent,
so “expectation is that offsetDays is 1” is
a shorthand for ‘the matcher will look for 1
in the attribute offsetDays of an object’.

Part 3: Confusion (25:53–28:06)

(20) J O4: “<*hovers test code (, , , ,)*> And
(, , ,) (#emit#) (, , , , , ,) (#to.have.been.
calledWith expectedDragProperties#)
(, , , ,)” examine_sth

O4 does not look at O3 to see whether she
understands him, but instead reads in the
test code without making explicit what he
is after.

(21) H O3: “<*points at screen*> But it’s out-
putting an object. So, an object is not a
number.” challenge_finding

O3 does not understand O4’s explanation
and insists on her observation.

(22) H O4: “(~) <*looks puzzled at O3*>”
mumble_sth

O4 is confused: O3 talks about “not a num-
ber” , he talks about “not-a-number” .

Example 6.16 (continued)

213

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

(23) H O3: “That’s what I’m understanding of
this. (. .) Because it was expecting this guy
(#to.have.been.calledWith#) with a num-
ber. But expectedDragProperties is
not a number, it’s an object! It’s a key-
value pair. <*looks at O4*>”

challenge_finding

O3 repeats her understanding, oblivious to
the fact that there is no assert statement
expecting a number. Both the expected and
actual part of the assertion refer to objects
(see line 100 in Figure 6.5). She does not
understand 1 and appears to see the assert
statement as the faulty one.

(24) H J O4: “Erm (. . .) <*hovers call of setDrag
Properties in test code*> this is the
function which (!...!) <*reads in test code*>
(,)”

mumble_sth + examine_sth

O4 reads in the test code silently for more
than 30 seconds without making clear
what he is looking for (J). It is not clear
whether he tries to understand what O3
meant to say.

(25) H O3: “<*points to screen*> <slightly help-
less> The expectedDragProperties,
the value, it’s an object, so (!...!)”

challenge_finding

O3 has been looking at the screen the
whole time until she repeats her under-
standing once again.

(26) H J O4: <*moves cursor around the screen (, , ,
,)*> do_sth

O4 continues reading and ignoring O3.
Both keep looking at the test code for about
half a minute.

Part 4: A Silver Lining (28:06–31:12)

(27) K O3: “What are you thinking?”
ask_standard of knowledge

O3 breaks the silence and asks for an ex-
planation of O4’s doing.

(28) K O4: “What I first wanted to do was, how I
started was this console output <*hovers
console output*> (#dataModel#), which
is like that <*points at the output*>.
And I made this code at the <**produc-
tion class**> in this new function. (#con-
sole.log#). <*points at screen*>”

explain_knowledge

O4 starts tracing his steps so far, careful
to not leave anything out he did so far. He
seems to be aware of the confusion be-
tween him and O3.

(29) K O3: “The thing is, in the test we don’t use
the real data model, we stub, we fake one.”

explain_knowledge

O3 appears to retrospectively disagree
with the idea to insert a console.log state-
ment in the production code (16).

(30) K O4: “Yes, and the problem is, maybe in the
fake one, this end and start is not de-
fined. <*looks at O3*> So we maybe have
to define them, so this function can be
used.”

agree_knowledge + propose_hypothesis

O4 skips ahead in his explanation and
jumps right to the (technically correct)
conclusion of 3 , but addressing neither of
O3’s hypotheses nor any of the misunder-
standings he did notice before.

(31) K O3: “Yeah, maybe we have to add it to the
stub, yeah.” agree_hypothesis

O3 appears to understandO4’s hypothesis
of 3 .

(32) K O4: “This was my idea.” agree_hypothesis O4 sees his hypothesis understood.

(33) K O3: “M-hm.” agree_hypothesis O3 seems content.

While K appears to end the Breakdown, the underlying problems were not addressed. O3 still
does not get the full picture: She is missing 1 and consequently 2 . During the next two minutes
(29:18–31:11), O3 watches O4 add a debugging statement to see the value of durationInDays
(see Figure 6.4). After running the test case once again, the pair has the next Breakdown.

Example 6.16 (continued)

214

6.3.4 Breakdowns in Pair Programming

Part 5: Second Experiment (31:12–32:09)

The output from the next (still failing) test run is displayed on screen along with the debugging
output and the pair reads it:

(34) L O4: “<*reads the output*> (#undefined#)
ok, but not (. .) not not-a-number.”

explain_finding

The value of durationInDays does not
match O4’s expectations: Instead of NaN,
the logic he suspected to contain the defect
produced undefined.

(35) L H O3: “(. . . .) Yeah, because what is not a
number is the argument, not the function
call.” amend_finding

Together with O3’s next utterance (see be-
low), this can be interpreted as her pick-
ing up her previous initiative H (and as a
symptom of her not understanding 1).

(36) H O4: “(. . . .) Erm.” mumble_sth It is unclear whether O4 thinks about his
own finding or is too baffled by O3.

(37) H O3: “Because the test is, it should have
been called with these arguments, and it’s
the arguments that is not a number.”

amend_finding

The recent debugging output appears to
not have alteredO3’s understanding of the
problem as she basically repeats her previ-
ous hypothesis.

(38) H L O4: “<*reads in production code*> Here
we make the output (. .) (#durationIn
Days#) (.) ok, it makes this calculation
afterwards. <*hovers line containing call
of Math.floor*>” examine_sth

In contrast, O4 probably wants to find out
why the output read undefined and not
the expected NaN. He identifies another
step in the calculation.

(39) L O4: “(. .) So, I would like to know what
(!...!) let me try please” propose_step

O4 is not explicit about what he wants to
try out.

(40) L O3: “Sure!” agree_step O3 instantly agrees anyway.

It is possible that O3 sees her own hypothesis supported by the outputs so far, so she does not
feel an urgent need to learn more about the system right now and therefore lets O4 work on his
mental model.

Part 6: Third Experiment (32:09–33:49)

O4 introduces a debugging statement to see whether the newly found calculation transforms the
undefined into a NaN. He then runs the test case again and the output gets displayed.

(41) M O3: “(#Not-a-number#)” read_sth O3 is the first to read the output.

(42) M O4: “OK, this is what I thought.”
explain_finding

O4 sees his hypothesis confirmed. He now
understands the whole problem including
1 2 3 and 4 .

(43) N O3: “Which is weird, because the Math
function should be (!...!) <*turns to her own
machine*>” explain_finding

For the first time, O3 now has evidence
not in line with her understanding and is
aware of it. O3 does not understand how
the outcome comes to be (lack of 4) and
wants to reproduce it on her machine.

(44) N M O4: “In the test, maybe we can (!...!)
<*opens test code*>” propose_step

O4 now switches to solving the problem,
ignoring O3’s actions.

Example 6.16 (continued)

215

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

(45) M N O3: “So we are using Math dot? <*turns to
O4*>” ask_knowledge

O3 tries to wrap her head around 4 and
asks about the library function which led
to the unexpected output.

(46) N M O4: “Here, we’re defining the duration
of the (‼...‼)” examine_sth

O4 ignores O3 completely while going
through the existing mocking code.

(47) M N O3: “Yeah, which function, which (!...!)
Math function are we using?”

ask_knowledge

O3 repeats her question, trying to make
sure O4 understands her.

(48) N M O4: “Hm? (.) And (‼...‼)” mumble_sth O4 reacts as if he heard O3 for the first
time, but immediately returns to the mock
setup.

(49) M N O3: “It’s Math dot (.) where is it? <*turns
back to her machine*>” ask_knowledge

As O3 no longer sees the production code
on the large screen, she turns to her own
machine, probably to look it up herself.

Part 7: Getting Together at Last (33:49–37:07)

(50) O O4: “Have a look at what we had before.
Before we made this change. <*opens Git
client to display the diff (, , , , , , , , , , , , , , ,
,)*> It was
like that before, durationInDays was
(. .) <louder> Look here, please.”

propose_step + stop_activity

O4 notices that O3 is working on some-
thing else, but he wants to explain the full
story by starting with the changes they
performed before this session. It takes him
50 seconds to open up the appropriate diff
(similar to Figure 6.4), before he tries to get
her attention.

(51) O3: “Ah, okay! <*turns to O4 and then his
screen*>” agree_step

O3 immediately reacts.

(52) O O4: “This was the function before, (#model
duration asDays#). And this is set in the
test.” explain_knowledge

O4 starts by explaining the old mocking
code.

(53) O P O3: “Ah, okay,durationInDays is a func-
tion, right?” propose_hypothesis

O3 thinks the problem analysis is still on-
going and tries to identify problems in the
code on-screen. Upon seeing the diff (see
Figure 6.4), O3 probably revisits her orig-
inal hypothesis of a method being called
without any arguments (B) and suspects
that durationInDays is the one.

To answer her question, O4 then opens the test code (P), but O3 directs him to the production
code (P), where durationInDays is used and repeats her question (P, not transcribed here).

(54) P O4: “It’s a variable, but it’s set by that func-
tion.”
explain_knowledge (disagree_hypothesis)

O4 corrects O3’s misunderstanding, but
does not react to that she needlessly
switched to problem analysis again.

(55) Q O3: “<*looks at the code*> Ah (.) yeah
(.) it’s a scope thing. durationInDays
is not defined.” explain_finding

With her previous hypothesis rejected,O3
quickly develops a new idea (again, not a
hypothesis because she appears confident).

(56) Q O4: “<frustrated> It is defined. Here <*se-
lects a line*>” challenge_finding

O4 again reacts to the proposed idea, but
fails to address the underlying issue that
his partner does not understand that the
analysis is actually complete.

Example 6.16 (continued)

216

6.3.4 Breakdowns in Pair Programming

(57) R O3: “Yeah, but <*keeps looking at the
source code*> I’m pretty sure the prob-
lem is here. Can we debug this?”

propose_hypothesis + propose_step

Consequentially, O3 keeps looking for
ways to understand the failure.

(58) R O4: “<puzzled> We already did.”
disagree_step

O4 is again puzzled thatO3 does not recog-
nize the console.log statement from their
recent debugging efforts. Yet, he still only
reacts to the immediate proposal.

(59) R O3: “But (.) check durationInDays,
what is the value of durationInDays?”

ask_knowledge

Luckily, O3’s next question allows O4 to
answer with a summary of his analysis
result.

(60) R O4: “The value is the result of this function.
And the result is, erm, <*reads logging out-
put*> undefined, yes. And the result of
that calculation is not-a-number.”

explain_knowledge

O4 explains one part of how the test fail-
ure comes to be: An intermediate result of
a calculation (durationInDays, see Fig-
ure 6.4) is undefined and that results in
an NaN (the concrete form of 4).

(61) O O4: “Have a look how it was before
<*opens Git client and reads diff*> It
was (#Math.floor dataModel.duration.
asDays#) and this duration was set in
the test. And I think, now, this duration is
calculated differently, so we have to set
other variables, so that the calculation
is possible, the start and the end.”
explain_knowledge + propose_hypothesis

O4 then picks up his earlier explanation
based on the production code diff. He
explains that he thinks the undefined
value occurs due to not having mocked
the necessary methods (3), and proposes
to amend the mock object accordingly.
Note that his explanations do not touch
the topics of what the test failure actually
was (2) and how the assertion works (1).

(62) O O3: “Ok, ok, I see.”
explain_standard of knowledge

Nevertheless, O3 seems content with O4
understanding the situation, although she
arguably could not have learned 1 , 2 , and
4 (all of which puzzled her in the last 25
minutes) from O4’s explanations.

The above exchange ends at 37:07. It takes another four and a half minutes to implement the
solution (the remainder of the transcript is on page 422 in the Appendix), the last two of which
O4 works alone. At 41:42, the implementation of the test case is complete as shown in Figure 6.6
and the test execution is successful.

94 #dataModel.duration.returns
95 # asDays: sandbox.stub().returns 3
96 dataModel.getStart.returns moment ’2000-03-04’
97 dataModel.getEnd.returns moment ’2000-03-07’
98 rowView.emit ’dragstart’, offsetFraction: 0.5
99
100 expectedDragProperties = sandbox.match
101 offsetDays: 1
102 expect(timeline.setDragProperties).to.have.been.calledWith expectedDragProperties

Figure 6.6: Relevant excerpts of the CoffeeScript code after the Breakdown, 28 minutes after the
development episode began. Compared with the original state (see Figure 6.5), the pair commented out
the original mocking code in lines 94–95 and added new mocking code in lines 96–97.

Example 6.16 (continued)

217

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

The above excerpt illustrates a broken pair process: Although both developers tactically agree
on which ‘experiments’ to conduct, they do not reconcile their different interpretations of the
outcomes. This happens four times:

• O4’s hypothesis is rejected by O3, but no clarification follows (propose_hypothesis and
disagree_hypothesis in turns 13 and 14).

• O3 agrees to the first experiment and shares her confident interpretation whichO4 rejects,
but no clarification follows (amend_activity, then explain_finding and challenge_finding
in turns 17–19).

• O3 tacitly agrees to the second experiment and shares her confident interpretation which
O4 is puzzled by, but, again, no clarification follows (implicit agreement between turns 33
and 34, then explain_finding, amend_finding, and mumble_sth in turns 34–36).

• O3 explicitly agrees to the third experiment, but now O4 is confident in his interpretation
and O3 is confused, and yet again, no clarification follows (agree_step, 2× explain_finding
in turns 40–42).

The length of the excerpt illustrates the cost of a broken pair process: O4 comes up with a
hypothesis and a way to test it in under a minute (turns 5 & 7) and tries to put it into action.
O3 seems to not understand O4’s plan (neither through his explanations nor his actions) and
(unwillingly) keeps distracting him from completing it. Instead of just a few minutes, it takes
over 20 minutes until O4 could start with the problem solving part (which followed after the
excerpt above). Arguably, O3 was not only of little help during these 20 minutes. She also
slowed O4 down to a critical extent, diminishing any benefit pair programming could have in
this situation. The following points are important to note, though.
1. Even though it took the pair a long time to accomplish seemingly little, the time expense

is not the defining criterion of a Breakdown. Rather it is the lack of evaluation of the
partner’s ideas and not clearing up misunderstandings along the way (see the many s
and s, and few s).

2. That O4’s hypothesis turned out to be correct and that O3 kept distracting him is ironic,
but not the point of this example: O4 apparently did not understand what O3 was talking
about, so he could not make a judgment about which idea was best. If anything, his idea
being correct made the whole episode easier to reconstruct for me as a researcher.

3. It is worth taking the individual perspectives of the pair members. Both developers
attempt to start a new communication strand aimed at clearing things up, see O3’s K

and O4’s O (starting in turns 27 and 50). However, both developers did so from a state
of relatively stable understanding: O3 does it before she is confused by an output for the
first time in turn (43), and O4 does it after his problem analysis is complete in turn (42).
In normal PP, clearing up misunderstandings works even in the midst of an understanding
process as can be seen in Example 6.14 discussed earlier, which is from the same session
a couple of minutes later.

4. The pair probably could have accomplished the same outcome in less time had they agreed
on one idea to pursue, e.g., either O4’s strand (i.e., his s: A, C, F, G, J, L, and M) or O3’s
strand (her s: B, H, N, P, and R). Even if they had followed O3’s objectively wrong idea
first, this would have resulted in fewer context switches (e.g., visible in O4 being puzzled
in turns 22, 24, 36, and 48) and reparation attempts (see K and O, taking more than
one and three minutes, respectively).

6.3.4 b) No Progress at All

While in the previous example from session OA8, the pair members at least had an idea on
how to proceed, the same two developers had a hard time in session OA1. They need to write a

218

6.3.4 Breakdowns in Pair Programming

test case for some production code they do not know which is implemented with a technology
they are not familiar with. The whole session is characterized by a glacially slow progress and
the two developers having difficulties in both understanding the class they are supposed to
test and with expressing their difficulties in a way that they could work together on a shared
mental model. Unlike most of their session, the excerpt transcribed below can be understood
with reasonable effort (see the transcript on page 418 in the Appendix for an impression of
just how incoherent large parts of the rest of the session OA1 are).

Example 6.17: Breakdown Due to Huge Knowledge Gaps (OA1, 59:36–1:08:53)

Session Background
Developers O3 and O4 should write a test case to check a newly implemented default selection
in a form. The form is complicated (interaction with one of its parts may reveal new form parts
or alter existing ones) and was implemented by a colleague who is currently not available. Not
only does the pair not know the code they are supposed to test, they are also not familiar with the
underlying technology.

The pair tried to understand an existing test case for the form during the first hour. They
inserted console.log statements in the test code that prints runtime objects as JSON strings. In
their setup, every run of the test case takes about between 2.5 and 4 minutes to complete, so they
only managed to run seven iterations of changing log statements–starting test run–reading output,
and basically only learned that the objects they were looking at did not contain any information
on the initial values—which was the part they were supposed to test.

During the session, O4 started looking up things on his own laptop. His screen and webcam
were not recorded, so it is not clear at times what he is looking at.

Technical Background
The form itself is built in layers which are completely contained in a single source code file:
1 TeamSelect (exported): Most of the form dynamics is encapsulated in this layer. It is

exported, i.e., accessible by other modules.
2 TeamSelectMapped: Layer 1 enhanced by a virtual, read-only field by means of a function

called filterTeamSelected (which itself is also exported).
3 TeamSelectForm: Layer 2 connected to a data store and also with the new initial value

definition—the functionality to be tested.
4 TranslatedTeamSelect: Layer 3 enhanced by internationalization information.
5 TeamSelectContainer (exported): Layer 4 attached to a so-called state container (here:

Redux) by means of a function called mapsToProps.
The layerings are done in a functional way (using higher-order functions), making it difficult to
relate the form’s runtime structure to the compile-time structure of its parts. There is also an
existing test class in which the state of TeamSelect (layer 1) is set directly, so that test case
is not useful for testing the default-setting logic setting happening on layer 3 . (Note that there
is much more to know about their system and the involved technology which the pair neither
figured out nor came across in their session, so reconstructing the full extent of their knowledge
gap is not feasible.)

What happens?
First, the pair reiterates some of the basic facts they learned during the first hour (e.g., ‘TeamSelect
comes from the file named TeamSelect.coffee’, or ‘TeamSelect does not contain information
about initial values’), without producing any new ideas. Due to many pauses and interrupting one
another this takes over three minutes (59:36–1:02:51, see page 418 for the transcript).

In the following minutes, O4 makes a test design proposal (basically, to test 5 instead of 1),
to which both developers eventually agree by and large. But along the way, each of them has some
reservations, follows an idea of their own in which the respective partner is not involved, and fail
to evaluate each other’s arguments and hypotheses that the design proposal relies on.

219

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

(1) A O3: “If we test against the real React com-
ponent, I think, we can (!...!) so we just have
to render the React component, the real one
instead of the mocked one and check if the
prop is there or not.” propose_design

O3 proposes to not use the test fixture which
sets the state on 1 directly (“the mocked
one”), but “the real React component” with-
out any externally forced state. It is not clear
whether O3 understands any of the five lay-
ers yet.

(2) B O4: “(.) This initial value, it is here.
TeamSelectForm is used Translated
TeamSelect. TranslatedTeamSelect
is in the TeamSelectContainer, which
is also exported, but which is not a part of
TeamSelect.” explain_finding

O4 does not react to O3’s proposal. Instead,
he reads in the production code and under-
stands that the initial values are defined in
3 , that 3 is wrapped in 4 and then in 5 , and
that 1 (which is the subject of the existing
test cases) does not contain any of them.

(3) B O3: “(. . . .) Hm. <*selects definition of
TeamSelectContainer*> Yeah? (.
. . .) Yeah, but this is the (‼...‼)”

disagree_finding

O3 takes some time to think about Team
SelectContainer and appears to disagree
withO4, but is cut off byO4 before she could
formulate her thoughts.

(4) B O4: “So maybe we have to test Team
SelectContainer.” propose_designOE

O4 proposes to test 5 instead of 1 . (This
makes sense: 5 is the only exported compo-
nent that includes the logic to-be-tested.)

(5) B O3: “(.) I don’t know.”
explain_standard of knowledge

O3 does not evaluate the proposal and says
she cannot evaluate it.

(6) C O4: “(. . .) Or is TeamSelectContainer
used somewhere else? <*turns to his ma-
chine*>” propose_stepPI + search_sth

O4 does not react toO3. Instead,O4wonders
whether there are already existing test cases
for 5 and starts a search on his own laptop.

From this point, the pair no longer maintains a pair process: O4 is engaged in C and O3 in B
without their respective partner following along.

(7) B O3: “So, TeamSelectContainer is the
wrapper to make it a stateful component,
so it connects to Redux. But I don’t know if
we need to call the (.) if we need Redux
here anyway.”

explain_knowledge + disagree_design

O3 reiterates what they know about 5 , and
appears to raise some concerns about O4’s
proposal to test 5—possibly because she
wants to keep the test subject small and the
test cases simple—though she does not make
her argument and her intention explicit.

(8) C O4: <*continues searching (, , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , ,)*> search_sth

(9) B O3: <*looks at source code (, , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , ,)*> examine_sth

O4 does not react to O3’s objection, but in-
stead silently continues his search. Neither
developer says a word for 33 seconds.

(10) D O3: “Ah, what about this filter
SelectedTeam? <*selects definition
of said method*>” explain_finding

O3 develops a new idea for a test subject
and notices the function filterSelect-
edTeam (from layer 2).

(11) O4: “<*looks to O3*> Sorry?” O3 gets O4’s attention.

(12) D O3: “What about this filterSelected
Team? So it gets the formValue <*hovers
code*>, it’s exactly what we want. (#props.
fields.teamSelect.value#) <*open debugger
in web browser (, , , , , , ,)*>”

propose_design + examine_sth

O3 proposes filterSelectedTeam as the
test subject, and finds clues that it is involved
in the fields selection. Technically speaking
however, the function is used in 2 and not
involved in setting the initial values, so O3’s
finding is wrong.

Example 6.17 (continued)

220

6.3.4 Breakdowns in Pair Programming

(13) D O3: “Ah, it’s not. <*goes back to editor*>”
disagree_finding

O3 realizes the function is irrelevant and re-
tracts her proposal.

(14) C O4: “(, , , , , , , ,)” search_sth O4 does not react to any of this but turns
back to his machine to continue his search.

(15) B O3: “<*puts cursor in test code*> But let’s
try getting the, instead of rendering (. . .)
the TeamSelect, we can try with the Team
SelectContainer.” decide_design

O3 agrees to O4’s proposal to test 5 rather
than 1 from two minutes earlier (4).

(16) D O4: “I’m just looking if there’s already a
test (. .) for it, but I don’t see it.”

explain_knowledge

O4 does not explicitly refer toO3’s proposal-
acceptance, but seems to understand her, re-
ferring to TeamSelectContainer as “it” .

(17) E O3: <*searches for occurrences of role
Select in TeamSelect code (, , , , , , ,
, ,
, , , , , , , , ,) (.)*>

examine_sth

O3 in turn does not react to O4, but instead
inspects the source code for about 90 seconds
during which neither of the two developers
says a word.

(18) E O3: “<*selects three lines in TeamSelect
code*> I think it’s this guy that we want.”

explain_finding

O3 comes up with another idea for a test
subject. She selected the code that renders
the dropdown form element.

(19) O4: “Sorry?” Again, O3 gets O4’s attention.

(20) O3: “<meekly> Sorry to interrupt, erm” O3’s tone is ambiguous: It could be a miffy
remark on O4’s solo activities, or embarrass-
ment that she interrupted O4 during some-
thing important.

(21) O4: “No, it’s okay.” O4 reassures her that the interrupt was not
problematic.

(22) E O3: “I think it is that what we want, ’cause
you were saying that we are looking at the
wrong thing. So we were looking at the
TeamSelect section, where you define the
name and you have this button, and there
is this part <*points to selected lines*>. So
we have the className which is the role
Select and selectProps with (#props.
fields.roleSelect#) and if you go here <*goes
to browser*> it’s this.” explain_knowledge

O3 explains her recent insights and shows
O4 a correspondence between the source
code of 1 and the rendered output in the
browser.

(23) E O4: “(#roleSelect#)” read_sth O4 now follows along.

(24) E O3: “ <*back to code*> I think it’s the
selectProps. So selectProps <*to
browser*> selectProps. And at some
point, we have the initial value that is com-
ing (.) from somewhere.”

explain_knowledge

O3 has identified the GUI element that even-
tually holds the values, but is not yet sure
how the initial values get in there.

(25) B O4: “But, yeah, I think it’s coming from the
container.” propose_hypothesis

O4 thinks the initial values come from 5—
which is technically not entirely true: they
are part of 5 , but are defined in 3 .

(26) B O3: “Right.” agree_hypothesis

Example 6.17 (continued)

221

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

(27) B O4: “It’s defined in a component which is
covering, which wraps this TeamSelect
component. (.) This is my impression,
I’m not sure.” propose_hypothesis

O4 goes on to reiterate his understanding
of the layers, which he explained more than
five minutes ago (2).

(28) B O3: “OK, so let’s try to render instead of the
TeamSelect, to render the TeamSelect
Container.” decide_design

O3 agrees to the O4’s proposal again—three
moreminutes after she first agreed to it (15).

After this excerpt, the pair started implementing the proposal.

Example 6.17 (continued)

In the above excerpt, the pair process broke down at the point where the developers each
started following their own s. On the one hand, O4 went searching for other test cases (C)
and it is not clear whether O3 knew and understood what he was doing (she did notice that
O4 did something as she apologized for interrupting him). O4 reported that his search yielded
no results, but the fact that he searches for almost three and half minutes (and continues for
another minute and a half after the above excerpt) indicates that the search process is not
trivial and could benefit from a partner’s input. On the other hand, O3 raised concerns about
O4’s initial proposal (turns 3, 5, & 7) which were not addressed, and O3 identified two other
test subject candidates (results of D and E), which O4 did not discuss.

One could argue that the above excerpt was not a broken pair process but two developers
each working solo in parallel. The situation, however, would still be problematic: O4 gets
interrupted in his search by O3 twice, andO3 does not learn much in the time she works alone:
Her decision to agree to O4’s proposal has not changed, although her concerns about it were
not alleviated, and she still does not know more about the code than that “at some point, we
have the initial value that is coming from somewhere” .

O3 later described the frustration of this broken pair process with the difficulty of producing
clear ideas of her own and following her partner:

I was lost [. . .] I was finding it difficult to follow my thinking and [. . .] to understand also
for myself what was the problem and also follow O4’s way of thinking. [. . .] I was in the
middle of a thought and then O4 had another idea, and also the other way around. O4
was having an idea, and I would interrupt him.

O3 in reflection interview after sessions OA1/OA2 (see Section 4.3.2e)

However, understanding the problem as well as dealing with one’s own and the partner’s
thoughts sounds like what happens in all pair programming. Indeed, the pairO3/O4 is perfectly
capable of normal PP (see Example 6.14). So what was different here? What are the reasons for
breaking down?

6.4 Togetherness

In the previous section, I characterized three level of pair process Fluency: normal PP, Focus
Phases, and Breakdowns. A pair’s Fluency is exhibited behavior. I propose Togetherness as
a not directly observable property of the pair to explain the differences in Fluency: It is the
degree to which the pair members are able to fully understand each other’s activities, including
all intentions and meanings associated by the respective speaker or actor.

Togetherness is a potential: A pair with high Togetherness can work normal or reach Focus
Phases; a pair with low Togetherness is susceptible to a Breakdown. High Togetherness is
not the same as being ‘mental clones’. It is more about being compatible in a certain sense.

222

6.4.1 Degrees of Togetherness: Understanding Intentions

Togetherness allows correctly understanding an utterance as a question, proposal, or evaluation,
what it entails on a technical level (as meant by the speaker), why the speaker made it, etc.—but
it is not about knowing that the partner would ask that question in advance, knowing the
answer to it, or being able to come up with the same proposal, being able to evaluate it, or
agreeing to it, etc.

6.4.1 Degrees of Togetherness: Understanding Intentions

Togetherness as a potential is not directly observable. After all, ‘thinking with one mind’ is only
a figure of speech and any common understanding is just an illusion: There is only individual
knowledge (see Section 3.2.1a). In a sense, a pair’s Togetherness as the ability of the pair
members to understand each other is put to test with every base activity. As in any form of
communication, developers during a PP session need to interpret their partner’s utterances
and behavior in order to make sense of them. How well this works characterizes a pair’s
momentary Togetherness (see also Table 6.4): Pair members with medium Togetherness are
able to correctly understand their partner’s primary intentions. In other words: They could
assign base concepts to utterances and actions. Pairs with high Togetherness also understand
partial utterances and implicit meanings, they ‘sense’ what their partner is about to say or
do (as in Example 6.3: C5: “Do you know how I access the feature to change a method?”—C2:
“That doesn’t get you anywhere.”). Pairs with low Togetherness at times have more difficulties
understanding even the primary intentions and/or the propositional content of their partner’s
utterance.

Concept Description

Togetherness The degree to which the pair members are able to fully understand each other’s
activities, including all intentions and meanings associated by the respective speaker
or actor. This is what allows two developers to work as a pair. A pair’s Togetherness
is not directly observable and it may change over the course of a PP session.

– medium Pair members can correctly understand their partner’s primary intentions (what
the base concepts capture), e.g., understand an ask_knowledge as a question and a
propose_design as a design proposal. Such a pair works with normal Fluency, both
Focus Phases and Breakdowns are unlikely.

– high Pair members can also correctly understand their partner’s underlying intentions,
e.g., a developer might ask a technical question (primary intention) because she has
a certain implementation procedure in mind (underlying intention), which itself
remains completely implicit. Such pairs work with normal Fluency, possibly reach
a Focus Phase where they correctly understand (or guess) partial utterances and
complete each other’s thoughts and sentences.

– low Pair members misinterpret their partner’s intentions more easily (i.e., they only think
they understand their partner) or are not able to come up with an interpretation at
all. Normal PP is possible but the pair process is in danger of breaking down.

Table 6.4: Togetherness and its three degrees

Usually, the pair member’s intentions and subjective meanings of their actions remain implicit
and need to be reconstructed by the researcher. Sometimes, however, intentions becomes an
explicit topic of the programmers’ dialog, as the next two examples show.

223

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

Example 6.18: Asking for Intention (DA2, 1:14:25–1:14:44)
In the middle of a manual refactoring D4 wonders what to do with a method parameter. Without
commenting it, D4 temporarily renames the parameter in the method signature to trigger the IDE
to show compiler errors everywhere the parameter is used. His partner D3 follows these actions
but does not understand the maneuver and asks for D4’s intention.

D4: “<*renames method parameter “list” to “lista”, IDE shows compiler errors where
“list” is referenced*> OK, so here, it gets the (!...!) objects then, probably <*undoes
renaming*>”

D3: “Why did you just rename it to list?”

D4: “No, only to see whether (!...!) what it’s doing with it.”

D3: “I see.”

Example 6.19: Clarifying Intentions (CA5, 1:19:58–1:20:16)
At the end of their session,C3wants to open the ‘SVN Commit’ dialog to submit their code changes
to the central repository, but accidentally hits the IDE’s ‘SVN Synchronize’ button which triggers
a potentially long-running comparison of the local and the remote state. He immediately notices
his mistake, no harm is done, and C4 only mockingly asks “why?” , but apparently C3 still feels the
need to explain his behavior.

C4: “Then let’s commit this.”

C3: “<*clicks on ‘Synchronize’*> We can briefly talk about this, about testability (!...!) Now I
clicked on this. I didn’t mean to.”

C4: “<acted outrage> Why would you do such a thing? (‼Yes‼) Bringing ‘synchronize’ into
the game.”

C3: “That’s (!...!) misclicked (!...!) I’m used to (!...!) I’m used to clicking a button down here,
that looks like this, because I have it down there in the QuickView, you know? And then
(!...!) was a reflex.”

C4: “<acted forgiveness> Well-well.”

C3: “<laughing> Yes.”

The degree of Togetherness determines the properties of the pair’s base activities: high To-
getherness allows to understand the thinking behind non-expecting s, s are prompt and
appropriate because the s are fully understood; with medium Togetherness, s need to be
more expecting to engage the partner, s are sometiems delayed or misled because of misun-
derstandings; low Togetherness also leads to non-expecting s but these are not understood
by the partner, so there are more s, s are more often non-evaluative, and there also also
longer pauses and missing reactions (s).

A pair’s Togetherness may change over the course of a session. In the next Section 6.4.2, I
discuss the factors that appear to have positive and negative effects on it. I discuss cases of
pairs accidentally or deliberately working with a lowered Togetherness in Section 6.4.3, and
strategies employed toMaintain Togetherness in Section 6.4.4.

6.4.2 Facilitators and Inhibitors of Togetherness

By comparing situations of pairs who easily understand subtleties of their partner’s actions
with those riddled with non- or misunderstandings, I identified five factors that make it easier
(or harder) for a pair to achieve Togetherness, i.e., that enable (or hinder) them to understand
even implicit intentions under ambiguous conditions and react properly. On the following
pages, I discuss their role and provide examples for illustrating positive and negative cases.

224

6.4.2 Facilitators and Inhibitors of Togetherness

6.4.2 a) Factor: Shared Understanding of the System

Pair programmers work on technical tasks in a software system of some sort. They discuss
design proposals, formulate hypotheses or findings about its aspects, etc. In their technical
discussion, the pairmembers refer to some part (such as a module, a class, or a method) or aspect
(such as a faulty behavior, a requirement, or its performance)—none of which are tangible
objects (unlike, say, a sewing machine, see Section 2.4.1b). For a productive conversation, the
partner then needs to understand the reference, what the proposal, idea, etc. is about.

Enabling Togetherness
It is not necessary for either partner to have a full understanding of the system. What matters
is a shared mental model of the relevant parts and aspects. In Example 6.1, C5 refers to “an
object, where you can get the IColumns, where you might get to a Provider, or something” .
Such Providers are neither visible on-screen nor do they play any role in the session. But C2
still responds “M-hm. Sure thing.” . The pair clearly has a shared understanding of the system
at this point, and it enables C2 to understand what C5 is talking about.

Hindering Togetherness
In Example 6.8,C5 proposes to use one method over the other and asks C2 about it, who admits
he has “no idea what it does” . C2 understood his partner’s intention, but knows too little about
the method in question, so his reaction is non-evaluative. C5 expected the method’s purpose to
be part of their shared understanding, and afterwards Maintained Togetherness by explaining
it to C2: “That’s for getting a unique name for the attribute” .

In the first discussed Breakdown case, Example 6.16, O3 did not understand the “matcher”
assertion in the test case and the technical reason for the assertion failure (see 1 and 2 in the
overview on page 211)—but O4 did and assumed that O3 does, too. They did not have a shared
understanding of their test logic, which made it more difficult for them to understand each
other’s proposals and findings.

6.4.2 b) Factor: Shared Understanding of Software Development

Pair programmers rely on troves of knowledge on how software development works, how to
use certain tools, how to use idioms of programming languages to approach different types of
problems, etc. The general argument is the same as for the shared system understanding: To un-
derstand what, say, a design proposal entails, the partners need to have a shared understanding
of what can be done in software development in principle.

Enabling Togetherness
Although the pair J1/J2 from the running Example 6.13 spends much time on a tiny detail (the
size of the polling interval), J2’s initial explanations of the system’s architecture and purpose
are all easily understood because both J1 and J2 have a shared understanding of a central
control architecture, distributed systems, event-driven vs. polling solutions, etc.

Hindering Togetherness
In first Breakdown case, Example 6.16, O3 mistakenly rejects O4’s hypothesis: O4: “getEnd()
is not defined in the test, I guess”—O3: “But if it calls this function (!...!)” . This is probably because
O3 is not aware of how the existence operator “?” works: It first checks whether a method is
callable. This mismatch between O4 and O3 is never cleared up, and was one reason for why
they did not really work together as a pair.

In session DA2 with the pair D3/D4, the effects were milder: D3 does not fully grasp the
idea of the refactoring his partner D4 proposed (the Template Method design pattern), so the

225

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

pair falls back to an asymmetrical mode with low Togetherness in which D4 does most of the
work. (Their case will be discussed in more detail in Example 6.22 on page 228.)

6.4.2 c) Factor: One Shared Plan

Having an agreed upon plan for what to do in their PP session appears to make it easier for
both developers to understand the underlying intentions because every proposal and action
can be considered against the backdrop of the overall plan.

Enabling Togetherness
In generally fluent sessions, such as AA1, CA2, or CA5, the developers talk about what they
want to achieve early in the session as well as occasionally mid-session with strategy and state
activities. The following example shows the strategy decision of C3/C4 in session CA5 that
happened before their Focus Phases.

Example 6.20: One Shared Plan (CA5, 17:28–18:20)
The pair decides on a strategy on how to introduce a new class similar to an existing one while
avoiding needless duplication.

C3: “I’m not sure which parts we can actually reuse.” explain_gap in knowledge
C4: “Me neither.” agree_gap in knowledge
C3: “Either we try to extract a method here and try to call it. Or blunt, straight on, copy it.

Check one by one, ‘Makes sense? Do we need it? Where are the differences?’ And only then
we look how to bring it back together, are there similarities to use.” propose_strategy

C4: “[. . .] OK, let’s copy that thing to execute(). Let’s see what we need.” decide_strategy
C3: “M-hm.” agree_strategy

This strategy is the foundation for the next 10 minutes of their session during which Focus Phases
#1, #2, and #3 happened (see Table 6.3).

Hindering Togetherness
In problematic session OA1, the developers hardly have any strategy or state activities (see
second Breakdown case, Example 6.17, for an excerpt). In session OA8, developer O4 did have
a plan—he wanted to test his hypothesis that more methods needed to be mocked—but it was
not shared as he was not able to effectively explain it to O3, so its execution took way longer
than necessary (see Example 6.16).

6.4.2 d) Factor: Workspace Awareness

Working on one computer (as in most analyzed sessions) is easier than working on two
synchronized machines (e.g., session JA1, a distributed session mediated by Saros), which in
turn is easier than working concurrently on two computers that are not synchronized (as in
session OA1). Depending on their setup, the two developers’ individual realities are more or
less similar and therefore provide more or less shared context to rely on.

Enabling Togetherness
Refer back to the Focus Phase in Example 6.15: The utterances of both partners are full of
deictic references: “You can just return here” , “We don’t actually need it” , “We need that” ,
and “still a bracket too much, at the end” . Looking at the same physical screen, seeing the
same content and cursor allows for such short utterances to be perfectly understood by the
partner.

226

6.4.2 Facilitators and Inhibitors of Togetherness

Hindering Togetherness
In Example 6.17, O3’s references are not understood because O4 looks on his own screen (and
follows a plan of his own): O3: “Ah, what about this filterSelectedTeam?”—O4: “Sorry?”
and later again O3: “I think it’s this guy that we want.”—O4: “Sorry?” .

6.4.2 e) Factor: Language Barrier

Not being able to speak one’s native language makes it arguably more difficult (a) to express
oneself precisely as a speaker and (b) to interpret the partner’s utterances as a listener. In
most analyzed sessions, the developers spoke their first language, with sessions MA1, OA1,
OA5, and OA8 being exceptions: the developers spoke English for most of the time, which is a
second language for all of them.

But even if both developers can use their first language, idiolects might still be an issue.
The same words, even when uttered in comparable contexts, can have different meanings
depending on who speaks them. Both developers J1 and C2 use the same words “Wait a second”
(German: “Warte mal kurz”) on multiple occasions to reserve some time to process a thought
(a propose_step). In C2’s case however, this utterance always has the connotation of ‘Give me
mouse and keyboard and let me drive’, which his session-CA1-partner C1 appears to understand
and sits back and releases the mouse, but his session-CA2-partner C5 does not and keeps
talking until C2 slightly pulls the keyboard towards him.

Enabling Togetherness
The extent of mutual understanding and concurrent speech of the Focus Phase in Example 6.15
is hardly imaginable between two developers who are below native speaker proficiency.

Hindering Togetherness
In the beginning of the normal PP illustration in Example 6.14, O3 and O4 (both non-native
English speakers) try to infer the meaning of the variable “offsetDays” from its name and
argue—in English—about the semantics of the English word “offset” (see turns 3–6). Between
two native speakers, there would probably be one level of confusion less.

6.4.2 f) Factors’ Interplay

I usually do not have enough evidence from the session recordings to pin down exactly why a
developer does or does not make her s expecting and her s evaluative. I identified these
five factors by systematically comparing situations where partners understood each other
easily with situations of misunderstandings. The factors are not necessarily independent and I
cannot say much about their relative importance. Asking the developers themselves for an
explanation in the post-recording interviews was not possible, as my analyses had not yet
reached this point when the sessions were recorded. The next example illustrates how four of
the factors come together (see Example 6.3 for more context):

Example 6.21: High Togetherness (CA2, 28:14–28:23)
The pair agreed on changing one parameter type of a method in a Java interface. C5 wants to
use Eclipse’s “Change Method Signature” refactoring for this, which is suitable for renaming and
reordering parameters, or introducing new ones with a static default value. Changing parameter
types, however, does result in compilation errors if the new type is not compatible with the old one,
which is the case here. C5 still wants to use this tool, possibly to get a definitive list of compilation
errors they can go through one by one. The only thing he asks his partner C5, however, is:

227

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

C5: “Erm, do you know the <*right-clicks on method name to open context menu*> how I
access the feature to change a method?”

C2: “That doesn’t get you anywhere.”

C2’s is prompt, coming less than a second after C5 finished his , and it indicates the pair’s high
Togetherness.a C2 apparently relies on a number of factors to interpret C5’s action and intentions:
1. No Language Barrier: C5’s utterance was a question to which he expects an answer.
2. Workspace Awareness: C5 wants to apply a refactoring (opened context menu) on some

method (cursor position).
3. Shared Understanding of Software Development: C5 refers to the refactoring “Change

Method Signature”, which is known to both developers for changing a method’s signature in
all places where it is declared, implemented, or called.

4. One Shared Plan:C5wants to apply this particular refactoring probablywith the expectation
to save some manual editing on their way to change the Java interface.

aTechnically, C2’s reaction is only indicative of his “half” of the pair’s Togetherness. In the full exchange
(see Example 6.3) it becomes clear that this depth of understanding is mutual.

Example 6.21 (continued)

To summarize, Togetherness is the degree to which pair programmers are able to interpret each
other’s activities. High Togetherness enables a PP process with high Fluency. Togetherness is
facilitated by having a reliable common ground, which in pair programming situations boils
down to a shared understanding of the system, shared understanding of software development,
one shared plan, workspace awareness, and not having to deal with language barriers.

In practical scenarios, pair programmers may find pragmatic ways to deal with any limita-
tions regarding these factors. In the following Chapters 7 to 11, I characterize different ways
how pairsMaintain Togetherness with regard to the factors shared understanding of the system
and shared understanding of software development. I summarize such behavior as knowledge
transfer. How pairs agree on one shared plan, how they deal with workspace awareness and
language barriers, however, is beyond the scope of this thesis. In Section 6.5, I discuss some
related work in this regard.

6.4.3 NotMaintaining Togetherness

Before I explain how pairs go about Maintaining Togetherness, I will first discuss cases of
pairs who effectively gave up their Togetherness, either by accident or by choice in order to
enable one developer to technically proceed with the task without giving the partner’s grasp
of things a high priority.

6.4.3 a) By Choice

Example 6.22 shows how a pair managed a situation where one shared plan could not be
established—because one pair member lacked the technical skills for understanding it—by
switching into a half-detached mode.

Example 6.22: Splitting Up (DA2, 40:03, 1:24:25, 1:35:42, & 1:41:17)
SessionDA2was probably planned as a training session, as this isD4’s first week with the company.
D3 explains the rough structure of the system before the pair starts implementing a seemingly small
feature. They soon encounter some design flaws in the existing system, talk to senior developers
D7 and D6, and pivot the session’s goal towards a simple, but far-reaching refactoring.

After having spoken to the senior developerD6, junior developerD4 has a good understanding
of the refactoring which D6 proposed: It boils down to extracting an abstract superclass from two

228

6.4.3 Not Maintaining Togetherness

dozen implementation classes using the Template Method design pattern (Gamma et al., 1995,
pp. 325–330).a The senior D6 happily stops his explanation and leaves the group as D4 begins
completing his sentences and apparently got the idea. D3, although being at the company longer
than his new colleague, is rather cautious:

D3: “<laughs> Erm, okay? It seems you were able to follow this better than me. Well, go
ahead then!”

D4 performs the refactoring in one class after the other whileD3 sits by and provides the occasional
class name or proposal for a parameter name. After forty minutes, D4 asks whether D3 is yet
comfortable enough to perform some changes on his own:

D4: “Care to take over? <*nudges keyboard*>”

D3: “I think you’re more into this whole thing. I’m quite out of my depths here.”

And again another 10 minutes later:

D4: “So, you say when you want to take over, right?”

D3: “Nope, you go on now. I say when I’m back on track. I’ll give a shout.”

D3 apparently trustsD4who had convinced senior developerD6.D4 continues with the refactorings
increasingly mechanically, as more and more classes look similar to already refactored ones. D4
seizes the opportunity to explain the design pattern to D3 (see Example 7.14), and another six
minutes later, proposes to let D3 take over again. Now D3 gladly accepts:

D4: “Yeah, if you want to take this?”

D3: “Yep, let’s do this.”

aAlthough the pattern name was not mentioned at this point in the session, it is clear that both D6 and
D4 know and refer to the pattern.

Example 6.22 (continued)

The pair in Example 6.22 did not invest any effort in making sure they both fully understand
the refactoring procedure, i.e., they did not have one shared plan and did notMaintain their
Togetherness. One could argue that this is not real pair programming. But: First, for most of
their session, D3 and D4 are textbook examples of the classical driver and navigator roles—one
of them writing the source code, the other looking for defects—so, Example 6.22 would be ‘pair
programming’ by definition. Second, and more relevant than clinging to such a definition, it
shows how two software developers made a conscious decision about how to proceed as a
pair, and even found a way to make D4’s very first programming experience in this company
rather fruitful (see Example 11.10 for further discussion).

6.4.3 b) By Accident

NotMaintaining Togetherness is not usually a seriously considered option but an accident.
Drastic cases can be seen in the Breakdowns in Examples 6.16 and 6.17. There are, however,
milder forms. The next example illustrates how inadvertently low Togetherness can arise and
how the pair did not notice it for 40 minutes.

Example 6.23: Reading Documentation (KC2, 14:12–15:04 & 53:54–54:24)
For writing an integration test of an auto-completion feature, developer K2 and K3 want to pro-
grammatically enter characters into an input field with a JavaScript library. They open the online
documentation: K2 controls the mouse and scrolls around as he sees fit, while K3 only appears to
read the fragments K2 points to:

229

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

K2: “<*opens documentation*> (, , , , , ,) That’s event binding, but I want to trigger it <*scrolls
down*> (, , , , , , ,) Ah, <*selects text at bottom of the screen*> (#keypress#) and then
<*scrolls selected text to the middle of the screen*> it gets triggered.”

K3: “<*reads text behind selection*> (#without an argument#), okay.”

K2: “<*scrolls up*> But, how can I (!...!) <*moves cursor to example code with EventData*>”

K3: “<*reads code near cursor*> (#EventData#)”

K2: “We have to tell it somehow, what it should do. <*scrolls down*> Maybe we just have to
google it. Google certainly knows.”

K3: “Or we take a look at (~) how it’s done there, in the code.”

K2: “In the code <*switches to IDE*>”

At this point, K2 knows that “keypress(handler)” is used to bind a handler to the keypress
event and that “keypress()” (“without an argument”) can be called to trigger said event, but
K3 does not. This discrepancy only becomes apparent 40 minutes later (during which the pair
followed different approaches, none of which involve that particular piece of knowledge): K2 the
uses the event-trigger idiom and K3 is puzzled by the statement, thinking it is faulty as it would
bind an empty event handler:

K3: “But, what you just wrote there [. . .] but, I don’t think that we trigger an event this way.
It’s more like an event handler that we (.) don’t implement.”

K2: “When it’s empty (!...!) no, when it’s empty, we looked this one up <*opens documenta-
tion*> (#to trigger the event manually#)”

K3: “A-ha, (#without an argument#) (, ,) but (, , , ,)”

It is possible that K3 did, in fact, fully understand the event-trigger idiom at 15:04 and completely
forgot it by 53:54. A more likely interpretation of the above events, however, appears to be that K2
read the documentation at his own pace and was scrolling too fast such that K3 could only read
out loud fragments in the proximity of K2’s cursor without really digesting them. This way, K2’s
understanding of the relevant technology increased while K3 lagged behind, thus weakening their
shared understanding of software development, thus decreasing the pair’s Togetherness.

Example 6.23 (continued)

The damage of not Maintaining Togetherness in the particular situation of Example 6.23 is
probably negligible: First, there cannot have been any related defects which K3missed because
K2 did not use the newly learned keypress() idiom in the 40-minute period; second, clearing
up K3’s misconception took K2 less than 30 seconds; and, finally, the resulting interruption
did not appear to throw the pair off track. However, it points to a mechanism that could have
bigger consequences, an anti-pattern that reduces Togetherness and which will be discussed
later in Section 9.5.2: Parallel Production instead of Co-Production.

6.4.4 Maintaining Togetherness

Pair programmers may Maintain Togetherness with regard to all five factors.2 While all
of these five involve some kind of knowledge, for the rest of my thesis (Chapters 7 to 11),
I focus on knowledge transfer in a narrower sense. First, I exclude language issues as they
are too fundamental. Second, I exclude workspace awareness and one shared plan as they are
too short-lived. Finally, I exclude the developers dealing with opinions. What is left is how
pair programmers Maintain a shared understanding of factual information about the software
system and software development in general, while the rest is beyond the scope of this thesis

2In an earlier publication (Zieris & Prechelt, 2016),Maintaining Togetherness was called “resynchronization” .

230

6.4.4 Maintaining Togetherness

and calls for further investigation. As a starting point, I share a number of observations in the
following sections.

6.4.4 a) Excluded Factor: Language

There were only few sessions in my data where the pair members did not have a common
first language. In sessionsMA1, OA1, OA2, OA5, and OA8, the respective developers agreed to
use English as the strongest common language. Occasional difficulties to express oneself were
coped with by adding gestures (e.g., O3 mimicking a distance with her two index fingers, see
Example 6.14).

Being able to communicate fluently in a spoken language certainly involves knowledge, at
least in the sense of the cognitive sciences (see Section 2.2.2). I exclude activities that deal with
differences between the pair members pertaining to this type of knowledge from my research
not because it is not relevant, but because it is a more fundamental aspect of human social
activity than what practitioners have in mind when they refer to knowledge transfer in pair
programming.

6.4.4 b) Excluded Factor: Workspace Awareness

The pair J1/J2 has a reduced workspace awareness in sessions JA1 to JA9 since they employ
distributed pair programming. Schenk (2018) studied how they deal with this (see page 84).

Example 6.24:Maintaining Workspace Awareness (JA1, 53:56–54:34)
J1 and J2 do not share the same physical workspace. Since they cannot physically point to each
other’s screens and say ‘there’, the pair members developed a habit of routinely selecting portions
of the source code (which their tool mirrors to the other side) or mentioning concrete line numbers
when referring to them. J1 has selected lines 88 to 105 and his viewport shows lines 72 to 102
while he makes the following proposal:

J1: “Ah, so that means this <*selects lines 88 to 105*> (!...!) that means this case we can pull
into that try [lines 76 to 79], right?”

J2’s screen is larger and shows lines 42 to 108. He wants to make his partner J1 aware of an
if-statement in 51, which happens to be beyond J1’s current viewport.

J2: “We can (, ,) this, no! No-no-no-no-no-no-no. We can not, because <*cursor to line 51,
selects if-keyword for J1 to see*> please be aware of line fifty-one <*selects whole if-
statement for J1 to see*>, the localNewsFile.”

J1: “Line fifty-one, what?”

J2: “We can not do this.”

J1: “Ah, you mean <*starts scrolling up to J2’s selection*> that we (!...!)”

J2: “What we can do, however (‼...‼)”

J1: “Aargh-ha-ha-ha urgh <resignating>, oh god. Yes, you are right, you are right.”

Note that neither developer actually spells out the problem that J2 noticed, but with the limitations
of their workspace awareness mitigated, both developers reach a high Togetherness.

Being aware of what the current state of the (virtual and physical) workspace of each of the
pair’s members is a type of knowledge. Unlike language-related knowledge, it is presumably
even mostly explicit knowledge that can be verbalized, as the developers in the example above
demonstrated. It is, however, rather short-lived since knowing the current position of the text
cursor or the content of a displayed error message are relevant for taking part in the ongoing

231

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

pair process, but is not something that developers take out of their session. It is not what
practitioners mean when they talk about knowledge transfer in pair programming.

6.4.4 c) Excluded Factor: One Shared Plan

One advantage of having two developers working on one task is that even if one of them
forgets something, such as the original plan, the other can remind her:

Example 6.25: Maintaining One Shared Plan (AA1, 25:39–28:00)
The pair wants to work through four related defects and just arrived at case number three. A1
makes a start to look into the implementation of list no. 3 (turn 1) when A2 makes a discovery
that makes the pair take a detour to look into a different aspect of the system (turn 2).

(1) A1: “Let’s see how it’s rendered.”

(2) A2: “<disgusted> Why does it have its own isActive()? <sucks air through teeths>”

(3) A1: “No clue. And I don’t want to (!...!)”

(4) A2: “No, I want to fix this, because <laughing> otherwise this one does something different
than the other and then it’s screwed up again.”

Both partners follow A2’s initiative. They start to read and understand that the class has “its own
isActive() [implementation]” for a good reason, have a short discussion on the pros and cons
of moving such logic to the backend, and they agree on deferring this until the actual task is
done (25:51–27:20, not transcribed). In turn (6), A1 wants to get back to the original issue (i.e.,
understand the rendering of list no. 3), but A2 at this point lost track of the latest open topic and
their once-shared plan and he wants to start at the beginning again (list no. 1):

(5) A2: “Well.”

(6) A1: “Yes, we need to see how it’s rendered [= list no. 3]. Because have to see what it’s
(!...!)”

(7) A2: “Well, let’s start with the first page again. <*switches to browser, look at A1’s hand-
written notes*> The first page you wrote down was ‘Finish Tasks’, right?”

A1, however, insists on continuing with list no. 3 and it requires multiple attempts of convincing
A2 before they arrive at a shared plan again.

(8) A1: “Why don’t we finish off the version page [= list no. 3] now?”

(9) A2: “Because we did not finish the other ones either.”

(10) A1: “Hello?”

(11) A2: “We did not finish the other ones either. <*switches back to IDE*>”

(12) A1: “We started this one [= list no. 3]. Why wouldn’t we finish it now? You only need to
change the rendering of the text.”

(13) A2: “<exhales audibly>”

(14) A1: “Not there <*points to screen*> but in the ContentVersionsView thingy [= list
no. 3]. Then we can complete that thing at least (!...!) (~) is working at least.”

(15) A2: <*Opens ContentVersionsViewPage, i.e., list no. 3*>

Both developers continue inspecting the source code around the third defect.

An agreed-upon plan is relevant information in software development and therefore a type of
knowledge. But similar to workspace awareness,most of the in-session plans are too short-lived
to consider talk about them knowledge transfer in the practitioner sense, so I exclude it from
my work.

How pairs Maintain one shared plan is an interesting topic for further work (Section 14.3).
In Example 10.7, for instance, I discuss on how one pair used TODO comments for this.

232

6.4.4 Maintaining Togetherness

6.4.4 d) Excluded Type: Opinions

Maintaining a shared understanding of software development is not necessarily knowledge
transfer in a narrow sense, but can be more a matter of opinion. I have seen too few instances
of developers trying to consolidate different perspectives to properly discuss to which degree it
can be considered knowledge transfer. In most instances, expressed opinions are accompanied by
pieces of factual information. What follows is an example of one pair dealing with a well-known
difference in their understanding proactively.

Example 6.26: Dealing With Conflict (CA5, 23:20–24:20 & 43:34–43:57)
C3 and C4 mostly jokingly deal with their different preferences of coding styles (the first segment
was analyzed by Harms, 2017, pp. 28–31, whose Bachelor’s thesis I supervised).

C3: “You know what’s coming now.”

C4: “No. No!”

C3: <*types Ensure*>

C4: “Please please don’t. <starting to smile> Let’s write tests. (. .) Then you won’t like these
Ensures there. <*turns to C3*> <laughs>”

C3: “Do they hurt you, if I put them there now?”

C4: “<laughing> Yes, totally. But fine, if it’s not hurting you when I remove them for testing”

C3: “If you for testing (!...!) if they are in your way for testing (!...!) but as long they are not in
the way (!...!) <*starts typing ensure call*>”

C4: “<still smiling> Argh, they are in the way.”

C3: <*introduces four calls of ensureArgumentNotNull, one for each method parameter,
then looks at C4 smiling*>

C4: “We’ll never reach an agreement. Never!”

C3: “When there is a solution which does this all better, possibly with AspectJ?”

Later in the session, after the pair created a new class and C4 is typing, they pick up their play
fight again:

C3: “Hey, you? Will you give me an Ensure?”

C4: “Naargh. <*begins insert Ensure statements*> My god, you are a sadist. (, , , , , ,) Shall
we discuss this sometime? When we are not in the midst of programming?”

C3: “If you like, we can do that.”

Although knowing how the partner wants to approach certain types of tasks may be knowledge
that is relevant for pair programmers, I exclude attitudes and opinions from my further analysis
because the example above and Example 4.3 are the only instances that caught my attention
(without a systematic search, that is) where developers expressed their opinion without also
including factual information to satisfy some knowledge need.

233

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

6.5 Discussion of Related Work and Summary

In this chapter, I extended the base concepts with a new property. Each base activity can
have a conversational role of which I distinguish initiatives from pair-referential, self-
referential, and corrective activities. Additionally, each base activity and also the lack of an
activity can be a conversational defect. The ideas of conversational turns belonging together,
e.g., as - - rather than all being isolated s, and of an utterance being ‘wrong’ or even
‘missing’ after the partner said something, are long known to linguistics under the terms of
adjacency pairs and conditional relevance (see Section 3.2.1b).

In their work on creative collaboration in pairs, Bryan-Kinns et al. (2007) distinguish three
levels of mutual engagement indicated by how the pair members deal with their partner’s
contribution: An acknowledgement indicates a basic engagement,mirroring indicates a medium
engagement, and transforming indicates a high engagement. In my terminology, such actions
correspond to non-evaluative and evaluative s. In the original study, the pairs had to compose
ringtones with a distributed music app without directly seeing or hearing each other, so
‘dealing with the partner’s contribution’ amounts to things like repeating a motif of three
notes. Nevertheless, Plonka et al. (2012a) used the indicators (and added questions/reponses as
another indicator for the medium level) to identify and compare episodes of basic engagement
and disengagement in pair programming (see my discussion on page 84). A disengagement
episode is characterized by the absence of these indicators, which in my terms would be s.
There are no indicators corresponding to my notions of , , and .

The five activity types (, , , , and) and their properties (expecting,prompt, evaluative,
appropriate, see Table 6.1) are the building blocks to operationalize three qualitative levels of
pair process Fluency. Most pairs are at normal Fluencymost of the time. Some pairs occasionally
speed up in Focus Phases, other pairs suffer from Breakdowns. Focus Phases were mentioned
under different names before by Belshee (2005, Sec. 1.2), Chong & Hurlbutt (2007, Sec. 5.1.2),
and Salinger et al. (2008, p. 20), but not described or discussed in detail. A pair’s process quality
in general has been of research interest before, but not addressed in depth: Mathieu et al. (2000)
and Domino et al. (2003) merely scored pair communication, coordination, cooperation, and
conflict handling with rating scales (my discussion on pages 72 and 101, respectively).

A pair’s Fluency is influenced by its Togetherness, which is a central concept of this chapter
and, in fact, of pair programming in general as it is what makes two software developers work
as a pair. Togetherness in itself is not observable. It characterizes how easy or difficult it is for
the pair members to understand each other. From my data, I identified five other factors that
influence a pair’s Togetherness—(1) a shared understanding of the software system and (2) of
software development in general, (3) one shared plan, (4) workspace awareness, and (5) language
barriers—all of which may be addressed by pair programmers to Maintain Togetherness.
Recurring to the terminology of small group research (see Section 2.4.2a), Togetherness is
a form of shared cognition or coordination-as-a-state, and Maintaining Togetherness is the
process of creating such a shared cognition or coordination-as-a-process. Observations from
some pair programming studies can also be put under the heading of individual factors:

• (1) Shared Understanding of the Software System: Bryant et al. (2008, Sec. 6.3, my
discussion on page 72) observed that switches between the driver and navigator roles
“appear to be very fluid with little accompanying explanatory conversation” . They conclude
that the navigator must have “maintained a clear mental model of their current state” which
enabled her to take over the driver’s role at a moment’s notice.

• (3) One Shared Goal: Cao & Xu (2005, discussed on page 78) describe setting a session
goal and adjusting it along the way as a property of highly competent pairs.

234

6.5. Discussion of Related Work and Summary

• (4) Workspace Awareness: Flor & Hutchins (1991) noted in their analysis of one pro-
grammer pair through the lens of distributed cognition that the shared physical workspace—
together with the pair’s shared goal—provides enough context to allow for efficient com-
munication (see also my discussion on page 79).

There might be additional factors contributing a pair’s Togetherness and their ability to
Maintain Togetherness. A blog post by developer Maaret Pyhäjärvi called Power dynamics in
pairs and mobs describes a PP situation that could also be characterized as a Breakdown due
to pair members not fully understanding each other’s intentions:

So we sat down together, I guided him first to get to the functionality just to see it was
there. The functionality included a new dialog, and as it popped open, my first words
were “I wonder what size it is...”. It wasn’t intended a question, but very much taken as one.
What I meant is that we have an agreement on the resolution where things still must
be usable on the screen without scrolling. We were clearly on a higher resolution, and
still the dialog was big and clunky. But before I got in another word, Llewellyn picked
up on the cue and started showing me tools that enable me to measure the dialog size in
centimeters, pixels you name it.

I didn’t even understand right there and then that I was uncomfortable. That I felt over-
ridden. That none of the stuff I was trying to show—my work in exploratory testing—got
done. [. . .] I tried enjoying the results we ended up with, not miss the results that were
hijacked from me by a power dynamic.

After this experience unfolded [. . .], we have had great pairing sessions and learned to
explore in a pair and mob a lot better. He actively worked against the power dynamic,
paying attention to listening instead of talking over me, thinking their way is always
correct.

Pyhäjärvi (2018, emphases added)

Labeled with base concepts, Maaret probably uttered an explain_finding, a non-expecting ,
which her colleague Llewellyn understood as an ask_knowledge, an expecting , and reacted
with misled explanations. The “power dynamic” which Maaret sees in this PP session is due
to a structural “belief system on how men and women interact” that places female software
developers in a listening rather than a contributing position. This dynamic consists of two
parts: On the one hand, it primed her male colleague and led to his false interpretation and
misled explanations; on the other, it prevented herself from clearing up the misconception

with with activities.
Although I did not systematically search for instances of such a power dynamic at play in

my data, such problems appear less pronounced as only few candidates come to my mind:
• In session OA5, senior (male) developer O1 explains many aspects of general software
development to his novice (female) colleague O3. Not all of these explanations were
specifically requested by O3; some of which she appreciates (e.g., “That’s a very nice
strategy” at 19:05), others were unnecessary (e.g., “Yeah, tests should be atomic” after a
one-minute explanation by O1 at 16:04), for others it is unclear (e.g., “Hm. <*stares at
screen, lips screwed up, nodding*>” after a one-minute explanation by O1 at 06:48).

• In (same-gender) session PA3, backend developerP1 provides some unwanted explanations
to frontend developer P3. In contrast to sessionOA5, however, the receiving partner makes
his discomfort explicit (see Example 9.23).

For any further research it should be noted that my type of data and method of data collection—
in particular the lack of separate individual accounts of the pair members—may not be suitable
for determining whether one partner felt uncomfortable during the session.

235

CHAPTER 6. PROCESS FLUENCY AND PAIR TOGETHERNESS

Williams (2000, p. 53) describes the transition from two developers “considering themselves as a
two-programmer team [to] considering themselves as one coherent, intelligent organism working
with one mind” as pair-jelling. In the analysis of the difference in development time between
solos and pair programmers,3 she considered only the second and third experimental rounds
because that is “after the pair-jelling has occurred” (ibid., p. 64). She describes jelled pairs as
more productive than unjelled pairs, but it is not clear what the difference actually is: Is it
both developers individually getting used to not working alone anymore (Williams et al., 2000,
p. 22) or is it the union or “bonding” of two developers (Williams, 2000, p. 101)? The first would
only need to happen once per developer, but the second would be necessary for every new
pair constellation.

Considering the concept of Togetherness, I can see aspects of both views. How toMaintain
Togetherness during pair programming regarding the five factors may be a general learnable
skill which may be practiced with any partner with whom there are differences regarding at
least one factor. In addition, how to then jell with a specific partner may then be a matter
of getting to know each other’s idiosyncrasies, e.g., to become able to distinguish an actual
question from a rhetorical one, or a humorous remark from actual criticism. From what I
have seen in my data, I would subsume the latter under the Language Barrier factor (see C2’s
peculiar “Wait a second” discussed on page 227). I did not systematically study fresh pairs or
developers new to the pair programming work mode over a longer period of time to observe
any jelling.

In the following chapters, I will discuss how pair programmers actually transfer knowledge; or,
in the terminology of this chapter, how they Maintain Togetherness with respect to a shared
understanding of their software system and software development in general.

3I did not address this experiment (descriptions of which can be found in Williams, 2000, pp. 38–65, Williams
et al., 2000, and Williams & Kessler, 2001) in particular in my related work discussion in Section 2.3, because it was
part of the meta-analysis by Hannay et al. (2009, discussed on page 63).

236

Chapter 7 Knowledge Conceptualized

7.1 Purpose and Structure of this Chapter . 237
7.1.1 Three Situation-Based Knowledge Concepts. 237
7.1.2 Discussion of Recurring Example . 239

7.2 Knowledge Want. 240
7.2.1 Properties of Knowledge Wants . 240
7.2.2 Internal Knowledge Wants . 241
7.2.3 External Knowledge Wants . 242
7.2.4 Collective Knowledge Wants . 243

7.3 Topic and Target Content . 244
7.3.1 Types of Topics and Target Contents . 244

S knowledge: System-Specific Knowledge • G knowledge: Generic Software Development
Knowledge • Other Types of Knowledge • Application Domain-Specific Knowledge?

7.3.2 Hypothetical Target Contents . 254
7.4 Summary and Discussion of Related Work . 254

7.1 Purpose and Structure of this Chapter

Verbally, it makes sense to say things like ‘developer A knows about X’, ‘developer B has a
knowledge gap regarding X’, and ‘A transfers knowledge to B’. But what do I mean by that?

In the previous chapter, I excluded different kinds of knowledge which do play a role in
pair programming, but not in the sense that is commonly referred to as knowledge transfer
by practitioners. What remains are developer activities that pertain to factual information
concerning their concrete software system and software development in general. Before I
dive into the mechanics of these activities in the following chapters, I first describe three
concepts that together characterize a knowledge transfer situation in pair programming as
well as different types of relevant knowledge.

7.1.1 Three Situation-Based Knowledge Concepts

I already discussed theoretically the class of knowledge I can empirically access as a researcher:
Roughly speaking, it the part of the pairmembers’ explicit knowledgewhich can be reconstructed
from their activities (see Figure 4.5). I now shift the perspective to what practically matters in
concrete pair programming situations. Here, there is more than just ‘dry’ information. There
is a process which is driven by a lack of knowledge—or more precisely: A perceived lack.

Pair programmers do not always talk explicitly about what they know and do not know.
Nevertheless, some of their actions such as asking questions or providing explanations can be
attributed directly to dealing with their own or their partner’s knowledge gaps (as I described
in Section 4.5.2c). The underlying knowledge gap, however, remains elusive—both for me as a
researcher and the pair member who also cannot fully grasp her partner’s state of mind. A
Knowledge Want, the motivation to address a knowledge gap at some point during a pair
programmings session, pertains to perceived knowledge gaps. This means that (1) there might

237

CHAPTER 7. KNOWLEDGE CONCEPTUALIZED

be actual knowledge gaps for which no pair member develops a Knowledge Want; (2) not all
perceived Knowledge Wants are actually addressed; (3) not all pursued Knowledge Wants
necessarily lead to successful acquisition or exchange of knowledge; and (4) not all Knowledge
Wants necessarily correspond to an actual knowledge gap.

TheTarget Content is the canonical and abstract informationwhich can fill the underlying
knowledge gap. I introduce this concept to be able to speak about task-relevant information as
such, independent from any developer knowing or talking about it at some point during a PP
session. The pair may or may not possess the Target Content for a knowledge gap, they may
even possess it without being aware of it (as in Example 7.1), or one pair member may consider
some information to be the Target Content while her partner wanted to know something
different or even nothing at all (in which case there is no Target Content).

The third concept to describe knowledge transfer situations is the Topic. Just like the
Knowledge Want, the Topic ‘belongs’ to the pair member who perceives a gap in knowledge;
it is what the Knowledge Want is about. Usually, but not always, both pair members need to
understand the Topic for effective communication.

Metaphorically speaking, if a developer’s body of knowledge is a jigsaw puzzle, a knowledge
gap is an empty area with missing pieces, a Knowledge Want is the intention to fill out a
part of that area, the Topic is the shape of area to be filled out, and the fitting pieces are the
Target Content. I summarize the relationship of non-observable knowledge aspects (possessed
knowledge and knowledge gaps) and these three concepts in Figure 7.1.

possessed
knowledge

knowledge
gap

Knowledge
Want

Topic

Target Content

Figure 7.1: Knowledge concepts illustrated with a jigsaw puzzle metaphor. Possessed knowl-
edge and the knowledge gap itself is not directly observable, but a pair member may develop
a Knowledge Want to address some part of it. The Topic is what the knowledge transfer,
i.e., the exchange of existing knowledge or the acquisition of new knowledge, is about; the
Target Content is the information which is able to fill the knowledge gap that gave rise to
the Knowledge Want.
Jigsaw background based on image by user “OpenClipart-Vectors” used under Pixabay License.
(URL: https://pixabay.com/vectors/jigsaw-puzzle-game-shape-puzzle-152865/)

238

https://pixabay.com/vectors/jigsaw-puzzle-game-shape-puzzle-152865/

7.1.2 Discussion of Recurring Example

7.1.2 Discussion of Recurring Example

I apply all three concepts—Knowledge Want, Target Content, Topic—to the recurring exam-
ple from the beginning of session JA1 below. This is also another illustration of how the
reconstruction of explicit knowledge from the pair’s activities works.

Example 7.1: Knowledge Wants, Topics, and Target Contents (JA1, 02:29–06:15)
In the first minutes of session JA1, developers J1 and J2 deal with one knowledge gap: J1 not
knowing how the software currently works and how it is embedded in its environment. The
knowledge gap itself is not observable, but the actions of the developers dealing with it are. In this
instance, each of the pair members develops a Knowledge Want: J1 is concerned with a design
detail and J2 provides him with answers, and J2 is additionally concerned with explaining the
system as a whole and its context. See Example 5.1 on page 186 for more background information
and the full transcript with the same line numbers.

Aspect #1: Design Detail
Knowledge Want
When J2 mentions the polling mechanism, something appears to catch J1’s attention, which is
presumably the moment he develops his internal Knowledge Want.
(11) J2: “If so, the most recent file is selected and it starts checking how the file changes

size-wise.”

(12) J1: <*stops nodding, looks to his upper right*>

Topic
The Topicwhich J1wants to clarify is only hinted at in his question and obscured by his suboptimal
choice of words: “In what time window are you looking?” (turn 16). A clearer formulation would
have been something like ‘What is the length of the polling interval?’.

Target Content
The TargetContent to satisfy J1’sKnowledgeWant is ‘30 seconds’—he eventually explicitly confirms
“that’s what I wanted” (turn 29).

However, J1’s partner J2misunderstands the Topic. Over multiple conversational turns (16–27),
J1 keeps pursuing the clarification of the Topic to satisfy his Knowledge Want, until he finally
makes J2 understand the Topic. Note that J2 was in possession of the Target Content the whole
time, i.e., he knew the polling interval was 30 seconds (turn 28), but did not understand that this
was what J1 was after.

Up until the end of the excerpt, J2 appears to have understood the Topic as something like
‘For how long is the polling going on?’ to which the Target Content would have been: “start[ing]
two minutes after the full hour” (turn 17) and with a variable end (turns 19 & 21), but at most until
“five [minutes] before the [full] hour” (turn 26).

Aspect #2: Software Design and Context
Knowledge Want
J2 (who originally wrote the software) appears to have expected a relevant knowledge gap on
part of J1 since he opens the conversation by explicitly asking J1 about his standard of knowledge.
Based on J1’s reluctant answer, J2 develops his external Knowledge Want.

(1) J2: “Do you know the NewsPlugin, or don’t you know it?” ask_standard of knowledge
(2) J1: “<exhales audibly> Just show to it me again.” explain_standard of knowledgePT

Topic
J2 goes on to explicitly state the Topic in turn (4): “OK, I can give you the big picture of what this
plugin does, overall.”

239

CHAPTER 7. KNOWLEDGE CONCEPTUALIZED

Target Content
J2 provides explanations on the context which the software operates in, which go beyond what
J1 explicitly asks for. In particular, J2 explains (or at least addresses) the following aspects of the
software system (turn numbers in parentheses):

• The system’s purpose is to produce news recordings (6), i.e., raw data is retrieved from radio
stations and then converted to a different format (15).

• On a structural level, there is a central plugin which controls multiple processors, each of
which is responsible for one radio station (8).

• The radio stations write their news broadcasts directly to files which continually grow until
the broadcast is over (10, 11, 13, 22).

• News segments do not have a precise pre-determined start, end, or length; but at two minutes
after the full hour any broadcast would have started and usually ends seven minutes later
(17, 19, 21).

• There is no event mechanism of any kind, just files on a remote file system with their size
and modification date (10, 11, 22).

• The software relies on a file size-based polling mechanism to determine the end of a news
broadcast (11, 13).

• Any polling activity is stopped at 5 minutes before the full hour (26).

Note that since J2 both follows his own external Knowledge Want and reacts to J1’s questions
(which in turn result from following an internal Knowledge Want), each individual utterance
contains at least in part something J2 thinks J1 wanted to know and something J2 thinks J1 should
know. I do not claim that the above delineation is the only possible way to interpret the situation.

Example 7.1 (continued)

7.2 Knowledge Want

A Knowledge Want is the motivation to fill a perceived knowledge gap. It is indirectly
observable if and when the developer perceiving the Knowledge Want acts upon it.1

7.2.1 Properties of Knowledge Wants

Knowledge Wants can be internal, when a developer wants to know or understand something,
or external, when a developer wants her partner to know something. Note that external
Knowledge Wants do not necessarily correspond to actual knowledge gaps: Thinking that the
partner ought to, but does not yet know something, although she ‘objectively’ already does, is
still a Knowledge Want. As a third option, Knowledge Wants can also be collective, i.e., it is
clear to both developers that either of them has the same internal Knowledge Want.

For characterizing such PP situations, I am more concerned with the variety of the phe-
nomenon (i.e., open coding, leading to the three types of Knowledge Wants), than with a
systematic analysis of the circumstances which led to the situation (i.e., axial coding). A causal
analysis is limited (a) by the available data (e.g., the recorded sessions do not include the
developers’ backstory and their reasons for wanting and needing to know certain things) and
(b) by the inability to accurately interpret the developers’ cognitive states (e.g., in Example 7.1,
I can only presume that the moment J1 stops nodding is when he develops his Knowledge
Want). However, in the next three sections, I characterize a number of situations where internal,
external, and collective Knowledge Wants arise, respectively.

1While writing Zieris & Prechelt (2016), the concept of Knowledge Need (which is a developer’s actual lack of
knowledge with respect to a task, see Section 11.2) was not yet developed. Perhaps confusingly, the perceived lack
of knowledge which I now call “Knowledge Want” was labeled “knowledge need” back then (short for “need for
knowledge transfer”).

240

7.2.2 Internal Knowledge Wants

7.2.2 Internal Knowledge Wants

An internal Knowledge Want becomes observable when a developer starts asking questions or
performing actions to find something out. As Salinger & Prechelt already observed, questions
are usually the result of a recent insight that made the developer aware of a relevant knowledge
gap (BL, p. 162). Such an insight may come at any point during a session. One situation to
develop an internal Knowledge Want is that during the implementation of an agreed-upon
code change either pair member ponders the potentially problematic consequences of the
changes that are about to happen, as the next example shows.

Example 7.2: Internal Knowledge Want During Implementation (AA1, 16:20–16:42)
The pair agreed upon retrieving a business object (MiniObject) from a proxy object (object
Handle). As A2 is about to implement the necessary changes, information shown in the IDE’s
auto-completion reminds him of the fallback objects (MicroObjects). The autocompletion offers
two options: One method that will return such a fallback object in case of an error, and another
which will either return the real object or throw a runtime exception.

A2: “We do fetchMiniObject anyways, so (, , , ,) <*starts typing, auto-complete opens*>”

As A2 hesitates, A1 proposes to choose the selected (fallback) option.

A1: “Yes!”

A2’s internal Knowledge Want, however, is not about which option to choose, but how to go about
the error handling. He knows that the MicroObject-based fallback mechanism will be removed
in the future (he is, in fact, surprised that it still exists). With very few words the pair the reaches
a common understanding: Although the MicroObjects will be removed soon, using them is still
good enough for now. The Target Content is transferred and the Knowledge Want is satisfied.

A2: “Do the MicroObjects still exist?”

A1: “They do here, on your machine. It’s on the working branch (!...!) true!”

A2: “That’s enough?”

A1: “Yes, think so.”

A2: <*types ‘true’*>

A1: “M-hm.”

Another scenario is an incidental insight. The developer’s attention meanders around (e.g.,
because the partner executes some simple task) and things she does not understand catch her
attention:

Example 7.3: Incidental Internal Knowledge Want (AA1, 1:05:29–1:05:38)
A2 is completing some changes while A1 looks through the neighboring lines in the, to him,
less familiar Objective-C code. A1 notices a reference to another programming language (TCL),
which the company uses to generate test scenarios. The resulting internal Knowledge Want is not
resolved by transferring any Target Content, but by convincing A1 to no longer pursue the matter.

A1: “<amused> (#TclCode#)?”

A2: “<grinning> You don’t wanna know.”

A1: “Ok <snorts> (. . .) it’s all fine then.”

241

CHAPTER 7. KNOWLEDGE CONCEPTUALIZED

7.2.3 External Knowledge Wants

An external Knowledge Want is what motivates an explanation of a pair member. For pair
programmers to develop an external Knowledge Want, there are several possibilities. Here are
two cases:

1. Her partner specifically asked for something. In Example 7.2, A1 developed an external
Knowledge Want after understanding what puzzled A2. In Example 7.3, however, A2 did
not develop an external Knowledge Want although he presumably understood what his
partner found confusing: He did not consider the Topic worthy of a detailed discussion.

2. One developer appears uncertain, possibly her reactions are delayed or non-evaluative
s, or even missing altogether (), indicating a lack of knowledge. Or she is confident,

but her s appear to be misled, indicating a misconception. Her partner may decide to
explain what she deems necessary, as C5 did in Example 6.8 after his partner C2 could
not assess his design proposal, or as O4 did in Example 6.14 in turn (17) to explain to his
partner O3 how to approach the definition of a test case.

In sessionMA1, programmerM1 could develop an external KnowledgeWant in a rather unique
way: His partner M2 wrote down what he learned in text form, giving M1 more time and
options to detect missing elements inM2’s understanding:

Example 7.4: Explicit Topics and Target Contents (MA1, 05:13–11:16)
M2 wants to understand the purpose of all database tables and has prepared a file with a number
of SQL SELECT-queries and his questions as comments. Throughout their 25-minute session, M2
would execute one query, askM1 about the result, and write down his insights in the same file.
This way,M1 always had a written form ofM2’s Topic and could assess whether he understood the
Target Content by reading M2’s formulation. Occasionally, M1 would add some more explanation
or clarification, as in this excerpt:

M1: “We have a lookup table, which is this one. If you could open it?”

M2: “Actually, I have it here. <*highlights and executes next SELECT query in file*>”

M1: “So here we have, based on the componentName, we have these three columns.”

M2: “OK, got it.”

For the next four minutes,M1 explains different details andM2 listens (05:30–09:43). Then,M2
summarizes his understanding in a code comment which triggers M1’s external Knowledge Want
(probably throughM2’s use of the singular in “the table”):

M2: <*writes comment ‘take values from the lookup table’*>

M1: “By the way: This is one lookup table, but there will be one or two more, similar like
that, but for other websites. Because this lookup table is for one website.”

M2: “Ah <*slow nodding*> okay, got it.”

M1 again explains more details for about one minute (10:13–11:01), beforeM2 amends his code
comments and M1 is content:

M2: <*adds ‘Lookup to be done based on componentName and fk_website’*>

M1: “M-hm.”

M2: “Ok, cool. Understood.”

242

7.2.4 Collective Knowledge Wants

7.2.4 Collective Knowledge Wants

The Topic for a collective Knowledge Want is often not communicated explicitly, but is under-
stood by both developers from context—a result of the pair’s Togetherness (see Section 6.4).
I discuss one such case later in Example 7.13.

There are, however, some cases where the steps of the thought process become observable:
From one developer’s internal Knowledge Want to a communicated Topic to a collective
Knowledge Want shared by both developers and to concrete actions to acquire the Target
Content.

Example 7.5: From Internal to Collective Knowledge Want (AA1, 08:58–11:08)
The pair looks at the web frontend of their software in a browser where some parts are crossed
out. A1 wants to find out how the strikethrough is implemented (Topic) and immediately proposes
a hypothesis of how the current implementation might look like. He follows up with a procedure
to perform the validation—inspect the generated HTML output of the current site—all of which
A2 silently agrees to as he puts the proposal into action.

(1) A2: “Around the texts we can simply put a span inactive and decide with a toggle to
strike it or not strike it. Meaning, this question can be answered at the end.”

propose_design + propose_strategy
(2) A1: “<*looks at A2*> Yes. OK.” agree_design
(3) “<*looks at screen*> How is it currently done in there, the strike through?”

ask_knowledge
(4) A2: <*looks at screen, raises eyebrows, purses lips*>

(5) A1: “Is it a span tag or something? Maybe it’s already the case.” propose_hypothesis
(6) “Can you check the sources somehow? ‘Frame source’ or something?” propose_step

The pair has to switch browsers as their current browser does not have a ‘Show Source’ feature.
Shortly after, they can read the source code and both developers find what they looked for.

(7) A2: <*selects code test*>

(8) A1: “Ah, (#span class inactive#), okay.” explain_finding
(9) A2: “Exactly.” agree_finding

A1 develops his internal Knowledge Want after he looks at the screen where he sees text being
crossed out and realizes there has to be some implementation already, and formulates his Topic
immediately (turn 3). A2 appears to develop the same internal Knowledge Want after looking at
the screen, and they now have a collective Knowledge Want (turn 4).

Not all collective Knowledge Wants can be addressed by the partners themselves and they
may ask a third developer for input. This happened in several of my sessions:

• In session CA1, the pair C1/C2 asks lead developer C3 for his opinion on whether they
should start a new feature in the light of an upcoming release (see Example 9.3 where
this is still C1’s internal Knowledge Want).

• In session DA2, the pair D3/D4 talks to two more senior developers to discuss design
ideas (see also session description in Section 4.4.3).

• In session OA1 and OA2, the pair O3/O4 asks O6 for help (who knows more about the
employed technology, but nothing about the system part the pair is supposed to write a
test for, so he also cannot prevent the pair’s Breakdown discussed in Example 6.17).

I did not further analyze these temporary extensions of the pair status.

243

CHAPTER 7. KNOWLEDGE CONCEPTUALIZED

7.3 Topic and Target Content

The Topic of any particular knowledge transfer episode is what the developer who is pursuing
her Knowledge Want intends to clarify. Usually, the Topic of a particular knowledge transfer
is known to both pair members, e.g., because it is clarified along the way2 or communicated
explicitly in the beginning of the exchange. A developer asking a normal question often phrases
the Topic: Here, the question is the Topic, though not necessarily in a verbatim sense, but what
the developer intended to ask. Similarly, an explaining developer may lead in with a brief
what-I-am-about-to-say and thus setting the Topic. From a researcher’s perspective, it appears
to always be possible to paraphrase the Topic of a knowledge transfer episode as a question;
see Example 7.1 for both cases of J1 asking a question that can be paraphrased into his Topic
and J2 announcing his explanations by stating his Topic.

Any knowledge transfer has the goal to acquire or exchange some information to fill a
perceived knowledge gap. The very piece of information which fills the gap is the Target
Content. For internal Knowledge Wants, i.e., a developer wanting to close a knowledge gap of
her own, the Target Content is determined by what the developer wants to know as opposed
to what the partner is capable of providing. For external Knowledge Wants, i.e., a developer
wanting to close a knowledge gap that her partner supposedly has, the gap-perceiving developer
may be mistaken if there is in fact no gap and consequently no Target Content, no information
to close it.

7.3.1 Types of Topics and Target Contents

Both Topics and Target Contents can be characterized by the type of knowledge they pertain
to. There are two large areas of knowledge from which software developers acquire and
exchange pieces during pair programming sessions. On the one hand, there is knowledge
which is specific to the software system the software developers are operating in. I call this
S knowledge (see Section 7.3.1a). On the other hand, there is more generic knowledge about
software development in general, which I call G knowledge (see Section 7.3.1b). In my data,
there were other types of Topics as well (see Sections 7.3.1c and 7.3.1d), but S and G knowledge
were the most prevalent ones.

The following types of knowledge are not meant as a definitive taxonomy of knowledge
which is relevant for software development, but is rather to be understood as a proof of existence
of the form: ‘Pair programmers do indeed transfer knowledge of that type’. For brevity, I provide
only one example for each type here. Further examples can be found in subsequent examples
throughout this thesis.

7.3.1 a) S knowledge: System-Specific Knowledge

S knowledge includes various types of knowledge which are specific for the software system the
pair operates in: Its requirements, its architecture, design rationale, used technology, particular
elements, known defects, and testing procedures.

2Note that these are two different meanings of the phrase “to clarify a Topic”: On the one hand, pairs may need
to clarify what they actually want to talk about, that is, to make the Topic itself clear. On the other hand, pairs
will work on filling knowledge gaps and clearing up misunderstandings that relate to a Topic. In communication
practice, however, these two aspects of ‘problem specification’ and ‘implementation’ are interwoven anyway (see
Section 8.2.1c for details), which is why I think it is adequate to use the same phrase for both meanings.

244

7.3.1 Types of Topics and Target Contents

Requirements
Desired properties of the system which the pair wants to (partially) fulfill or needs to consider
in their session, also called “desiderata” (Ralph, 2013).

Example 7.6: Uncovering Task Requirements (DA2, 09:23–18:57)
In the beginning of session DA2, transferring the Target Content for the Topic ‘What is our task?’
takes almost ten minutes because the pair deals with several other Topics in between. The relevant
pieces of their conversation (net time: 30 seconds) are:

D3: “In principle, there should be a toolbar up here <*hovers blank area in GUI, closes
application*> I’ll show you how what it looked like in the old calendar. <*changes code
to load the old calendar view*> [. . .]”

D4: “But where should it go? Here, or what? <*points to screen*>”

D3: “Actually, I was thinking, yes, it should go about here. <*hovers narrow area above
calendar view*> [. . .]”

<*puts back in the new calendar view, switches to other view with a similar toolbar*>

“In general, a toolbar like this one. <*hovers the other toolbar*>”

D4: “But, shouldn’t it be the goal to always have these thingies up here? <*points to buttons
in the toolbar*>”

D3: “Yes, exactly.”

D4: “But then <*points to screen*> for the calendar, it’s (‼...‼)”

D3: “Yeah, that was nonsense what I told you before <*switches to calendar view*>”

D4: “Then it should be up there <*points to screen*>, right?”

D3: “We don’t put it here in this narrow bar <*hovers narrow space in calendar view*>, but
up there, too <*hovers space above calendar view*>”

Note that the pair does not treat this matter as something they could decide on. Rather, first D3
and then D4 treat the state how the software “should”/“should” be as something that exists outside
their PP session and which they need to figure out.

Architecture
Static and dynamic aspects of the system’s high-level design, e.g., which parts it is comprised
of and how they interact.

Example 7.7: Clearing Up Architectural Misconception (CA2, 19:30–20:37)
Developers C5 and C2 discuss two approaches for implementing a new feature: C2 favors a simple
solution which requires relevant classes and interfaces to reside in the same module; C5 already
began with more indirect design which keeps all parts in their respective modules. Module pro
can access module basis, but not the other way around.

In his explanation of the current state, C5mixes up the class name and the interface name, but
immediately corrects himself so the architectural Target Content is eventually transferred to C2.

C5: “I did it this way, because I wanted to move as little as possible to basis. And the
interface which I moved only knows things that are available in basis.”

C2: “And the VirtualAttribute, where is it?”

C5: “That one I moved.”

C2: “Ah, so we’re clear.”

C5: “Not the Virtual! The IVirtualColumn <*points to screen*> I moved. The Virtual
Attribute is here in pro. <*looks at C2*>”

C2: “In pro is the VirtualAttribute? OK. <*opens file VirtualAttribute*>”

C5: “Yes.”

C2: “Yes, ok, yes, right. I left it there because we didn’t need it anywhere else yet.”

245

CHAPTER 7. KNOWLEDGE CONCEPTUALIZED

Prior to the above excerpt, C5 tried to explain and defend his design decisions to C2 whose
reluctance to accept C5’s ideas can be explained by being mistaken about the package location of
VirtualAttribute. It took C5 about 10 minutes of frustrating and unfruitful design discussions
until he made the critical remark which triggered C2 to become aware of his knowledge gap,
to develop an internal Knowledge Want, and to formulate the architectural Topic “Where is
the VirtualAttribute?” which, until it was resolved, impeded the pair’s session. Later, in
Chapter 11, I introduce the concept of Knowledge Needs to also describe such latent knowledge
gaps.

Example 7.7 (continued)

Design Rationale
Explanations for why the system is designed a certain way.

Example 7.8: Rationale for Data Type (KB1, 15:54–16:27)
K3 proposes to store the price of a subscription as a numeric attribute. K2 explains that an
indirect way with an enumeration type and a lookup table is more desireable because it allows for
bulk changes that the business department (“they”) needs for experimentation. (Although K2’s
explanation appears incoherent, K3 understands him.)

K3: “What about simply putting the price in there?”

K2: “Well, the idea was (!...!) with the price, they [= business department] want to experiment
a lot. That’s why there are two configuration variables for now, one for LOW and for HIGH,
in the price. Depending on that, what you have in the Enum here, it’s fetched accordingly.
(. .) That’s why we didn’t want to put the price directly in there.”

K3: “OK. Fine. You could also put the price in there. As a number. And then you’d have as
many variants as you like.”

K2: “Hm.”

K3’s last remark is not an actual proposal on how they should design their software, but more of a
general remark on the limitation of the business decision to only have two tiers.

Technology
Which external software products are used in the technology stack.

Example 7.9: Inquiring about GUI Technology Stack (DA2, 01:54–02:46)
D4 is new at the company and wants to know about the GUI technology stack of their main
software product.

D4: “How is this implemented in general, because (!...!) is it more of an SWT user interface
than Eclipse, or what?”

D3: “Well, <**product name**> as such is based on SWT.”

D4: “Yes”

D3: “The calendar, there we use this (~) calendar component.”

D4: “That’s Swing?”

D3: “Nope, yes, so actually AWT.”

D4: “Ah, ok. AWT even.”

D3: “Yeah, there is this SWT-to-AWT container gizmo and that’s how it’s embedded in the
end. How this SWT-to-AWT thingy works I can’t tell you much about.”

D4: “OK. But can you embed an SWT context menu or something in there?”

D3: “Can’t tell you for sure.”

246

7.3.1 Types of Topics and Target Contents

AWT, Swing, and SWT are different GUI toolkits for the Java programming language. The Eclipse
IDE uses SWT and makes heavy use of XML-configuration files. D4 probably asked about the
difference between hand-crafted SWT GUI elements vs. reused XML-configured Eclipse elements.
The Topic could be phrased as ‘What is the technological basis for the component?’ to which the
Target Content would include ‘AWT inside SWT’. D3 could not answer D4’s follow-up question,
so the full Target Content is not possessed by any of the pair members.

Example 7.9 (continued)

Source Code
Particular source code elements such as classes, most fundamentally their mere existence (in
an explanation such as ‘There is a class X which does Y.’) but also more detailed information
about their inner workings.

Example 7.10: Getting to Know Relevant Classes (KA1, 51:17–53:37)
K1 already knows the particular API which K2 is calling and the type of data it provides, but not
yet the classes which are involved in processing that data, so K2 explains them to K1.

K2: “I can you show what we have so far. Then we can compare with the financial exposé.”

K1 asks to finish some task on his phone first, which takes about 90 seconds.

K2: “So, we have ExposeApiClient <*opens that class*>. It has a getAsJson where we
can get the exposé JSON, which comes from the API. It ain’t pretty, since you get hundred
things you don’t need, all nested and stuff.”

K1: “Right, and there are a thousand different cases and the documentation sucks, I noticed.
It’s only documented for one property type, but there are about twenty.”

K2: “Exactly, right. Yes, right, there are twenty, yes. Anyway, then we have the ExposeApi
Service which uses a thing <*opens that class*>, I mean the ExposeApiClient, gets
the JSON and puts it in our Mapper. And the Mapper then maps it [. . .] on the objects
we need. <*selects a number of data classes in overview*>.”

The Topic here is ‘How do we retrieve data from the API?’ to which the Target Content is something
like ‘ExposeApiClient.getAsJson() gets all data, ExposeApiService then simplifies it’.

Defects
Possible or actual known defects in the system which may pose a problem for the pair to look
out for or to work around.

Example 7.11: Open Bugs? (KA1, 59:23–1:00:01)
The pair is designing a facade to simplify different data formats used by external systems. K1
already wrote a mock JSON file which represents the structure of the data he would like to receive
for his application. K2 goes through the entries in the mock file and makes an assessment for
each to determine whether the data K1 wants is already available and, if not, how easy it can be
acquired.

K1: “Then I need all of these, some things, the floorSpace and so on and how many rooms
the property has, and then all these tax values.”

K2: “We have that <*selects next JSON line*> right. We only need to check <*selects next
JSON line*> the question is, where they all come from or how we find them and whether
there are differences between the types. I recall a meeting where they said there was a
problem in one of them. I don’t know whether they fixed it already. They did say they
have no open bugs.”

247

CHAPTER 7. KNOWLEDGE CONCEPTUALIZED

As the pair does not further this strand in their conversation, the Topic remains ambiguous for an
outsider. One way to phrase the Topic would be ‘Do we have access to all necessary data?’ (with the
Target Content: ‘Mostly, yes.’), another way would be ‘Is there an open problem?’ with unknown
Target Content.

Example 7.11 (continued)

Routines
Procedures for running and testing the system.

Example 7.12: How to Start a Manual Test (CA2, 44:08–45:52)
Developers C2 and C5 decided to perform a manual GUI test before they commit their changes. In
their system, there are so-called “demos” which are fast-loading environments for testing individual
GUI panels without the complete application underneath. C2 is not sure how to start the demo
and C5 helps out.

C2: “Then we try out the GUI [. . .] where was it? <*scrolls through source tree looking for a
test class*> Where were we?”

C5: “You have to, this demo down here <*points to screen*>”

C2: “This one? <*expands one of many demo packages*>”

C5: “It should be in there.”

They find and start a demo, which appears to work. After a minute C5 still has reservations and
wants to see the whole application in action. C2 is not sure how to start the application and which
of the over 40 run configurations to choose. C5 helps out again.

C5: “OK, but what we did more affects the Action than the GUI. I mean, I’d like to see it
from the application.”

C2: “Sure. <*hovers IDE’s “Run” menu*> Oh god, what’s the deal again? <*hovers IDE’s
“Run” button*> Here I have to do (~)?”

C5: “Yes, and then <**name of run configuration**>.”

The Topics for these examples would be ‘How do I start the demo for feature X/the whole application?’
with the demo’s and the run configuration’s names and locations in the IDE as the respective
Target Contents.

State and Configuration
Current state of a machine or a system, e.g., which packages are installed, the extent of network
connectivity, and others. This is especially relevant for debugging, it is short-lived knowledge
for local problem solving. If the developers are not in the midst of dealing with such a problem,
it is not relevant. When it gets relevant, it usually needs to be found out and is not something
readily known.

Example 7.13: Understanding Failed Network Calls (BA1, 01:33–04:00)
Developers B1 and B2 adapted a test script to run it against their local setup but it does not execute
cleanly.

B1: “(#Couldn’t connect. cat: header.txt#) cURL still can’t connect. <*switches to IDE and
back to shell, executes just the curl command instead of whole script*> [. . .]”

B2: “But cURL is on here, right? Sure, we wouldn’t see the error otherwise.”

B1: “(#Couldn’t connect#)”

B2: “Try wget, to simply fetch it.”

B1: “<*tries wget on dev-intern, which fails*> It failed.”

248

7.3.1 Types of Topics and Target Contents

B2: “Try localhost instead of dev-intern”

B1: “<*tries wget on localhost, which fails*> Hm, what’s going on here?”

B2: “Firewall?”

B1: “(#Resolving hostname ‘localhost’#)”

B2: “Possibly (~)? Nope, he did resolve it.”

B1 then proposes to not use the test script but to call the functionality in the web browser, which
works and allows them to carry on with their actual task.

The Topic is: ‘What is the state of the current machine leading to cURL not running cleanly?’ The
Target Content remains unknown, but some pieces are gathered: The cURL command is installed,
host name resolution works, and the problem is not limited to the cURL command.

Example 7.13 (continued)

7.3.1 b) G knowledge: Generic Software Development Knowledge

G knowledge is system-independent. It is knowledge about programming languages, reusable
frameworks and technology stacks, design principles, testing and debugging methods, methods
for program understanding, and tool usage.

Unlike for most S knowledge, exchanges pertaining to G knowledge can be verified by an
outsider more often, because there are resources which are external to the session recordings
(such as books or other documentation) which are part of the presumably shared reality of
the pair programmers and the researcher who has access to these materials. In Example 7.14,
for instance, D4’s explanation of a well-known design pattern is far from perfect and, in a
pedantic sense, even wrong. For understanding the concrete pair programming situation from a
researcher perspective however, such a deviation from the ‘objective truth’ does not matter: D3
appears to understand everything that D4 said, and the knowledge transfer ends successfully.

As for S knowledge in the previous section, I provide one example per specific type of
G knowledge that pair programmers actually dealt with in my data.

Design and Programming Patterns
Pair programmers talk about the classic Gang-of-Four design patterns, but also about other
idioms and best practices beyond from their current code.

Example 7.14: Template Method Design Pattern (DA2, 1:36:35–1:37:58)
The pair used the Template Method design pattern for one hour in a dozen instances (see Exam-
ple 6.22) before D4 mentions the pattern name for the first time and explains it to D3.

D4: “You know that pattern? [. . .] It’s a kind of Template Method. So, here I extracted the
shared logic. <*navigates to abstract class, selects call of abstract method*>”

D3: “M-hm.”

D4: “[. . .] internalExecute is basically my Template Method. [. . .] And you can neatly
extract those parts that are general, and for all things you don’t know yet, you make an
abstract method which your superclasses then implement.”

D3: “M-hm.”

D4: “It’s pretty neat, because you don’t have to copy-paste.”

D3: “Right.”

Note that D4 probably meant to say ‘subclasses’ instead of “superclasses” in his explanation. Also,
technically speaking, “the Template Method” is the algorithm implementation in the abstract

249

CHAPTER 7. KNOWLEDGE CONCEPTUALIZED

superclass which defines the general structure and calls one or more abstract methods or “primitive
operations” such as internalExecute (Gamma et al., 1995, pp. 326–327).

Either way, ‘How does the design pattern Template Method work?’ is the Topic of the above
exchange; D4’s explanations along with the highlights he sets in the source code point to the
Target Content. Even though D4’s explanations alone were rather suboptimal, D3 appears to
understand the pattern probably because he can relate the explanations to his own development
experience.

Example 7.14 (continued)

Programming Languages
Details of the used programming language

Example 7.15: Inner Classes in Java (DA2, 1:29:55–1:30:25)
In the Java programming language, the keyword “this” refers to the ‘current’ object. Java allows
to define classes within classes. A non-static inner class is bound to an instance of the outer class.
To access the instance of the surrounding outer class from within an inner class, the class name
needs to be prefixed, e.g., “OuterClass.this”. D4 knows about the idiom, but is not aware that
he is currently inside such an inner class (in this case: an anonymous inner class that implements
SelectionAdapter), and is puzzled by the prefix in AbstractList.this.

D4: “Why is it AbstractList before? <*deletes the prefix, the IDE marks a compilation
error*> Nope <*undoes the deletion*> ah, I see. Since we are in an anonymous class.”

D3: “In an anonymous class? What’s an anonymous class?”

D4: “<*selects the new statement which marks the beginning of the anonymous class*>
When you, for example implement such a SelectionAdapter, then it’s an anonymous
class <*selects the body of the anonymous class*> since the class has no name.”

D3: “Ah, yes, right..”

D4: “That’s what puzzled me, I didn’t see that. And when I say ‘this’, then it’s the
SelectionAdapter, or its implementation.”

D3’s question sets the Topic of their exchange; transferring the Target Content is easy because D3
already knew the idiom, but not the technical term “anonymous class”.

Development Tools
Tools to support the development process, such as version control systems.

Example 7.16: Deleting Folders Under Version Control (CA2, 26:11–27:01)
C2 wants to know whether SVN—the version control system used for their current source code
tree—behaves like the older CVS which is file-baseda and makes no distinction between empty and
non-existing directories, e.g., after deletion. SVN does in fact support versioning of directories,b so
the pair does not actually have a problem here, but they do not reach that conclusion explicitly.

C2: “How is it with SVN and deleting directories, does it work? (Should work.)”

C5: “You should be able to delete a package, right?”

C2: “Well, in CVS it doesn’t work.”

C5: <*looks at C2, puzzled*>

C2: “In CVS it doesn’t work.”

C5: “To delete a package?”

C2: “Yes, not possible in CVS. The directory always stays.”

C5: “It stays in the CVS (‼...‼)”

250

7.3.1 Types of Topics and Target Contents

C2: “And there is no difference in deleting it or not, in CVS. <grinning> [. . .] It doesn’t show
up when it’s empty”

C5: <*turns to screen again*>

C2: “regardless of whether you deleted it or not. [. . .] How it’s done in SVN, I don’t know.
Might be totally different there.”

C5: “M-hm, we will see.”

C2: “I’d be curious.”

Again, the opening question hints at the Topic of the exchange; it could be phrased like ‘How do
version control systems deal with deleting directories?’ for which C2 offers a partial Target Content,
clarifying the Topic for CVS but not for SVN, leaving his Knowledge Want somewhat unsatisfied.
C5, however, does not seem to share this particular Knowledge Want since he already turns back
to the task while C2 is still explaining the CVS case.

aCVS project homepage: http://www.nongnu.org/cvs
bSVN feature overview: https://subversion.apache.org/features.html

Example 7.16 (continued)

Technology
Frameworks, libraries, and other reusable technology that are possibly used to build a software
upon.

Example 7.17: OSGi Class Loading (DA2, 1:30:49–1:35:15)
The software system consists of over 50 OSGi bundles. A first attempt to introduce a new depen-
dency could not be achieved by a simple Java import statement, but a second approach succeeded.
D4 expects his partner D3 to not know why the first attempt failed and proceeds to explain a
number of concepts and best practices of the OSGi technology for about five minutes. He provides
some examples using the current source code, but much of his explanation (shown below) is
independent from their current software system and thus constitutes G knowledge.

D4: “Do you know about OSGi class loading?”

D3: “Class-what? Not really, no.”

D4: “Should I tell you?”

D3: “Sure.”

D4: “[. . .] Each bundle [. . .] has its own ClassLoader which can only load classes from other
bundles if [. . .] the other bundle from where you want to get the class does export the
package of the class and if your own bundle explicitly imports.”

“You always have these manifest files [. . .] there you can do Import-Package [. . .] to
say that you want that package.”

D3: “M-hm.”

D4: “[. . .] normally, you should always do Import-Package, <laughs> here it’s always
Require-Bundle. You set the logical name of the bundle you want to import and
depend explicitly on this bundle. You can not say, I remove this bundle and swap it
with another with the same package for OSGi to use that one. [. . .] That’s why Import-
Package is usually nicer. [. . .]”

The Topic may be framed as ‘How can OSGi class loaders access classes from other bundles?’.

251

http://www.nongnu.org/cvs
https://subversion.apache.org/features.html

CHAPTER 7. KNOWLEDGE CONCEPTUALIZED

7.3.1 c) Other Types of Knowledge

In addition to S and G knowledge, pair programmers also ask for and transfer other types of
knowledge, which are not specific to the current software system as such and not universal
enough to count as general software development knowledge. In my data, however, such
instances were mostly limited to session DA2 featuring developer D4 in his first week at the
company. Some of these knowledge types can also be expected to be transferred between
more ‘senior’ developers, while others appear more typical for a first contact with a project. In
particular, there were the following Topics and Target Contents:

• Information about a pair or team member’s development background, which is
possibly relevant for assessingwhat to expect from one another orwho to ask for additional
information (e.g., for establishing a transactive memory system, see page 98).

Example 7.18: Talking About Developer Backgrounds (DA2)
The pair talks about their experiences and refers to other team members multiple times.

D4: “How long have you been here? Three months?” (04:18)

D3: “I’ve been programming some years before that. Started with HTML, PHP, and
then over to Delphi.” (04:26)

D3: “In the beginning, I had no clue about Java and had to start somehow.” (17:42)

D3: “Did you ever do such a thing, such a toolbar?” (19:27)

↰

D4: “I just read this book here. I mean, these are at least the standards steps.”

D4: “Who did this? I mean, the todo list in general?” (21:23)

• Information about the company the pair works in, its departments, technical equipment,
and company culture, which is possibly relevant for a new developer to naturalize in a
software project (see page 37).

Example 7.19: Talking About the Company (DA2)
The pair talks about different parts of work life in the company.

D3: “In two months time, I’m back in VB [department], then I go to PS [. . .] ‘Professional
Services’, they also do some software development.” (05:05)

D3: “You have to know, the SVN repository is on <**current machine name**>. <laughs>
It’s just moving files around!” (05:40)

D3: “We don’t even have a fiber connection to the Internet. It’s just three DSL lines.”
(06:20)

D3: “Actually, <**current machine name**> is not that bad. What does it have? Two
cores? [. . .]” (06:50)

↰

D4: “Yeah, (#2.4#) [GHz], two times.”

D4: “That’s not my usual approach. Normally, I always write a test first.” (1:14:48)

↰

D3: “We don’t do that here. Although we’re supposed to. Anyway.”

7.3.1 d) Application Domain-Specific Knowledge?

Another major type of knowledge I expected to find in addition to S and G knowledge would
have been application domain-specific knowledge. In my data, however, developers did not
speak about their domain independent of their system. An explanation for this could be that
both pair members were equally and sufficiently familiar with the domain as necessary for

252

7.3.1 Types of Topics and Target Contents

the task that there were no knowledge gaps that could result in a Knowledge Want that could
have led to observable knowledge transfer activities. Pair programmers do talk about aspects
of their application domains, but these are often not their actual Topics:

Example 7.20: Domain Knowledge as Background Information (JA1, 05:03–05:19)
The application domain is radio news broadcasting. J2 explains a number of properties of hourly
news segments: They do not have a precise starting time, but waiting two minutes is enough;
and they also vary in length, but are not longer than seven minutes. Or in J2’s own words (line
numbers from Example 5.1):
(12) J2: “I start looking two minutes after the full hour, because then it’s guaranteed that

news files exist if any exist.”

(14) J2: “And then monitor this file as long as needed until it’s ready. That can take up to
seven minutes, depending on the wave.”

Note that the application domain was not the actual Topic here, but was merely mentioned as
additional information to the Target Content: There is a polling mechanism which starts at some
point in time and then goes on as long as necessary.

The next example is a rare case in my data of pair members actually talking about domain
concepts, if only briefly. A few minutes later (Example 7.22), the same pair has again an
opportunity to talk about a domain concept explicitly, but they treat it merely as an identifier
and do not discuss its meaning.

Example 7.21: Application Domain Knowledge Explained (KA1, 54:00–54:29)
K1 and K2 are outlining an API to be built between their respective subsystems, and K2 explains
the available data classes to his colleague. The application domain is real estate. The example
below is a rare case of a pair member actually explaining a domain concept (more precisely, the
difference between two domain concepts) to the partner. (The spoken language was German: words
in monospaced font are identifiers from the source code; everything else was said in German.)

K2: “In the RealEstatewe only have the data we need <*opens class RealEstate*>. That’s
title, an address, the price, livingSpace, plotArea (‼...‼)”

K1: “What is plotArea?”

K2: “Erm, siteArea, so property price (‼OK‼) no, not ‘property price’: property area. (‼OK‼)
livingArea then is floor space.”

K1: “Yes”

K2: “And then we have the marketValue, also some kind of price. And then we have
constructionYear and modernizationYear.”

K2’s system talks to an external API. What is called plotArea in the foreign data model is called
siteArea in their own model (as can be seen 90 seconds later in the source code)—this is probably
why K2 starts his explanation the way he does.

Example 7.22: Domain Concept as Identifier (KA1, 1:00:05–1:01:24)
Same session as Example 7.21, a few minutes later. The pair opened the data model of the foreign
service from where K2 already receives data which should be eventually passed down to K1’s
system. Another example of how domain concepts have an echo in the source code, but are merely
treated as identifiers.

K2: “Here we have such a Holder <*open class ExposeHolder*> there is the Data element
already. [. . .] Should all be in here. courtage, you need that?”

K1: “What is ‘courtage’?”

253

CHAPTER 7. KNOWLEDGE CONCEPTUALIZED

K2: “No idea, <*opens online dictionary*> it should be <*enters ‘courtage’, result appear, K2
reads them*> (#broker’s commission, broker’s fee#)”

K1: “Yes, (#broker’s commission#). Yes, that’d be nice. [. . .] Yeah, ‘broker’s commission’, that’s
how it’s displayed later (‼M-hm‼) so that’s alright, I need that, too.”

The pair does not talk about the actual meaning of a broker’s commission, and it does not become
clear whether K1 understands more than the syntactical level.

Example 7.22 (continued)

7.3.2 Hypothetical Target Contents

In some cases, the pair members deal with a Hypothetical Target Content, which, too, is
a piece of information which could fill a knowledge gap and satisfy a Knowledge Want if it
turns out to be correct. Recurring to the jigsaw metaphor, a Hypothetical Target Content is a
puzzle piece which has the right shape, but perhaps the wrong picture part. In my data, this
occurred in the following situations:

• A developer with an internal Knowledge Want can explicitly put forth a Hypothetical
Target Content with the expectation that her partner is able to validate it. This is what J1
did in the beginning of session JA1.

Example 7.23:Hypothesis to Satisfy Internal KnowledgeWant (JA1, 06:00–06:12)
Excerpt from Example 5.1, where J1 lets his partner J2 (in)validate a Hypothetical Target
Content (“10 seconds”) after J2 did not understand J1’s Topic for one minute.
(21) J1: “[. . .] I mean (!...!) You wait for 10 seconds, then after 10 seconds you decide: In

those 10 seconds nothing has changed, so the file appears to be ready.”

(22) J2: “Ahhh, that’s what you mean. No, 30 seconds.”

(23) J1: “30 seconds, that’s what I wanted.”

This can effectively allow tomake clearwhat the Topic is meant to be. I call such knowledge
transfer activities Proposition (see Section 8.2.6 for details and more examples).

• A collective Knowledge Want can be addressed in a rather pre-structured way by formu-
lating a hypothesis that the pair together tests. Recall Example 7.5, where A1 hypothesized
how the source code might look like (“How is it currently done in there, the strike through?
Is it a span tag or something? Maybe it’s already the case.”), so all the pair had to do was
inspect the source code.

In the first case, the Hypothetical Target Content is contained in an ask_knowledge which
includes a possible answer (BL, Sec. 16.2.14); in the second case, it is part of a propose_hypothesis
of type ‘can-check’ (BL, Sec. 13.1.3). The relevant difference between the base concepts lies in
whether the speaker expects the partner to be able to provide an answer (BL, Sec. 16.3.6);

7.4 Summary and Discussion of Related Work

In this chapter, I introduced three knowledge concepts: (a) The Knowledge Want that motivates
developers to engage in knowledge transfer activities (which may or may not correspond to an
actual gap in knowledge); (b) the conversational Topic that both partners need to understand
to some degree, and (c) the informational Target Content that can be acquired, possessed, and
transferred. In discourse analysis (see, e.g., Baker & Ellece, 2011, pp. 122, 151), the “theme”
of a conversation (the Topic) is distinguished from what is said about the topic, the “rheme”
(transferred parts of the Target Content). I am not aware of any other comparable distinctions.

254

7.4. Summary and Discussion of Related Work

Additionally, I distinguish different types of knowledge by categorizing different types of
Topics and Target Contents. The two most common were system-specific S knowledge and
more generic G knowledge. A number of studies I discussed as related work in Chapter 2 make
similar distinctions, some of them were a priori taxonomies, others were empirically derived:

• Jones & Fleming (2013, discussed on page 83) categorized 43 episodes of student pair mem-
bers teaching each other by knowledge type. They distinguish four types (which occurred
between 6 and 16 times each) which they group into two categories: Development tools
and programming language are summarized as “general development knowledge” (both
categories are similar to my G knowledge types with the same names); knowing how to
reproduce the bug and code structure knowledge are labeled “project-specific knowledge”
(similar to my S knowledge types of Routines/Defects and Source Code, respectively). They
have no corresponding categories for the other types I found (i.e., S knowledge: Require-
ments, Architecture, Design Rationale, Technology, State and Configuration; G knowledge:
Design and Programming Patterns, Technology). This is probably because the bug-fix task
the students worked on for 110 minutes did not offer many opportunities in this regard.

• Sillito et al. (2008, see my discussion on pages 38 and 82) investigated what developers
want to know about their system during a change task—S knowledge in my terminology.
Each of their 44 identified question types (ibid., Table 4) can be understood as an S Topic
template. To give an example, a specific question/Topic such as “how does [MAssociation]
relate to [FigAssociation]?” is an instance of question type #22 “how are theses types or
objects related?” (ibid., Sec. 4).
Most of their question types relate to my S knowledge types Source Code (e.g., types
#1–#20) and Architecture (e.g., #21–#25). Others relate to State and Configuration (e.g.,
#27, #30, and #31) and Requirements (e.g., #39). There appear no question types for the
S knowledge types Design Rationale, Technology, Defects, and Routines, nor any type for
G knowledge at all.

• Hulkko & Abrahamsson (2005) and Vanhanen & Korpi (2007) do not explicitly discuss
different knowledge types, but based on their group interviews on how PP was employed
in the teams and observations of actual PP sessions (discussed on page 71), they emphasize
the significance of S knowledge, while other types of knowledge, such asG knowledge, are
not mentioned: “[K]nowing what the code did” was necessary to be a useful pair member
(Vanhanen & Korpi, 2007, Sec. 5.3); pairing was useful “to get a clear understanding on
the system” and beneficial for “code which had many dependencies with other parts of the
software” (Hulkko & Abrahamsson, 2005, Sec. 3.2.1).

Other types of knowledge, in particular regarding the application domain, did not play a role
in the sessions I analyzed. This might be due to the circumstance that all companies A to P
develop their own software product. In consulting companies, this might be different, as the
practitioner report by Rasmusson (2003) on pair programming in a ThoughtWorks project
suggests: “it [. . .] spread domain knowledge throughout the team” . I come back to this issue in
Chapter 13.

The above concepts are useful to characterize concrete PP situations. I use them as follows:
• Chapter 8 covers individual knowledge transfer activities which I distinguish into Expla-
nations (which deal with external Knowledge Wants) and Explanation Elicitors (dealing
with internal Knowledge Wants).

• Chapter 9 is about Episodes of knowledge transfer during which the developers deal with
individual Topics.

• Chapter 11 explores the influence of lacking S knowledge and G knowledge on the overall
dynamics of PP sessions.

255

CHAPTER 7. KNOWLEDGE CONCEPTUALIZED

256

Chapter 8 Knowledge Transfer Activities:
Asking and Explaining

8.1 Purpose and Structure of this Chapter . 257
8.1.1 Discussion of Recurring Example . 257
8.1.2 Overview of Knowledge Transfer Activities . 259

8.2 Asking Questions with Explanation Elicitors . 260
8.2.1 General Properties of Explanation Elicitors . 261

“Trigger” or “Elicit”? • Role in the Conversation • Precedence of Elicitors: Clarification
Cascade

8.2.2 Improper Asking . 264
8.2.3 Direct Asking . 265
8.2.4 Refer to Common Ground . 266
8.2.5 Entice to Simple Step. 268
8.2.6 Make Proposition . 270

Optimistic Propositions • Pessimistic Propositions
8.3 Providing Explanations . 272
8.3.1 Present New Fact . 272

Present New Fact to Fill Gap • Present New Fact to Correct False Understanding
8.3.2 Refer to Common Ground . 274
8.3.3 Entice to Simple Step. 275

Enticing to Simple Step as Reaction to an Elicitor • Entice Simple Step as Argument in
Decision Making

8.4 Summary . 277

8.1 Purpose and Structure of this Chapter

In the previous chapter, I discussed that pair programmers perceive knowledge gaps either in
themselves or in their partner and develop Knowledge Wants to do something about it. The
activities which then constitute the actual knowledge transfer mainly fall in two categories:
Making clear the Topic to the partner through different forms of asking and transferring the
Target Content through different ways of explaining.

This chapter introduces many concepts for both the asking side and the explaining side.
I will start with a refresher on the recurring example, which happens to cover most of them.

8.1.1 Discussion of Recurring Example

The conversation in the first minutes of session JA1 illustrates the variety of ways how pair
programmers ask questions and provide explanations. I annotate and explain my concepts in
the example below. To make the concepts and their annotation easier to understand, I also
comment on the pair members’ (presumed) expectations for all their activities.

257

CHAPTER 8. KNOWLEDGE TRANSFER ACTIVITIES: ASKING AND EXPLAINING

Example 8.1: Knowledge Transfer Activities (JA1, 04:15–06:15)
J2 begins his explanations by Presenting New Facts, which contain pieces of information he expects
his partner J1 to not know yet. (J1’s back-channel responses are not shown here, see Example 5.1
on page 186 for the full transcript and background information.)

(6) “In the end, the news recording of every hour pops out.”

(8) “[. . .] there is the central plugin and multiple processors which each handle one wave.”

(10) “For most of them, right after the full hour there is a check, if there is a new file on the
remote share.”

(11) “If so, the most recent file is selected and it starts checking how the file changes size-wise.

(13) “[. . .] it looks until the file does not get bigger anymore, then it is apparently ready.”

(15) “And then it is fetched and handed over to transcoding.”

After these explanations, J1 develops an internal Knowledge Want and a dialog with interwoven
explanations and questions unfolds.

(16) J1: “In what timewindoware you looking?”
Direct Asking

J1 starts with a plain question. He expects J2 to
understand the question and thus the Topic, and
then to deliver the Target Content.

(17) J2: “I start looking two minutes after the
full hour, because then it’s guaranteed
that news files exist if any exist.”

Present New Fact

J2 provides another piece of information he ex-
pects J1 to not know yet. J2 thinks he was asked
about the time window in which the software
checks for changes and provides information on
its start . . .

(19) J2: “And then monitor this file as long as
needed until it’s ready.”

Refer to Common Ground

. . . and its end: First qualitatively as a reference to
what he said earlier (13), which he expects J1 to
pick up on, . . .

J2: “That can take up to seven minutes,
depending on the wave.”

Present New Fact

. . . and then quantitatively with a concrete number,
which he expects to be new information again.

(20) J1: “Hm ya, but mh, the time window for
the change?” Direct Asking

J1’s sees his Topic misunderstood. He rephrases
his question with a different emphasis, expecting
that this makes J2 understand the Topic.

(21) J2: “Yes, right, that is, er, time window for
the change is variable, depends on how
the news go.” Refer to Common Ground

J2 considers the answer to be common ground, and
repeats what he already said (19).

(22) J2: “I can’t know that, right?”
Entice to Simple Step

J2 expects J1 to understand that there is no way
to know in advance for how long a news segment
will run.

J2: “You know, they always start a new file.
When the news are over, again a file is cre-
ated. I mean, I basically never have more
than the news.” Present New Fact

In order to help J1 come to the same conclusion,
J2 adds more background information which he
expects J1 to not know yet: He has to poll because
there is no event mechanism.

(23) J1: “Yes, no, I mean ’cause you said you
look for so long until the size stops chang-
ing, right?” Refer to Common Ground

Since J2 still did not understand the Topic, J1 refers
to their common ground, too, by repeating pieces
of J2’s explanation (13).

(24) J2: “M-hm” J2 acknowledges that reference.

258

8.1.2 Overview of Knowledge Transfer Activities

(25) J1: “Then you need to plan for a time win-
dow in which a change could happen,
right?” Entice to Simple Step

Now J1 expects J2 to come to a certain conclusion:
J2 should understand that a polling interval cannot
be arbitrarily small.

(26) J2: “Yeah, well, until up to five before the
hour. I really take my time.”

Present New Fact

J2 does not come to the intended conclusion, but
instead now thinks that he was asked about the
end of the time span and provides information on
when the system will stop looking for changes.

(27) J1: “<laughs> No, I really mean the size
now, the size of the time window, I mean
(!...!) You wait for 10 seconds, then after 10
seconds you decide: In those 10 seconds
nothing has changed, so the file appears
to be ready.” Make Proposition

Although the last piece of information was indeed
new to J1, it is not part of the Target Content. J1
understands that his partner still does not under-
stand his Topic, and he no longer directly tries to
make J2 provide the Target Content, but instead
formulates a Hypothetical Target Content (HTC)
which he expects J2 to (in)validate.

(28) J2: “Ahhh, that’s what you mean. No, 30
seconds.” Present New Fact

Posed with a simple yes/no-question, J2 now un-
derstands the Topic, he invalidates J1’s HTC, and
provides the actual size of the polling interval.

Example 8.1 (continued)

8.1.2 Overview of Knowledge Transfer Activities

The excerpt above illustrates five of the overall six types of knowledge transfer activities which
pair programmers choose depending on their own current understanding and their expectation
of their partner’s:

• Improper Asking (not part of the example above): The speaker is puzzled by something
and signals her confusion along with her readiness to receive information. She might say
something like ‘Erm?’, which is not a proper question. Nevertheless, her partner may be
able to infer to the Topic, though the speaker does not expect that she does.

• Direct Asking; The speaker has understood enough to formulate an actual question,
such as J1: “In what time window are you looking?” . The speaker expects their partner to
possess the relevant knowledge, to understand the question and thus the Topic, and then
to deliver the Target Content.

• Refer to Common Ground: The speaker says something she expects her partner to
already know and to recognize as a reference (e.g., by repeating something that was
said earlier). J2, for example, repeats his own phrase ‘looking/monitoring until the file is
ready’ (turns 13 and 19); J1 also repeats J2’s words verbatim: “you said you look for so long
until the size stops changing, right?” (turn 23). If successful, it makes sure that both pair
members zone in on a smaller part of their shared reality.

• Entice to Simple Step: The speaker says something that has an implicit conclusion and
she expects her partner to take a simple mental step to reach that conclusion. In the
example, J2 wanted J1 to understand that the runtime of a news segment is variable and
not known in advance by saying “I can’t know that, right?” . J1 was similary implicit in
nudging J2 towards understanding that polling intervals cannot be arbitrarily small (“Then
you need to plan for a time window in which a change could happen, right?”). Metaphorically
speaking, while Referring to Common Ground goes back to square one, a Enticing to a
Simple Step nudges the partner into a new direction.

• Make Proposition: The speaker formulates something with the expectation that her
partner can validate or invalidate it. At first, this makes it unnecessary for the partner

259

CHAPTER 8. KNOWLEDGE TRANSFER ACTIVITIES: ASKING AND EXPLAINING

to understand the speaker’s state of mind, as she can focus entirely on a simple yes/no-
question (see J1: “I mean (!...!) You wait for 10 seconds, then after 10 seconds you decide: In
those 10 seconds nothing has changed, so the file appears to be ready”). If this is successful,
i.e., if the partner understands the proposition and can validate it, the partner may also
understand the speaker’s state of mind (J2: “Ahhh, that’s what you mean.”).

• Present New Fact: The speaker explains something as a fact (this contrasts with a
Proposition, which the speaker is decidedly unsure of). She expects her partner to not
know about it yet (unlike Referring to Common Ground), and the new information is to
be understood as-is (unlike when Enticing to a Simple Step).

These six types of activities can be grouped into two categories: Explanation Elicitors are
used to make the partner provide information to satisfy one’s internal Knowledge Want, while
developers provide Explanations to deal with their external Knowledge Want which follows
as a reaction to their partner’s Explanation Elicitors or which even goes beyond what was
explicitly requested (see also Section 7.2.3). I discuss Elicitors in Section 8.2 and Explanations
in Section 8.3.

Improper Asking
(8.2.2)

Direct Asking
(8.2.3)

Refer to
Common Ground
(8.2.4 & 8.3.2)

Entice to
Simple Step
(8.2.5 & 8.3.3)

Make
Proposition

(8.2.6)

Present
New Fact
(8.3.1)

Explanation Elicitor
(8.2)

Explanation
(8.3)

Figure 8.1: Knowledge transfer activities overview. Pair programmers Refer to Common
Ground and Entice to Simple Step in the context of both Eliciting and providing Explanations.

As is depicted in Figure 8.1, pair programmers Refer to Common Ground and Entice to Simple
Steps in both contexts. This is not surprising as both activities are meant to make the partner
understand something: From the perspective of an external Knowledge Want, the partner
should understand some new fact by seeing its connection to existing knowledge. From
the perspective of an internal Knowledge Want, the partner should understand one’s own
Knowledge Want by repeating the same mental steps to reach the “edge” of the knowledge
gap. In fact, the understanding of a knowledge gap is possessing meta-knowledge, which is
also knowledge. One way to ask a question is to explain one’s knowledge gap.

8.2 AskingQuestions with Explanation Elicitors

I first discuss general properties of Explanation Elicitors (Section 8.2.1) and then go through
the characteristics of all five types (Sections 8.2.2 to 8.2.6). I discuss the contexts in which they
occur and what pair programmers want to achieve with them. Some Elicitors have subtypes.
There are probably more subtypes which I have seen in my data but not analyzed, but not likely
any further Elicitors. I did not further my analysis beyond the level of detail presented here
as it was enough to characterize the different ways how developers deal with their internal
Knowledge Wants on an activity level.

260

8.2.1 General Properties of Explanation Elicitors

Concept Description/Characterization

Explanation Elicitor Dealing with an internal Knowledge Want: Utterance or action that signals
readiness to receive information to the partner to deal with an incomplete
understanding. I distinguish four different local outcomes in a conversation:

– successful Partner delivers the Target Content; the Knowledge Want gets satisfied.
– insufficient Not yet successful, additional attempts to transfer Target Content are made.
– frustrating Partner is aware of Knowledge Want; but no further attempts to satisfy it.
– ignored Partner is not aware of the Knowledge Want.

Clarification Cascade Prototypical order in which the five following types are performed:
– Improper Asking
(Section 8.2.2)

Signaling the internal Knowledge Want in some way; requires high
Togetherness for the partner to understand the Topic.

– Direct Asking
(Section 8.2.3)

Formulating the Topic as an actual question; requires medium Togeth-
erness for the partner to understand the intention.

– Refer to Common Ground
(Section 8.2.3)

Referring to the basis from which to understand the Knowledge Want.
With high Togetherness, such a reference alone may be enough to
reconstruct the Topic.

– Entice to Simple Step
(Section 8.2.5)

Making the partner understand one’s Knowledge Want by enticing
her to perform a certain mental step with an implicit conclusion.

–Make Proposition
(Section 8.2.6)

Formulating a Hypothetical Target Content for the partner to validate;
requires less Togetherness as the partner does not need to understand
what the speaker’s Knowledge Want. Can be optimistic (HTC is ex-
pected to be correct) or pessimistic (HTC is expected to be incorrect).

Table 8.1: Properties and types of Explanation Elicitors

8.2.1 General Properties of Explanation Elicitors

All Explanation Elicitors share a number of properties:
1. The speaker is aware of her incomplete understanding in some area and wants to do

something about it, i.e., she perceives an internal Knowledge Want (see also Section 7.2.2).
2. The speaker expects her partner to be helpful in that area, be it in the sense of providing

information or validating ideas.
3. The speaker makes an utterance that is at least in part directed to her partner to signal

her readiness to receive information. These utterances are ultimately intended to make the
partner help completing her understanding through communicating the Topic.

8.2.1 a) “Trigger” or “Elicit”?

In an early publication (Zieris & Prechelt, 2014), the Elicitorswere called “Explanation Triggers” .
I renamed them as I found the intentional aspect to be relevant, i.e., the intent to elicit an
explanation is more relevant than the effect of actually triggering one (in speech act theory,
this is the difference between illocution and perlocution, see page 112).

From a researcher perspective, the intention behind a pair member’s activity is occasionally
ambiguous to the point that it could have been unintentional behavior: A developer may make
some noise without any intention to elicit an explanation from the partner, but still trigger one
and be content with it. While developing the concepts, I found it impractical to draw a clear
line between triggering an explanation (regardless of whether it was intended) and eliciting
an explanation (regardless of whether it is successful).

261

CHAPTER 8. KNOWLEDGE TRANSFER ACTIVITIES: ASKING AND EXPLAINING

The next example illustrates the distinction of eliciting or triggering an explanation, which
is especially relevant for acts of Improper Asking, as some of the according utterances are too
unspecific to attribute an intention to them:

Example 8.2: Intentional Elicitation or Incidental Trigger? (CA2, 47:10–47:21)
The pair wants to perform amanual test to see whether their last refactoring broke the functionality
they are concerned with (the “attribute table”). The application is already running and C2 looks
for a way to call the functionality. C2 is lacking the according S knowledge, which would be to
open the context menu and click on the button labeled “Attribute Table”.

C2: “<*looks at GUI, stops moving the mouse cursor*> Erm.” Improper Asking

C5: “Just ‘Attribute Table’”

C2: <*double-clicks, after 4 seconds another windows opens*>

“Ah, sure, ‘Attribute Table’. Of course.”

<*right clicks, chooses entry “Attribute Table”*>

C2’s “Erm” together with his mouse movement indicate that he is not sure how to proceed, but—
because of their pair’s high Togetherness—he does not need to formulate an actual question for C5
to understand the Topic and provide him with guidance on how to test their application through
the GUI.

C2’s actions are not explicitly directed at his partner, so it is not clear whether he originally
intended to elicit an explanation. Certainly, his actions trigger an explanation by (from C5’s
perspective) signaling a Knowledge Want and his readiness to receive information. Since C2 is
not confused by C5 telling him how to call the functionality and he tries to put the advice into
action, his original actions constitute an act of Improper Asking. (Had C2 refused C5’s explanation,
however, I would not consider C2’s “Erm” to be an Improper Asking because that would contradict
C2’s intention.)

8.2.1 b) Role in the Conversation

Depending on its aftermath in the ongoing conversation, I characterize an Explanation Elicitor
as either successful, insufficient, frustrating, or ignored.

Successful Elicitors
An Elicitor is successful when the partner delivers the Target Content and the underlying
Knowledge Want gets fully satisfied. See Example 8.2 above, where C2’s Improper Asking is
successful as he gets the information he needs from his partner C5.

Insufficient Elicitors
An insufficient Elicitormade the partner aware of the KnowledgeWant, but the Target Content
is not yet transferred and additional attempts are made. The recurring Example 8.1 illustrates
multiple insufficient Elicitors on the part of developer J1.

Frustrating Elicitors
If the speaker no longer attempts to elicit an explanation even though the Target Content is
not transferred, the last Elicitor in the sequence is considered to be frustrating, because she is
discouraged to pursue the Knowledge Want any longer. In the next example, J1 is not able to
make his partner J2 understand the Topic of what he wants to know:

262

8.2.1 General Properties of Explanation Elicitors

Example 8.3: Frustrating Improper Asking (JA1, 08:27–09:19)
J2 scrolls over a function which has 100 lines and 11 if-statements (nested up to five levels deep)
and proposes to extract subroutines from it. Upon seeing the complex source code, J1 develops an
internal Knowledge Want.

J2: “The function is extremely long, but splitting it should be possible. [. . .] Wouldn’t you
agree?”

J1: “Yes? Erm, is there (!...!) can (!...!) <frustrated> nah (!...!)” Improper Asking (insufficient)

J2: “We can go through it, if you like.”

J1: “Yes? Erm, how does it (!...!) Yes, let us go through.” Improper Asking (frustrating)

J2: “Yes. Well, here, we have [. . .]”

J1 obviously wants to ask something, but is lost for words. While his first attempt is insufficient,
he gives up after the second. Nevertheless, J1’s Improper Askings make J2 aware of an underlying
KnowledgeWant and he proposes to offer a general explanation of what the function does, allowing
J1 to formulate specific questions later on once he understood better what he wants to know. (J1
asks many questions in the following hour, but it does not become clear what the Topic of this
early Knowledge Want was and whether it was ever addressed.)

Ignored Elicitors
As all activities in pair programming, Elicitors may be ignored (which is a , a conversational
defect, see Section 6.2.2e). Then, the partner is presumably not yet aware of the Knowledge
Want and hence does not react to the Elicitor. The next example shows how a developer’s
attempt to elicit an explanation is completely ignored:

Example 8.4: Ignored Improper Asking (DA2, 12:52–13:21)
Developer D3 is looking for a piece of code he wants to show to his new colleague D4. As D3
searches, a statement involving some LicenseKey is visible on screen for less than three seconds
but catches D4’s attention. D4 already knows at this point that the system uses some third-party
library (“the component”), and he develops an internal Knowledge Want.

D3: <*opens a file, reads file name, places cursor into file in line with LicenseKey and scrolls
down immediately*>

D4: “<chuckles> (#LicenseKey#)?” Improper Asking (ignored)

D3: “Exactly, and these are called <*selects threemethods*> and from here it goes on <*selects
single line*> to the respective class. I mean, in this case into the TestCalendar <*scrolls
up again, LicenseKey is visible again*> [. . .]”

D4: “Mh, LicenseValidator is from the component, isn’t it?” Make Proposition (successful)

D3: “Yes, correct.”

D4: “Ok.”

D4’s first utterance indicates his focus of attention and his further actions make clear his intention
to elicit an explanation from D3, which is why I consider this an act of Improper Asking. D3,
however, does not react to this at all: His “exactly” (German: “genau”) is merely a self-directed
exclamation that he found the right spot he wanted to show to his colleague—a discourse marker
(see Jucker & Ziv, 1998) which D3 uses often throughout the session. Since D4’s Knowledge Want
is not satisfied (and D3 takes his time looking for interesting pieces of code), D4 comes up with
an idea of his own of what the LicenseKey-statement could be about—a Proposition that D3
immediately validates.

263

CHAPTER 8. KNOWLEDGE TRANSFER ACTIVITIES: ASKING AND EXPLAINING

8.2.1 c) Precedence of Elicitors: Clarification Cascade

For a pair member with an internal Knowledge Want, there is an order in which the five types
of Elicitors are usually employed until one of them is successful: Improper Asking comes before
Direct Asking, which comes before Refer to Common Ground, which comes before Entice
to Simple Step, which comes beforeMake Proposition. I call this progression Clarification
Cascade. It consists in bringing first oneself and then the partner to clarity about what one
wants to know. Developers may skip steps, but they generally do not go backwards.

There appear to be different thought processes behind each ‘level’: An Improper Asking
is just about the experience of not understanding something, while Direct Asking involves
formulating something that another developer can be expected to understand. While the
formulation of such a question may or may not be tailored to the specific partner, explicitly
Referring to Common Ground then definitely involves considering what is shared knowledge
among the pair. Enticing to Simple Step goes even further in that it requires a notion of the
differences of the two developers’ understandings. Finally,Making a Proposition requires to
come up with some hypothesis all alone.

A long Cascade can be seen in the recurring Example 8.1 where J1 goes from Direct
Asking through all levels to Making a Proposition; Example 8.4 above features a short one
where D4 starts with Improper Asking and (after 20 seconds) follows up with a Proposition. In
Example 8.16 on page 270, I discuss a rare case of a pair having to ‘reset’, where O4 Makes
a Proposition which his partner O3 does not understood as an Elicitor so O4 backs down to
Direct Asking.

A long Cascade going up through multiple levels may be a sign of low Togetherness, as
it takes several attempts to make the Topic understood to the partner, while pairs with high
Togetherness may infer each other’s Topic even from seemingly incoherent mumbling.

The Clarification Cascade is not likely something developers are aware of or which could
be consciously employed when encountering a problem in a PP session.

8.2.2 Improper Asking

With an Improper Asking1 the speaker does not explicitly state what she wants to know
but merely signals an internal Knowledge Want to the partner along with her readiness to
receive information. Such utterances are not real questions, but can still elicit a response like a
question could. In cases where the developers’ intentions are not clear (as in Example 8.2), the
ongoing conversation may provide some clues for the researcher: If the partner reacts to such
an utterance and the original speaker in turn does not appear to be confused by her partner’s
reaction, I characterize the original action as an Improper Asking.

With an Improper Asking, the speaker does not (yet) say explicitly what her Knowledge
Want is about (as in Example 8.3), but the area may be hinted at (as in Example 8.4). Either
way, her partner might still guess the Topic correctly (see Example 8.2), which depends on
the pair’s Togetherness. Pairs with high Togetherness—i.e., with a shared understanding of
the system and of software development, with a shared plan, good workspace awareness, and
no language barriers (see Section 6.4)—may understand the Topic even without a properly
formulated question. With lowered Togetherness, as in the next example, an Improper Asking
may be insufficient for transferring the Target Content:

1This concept was called “finding” in an early publication (Zieris & Prechelt, 2014).

264

8.2.3 Direct Asking

Example 8.5: Insufficient Improper Asking With Low Togetherness (JA1, 28:44–
29:18)
The radio broadcast system written by J2 has multiple NewsProcessor implementations which
deal with the peculiarities of different radio stations in their respective execute methods. Before
the excerpt below, J1 wanted to know whether these are all different. J2 explained that, indeed, all
radio stations are somewhat unique in their file handling, except for stations Alpha and Beta which
follow the same process. In the past, J2 therefore extended class Beta_News from Alpha_News
such that it inherits the execute implementation. J1 is not aware of that inheritance and deems
all NewsProcessors to be siblings, which leads to some confusion.

(1) J2: “It is the same for Alpha und Beta. [. . .]”

(2) J1: “So, if I would compare Alpha_News and Beta_News, it would not be different.”
Make Proposition (ignored)

(3) J2: “Have a look at Beta_News, please. <*opens class Beta_News, scrolls to middle of
the file*> I just opened it. You see, there is no execute method.”

(4) J1: “<*jumps to J2’s position*> There is indeed no execute method.”

(5) J2: “Nope. Since it is the same for both.”

(6) J1: “Meaning?” Improper Asking (insufficient)

(7) J2: “‘Meaning’ what?”

J2 does not understand J1’s attempt to elicit an explanation in turn (6), as J1 does not make clear the
Topic of his Knowledge Want and J2 is not able to infer it due to momentarily low Togetherness.
(This exchange is continued in Example 8.15.)

The pair’s Togetherness is not only impaired by a lack of shared system understanding, but
also in two other ways: First, their workspace awareness is limited, since this is a distributed pair
programming session. J1 jumped directly to J2’s cursor position in the middle of the subclass Beta_
News and thus could not see that it extends Alpha_News. Second, there is also a language barrier
of sorts, since the domain expert J2 talks about two actual radio stations Alpha and Beta, while
the programming expert J1 refers to the corresponding classes Alpha_News and Beta_News.

8.2.3 Direct Asking

In contrast to Improper Asking, with an act of Direct Asking the speaker explicitly says what
she wants to know. So in addition to just signaling an internal Knowledge Want and the
speaker’s readiness to receive information it also phrases the Topic. The according utterances
are typically questions, usually in the syntactic form of a wh-question (Why? Where? What?,
etc.). If the utterances take a different shape in the pair’s dialog, they can at least be rephrased
as a question.

The speaker expects her partner to be able to answer the question. In this sense, Direct
Asking is similar to the base concept ask_knowledge. As Salinger & Prechelt (2013, p. 158)
already described, such requests may be open questions or already contain possible answers,
as the next two example boxes illustrate respectively:

Example 8.6: Direct Asking with Open Questions (JA1, JA2)
Examples of Direct Asking from developer J1 who asks for rationales and other information not
directly visible from the code in sessions JA1 and JA2:

• “Is there an important reason for all NewsProcessors to get the same (time)?” (JA1, 10:31)
• “Can that (‼...‼) is this an expected case, I mean, can it happen?” (JA1, 14:15)
• “Why is the encoder stored as a String instead of a constant?” (JA2, 17:53)
• “Why is there a timeout?” (JA2, 25:21)

265

CHAPTER 8. KNOWLEDGE TRANSFER ACTIVITIES: ASKING AND EXPLAINING

Example 8.7: Direct AskingWith Possible Answers (DA2, 01:54–02:06)
D4 just joined the company and wants to understand the GUI technology stack. He does not ask a
completely open question, but includes two possible answers he could think of (see Example 7.9
for more context).

D4: “How is this implemented in general, because (!...!) is it more of an SWT user interface
than Eclipse, or what?”

While the base concept ask_knowledge is limited to verbal requests for information, Direct
Asking also includes cases where the speaker asks the partner to show something (see the
following two examples), which would be considered propose_step in the base layer.

Example 8.8: Asking to Show Application (DA2, 09:23–09:37)
D4 wants to know about the requirements and current implementation status of the application—
which is more than D3 appears to have in mind in his Explanation.

D3: “In principle, there should be a toolbar up here <*hovers blank area in GUI, closes
application*> I’ll show you how what it looked like in the old calendar.” Present New Fact

D4: “Yeah, also show me what it can do already and what it should be able to do.”
Direct Asking

D4’s turn could be rephrased as two wh-questions: ‘What functions does the toolbar already have
(show me, please)? What additional functions should it have?’

Example 8.9: Asking to Show Source Code (CA2, 10:07–10:47)
C5 added a new method to an existing interface IFeatureAttributeConfiguration (which
C2’s knows about). That new method returns an array of IVirtualColumn—an interface which
C5 added recently and C2 does not know about yet.

C5: “Well, I better show you what I did already. <*opens IFeatureAttribute
Configuration*>What I did [. . .] is extend this IFeatureAttributeConfiguration
with an IVirtualColumn [. . .]” Present New Fact

C2: “Show me, what they look like.” Direct Asking

C5: <*opens IVirtualColumn*>

C2’s utterance could be rephrased as a wh-question: ‘What do they look like (show me, please)?’

8.2.4 Refer to Common Ground

A pair programmer may repeat something that has been said earlier (sometimes even verbatim)
or emphasize something obvious. In general, the propositional content of such utterances is
not new to the partner. When Referring to Common Ground, the speaker expects the partner
to know the piece of information already and to understand the reference as such.

Explicitly referring to the Common Ground this way is done both to elicit an explanation
(this section) and to provide Explanations (Section 8.3.2). By eliciting an explanation by
Referring to Common Ground, the speaker may clarify an earlier stated question, e.g., from an
insufficient Direct Asking. The next example illustrates how the repetition can be meant as an
amendment to the original question, that is, the context in which it should be interpreted:

266

8.2.4 Refer to Common Ground

Example 8.10: Refer to Common Ground as Context for Question (JA1, 05:00–05:48)
After J2 provided an explanation that did not meet J1’s expectation, J1 Refers to Common Ground
(see recurring Example 8.1 for more context):
(16) J1: “In what time window are you looking?” Direct Asking

(20) J1: “[. . .] the time window for the change?” Direct Asking

(22) J2: “[. . .] You know, they always start a new file. When the news are over, again a file is
created. I mean, I basically never have more than the news.”

(23) J1: “Yes, no, I mean ’cause you said you look for so long until the size stops changing,
right?” Refer to Common Ground

The last statement can be placed before the Direct Asking that turned out to be insufficient as an
attempt to make its context clear:

J1: “[Context:] You said you look for so long until the size stops changing.
[Question:] In what time window are you looking? [. . .] The time window for the change?”

In other cases, however, there is no ‘original question’ to be amended and the speaker expects
the partner to understand the Topic by Referring to Common Ground alone:

Example 8.11: Imply Question by Referring to Common Ground (JA2, 13:41–14:25)
J2 walks his colleague through an API he designed earlier. J1 does not yet know that the method
setInputFile can be called multiple times to accumulate input files. He is confused by the
method name (in fact, the pair later agrees on renaming it to “addInputFile”) and wants to know
how multiple input files can be handled, but the Topic of his Knowledge Want is only implied by
Referring to Common Ground.

J2: “Basically, you have a TranscodeJob you want to create. There, you can set arbitrary
InputFiles. Yes? You can set arbitrarily many. [. . .] So you have an InputFile, then
everything that should be done to it, then OutputFile. Then again an InputFile,
everything that should be done, OutputFile. [. . .] Ok, erm (‼...‼)”

J1: “Yes, hold on, hold on, hold on. You said, ‘you can set arbitrarily many’.”
Refer to Common Ground

J2: “Yes, in saying <*duplicates existing statement*> (##job.setInputFile##) another Input
File.”

In both cases, that is, Referring to Common Ground as context for an explicit or an implicit
question, the mechanism is to direct the pair’s attention to a smaller part of the shared reality in
their discourse. Just as for the partner to understand the Topic from an Improper Asking alone,
being able to infer the implicit question of a partner who only Refers to Common Ground
arguably requires high Togetherness.

A different use of Referring to Common Ground can be seen in Example 7.10 on page 247:
Here,K1 receives a long explanation from his partnerK2 andmakes clear he already understands
something of the Topic. K2 in turn is reassured that his Explanations are understood and
does not need to go into more detail at this point. This goes beyond normal back channel
utterances (which are typically rather short and would not interrupt the other speaker’s turn,
see Section 3.2.1b), because K1 effectively elicits the next explanation from his partner as if to
say ‘I already know X: Tell me something new’.

267

CHAPTER 8. KNOWLEDGE TRANSFER ACTIVITIES: ASKING AND EXPLAINING

8.2.5 Entice to Simple Step

When the speaker entices her partner to take a Simple Step, she states something she expects
to be easily digestible for her partner, either because that thing might be already known to her
or at least easy to understand. In contrast to Referring to Common Ground, a Simple Step not
only entices the partner to think about what was said and agree with it, but also to draw an
implicit conclusion from it.

In the German language, there happen to be speech particles associated with these ex-
pectations. In particular, the unstressed modal particle ‘ja’ is “typically used when the speaker
wants to indicate that the proposition is, should be or can be evident for the hearer” (Bross, 2012,
p. 192). By Referring to Common Ground, the speaker wants to indicate the proposition is
or should be evident for the partner, whereas Enticing to Simple Step indicates it is not yet,
but can become evident. The particles ‘doch’ and ‘eigentlich’ can assume similar roles. There
is no direct equivalent in English. In the transcripts of German utterances, I use ‘you know’
or ‘right?’ where appropriate. Although some of the analyzed sessions were in English, none
of the recorded developers was a native English speaker. Example 8.25 on page 276 shows a
Simple Step from an English session which contains the marker ‘as you know’.

Example 8.12: Translating German Modal Particles (JA1, 05:48–05:53)
Original German utterance from the recurring Example 8.1, with modal particle in bold face:
(25) J1: “Musst du ja noch ’nen gewisses Zeitfenster noch einplanen, in der immer noch ’ne

Veränderung stattfinden könnte.”

English translation with appended “right?” to indicate that this is not an imperative:
(25) J1: “Then you need to plan for a time window in which a change could happen, right?”

Note, however, that the German original was a declarative utterance, not a (grammatical) question.

Usually for Simple Steps, the conclusion is left to the partner and not made explicit by the
speaker. In the next example, however, the two parts of the partner agreeing first and then
drawing the conclusion afterwards become visible as separate turns between which the original
speaker feels compelled to spell out the conclusion:

Example 8.13: Simple Step with Almost Revealed Conclusion (DA2, 18:17–18:57)
D3 described to his partner the desired state of the application (which is not completely shown
below, see Example 7.6 for more context) and D4 noticed an inconsistency in that description. In
the excerpt below, D4 wants to make sure he understands the design requirements correctly and
formulates his question in the form of a Simple Step (turn 2). At first, D3 does not understand
what D4 is going for, and just agrees to D4’s statement. Consequentially, D4 goes on to make the
conclusion of his Simple Step explicit (turn 4), but then D3 notices that his explanations did not
add up, interrupts his partner, and sets the record straight.

(1) D3: “In general, a toolbar like this one. <*hovers toolbar in different module*> [. . .]”

(2) D4: “But, shouldn’t it be the goal to always have these thingies up here? <*points to
buttons in the toolbar*>” Entice to Simple Step

(3) D3: “Yes, exactly.”

(4) D4: “But then <*points to screen*> for the calendar, it’s (‼...‼)”

(5) D3: “Yeah, that was nonsense what I told you before <*switches to calendar view*>”

(6) D4: “Then it should be up there <*points to screen*>, right?”

(7) D3: “We don’t put it here in this narrow bar <*hovers narrow space in calendar view*>,
but up there, too <*hovers space above calendar view*>”

268

8.2.5 Entice to Simple Step

The common reaction to a Simple Step—at least for a pair with high Togetherness—is to draw
the conclusion quickly. After all, that is what the speaker intends. The next example shows a
successful Simple Step in the context of a Clarification Cascade with three stages:

Example 8.14: Conclusion Drawn From Simple Step (JA1, 09:32–10:01)
J1 ponders the rationale behind the method parameter currentTime and needs three attempts to
get the response he wanted from J2. Note that it is not the response he expected: J1 apparently
assumed the parameter was useless.

(1) J1: “We enter with the currentTime” Improper Asking

(2) J2: “Exactly, currentTime, that’s the timestamp on invocation.”

(3) J1: “On invocation. Why is it needed (from outside)?” Direct Asking

(4) J2: “I need it several times. For example at getLastFile <*selects statement*>, where
it gets the (!...!) to have something to compare the time against, right?”

(5) J1: “Yes, but, I mean, why does it need to be passed in from the outside? You know, the
function knows what time it is on its own.” Direct Asking + Entice to Simple Step

(6) J2: “For each Processor to get the same timestamp.”

(7) J1: “OK (.) I see.”

The conclusion J1 is aiming for is something like: ‘The parameter is an unnecessary dependency, so
it should be removed’—J2, however, is disagreeing with it and explains its necessity. The intended
conclusion builds on the pair’s Togetherness, especially their shared understanding of software
development and their shared plan to improve the structure of the code at hand.

With too low Togetherness, however, the penny may not drop, as J2 clearly states with dismay
at the end of another three-stage Clarification Cascade from the same session:

Example 8.15: Conclusion Not Drawn From Simple Step (JA1, 28:57–29:47)
Continuation of Example 8.5, with turns (3) to (7) repeated for context. J1 is not aware of the fact
that Beta_News extends Alpha_News and that it inherits its execute method.

(3) J2: “Have a look at Beta_News, please. <*opens class Beta_News, scrolls to middle of
the file*> I just opened it. You see, there is no execute method.”

(4) J1: “<*jumps to J2’s position*> There is indeed no execute method.”

(5) J2: “No, since it is the same for both.”

(6) J1: “Meaning?” Improper Asking (insufficient)

(7) J2: “‘Meaning’ what?”

(8) J1: “Meaning, erm, where is the execute method for Beta?” Direct Asking (insufficient)

(9) J2: “Well, the execute method of Beta is equivalent to that of Alpha.”

(10) J1: “Yeah, sure. But there needs to be made a connection somewhere, right? <*scrolls up
to the top*> [. . .]” Entice to Simple Step (insufficient)

(11) J2: “I don’t understand the question. I’m sorry. [. . .]”

(12) J1: “<*selects extends clause of class declaration*> Ahh, (#extends Alpha_News#), ok.”

The conclusion of J1’s Simple Step was something like: ‘Class Beta_News has no execute im-
plementation of its own, so it is not possible for instances to have an implementation equivalent to
that of Alpha_News at runtime’. In the exchange above, all three Elicitors were insufficient: J2
could not understand the Topic. J1 eventually understood that he overlooked the possibility of
inheritance, produced the Target Content himself, and satisfied his Knowledge Want. The pair’s
Togetherness was impeded because J1’s and J2’s respective understanding of the software system
differed in a relevant way. As a consequence, they talked past each other for a while.

269

CHAPTER 8. KNOWLEDGE TRANSFER ACTIVITIES: ASKING AND EXPLAINING

8.2.6 Make Proposition

Direct Asking requests the partner to supply the Target Content. But instead of asking an open
question, the speaker may also reduce the matter to a closed yes-no question by Making a
Proposition for which she does not know the truth value but assumes her partner is capable
of making an assessment. The partner is basically handed a Hypothetical Target Content (see
Section 7.3.2).

There are optimistic and pessimistic Propositions, depending onwhether the speaker expects
the partner to validate or invalidate it. Indifferent Propositions, like the one by J2 in the recurring
Example 8.1, are the exception. Here, for the propositional content being right or wrong is not
the actual point of the conversation.

8.2.6 a) Optimistic Propositions

In making an optimistic Proposition, the developer thinks she understood something and
expects her partner to agree and validate it. I can conceive of three different reasons for such
utterances. They are not validated due to lack of insight into the developers’ minds.
1. The inner-perspective: The speaker wants to be sure her understanding is correct. This

perspective appears reasonable for developer D4 in Example 8.4 above.
2. The we-perspective: The speaker wants to maintain the pair’s common ground and make

sure both of them know what they know. This is probably what O4 had in mind here:

Example 8.16:Misunderstood Optimistic Proposition (OA8, 10:35–10:49)
The developers try to understand the reason for a test case starting to fail. O4 ponders the
meaning of an attribute value and wants O3 to validate his hunch by uttering an optimistic
Proposition. His partnerO3 does not understand it as a question but as a hypothesis for what
might have caused the test failure (which she rejects). Then, O4 backs down to Direct Asking
and makes his intention to elicit an explanation as well as the Topic explicit.

O4: “offsetFractionmeans in the middle <*hovers offsetFraction: 0.5 in test
case*>” Make Proposition (optimistic)

O3: “The offsetFraction, we didn’t change that. So, I’m assuming this is okay. But
we did change the offsetDays (‼...‼)”

O4: “I want to know what the meaning of offsetFraction is in this test.”
Direct Asking

This is a rare case of a pair not progressing according to the Clarification Cascade (usually,
Direct Asking comes before Make Proposition). Developers O3 and O4 had some difficulties
with their Togetherness which makes interpreting the partner’s intentions difficult; a long
Breakdown (Example 6.16 on page 210) starts shortly after the above exchange.

3. The outer-perspective: Another way to interpret some pair members’ behavior is that
she wants to ‘show off’, as if to say ‘I found a nice way to put this, wouldn’t you agree?’.
Consider session JA1, which is all about original author J2 explaining the more experienced
J1 what the software does. J1 summarizes his current understanding of the software by
Making Propositions 17 times during the first half hour, 13 of which were optimistic. One
instance can be seen below, where his understanding turns out to be wrong and he then
produces two further pessimistic Propositions:

270

8.2.6 Make Proposition

Example 8.17: Propositions to Demonstrate Understanding (JA1, 27:47–28:42)
J1 starts with an optimistic Proposition where he thinks he understood something and wants
J2 to validate it, which J2 does not. Then, J1 follows with two pessimistic Propositions thus
giving his partner the chance to say ‘Sorry, I was mistaken’ and is again surprised he does
not.

J1: “The whole functionality up here is the same over all News plugins,
am I right?”

Make Proposition
(optimistic)

J2: “No, this is not correct. Since they are all a little bit different.”

J1: “A little bit different, ok. <with rising voice>”

J2: “Yes, it’s a bit problematic around here [. . .]”

J1: “That means that each single class with underscore News at the end
does something on its own in its execute method.”

Make Proposition
(pessimistic)

J2: “Yes, it is overwritten. As you can see here (‼...‼)”

J1: “Yeah, I see that. But, erm, the stuff it gets overwritten with is really
(!...!) I mean, if you take and compare two arbitrary files, they are always
somehow different.”

Make Proposition
(pessimistic)

J2: “They are different, yes.”

8.2.6 b) Pessimistic Propositions

In a pessimistic Proposition, the speaker thinks the partner got something wrong and offers
the partner something that is easy to disagree with, to understand where she was wrong, and
to correct her mistake.

In Example 8.17 above, J1’s expectation with his two pessimistic Propositions was that
J2 would realize and admit that he was mistaken two times. In the next example, another
developer also appears to give his partner the chance to correct himself.

Example 8.18: Pessimistic Proposition in Disbelief (CA2, 11:32–11:55)
In the middle ofC5’s explanation on his recent code changes which involve a generic type (Column
Attribute), C2 suddenly asks about some other code and whether that type is used there as
well. This questions takes C5 by surprise. C5 thinks that C2 suggested to use a more specific type
(VirtualAttribute) and he wants to make sure that C2 meant it that way:

C2: “What do the existing data structures look like, those used for the GUI? Is there a
ColumnAttribute? Otherwise, I would simply use those.”

C5: “I don’t know what you are talking about right now.”

C2: “About what I did, with the GUI.”

C5: “You only had a VirtualAttribute?” Make Proposition (pessimistic, ignored)

C5 formulates his question as a pessimistic Proposition,which givesC2 the chance to say something
like ‘No, I did not mean it that way’. However, neither does C2 verbally react to this Proposition,
nor does C5 persist. After four seconds of looking at each other silently, C2 continues his proposal:

C2: “(. . . .) I thought that we use this for the data structure, what I did.”

The camera angle only captured their chins, but not the rest of their faces (see Discussion of Data
Collection on page 156), which makes interpreting their somewhat absurd behavior even more
difficult.

271

CHAPTER 8. KNOWLEDGE TRANSFER ACTIVITIES: ASKING AND EXPLAINING

8.3 Providing Explanations

An Explanation can be one’s own initiative or a reaction to an Explanation Elicitor. The
different types of Explanations share the following properties:
1. The speaker perceives an external Knowledge Want, i.e., she thinks her partner has a

relevant gap in knowledge that should be addressed (see also Section 7.2.3).
2. The speaker sees herself in the position to help closing that (perceived) gap.
3. The speaker makes an utterance that is directed to her partner with the intention to make

the partner understand something.
Note that the speaker may wait for the partner to signal her readiness to receive information,
but this is not always the case and can then be problematic (as I will discuss in the next chapter,
in Example 9.23).

In contrast to the Elicitors, I did not find a particular order in which developers use the
different Explanation types of telling, making their partner recall something, nudging, and
plain hoping. There is no ‘Explanation Cascade’ as a counterpart to the Clarification Cascade.

Concept Description/Characterization

Explanation Dealing with an external Knowledge Want: An utterance or action that
is directed to the partner to help with their incomplete understanding.
There are three types:

– Present New Fact
(Section 8.3.1)

Presenting something as a fact, expecting it is new to the partner; either
to fill a gap or to correct a false understanding.

– Refer to Common Ground
(Section 8.3.2)

Referencing something that is considered common ground in order to
make an explanation or thought easier to understand.

– Entice to Simple Step
(Section 8.3.3)

Enticing the partner to take a certain mental step to come to an implicit
conclusion; can be a step to failure (as in ironic speech) or a step to
success (as in hoping the partner will understand the point despite a
suboptimal explanation).

Table 8.2: Types of Explanations

8.3.1 Present New Fact

Presenting a New Fact is the straight-forward form of an Explanation. The speaker presents
something as a fact with the general expectation for it to be new information to her partner. In
base layer terminology, instances of Presenting New Facts are thus a small subset of explain_-
knowledge, as they are not about opinions and evaluations.

The new information may serve different purposes: To provide information that the partner
lacks or correct a false understanding. I discuss both cases below.

8.3.1 a) Present New Fact to Fill Gap

There are different types of knowledge gaps which Presenting a New Fact can attempt to
fill. In the example below, the receiving developer did not even know he had an according
knowledge gap until he reached a point in the code where a decision needed to be made:

272

8.3.1 Present New Fact

Example 8.19: Present New Fact After Improper Asking (AA1, 59:12–59:25)
In a “Task” class, the pair is writing a call to a method that takes two boolean arguments: is
Inactive and isMirror. A2 enters an expression for the first argument and then hesitates for
the second. A1 quickly informs him that the entities that the Task class represents are never
mirrored, so A2 hardcodes isMirror as false.

A2: “(##!isActive##) (. .) oh, well (‼...‼)” Improper Asking

A1: “There aren’t any tasks on mirrors.” Present New Fact

A2: “(. . .) There aren’t?”

A1: “Nope.”

A2: “<*sets second argument to false*> Right.”

In another session, the knowledge gap itselfwas possibly already known to both the developers—
one developer already worked on the code alone and his partner does not know the content of
these changes—but it was not relevant until the pair set the goal for their session:

Example 8.20: Present New Fact After Direct Asking (KB1, 02:39–02:58)
K2 and K3 set the goal for their session by defining that they do not want to alter any functionality
yet. In order to assess whether K2’s unfinished changes from before interfere with this goal, K3
needs to know what these changes were. K2’s summarizes his changes by Presenting New Facts:

K3: “Ok, we first only do the refactoring, right?”

K2: “I’d say so.”

K3: “Yes, right? And then we continue.”

K2: “If we touch this <*hovers overview of locally changed files in IDE*>
along the way, it does no harm, it can be included easily.”

K3: “What is it?” Direct Asking

K2: “Well, there is <*opens one changed file*> the Controller for once. There,
I split the date field into two date fields, like date time field.”

Present New Fact

K3: “Yes, ok.”

K2’s evaluation that his changes ‘do no harm’ is not Presenting a New Fact as it is a matter of
opinion—which K3 could have followed along but wanted to know the facts instead.

8.3.1 b) Present New Fact to Correct False Understanding

Presenting a New Fact may also be intended to ‘replace’ some false understanding:

Example 8.21: Present New Fact to Correct Understanding (AA1, 28:26–28:33)
A1 refers to a (possibly completed) process of adapting a number of list views in their CMS to
a new design. The current list uses the old design and A1 figures it should be adapted, too. A2,
however, appears to recall an explicit decision to keep the old design here and corrects A1.

A1: “It should be rebuild to the new design (or something, right?)” Make Proposition

A2: “Nope, nope, this one should stay this way.” Present New Fact

A1: “It should stay?”

A2: “Yes.”

A1: “A-ha.”

273

CHAPTER 8. KNOWLEDGE TRANSFER ACTIVITIES: ASKING AND EXPLAINING

Changing any list’s design is not the topic of their session. A1 is off, which makes reconstructing
his intention difficult. Either way, this excerpt possibly illustrates two instances of information
flowing in the team during a PP session: First, A1 noticing a possible defect and intending to bring
it to his partner’s and later to the team’s attention; second, A1 learning about details of the ongoing
redesign progress.

Example 8.21 (continued)

Note that I did not analyze how pairs deal with hypotheses specifically, but only instances
where developers invoke factual knowledge, possibly in the context of dealing with unknown
or uncertain aspects.

8.3.2 Refer to Common Ground

If a plain Explanation in the form of a Presenting a New Fact is not understood by the partner,
the speaker may Refer to Common Ground in order to give her partner another chance to
understand (e.g., turns 19 and 21 in Example 8.1). In other cases, developer may attempt to
answer a question solely by Referring to Common Ground without any new information, as
in this excerpt:

Example 8.22: Refer to Common Ground for Obvious Explanation (CA2, 10:58–11:26)
C2 questions a design choice in the code in front of them. C5 alludes to a larger pre-session design
idea with a Simple Step, butC2 does not reach the intended conclusion that the local design follows
from the larger idea. As a consequence, C5 refers to the design idea more explicitly, thus referring
to their Common Ground and eventually answering C2’s question.

C2: “Do we actually have a ColumnAttribute here? Is that so?” Direct Asking

C5: “I did (!...!) we have, we do need an I, a ColumnAttribute afterwards,
right? To be able to put this in these, erm, all (!...!) in these, where you
fetch them all.”

Entice to
Simple Step

C2: “Is that so? Do we need this at all for the visualization in the attribute
(table)?”

Direct Asking

C5: “We do need, for the visualization in the attribute table, if we want
to do it through getAllAttributeColumns, we do need an IColumn
Attribute.”

Refer to
Common Ground

C2: “If we want to do it that way (yes, ok.)”

It might not be clear from the above transcript, but when the two talk about whether or not they
“have” or “need” a dependency to ColumnAttribute, they talk about whether it is necessary rather
than whether they like it. In this sense, the pair talks about facts and not about opinions.

It appears that C5 wanted to Refer to Common Ground explanation the first time around, but
was lost for words. Additionally, C2 appears to have no memory of the pre-session design idea,
so Referring to Common Ground does not work in the way intended by C5, but only because C2
knows the software system well enough to reconstruct the design idea on the fly.

Pair programmers not only Refer to Common Ground in an Explanation when there is an
immediate point they want to get across, but also in the aftermath of an already finished topic,
as if to make sure the original point really settles in. In session JA1, for example, J2 referred
back multiple times to some topic the pair had already finished (e.g., a few minutes after
Examples 8.1 and 8.14), and showed J1 the various places in the source code he was talking
about before. J1 did not ask to see them, J2 just casually Refers to Common Ground in the
ongoing conversation.

274

8.3.3 Entice to Simple Step

8.3.3 Entice to Simple Step

The speaker states something she expects to be easily digestible for her partner because that
thing is easy to understand based on her current knowledge.

I found the following situations in which such Simple Steps are made: In the context
of knowledge transfer, as part of an elicited Explanation, but also in the context of decision
making with regard to the source code design or the pair’s next steps. Roughly analogue to
the optimistic/pessimistic distinction of Propositions (see Section 8.2.6), Simple Steps come in
one of two flavors: They can be to success or to failure, the latter of which also includes ironic
remarks.

8.3.3 a) Enticing to Simple Step as Reaction to an Elicitor

When the partner asks a question and the addressed developer thinks the answer is obvious,
she might have troubles to formulate a plain answer and instead hopes the partner can figure
it out on her own. I call these Simple Steps to success, because the speaker wants the partner
to understand the point despite a suboptimal explanation. This can be seen in C5’s Simple
Step in Example 8.22 (“we do need [. . .] a ColumnAttribute afterwards, right?”), in J2’s turn (4)
in Example 8.14 (“I need it [. . .] to have something to compare the time against, right?”), or with
J2 in the following example:

Example 8.23: Conclusion Not Drawn From Simple Step (JA1, 14:35–14:58)
The code handles the default case (Mode.FileTracking) in an if-block from which the method
returns, and it handles error case(Mode.Error) after the if-block. In the exchange below, J1wants
to know more about the external circumstances that lead to an error case, while J2 refers only to
the internal control flow.

J1: “In this case here, with the Error it should never slide into, if everything goes well, right?”

J2: “If everything goes well, never slides into, right.”

J1: “(OK)”

J2: “I mean, if it found a file, it does not slide in there. Yes? <*selects default-case return
statement*> Because then it is in this FileTracking mode. (. .) Yes? (.) Or no? Why
don’t you say anything? <laughs>” Entice to Simple Step (to success)

J2 expects his partner to take the Simple Step which consists of reading the source code and
understanding the control flow. He is clearly confused by his partner not reporting back his
success. J1, however, does not appear to be interested in the control flow. As far as I can tell, the
pair never resolves this misunderstanding.

In principle, it is conceivable that the addressed developer knows the answer and could provide
a plain explanation, but still decides to merely nudge her partner in the right direction with a
Simple Step. However, I have not seen such behavior in my data.

What I have seen, though, is a developer combining information with nudges (i.e., Present
New Facts and Entice to Simple Steps), hoping the partner connects the dots:

Example 8.24: Entice to Simple Step After Presenting New Fact (JA1, 24:16–24:44)
J1 noticed that a variable is only used within a single method, and wonders why it is is nevertheless
stored as an instance variable instead of a local variable. The class in question implements a state
automaton. J2 first Presents a New Fact (the method is called periodically), and then hints at the
implication (the automaton’s state needs to be retained from one call to the next)—a Simple Step.

J2: “Well, let me put it this way: I have to retain it, since this execute method [. . .] is called
every 30 seconds.” Present New Fact

275

CHAPTER 8. KNOWLEDGE TRANSFER ACTIVITIES: ASKING AND EXPLAINING

J1: “Yeah?”

J2: “This means I have to save the state, right? Once I fetched the file from the remote and
start the FileTracking, I need to save a reference to it. (. .) I don’t want to start new
every time, right? I can’t, right?” Entice to Simple Step (to success)

J2 wants his partner to connect the dots after the new information has been presented.

Example 8.24 (continued)

The excerpt below has a similar structure, but here the explaining developer Refers to Common
Ground, i.e., his conclusion does not remain as implicit as with a Simple Step:

Example 8.25: Present New Fact and Refer to Common Ground (MA1, 13:26–13:41)
M2 wanted to know whether there are other things besides a ship’s position that change over
time. In M1’s explanation, he Presents New Facts and Refers to Common Ground:

M1: “Everything that is not in the Vessel table can be changed along the time.”
Present New Fact

M2: “OK.”

M1: “But it’s more likely that the Machinery and the Equipment won’t change, as you
know, adding a crane to a ship is not something you do every day.”

Present New Fact + Refer to Common Ground

All the Simple Steps I analyzed in the context of reacting to an Elicitor, i.e., in the context
of knowledge transfer, were Simple Steps to success as the speakers expected their respective
partners to understand some relationship they were not aware of before.

8.3.3 b) Entice Simple Step as Argument in Decision Making

As discussed in Section 7.2.3, external Knowledge Wants do not only arise when the partner
signals her internal Knowledge Want, but also when the partner appears as if she should learn
something, e.g., if she makes a misled proposal. Instead of plainly rejecting the proposal, some
developers explain why the proposal is problematic. An explanation provided by means of a
Simple Step has a number of benefits in such a situation:
1. The proposal-rejector does not need to confront her partner directly, potentially saving

some embarrassment if the proposal turns out to be good after all.
2. If the proposal is problematic, the proposer gets a chance to understand the reasons.
3. If the proposal is good, the proposer gets a chance to defend it effectively since the rejector

made her thought process clear.
The next excerpt illustrates a Simple Step that one developer employs to criticize a (seemingly)
problematic proposal:

Example 8.26: Entice to Simple Step as Indirect Criticism (OA8, 50:12–52:52)
O4 argues against O3’s proposal. He seems to think that O3 wants to make the test green by
recording the current (faulty) behavior and simply declaring it ‘correct’ in the test case, which goes
against his general understanding of software development. The conclusion O4 wants O3 to draw
is ‘Your proposal is not a reasonable way to approach writing a test case’. As can be seen in the full
exchange in Example 6.14 on page 201, O3 understands the intended criticism. (Furthermore, O3’s
original proposal was, in fact, not problematic but just misunderstood by O4.)
(12) O3: “We can check that, if you console-log, erm, so this, the real variable value, here in

the <**production code file**>, we can like console-log the (!...!)”

(17) O4: “In the test, we have to think about what the right value is before we start the test.
<*looks at O3*>” Entice to Simple Step (to failure)

276

8.4. Summary

Criticism of proposals can be rather direct. Below, the rejector formulates a Simple Step after
the proposer has already begun to put his idea into action and defended it:

Example 8.27: Entice to Simple Step in Direct Criticism (AA1, 19:44–20:13)
The system uses fallback MicroObjects andmore complete MiniObjects (see also Example 7.2).
The current code tries to fetch the latter but allows to potentially use the other one (with a parameter
allowMicroObject=true). Knowing that the surrounding code checks the type of the result,
A2 proposes to fetch a MiniObject instead and to get rid of the parameter. A1 strongly disagrees
and reminds A2 of the fallback mechanism with a Simple Step.

A2: “And now, we use a proper MiniObject instead <*removes parameter allowMicro
Object=true, changes variable type to MiniObject*>”

A1: “No!”

A2: “Yes, sure! We did already see that it only checks for isActive and then disregards the
editedContent.”

A1: “Eh, sure! So what? What happens if the task is on a non-readable object?”
Entice to Simple Step (to failure)

A2: “(. .) Ah, then I get an exception.”

A1: “Yep. Exactly.”

A2: “Ah, that’s the fallback, right. <*undoes changes*> Right.”

While Simple Steps in the context of an elicited knowledge transfer are to success (see Sec-
tion 8.3.3a), Simple Steps in context of a design or process discussion appear to be to failure,
which consist in attempting to make the partner stumble into a problem, to then see the issue
and chuckle: ‘Oh yes, that’s true. Silly me!’

In sessions JA1 and JA2, the experienced developer J1 criticized many of J2’s design ideas
through Simple Steps, yielding all of the above mentioned benefits (see, e.g., Example 8.14).
My research was not focused on decision making in pairs, so I did not deepen these inquiries.

8.4 Summary

The key aspect of the low-level mechanisms of knowledge transfer in pair programming in
both asking and explaining appears to be reconciliation of the two partners’ mental states.

The main difficulty in eliciting an explanation is to make the partner understand the
Topic of one’s Knowledge Want, that is, to ask the right question in the right way. In pairs
with (momentarily) high Togetherness, the Topic may be understood even through Improper
Asking before the developer in need was even able to formulate an actual question, or by
simply pointing something out that both developers know about anyway, i.e., by Referring to
Common Ground. With low Togetherness, however, a Clarification Cascade, which includes
different types of Elicitors, is necessary: Going from an initial Topic statement with Direct
Asking, to securing the Common Ground, taking a Simple Step together, and potentially even
reducing the matter to a simple yes/no-question with a Proposition.

The partner’s mental state is not any more transparent from an Explanation perspective
either. It is not surprising then that Presenting New Facts to close a gap or to correct some false
understanding are combined with references to the Common Ground and with Simple Steps
if the speaker wants to gently make the partner understand something without confronting
her directly or if she simply does not know how to explain something that is obvious to her.

In the next chapter, I zoom out one level to see how these fundamental building blocks
come together to form Episodes of knowledge transfer.

277

CHAPTER 8. KNOWLEDGE TRANSFER ACTIVITIES: ASKING AND EXPLAINING

278

Chapter 9 Episodes of Knowledge Transfer

9.1 Purpose and Structure of this Chapter . 280

9.1.1 Discussion of Recurring Example . 281

9.2 Properties of Episodes . 282

9.2.1 Starting an Episode . 282

Start Pursuing an Internal Knowledge Want • Start Pursuing an External Knowledge Want

9.2.2 Ending an Episode . 285

Stage: Started Initiative • Stage: Acknowledged Initiative • Stage: UnderstoodTopic • Stage:
Transferred or Acquired Available Target Content • Stage: Satisfied the Knowledge Want

9.2.3 Defining Characteristics of an Episode’s Mode . 288

9.3 Pull Mode . 289

9.3.1 Properties of Pull Episodes . 289

9.3.2 Short Pull Episodes for Factual Information. 289

9.3.3 Pulling for More Than Explanations . 290

9.4 Pioneering Modes. 291

9.4.1 Properties of Pioneering Episodes . 291

9.4.2 Silent Pioneering Mode . 291

9.4.3 Talking Pioneering Mode . 293

9.5 Co-Production Mode. 295

9.5.1 Properties of Co-Production Episodes . 295

9.5.2 Parallel Production Mode . 296

9.6 Push Mode . 297

9.6.1 Properties and Context of Push Episodes . 297

9.6.2 Transfer or Construction? . 298

9.6.3 Push is not just the Inverse of Pull . 299

9.7 Summary and Discussion of Related Work . 300

279

CHAPTER 9. EPISODES OF KNOWLEDGE TRANSFER

9.1 Purpose and Structure of this Chapter

In Chapter 7, I described that pair programmers perceive Knowledge Wants, which can be
internal (a developer wants to know something), external (a developer thinks her partner should
know something), or collective (which both developers share). In Chapter 8, I described the
individual activities of pair programmers to deal with these Knowledge Wants by making
sure that the partner understands one’s Topic and that the Target Content is transferred and
understood. There are multiple forms of enticing the partner to provide an explanation—the
Elicitors—and also different ways to formulate Explanations. Pair programmers also read source
code and documentation, and interact with the running system and tools to learn more about
their system’s behavior and about relevant technology in general.

The focus of this chapter are Episodes which are the sequences of activities from when a
Knowledge Want arises until it is satisfied by transferring or acquiring the Target Content.
The developer who perceives the Knowledge Want also is the one who actively pursues the
clarification of the Topicwhile the partnermerely reacts. That active developer is the Propellor
of the Episode.

Depending on the type of the underlying Knowledge Want and other factors, such as
personal preferences and what the partner is expected to know about the matter, the pair
members use different information sources and communicate the Topic and (parts of) the
Target Content in different ways. The way how an Episode is carried out is itsMode, of which
there are four main ones (with subtypes). Since the Modes are a central concept in my thesis,
I use a color code to refer to them in several schematics later on.

• Pull (Section 9.3): In a Pull Episode, the Propellor employs Elicitors to satisfy her
internal Knowledge Want by explaining the Topic to her partner and make her deliver
the Target Content.

• Pioneering Production (Section 9.4): Here, the Propellor—called Pioneer—also wants
to satisfy an internal KnowledgeWant, but relies more on source code, the running system,
and documentation (rather than her partner) to produce the Target Content.
There are two forms here: First, the Talking Pioneer, who announces her Topic and/or
makes her progress in producing the Target Content visible for her partner to jump in.
Second, the Silent Pioneer, who works as if she was alone and communicates neither
Topic nor Target Content, which, for better or worse, excludes her partner.

• Co-Production (Section 9.5): A Co-Production Episode involves both developers who
share a collective Knowledge Want such that both are Propellors for the common Topic.
By going through the source code and other artifacts together and by consolidating their
insights, they produce the Target Content together.
An accidental variant of this is Parallel Production in which the developers do not
make sure they end up with a common Target Content.

• Push (Section 9.6): A Push Episode is propelled by a developer with an external
Knowledge Want, who keeps offering not-explicitly requested explanations until she
thinks her partner received the Target Content for a Topic.

Regardless of theMode in which a particular Topic is addressed, both partners are involved
somehow. The Propellor may dominate the conversation with her actions temporarily, but her
partner’s reactions are just as important. Conceptually speaking, I therefore consider these
reactions part of the same Episode. For simplicity, I also disregard any developer’s external
Knowledge Want that only reflects her partner’s internal Knowledge Want, i.e., I only speak
of an external Knowledge Want when the developer follows an agenda of her own and wants
to explain more than was asked for by her partner.

280

9.1.1 Discussion of Recurring Example

9.1.1 Discussion of Recurring Example

As for the whole main part of my thesis, I turn to the first minutes of session JA1 to illustrate
the above considerations and relevant concepts of this chapter.

Example 9.1: Illustrating Episodes (JA1, 04:15–06:15)
The beginning of session JA1 features two Episodes: J2 pursues a long-running Push to bring J1
up to speed what their module is all about (left-hand side of the following transcript). J1 engages
in a Pull Episode regarding an implementation detail (right-hand side). In each of these Episodes,
one pair member is the active part who propels it forward, while the respective partner merely
reacts (shown as indented utterances). Occasionally, J2 provides more explanations than J1 asked
for and thus falls back into his own Push Episode.

J2’s Push Episode
(Topic: Software Design & Context)

(6) J2: “In the end, the news recording of every
hour pops out.”

(7) J1: “M-hm.”
(8) J2: “The way this works is that there are mul-

tiple processors, so there is the central plugin
and multiple processors which each handle
one wave.”

(9) J1: <*nods*>
(10) J2: “For most of them, right after the full hour

there is a check, if there is a new file on the
remote share.”

(11) J2: “If so, the most recent file is selected and
it starts checking how the file changes size-
wise.”

(12)
J1: <*stops nodding, looks to his upper
right*>
(Knowledge Want presumably arises)

J1’s Pull Episode
(Topic: Size of Polling Interval)

(13) J2: “I mean, it looks until the file does not get
bigger anymore, then it is apparently ready.”

(14) J1: “M-hm”
(15) J2: “And then it is fetched and handed over to

transcoding.”
(16) J1: “In what time window are you looking?”
(17) J2: “I start looking two minutes after the

full hour”
J2: “because then it’s guaranteed that news
files exist if any exist.”

(18) J1: “OK”
(19) J2: “And then monitor this file as long as

needed until it’s ready.”
J2: “That can take up to seven minutes, de-
pending on the wave.”

(20) J1: “Hm ya, but mh, the time window for the
change?”

(21) J2: “Yes, right, that is, er, time window for
the change is variable, depends on how the
news go.”

281

CHAPTER 9. EPISODES OF KNOWLEDGE TRANSFER

(22) J2: “I can’t know that, right? You know, they
always start a new file. When the news are
over, again a file is created. I mean, I basically
never have more than the news.”

(23) J1: “Yes, no, I mean ’cause you said you look for
so long until the size stops changing, right?”

(24) J2: “M-hm”
(25) J1: “Then you need to plan for a time window

in which a change could happen, right?”
(26) J2: “Yeah, well, until up to five before the

hour. I really take my time.”
(27) J1: “<laughs> No, I really mean the size now,

the size of the time window, I mean (!...!) You
wait for 10 seconds, then after 10 seconds
you decide: In those 10 seconds nothing has
changed, so the file appears to be ready.”

(28) J2: “Ahhh, that’s what you mean. No, 30
seconds.”

(29) J1: “30 seconds, that’s what I wanted.”
(30) J2: “That’s 30 seconds long the time win-

dow. Now I got you.”

Example 9.1 (continued)

9.2 Properties of Episodes

Knowledge transfer Episodes have a number of relevant properties. Individually, they each
have a Topic, that is, the (sometimes literal) question which one or both developers want to
clarify. In most instances, a single pair member ‘owns’ the Topic and is the Propellor of the
Episode who drives it forward.

While the Topic makes each Episode unique, three other properties make Episodes compa-
rable across developers, sessions, and contexts:

• Start of an Episode: How does the pair go from one developer perceiving a Knowledge
Want to both of them being engaged in clarifying the Topic? I discuss this in Section 9.2.1.

• End of an Episode: Not all Episodes end with a fully transferred Target Content and a
satisfied Knowledge Want. When does the Propellor stop pursuing her Knowledge Want?
I discuss this in Section 9.2.2.

• Mode of an Episode: The degree to which the two developers are involved in the
Episode, the information sources they use, and about what they communicate how much
are together characterized by itsMode. The details of which I discuss in Section 9.2.3.
The central contribution of this chapter are then the four mainModes of knowledge trans-
fer that are Pull (Section 9.3), Pioneering Production (Section 9.4), Co-Production
(Section 9.5), and Push (Section 9.6).

9.2.1 Starting an Episode

Every Episode of knowledge transfer starts with one developer perceiving a Knowledge Want.
While the pursuit of a collective Knowledge Want involves high Togetherness and appears to
often simply happen (which I discuss in Section 9.5), both internal and external Knowledge
Wants pertain to one developer only and the partner needs to be addressed somehow.

282

9.2.1 Starting an Episode

Concept Description/Characterization

Episode Sequence of activities to satisfy a Knowledge Want; can end in various states
(depending on acknowledgement and satisfaction ofKnowledgeWant and trans-
fer of available Target Content): ignored, resignation, unnecessary, postponed,
partial success, needs investigation, or successful.

– Propellor The pair member who pursues the clarification of the Topic.
–Mode The way in which the pair caries out the Episode. Four main Modes:

Pull
(Section 9.3)

Propellor pursues an internal Knowledge Want by eliciting explanations from
partner who understands Topic and delivers Target Content.

Pioneering
(Section 9.4)

Propellor pursues an internal Knowledge Want by experimentation, reading in
source code and other artifacts, thus acquiring the Target Content herself.

Co-Production
(Section 9.5)

Both developers propel by pursuing a collective Knowledge Want by experi-
menting, reading source code, and integrating their ideas and hypotheses.

Push
(Section 9.6)

Propellor pursues an external Knowledge Want by providing Explanations to
her partner without being requested to do so.

Table 9.1: Properties of knowledge transfer Episodes

9.2.1 a) Start Pursuing an Internal Knowledge Want

For an internal Knowledge Want, the Propellor may wait for her partner to finish her turn
before she starts a Pull Episode. In Example 9.1, J1 appears to perceive his Knowledge Want
in turn (12), but waits until turn (16) to ask his question—after J2 finished his explanation.

In other instances, developers appear less considerate. In the example below, one partner
does not seem to notice or care about that his partner is in the middle of explaining something:

Example 9.2: Start Episode With Oblivious Interrupt (CA2, 10:46–11:56)
C5 is about to explain the rationale of the changes he did prior to the session. He just opened up a
new interface to show it to his partner (see Example 8.9). In the next minute, C2 starts two Pull
Episodes, both by interrupting C5’s explanation:

C5: “More (!...!) ain’t more in it yet because (‼...‼)”

C2: “O-kaaay.”

C5: “Because, erm <*waves hands*> it is, I, erm, more (‼...‼)”

C2: “Do we actually have a ColumnAttribute here? Is that so?”

[. . .]
C2: “If we want to do it that way (yes, ok.)”

C5: “If we want to do it that way, that’s correct. But that’s how I understood
our agreements so far. I didn’t yet move more in (‼...‼)”

C2: “What do the existing data structures look like, those used for the GUI? Is
there a ColumnAttribute? Otherwise, I would simply use those.”

Push
(ignored)

(ignored)

(ignored)

Pull
(Example 8.22)

[. . .]
C2: “I thought that we use this for the data structure, what I did. (Anyway, ok.
But show me.)”

Pull
(Example 8.18)

C5: “We can go on, for now. <*starts looking for other file for one minute*>”

C5 does not get to fully explain the rationale of his changes until 19:30 (shown in Example 7.7).

283

CHAPTER 9. EPISODES OF KNOWLEDGE TRANSFER

In the following example, the same developer knowingly interrupts his partner’s current turn
to formulate his question:

Example 9.3: Start EpisodeWith Careful Interrupt (CA1, 00:55–01:22)
In the very beginning of the session, C1 is about to summarize what he did prior to the session.
C2 cuts him short in order to settle an overarching question first: Should they be working on this
task right now at all? C2’s gestures and choice of first words indicate that he is fully aware that he
is interrupting his partner C1.

C1: “As I said, I already started, programmed for an hour. I started with the GUI. I’ll
show you quickly. <*opens overview of recent changes*> What I did with the (‼...‼)”

C2: “<*raises hand*> First, really short question. In how far is this whole thing desta-
bilizing, with regards to the coming branch, and that we only should do consolidation
on the trunk?”

Pull

9.2.1 b) Start Pursuing an External Knowledge Want

I already discussed a number of cues programming partnersmay pick up on to infer a knowledge
gap in their partner in Section 7.2.3. With such an external Knowledge Want, the developer
may start an explanation right away, for instance if the knowledge gap is about to lead to a
bad design choice which the speaker wants to prevent. This is what A1 did in Example 8.27
with his Simple Step: “No! [. . .] What happens if the task is on a non-readable object?”

Alternatively, the developer may also jump on signs of readiness to receive information,
such as having read some source code and then leaning back, as can be seen here:

Example 9.4: Start Pushing at the Right Moment (CA1, 12:10–12:47, 13:57–14:32)
C1worked on the task alone prior to the session andC2 already inspected the recent changes in the
running application. He now wants to take a look at the source code (a long Pioneering Episode),
and C1 waits patiently for the right moment multiple times before he adds more information in
short Pushes.

C2: “Then I’d take a look at this FeatureLayerPropertiesPanel thing.”

C1: “M-hm.”

C2: <*closes application, switches to IDE, searches for the class, opens it,
slowly scrolls stepwise down through file (,)*>

Talking Pioneer

C1: “And here, there is now a LabelAttributesPanel.”

C2: “<*scrolls back up*> Ah yes, I see.”

Push

And about a minute later:
C2: “Let’s see where this is being used <*opens list of field usages, hovers
entries one by one (, , , , , , , , , , , , , , , ,)*> Okay.”

Talking Pioneer

C1: “Yes, so I already started to extend the data, I mean the model. [. . .]” Push

C2 was a Talking Pioneer who made his Topic explicit both times, so C1 could follow his actions
more easily.

Example 7.17 on page 251 shows an explicit form of starting a Push Episode: D4 first asked
about his partner’s knowledge level and then whether he should proceed with the explanation:
“Do you know how this works with the OSGi class loading? [. . .] Shall I explain it?”

284

9.2.2 Ending an Episode

9.2.2 Ending an Episode

In general, an Episode ends when the Propellor no longer pursues her Knowledge Want. A
successful Episode is one that ends with a satisfied Knowledge Want because the underlying
knowledge gap has been filled. However, not all Episodes turn out this way, but stop at various
points before. As is shown in Figure 9.1, each Episode conceptually goes through five stages
but may stop at each of them if the Propellor does not persist.

Started Acknowledged Understood Topic
Transferred Available

Target Content
Satisfied the

Knowledge Want

ignored resignation
unnecessary or
postponed

partial success or
needs investigation successful

Figure 9.1: Lifecycle of an Episode: Stages and Outcomes

9.2.2 a) Stage: Started Initiative

Each Episode starts with some initiative action, or (see Section 6.2.2a), such as an Elicitor or
an Explanation, or some non-verbal computer interaction such as silently opening a certain
file with the intention to read it. If the pair does not get past this stage, i.e., if the partner does
not appreciate the , the Episode remains ignored:

Example 9.5: Ignored Episode (JA1, 40:29–40:42)
The pair has agreed to extract some portion of the code into a new method. As this is a distributed
session, J2 only knows that J1 is about to call the refactoring tool, but is not able to see it. J2 is
about to push something to his partner, but J1 struggles with the refactoring and does not react to
J2 at all. J2 makes two further attempts to start his Push, but does not get J1’s attention.

J1: <*starts “Extract Method” refactoring with selected code block*>

J2: “This is why I wanted up here <*selects some lines*>, in order to make splitting
it up easier (‼...‼)”

J1: “<*error pops up, cancels refactoring*> Does not work this way.”

J2: “I mean, here (‼...‼)”

J1: “<*reading code*> Ah, I see, it does return here, right.”

J2: “I mean (‼...‼)”

Push
(ignored)

(ignored)

(ignored)

J1: “This does not work yet.”

Although the pair’s audio connection might have a part in this particular instance, Example 9.2
shows that ignored Episodes are not limited to distributed settings.

9.2.2 b) Stage: Acknowledged Initiative

A knowledge transfer Episode typically involves both developers to some degree. However, a
Propellor may find it too difficult to communicate her Topic to her partner and the Episode
ends in resignation. This is the fate of J1’s Pull attempt in Example 8.3 who gave up after
two Improper Askings and let his partner take over with a Push. In the example below, the
speaker is able to formulate a proper question (Direct Asking), but his partner makes clear he
knows too little about the technology to understand him:

285

CHAPTER 9. EPISODES OF KNOWLEDGE TRANSFER

Example 9.6: Resigned EpisodeWith Explicit Topic (DA2, 10:11–10:26)
D4 already asked some questions regarding the technology stack, which D3 could only answer in
general terms. Ten minutes into the session, D3 not being able to answer D4’s questions appear to
be have become an inside joke for the pair. Now, D3 indicates he does not even understand the
question properly (and thus, the Topic) and D4 does not persist but resigns.

D4: “Is this still an Eclipse View, or what? (No.)”

D3: <*shrugs, looks at D4 smiling*>

D4: <*snorts*>

D3: “<laughing> I really don’t a have clue regarding ExtensionPoints and stuff.
I don’t get along with it. I mean, I can’t give you great information here.”

D4: <*clicks ball pen, stares at screen*>

Pull

(resignation)

This is a case of a developer giving up on a Pioneering Episode where he did not even try to
communicate the Topic:

Example 9.7: Resigned EpisodeWith Tacit Topic (CA2, 1:03:46–1:04:12)
In the middle of debugging their recent changes, C2 cuts off a proposal of his partner in order to
start Pioneering until he resigns after about 12 seconds and sets a breakpoint for the debugger.

C5: “Let’s select getVirtualAttributes (‼...‼)”

C2: “Hang on a sec, I’d just really quick take a look <*reads code (, , , , , , , ,)*>”

“Really quick <*hovers keyboard*> (. .)”

“Screw it”

Pioneer

(resignation)
<*sets breakpoint (, , , , , , ,)*>

“And now, I’d debug this thing”

<*starts application in debug mode*>

C2 remains a Silent Pioneer here, his Topic does not become clear.

9.2.2 c) Stage: Understood Topic

With the Topic understood by both developers, they may still decide to not completely transfer
or acquire the Target Content. On the one hand, there are unnecessary Episodes which the pair
aborts and does not plan to pick up again later; on the other hand, some Topics are merely
postponed to some later point.

The Topic of an unnecessary Episode appears irrelevant for the current progress as can be
seen in Example 7.3 on page 241 as well as in this example:

Example 9.8: Unnecessary Episode (DA2, 15:02–15:15)
When the pair tries to compile their code, an error message pops up, andD3 engages in a Talking
Pioneering Episode with the (implicit) Topic: ‘Why does the build process prompt an error?’ After a
few seconds, D3 proposes to not dig into the issue and to just live with it.

D3: “<*open details of error message (, , , ,)*> Hm?”

“Checkstyle doesn’t work (, , ,)”

“<*closes error message*> OK, I’d say: Get lost, Checkstyle! <laughs>”

Pioneer

(unnecessary)

D4: “<laughs>”

286

9.2.2 Ending an Episode

Other not particularly pressing, but still relevant Topicsmay be considered, but then postponed:

Example 9.9: Postponed Episode (CA2, 1:05:29–1:05:38)
C2 and C5 are circling in on the cause of a failure. After C2 understands C5’s Topic, he proposes
to address it later.

C5: “Let’s have a look whether the delegates are correct.”

C2: “They are, you see <*hovers inspection view in debugger*>”

C5: “Yes, the the, erm (!...!) methods, whether they are (‼...‼)”

C2: “We’ll look in a moment.”

Co-Production

(postponed)

C5: “M-hm.”

If, however, developers decide to address the Topic now, they transfer or acquire the Target
Content as far as the currentMode allows it.

9.2.2 d) Stage: Transferred or Acquired Available Target Content

If all parts of the Target Content that are readily available to the pair in the current Mode
are transferred or acquired but the Knowledge Want is not yet satisfied, the pair may decide
the Topic still needs investigation and switch to a different Mode such as Pioneering (as in
Example 9.10) or Co-Production (as in Example 9.11).

Example 9.10: Pull Episode Switching to Pioneering (CA2, 52:26–53:44)
C2 is not sure about the commit message convention and starts to Pull about it. C5 is not
sure about it either, so C2 decides to look into his e-mails, probably because the convention was
introduced in the team recently.

C2: “<*types cad-507*> That’s what it should be like, with the hyphen?”

C5: “Not sure, hyphen (!...!) I think, the cad in all caps? (. .) Or has it to be
lowercase?”

C2: “Erm, I have to look in my e-mail. Don’t know it from the top of my head.”

Pull

(needs investigation)

<*leaves desk for one minute, then comes back*>

“I’ll write all caps <*writes CAD*>”

Pioneer

Example 9.11: Pull Episode Switching to Co-Production (JA1, 22:59–23:48)
Experienced developer J1 wants to know why a variable is in the class scope, instead of just being
local. Module author J2 cannot answer the question right away, so the Pull Episode ends and
both of them start looking for possible reasons in the code.

J1: “You store this in a class variable [. . .] Why does remoteNewsFile have
to be defined in the class? Why is not enough to do it in the method?”

J2: “Erm, the remoteNewsFile? You mean, why it’s not enough in here?”

J1: “Yep, the remoteNewsFile.”

J2: “Let’s think about it, whether <**J1’s name**> has a point here. <*starts
scrolling*>”

Pull

(needs investigation)

Co-Production
J1: “<*starts reading code*> There is one occurrence [. . .]”

287

CHAPTER 9. EPISODES OF KNOWLEDGE TRANSFER

For less important Topics, the Episode may remain a partial success in case the pair reaches a
point where some questions are still open, but pursuing them is not deemed worth doing. This
can be seen in Example 7.9, where D4 asks a few times about the used technology stack, but D3
can only answer general questions, and in Example 7.16, where C2 wants to know more about
a tool’s behavior, but C5 looses interest in the Topic after making clear he does not expect any
upcoming impediments on part of the tool.

9.2.2 e) Stage: Satisfied the Knowledge Want

If the Propellor’s Knowledge Want is satisfied after all available Target Content has been
transferred or acquired, the Episode is successful. This type of outcome is nicely illustrated in
Example 9.1, where J1 explicitly says: “That’s what I wanted.” Many of the Episodes shown in
the numerous examples are successful, such as the very brief one in Example 7.2 on page 241:
“Do the MicroObjects still exist?”—“Yes. They do here.”

9.2.3 Defining Characteristics of an Episode’s Mode

Roughly speaking, theMode of an Episode is the fashion how the pair deals with the underlying
Knowledge Want. I discuss the Modes individually in Sections 9.3 to 9.6, but will give an
overview about the idea and their commonalities here. The aspects characterizing theMode
of an Episode are:
1. Type of the KnowledgeWant: Do the developers’ actions primarily pertain to one pair

member’s internal or external Knowledge Want, or is there a collective Knowledge Want?
2. Topic Handling: Is the Topic itself known to both developers? Or is it a ‘private’ Topic

of one pair member?
3. Target Content Source: From where does the relevant information, the Target Content

primarily come? Is it one developer’s memory or is it artifacts such as source code and
documentation?

4. Target ContentHandling: Is the transferred and acquired Target Content consolidated
and integrated such that it is then part of the pair’s common ground? Or are the pair
members not aware of what their respective partner knows about the Topic?

Mode Type of
Knowledge
Want

Topic
Handling

Target Content
Source

Target Content
Handling

Pull internal shared developer consolidated
Talking Pioneer internal shared artifacts consolidated
Silent Pioneer internal private artifacts not consolidated
Co-Production collective shared artifacts & developers consolidated
Parallel Production collective shared artifacts not consolidated
Push external shared developer consolidated

Table 9.2: Characteristics of the different knowledge transferModes. The above properties
pertain to the idealized concepts.

For any particular Episode, the answers to the four questions above will not always be perfectly
clear, such as a Pull Episode in which the Propellor also reads bits of code instead of relying
upon verbal explanations alone. Considered as concepts, however, the Modes each have

288

9.3. Pull Mode

some ‘center of gravity’ as summarized in Table 9.2. More fruitful here, however, may be the
consideration of the relevant differences between them:

• Push vs. Pull: In both cases, existing knowledge is transferred from one pair member
to the other. The difference is who of the two is propelling the exchange. Does one
developer keep asking until her knowledge gap is closed, or is it her partner who offers
explanations for as long as she sees fit?

• Pull vs. Pioneering: Both satisfy an internal Knowledge Want. The difference
is whether the partner or the source code (and other artifacts) are the main source of
information.

• Co-Production vs. Parallel Production: Both developers are engaged in reading
source code and documentation, but theymay ormay not take care ofmaking the produced
Target Content part of their common ground.

• Silent Pioneer vs. Talking Pioneer: In both cases, the Pioneer reads source code
and documentation. The difference lies in how much she tells her partner about the Topic
and the produced Target Content.

Modes are the most interesting property of Episodes. I discuss their details in the following
sections.

9.3 Pull Mode

9.3.1 Properties of Pull Episodes

During a Pull Episode the Propellor is trying to make her partner do things that help satisfy
her internal Knowledge Want, which the partner primarily does through verbal Explanations
(see Section 8.3), but also through demonstrating features or source code, or by providing
directions on how to get there. The Propellor uses the different Explanation Elicitors which are
meant to indicate the internal Knowledge Want and to signal that the speaker is now ready to
receive information, as well as to make the partner understand the Topic (see Section 8.2).

An Episode encompasses both partners’ actions that pertain to the Topic, i.e., in the case
of Pulling, the Propellor’s Elicitors and her partner’s reactions. Note, however, that there
may be other pair activities during a running Episode that do not belong that Episode, such as
in Example 9.1 where developer J2 fell back to his overarching Push three times while J1’s
detailed Pull was still running (second halves of turns 17 and 19, and turn 22).

9.3.2 Short Pull Episodes for Factual Information

Many Pull Episodes are rather short, consisting of just a question and a quick answer, such
as the successful Pull: “Do the MicroObjects still exist?”—“Yes. They do here.” (see Exam-
ple 7.2); or the short unnecessary Pull: “(#tclCode?#)”—“<grinning> You don’t wanna know”
(see Example 7.3). Others are longer because they take more turns, such as in the recurring
Example 9.1 during which the pair goes through a Clarification Cascade (see Section 8.2.1c).

The difference between short, efficient Pull Episodes and longer ones that require more
clarification is, again, the pair’s Togetherness, which makes the process more fluent such that
simple Topics do not take much time and effort to deal with.

Another reason for many Pull Episodes for being short is that they have clear factual
Topics. Once that Topic is understood, they reach either a successful outcome or at least a partial
success and end quickly. In the next section, I discuss other cases where verbal explanations
are not enough and the Propellor asks for more.

289

CHAPTER 9. EPISODES OF KNOWLEDGE TRANSFER

9.3.3 Pulling for More Than Explanations

Developers with an internal Knowledge Want who start a Pull Episode expect her partner to
possess the Target Content. However, developers may also decide to start Pioneering despite
their partner being an available information source. In the example below, it appears as if one
developer would have Pioneered but, having no control over the keyboard, he resorted to
Pulling:

Example 9.12: Asking for Code, Non-Verbal Reaction (CA2, 10:42–10:54)
C2 wants to know more about the newly introduced interface IVirtualColumn. He could ask
C5 for a verbal explanation, but he asks to see the code instead. He probably would have started
Pioneering instead, but the keyboard was out of reach. (This is an example of backseat driving,

Jones & Fleming, 2013.)
C5 complies and silently opens the according file which only contains one method signature

and no comments. After C2 can be expected to have ‘read’ its content, C5 sets to explain the
rationale, but C2 cuts him off. C2 is the Propellor of this short Pull Episode and he decided to
stop pursuing his Knowledge Want here.

C2: “Show me, what they look like.”

C5: <*opens interface IVirtualColumn*>

“<*looks at C2*> More (!...!) ain’t more in it yet because (‼...‼)”

C2: “O-kaaay.”

Pull

Push (ignored)

C5’s reaction (opening the file) is part of C2’s Pull Episode; his attempted explanation, however,
is part of an (ignored) Push Episode (in which he is interrupted multiple times, see Example 9.2).

In other instances, a developer may have control over the keyboard, but is unsure where to
go. She pursues her Knowledge Want in Pull Mode, i.e., she uses her partner as the main
information source to close the knowledge gap. This can be seen in Example 7.12 from session
CA2 (on page 248), and in the next example from session CA1:

Example 9.13: Pulling for Guidance (CA1, 06:17–07:05)
C1 knows the current implementation better than C2 who wants to understand which existing
GUI parts may be considered for reuse. He makes C1 provide verbal explanations and guidance
around the running application.

C2: “Isn’t there a complete, isn’t there a complete panel already? Did you take the
complete preassembled panel already? Or just the individual parts?”

C1: “<*points to screen*> The two selection boxes are one panel. The checkbox is
not part of it (. .) erm. There is a bigger component, too, but is also has a button
and other stuff that aren’t exactly related to this task. (‼...‼)”

C2: “Mmmh, but I’d like anyway, like to see it anyway (!...!) simply because so I (!...!)
Do you, do we still have a running application? <*skims task bar*>”

C1: “Yes <*points to task bar*> we still do.”

C2: <*restores application*>

C1: “Alright, it would be the ‘Scale’ tab.”

C2: <*opens ‘Scale’ tab*>

C1: “Alright, and this <*shows area on screen*> would basically be the component
with the button and the label on top, I’d say.”

C2: “M-hm.”

Pull

290

9.4. Pioneering Modes

9.4 Pioneering Modes

Pioneering is another way for a developer to deal with an internal Knowledge Want in
addition to Pulling: Instead of making the partner do things to close one’s gap, the Propellor
performs these actions herself—mostly reading source code and interacting with the running
system.

9.4.1 Properties of Pioneering Episodes

There are different reasons why developers choose to Pioneer. In each particular Episode, at
least one of the following reasons appears to play a role:

• The partner is not expected to possess the Target Content, so Pulling would not be
possible.

• The partner may possess the Target Content but is not expected to be good at giving
explanations, so Pulling would take too long.

• The partner is not expected to possess the Target Content and not interested in the Topic
or does not understand it, so Co-Production is not an option.

• The Propellor wants to read source code directly, at her own pace.
The Propellor’s actual motivation, however, is difficult to reconstruct. So I differentiate two
forms of Pioneering based on observable behavior instead. Depending on how transparent
the Propellor makes her process, I either call her a Silent or a Talking Pioneer. The differences
can be in three aspects:
1. Knowledge Want: Is the intention to Pioneer communicated to the partner?
2. Topic: Is the Topic communicated to the partner?
3. Target Content: Is the intermediate Target Content shared with the partner?

A Silent Pioneer falls short on sharing her Topic and intermediate Target Content, and possibly
even her intention; a Talking Pioneer, in contrast, shares Topic and/or Target Content. Put
differently: The difference between a Silent and a Talking Pioneer is whether or not she is
Maintaining Togetherness (see Section 6.4.4). Sharing intermediate Target Content helpsMain-
taining Togetherness with regard to a shared understanding of the software system (although it
may be possible, I have not seen Pioneering Episodes pertaining to G knowledge), while
sharing the Topic does so with regard to one shared plan. If the pair’s Togetherness is high,
especially regarding a shared understanding of software development and workspace awareness,
then remaining Silent may be hardly problematic because the partner can still reconstruct
what is going on (examples follow below).

One advantage of being a Talking Pioneer is that a knowledgeable partner may validate
newly created Target Content or intersperse short Pushes when the Pioneer can actually
digest them. This is difficult for the partner of a Silent Pioneer who has to guess what she is
doing right now. Another advantage is that a Talking Pioneer may also enable to partner to
develop an internal Knowledge Want as in Example 7.15: “Ah, because we are in the anonymous
class.”—“What is an anonymous class?”

9.4.2 Silent Pioneering Mode

Silent Pioneering may be beneficial, e.g., if the partner does not feel compelled to follow
along and can relax for some time (I have not seen such cases of disengagement). In the worst
case, however, the partner is not even aware of the intention to Pioneer, e.g., because a
(an initiative activity) was nonverbal or not understood as such. Then, the partner may think
the Pioneer is fully attentive and thus ignore her Episode:

291

CHAPTER 9. EPISODES OF KNOWLEDGE TRANSFER

Example 9.14: Peril of not Sharing Pioneering Intention (CA2, 1:15:59–1:16:43)
The pair has a design discussion and C5 closes with a piece of information coming from a conver-
sation C2 is probably not aware of. C2, however, already started a Pioneering Episode without
making it clear, and C5’s Push gets ignored.

C5: “We don’t need to change anything in the FeatureProxy.”

C2: “In the way it works we do! Maybe not the class itself, but in the way it
works.”

C5: “We need some Provider to pass the FeatureProxy to, in order to
get the values. That’s a change in the model.”

C2: “We will see. <*starts reading source code*>”

C5: “The only thing is, that <**lead developer**> and I discussed yester-
day, that we change the FeatureProxySet. There should be a getTable
Model and it should be replaced with a factory or something.”

C2: “(, , , , , , ,) I’d like to know (, , , ,) where this thing is called <*selects
class constructor*>”

Silent Pioneer

Push
(ignored)

Talking Pioneer

C2 becomes a Talking Pioneer the moment he shares his Topic, which allows the pair to increase
its Togetherness by developing one shared plan again.

The next example shows that “silent” does not necessarily mean that the Pioneer goes mute.
Although he keeps saying things, he keeps his partner in the dark about the Topic and any
newly produced Target Content:

Example 9.15: Silent PioneerWho Talks (CA1, 19:57–21:01)
The pair decided to let their class implement an interface and just found out that they need
to implement two methods: getComponents() and setEnabled(). C2 now goes through the
class’s current implementation and appears to have some doubts but does not make his Topic and
newly acquired Target Content explicit: This an Episode of Silent Pioneering. This excludes C1
from the process, and his questions in turns (2) and (8) remain unanswered proposals in turns (4)
and (6) go unheard.

(1) C2: “The problem is, it doesn’t fit with getComponents. <*scrolls through file*>”

(2) C1: “Why doesn’t it fit?”

(3) C2: “I think so, I think so. I could be wrong. I mean (!...!) <*continues scrolling*>”

(4) C1: “We only need to get the individual component from the panel, right? (Is that com-
plicated?)”

(5) C2: “Ah, it has a getContent. It already has a getContent, I just noticed.”

(6) C1: “Ok (. .) and a PanelBuilder, can we possibly (!...!) get the other panels from there?”

(7) C2: “<*continues scrolling*> (, , , , , ,) I’m not sure whether this all will work (, , , , ,)”

(8) C1: “God, we have to (. .) hope that there is a (!...!) a JPanel on its own, can we deactivate
it?”

(9) C2: “<*continues scrolling*> (, , , , ,) OK, I’d say (, , , , , , , , , ,) shall we simply try to imple-
ment the methods?”

C1 tried to understand whatC2 did, but the pair did not reach a shared understanding of the software
system and thus a lowered Togetherness.

In the examples above, the Pioneer’s partner at least had the benefit of goodworkspace awareness
to help reconstructing what is going on. The next example shows how Silent Pioneering
can be irritating for the partner if it is not clear what the Pioneer is after.

292

9.4.3 Talking Pioneering Mode

Example 9.16: Irritating Silent Pioneer with Low Togetherness (JA1, 19:13–19:39)
In their distributed PP session, J1 deals with an internal Knowledge Want in Silent Pioneering.
He communicates his intention (turn 2 in the transcript), but neither his Topic nor any intermediate
Target Content. This irritates J2, who originally wrote the software and was already accustomed
to being Pulled by J1 on many different Topics.

(1) J2: “<*moves cursor around the code lines while he talks*> Ok, then we have here (!...!)
Yes, it gets copied. You see it here, line 101. Into the file localNewsFile. (. .) Copies
it here (‼...‼)”

(2) J1: “Hold on, hold on, hold on.”

(3) J2: “Hm?”

(4) J1: “Just looking <*reads code (, , , ,)*>”

(5) J2: “Pardon?”

(6) J1: “OK. I just needed to read that line.”

(7) J2: “OK.”

(8) J1: “<*continues reading (, ,)*> OK, yes.”

9.4.3 Talking Pioneering Mode

A Talking Pioneer makes her Topic explicit to the partner and/or summarizes her current
understanding, hypotheses, and such (parts of the Target Content). This verbalization may
help the partner to follow along and provide additional information at the right moment.

Example 9.17: Necessary Pioneering w/o Knowledgeable Partner (AA1, 13:10–14:13)
Through a Co-Production Episode, A1 gathered enough understanding to make a concrete
design proposal (first line in the excerpt below), which A2 does not understand. A1 starts to explain
the currently visible source code (Push) which helps A2 a little, but he is perplexed about the
rationale behind it. He starts to read the surrounding source code and keeps uttering his insights
(Talking Pioneering), allowing A1 to follow him and add further explanations. A few moments
later, A2 understands both the current code and A1’s design proposal.

A1: “Sure, we need to override getIconPrefix in TaskNode (.)
it’s missing.”

A2: “Uh? Is it reasonable to (‼...‼)”

A1: “See, the icon name is plugged together (.) and the TaskNode
simply delegates this to the ObjectNode, that’s why these are all static
classes there, in order to not duplicate the code.”

A2: “Ah! But why is it built so cumbersome?”

A1: “Who knows.”

A2: “Well, I want to know. <*opens call-hierarchy of current method*> See,
it’s called from browse.Html by renderIcon() <*opens that method*>
and here it’s done through the ViewConfig”

A1: “Sure, it’s done the same way now, and it’s right that way. We only
need to overwrite that method.”

A2: “Ah, it’s because of the on/off, the showing and hiding and stuff.”

Co-Production

Push

Talking Pioneer

A1: “Exactly.”

A2 becomes a Pioneer because A1 does not care for the Topic (“Who knows”). However, A2 utters
his insights, so A1 can provide relevant and timely information, and Togetherness is kept up.

293

CHAPTER 9. EPISODES OF KNOWLEDGE TRANSFER

In the previous example, the developer with the Knowledge Want had no other chance than
to start a Pioneering Episode because his partner did neither possess the Target Content
nor was he interested in the Topic. The next example illustrates a case where the partner does
possess the Target Content and already tried to Push it, but the developer’s Knowledge Want
was not yet satisfied so he started Pioneering.

Example 9.18:NecessaryPioneeringDespite Knowledgeable Partner (AA1,49:53–52:16)
The frontend retrieves data from the backend by asking for a certain data type and the backend
sends a fixed list of data fields. A1 proposes to implement the frontend part first (pretending the
backend would already send all necessary data), and then turn to the backend to actually include
the new data in the response. A2, however, expects the frontend has to specifically ask for the
data—like in a qualified SQL SELECT query—which is why he does not understand A1’s proposal.
Instead of following A1’s proposal, A2 wants to know how the backend parses the command—
not knowing that this is not how it works. A1 lets him Pioneer, eventually understands A2’s
misconception, and clarifies the issue.

A1: “Everything it gets from the backend is put into this map.”

A2: “Everything?”

A1: “Yep. So, in that Node, we can pretend we already got something back. [. . .]”

A2: “<*looking at screen*> But who does it ask?”

A1: “It’s a special thingy.”

A2: “Ah, indeed (, , , , ,) (#CMD_LIST_OVERVIEW#) <*minimizes the IDE and
switches to the backend source code*>”

A1: “That’s really a special (!...!) huh, why do you jump away now?”

A2: “I want to see how it’s implemented.”

A1: “But why? You simply define a new key, say you want that one too, and
then we are done in the GUI. Just that we only don’t get the key yet. And in
the end, we add it to the backend. <*waits and watches A2*>”

A2: “<*navigates through the backend code (,)*> See? It
doesn’t care”

A1: “Sure, you don’t say what you want, but (‼...‼)”

A2: “Here are no keys! <*returns to IDE*>”

A1: “No, of course not. It simply returns a set, but you don’t ask for something
specific. <*points at Java code*> These are the keys as they’re returned.”

A2: “<*reads Java code (, , , , , , , ,)*> Huh? But it needs to ask it somewhere?”

A1: “No, there is this command and it sends back a fixed set. In the frontend
we only say what they’re called so we can pull them out correctly.”

A2: “Ah! Now I got it.”

Push
(partial success)

Talking
Pioneer

Push

A2’s Pioneering Episodewas necessary to clear up his misconception: A2 himself did not become
aware of it until he saw the actual source code which did not fit his expectations; and before A1
saw A2 struggle, he could not understand A2’s misconception (“I want to see”—“But why?”) and
figured elaborating on his implementation proposal would be enough (“You simply define a new
key . . . ”).

Chong & Siino (2006, p. 34, my discussion on page 69) report that pairs are interrupted by their
colleagues just as often as solo developers, but have the advantage of carrying on the work
with one developer while the partner deals with the interrupt. In the example below, the pair’s
Co-Production Episode was interrupted, but one partner continued to acquire more parts of

294

9.5. Co-Production Mode

the Target Content anyway. Although the developer did not say a word while Pioneering,
he is still no Silent Pioneer because (a) his partner (dealing with the interrupt) would not have
been attentive anyway and (b) the Pioneer is going to summarize the Target Content when
appropriate, thus allowing for a seamless progression.

Example 9.19: Dealing with Interrupts Seamlessly (AA1, 1:43:40–1:47:42)
A1 and A2 are in the middle of Co-Producing new system understanding. A third developer
approaches the pair multiple times to ask technical questions. A1 would try to help her, while A2
continues reading the source code (Pioneering). Whenever A1 turns to A2 again, A2 would then
summarize the Target Content he produced in the meantime, and the pair would continue with
Co-Production. Here is A2’s summary after the first interrupt (from 1:43:57–1:44:17):

A2: “It already supports that <*selects constructor call*>”

A1: “Who?”

A2: “The Reminder. There are indeed cases where it knows already that
it’s a mirror.”

A1: “No kidding? [. . .]”

Talking Pioneer
Co-Production

A2 Pioneers again during the second interrupt (from 1:45:11–1:46:31). Then, his summary consists
of highlighting relevant parts of the source code, which, due to the pair’s high Togetherness, is
enough to make A1 understand an issue found in the meantime:

A2: “<*selects propertyClassMap*> In the Reminders?”

A1: “Whoops!”

A2: “Why is there a propertyClassMap? Completely unnecessary.”

A1: “No idea. [. . .]”

Talking Pioneer
Co-Production

The summary after the third interrupt (from 1:47:00–1:47:17) is then more verbose again:

A2: “I don’t really think this is used in any way. Somebody just copied the
ReminderAccessor from the other Accessor [. . .]”

Talking Pioneer
Co-Production

9.5 Co-Production Mode

In Co-Production Episodes, both pair members are involved in creating new knowledge,
the Target Content. Their Knowledge Want is collective and the Topic is clear to both.

9.5.1 Properties of Co-Production Episodes

Although one pair member may make the Topic of her internal Knowledge Wants explicit such
that it can become collective (as seen in Example 7.5), pairs may also enter a Co-Production
Episode without explicit discussion, as was illustrated in Example 7.13, where B1 and B2 were
trying to execute a test script: Here, the pair had a high Togetherness due to its shared plan
(which was: execute the test script before making changes to the production code), had a good
workspace awareness (since both see the script fail and read the error message), and they have
a shared understanding of software development (which leads them to similar hypotheses for
the failure, such as network issues).

The Target Content is created by both developers and they Maintain their shared un-
derstanding of the software system—or in fewer cases: software development in general; most

295

CHAPTER 9. EPISODES OF KNOWLEDGE TRANSFER

Co-Production Episodes have S Topics. Since their Knowledge Want is collective, they both
recognize when the Target Content is created.

Example 9.20: Co-Production with High Togetherness (AA1, 11:19–11:45)
The pair chooses one faulty page to work on first (it is titled “Complete Editing”). The Topic of the
Co-Production Episode below is ‘Which Java class corresponds to the displayed website?’ That

Topic itself remains implicit. In fact, after their decision, A2 does not say anything and A1 does not
type anything, yet their actions appear to come from ‘one mind’:

A2: “That means (!...!) (#Complete Editing#), for example.”

A1: “Shall we start with that one?”

A2: “Yes, I’d say so.”

A1: “Fine.”

A2: <*switches to IDE, opens dialog ‘Open Type’.*>

A1: “This is the (!...!).”

A2: <*switches to web browser*>

A1: “What is it called, the page?”

A2: <*right-clicks in browser, chooses ‘Page Info’ in context menu*>

A1: “(#FinishTasksPage#), ok.”

A2: <*switches to IDE, types ‘FTP’ in ‘Open Type’ dialog, and selects ‘Finish
TasksPage’ from the results*>

Co-Production

There appear to be different styles to structure a Co-Production Episode. The developers
might follow the call-hierarchy (as A1/A2 did many times in AA1), or go through some piece of
source code from top to bottom (as C1/C2 did in CA1, or J1/J2 in JA1). I did not analyze these
different styles in depth.

9.5.2 Parallel Production Mode

Just like there are two types of Pioneering in which the pair is or is not Maintaining
Togetherness by sharing Topic and Target Content, there is also a non-Maintaining form of
how pair programmers deal with a collective KnowledgeWant. I call it Parallel Production,
because both partners seem engaged in some activities and may learn or understand something,
but do not make sure they end up with a shared understanding.

Refer back to Example 6.23 where K2 and K3 both looked up how to programmatically
simulate a key press event for an integration test. They shared a collective Knowledge Want
and also the Topic was clear to both. K2, who controlled the mouse and scrolled through a
library documentation, did learn the necessary idiom, but did not make sure his partner did,
too (who also did not protest). About 40 minutes later in their session, K2 had used that idiom
and K3 was puzzled by it, indicating their avoidably lowered Togetherness with regard to a
shared understanding of software development.

In general, when there is little dialog, there are also only few cues to tell from the outside
whether the pair has a shared understanding or not. What can be seen, however, is the lack of
explicit activities toMaintain Togetherness. The pair may still be ‘in sync’, but there is no way
of knowing. The next example illustrates this:

296

9.6. Push Mode

Example 9.21: Together or Not? (AA1, 1:23:27–1:25:13)
For two minutes, it is not clear whether the pair still has one shared plan and a shared understanding
of the software system. They are not actively Maintaining Togetherness; this is an Episode of
Parallel Production. The transcript below begins with with A2 having an insight where in the

backend the API needs to be amended.

A2: “Ah, it’s not Link but LinkChecker. <*open source file*> Ah, there is a test for that
<*open test file*>”

A1: “M-hm <*leans back, looks around office*>”

A2: “<*reads in test code*> (#unreachableUrls#)”

A1: “<*looks back at screen*> hm hm hm hm hm”

A2: “<*silent reading (,)*> (#testFetchUrls#) (#checkUrlsAre-
Unique#) (#unreachableForUrlRow#) (, , , , , , , ,)”

A1: <*turns away*>

A2: “Ah, here it’s testing unreachableUrls”

A1: “<*turns back to screen*> multiple times, right?”

A2: “<*continues reading*> Not here, not here, but here <*reads test case names*> (#test-
FailedUrlsAreReachable#) (#testInternalValidLinksIsNotUnreachable#) (#testLinksToInac-
tiveObjectsFromInactiveAreNot#) (‼...‼)”

A1: “<*turns away*> M-hm, yes”

At this point, it seems that A1 has difficulties concentrating. After this excerpt, A1 proposes to
finish the session, but A2 convinces him that “there is not much left” and they go on for almost
another hour.

9.6 Push Mode

Unlike for all the otherModes, Push Episodes deal with external Knowledge Wants: The
Propellor keeps providing information until she is satisfied that her partner understood enough.

9.6.1 Properties and Context of Push Episodes

On an activity level, the Propellor of such an Episode may employ all types of Explanations
(i.e., Present New Fact, Refer to Common Ground, and Entice to Simple Step, see Section 8.3)
or present a piece of source code or some feature in a running application. The partner, then,
also has a variety of different options for how to react to the Propellor’s actions:

• Backchannel utterances to keep the discourse flowing (see Section 3.2.1b, e.g., J1: “M-hm”
in Example 9.1 or D4: “Yes” in Example 7.9).

• Refer to Common Ground to signal the Propellor she may ‘fast forward’ in her explanation
(e.g., K1: “Right, and there are a thousand different cases and the documentation sucks” in
Example 7.10).

• Make Proposition to summarizing one’s own understanding (e.g., D4: “That’s Swing?” in
Example 7.9).

• Start a new Pull Episode to inquire about a detail (e.g., J1: “In what time window are you
looking?” in Example 9.1). I discuss the phenomenon of such Sub-Episodes in Chapter 10.

I already discussed the cues on which a developer may rely to infer a knowledge gap in her
partner and develop an external Knowledge Want (Section 7.2.3) and how a Propellor may
then actually start her explanations (Section 9.2.1b). There are a number of different contexts
in which a Push may be embedded, such as:

297

CHAPTER 9. EPISODES OF KNOWLEDGE TRANSFER

• A known or assumed knowledge gap in the partner (e.g., C5’s long-running Push
Episode in the beginning of session CA2 on his recent changes which his partner cannot
know about, the start of which can be seen in Example 6.1).

• A design discussion, during which an argument for or against a proposal is made (e.g., in
Examples 7.7, 7.8, and 8.27).

• Making an assessment of the current state of the software, to make one’s reasoning explicit
(e.g., in Example 7.11).

• In relaxed situations, with no pressing issue (“stable understanding”), with the time to
reflect on recent problems that were due to a gap in G knowledge (e.g., in Examples 7.14,
7.15, and 7.17).

The context conditions for transferring knowledge (not just in Push Mode) and the overall
trajectories of PP session are a complex topic on its own. I come back to this in Chapter 11.

9.6.2 Transfer or Construction?

Not all relevant Target Content is communicated directly through Explanations, but may also
be constructed at the recipient. In Example 7.14, D4 provided imperfect explanations of what
the Template Method design pattern is which D3 could nevertheless understand because of his
own development experience: He knew which type of undesirable situations D4 was referring
to and understood how the design idea D4 described can help with it.

The next example is another case in point: The Propellor noticed a (potential) problem,
but instead of pointing it out directly to the partner, he asks a number of questions that
superficially may look like a Pull Episode but are actually a series of Simple Steps (discussed
in Section 8.3.3) to make the partner construct the Target Content himself:

Example 9.22: Socratic Issue Push (JA2, 18:38–19:43)
J1 is not content with J2’s API design and attempts to lead J2 to a better idea. Instead of the
current string-based call setEncoder("wmav2"), he would favor an enumeration type such as
setEncoder(Format.WMA). Despite J1’s many grammatical questions, this is a Push Episode.

J1: “Based on which parameter do you want to (!...!) I mean, when you write ‘setEncoder’
of what? ‘Encoder.getEncoderBy’ and then what?” Entice to Simple Step (to failure)

J2: “No, listen. Here is how it works. You can get a list of all available audio encoders.”

J1: “<satisfied, expectant> Yes. And how do I know which one is the right one?”
Entice to Simple Step (to failure)

J2: “(. . .) Erm, well. That’s (!...!) I mean, you can choose any. There is not ‘the right one’.”

J1: “Yes, sure, but do I take ‘any’? Or the first, or the fifth, or what?”
Entice to Simple Step (to failure)

J1: “I probably want to choose one that generates WMA files.” Refer to Common Ground

J2: “Exactly (‼...‼)”

J1: “That’s the WMA encoder ‘wmav2’.” Refer to Common Ground

J2: “Yes, right, that’s just its name (‼...‼)”

J1: “Exactly, ‘that’s just its name’. And now you say that this name may change in later
versions of ffmpeg, right?” Refer to Common Ground

J2: “Yes, we don’t know.”

J1: “‘We don’t know’, right, so we don’t want to get it by name, but by it being ‘the WMA
encoder’. So it might be a good idea to (‼...‼)” Entice to Simple Step (to success)

J2: “An enum with a String in the constructor, yes. Hm.”

298

9.6.3 Push is not just the Inverse of Pull

9.6.3 Push is not just the Inverse of Pull

The notion of Push is not just looking at a Pull Episode from the other end. In a Pull
Episode, the developer with the Knowledge Want keeps asking until she is satisfied or gives
up; but in a Push Episode, the presumably more knowledgeable partner keeps providing
information as long as she sees fit. Push may be theMode that makes pair programming
difficult for inexperienced pairs. I want to explain why I think so in this section.

In solo programming, the Pioneering Mode to deal with internal Knowledge Wants is
presumably the most prevalent. Depending on the environment of the solo software developer,
she might be able to ask nearby colleagues for information or for help (possibly resulting
in Pull or Co-Production). For a Push Episode, however, another developer needs to
develop an external Knowledge Want, for which there needs to be enough opportunity for cues
to pile up (see Section 7.2.3). External Knowledge Wants and Push Episodes may therefore
be unique to pair programming sessions longer than just a few minutes.

On the one hand, the occurence of Pushes can be an advantage, because the former
solo developer now has a partner to provide her with information she did not even know she
needed. On the other hand, the partner might misinterpret some cues and provide unwanted
information. In Pull Mode, a developer-in-need cannot do much to propel the Episode if her
partner does not cooperate (as C5 did in Example 7.16 by turning away from C2). This power
balance is reversed in Push Mode: The partner may have difficulties stopping the Propellor
from explaining.

One way a Push Episode can be unwanted is a lack of necessity, meaning that there is,
in fact, no knowledge gap and the partner already knows everything the Propellor is going to
explain. An unnecessary Push Episode irritates the partner, because the Propellor apparently
‘violates’ Grice’s second maxim of Quantity and the maxim of Relation (“Do not make your
contribution more informative than is required” and “be relevant” , see Section 3.2.1b). The partner
may start to think about the reasons for the Propellor’s behavior: A simple explanation would
be that the Propellor underestimated the extent of the common ground and has the intention to
Present New Facts. But if the Propellor explains something by Referring to Common Ground,
then there is presumably a particular point to the explanations beyond transferring knowledge.
It is irritating for developers to think there might a ‘true purpose’ but not being able to
understand it, as the next example shows:

Example 9.23:Why Push? (PA3, 29:53–31:37)
Developers P1 and P3 just extracted multiple occurrences of the value 0.01 that is used in several
percentage calculations into a new constant called OFFSET_PERCENTAGE. P3 just successfully ran
the test suite when P1 starts a Push Episode that massively irritates P3.

P1: “It’s important to make clear that the last two 0.01 have no relationship. Because they
might have no relationship and someone comes along and says ‘Look, it says 0.01’ (‼...‼)”

P3: “Which last two?”

P1: “The last two in lines 31 and 32, for example. Assuming the two numbers would have no
relation and someone who only sees the implementation with raw numbers thinks ‘Oh,
there is a relation, I’ll introduce a constant’. And then another comes along and introduces
it everywhere. Now all have the same relation. Now you know that they should explicitly
be converted this way.”

P3: “If it’s the same relation, you can treat them as such. You adapt it the moment it changes.”

P1: “Yes, but the one seeing the code doesn’t know when you have only raw numbers, with
the same values. What about 3660?”

P3: “When did we ever have 3660 as a percentage?”

299

CHAPTER 9. EPISODES OF KNOWLEDGE TRANSFER

P1: “Or 3600! With 3600 it’s an example. That’s the conversion from hours to minutes, but
also from seconds to minutes. Depending on the context two identical number can mean
two completely different things.”a

P3: “But applied to our case this has no relevance.”

P1: “Yes, it has. Because it is a Magic Number, and Magic Number means (‼...‼)”

P3: “But it is no longer ‘magic’. We just named it.”

P1: “<annoyed> Yes, we named it because it now creates a relation between these individual
numbers. Before, it was not clear (‼...‼)”

P3: “I don’t understand what you want, right now.”

P1: “I wanted to explain why we are doing this (‼...‼)”

P3: “<annoyed> I got that.”

P1: “Good. It’s alright then.”

P3: “<nervous laughter> I tried to understand what you still wanted to change.”

P1: “Nothing. I didn’t want to change anything.”

P3: “<relieved> Ok.”

P1: “I only want to clarify that it’s important to (‼...‼)”

P3: “<annoyed> Got it.”

P1: “make the relation with this renaming.”

P3: “<annoyed> <*stares at screen*> So.”

P1: “Not only to rename the variable.”

P3: “<annoyed> It’s ok.”

P3 understood that P1 was Pushing but deemed himself already knowledgabe concerning
‘Removing Magic Numbers’ (which is G knowledge of type Design and Programming Patterns, see
page 249). He also assumed that P1 could not mean his explanations as New Facts (because they
talked about this already), so he considered them as Referring to Common Ground or Enticing to
Simple Step. He did not understand, however, to which end. And that irritated him.

After the session, P1 said, he kept explaining because he was missing an affirmative signal that
P3 got the message. P3 said, he did not give any, because he was waiting for the punch line, the
‘ingenious code change’ which P1 was about to propose, but there was none. (See also evaluation
discussion in Chapter 13).

aP1 is mistaken. Of course, both the conversion from seconds to minutes as well as from minutes to hours
has a factor of 60, not 3600.

Example 9.23 (continued)

9.7 Summary and Discussion of Related Work

The main concept of this chapter is the Episode: One developer pursues either an internal
or external Knowledge Want in Push, Pull, or Pioneering Mode, or both partners
engage in Co-Production to satisfy their collective Knowledge Want. The Episode concept
offers a higher level of abstraction to talk about the process structure of a PP session than the
utterance/activity level of the previous chapters. They cover longer time frames than individual
activities (up to several minutes, although most Episodes are shorter) and capture pair behavior
rather than just an individual developer’s intentions.

300

9.7. Summary and Discussion of Related Work

The idea of conceptualizing different ways of how pairs interact—as the Modes do—is also
used by some other researchers:

• Walle & Hannay (2009, Sec. 3.3.3, discussed on page 73) distinguish different pair pro-
grammer interaction patterns that are conceptually similar to the notion of aMode:
– In consensual interaction, only one developer contributes substantively, while the

other follows along—this may be both Pushing or Pioneering.
– Stonewalling and being non-responsive is not an extra Mode for me, but is captured

by the notion of ignored Episodes.
– Cross-purpose may represented by Parallel Production or by two concurrent

Episodes.
– Responsive and elaborative interactions can be Push, Pull, or Co-Production.

• Flor (1998, my discussion on page 80) also uses the terms “push” and “pull” , but he uses
them as a generalization of writing/speaking and reading/listening, respectively, and are
thus not to be confused with the Push and Pull Mode presented here.

• Okada & Simon (1997, pp. 132–136, my discussion on page 96) speak of a pair that “co-
constructed new knowledge” . Based on the 33-line transcript, the pair’s interaction could
be characterized as a Co-Production Episode. The authors do not provide further
terminology, which is not surprising given the Produce nature of their task: The pairs
had little relevant pre-existing knowledge they could Push or Pull.

The idea to structure a (pair) programming process on an episode-like level is also used by
some other researchers. Their concepts compare to my notion of an Episode (i.e., the pursuit
of a Topic in a constantMode) as follows:

• Both Kissinger et al. (2006, Sec. 3.1) and Xu et al. (2005, Sec. 3.6, my discussion on page 77)
divided their transcripts into “stanzas” and “episodes” , whenever there are “shifts of topic”
and the developers “start the discussion of a different concept” , respectively. This leads to
data segments that are coarser than my Episodes, since changes in the conversational
Mode are not considered.

• Walle & Hannay (2009, Sec. 3.3.2, my discussion on page 73) divided their audio recordings
into “interaction sequences” using on a similar, topic-based approach, but also considered
changes in the “interaction pattern” (e.g., from consensual to stone-walling). The resulting
segmentation is probably comparable, since, as mentioned above, their interaction patterns
bear some resemblance with myModes.

• Kubelka et al. (2018, Sec. 5) state they adopted my Episode notion (as published in Zieris
& Prechelt, 2016) to structure and qualitatively analyze recorded sessions of developers
working on tasks with instant feedback while programming. However, it is not clear
whether they considered both Mode and Topic changes.

All of the above studies speak of data segmentation, which is not what my Episodes are about.
First, there are gaps between my Episodes because pair programmers do not always transfer
knowledge. Second, each partner may simultaneously pursue their own Topic, and there might
be higher-level Topics that are pushed back for a while, but should be reconsidered later. A
linear segmentation of a programming session is not adequate for this. I discuss the matter of
concurrent Episodes and Sub-Episodes in the next chapter.

301

CHAPTER 9. EPISODES OF KNOWLEDGE TRANSFER

302

Chapter 10 Patterns of Episodes

10.1 Purpose and Structure of this Chapter . 303
10.2 Anti-Patterns . 304
10.2.1 Branching Wildly . 304

10.3 Positive Patterns . 307
10.3.1 Return Explicitly . 307
10.3.2 Scope Limiting . 310

10.4 Summary and Discussion . 314

10.1 Purpose and Structure of this Chapter

Pair programmers’ Knowledge Wants are often not isolated, but appear to be connected. The
different ways how pairs deal with multiple Knowledge Wants—e.g., acting on them and start a
knowledge transfer Episode, to postpone addressing them to a later point in time, or to ignore
them—are the topic of this short chapter.

I introduce two simple concepts here to distinguish two cases that are common when a pair
shifts their attention from one Topic to another: Sub-Episodes and Catalyzed Episodes. When
a pair member develops a new Knowledge Want during an Episode which the developer feels
should be addressed first in order to satisfy the otherKnowledgeWant, she starts a Sub-Episode.
The Topic of a Sub-Episode is not necessarily a sub-Topic—the propelling developer just thinks
it should be addressed first. A Catalyzed Episode is triggered by something the partner did
or said, or that was visible on the screen (analog to the base-layer notion of a catalyzed finding,
see page 134). While Sub-Episodes are more like sub-routines in programming, Catalyzed
Episodes are like interrupts.

Example 10.1: Discussion of Recurring Example: Multiple Wants (JA1, 04:15–06:15)
The explanations in J2’s long-running Push Episode trigger an internal Knowledge Want in J1.
He does not expect his partner J2 to address the issue on his own and it appears relevant enough
to J1 to be addressed right away before J2 continues with any further explanation: J1’s question
“In what time window are you looking?” starts a Sub-Episode in Pull Mode.

There is no clear-cut line between Catalyzed and Sub-Episodes: After all, the propelling
developer considers the new Topic to be relevant enough to be shared with the partner in both
cases. I may be going out on a limb here, but I characterize a Topic switch as catalyzed when
I got the impression that the propelling developer would agree with ‘OK, I brought this up
mostly because it just occurred to me, not because it’s necessary right now.’ One indicator is the
seriousness with which the new Topic is announced: D4 chuckles when he sees a LicenseKey
(see Example 8.4); A1 asks about the TclCode with some amusement (see Example 7.3).

303

CHAPTER 10. PATTERNS OF EPISODES

Neither Catalyzed nor Sub-Episodes are inherently good or bad: Pair programmers will
have insights or make observations during their session and some of them will lead to internal
or external Knowledge Wants, which potentially result in the transfer of relevant knowledge,
regardless of whether the pair jokes about the Topic or not. Nevertheless, pairs or pair members
still exhibit behavior that has positive or negative consequences. I first discuss the case of pair
D3/D4 who kept opening new Topics without the previously started ones being brought to a
satisfactory end in Section 10.2. In Section 10.3, I characterize two positive patterns: Return
Explicitly from Sub- or Catalyzed Episodes and Scope Limiting, i.e., not going off on tangents
in the first place.

10.2 Anti-Patterns

10.2.1 Branching Wildly

In my data, one pair stuck out in terms of how many new Episodes they began without
the already started Topics being fully dealt with. The first 19 minutes of session DA2 are an
extreme case of nested Episodes, which I call Branching Wildly. The case is too complex to
be discussed here in full. Instead, I provide a schematic representation of the Episode-level
structure of these minutes in Figure 10.1 from which I will discuss four exemplary shifts
between Topics.

00:00 05:00 10:00 15:00

SVN Update Build App Start App Start App Start App
Waiting times

Technology
stack

Technology
bridge

Bridge
usage

Functional require-
ments & status quo

GUI design
requirements

Location of
GUI configuration

Cause of
failure

Connection of
class and GUI

Location of
action classes

Purpose of
“License Key”

Components using
License Key

Type of
variable

IDE feature:
Organize Imports

Current
IDE settings

Reason for
change difficulty

History
of module

Pull

Push

Pioneer

Co-Production

Episodes with Mode Connections

continued Topic

Sub-Episode

Catalyzed Episode

Return Explicitly

1

2
3 4

Figure 10.1: Episode structure of the beginning of session DA2. Numbered ellipses (1 to 4)
refer to sections in Example 10.2.
Notation: Each row represents one Topic the pair deals with in either Pull, Push, Pi-
oneer, or Co-Production Mode. The Episode boxes are connected, reflecting how the
pair came from one to another (Catalyzed or Sub-Episode, or picking up a previous Topic).
Elements pertaining to the pair’s main Topic—here: their task requirements—are set in bold.

304

10.2.1 Branching Wildly

Example 10.2: Long, Winding Way to Understanding Requirements (DA2, 01:54–18:57)
Overall, developer D3 wants to explain the task requirements, and D4 also wants to understand the
system’s status quo. These two related issues form the ‘main’ Topics of the first minutes of their
session (set in bold in Figure 10.1). D3 wants to illustrate the target state of the implementation by
loading an older, but functionally complete version of the calendar module. The switch is more
difficult than anticipated and while the pair attempts to figure that out, they fall into a rabbit hole.
Since both pair members develop and pursue multiple additional Knowledge Wants along the way,
they go on and off on their main Topic for almost 10 minutes. I do not discuss all digressions, but
focus on four moments to highlight both necessary (1 and 2) and avoidable detours (3 and 4). See
Figure 10.1 for context.

1. Sub Push in Order to Pull
In addition to the task requirements, D4 also wants to understand the technological basis of the
product, which his partner D3 cannot say much about. Conceptually speaking, D4 asks whether
technology A or B is used. D3 knows there is no simple answer to this and thus starts a Push
Episode to clarify that technologies B and C are used with a special B-C connector in-between (see
also Example 7.9).

D4: “How is this implemented in general, because (!...!) is it more of an SWT
user interface than Eclipse, or what?”

D3: “Well, <**product name**> as such is based on SWT.”

D4: “Yes”

D3: “The calendar, there we use this (~) calendar component.”

D4: “That’s Swing?”

D3: “Nope, yes, so actually AWT.”

D4: “Ah, ok. AWT even.”

D3: “Yeah, there is this SWT-to-AWT container gizmo and that’s how it’s
embedded in the end. How this SWT-to-AWT thingy works I can’t tell you
much about.”

D4: “OK. [. . .]”

Pull

Sub-Episode
Push

2. Sub Pioneer in Order to Push
D3 wants to swap in an old version of the view part to demonstrate the GUI requirements. For
this to work, he needs to find the place in the module configuration where the view is loaded and
starts a Pioneering Episode.
D3: “I’ll show you how it looked in the old calendar. <*closes application*>
I’ll show you where we’re heading. <*navigates to configuration of calendar
view*>”

D3: “<*skims configuration dialog*> Erm, erm. Just need to check where
the menu items were”

D3: “<*opens list of configured navigation buttons, selects first entry*>
Exactly (#calendar#) nope, wrong. [. . .]”

Push

Sub-Episode
Pioneer

The Pioneering Episode continues for another 16 seconds. After the modified application is
started, D3 notices it does not show the old version as he expected.

3. Catalyzed Pull interrupting Pioneer
WhileD3 is looking for the reasonwhy the old version is not properly loaded,D4 notices something
in the source code and asks his partner about it. It has nothing to do with the failure, but D3
nevertheless stops his search and deals with D4’s question, which he cannot answer right away.
Instead of letting it be, he goes off track and starts another Pioneering Episode to satisfy D4’s
Knowledge Want.

305

CHAPTER 10. PATTERNS OF EPISODES

D3: <*clicks through the configuration (, , , , , , , , , ,)*>

D4: “What are these navigation things for? Are these Actions? Where are
they displayed?”

D3: “They are processed by this class, and then the according method is
called.”

D3: “There is a (!...!) what’s it called again? <*navigates through package
tree*> No, not here, but [. . .]”

Pioneer (c’d)
Catalyzed
Pull

Sub-Episode
Pioneer

D3’s last Pioneering Episode continues for 18 seconds until the same pattern of D4 asking a
question (Catalyzed: Pull) and D3 looking up things (Sub: Pioneer) repeats again, leading
deeper into the rabbit hole at the end of whichD3wonders “OK. Now, where were we?” Fortunately,
the failure’s stacktrace is still displayed on their screen, D3 sees it (“Ah, the exception, right.”), and
picks up his Pioneering Episode from three minutes earlier.

4. Catalyzed Pull after finished Topic
The pair eventually continues their investigation in Co-Production Mode and understands the
failure (changing the configuration to the old class was not enough; there were also numerous
static references in the source code that needed to be changed, too). D3 decides to not swap the
view, but D4 is now curious why the swap was so difficult and starts a Catalyzed Pull Episode.
D3: “<*hovers error icons on multiple files in package explorer*> Ah, I see.”

D4: “<laughs> OK.”

D3: “Hell no, I won’t go through all this. I’ll show you somewhere else.”

D4: “But, how is it [. . .] Did you already change this on your machine, or
what?”

D3: “Well, you see, this is the old version, which I restored. [. . .]”

Co-Production

Catalyzed
Pull

Discussion
From start to finish, it took the pair almost 10 minutes to transfer the Target Content for the
“Requirements” Topic. The net time, however, is only 30 seconds, which already includes some
clarification and discussion (see Example 7.6 on page 245). Figure 10.1 shows eighteen additional
Episodes during that time, six of which were ‘necessary’ (i.e., the Sub-Episodes of D3 trying to
figure out how to swap in the old version of the view and both trying to figure out why it failed)
and twelve were ‘optional’ (i.e., the numerous Catalyzed Episodes and their Subs).
Considering session DA2 was in part meant to introduce D4 to the software system, even the
‘optional’ Topics possibly have some value for D4. So, what did (or could) D4 learn through them?
What where the outcomes of all these Episodes (as introduced in Figure 9.1)?

• The eight Pioneering Episodes were all propelled by D3, who was too occupied to thor-
oughly explain what he was doing. It is unclear how much D4 understood during these, but
it was apparently enough to catalyze three of his Pull Episodes.

• All nine Pull Episodes were propelled by D4, but only the last of the three pertaining
to the main Topic was eventually successful. The others were postponed or ended either
in resignation or as a partial success because D3 did not understand the Topic or could not
provide the Target Content.

• The two Co-Production Episodes were eventually successful, but the Target Content
became obsolete after D3 decided to revert his code changes.

• Both pair members each had one Push Episode: D3 successfully explained the history of
the module to D4; D4’s only Push to D3 was unnecessary.

In summary, the Catalyzed Episodes probably were of quite limited value for D4. Additionally,
although I cannot know how long it would have taken D3 to get back to the ‘necessary’ Topics
had the stacktrace not been visible (“Ah, the exception, right”), such branching behavior arguably
might throw other unexperienced pair programmers off the rails.

Example 10.2 (continued)

306

10.3. Positive Patterns

The above discussed first 20 minutes of sessionDA2 are exceptional. First, the remaining 2 hours
of this session, that is, once the task was defined and the pair started the implementation, the
Topic ‘nesting level’ is shallower: There are some Co-Production Episodes during which D4
starts a Pull Episode, but not much more. Second, no other analyzed PP session had such a
branched Episode structure. See Figure 10.2, for example, which shows a similar time span
from the beginning of session JA1. Here, J2 basically has one long-running Push Episode
(displayed in the figure as multiple Pushes, each catalyzed by finished one) and J1 would do
the occasional Sub Pull for details.

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

DPP Session Setup
Waiting times

Module purpose
& structure

Polling in-
terval size

Content of
central class

Overview of
other class

Content of
other class

Purpose of
parameter

Setting of pa-
rameter value

Type of
variable

Pull

Push

Pioneer

Co-Production

Episodes with Mode Connections

continued Topic

Sub-Episode

Catalyzed Episode

Return Explicitly

Figure 10.2: Overview of the beginning of session JA1. Notation is explained in Figure 10.1.

The reason for this difference might be that this was not only D4’s first week at the company
(so he had many questions about basically everything), but session DA2 was also his first pair
programming encounter ever. According to the pre-session questionnaires, his partner D3 also
only started with occasional PP when he joined the company three months before.

10.3 Positive Patterns

I identified two behavioral patterns which are positive in the sense that the pairs deal with
multiple Knowledge Wants without getting lost. One is to Return Explicitly at the end of a
subordinate Episode, the other is Scope Limiting in order to keep the complexity manageable
in the first place.

10.3.1 Return Explicitly

To Return Explicitly means to finish a subordinate Episode by explicitly referring back to
the original Topic verbally or by explicitly returning the ‘control’ to the partner to continue
propelling her original Episode. Pairs appear to do this when the Sub- or Catalyzed Episode
was meant to be short, such as a brief question about some detail, but turned out to take much
longer, e.g., because the partners had some misunderstanding. In Example 10.3, the supposedly
simple question for the length of a polling interval took 1:20 minutes to answer. Both partners
appear to have a need for closure and refer back to the main Topic:

307

CHAPTER 10. PATTERNS OF EPISODES

Example 10.3: Return After Finished Sub Pull (JA1, 04:08–06:33)
In the first minutes of the session, J2 propels a long-running Push Episode which serves as the
context for J1’s Sub-Episode in Pull Mode. Here are the relevant utterances as a reminder (see
Example 5.1 for the full exchange with the same line numbers):

(8) J2: “The way this works is that there are multiple processors, so there is
the central plugin and multiple processors which each handle one wave.”
⋮

(16) J1: “In what time window are you looking?”
⋮

(29) J1: “30 seconds, that’s what I wanted.”

(30) J2: “That’s 30 seconds long the time window. Now I got you.”

Push

Sub-Episode
Pull

Immediately afterwards, both developers explicitly work their way back to the original Topic (see
also their diagram in Figure 10.2): First J2 alludes to the source code he is about to show, then J1
summarizes his understanding and repeats bits of information from J2’s original explanation (8).
(31) J2: “I can show it to you in a minute.”

(32) J1: “Yes. And the NewsPlugin is doing what in all of this? Does it do
exactly this monitoring and the delegation to the individual wave plugins,
or what?”

(33) J2: “No. The NewsPlugin basically only does (!...!) it gets called periodi-
cally by the cron server [. . .]”

Return Explicitly

Return Explicitly

(back in Push)

In the beginning of session CA2, the main Episodewas ‘on halt’ for 1:23 minutes and Catalyzed
Pulls led to confusion which neither partner wanted to resolve, so they cut them short and

Returned to the main Topic.

Example 10.4: Return After Resigning a Catalyzed Pull (CA2, 10:07–11:58)
In the beginning of the session, C5 explains his recent code changes to C2 in a long-running
Push Episode, but gets interrupted by C2 multiple times. This is the Episode diagram of these

first minutes of their session:

10:00 11:00 12:00 13:00 14:00 15:00

Recent
changes

What is
IVirtualColumn?

Why use
IColumnAttribute?

Relation to
C2’s changes?

Which
changes?

Pull

Push

Pioneer

Co-Production

Episodes with Mode Connections

continued Topic

Sub-Episode

Catalyzed Episode

Return Explicitly

Figure 10.3: Overview of the beginning of session CA2. Notation is explained in Figure 10.1.

The Push Episode starts as follows:

C5: “Well, I better show you what I did already. <*opens IFeature
AttributeConfiguration*> What I did [. . .] is extend this IFeature
AttributeConfiguration with an IVirtualColumn [. . .]”

Push

C2 asks detailed questions multiple times (Pull Episodes). The first of these starts a 12-second
Sub-Episode relating to C5’s concrete code changes (discussed in Example 9.12). Then come two
Catalyzed Episodes relating to the overall design idea (discussed in Example 9.2).

308

10.3.1 Return Explicitly

As shown below, these leave C5 rather puzzled and he starts another Sub-Episode asking for what
C2 means. Both developers realize now that this exchange is not going to be very helpful and they
both Return Explicitly to the original Push Episode:
C5: “I don’t know what you are talking about right now.”

C2: “About what I did, with the GUI.”

C5: “You only had a VirtualAttribute?”

C2: “(. . . .) I thought that we use this for the data structure, what I did.
(Anyway, ok.)”

C2: “(But show me.)”

C5: “We can go on, for now.”

Return Explicitly

Return Explicitly
(back in Push)

(resignation)

Sub-Episode
Pull

The sequence of Catalyzed Episodes can be considered the beginning of Branching Wildly, but
both developers became aware of their problematic situation and returned to the main Topic.
Note that neither developer explicitly says what they should go on with, but both intend to make
C5 continue propelling his Push Episode. This indicates their relatively high Togetherness, in
particular regarding having one shared plan.

Example 10.4 (continued)

The next example illustrates how returning even from a short Sub-Episode requires some
orientation to get back to the main Topic:

Example 10.5: Easy Return from Short Sub Pull (EA1, 04:23–13:45)
In the beginning of session EA1, developer E2 explains to his colleague E1 what he already knows
about a display error of route segments on a map (long-running Push); E2 asks two questions
(Pull Sub-Episodes) from which E1 Returns Explicitly:

05:00 10:00 15:00

Waiting: Frozen debugger

Error: Data &
control flow

Location of
polygon points

Details of
failure state

Pull

Push

Pioneer

Co-Production

Episodes with Mode Connections

continued Topic

Sub-Episode

Catalyzed Episode

Return Explicitly

Figure 10.4: Overview of the beginning of session EA1. Notation is explained in Figure 10.1.

The software is running in debug mode, execution is halted at a breakpoint. E2 switches between
source code and GUI to explain the observable failure and related code segments:

E2: “I’ll show you what I did [. . .] The error is this [. . .] you see, the last segment
has an extra point. (‼Yep‼) The last point should have been this one, but it
takes that one. <*hovers two points in GUI*> (‼Yes‼)”

Push

E2’s Push Episode continues in this fashion for five minutes: Mostly a monologue, carried on
by E1’s backchannel utterances. Then, E1 starts two short Sub-Episodes after each of which E2
Returns Explicitly to his original Topic.
E2: “<*looking at source code*> result is the point count [. . .] which gets
increased here. <*opens inspector*> And now it’s 131. Before it was 1, I guess
that’s the start point. (‼M-hm.‼) And then 130 were added. And now they are
in this pPoints, there <*opens inspector*> they are. ”

E1: “The polygon points of the route, they are still in there?” Sub-Episode
Pull

309

CHAPTER 10. PATTERNS OF EPISODES

E2: “Yes, exactly. This TraceFerry() has an output parameter where the
points get copied to. (‼M-hm.‼) It’s called multiple times. It’s a big array, first
for the stub, and later it says ‘copy starting here’. (‼M-hm.‼) And in Trace
Ferry() they get copied.”

E1: “OK.”

E2: “Exactly. And, erm, now in this pPoints array, there are the points.” Return Explicitly
(back in Push)

E2: “The last point should be correct now. Or it’s not. We’ll see about that. [. . .]
<*inspects values*> Yes, it is the one, it’s doubled. So, the error is somewhere
in TraceFerry(). [. . .]”

E1: “So you say, it’s actually (!...!) we break the route (!...!) I mean <*takes
mouse*> it goes here, goes here, goes back again, and takes that as the endpoint,
or what?”

E2: “Exactly, it got all these points first, then this one, then that one instead of
this.”

E1: “Yes, and goes back again. OK.”

Sub-Episode
Pull

E2: “[. . .] I first thought it goes wrong here, but it’s not. Instead it’s Trace
Ferry(), where it comes out wrong.”

Return Explicitly
(back in Push)

After they reached the limits of E2’s existing understanding, the pair then continues in Co-
Production Mode, debugging the source code together.

Example 10.5 (continued)

10.3.2 Scope Limiting

Scope Limiting means to not address some Topic now—and possibly never. The pair may
actively decide against starting a Sub- or a Catalyzed Episode. In successful Scope Limiting,
both partners (a) appreciate the Knowledge Want and understand the Topic of the would-be
Episode, and (b) reach an agreement on what to do about the Knowledge Want.

Refer back to Example 7.3 for a case where both partners quickly agreed on not addressing
the Knowledge Want at all: While A2 performs some code changes, A1 notices a reference to
the test code in the production code and develops an internal Knowledge Want. He starts a
Catalyzed Pull Episode by asking his partner about it (“TclCode?”). A2 immediately under-
stands the Topic, and could possibly even transfer the Target Content, but performs Scope
Limiting instead which A1 accepts: “<grinning> You don’t wanna know”—“Ok <snorts> (. . .) it’s
all fine then” .

Similarly, the pair in session JA1 agrees to not start a Sub-Episode while going through
the source code together:

Example 10.6: Negotiating the Scope (JA1, 13:15–13:43)
J1 is still getting an overview of the long method, so he gladly accepts the option to not go into
too much detail.

J2: “And it sets the remoteNewsFile, which comes out of the function getLastFile().
That’s one function we may replace later on. [. . .] Shall we look into the function, or not?”

J1: “No, not now, please.” Scope Limiting

J2: “Not now, ok.” Scope Limiting

The remaining session is about the control flow inside a single class, in which that function has
no role. The pair never considers it again.

310

10.3.2 Scope Limiting

While J1/J2 were fine with postponing some Knowledge Want to a vague point in the future,
the pair C3/C4 employed Scope Limiting throughout the session, which was one of the reasons
why they stayed ‘focused’ during their Focus Phases in session CA5:

Example 10.7: Limiting Scope for Focus (CA5, 19:12–20:11, 47:11–47:22, 1:21:57–1:22:20)
The first instance of Scope Limiting in Focus Phase #1 is when the pair decides to not think about
parameter validation now (see Example 6.15 for the complete Focus Phase with the same line
numbers and technical context):

(6) C3: “<*cursor along line 32*> Probably, this again turns out to be (.) it depends (!...!)
(#validator#)”

(7) C4: “Could be we need it, and then we can get it back anyway.” Scope Limiting

(8) C3: “Yes, would get rid of it. <*deletes lines 32–37*>”

The second instance is when they ponder which GeometryType to use and decide to leave a TODO
comment to deal with it later.
(24) C3: “That remains to be decided whether we (!...!)”

(25) C3: “Well, we can simply use POLYGON for now.” Scope Limiting

(26) C4: “Let’s start with POLYGON.” Scope Limiting

⋮

(30) C4: “Maybe leave TODO_NOW here [. . .]”

Overall in their session, the pair writes nine TODO comments (the first at 05:46, the last at 1:10:16).
Three of these are beyond the scope of their current task, but the pair completes the other six
TODOs within their session (two immediately after writing the comment, and the others after
3, 14, 16, and 44 minutes, respectively). Conceptually speaking, these TODO comments are the
manifestations of postponed Topics, which developers understood but did not want to address
right away.

Discussion
This behavior is exceptional. No other pair in my data wrote nearly as many TODO comments,
and no other pair picked up their postponed Topics with such consistency. The pair itself also
reflects on their usage of TODO comments. Before writing the fifth TODO comment, C3 explains
his motivation:

C3: “Would you mind adding a TODO_NOW? ‘Release lock here?’ Simply because (‼...‼)”

C4: “Not at all <*starts writing the todo comment*>”

C3: “Then the information is off of my mind.”

In the last minutes of the session, the two reflect on their behavior and understand that their
TODO comments were a symptom of them working as a pair and having to reconcile different
development approaches:

C4: “You leave a lot of TODO_NOWs. I like to round off things, be safe, and go the next point.”

C3: “M-hm. That’s interesting, because, had I worked alone on this, I would have completed
things more often before moving on.”

The pair experienced the difficulty ofMaintaining one shared plan and they discovered writing
(and revisiting) such TODO comments in particular and Scope Limiting in general as an effective
way to Maintain Togetherness.

311

CHAPTER 10. PATTERNS OF EPISODES

In other cases, the Sub- or Catalyzed Episode may have already begun, and the pair decides to
cut it short, as in session BB1, where a technical decision made a Topic obsolete:

Example 10.8: Limit Scope of Partner’s Pioneering (BB1, 16:47–19:06)
As a starting point, the pair already copy-pasted about 45 lines of existing HTML template code to
the location of the new feature. They are now in the process of determining which copied parts to
delete and which to keep (eventually, just two lines of code), for which they need to understand
the correspondence of HTML tags to visible GUI elements:

B2: “Whatcha thinking?”

B1: “What ends up where. <*hovers template code*> (#slimcolbox#)”

B2: “H2 is this nice red hue <*looks at printout*>”

B1: “OK, then this is the second heading <*looks at printout, too*> [. . .]”

The pair continues their Co-Production Episode for 1:20 minutes. Rather than just deleting the
unnecessary code, B1 started to comment it out. He already opened a multi-line comment (<!--)
in the third line of the pasted code and he takes some time in a Pioneering Episode, scrolling,
reading, and reformatting the (commented out) code to find the right place to close the comment
(-->):
B1: “Where does it close that div tag?”

B2: “Here! <*points to the last line of the copied code, which has two closing
</div> tags*>”

B1: <*slowly moves cursor between two closing </div> tags, opens another
comment with “<!--” [. . .]*>

B1: “It only clears the inner one, right? [. . .]”

B2 proposes to not ponder the inner structure of the obsolete code, but to disregard it altogether,
which is Scope Limiting by cutting B1’s Pioneering short:
B2: “Just kick the whole block.”

B1: <*undoes changes, then comments out the whole block*>

Co-Production

Sub-Episode
Pioneer

Scope Limiting

Scope Limiting

After validating the visual appearance in the frontend, B1 then deletes the commented out block
about a minute later.

In all of the above cases, the pair members appreciated the Knowledge Want, understood the
Topic, and agreed on whether or not to Limit their Scope. The next example, however, shows a
failed attempt by J1 to stop his partner J2 from pursuing a Topic that seems to be catalyzed
and thus unnecessary from the perspective of J1.

Example 10.9: Trying to Limit Scope of Partner’s Push (JA1, 58:23–59:32)
J2 wants to explain a peculiarities the current design of the system which loads audio files from
multiple remote systems and then processes them. The Topic could be phrased as ‘Why does the
data processing method have an additional boolean argument?’ and the complicated Target Content
could be phrased like this:

Usually, downloaded files are deleted after processing. However, two particular radio
stations are flaky: They may not have the requested data when they are queried. Then, a
fallback system will automatically provide a default news segment. Separate queries to
the two flaky systems may thus return the same files in case they come from the fallback.
Downloading files over the legacy network connection is slow. The solution: Files coming
from the fallback system are cached to avoid downloading the same files multiple times
(boolean argument false); files coming directly from the flaky systems should be deleted
(boolean argument true).

J2 originally explained this Target Content as follows:

312

10.3.2 Scope Limiting

J2: “Where should I start explaining this? It’s more complicated than you’d think.”

J1: “Doubtless.”

J2: “Because if <**wave Alpha**> or <**wave Beta**> don’t have their own news, if they
failed somehow, then they use these <**fallback**> news. And depending on whether
it’s their own, if that construct back here is true <*selects boolean expression*>, then
it is their own files, then it should delete them. If it’s <**fallback**> news, it should of
course not delete them, because there may be others who need them, too. You see? But
that could all be done a bit different later (‼...‼)”

J1: “<*shakes his head*> Different kettle of fish. A different kettle of fish!a That is (‼...‼)”
Scope Limiting (not successful)

J2: “Yes, there is another kind of fish! I did that only because the downloads took so long of
those stupid news files. So I thought it need not take even longer so I’d use the same for
them all. Of course, if it runs on a local file system that’s a whole lot faster and then it
doesn’t hurt to download twice.”

At this point in the session, the pair already spent almost an hour reviewing the convoluted source
code. Both developers seem tired: J2 had to pause multiple times to organize his thoughts, and J1
burried his face in his palms and rubbed the back of his nose. J1 probably felt J2was about to follow
one Catalyzed Episode after the other, explaining things that are not relevant to their session. He
interrupted J2, trying to Limit the Scope. However, he could not know the actual extent of the
Target Content so J2 ignored the Scope Limiting attempt.

aThe original German idiom is literally “a different constrution site”, which can refer to both an area were
something is built and an area of interest or responsibility. A loose translation here would be ‘Not today’.

Example 10.9 (continued)

Concept Description/Characterization

Sub-Episode An Episode that is started to address a new Knowledge Want in order to satisfy
an existing one.

Catalyzed Episode An Episode that is started to address a new Knowledge Want which the de-
veloper developed because something caught her attention during a currently
running Episode, but which does not need to be addressed in order to satisfy
the current Knowledge Want.

Branching Wildly Anti-Pattern: Starting new Episodes, mostly catalyzed ones, without finishing
relevant open Topics first.

Return Explicitly Positive Pattern: Finishing a Sub-Episode by handing back the control to the
developer who propelled the original Episode.

Scope Limiting Positive Pattern: Not starting a Sub- or Catalyzed Episode by disregarding its
Topic temporarily or permanently.

Table 10.1: Elements and types of Episode Patterns

313

CHAPTER 10. PATTERNS OF EPISODES

10.4 Summary and Discussion

Over the course of a session, pair programmers will perceive many internal and external
Knowledge Wants, some of which are closely related to the Knowledge Want that is currently
being addressed in some Episode, others are merely catalyzed by something the partner said
or did. This mechanism appears to generally exist in pair programming, and how it unfolds
depends on the particular situation and the pair members.

Branching Wildly, that is, to start Sub-Episodes or Catalyzed Episodes whenever a new
Knowledge Want is perceived, comes with the risk of losing sight of not-yet-finished Topics,
which in turn stresses the pair’s Togetherness because Maintaining one shared plan gets more
difficult. This behavioral anti-pattern appears to emerge in a session when the pair does not
employ countermeasures, such as (a) to Return Explicitly, i.e., making sure to get back to the
‘main’ Topic, and (b) Scope Limiting, i.e., not starting subordinate Episodes by deferring Topics
or by cutting irrelevant ones short. Circumstance of letting one’s guard down appear to be:

• Having no or only little pair programming experience.
Consider the pair D3/D4 in Example 10.2: D4 had never pair-programmed before, so
he could not have any first-hand experience of the dynamics of two people pursuing
Catalyzed Episodes in a programming situation. His partner D3 also only started pair-
programming three months earlier.
The pair C3/C4 (Example 10.7), in contrast, appears to have considerable PP experience,
both individually and together (see, e.g., their pro-active approach to dealing with conflict
in Example 6.26). Before and during their Focus Phases, they did Scope Limiting.

• Dealing with the unknown.
In the pair D3/D4 (Example 10.2), one pair member, D4, knew nothing about the software
system, so he could not assess which of his observations were relevant and therefore
bombarded his partner D3 with questions. Additionally, D3 tied himself in knots when
he tried to swap in the old module version which produced unnexpected failures. This
placed a double burden on him: Satisfying his own and D4’s Knowledge Wants.
The pair J1/J2 (Example 10.3), in contrast, experiencedmore smooth sailing as they basically
reviewed one class authored by J2 from top to bottom.

• Being at the beginning of a session.
Both pairs D3/D4 (Example 10.2) and C2/C5 (Example 10.4) encountered some Branching
early in their sessions when one pair member explained his recent codes to the other, but
had considerably more ‘linear’ progression later on.

I cannot say much more about the effect of PP experience becauseD3/D4were the only notably
unexperienced pair in my data. The other two aspects I discuss in the next (and final) results
chapter, where I analyze the session dynamics and overall progression that result from the
pair members’ Knowledge Needs, i.e., which task-relevant knowledge they do not yet possess.

314

Chapter 11 Session Dynamics

11.1 Purpose and Structure of this Chapter . 315
11.2 Individual Developers’ Knowledge Needs . 316
11.2.1 S Need – Need for System-Specific Knowledge . 317
11.2.2 G Need – Need for Generic Software Development Knowledge 318
11.2.3 Knowledge Needs in Practice . 318

11.3 Pair Constellations . 319
11.3.1 Session Context and Goal: Initial and Target Constellation 319
11.3.2 Constellation Changes . 320
11.3.3 Session Visualizations . 321

11.4 Session Dynamics Prototypes . 321
11.4.1 No Knowledge Gaps, No Opportunity . 322
11.4.2 Dealing with the Primary Gap . 322

Proactive Explanations • Interview Mode • Pioneering
11.4.3 Dealing with the Secondary Gap . 326
11.4.4 The G Opportunity . 327

Seizing or Not Seizing the G Opportunity • Complementary Pairs • When do Pair
Programmers Seize their G Opportunity?

11.4.5 Two-Sided G Gaps?. 331
11.5 Summary and Discussion of Related Work . 333
11.5.1 Related Work Discussion . 333

11.6 Grounded Theory of Knowledge Transfer Session Dynamics 335

11.1 Purpose and Structure of this Chapter

In my analysis so far, I considered local process phenomena of developers working together as
a pair (Chapter 6) and how they deal with perceived knowledge gaps on an activity and an
episode level (Chapters 8 to 10), as well as the nature of transferred knowledge (Chapter 7).
Now it is time to integrate the pieces to a theory of knowledge transfer in pair programming.
In particular, this entails considering the roles of the two developers and the task they are
working on. (Further research may consider larger contexts, such as the development team,
see my scope discussion in Section 4.2.3.)

A common model in PP literature is that of ‘expert’ and ‘novice’ developers. It is, however,
not clearwhatmakes a developer an ‘expert’ (see Section 2.2.3a). Furthermore, such a dichotomy
appears suspiciously simplistic to begin with (see Section 2.3.5d). In Section 11.2, I discuss that
the developers’ individual knowledge levels with respect to their task are the relevant context
conditions for what happens in a pair programming session. In particular, each pair member
has session-specific S Need and G Need which characterize how much she does not know
with respect to the current task about the system and about software development in general.

315

CHAPTER 11. SESSION DYNAMICS

Typically, though not always, both pair members want to meet the S Need by understanding
all task-relevant parts and aspects of their system. Through addressing and narrowing individ-
ual and collective knowledge gaps, the pair starts a trajectory from its Initial Constellation
towards its Target Constellation. I explain these concepts in Section 11.3.

Considering the trajectories across all sessions then reveals three prototypical dynamics:
If one partner has a larger S Need than the other, pairs start their session by addressing that
difference, which I call the Primary Gap. After the Primary Gap has been closed, pairs address
their Secondary Gap by acquiring system understanding which they both lack. These activities
are limited by the pair’s momentary awareness of these gaps and the Target Constellation acts
as a moderator: In case not both developers want to meet their S Need, parts of the Primary
and Secondary Gap may remain unfilled. Finally, some pairs seize a G Opportunity when one
pair member has more task-relevant general software development knowledge and transfers it
to her partner.

In Section 11.4, I summarize the multiple concrete forms for each of these phases (the
pieces of which were presented in the previous chapters), which together form the overall
dynamic shared by almost all analyzed sessions: First Primary Gap, then Secondary Gap, then
G Opportunity. Different orders appear to be the exception, e.g., if, both partners have large S
and G Needs, the pair may become overwhelmed by difficulty. The pair process then breaks
down and no or nearly no progress happens.

I discuss the dynamics of the recurring example session JA1 in Example 11.9. For now, I
give a brief overview of the pair’s Initial and Target Constellation:

Example 11.1: Recurring Example: Foreshadowing the Session Dynamics (JA1)
In the first minutes of session JA1, the pair members allude their respective Knowledge Needs,
which indicates that they are aware of their Initial Constellation. In particular, J1 has a (large)
S Need: He does not know the software that his colleague wants to refactor and redesign. J2 also
has an S Need since he has not looked at the source code in a while. In the first minutes of their
session, though, J2’s S Need does not yet show. More relevant is his G Need: Although J2 knows
the software design is flawed, he lacks the relevant G knowledge to take systematic action against
it. This is where J1 comes in, who is a more experienced Java developer and architect. The reason
why the two work together is to apply J1’s G knowledge to J2’s software.

Their Initial Constellation can thus be summarized as follows: The pair has a Primary Gap
between them (J2 knows more about the system), a Secondary Gap ahead of them (neither of
them knows enough about the system yet), and G Opportunity waiting to be seized (J1 has more
task-relevant general software development knowledge). Their Target Constellation allows to not
fully close the Primary Gap, i.e., J1 does not need to fully meet his S Need because he will not
work on the software without J2. J2’s G Need, however, should be addressed: By the end of the
session, he should possess a little more G knowledge.

11.2 Individual Developers’ Knowledge Needs

I do not characterize software developers as such by labeling them as ‘experts’ or ‘nocives’,
but consider their role as pair members in a PP session. For such a session, they bring some
body of existing knowledge to the table, which may or may not be enough to meet the specific
knowledge demands of their task ahead. I already described how I reconstruct both technical
information and the developers’ understanding of it from their interaction in Section 4.5.2c.
I do not address what a developer knows about arbitrary topics, but only those aspects that
the pair touches during their session. In industrial PP sessions, the “task” is usually not well-
defined (unlike in controlled settings) and may be modified (explicitly or implicitly) as the

316

11.2.1 S Need – Need for System-Specific Knowledge

session proceeds. Depending on the pair’s design decisions, different areas of knowledge may
become more or less relevant. Their decisions, in turn, depend on what the developers know
and do not know. What is relevant in a PP session is not some overall knowledge level, but
the Knowledge Needs, the overall knowledge gaps of the pair members in the particular
situation they happen or chose to be in.

There are two types of knowledge relevant across PP sessions (Section 7.3.1): specific
S knowledge that pertains to the software system and generic G knowledge about software
development in general. Along these lines, I separate two knowledge dimensions for charac-
terizing a pair member in the context of a specific session: Her S Need and her G Need. In
principle, these two could be split up further to allow a more detailed characterization of a
pair with, say, a frontend and a backend expert (such as the pair A1/A2 in session AA1). For
comparing different contexts, however, I generalize such differences to the two dimensions
that are relevant in all sessions.

There is an important difference between a Knowledge Need and a Knowledge Want
(introduced in Section 7.2). A developer perceives a Knowledge Want and wants to satisfy it,
e.g., by understanding something or providing an explanation (internal and external Knowledge
Want, as in ‘I want to understand it’ and ‘I want you to understand it’). Developers are not
necessarily aware of their Knowledge Needs: If they are, they may choose to address and
eventually meet them. Knowledge Wants are local, Knowledge Needs possibly exist for whole
sessions.

I discriminate three degrees of Knowledge Need: low, mid, and high. I use these degrees to
conceptualize different pair constellations in Section 11.3. The degrees are fuzzy concepts used
for illustrative purposes, but they are not to be mistaken for some quantity. Next, I provide for
each degree an operationalization and brief examples from my data.

11.2.1 S Need – Need for System-Specific Knowledge

S knowledge is about the software system at hand: its requirements, architecture, design,
design rationale, code base (including tests, scripts, etc.), known defects, etc.—see Section 7.3.1a
for concrete pieces of S knowledge. The S Need is a pair member’s task-specific need for such
knowledge. I characterize three degrees of S Need as follows:

Low S Need The developer provides Explanations about the current state to her partner,
she alludes to things not yet seen in the session, and she evaluates findings, explanations,
and hypotheses proposed by her partner. She does not ask questions about S knowledge
and is rarely puzzled by new discoveries.
Examples: In several sessions, one developer already worked on the task prior to the
session and had time to build a current mental model of the system, e.g., C1 in CA1, C5
in CA2, or J2 in JA2.

Mid S Need The developer has some knowledge about the system in general, but not
enough about the particular area relevant for the task. For instance, she may be not
up-to-date with recent changes in that area. The developer may acknowledge her lack
of knowledge, propose to ‘look into things’, or ask concrete questions. Alternatively, if
she is not aware of her S Need, she might make proposals that are misled and which her
partner rejects.
Examples: On the one hand, there are the partners who joined their colleagues and are
not aware of the recent changes (e.g., C2 in CA1 and CA2 or J1 in JA2). On the other hand,
sometimes both partners developers navigate through parts of the system they have not
seen in a while or only know vaguely (e.g., A1/A2 in AA1 or B1/B2 in BA1).

317

CHAPTER 11. SESSION DYNAMICS

High S Need The developer knows little to nothing about the system’s relevant parts and
aspects. She acknowledges her lack of S knowledge and asks her partner about the system.
She does not refer to system parts or properties until the pair has looked at them. When
her partner poses ideas or proposes hypotheses, her reactions are non-evaluative.
Examples: J1 has never seen the module his partner wants to talk about in JA1. O3/O4 are
supposed to write a test for a piece of unknown functionality in sessions OA1 and OA2.

The degree of S Need depends on prior involvement with the relevant parts of the system (e.g.,
authorship), on forgetting details, and on many specifics of the current task.

11.2.2 G Need – Need for Generic Software Development Knowledge

G knowledge is generic, system-independent knowledge such as programming languages,
frameworks and technology stacks, design principles, testing and debugging methods, methods
for program understanding, tool usage, etc.—see Section 7.3.1b for concrete examples for all
these types. TheGNeed is a pairmember’s task-specific need for such knowledge. I distinguish
three degrees of G Need:
Low G Need The developer is able to provide Explanations on themeaning of programming
language idioms or how to use certain libraries or tools, if need be. She does not ask
questions in this regard.
Examples: Developer D4 explains design patterns and technology details in session DA2.
J1 explains coding best practices in JA1 and JA2.

Mid G Need The developer asks informed questions about the used technology or the
development approach, and occasionally reads in the documentation.
Examples: Both developers K2 and K3 do not know how to use a library for an (important)
detail of their integration test in KC2, but otherwise make progress.

High G Need The developer would not succeed in systematically solving the task without
extensive access to other material (handbooks, documentation) or colleagues. The devel-
oper asks fundamental questions concerning programming language, standard libraries,
or basic tools, and/or uses documentation extensively. She might also express uncertainty
and verbalize a lack of ideas on how to proceed.
Examples: BothO3 andO4 know very little about the technological basis of the component
they are supposed to test in sessions OA1 and OA2 (and make almost no progress).

11.2.3 Knowledge Needs in Practice

By these terms, ‘experts’ and ‘novices’ would be developers with low and high G Needs,
respectively, for the majority of tasks in their job. For different tasks, however, the same
developer will often have different degrees of S Need (and, in fact, G Need as well).

In practice, G and S Needs are not independent. While for an individual developer and a
given task, having a low G Need with a high S Need is plausible, the combination of perfect
system understanding (low S Need) and no applicable general development knowledge (high
G Need) is unlikely: Understanding a system without having a grasp of the used technology
is difficult. Furthermore, the knowledge types overlap: In session DA2 (e.g., Example 7.14 on
page 249), understanding the instances where a design pattern is implemented in a software
system (S knowledge) is not completely detached from understanding the design pattern as
an abstract concept (G knowledge). Or refer to session OA8, where O4 learned that perform-
ing calculations on the value undefined yields NaN or not-a-number (see Example 6.16, on
page 210, lines 34–42): It is not entirely clear whether he understood it on the conceptual level
(G knowledge) or just in the concrete instance (S knowledge).

318

11.3. Pair Constellations

11.3 Pair Constellations

With respect to a specific development task, each developer has degrees of S and G Need,
which possibly change over the course of a session. A PP situation can thus be characterized by
each developer’s momentary S andG Needswhich together describe their current constellation.
A pair has a One-Sided Gap if one developer has a higher Knowledge Need than the other.
Such a gap lowers the pair’s Togetherness with respect to a shared understanding of the system
or software development in general (see Section 6.4). A Two-Sided Gap, then, exists if both
developers share a lack of S or G knowledge. The relevance of either type of gap depends on
the session context and goal. I discuss the role of a pair’s Initial and Target Constellation in
Section 11.3.1 and I characterize how a pair’s constellation changes and how I visualize these
changes in Sections 11.3.2 and 11.3.3.

11.3.1 Session Context and Goal: Initial and Target Constellation

For systematically solving a task, the pair needs to address its overall S Need and attain a
complete understanding of the system’s task-relevant aspects. Depending on the goal of the
particular session, the pair has one or more options to break this down to the individual level:

• Meeting the S Need for both developers is desirable, e.g., for working on similar tasks
alone or with a different partner in the future. This is the case for almost all pairs.

• Other pairs are content with only one developer meeting her S Need, leaving a One-
Sided Gap between the partners. Session JA1 is an example: Developer J1 did not need to
understand all of the system, but just enough to provide ideas for how J2’s code may be
improved.

• Theoretically speaking, it could even be enough for the pair to maintain a transactive
memory system (see page 98) where each partner relies on the other to remember certain
things, so both partners can remain partially ignorant while still having all relevant
S knowledge available together. Session AA1 with front-end expert A1 and backend-end
expert A2 could have been such a case, but the developers made sure to synchronize all
relevant knowledge both ways.

In contrast to S Needs, not all G Needs have to be addressed in a session. However, more
complete G knowledge facilitates important steps such as addressing an S Need, designing a
good solution, implementing and debugging that solution smoothly. Meeting a G Need may
be part of the session goal, e.g., for training purposes. Again, session JA1 is an example: J1 was
brought in on the task because of his general software development expertise to help refactor
and redesign J2’s code and improve J2’s G knowledge in this regard.

Note that the above characterization is based on the analyzed PP sessions and their respec-
tive tasks (see Table 4.3). Other types of industrial PP sessions are conceivable. One developer at
company R (where I did not record any PP sessions, see page 160) told me, that she had recently
paired up to try out some new technology without any existing system and by producing
throw-away source code only: Here, the S dimension supposedly has little weight and the
session is all about acquiring G knowledge together.

Either way, pair programmers begin a session with an Initial Constellation of each
partner having some S and G Need, plus a more or less clear idea of what they want to achieve
with their session. I identified six recurring Initial Constellations in my data (see Figure 11.1);
others are conceivable, but I have not seen them. The ‘task’ might be for example fixing a
problem (for which S Needs have to be met) or educating the partner (addressing an S and/orG
Need in some respect). The intended outcome of a session in terms of S and G Needs to-be-met
denote the Target Constellation.

319

CHAPTER 11. SESSION DYNAMICS

S Need

G Needhigh

hi
gh

mid

m
id

low

lo
w

No Relevant Gaps
One-Sided G Gap

Complementary Gaps
One-Sided S Gap

Two-Sided S Gap

Too-Big Two-Fold Gap

BB1
BB2
BB3KC2

PA3
PA4

CA1DA2
KB1

JA1

JA2

EA
1

C
A
2

C
A
4

M
A
1

PA
1

K
C
1

AA1
BA1
CA5

CA3
OA5
PA2

KA1
OA8

OA1

OA2

Figure 11.1: Six recurring Initial Constellations in terms of the pair members’ Knowledge
Needs regarding S and G knowledge. Each pair of points represents one analyzed session
with its two pair members (see Table 4.3 for short characterizations of all 27 sessions).

11.3.2 Constellation Changes

Overall, knowledge gaps tend to shrink during a session. Pair members may become aware
of a lack of knowledge and possibly develop new Knowledge Wants along the way, but their
Knowledge Needs are not affected by such insights alone. In principle, pairs can take two
approaches to deal with Knowledge Needs they are aware of:

The first approach is to limit the scope of the current task, thereby making some of their
Knowledge Need obsolete. The pairs’ initial discussion of their session scope if often not
recorded. Before some session recordings, the developers filled out a pre-session questionnaire
stating the purpose of the session (see Table 4.2). The process of filling out that questionnaire
was (accidentally) recorded for sessions CA2 and EA1 (see Section 4.3.4c), but only in EA1,
some discussion occurred during that time. In effect, I generally do not know how the pairs
agreed on their scope or whether they were aware of their Initial Constellation.

Developers sometimes decide during their session that some subtask is not mandatory and
stop pursuing it (e.g., early in session BB1, see Example 10.8), or they may shift their focus
mid-session, effectively changing what knowledge is relevant (e.g., in DA2 which should have
been a feature implementation but pivoted to a large refactoring, see Example 6.22).

The second approach to deal with Knowledge Needs is to transfer existing or acquire
new knowledge. This behavior sets the pair on a trajectory from their Initial Constellation
towards their Target Constellation, the general dynamics of which I describe in Section 11.4
right after I introduced some notation in the next section.

320

11.3.3 Session Visualizations

11.3.3 Session Visualizations

I provide schematic representations of a pair’s constellation and its trajectory to make the
complexity of a whole PP session more digestible. Figure 11.2 serves as a demonstration. Each
developer is represented by a point on a two-dimensional coordinate system, with the G Need
decreasing from left to right and the S Need from bottom to top.

The pair’s points are drawn at their Initial Constellation. The reduction of Knowledge
Needs is indicated by arrows: upward for gaining S knowledge, to the right for G knowledge.
Multiple arrows starting at the same height indicate multiple attempts to transfer or acquire
knowledge. The trajectories do not depict technical progress or time; arrow length does not
mean anything except the qualitative reduction of a Knowledge Need. Arrow color indicates
theMode of knowledge transfer (see Sections 9.3 to 9.6 for details).

S
N
ee
d low

G Need

lowhigh

A

B

Prim
ary

G
ap

Secondary
G
ap

G Opportunity

Arrow types:

Pull (solid line, blue)

Push (dashed line, red)

Pioneering (dotted line, green)

Co-Production (double line, black)

Figure 11.2: Demonstration of a session trajectory visualization. In this (fictous) session,
developer A first asks her partner about S knowledge (); then developer B investigates
the source code alone () and explains her findings to developer A (). Afterwards, they
investigate the source code together () and eventually, developer A explains something
about software development in general ().

Numbers in the trajectories to follow correspond to numbers in the main text. For readability,
a single arrow might represent multiple Episodes pertaining to similar Topics. The arrows
originate at the developer whose understanding improves: A Pull- means that the developer
asks about something, a Push- means that her partner explains something.

11.4 Session Dynamics Prototypes

Each of the six Initial Constellations has a different combination of the pair members’ S and
G Needs which leads to a characteristic session dynamic. Together, these form a set of three
session dynamics prototypes that characterize all analyzed PP sessions:
1. If one partner possesses more task-relevant S knowledge about the system and its parts

(e.g., because she already worked on the task), the pair address this One-Sided S Gap first.
I call such a difference the Primary Gap, which is shown in the corresponding session
diagram as the height difference of the pair members (see Figure 11.2).

321

CHAPTER 11. SESSION DYNAMICS

2. Pairs then proceed to acquire lacking S knowledge together to close the remaining Two-
Sided S Gap. This is what I call the Secondary Gap. It is visualized as the shared distance
of both partners to the top of the diagram.

3. Eventually, pairs with a One-Sided G Gap may also transfer G knowledge about software
development in general which goes beyond their particular system. Such pairs seize their
G Opportunity, which is visible as their horizontal distance in the diagram.

If both partners need to acquire G knowledge in order to work on their task, they have a
Two-Sided G Gap. This is rare in my data, probably because software developers intuitively
avoid partners and tasks that would lead to such a pair constellation. I have not seen enough
instances to derive a session dynamics prototype and to analyze its relation to the three
described above. It appears, however, that a small Two-Sided G Gap can be dealt with by
acquiring the necessary G knowledge while the Secondary Gap is still open whereas a large
Two-Sided G Gap in conjunction with a large Two-Sided S Gap poses a difficult situation for
the pair.

I will now characterize how pair programmers deal with each of these situations.

11.4.1 No Knowledge Gaps, No Opportunity

In many PP sessions, there is a point at which both partners have all necessary understanding
to work productively on the task. This is the No Relevant Gaps constellation (see top right
corner in Figure 11.1). As an Initial Constellation, I have only seen it with one pair who started
the development of a completely new feature:

Example 11.2: Greenfield Development (BB1, BB2, BB3)
Developers B1 and B2 work on a new feature from scratch over the course of one afternoon in
three sessions (BB1 to BB3) with short pauses in between. Both are proficient in the involved
technologies (low G Need). They need to interact with existing code only through few and well-
understood interfaces and the newly developed code stays small enough to be fully understood by
both developers at all times (low S Need).

Apart from a short orientation phase in the beginning, when they decide on where to visually
place the feature in the GUI (see also Example 10.8, where the pair effectively did Scope Limiting),
they are in construction-only mode throughout the sessions, i.e., defining requirements, discussing
design proposals, and writing code—with zero debugging.

Although the pair’s Initial Constellation had neither Primary nor Secondary Gap (which is
unique in my data), they still both acquired S knowledge about their new code along the way.
There were, however, no explicit knowledge transfer activities: The pair discussed and agreed how
to implement the feature, performed the necessary code additions and changes, and did not need
to come back to look things up or to reconcile different mental models. In effect, they had high
Togetherness without the need to Maintain it explicitly.

11.4.2 Dealing with the Primary Gap

In some pair programming sessions, one developer possesses more relevant S knowledge, e.g.,
because she already worked on the task. Two constellations have this property: One-Sided S
Gap and Complementary Gaps, each of which happened to be the Initial Constellation of five
analyzed sessions (see Figure 11.1).

Whenever a Primary Gap—one developer having a larger S Need than the other—exists, the
pair addresses it first. If a pair member is not aware of her larger S Need, she might makemisled
proposals which need to be identified as such. This can take some time and be frustrating for
the developers (as session CA2, see Example 11.5 below).

322

11.4.2 Dealing with the Primary Gap

Concept Description

Knowledge Need Extent of individual developer’s knowledge gap resulting from her
existing knowledge and the specific demands of the task. May pertain
to either knowledge type and are then called S and G Need (see
Sections 11.2.1 and 11.2.2).

One-Sided/Two-Sided Gap Characterization of a pair: Either only one pair member or both part-
ners have a Knowledge Need in some regard.

Initial/Target Constellation Characterization of a PP session: Constellation of the developers each
with her respective S andGNeedswhich they assume at the beginning
of their session and which they want to achieve with their session.
Six recurring constellations (see Section 11.3.1 and Figure 11.1):

– No Relevant Gaps Neither partner has an S or G Need; rarely an Initial Constellation,
often the Target Constellation.

– One-Sided S Gap One has a larger S Need than the other; e.g. when joining a partner
who already started, sometimes also Target Constellation.

– Two-Sided S Gap Both lack system understanding; Initial Constellation e.g. for debug-
ging tasks, not a Target Constellation, but a common intermediate
constellation.

– One-Sided G Gap One has a larger G Need than the other; opportunity to transfer
G knowledge in absence of S Need.

– Complementary Gaps One has a larger S Need, the other a larger G Need; satisfactory
session possible due to mutual learning.

– Too-Big Two-Fold Gap Both have high S andGNeeds; difficult and undesirable constellation.

Overall Session Dynamics: Three prototypes of part-of-session dynamics describing pairs’ tra-
jectories from all Initial Constellations:

1. Close the Primary Gap Narrow a One-Sided S Gap between the developers: either through
pro-active explanations, an interview mode, or through solitary read-
ing of the less knowledgeable partner (Section 11.4.2).

2. Close the Secondary Gap Narrow a Two-Sided S Gap of both developers by building up under-
standing together and staying in sync (Section 11.4.3).

3. Seize the G Opportunity Narrow a One-Sided G Gap between the developers after any S Need
has been addressed sufficiently (Section 11.4.4).

Table 11.1: Concepts to characterize programming pairs and their session dynamics

323

CHAPTER 11. SESSION DYNAMICS

There are three general strategies how pairs go about closing their Primary Gap: Proactive
Explanation, which is a long-running Push Episode into which the partner hooks with
Sub-Episodes for details (Section 11.4.2a); Interview Mode, which is a long-running Pull

Episode (Section 11.4.2b); or Pioneering which the developer with the larger S Need starts
(Section 11.4.2c).

S

GSession EA1

E1

E2 (1)

(2)

(a) Proactive Explanations (Push
with Sub-Pulls, here: phase (1),
details in Example 11.3)

S

GSessionMA1

M1

M2

(b) Interview Mode (Pull with
Sub-Pushes, details on this session
in Example 11.4)

S

GSession CA2

C2

C5

(1)
(2)

(3)

(c) Pioneering (here: phase (2), after
failed proactive explanations,
details in Example 11.5)

Arrow types: Pull (solid line, blue) Push (dashed line, red)

Pioneering (dotted line, green) Co-Production (double line, black)

Figure 11.3: Three different strategies of dealing with a Primary Gap

11.4.2 a) Proactive Explanations

Often, when a developer has a relevant S Need, she is aware of it and the pair can address it
right away in the beginning of their session. A recurring pattern here is a long-running Push
Episode of the developer who already worked on the task, into which the partner can hook
with detailed questions (Sub-Episodes). In sessions CA4, EA1, JA1, and PA1, such Proactive
Explanations were enough to close the pair’s Primary Gap.

While the Sub-Episodes are helpful to close the Primary Gap, they may also result in the
Pushing partner losing sight of the main Topic and the pair starting to Branch Wildly (see

Section 10.2.1). A countermeasure is to Return Explicitly when a Sub-Episode is finished
(see Section 10.3.1). Session EA1 is an example of this:

Example 11.3: Bringing Partner Into Ongoing Work (EA1)
The pair wants to fix a bug which E2 has already worked on. This means that his partner E1 has a
larger S Need, and the pair has both a Primary and a Secondary Gap. The two major phases of
their session are also depicted and numbered in Figure 11.3a:
(1) The developers first close their Primary Gap: E2 steps through the code with a debugger,

demonstrates the failure in the running application, and comments on the state of individual
variables (Push); his partner E1 asks questions regarding details (Pull Sub-Episodes,
which were discussed in Example 10.5).

(2) They continue debugging together, engaging in Co-Production of system understanding.

324

11.4.2 Dealing with the Primary Gap

11.4.2 b) Interview Mode

If proactive explanations are not enough to close the Primary Gap, e.g., because the more
knowledgeable developer does not provide suitable explanations, her partner may take the lead
with a more interview-style Pull-driven mode, as in session DA2 (whose trajectory I discuss
later in Example 11.10), where D4 asks his partner about the technological basis of the software
and its requirements. Many of these questions appear to be ad hoc, which contrasts sharply
with session MA1 where the Interview Mode appears to be the result of careful preparation:

Example 11.4: Prepared Interview Mode (MA1)
The whole session of 25 minutes followed mostly pre-structured Pull Episodes (see Figure 11.3b
for an overview of the session trajectory): M2 wants to understand the purpose of all tables in the
database (an S Need). Prior to the session, he prepared SQL SELECT queries for all of them and
put his questions in comments. In the session, he executes the queries, asks his partner M1 about
the results, and writes down the answers.

This particular style allows M1 to validate that the Target Content is correctly transferred to
M2 and to start a Push Episode if there is something important missing (see Example 7.4 for
details).

Similar to the strategy of proactive explanations, the partner’s Sub-Episodes can help closing
the Primary Gap. In the case of DA2, however, developer D4 asked many questions and some
of them resulted in Catalyzed Episodes: The pair did not contain these and started Branching
Wildly (see Section 10.2.1).

SessionMA1was the only onewhere the developers followed an explicit and pre-formulated
plan, but the interview mode does not rely on such planning to work. In session CA1, for
example, C2 also attempted to close his Primary Gap with ad hoc Pulling which was at least
partially successful. I discuss the trajectory of session CA1 later in Example 11.8.

11.4.2 c) Pioneering

If the interview mode is not enough to close the Primary Gap either, the partner with the
S Needmay switch to reading up the necessary information herself in Pioneering. In session
DA2, such a switch was necessary when developerD3 could not explain well because he lacked
relevant G knowledge to properly understand D4’s questions (see, e.g., Example 9.6 for how
D4 gives up asking questions).

Developer C2, however, appears to generally prefer to Pioneer for closing a Primary Gap,
even though his partner is willing and able to provide suitable information. He did this in both
sessions CA1 and CA2 where his respective partner had already worked on the task alone.

Example 11.5: Closing the Primary Gap Painfully (CA2)
C2 and C5 want to implement a new feature for just one edition of their software. C5 has already
started the implementation and is familiar with the system modularization (low S Need). C2 does
not know C5’s recent changes; additionally, some aspects of the system’s architecture have slipped
his mind (mid S Need). It takes the pair a frustrating 11 minutes and multiple attempts to close
their Primary Gap (see also Example 4.2). Their trajectory is depicted in Figure 11.3c:
(1) C5 tries to explain his recent changes and alludes to the underlying architecture thatmotivated

them. C2 does not engage in these Push Episodes: he does not listen to C5 at all and keeps
hushing him (see, e.g., Example 6.12).

(2) Instead, C2 starts reading the source code (Pioneering), which leaves him puzzled several
times, because he is not aware of the underlying rationale. C5 tries to follow C2’s mostly
silent reading process and intersperses architectural explanations (S Pushes). C2, however,

325

CHAPTER 11. SESSION DYNAMICS

appears to misinterpret these as a discussion of general design principles, G Pushes, and
ignores them. This continues until C2 eventually recognizes the underlying system structure
and finally understands C5’s changes from before the session (see Example 7.7).

(3) With their Primary Gap closed, the pair continues in a Two-Sided S Gap constellation and
works on their Secondary Gap mostly in Co-Production (see, e.g., Example 7.12).

Example 11.5 (continued)

Sub-Episodes can be helpful in all three strategies to close a Primary Gap, i.e., with proactive
explanations, interview mode, and pioneering: The partner briefly shifts the attention to some
detail in either Pull or Push Mode. While during proactive explanations and the interview
mode both partners are engaged, Pioneering does not inherently involve the partner. Being
a Talking Pioneer rather than a Silent Pioneer (see Section 9.4) offers more opportunities for
the partner to provide helpful information with Sub Pushes.

11.4.3 Dealing with the Secondary Gap

Pairs where both members have an S Need cannot simply exchange the necessary S knowledge
but have to acquire it. Such a Secondary Gap appears to be common: eight of the analyzed
sessions started with a Two-Sided S Gap constellation (see Figure 11.1), many others reached
this constellation after closing their Primary Gap.

Similar to closing the Primary Gap, there are different strategies how a pair may close its
Secondary Gap. The pair A1/A2 exemplifies all three of them in their session AA1:

S

GSession AA1

A1 A2

(1)
(2)

(1)
(3)

Arrow types:

Pull (solid line, blue)

Push (dashed line, red)

Pioneering (dotted line, green)

Co-Production (double line, black)

Figure 11.4: Three different ways of dealing with a Secondary Gap illustrated with the
trajectory of AA1: (1) Co-Production, (2) Pioneering with subsequent Push, and (3) Co-
Production with subsequent Push.

Example 11.6: Pairing-Up Throughout (AA1)
Developers A1 and A2 want to fix four similar bugs and need to work with two different sub-
systems, neither of which is fully understood by either partner. Since they both want to meet their
S Need, they keep their S knowledge in sync along the way. Their session illustrates three ways
how pairs can deal with their Secondary Gap (see Figure 11.4 for the numbers):
(1) Co-Production: Most of the time, A1 and A2 address their Secondary Gap collectively by

formulating hypotheses about the system, reading source code, trying out the application,
and integrating their insights (e.g., in Examples 7.5 and 9.20).

(2) + Pioneer plus Push: The developers disagree on the relevance of some Topics. A2
occasionally pursues a Pioneering Episode (see, e.g., in Example 6.25, A2: “Why does it
have its own [implementation]?”—A1: “No clue. And I don’t want to”—A2: “No, I want to”) and
afterwards explains what he learned (Push). A1 hardly opposes A2’s initiatives, as some of
them lead to task-relevant insights which the pair probably would have missed otherwise.

326

11.4.4 The G Opportunity

(3) + Co-Production plus Push: Sometimes one developer is faster at understanding some-
thing than the other during Co-Production. In such cases, the faster developer Pushes
explanations for his partner to catch up (e.g., in the beginning of Example 9.17).

The subsequent Pushes in phases (2) and (3) avoid the introduction of a One-Sided S Gap where
one pair member knows more about the task-relevant parts of the system than the other. These
Pushes are how the pair Maintains Togetherness throughout the session, which ultimately

enables their Focus Phases (1:53:20–2:00:55, shown in full in Appendix C.1.1).

Example 11.6 (continued)

For closing a Secondary Gap, Co-Production is common behavior in many sessions (e.g.,CA1,
CA2, and JA1). If one pair member understands faster, e.g., due to possessing moreG knowledge
(as in CA1, discussed below in Example 11.8) or more S knowledge in some code area (as in
AA1 above), a + Co-Production plus Push makes sure the partner does not fall behind. If
the developers have different goals or preferences, not all Topics need to be understood fully
by both and the more invested pair member may + Pioneer plus Push. Occasionally, this
also happened in other sessions, such as JA1 (discussed below in Example 11.9).

With the Secondary Gap closed, or at least contained by temporary Scope Limiting, a pair
may enter a Focus Phase—given their Togetherness is high enough, i.e., they also have one
shared plan, good workspace awareness, and no language barrier (see Chapter 6). The three
Focus Phases of pair A1/A2 in session AA1 happened in the end of their session when no
Secondary Gap was left (between 1:53:20 and 2:00:55, see Table 6.3). In session CA5, the Focus
Phases were much earlier (between 19:12 and 28:06, see Table 6.3), but by then, the pair C3/C4
was at a similar point in their trajectory with only a small Secondary Gap left.

11.4.4 The G Opportunity

A difference in G knowledge between the partners can be an opportunity to transfer general
software development knowledge. In my analyzed sessions, pairs only seized their G Opportu-
nity after any known Primary Gap and Secondary Gap were closed. Some pairs started from a
One-Sided G Gap (e.g., PA3 and PA4), others from Complementary Gaps (e.g., JA1 or DA2) or
a Two-Sided S Gap (e.g., OA5).

11.4.4 a) Seizing or Not Seizing the G Opportunity

S

GSession PA3

P3

P1

(1)

(2)

(a) Seizing G Opportunity (here:
phase (2), details in Example 11.7)

S

GSession CA1

C1

C2

(1)

(2) (2)

(b) Not-seizing the G Opportunity
(details in Example 11.8)

Arrow types:

Pull (solid line, blue)

Push (dashed line, red)

Pioneering (dotted line, green)

Co-Production (double line, black)

Figure 11.5: Trajectory of sessions with a G Opportunity

327

CHAPTER 11. SESSION DYNAMICS

Although session PA3 was at times frustrating for P3, the pair nevertheless seized their
G Opportunity:

Example 11.7: Initially Misunderstood Teaching (PA3, PA4)
In sessions PA3 and PA4, frontend developer P3 and backend developer P1 work in the backend of
their system. Both know the relevant parts of the system well (no Secondary Gap), but P3 already
started implementing a new API endpoint (small Primary Gap). Their knowledge trajectory has
two phases (see Figure 11.5a for the corresponding numbers):
(1) Since they are on P1’s technological home turf (no G Need for him), he understands P3’s

explanations quickly and the Primary Gap is soon closed.
(2) P1 explains the newest PHP language features and how to employ test-driven design whenever

he sees an opportunity (G Pushes).
In session PA3, P3 misinterprets these explanations as lead-in for unnecessary S Pushes and
gets confused (see also Example 9.23), but after talking to P1 about P1’s intentions in a break he
then acknowledges them as valuable lessons in session PA4.

The pair in session CA1, in contrast, had multiple occasions to become aware of C1’s G Need,
but did not seize the G Opportunity:

Example 11.8: G Opportunity Not Seized (CA1)
The pair wants to implement a new GUI feature that is similar to an existing feature. C1 already
worked on it for an hour when C2 joins him. This gives creates a Primary Gap between C1 and
C2, which needs to be addressed. C2 is more proficient with the object-oriented paradigm (more
G knowledge). They deal with their Primary and Secondary Gap (see corresponding numbers in
Figure 11.5b):
(1) To close the Primary Gap, C1 first tries to explain what he did to C2 (Push). This is not

effective and C2 starts to ask specific questions about existing classes (Pull), which C1
begins to answer (see also Example 9.13). ButC2 quickly gives up on this in favor of trying out
the new GUI elements and reading in the new code himself (Pioneering), which eventually
achieves the desired understanding (see also Examples 9.4 and 9.15).

(2) Later in the session, the pair is able to address their Secondary Gap in Co-Production
Episodes. In these cases, C2 is always the first to understand (presumably due to his better G
knowledge) and often explains his findings to C1 (Push).

This pair does not use their G Opportunity. During the session, there are multiple occasions where
C1’s G Need becomes apparent, such as in the exchange below in which only C2 is able to quickly
assess the implications of changing a class in an object-oriented design (18:46–19:54):

C1: “This Panel needs to implement that in-
terface, right?”

C1 makes a valid design proposal.

C2: “[. . .] Exactly, this one. <*opens Panel
class implementation*>”

C2 agrees with it and opens the class they want
to change.

C2: “God <*hovers class declaration*>” C2 sees that the class extends another one.
C1: “<*dictates*> ‘implements IEnableableCom-
ponentContainer’ ”

C1 is not aware of the super class; he thinks
that his partner is stuck and needs to be re-
minded of the interface name.

C2: “(#AbstractDialogPanel#), that’s interest-
ing. [. . .] What’s that now? <*opens super-
class, reads (, , , , , ,), back to original class,
types “implements IEnableableComponent-
Container”*>”

To C2 (low G Need), the presence of a super-
class meant that there is more than one poten-
tial place to implement the interface. C1 seems
oblivious to the issue (midGNeed) butC2 does
not explain his reasoning.

C2: “Let’s see what it has. <*opens interface*>”

328

11.4.4 The G Opportunity

C1: “(#getComponents#), that’s cool. Looks
easy.”

C1 sees that the interface declares only one
method (getComponents), but he overlooks
that it also extends another interface.

C2: “Ah, <*hovers extends-declaration*> and
an IEnableable <*open super-interface*>”

C2 notices the super-interface and realizes
there is more than just one method they need
to implement.

In both instances, C2 could have picked up on C1’s G Need and make his reasoning explicit by
pushing some G knowledge to C1 (i.e.,), e.g., by saying something like ‘In object-orientation, we
need to carefully consider any extended classes and interfaces’.

Example 11.8 (continued)

A constructive pattern for a situation like the one above might be to Pull specifically for
G knowledge whenever the partner does something ‘magic’ without Pushing.

11.4.4 b) Complementary Pairs

In pairs with a One-Sided G Gap, but little or no S Needs (as in PA3, see Example 11.7), the
partner with the G Need may receive and appreciate explanations, but has no opportunity to
provide some of her own. In contrast, a pair with Complementary Gaps such as in sessions
KB1, JA1, or DA2 are mutually satisfying sessions: One developer has an S Need and her
colleague can help with this; with her own advantage in G knowledge she may help her
colleague in return. I discuss sessions JA1 and DA2 in Examples 11.9 and 11.10 on the next
page.

S

GSession JA1

J1

J2

(1)

(2)

(2)

(3)

(3)

(a) Complementary Gaps example where the
Primary Gap is not completely closed in
phase (1) and the G Opportunity is seized in
phase (3) (see Example 11.9 for details)

S

GSession DA2

D4

D3

(1) (2)

(3)

(4)

(b) Complementary Gaps example where all
Knowledge Needs are eventually met (see
Example 11.10 for details)

Arrow types: Pull (solid line, blue) Push (dashed line, red)

Pioneering (dotted line, green) Co-Production (double line, black)

Figure 11.6: Trajectory of sessions starting with Complementary Gaps.

329

CHAPTER 11. SESSION DYNAMICS

Example 11.9: Embracing a Difference (JA1)
Session JA1 is about improving the maintainability of a module that J2 wrote a year earlier and
which J1 never saw before. The module is basically a state automaton implemented with deeply
nested if-statements. In addition to a seized G Opportunity, this session also illustrates how
one developer (J1) does neither need nor want to fully meet his S Need as he will only ever work
on that module together with J2. The notable phases of their trajectory are as follows (see also
Figure 11.6a):
(1) The pair deals with its Primary Gap via a long running Push with hooked-in Sub Pulls

(one of which is the recurring example in every results chapter of this thesis).
(2) To address their Secondary Gap, J2 repeatedly reads through the complex low-level control

structure and then explains the high-level states and transitions of the automaton (Pioneer
plus Push). Both partners take care to keep the Pushes from going into too much detail
(Scope Limiting, e.g., in Example 10.6).

(3) After J1 got the big picture (only a mid S Need left), the pair starts reading source code
together (reducing the Secondary Gap further through Co-Production). In doing so, J2
looks for code smells with which to explain possible refactorings (G Pushes) thus using
the G Opportunity (see Example 9.22 for similar behavior of the same pair in session JA2).

Example 11.10: Easy-Task Jump-Start with G Opportunity (DA2)
In sessionDA2 the pair discovers that, in order to implement a new feature in a clean way, they first
need to apply the Template Method design pattern multiple times. This is an easy task for developer
D4with no G Need: He starts with a high S Need but can easily acquire the necessary S knowledge
for this narrow task. The session trajectory has the following phases (see also Figure 11.6b):
(1) D3 explains the system’s basic structure and technology stack (long-running Push).
(2) D4 asks many questions about the system (Sub and Catalyzed Pulls hooked into the long

Push, see, e.g., Examples 7.9 and 8.8). Due to D4’s high S Need, not all of these questions
are relevant for the current task, and as it happens, D3 does not have satisfying answers for
all of them (unsuccessful Pulls, see also Example 10.2).

(3) D4 ceases to ask questions and explores source code instead until he understands enough
of the system to get productive (Pioneering). D3 offers only few explanations during this
phase.

(4) Later in the session, when D4 met his S Need, he takes charge of the whole session. He then
actively seeks opportunities to explain general object-oriented design principles and IDE
features (G Pushes), which D3 welcomes (see e.g., Examples 7.14, 7.15, and 7.17).

11.4.4 c) When do Pair Programmers Seize their G Opportunity?

Of the ten analyzed sessions in which the pairs had a G Opportunity (see Figure 11.1), only two
had no transfer of G knowledge (CA1 and CA3). So, what are the context conditions for pairs
seizing their G Opportunity? Since I had no chance to interview the respective developers
about this, the following overview is based on their in-session behavior only.

First, G knowledge transfer does not happen early in a session. All analyzed pairs first
addressed their Primary and Secondary Gaps which makes sure they know everything they
need to know to work productively on their tasks. The reason for why G knowledge transfer
does not happen earlier, however, does not appear to be that possessing S knowledge is a
necessary precondition. Rather, it appears that pair programmers need to be in a somewhat
‘relaxed’ state of mind. Second, there needs to be some trigger for a Knowledge Want to arise
that can lead to a transfer of knowledge. The following two cases illustrate these points:

330

11.4.5 Two-Sided G Gaps?

• In session JA1, J1 starts his G Pushes while the pair is still in the process of closing the
Secondary Gap. The trigger for his external Knowledge Wants are potential flaws he sees
in J2’s design. For this, J1 needs to understand something of the system, but not to the
same degree as his colleague: J1 can relax.

• Similarly in session DA2, where the pair introduces the Template Method pattern in a
number of classes, the pair still needs to understand the details of more than ten classes
around the time whenD4 starts his GPushes. But at this point, he has already refactored
a dozen similar classes and he is familiar with the steps. He, too, is relaxed, if not already
a little bored. The triggers of his external Knowledge Wants are hard to pin down, but it
appears as if brief moments of silence make him search for things to explain.

The two sessions with a not-seized G Opportunity had completely different contexts:
• The moments in session CA1 where C1’s G Need becomes noticeable and could trigger
an external Knowledge Want in C2, the pair is fully immersed in closing their Secondary
Gap. The knowledgeable partner C2 is not relaxed: While reading source code, he says to
himself “God [. . .] What’s that now?” (see Example 11.8), barely reacts to C1, and does not
take his eyes of the computer screen. All subsequent explanations concern S knowledge,
and the pair does not seize their G Opportunity.

• The only other session with a not-seized G Opportunity is CA3. Here, pair member C7
is sometimes surprised by the refactorings that her partner proposes: She has a small
G Need. The session, however, is very frustrating for the pair because their IDE repeatedly
went unresponsive for 80 seconds totaling about one third of the whole session. The pair
was clearly frustrated and not relaxed (they even took a break to buy some candies to
cool off) and did not address their G Opportunity.

In summary, pairs seize their G Opportunity if and when one partner’s G Need becomes
apparent and the other pair member is relaxed enough to develop and pursue an external
Knowledge Want, which is usually the case only after Primary and Secondary Gap are being
dealt with.

11.4.5 Two-Sided G Gaps?

There are sometimes PP sessions where both pair members have a G Need—a non-routine
situation. I have seen one instance of a pair attempting to acquire the relevant G knowledge:

Example 11.11: It’s not easy! (KC2)
Developers K2 and K3 want to write a test case for an auto-completion feature which K2 imple-
mented earlier. They already addressed their Primary Gap in session KC1 before lunch and now
want to simulate keystrokes programmatically. Both have a midG Need: they know their tools and
where to look for help, but cannot implement a test case right away. There trajectory is depicted
in Figure 11.7a:
(1) They attempt to read documentation together (G Co-Production), which helps K2 some-

what, but not so much K3.
(2) Forty minutes later(!), they notice this one-sided G gap and close it (G Push)—see also

Example 6.23.
However, they do not fully meet their G Need and give up after two hours. The next day, K3 said
he found a simple solution alone.

If both pair members have a high S Need and a high G Need, the pair faces a Too-Big Two-Fold
Gap, lacking the technical background (G knowledge) to build up the required S knowledge.
I have seen this constellation twice with one pair in sessions OA1 and OA2:

331

CHAPTER 11. SESSION DYNAMICS

Example 11.12: Breakdown (OA1, OA2)
The developers had to write test cases for some new functionality they did not implement and
which is built with a technology they are not familiar with. O3 and O4 have a high S Need
and a high G Need at the same time. O3 has a slight S advantage, as she already opened and
skimmed the relevant source code. O4 has a slight G advantage since he knows a bit more about
the programming language. (See numbers in Figure 11.7b.)
(1) To close the small Primary Gap, O4 has to Pioneer since O3 does neither Push nor react

to O4’s Pull attempt.
(2) For most of the session, they address their Secondary Gap and try to acquire S knowledge

by individually reading in the source code (Pioneering). At some point, and for lack of
better ideas (remember the high G Need), they together resort to “printf” debugging (Co-
Production), but do not gain much S knowledge in this way either (see Breakdown discussion
in Example 6.17).

The developers express confusion on fundamental issues (e.g., O3: “Type? Function? I don’t even
know what this is.”), but never really attempt to address their G Need. The same pattern continues
in session OA2 on the same day after lunch, where they do ask a colleague for help multiple times
regarding the different types of tests which their system uses (S knowledge), but do not ask about
the used technology. The pair eventually decides to not continue with this task.

S

GSession KC2

K2

K3

(1)

(2)

(a) Addressing a Two-Sided G Gap (here:
phases (1) and (2), see Example 11.11 for
details)

S

GSession OA1

O3 O4

(1)

(2)

(b) Not adressing a Two-Sided G Gap (see
Example 11.12 for details)

Arrow types: Pull (solid line, blue) Push (dashed line, red)

Pioneering (dotted line, green) Co-Production (double line, black)

Figure 11.7: Trajectory of sessions starting with a Two-Sided G Gap

A Two-Sided G Gap is too rare in my data to make much of it, but it appears to be difficult to
resolve. In session KC2, the pair had no S Need to deal with and presumably were simply too
tired to put their newly gained G knowledge to proper use. My interpretation of sessions OA1
andOA2 is that the situation was so difficult overall that the pair failed to manage the combined
complexity of task solving plus coordinating the PP process. I do not expect a Too-Big Two-Fold
Gap to be common in general software development practice, as developers likely anticipate
and avoid such a situation. In the OA1/OA2 case, the pair only started this task because they
were the only team members available and the task had high priority.

332

11.5. Summary and Discussion of Related Work

11.5 Summary and Discussion of Related Work

The purpose of selective coding in the Grounded Theory Methodology is to develop the “core
category” , the central concept that integrates all concepts of interest. Strauss & Corbin (1990)
propose that the researcher should write a narrative, a story to explain the core category. In
my study, this is the overall session dynamics consisting of the three steps of closing the
Primary Gap, closing the Secondary Gap, and seizing the G Opportunity. The full narrative
where I integrate the core category with the concepts from the earlier chapters follows in
Section 11.6 (without back references to not clutter the text), after I discuss work related to the
findings in this chapter.

11.5.1 Related Work Discussion

The following three ideas are central to this chapter:
1. A mere expert/novice dichotomy based on software development experience is simplistic.
2. Each task or particular situation requires different knowledge.
3. General software development knowledge and specific system understanding have differ-

ent roles in sessions, and in terms of productivity, the latter trumps the first.
Individually, all of these ideas were explicitly proposed or last tacitly assumed by different
authors. Simon (1996, p. 111), for instance, characterized all professional practice as being
“aimed at changing existing situations into preferred ones” . A similar idea is put more clearly
by Schön (1983, pp. 39–41) who argues that the core of professional practice is not so much
technical problem solving than understanding the situation first, which is characterized by its
“complexity” and “uniqueness” , among other things. Schön’s notion of the “Reflective Practitioner”
frames the essence of professional work as some kind of “conversation” :

[The professional practitioner] shapes the situation, in accordance with his initial appreci-
ation of it, the situation “talks back,” and he responds to the situation’s back-talk. In a
good process [. . .], this conversation with the situation is reflective.

Schön (1983, p. 79)

As far as I know, Schönwas not concernedwith software development, but the above description
also fits it quite well. Inmy terms,understanding the situation is acquiring S knowledge, changing
the situation (or technical problem solving) then requires G knowledge.

In Table 11.2, I summarize the stance of publications discussed in Section 2.2.3 regarding
the three central ideas mentioned above. Here are some of the details:

• Beck (1999, pp. 59, 67) deems it necessary for developers to have a common understanding
of their system (i.e., shared S knowledge) to avoid unfruitful discussions and slow progress
during pair programming; partners should be chosen based on recent experience in task-
relevant areas.

• Robillard (1999) argues that novice developers mostly possess knowledge from courses
and textbooks, whereas experts can additionally draw upon their more important “episodic
knowledge” which is built up through actual practice. While the textbook-knowledge falls
into the G knowledge category, it is not clear what type of knowledge he expects experts
to possess, be he sees it as superior.

• Soloway & Ehrlich (1984) subscribe to the expert/novice dichotomy. Their “programming
plans” and “programming discourse rules” would be parts of G knowledge that only
experts possess. They only studied coding activities and short algorithms, with no relevant
S knowledge to consider.

333

CHAPTER 11. SESSION DYNAMICS

Publication 1. “Expert/Novice”
is Simplistic

2. Task
Specificity

3. S over G
knowledge

Schön (1983) ✓ ✓ (✓)
Soloway & Ehrlich (1984) ✗ ✗ ✗

Beck (1999) ✓ ✓ ✓

Robillard (1999) ✗ (✓) (✓)
Sim & Holt (1998) (✓) ✗ ✓

Zhou & Mockus (2010) (✓) ✓ (✓)
Fritz et al. (2010) (✓) ✓ (✓)
Kerr (2017) (✓) (✓) ✓

Table 11.2: Publications on knowledge-relevance in software engineering and their relation
to three of my central ideas. Symbols: ✓ – idea is presented; (✓) – similar idea is presented;
✗ – contrary idea is presented (or no positive evidence for compatibility)

• Sim & Holt (1998) characterize “software immigrants” as developers with potentially much
G knowledge but with high S Needs. Two of the practices they describe to ramp up such
new team members are (a) selecting first tasks that are limited to a very narrow portion
of the system which makes meeting the S Need easier (see developer D4 in session DA2,
Example 11.10) and (b) assigning a mentor (who has more S knowledge and is possibly
available for pair programming).

• Zhou & Mockus (2010) emphasize task specificity. Two of the dimensions they report as
what makes a task difficult—application and technology—correspond to S knowledge and
G knowledge, respectively. They do not weigh these dimensions against each other.

• The tool by Fritz et al. (2010) is meant to find a colleague with relevant system under-
standing based on their prior interaction with parts of the source code. It postulates the
importance of S knowledge—although not relative to other knowledge types.

I close this discussion with a quote from developer and blogger Jessica Kerr. She, too, observed
the importance of S knowledge for efficient software development:

Let’s talk about why some developers, in some situations, are ten times more productive
than others. [. . .] When do we get that exhilarating feeling of hyperproductivity, when
new features flow out of our fingertips? It happens when we know our tools like the
back of our hands [G knowledge], and more crucially, when we know the systems we are
changing [S knowledge]. [. . .] Know the contents of every module, both what they are
and what we’d like them to be if we ever finish that refactoring. Know the edges, who uses
every API and which changes will break whom, [. . .] which database fields are indexed
and which are obsolete and which have quirky special values. [. . .]

It is extremely difficult to establish this level of intimacy with an existing system. [. . .]
Pair program! By far the best way to transfer understanding of the system [S knowledge]
to another human is to change it together.

Kerr (2017, emphasis added)

The apparent real-world importance of S knowledge over G knowledge is not reflected in the
many PP studies in which the developers had to work with small and unknown “systems” (see,
e.g., Section Unrealistic and Unfair Comparisons on page 67). First, using small systems ignores
the dimension of S knowledge and thus cannot make any statement about its importance.
Second, using systems unknown to the developers may create a high S Need for both partners,

334

11.6. Grounded Theory of Knowledge Transfer Session Dynamics

while starting development from scratch leads to zero S Need. Both situations are unfamiliar
or uncommon for professional developers, which might in part explain the observed between-
study variance of PP effectiveness (see page 64).

Overall, my key observations (‘expert/novice’ is simplistic, knowledge needs are task-
specific, and system understanding is more relevant than general development knowledge) are
compatible with the experience of reflective practitioners and with observations of researchers
working closely with practitioners in industry. What was missing so far is an explanation that
integrates these pieces and that is based in empirical research and systematic analysis. In the
next section, I present my Grounded Theory of how software developers actually transfer
knowledge in pair programming sessions.

11.6 Knowledge Transfer in Pair Programming:
A Grounded Theory of Session Dynamics

When two software developers decide to work together on some task, they may expect a
number of benefits, such as to avoid introducing defects, to come up with a good design, to
understand the software system better, or to learn something from their partner. To really
work as a pair and for the benefits to possibly come into effect, the two need to understand
their partner’s actions and intentions. The ease with which they can understanding each other
is their Togetherness. This is was determines the Fluency of their pair process: Pairs with too
low Togetherness risk a frustrating and unproductive Breakdown where the pair situation not
only loses its benefits, but may even be worse than either developer working alone. Pairs with
high Togetherness may enter an enjoyable and possibly very productive Focus Phase where
they do not need many words and may even complete each other’s sentences.

A pair’s Togetherness (and thus Fluency) is influenced by a number of factors: (1) The
pair’s shared understanding of the software system and (2) of software development in general,
as well as having (3) one shared plan, (4) good workspace awareness, and (5) no language
barrier. Any of these factors may impede a pair’s Togetherness. Moreover, the factors’ impact
may change over the course of a session, e.g., one developer losing sight of their plan, or the
other gaining a better understanding of some module. For a fluent process, pair programmers
therefore need to Maintain Togetherness.

No two developers know exactly the same. Each has their distinct technical background
and knows more or less about different parts of the system. Depending on the task and how
the pair chooses to approach it, neither of them usually possesses all relevant knowledge.
Whether or not the developers are already aware of it, both have Knowledge Needs that are
specific to their task. The two classes of knowledge most relevant in pair programming are
system-specific S knowledge and general software development, or G knowledge. Usually, the
developers need to understand some aspect or part of the existing system and have an S Need;
sometimes, one or both partners lack general software development knowledge pertinent to
the task and thus have a G Need.

Pairs may decide to not address all their Knowledge Needs in their session. Complete
system understanding, for example, may not be necessary for a partner who just joins for quick
help, making some unmet S Need tolerable for her. Pair programming sessions are driven by
the developers trying to meet the Knowledge Needs relevant to them:
1. First, they close the Primary Gap which is the difference in system understanding

between the developers.

335

CHAPTER 11. SESSION DYNAMICS

Close the Primary Gap

S
N
ee
d low

G Need
lowhigh

B

A

Close the Secondary Gap

S
N
ee
d low

G Need
lowhigh

BA

Seize the G Opportunity

S
N
ee
d low

G Need

lowhigh

BA

Different styles:
1. Push (A explains to B)
2. Pull (B interviews A)
3. Pioneering
(B self-studies,
A supervises)

Different styles:
1. Co-Production
(A and B build
understanding together)

2. Pioneer then Push
(e.g., A self-studies,
then explains to B)

Different styles:
1. Push (B explains)
2. Pull (A asks)

(not all pairs do this)

Pair
Members

Togetherness
Factors:
• Shared Understanding of
the System

• Shared Understanding of
Software Development

• One Shared Plan
• Good Workspace Awareness
• No Language Barrier

collectively
have and maintain Fluency

Extremes:
• Focus Phase
• Breakdown

affects

A B

Knowledge Needsindividually and collectively
have and deal with

S knowledge G knowledge
System-specific knowledge, e.g., about
its requirements, architecture, design
rationale, source code, defects, build and
test routines, state, and configuration.

Generic software development
knowledge, e.g., about design and

programming patterns, programming
languages, tools, and technology stacks.

for task-specific parts of

satisfy

General Pair Programming Phenomena

Knowledge Transfer in Pair Programming
require and enable

Figure 11.8: Grounded Theory of knowledge transfer session dynamics

336

11.6. Grounded Theory of Knowledge Transfer Session Dynamics

The most common strategy is for the more knowledgeable developer to provide Proactive
Explanationswhile her partner asks for details if need be: A long-running Pushwith Sub
Pulls. During the Pull Episodes, the asking developer sets the pace and granularity of the
explanations. The difficulty of Pull Episodes lies in making the partner understand one’s
particular Knowledge Want, i.e., what is the Topic of the request. In some cases, a whole
Clarification Cascade is necessary to lead the partner to clarity in this regard. Afterwards,
to commence the long-running Push Episode, the more knowledgeable developer can
Return Explicitly to the main Topic (her partner may be of some help).
The second strategy for closing a Primary Gap is an Interview Mode during which
the developer with the S Need conducts a long-running Pull Episode, e.g., when the
more knowledgeable partner has some difficulty providing coherent explanations. A
danger here lies in Branching Wildly when the provided explanations in turn lead to
more questions and the pair follows each new idea.
The last resort for closing a Primary Gap is for the less knowledgeable partner to Pioneer,
that is to read source code to acquire the relevant knowledge. For some developers, this
may be a matter of personal preference over proactive explanations or the interview
mode. Whatever the motivation, a Silent Pioneer leaves the knowledgeable partner in
the dark, but a Talking Pioneer makes her thought process visible and thus allows the
knowledgeable partner to provide brief Pushes in the right moment.

2. Pairs who closed their Primary Gap (or had none to begin with) then close the Secondary
Gap, their shared lack of system understanding. Here, the most common way for pairs
to proceed is the Co-Production of new knowledge by reading source code together,
developing hypotheses, and integrating each other’s ideas. Often, one pair member will
be slightly faster than the other in understanding some aspect. If the partner does not
catch up soon, the resulting gap is addressed yet again either by a short Push from the
‘faster’ partner or by Pioneering of the ‘slower’ one.

3. Eventually, when both Primary and Secondary Gaps are closed to the extent the pair is
aware of them, they may seize their G Opportunity: Deliberate transfer of G knowledge
from one to the other. This mostly happens in Push Episodes when the pair member with
the G knowledge advantage—now at relative ease because there is little to no S Need—
looks for opportunities to explain general concepts with concrete examples. There is,
however, no G Opportunity when both partners have a G Need. Quite the opposite: The
few instances in my data suggest that pair programmers are not good at handling such a
situation. This is possibly due to a lack of according experience: Most knowledge transfer
in PP sessions pertain to S knowledge.

The developers’ Togetherness is crucial in all three stages. When pairs close their Primary Gap,
they make sure they have shared understanding of the system. This establishes Togetherness
which makes it easier for the pair to acquire lacking system understanding together. To
then close their Secondary Gap, they need to maintain their Togetherness with each newly
understood piece of information if they want to keep working as a pair. Pairs appear to only
seize their G Opportunity when their S Needs are resolved and they have a satisfactory
and shared understanding of the software system, that is, when they are in a state of high
Togetherness.

In summary, software developers need to transfer knowledge in order to work together as a
pair, and they need to work together as a pair in order to transfer knowledge.

337

CHAPTER 11. SESSION DYNAMICS

338

Part III

Evaluation and Conclusion

339

Chapter 12 Actual Research Process

The proper test is not that of finality, but of progress.

– Alfred N. Whitehead

12.1 Phase 1: Initial Analysis of Base Activities. 342

12.2 Phase 2: Developing the Episode Concept . 342

12.3 Phase 3: Analysis of Pull Episodes . 343

12.4 Phase 4: New Knowledge TransferMode: Produce 343

12.5 Phase 5: First Round of Data Collection . 343

12.6 Phase 6: Considering Practitioner Relevance . 345

12.7 Phase 7: Give Up Naturalistic Approach? . 345

12.8 Phase 8: Discovery of Second Knowledge Dimension 346

12.9 Phase 9: Member Reflection and Selective Coding . 347

12.10 Phase 10: Finishing the Thesis . 347

I presented the results in Chapters 6 to 11 in roughly linear and bottom-up fashion starting from
subtle properties of individual utterances to different types of knowledge transfer activities,
Episodes, relationships between Episodes, and eventually whole pair programming sessions.
However, my qualitative research process did not proceed in this order. Just as the three modes
of open, axial, and selective coding of Straussian Grounded Theory Methodology are different
perspectives rather than sequential phases (see Section 3.3.3), I shifted my analysis focus
multiple times, revisiting my concepts multiple times to arrive—after several years—at the
grounded theory I summarized in the previous chapter.

Qualitative research in general has the characteristic trait of an emergent research design
(see, e.g., Flick et al., 2004, p. 8; Patton, 2002, pp. 43–45, and my discussion in Section 3.2.2). In
Chapter 4, I characterized the strategic decisions I made for my research process and described
what I did to analyze my data in a semi-abstract way. In this chapter, I present the timeline of
my research. As I advance chronologically, I summarize my research activities (data collection,
data analysis, literature study, etc.), what I specifically looked for in my data, what notable
observations I made that shaped the further process, and which concepts I developed. As is
common for a GTM study, my concepts evolved over time. I will highlight some of the notable
developments and provide references to the chapters and sections of this thesis where some
intermediate concepts found their place, possibly under a different name.

341

CHAPTER 12. ACTUAL RESEARCH PROCESS

12.1 Phase 1: Initial Analysis of Base Activities

Data Collection
I started my analysis on already available PP session recordings (see Section 4.3).

Literature
At this point, I was already familiar with the ambiguous results of controlled experiments
comparing solo and pair work regarding quality and duration (see Section 2.3.4a), and some of
the qualitative work on PP published before 2012, including the work of Chong & Hurlbutt
(2007) and Bryant et al. (2008, discussed on pages 72 and 80), and of course the work from my
research group (Salinger et al., 2008; Salinger & Prechelt, 2013).

Data Analysis
As proposed by Salinger & Prechelt (2013, p. 30), I started my analysis by looking for base
activities that clearly involve pre-existing knowledge, mostly explain_knowledge activities. I did
this together with Stephan Salinger (who left the project after this phase) in the manner of pair
coding (see Section 3.4.1d). We started with session CA2, which we both already knew quite
well, so there was not much open coding for us to do to ‘break up’ the data. We soon switched
to axial coding, considering more the causal conditions, context, and strategic behavior of the
developers. These were among our first observations:

• Although it cannot be directly observed, there appears to be something that makes
developers start knowledge transfer from one moment to another. We called this causal
condition a “finding” (not to be confused with a base layer finding, which is a discourse
object). Years later, this evolved into the Knowledge Want concept (see Section 7.2).

• Knowledge transfer is usually not achieved with a single base activity, but takes multiple
somehow related activities. We called this context a “Knowledge Transfer Interaction
Sequence”, which I later called Episode (see Chapter 9).

• Pair programmers may change the thematic orientation of such a “Sequence”: We saw
strategic behavior of both “branching” and “returning”, now Sub-Episodes and Return
Explicitly (see Chapter 10).

12.2 Phase 2: Developing the Episode Concept

Data Analysis
In axial coding, while considering the context of individual explanations, I came across different
knowledge types. To structure these, I went back to open coding but, at this point, only ended
up with an unordered list of what are now mostly the subtypes of S and G knowledge (see
Sections 7.3.1a and 7.3.1b).

I also developed a notion of the knowledge content of an Episode as a whole and the
individual utterances as puzzle pieces. Eventually, this led to the concepts of Topic and Target
Content (see Section 7.3).

At this point, I noticed that pair programmers have different ways of asking a question
which set the direction of the further knowledge transfer. I initially called this concept “shaping”
before it was incorporated in the “Propellor” concept, which denotes the developer who drives
forward the clarification of a Topic (whereas her partner merely reacts). Together with the two
Modes in which a Propellor can proceed— Push and Pull of knowledge, i.e., asking and
providing explanations—this led to my final Episode concept: The pursuit of clarifying one
Topic in a constant Mode (see Chapter 9).

342

12.3. Phase 3: Analysis of Pull Episodes

12.3 Phase 3: Analysis of Pull Episodes

Data Collection
I supported Julia Schenk in recording the JA-sessions and then performed the quick analysis
(see Section 4.3.2d) of session JA1 with her in pair coding manner (see Section 3.4.1d).

Data Analysis
The first few minutes of JA1 were different from the other sessions I had analyzed so far,
because there was a lot of knowledge transfer in a short amount of time (not by accident are
these minutes the recurring example of the result chapters). At this point, I decided to focus
on Pull Episodes (see also a memo of that time in Figure 12.1), investigated their internal
structure, discovered Explanation Elicitors (see Section 8.2) and the Clarification Cascade (see
Section 8.2.1c). With my goal to eventually advise practitioners, I also started considering how
Episodes end, e.g., which of them could be considered successful or not (see Section 9.2.2).

12.4 Phase 4: New Knowledge Transfer Mode: Produce

Data Analysis
I discovered that pair programmers not only Push and Pull existing knowledge in an
entirely verbal manner, but also acquire new knowledge from reading source code and doc-
umentation, using a debugger, or interacting with the application. Since pairs also rely on
pre-existing knowledge during these activities, sometimes even explicitly, I also included these
phenomena in my analysis. This new ‘knowledge producing’Mode allowed for both developers
to be ‘in charge’ of the Episode, so I made distinction between Pioneering Production and
Co-Production (i.e., one or two propelling pair members).

Writing
At this point, we wrote the article “On Knowledge Transfer Skill in Pair Programming” (Zieris
& Prechelt, 2014), where the established concepts of the time were published: Target Content
and Topic (see Section 7.3); Explanation Elicitors (called “explanation triggers” back then), the
Clarification Cascade, and Explanations (see Chapter 8); and the notion of an Episode with a
Propellor and aMode (see Chapter 9). I did not yet have a concept to address a developer’s lack
of knowledge. However, the original formulation from the article (“The need [for knowledge]
is difficult to observe directly and will hence not even be given a formal concept name” , ibid.,
Sec. 4.2) already hints at what would in Phase 9 become the Knowledge Need (see Section 11.2).

12.5 Phase 5: First Round of Data Collection

Data Collection
I recorded eight pair prorgramming sessions at company K and discussed some of my observa-
tions with a large number of K-developers (see Section 4.3.5b for details).

Data Analysis
After systematic comparison of the four knowledge transfer Modes (Push, Pull, Co-
Production, and Pioneering), I introduced new concept to capture the motivation of devel-
opers to start an Episode. I initially called it “knowledge need” (short for “need for knowledge
transfer”), of which I identified the three forms of internal, external, and collective. In Phase 9,
I would later rename that concept to Knowledge Want to make clear the distinction between a

343

CHAPTER 12. ACTUAL RESEARCH PROCESS

I noticed that it is easy to introduce new properties (especially property
values). I cannot address all of them in new material and need to focus.

As of now, there are the following (somewhat relevant) properties of KT
episodes and their values:
* information type & related information type: (many, with subtypes)
* level: keep/set, narrow, indifferent, (expand ?)
* shaping: intensional, extensional
* medium: verbally, demonstration, typing+verbally
* mode: facts/reasoning, go through
* scope qualification: most
* starter: (several)
* finisher: (several)

Additionally, there are multiple "markers":
* invalidation
* substantiate
* reservation
* stubby

My first idea was to group them by What?, How?, and Why?/When?:
* What?: (related) information type
* How?: level, shaping, medium, mode, scope qualification
* Why?/When?: starter, finisher

The "How?"s can be grouped even better:
* level and shaping are relevant for describing the interaction
* medium is more about the chosen "aid" for the KT
* mode is more about the "style" of the KT
* the scope qualification and the markers describe in various ways the quality

of the KT

Assessment:
* (related) information type: leads to an arbitrarily fine-grained taxonomy,

easy to code with. Currently (or even if it would be "complete") it serves no
purpose, but exists only as end in itself. May be useful for filtering
(only KT for certain type of knowledge). It appears reasonable for a study on
KT to include the type of knowledge, but as of now there is no justification
from the data.
Conclusion: Don’t throw it away, but don’t put too much energy in it.

* medium: Very descriptive. Can be kept, but not worth much attention.
* level/shaping: Both useful for low-level descriptions of interaction.

Possibly try a more high-level perspective and use the low-level perspective
as a fallback.

* mode: Is a high-level perspective and way more interesting for my GT study.
Should get more attention than the low-level things.
Hypothesis: The mode or mode changes in KT are important properties of the
overall process.

* qualification: Rather young property, may incorporate some of the current
"markers". Content-wise this property seems somehow interesting, possibly for
the style or success of a KT. But I don’t expect wonders here, so I don’t
focus on this now.

* starter/finisher: rather descriptive, possibly later, as fallback.

So: Mode it is!

Figure 12.1: Example of a memo I wrote on 2013-04-15, about one year into my research. At
this point, I still wrote my memos in German, so the above text is translated. “KT” stands for
knowledge transfer. In the terminology of Strauss & Corbin (1990), this memo contains both
theoretical and operational notes (see Section 3.3.3f).

344

12.6. Phase 6: Considering Practitioner Relevance

developer’s motivation to transfer knowledge and her actual (potentially disparate) lack of
knowledge or Knowledge Need.

A misunderstanding between the pair members in session KC2 (see Example 6.23) led to
the introduction of the concept of Parallel Production as a less communicative form of Co-
Production (see Section 9.5.2). Through constant comparison, I noticed a similar difference
between some Pioneering Episodes, which led to the distinction of Talking Pioneer and
Silent Pioneer (see Sections 9.4.2 and 9.4.3). It would take until Phase 8, however, for me to
introduce a concept to capture the ‘less communicative’ property: These pairs did notMaintain
Togetherness.

12.6 Phase 6: Considering Practitioner Relevance

Data Analysis
I found that behavioral patterns can be identified, conceptualized, and operationalized—but
not easily classified into good and bad, which I deemed necessary for my goal of formulating
practically relevant advice. I decided to ‘zoom out’ and consider the role of Episodes in the
course of a session by asking questions likeWhat are the relationships of individual episodes?
and How do pairs choose which topics to address?

I came back to the old concepts of “branching” and “returning” from Phase 1 and wrote my
own visualizer tool to get an intuitive high-level overview of the super-structure of knowledge
transfer Episodes (compare Figures 4.7a and 4.7b). Insights from experimenting with different
data visualizations led to further qualitative analyses across sessions and ultimately to the
concepts of Branching Wildly, Returning Explicitly, and Scope Limiting (see Chapter 10).

One additional pattern I discovered then was a long-running Push with Sub-Pulls.
Through axial coding around this pattern, I identified the relation of the developers to the task
as a relevant context condition and distinguished three levels:

• “Level 3”: The task expert,who possesses all task-relevant knowledge (I originally described
this role together with Salinger et al. (2013) prior to my work on knowledge transfer; see
page 84).

• “Level 2”: partial or outdated knowledge
• “Level 1”: no knowledge

Axial coding revealed that the above-mentioned Episode pattern occurred when one partner
had a higher level than the other (i.e., 3-2, 3-1, or 2-1). This would later become the strategy of
proactive explanationswithwhichmany pairs address theirPrimary Gap (see Section 11.4.2).

Although these were interesting analytic results, I knew that I would need to zoom out
further to identify and describe phenomena that practioners could find interesting.

12.7 Phase 7: Give Up Naturalistic Approach?

Data Collection
It occurred to me that the distinction between ‘good’ and ‘bad’ patterns hinges on the conse-
quences of the developers behavior. However, all the sessions I had seen so far were of pairs who
may have struggled a bit along the way, but ultimately achieved something useful in a general
software engineering sense. Without an alternative universe to compare to, pinpointing their
relative success or failure to individual occurrences of behavioral patterns seemed unjustifiable
(see also my discussion in Section 4.2.2).

345

CHAPTER 12. ACTUAL RESEARCH PROCESS

All session recordings were naturalistic so far, i.e., the developers decided for themselves on
which tasks to work on with whom. With the conjecture in mind that software developers are
more or less skilled in pair programming, I briefly considered giving up the naturalistic nature
of my inquiry (Patton, 2002, pp. 39–43) and to record developers who never pair-programmed
before—or who did pair-program before, but abandoned it—to see how a ‘failure’ looks like.

Data Analysis
On the side of data analysis, I switched to axial coding again: I tried to determine the importance
of the type of knowledge developers are after in different phases of their session. However,
there were not enough differences between the sessions available to me at this point: Basically
in all cases, the developers needed to understand some parts of their system. I had not yet seen
other cases, so the relevance of this observation was not yet clear to me.

Writing
At this point, “Observations on Knowledge Transfer of Professional Software Developers
During Pair Programming” (Zieris & Prechelt, 2016) was written, where we emphasized the
existence of knowledge transfer in all pair programming sessions (not only ‘expert/novice’
constellations) and contrasted Parallel Production with ‘proper’ Co-Production where
the pairs “resynchronize” (which would later be called Maintaining Togetherness). This was
also the first time, the idea of internal or external Knowledge Want as the motivation behind a
knowledge transfer Episode was published.

12.8 Phase 8: Discovery of Second Knowledge Dimension

Data Collection
At this point, the opportunity arose to record pair programming sessions in a self-proclaimed “all
PP company” (company O). I did not yet let go of the plan from Phase 7 to record (presumably)
bad pairs, but to the end of looking for maximal differences in PP process quality, recording
developers who do not do anything else but PP seemed helpful as well. Ironically, the sessions
I recorded next (OA1 and OA2) were the worst I have ever seen in terms of what the pair
achieved in a software engineering sense.

Data Analysis
My existing concepts could not describe, let alone explain, what happened in these problematic
sessions. My first attempt was a general “overtaxation” concept: The task was simply too
difficult for the pair. However, the same pair of developers had similar problems in another
session (OA8), but not throughout the session. My existing three levels of task-familiarity from
Phase 6 could not explain their behavior.

But before I looked for the causal conditions in the manner of axial coding, I first needed
to understand the phenomenon through open coding. This is how I developed the Fluency
concept as a characterization of a pair process (see Section 6.3) and soon after the role of a pair’s
Togetherness. The pair O3/O4 had difficulties in all five Togetherness factors (see Section 6.4).

With these concepts in place for characterizing the pair process of all analyzed pairs, I could
now approach axial coding to systematically search for the causal conditions. General software
development skills were not an issue in prior sessions, but they were in session OA1 and OA2,
so I introduced a new dimension of developer knowledge level to account for this difference:
The many knowledge types from Phase 2 now came together and the task-familiarity concept
from Phase 6 got split up to form two categories of S knowledge and G knowledge.

346

12.9. Phase 9: Member Reflection and Selective Coding

Through constant comparison, I noticed that the already analyzed pairs also had relative
difference regarding that new G dimension, but it never hindered their progress. This observa-
tion led to the notion of pair constellations on a two-dimensional chart (see Figure 11.1) and
was the first hint at the special role of the G Opportunity (see Section 11.4.4).

12.9 Phase 9: Member Reflection and Selective Coding

Data Collection
A two-dimensional chart which provides a high-level view and categorization of pair pro-
gramming sessions based on the two dimensions of pair member’s respective task-relevant
understanding of the system and software development was the first result I could expect practi-
tioners to understand. I presented it to software developers and ScrumMasters of four different
companies where it was met with resonance and only few open questions (see Chapter 13).

Up to this point, I referred to developers’ understanding regarding G and S knowledge
as “knowledge levels”. However, after reflecting on the feedback from practitioners (see Sec-
tion 13.2.2) and from reviewers (see Section Writing below), I found the notion of “Knowledge
Needs” to be more appropriate because it emphasizes task-specificity over developer careers.

Data Analysis
What was missing at this point was the integration of all the pieces to a grounded theory, so I
switched to selective coding. I noticed that I had not yet completed the circle of how knowledge
affects a pair’s Togetherness and thus Fluency, which led me back to the utterance level of
the PP process. I introduced the notion of conversational role (in particular the corrective
activity) and could now properly describe the other Fluency extreme: Focus Phases.

While it was clear to me from its inception in Phase 8 that the two knowledge dimensions
of a pair member in session are highly task-specific, only through systematic comparison of
all sessions the importance of a pair’s Target Constellation dawned on me. With this relevant
context property, each pair’s knowledge trajectory made sense, and I could identify the three
parts of the overall session dynamics: Closing the Primary Gap, closing the Secondary Gap,
and seizing the G Opportunity.

Writing
After selective coding, I finally settled on the order and content of the result chapters of
this thesis, and worked my way up from the utterance level, over activities, to Episodes, and
then whole sessions. The publication “Explaining Pair Programming Session Dynamics from
Knowledge Gaps” (Zieris & Prechelt, 2020a) is another result of this phase. Ultimately, the
reviewers’ feedback triggered the reframing of the concept of a developer’s “knowledge levels”
to “Knowledge Need”.

12.10 Phase 10: Finishing the Thesis

Writing
The last big phase of my PhD project was finishing this very document, in particular Chap-
ters 2 to 4. I conducted an in-depth literature study (on PP in education, and involving more
quantitative studies than just the meta-analysis of Hannay et al., 2009), looking for indicators
that other researchers had also seen the phenomena I discovered and described, even if their
reports only hinted at them as a side-note. For me, this led to an understanding of the difference
and, more importantly, commonalities across very different research approaches on the same

347

CHAPTER 12. ACTUAL RESEARCH PROCESS

topic, that allowed for a bigger and more complete picture of what pair programming actually
is than would have been possible by an up-front literature analysis. The results of these efforts
are Chapter 2 and the Discussion of Related Work sections at the end of the result chapters.

Similarly, I dived deep into the methodology literature to use the proper terminology to
explain my own method in Chapter 4. Although qualitative approaches are becoming more
common in software engineering research, there are still some reservations,misunderstandings,
and misconceptions. This is why I wrote Chapter 3.

348

Chapter 13 Evaluation

13.1 Purpose and Structure of this Chapter . 349
13.2 Member Reflection . 350
13.2.1 What to Validate? Ideas and Practices. 350
13.2.2 How to Evaluate? Interviews and Workshops . 351
13.2.3 Member Reflection Results . 352

Ideas 1 & 2: S vs. G knowledge and Knowledge Needs • Idea 3: Initial Constellations • Idea
4: S over G knowledge • Idea 5:Modes of Knowledge Transfer • Practice 1: Pair Form-
ing • Practice 2: Set Session Goal • Practice 3: Reflect on Trajectory

13.2.4 Summary and Consequences . 355
13.3 Eight Criteria for Qualitative Research . 356
13.3.1 Worthy Topic . 356
13.3.2 Rich Rigor . 357
13.3.3 Sincerity . 357
13.3.4 Credibility . 358
13.3.5 Resonance . 358
13.3.6 Significant Contribution . 358
13.3.7 Ethics . 360
13.3.8 Meaningful Coherence . 360

13.1 Purpose and Structure of this Chapter

The goal of my work is to understand how knowledge transfer in pair programming works
and to formulate my results in a way that is understandable and relevant for practitioners.
I describedmy overall research approach in Chapter 4, how I arrived at my results in Chapter 12,
and the results themselves in Chapters 5 to 11.

As explained in Section 3.3.5a, I use the eight quality criteria proposed by Tracy (2010, see
also my discussion in Section 3.2.4) to evaluate my research. Tracy’s criteria of resonance and
credibility are closely connected in my case: Findings that practitioners do not deem credible
are unlikely to resonate with them, and vice versa. The most important method to evaluate
my findings is member reflection with industrial software developers. I describe my approach,
the results from discussions with practitioners in four companies, and how I incorporated
the feedback I received in Section 13.2. I go through all eight criteria proposed by Tracy in
Section 13.3.

349

CHAPTER 13. EVALUATION

13.2 Member Reflection

Member reflection is collaborating with study participants to learn whether one’s research
is comprehendible and perceived as meaningful, which in itself yields new data for further
research (Tracy, 2010, p. 844).

13.2.1 What to Validate? Ideas and Practices

I introduced many concepts to characterize various aspects of how pair programmers transfer
knowledge. Some concepts are building blocks for higher-level concepts, such as the conversa-
tional roles of individual utterances and activities (, , , , and) are for a pair’s Fluency
(see Chapter 6) or as Explanations/Explanation Elicitors are for Episodes and their Modes (see
Chapters 8 and 9). These are useful for fine-grained descriptions. However, they are probably
of limited value for practitioners because they account for too small fractions of a PP session to
be memorable enough to resonate with the developers when explained to them. The high-level
concepts from Chapter 11, in contrast, refer to PP sessions as a whole and are probably more
relatable. I therefore chose the following ideas for member reflection:

• Idea 1: S vs. G knowledge Two classes of knowledge are relevant in PP sessions.
One is system-specific S knowledge, which includes requirements, system architecture,
implementation details, configuration, scripts, and so on; the other is genericG knowledge,
which is about programming languages, design patterns, frameworks, libraries, etc.

• Idea 2: Knowledge Needs Individual de-
velopers can be characterized according to
howmuch S andG knowledge they do not yet
possess forworking on some specific task. For
instance, one developer may have a medium
S Need but only a small G Need for some
refactoring task (see A in Figure 13.1).

• Idea 3: Initial Constellations The Knowl-
edge Needs of two pair members form their
Initial Constellation, of which there are only
few different types (such as B C ’s Comple-
mentary Gaps in Figure 13.1), each with their
characteristic session dynamic.

• Idea 4: S over G knowledge Within-pair
differences in S knowledge affect a session’s
dynamic more than G knowledge differences.

S
N
ee

d

G Need
high

hi
gh

mid

m
id

low

lo
w

AB

C

Figure 13.1: A G-S chart for visualizing in-
dividual’s Knowledge Needs, a pair’s Initial
and Target Constellation, or their trajectory.

• Idea 5:Modes of Knowledge Transfer Pairs approach their individual and collective
lacks of knowledge in different ways, e.g., they Push or Pull existing knowledge, or
acquire new knowledge in Co-Production or Pioneering Production.

Additionally, I formulated practical ideas on how to make use of these concepts in everyday
software development. Considering that reflecting on one’s pair programming process mid-
flight might be difficult (especially for pairs with reduced Togetherness), I devised the following
three practices to be done before and after a PP session:

• Practice 1: Pair Forming Consider task-specific knowledge when forming pairs. This
is an extension of what Beck (1999, p. 59) proposed: “If you have responsibility for a task
in an area that is unfamiliar to you, you might ask someone with recent experience to pair
with you” . Specifically, teams could use a G-S chart to discuss the Knowledge Needs of

350

13.2.2 How to Evaluate? Interviews and Workshops

all team members for an important upcoming task to form a pair (and/or amend the task)
to get a favorable Initial Constellation, e.g., one with a G Opportunity.

• Practice 2: Set Session Goal Once a pair is set, the two developers discuss their Target
Constellation before working on the task: Do both pair members need to understand
the task-relevant system parts enough to continue the work, or is some Primary Gap
tolerable? Is there a G Opportunity that could be seized?

• Practice 3: Reflect on Trajectory After the session, the pair reflects on their trajectory
with questions like: Did we reach our Target Constellation? Did we underestimate our
Knowledge Needs, i.e., are there lacking pieces of S or G knowledge whose relevance we
were not aware of? Should we discuss these with the rest of the team?

13.2.2 How to Evaluate? Interviews and Workshops

I performed member reflection in three ways: First, as part of the reflective interview with
the pair members shortly after their session had been recorded (see Section 4.3.2e for details);
second, in workshops during which I present my research and discuss it with groups of
developers (as described in Section 4.3.2g); and third, in 1-on-1 interviews that follow the
same structure as the workshops (details follow), but involve only one practitioner.

A reflective interview after a PP session has the advantage that the developers have a
concrete recent pair programming experience they can refer to and which I also know about.
However, these interviews are rather ad hoc and last 30 minutes at most. The team workshops
and 1-on-1 interviews take between 1 and 2 hours which gives me time to address more aspects
of my findings and allows the participants to reflect longer. The general structure of my
presentations in the workshops and 1-on-1 interviews is as follows:

• First, I explain Ideas 1 and 2, that is, the two dimensions of task-specific S and G Needs
which each pair member brings into a session (as explained in Section 11.2).
It is important to note, though, that I did not speak of “Knowledge Needs” yet, but of
“knowledge levels”. I developed the terminology of S and G Knowledge Needs only in the
last steps of selective coding based on the feedback I received. The underlying concept
remained the same, but instead of saying ‘Developer A has a high S Need’, I would have
said ‘Developer A has a low S level’, and vice versa. I come back to what motivated this
change in Section 13.2.4.

• I continue with Idea 3, in particular with explaining the five Initial Constellations I had
seen so far (the sixth constellation, One-Sided G Gap, I saw in company P for the first
time, after the team workshop). To illustrate the dynamics of each constellation, I sketch
out particular session trajectories: Session BB1 for No Relevant Gaps, session CA2 for
One-Sided S Gap, session AA1 for Two-Sided S Gap, session DA2 for Complementary
Gaps, and sessionOA1 for Too-Big Two-Fold Gap (see Figures 11.3c, 11.4, 11.6b, and 11.7b).

• While doing so, I ask the participants for their personal experience with the discussed
constellations, e.g., whether they encountered them recently, how these turned out, what
other dynamics they recall, and whether they can share further anecdotes. This is meant
to evaluate Idea 4, i.e., whether the practitioners share my observation that S knowledge
differences have more impact on a session than G knowledge differences and whether
there are other types of relevant knowledge.

• When time allows, I provide further details on the different ways how pairs can address
their knowledge gaps (Idea 5, Modes of knowledge transfer).

• Last, we discuss whether and how some of the proposed Practices 1 to 3 would fit in
the developers’ everyday work.

351

CHAPTER 13. EVALUATION

Context Format Length Participants Content

Company O Workshop 1/2 h 2×SM, 1×PO I1–I3, P1
Company P 1-on-1 Interview 1 h 1×SM I1–I3 & I5
Company P Workshop 2 h 6×D, 1×SM, 1×PO I1–I3 & I5, P1
Company Q 1-on-1 Interview 1 h 1×TM I1–I5, P1–P3
Company R Workshop 2 h 10×D, 2×TM, 1×SM I1–I4, P1

Company P Reflective Interview (3×) 1/2 h 2×D/interview (total: 3×D) I1–I3 & I5, P2–P3

Table 13.1: Member reflection activities with their format, length, numbers and roles of
participants (SM - ScrumMaster, PO - Product Owner, TM - TechnicalManager,D - Developer),
and discussed Ideas (I1–I5) and Practices (P1–P3).

I did not discuss all five Ideas and three Practices at all occasions; see Table 13.1 for a summary
of all my member reflection activities. In particular, I was involved with four companies:

• Company O: About one year after recording sessions OA1 to OA10, I talked to two
Scrum Masters and one Product Owner (who had formerly been head of development).

• Company P: At first, I had a 1-on-1 discussion with the Scrum Master (who has no
technical background, but a sociology degree). He was intrigued by my concepts and
organized a two-hour workshop with six developers, a product owner, and himself.
Later, I recorded four sessions (PA1 to PA4) and conducted three reflective interviews,
where I discussed the Ideas again and let the developers try out Practices 2 and 3 (set a
session goal and reflect on session trajectory).

• Company Q: Company Q is a consulting company and all software development is
done with pair programming. I performed a one-hour 1-on-1 interview (video call with
presentation) with a technical manager.

• Company R: This, too, is a consulting company. The Scrum Master from company P
got hired here and organized another two-hour team workshop. Ten developers, two
technical managers, and the Scrum Master participated.

13.2.3 Member Reflection Results

Below, I summarize my insights from the member reflection. I refer to participants by their
company and role (e.g., “P-SM” is company P’s Scrum Master). See Table 13.2 for an overview.

13.2.3 a) Ideas 1 & 2: S vs. G knowledge and Knowledge Needs

The two dimensions of S and G knowledge were understood in all discussions. The O-SMs
immediately started to characterize developers from their teams as to their typically available
S and G knowledge; O-PO used the dimensions to characterize recent difficulties across all
teams as a “collective G gap” . To Q-TM, the classic distinction of ‘expert vs. novice’ was “too
simplistic, too naive, offensive even” , whereas S and G knowledge “resonate better” , they “get
better to the heart of the matter” ; he found thinking about ‘Resolving an S-gap or a G-gap?’
more compelling than ‘Am I a novice?’.

Overall, I therefore consider these concepts to be understandable for practitioners and
useful for discussing pair programming. Nevertheless, I changed the name of one concept: The
former “knowledge level” is now called “Knowledge Need”, which serves the same purpose as
a concept, but has its polarity reversed. I explain this change in Section 13.2.4.

352

13.2.3 Member Reflection Results

13.2.3 b) Idea 3: Initial Constellations

The five discussed Initial Constellations were also quickly understood. O-SM and O-PO
independently identified Complementary Gaps as an interesting case, as the “most real and
valuable” pairing; O-PO, one P-D, andQ-TM immediately recognized it from recent experience
of working together with different roles (such as system administrator) or as a common
consulting theme. Q-TM had recent experience with four constellations, but not with Too-Big
Two-Fold Gap. Nevertheless, after just seeing the constellation Too-Big Two-Fold Gap, he
immediately figured that the pair would have a difficult session ahead of them: “Tricky, isn’t
it? The developers do not get very far.” I thus deem the concepts suitable for talking about pair
programming and comprehending PP situations with and without first-hand experience.

O-PO found it very useful to have names for the constellations. Q-TM said it would be
nice for developers to know these constellations in order to recognize them when they occur.
He also remarked, however, that names like “One-Sided S Gap” are “too technical” . I did not
change the names of the pair constellations, but the terms “Primary Gap”, “Secondary Gap”,
and “G Opportunity” were introduced to speak more to practitioners.

13.2.3 c) Idea 4: S over G knowledge

With consulting companies Q and R, I wanted to assess the importance of application domain
knowledge, a possible third type of “D knowledge”, which in my data only appeared in the
form of identifiers in the source code (see Section 7.3.1d). I asked the respective groups for
types of relevant knowledge in their setting before presenting my types of S and G knowledge.

I learned that D knowledge is seen to have little impact on PP session dynamics: Several
R-Ds explained that there are only small D knowledge differences within their team, but
sometimes gaps which only the (non-technical) client can fill. The far more serious issue is
their overall lack of S knowledge, as due to the legacy system, a pair member with a mid S Need
is already considered a rare ‘expert’. They pair-program to carefully build up and maintain
S knowledge. Their scenario illustrates the practical relevance of pair programming not only
to transfer existing knowledge but also to (re-)acquire new (or ‘lost’) knowledge together.

Q-TM ranked the problems imposed by G knowledge below those caused by lacks of D and
S knowledge because G knowledge can be hired if needed or be distributed in the team through
pair rotation.

Overall, I see support for the relative importance of S knowledge over G knowledge in PP
sessions and the suitability of PP to build up such knowledge.

13.2.3 d) Idea 5:Modes of Knowledge Transfer

The participants in the workshops and 1-on-1 interviews appeared to understand the different
Modes of knowledge transfer but did not seem to care much. There was, however, one incident
through which the involved developers came to appreciate the utility of the concepts.

A quick reminder on session PA3: Developer P3 was irritated because he did not see the
point of P1’s explanations which led to a tense situation (see Push Episode in Example 9.23).
I talked to both developers about this directly after the session. P3 stated that P1 would often
gives such “unwanted lectures” , not only in this instance, but also in sessions PA1 and PA2
(which P3 witnessed as an outsider) and in planning meetings. P3 told his colleague, “If I didn’t
know you better, I’d perceive this behavior as arrogant. Better wait until the other one asks.” , to
which P1 replied, “But there are topics for which the other one does not know yet that he should
be asking questions!” .

353

CHAPTER 13. EVALUATION

I pointed out to them that they just discovered the difference between an internal and
external Knowledge Want, or between the Pull and Push Mode. P3 then acknowledged
that many large and small explanations P1 provided (Push Episodes) were actually helpful, so
shunning P1 from doing this is not a viable option. It was my impression that it helped both
partners to have concrete terms to talk about what just happened. Their next session PA4 also
had many Push Episodes from P1 to P3, and none of them was as tense as Example 9.23.

13.2.3 e) Practice 1: Pair Forming

Many participants tended to like the idea of forming pairs based on Knowledge Needs, but
none of them reacted enthusiastically in this respect. Some raised practical concerns: O-PO
and P-PO said their teams are too small to regularly offer more than one pairing to choose
from. O-PO also believed all their pairings would have the same constellation.

Q-TM noted that developers would need to not only assess their Knowledge Needs but also
feel comfortable communicating it to their partner or team: Admitting to a large S Need might
be difficult for a seasoned developer. There was no opportunity to actually try out Practice 1,
but I expect the issue of social desirability bias, i.e., the tendency to present oneself conforming
to social norms (Zerbe & Paulhus, 1987), to be more of an issue than the inability to ‘correctly’
assess one’s Knowledge Needs. After all, the worst that could happen is becoming aware of a
previously unknown lack of knowledge—which is an improvement.

13.2.3 f) Practice 2: Set Session Goal

I asked the pair P1/P3 to discuss and plan their upcoming session PA4 by drawing onto a blank
G-S chart their Initial and Target Constellation. They quickly agreed on a One-Sided G Gap
(i.e., with no Primary and Secondary Gap) and the goal to work on P3’s G Need (regarding an
object-relational mapper). After the session, both explained that filling out the chart did not
affect their session, but could have, had there been discrepancies in their respective Knowledge
Need assessments to be resolved. In other words, the pair had a high Togetherness which
allowed them to correctly assess each other’s Knowledge Needs, and they considered the G-S
chart to be useful for pairs who understand their own, but not each other’s Knowledge Needs.

13.2.3 g) Practice 3: Reflect on Trajectory

In the reflective interviews after sessions PA1/PA2 (withP1/P2) andPA3 (withP1/P3), I asked the
developers to individually trace out and then discuss their trajectory without me intervening.
Both times, the pairs had actually seized theirGOpportunity but only remembered the Primary
and Secondary Gaps consistently. The G knowledge transfer then resurfaced during the
reflection (as P3 happily said when hearing P1’s version of session PA3: “Right, I totally forgot
about that. That was actually really cool.”), showing that developers do not remember everything
about their sessions and that reflecting on it can make it a more positive experience.

While the developers described their trajectories, I noticed that they understood the classes
of S and G knowledge as I intended, but struggled with the task-specificity of the Knowledge
Needs: They appeared to think of themselves having a relatively fixed, mostly experience-based
knowledge level with little changes over the course of a session. In the reflective interview for
sessions PA1/PA2, for instance, P2 said this about his drawing (see Figure 13.2b) after seeing
his partner’s version: “I drew this a bit like caricature, the arrows a bit larger.” As can be seen
in comparison with my tracing of the session (see Figure 13.2a), he did not exaggerate, but
appeared to have accidentally used the degrees of low, mid, and high as intended.

354

13.2.4 Summary and Consequences

S

GSessions PA1/PA2

P2

P1Session PA1

Session PA2

(a) Combined trajectories of sessions PA1
(starting with a One-Sided S Gap) and PA2
(starting with a Two-Sided S Gap and a
G Opportunity). I drew this diagram before
conducting the reflective interview with the
developers.

Knowledge Levels for Current Task

Sy
st
em

U
nd

er
st
an

di
ng

Programming and Technology Knowledge
lo
w

m
id

hi
gh

low mid high

(b) G-S chart filled out by developer P2 during the reflective
interview after sessions PA1/PA2 (before seeing my diagram).
Original German labels are translated to English.

Figure 13.2: Example of a developer reflecting on a recent PP session with a G-S chart
(before I renamed “knowledge levels” to “Knowledge Needs”). He remembered closing the
Primary Gap (S knowledge transfer from his partner), but not the Secondary Gap (collective
acquisition of S knowledge). Instead of a seized G Opportunity (transfer from his partner),
he remembered some collective acquisition of G knowledge.

13.2.4 Summary and Consequences

The only concept I felt was misunderstood is the task-specificity of a developer’s “knowledge
level”: O-PO saw all team members at the same knowledge levels, which is highly unlikely
(see Section 13.2.3e); P2 considered his trajectory to be exaggerated, which is was not (see
Section 13.2.3g). After session PA4, developer P1 added another remark that made me question
the notion of a “knowledge level”: He said he felt like “moving left” on the chart, which “could
not be” since that would mean to forget G knowledge. What P1 meant to say was that he
became aware of a knowledge gap where he did not expect one. From my analyses, I knew
already that developers are not aware of all their knowledge gaps at once (that is the difference
between a Knowledge Need and a Knowledge Want). But for P1, there was no way to fit this
into the concepts I explained to him. To address this issue, I changed the concept name from
“knowledge level” to “Knowledge Need” and flipped its direction (i.e., a ‘high knowledge level’
became a ‘low Knowledge Need’, and vice versa). I did not have the chance to ‘test’ the new
notion, but I expect it to be often better and never worse than the old formulation.

Overall, the concepts were well received and mostly understood by the practitioners, and
at least in one instance helped resolving a conflict between two developers who then had a
more enjoyable follow-up session together. The proposed practice of reflecting on a session
trajectory can help developers remember, appreciate, and possibly retain pieces of knowledge
that were acquired or transferred through pair programming. Although I did not observe it,
practitioners expect forming pairs based on their Knowledge Needs and setting a session goal to
also have positive effects.

355

CHAPTER 13. EVALUATION

Aspect Evaluation

Idea 1: S vs. G knowledge ✓

Idea 2: Knowledge Needs ✗

Idea 3: Initial Constellations ✓

Idea 4: S over G knowledge ✓

Idea 5:Modes of Knowledge Transfer ✓

Practice 1: Pair Forming (✓)
Practice 2: Set Session Goal (✓)
Practice 3: Reflect on Trajectory ✓

Table 13.2: Summary of member reflection. In particular: Which Ideas were understood and
perceived as meaningful, which Practices are actionable and beneficial?

13.3 Eight Criteria forQualitative Research

Tracy (2010) compiled eight general quality criteria for qualitative research. Each of the subsec-
tions to follow begins with a formulation of her criteria that is reduced to the aspects relevant
for the goals of my work, that is, to identify and describe mechanisms of knowledge transfer
in pair programming that are relevant for industrial practitioners.

13.3.1 Worthy Topic

The research topic needs to be relevant, significant, and interesting.

The applications of software engineering research are often bound to some technology or type
of software development (such as artificial intelligence, open source software development, or
mobile development), or limited to a small range of software development tasks (such as test
case generation or build-infrastructure maintenance). While many of these are or may become
relevant to everyday industrial software development, their scope is yet limited.

Pair programming, in contrast, is a way of developing software that is amendable to every
aspect of software development in all application domains, regardless of concrete technology.
Althoughmeaningful numbers are difficult to obtain, at least one third of all software developers
work in pairs at least some of their time (see Section 2.3.1b). They expect a number of positive
effects in terms of higher technical quality and developer abilities and team processes, many
of which directly relate to the transfer and/or collaborative acquisition of knowledge (see
Section 2.3.1c).

For researchers, the question of whether or not pair programming is ‘worth doing’ is
answered with “it depends”. But on what it depends, what actually happens during pair pro-
gramming, and how observable effects come to be is not fully understood (see Section 2.3.5).

Given the universality of the practice and the central role of knowledge in both software
development in general and pair programming in particular, I deem knowledge transfer in pair
programming to be a quite worthy topic.

356

13.3.2 Rich Rigor

13.3.2 Rich Rigor

Analyze enough appropriate data to allow for complex and rich explanations.

As Tracy (2010, p. 841) summarizes, richness comes from a variety of data sources and contexts.
The basis of my in-depth qualitative analysis were 27 recorded pair programming sessions
(plus dozens of questionnaire sheets and fieldnotes from observations and interviews) that
were collected in ten different industrial contexts (see Section 4.3.4d and Tables 4.2 and 4.3).

In total, the session material has a length of about 40 hours. On the one hand, this is a
limited data set which only represents a small fraction of the respective teams’ social reality.
On the other hand, however, this data is rich in another sense described by Tracy (ibid., p. 841):
It allows to “see nuance and complexity” . As the recurring example from the beginning of
session JA1 illustrates, just a couple of minutes of pair programming contains many different
phenomena, which become visible through the different analytic angles I took in the results
chapters. Most of the over 100 other examples in this document I only used to illustrate a single
type of phenomenon, but they have much more depth and could serve to illustrate many other
phenomena as well. The verbatim parts of all examples cover about two hours; there are many
more analyzed instances for the reported concepts, which I did not include in here.

The nuances and complexity of the examples are met by my concepts: Most of them have
meaningful substructures, such as the five types of Explanation Elicitors (see Section 8.2) or
the seven types of outcomes of knowledge transfer Episodes (see Section 9.2.2), and they are
densely connected (as the many cross-references indicate).

13.3.3 Sincerity

The researcher’s role is transparent, including biases, goals, mistakes, etc.

In Chapters 4 and 12, I discuss the blueprint of my research and the actual research process.
I highlight some key aspects below.

Goal, Bias, and Mistakes My goal was to (a) understand knowledge transfer in pair program-
ming and (b) to formulate relevant advice for practitioners. For some time during my research,
part (a) was my main goal. This focus led to the frustration of not being able to find behavioral
patterns and anti-patterns through analyzing pre-recorded data alone (Sections 4.2.2, 12.6,
and 12.7). I cannot know whether shifting my attention to part (b) earlier would have helped
me, but after collecting new data and spending more time with practitioners, the pieces began
to come together (Sections 12.8 and 12.9). I am a software developer myself and enjoyed talking
to my participants not only about pair programming but also about software development
in general. This helped establishing trust for data collection (Section 4.3.2f) and provided me
with more context information for interpretation (Sections 4.5.1b and 4.5.2c).

Transparency I described in detail . . .
• . . . where the analyzed data comes from, who else was involved in collecting it, and what
the limitations and unintended effects of the data collection were (Section 4.3);

• . . . how I analyzed the data (Section 4.5);
• . . . the many steps I have taken to arrive at the Grounded Theory presented in this thesis
(Chapter 12); and

• . . . how practitioners reflected on my findings (Section 13.2).

357

CHAPTER 13. EVALUATION

13.3.4 Credibility

Results are trustworthy enough for readers to act on them.

Thick Descriptions The first of two approaches I chose to achieve this goal are thick de-
scriptions (Tracy, 2010, p. 843) with plenty of concrete detail in the well over 100 examples
throughout this thesis. This approach is geared towards readers of this document, who should
be able to immerse themselves into the scenes I described. The underlying idea is to show
rather than tell, allowing readers to come to their own conclusions (ibid., p. 843). Of course, I
report my conclusions as well, but I tried to keep them separate from the descriptions.

Member Reflections The second approach addresses the intended recipients of my research
results: Software developers. I performed member reflection (ibid., p. 844) by discussing theo-
retical concepts and three possible practical applications as described in Section 13.2. Most of
the discussed concepts (S vs. G knowledge, Knowledge Needs, Initial Constellations, S over
G knowledge, andModes of knowledge transfer) were understood and considered valuable
vocabulary for talking about pair programming. In the only instance where I had doubts the
participants understood the nuances as intended, I renamed the concept accordingly from
formerly “knowledge levels” to “Knowledge Needs” to better reflect its task-specificity.

Among the discussed practical applications, reflecting on a session trajectory helped devel-
opers remember and appreciate knowledge they had transferred in their PP session. Although
I did not observe effects of two further ideas in practice, forming pairs based on Knowledge
Needs and setting a session goal, developers expected them to be useful, too.

13.3.5 Resonance

The research influences, affects, or moves the reader through transferability.

Transferability As Tracy (2010, p. 845) puts it, the reader should be able to “intuitively transfer
the research to their own action.”

From the workshops and interviews in four companies I know that practitioners find the
topic of knowledge transfer in pair programming and my observations interesting, and want to
embed them in their daily work (see Section 13.2). I can clearly say that my research resonates
with practitioners.

As for this particular piece of writing, I took great care of making my thesis accessible
despite its sheer volume and level of detail. Although I cannot assess the effect of these efforts,
I went though multiple iterations on how to present my examples until I found the final style.
I hope that the way of presenting concrete data allows readers with a practical background to
see similarities to their own context, even if they did not take part in one of my workshops.

13.3.6 Significant Contribution

The research extends knowledge, improves practice, or generates research ideas.

Theoretical Significance There are a number of findings that may affect future PP research:
• Prior pair programming publications regarding industrial practice, such as surveys or
reports written by practitioners, often suffer from unclear terminology. Future work
should consider the following conceptual distinctions:

358

13.3.6 Significant Contribution

– Surveys on adoption rates are often difficult to interpret because two meanings
of “pair programming” are conflated: Pair programming as a work mode, i.e., the
occasional, possibly ad hoc collaboration; and pair programming as a practice, which
is a strategic decision of when and how to pair (Sections 2.3.1a and 2.3.1b).

– Discussions of potential PP benefits are often vague—e.g., in treating “permanent
review” and “higher quality” as conceptually equal and independent aspects—and
confuse observable effects and underlying mechanisms (Section 2.3.1c).

• I applied and extended the ideas and concepts base layer for qualitative pair programming
research (Salinger & Prechelt, 2013). I introduced base coding as a technique to augment
open coding from the Grounded Theory Methodology (Section 4.5.2b) and I refined the
base concepts by introducing a new property: the conversational role (Section 6.2.2).

• I found very little indication that having the keyboard affects the behavior of pair pro-
grammers. There was only one developer who would have preferred to look at the source
code himself, but instead asked his partner sitting near the keyboard to open certain files
(i.e., instead of Pioneering, he Pulled, see Section 9.3.3). This supports earlier findings
by Bryant et al. (2008): ‘Driver’ and ‘navigator’ are not appropriate for explaining what
pair programming is.

• My counterproposal to explain what makes two software developers a pair is the notion
of Togetherness (Chapter 6). Higher Togetherness allows for a better pair process Fluency.
Pairs may find themselves in situations where they need to activelyMaintain Togetherness
regarding the following fives aspects: Shared understanding of the software system, shared
understanding of software development, one shared plan, workspace awareness, and no
language barrier. Communication is key for all of these.

• In pair programming sessions, the ‘transfer’ of existing knowledge and the collaborative
acquisition of new knowledge are not separate concerns, but actually deeply intertwined
(Chapter 9). Both occur across and throughout PP sessions (Sections 11.3 and 11.4).

• I have shown that the often-used notions of ‘expert’ and ‘novice’ are not appropriate for
characterizing the pair programming behavior of software developers (Section 11.2).

• Finally, I can provide a two-part explanation for why previous PP studies, especially
controlled experiments, yielded little insight despite decades of research (Section 2.3.5):
First, acquiring and transferring system or S knowledge is a large and important part
of industrial PP sessions (Section 11.4). This aspect of pair programming is completely
missing when experimental subjects work on small and isolated tasks. Second, pairs’
process Fluency can vary between Focus Phases and Breakdowns, depending on how
well the developers maintain their Togetherness throughout their session. Studies which
only measure time and code quality could not see this.

There are further topics and open questions that arise from my research on pair programming
which I deem relevant and interesting. I summarize them in Section 14.3.

Practical Significance For my research, practical significance was an important and explicit
goal (see Section 4.2.2). I already discussed that my results were well received by practitioners
in four companies. There are more practical results which go beyond the concrete feedback I
received through the member reflection activities summarized in Section 13.2:

• My interaction with the developers made the teams aware of how little thought they had
previously put into what their pair programming practice actually entails.
The management of company O, for instance, considers themselves an all-PP company.
They were in a period of hiring many developers, and saw mandating everybody to
work in pairs combined with regular shuffling of teams as a replacement for a structured
on-boarding process. However, what I saw over a four-week period were only some

359

CHAPTER 13. EVALUATION

PP sessions and a widespread lack of technology knowledge, which the Scrum Masters
became aware of through my research activities.
In company P, product owner and developers expected pair programming to yield “all
the benefits” , but had no priority: Better design, fewer defects, faster progress, transfer
of knowledge, and enjoyable work were all equally important, and each PP session was
expected to have these effects. My workshop made them reconsider their priorities.

• I sent the Scrum Masters in company O an early draft of my findings (in particular
Chapters 6 and 11), and they asked whether they could forward it to select team members
as a recommended reading for professional growth (which they did at least twice).

• Even the ad hoc feedback I could give in the reflective interviews shortly after a session
recording appears to resonate well with practitioners: Although there were six months
between the reflective interviews for sessions KB1/KB2 and KC1/KC2, both developers
K2 and K3 could remember what we talked about the first time.
Developers from companies K, O, and P specifically asked me for recordings of the
reflective interviews and/ or their own PP sessions (which I provided to them).

It is my impression that my discussions with the practitioners made them reflect on their
work, motivated discussions on which PP effects they actually care about, and made them
see forming pairs considerately, setting sessions goals, and reflecting on recent PP sessions as
opportunities to achieve these effects.

13.3.7 Ethics

Effects of research actions on subjects and others are considered.

Procedural Ethics All participation was based on informed consent (see page 146); no com-
pany or developer is identified by name in any publication (Section 4.3.2h). In addition, no
personal information from particular PP sessions or reflective interviews was conveyed to
colleagues or superiors (Section 4.3.2e).

Relational Ethics The reflective interviews and workshops were meant to give something
back to the developers, even before I performed any in-depth analysis (Sections 4.3.2e and 4.3.2g).
Additionally, I made session recordings and recordings of the reflective interviews available to
the respective developers in those cases they were interested (companies K, O, and P).

13.3.8 Meaningful Coherence

Theoretical framework, research method, and goals are aligned.

Straussian Grounded Theory Methodology as such is based on a positivist epistemology
(see Section 3.3.4a) which contrasts with my constructivist epistemological stance (see Sec-
tion 4.5.1b). However, as Charmaz (2006, p. 9) argues, many of the practical research elements of
Straussian GTM are neutral to the researcher’s epistemology. In particular, I found the coding
practices to break up the data, to consider behavior in context with causes and consequences,
and to integrate everything to a meaningful whole (i.e., open, axial, and selective coding) to be
well applicable for my research. The necessary methodological extensions are described in
Sections 3.4 and 4.3.3.

To ensure coherence beyond my own work, I integrated my findings with existing concepts
found in various literature at the end of most results chapters (Sections 6.5, 7.4, 9.7, and 11.5.1).

360

Chapter 14 Conclusion and Further Work
My goal was to understand how knowledge transfer in pair programming (PP) works and to
formulate results that are meaningful to practitioners. I qualitatively analyzed 27 industrial
PP sessions from ten companies and developed grounded theoretical concepts starting from
individual utterances over knowledge transfer episodes and to whole sessions. I validated the
high-level concepts with practitioners in four companies, none of which pointed to miss-
ing relevant elements. I therefore consider my overall theory of knowledge transfer in pair
programming to be theoretically saturated.

I summarize my research contributions and advice for practitioners in Sections 14.1
and 14.2; I propose directions for further work in Section 14.3.

14.1 Research Contributions
• An extensive review of practitioner and scientific literature on PP effectiveness, influ-
ence of knowledge, task types, and pair constellations, showing that the often employed
quantitative methods do not explain the observable effects and that qualitative approaches
are needed to understand the underlying processes and mechanisms (Section 2.3).

• A refined qualitative research process for collecting and analyzing data to understand
pair programming process phenomena based on video recordings (Sections 4.3 and 4.5).

• The first detailed description of Focus Phases of high productivity, which occur in some
pair programming sessions and had been reported by other sources before, as well as
their antagonist, the Breakdown, which had not been reported before (Section 6.3).

• The concept of Togetherness to describe what makes two software developers work
together as a pair. Handling its five factors well can lead to Focus Phases—and to Break-
downswhen not: Making sure to have a shared understanding of the system and of software
development in general, as well as maintaining one shared plan, and possibly dealing with
workspace awareness and a language barrier (Section 6.4). Prior PP research mostly did not
consider the pairs’ processes; differences in Togetherness might explain the effectiveness
variations observed in experiments.

• A taxonomy of Topics that are actually addressed in industrial pair programming sessions:
By far the most knowledge transfer pertains to system-specific S knowledge and only
some to general software development knowledge, or G knowledge (Section 7.3.1).

• The notion of knowledge transfer during pair programming being structured in Episodes:
During each, the pair pursues a Topic in one of six knowledge transfer Modes, i.e., Push,
Pull, Parallel or Co-Production, Silent or Talking Pioneering (Chapter 9).

• A characterization of pairs that is not based on hard-to-agree-on global developer expertise
(no ‘expert/novice’), but on task-specific Knowledge Needs (Sections 11.2 and 11.3).

• A Grounded Theory of PP session dynamics of pairs acquiring and transferring knowl-
edge: A relative difference in task-relevant S knowledge is addressed first; a relative
difference in task-relevant G knowledge is hardly a problem, and may even pose an
opportunity to transfer such knowledge after the pair acquired enough S knowledge to
work on the task (Section 11.4). Prior PP research, in which subjects often worked with
unknown systems or none, could not have observed this industrially relevant dynamic.

361

CHAPTER 14. CONCLUSION AND FURTHER WORK

14.2 Practical Applications

These pieces of advice were condensed frommy observations and address practitioners directly.

14.2.1 Maintain Togetherness

During pair programming, you and your partner want to work as a pair to possibly achieve the
benefits of better design, fewer defects, faster progress, knowledge transfer, and more enjoyable
work. This Togetherness, however, needs to beMaintained throughout a PP session. There are
some problematic signs to look out for:

• You do not understand the intentions behind your partner’s utterances and actions. Also:
You feel like your partner does not understand your intentions, e.g., she may take longer
than normal to react, her reaction may not match your actions, or she may not react at all.

• You cannot evaluate a proposal your partner made. Also: Your partner does not evaluate
your proposal, or makes a proposal of her own without addressing yours.

These are all conversational defects and they are worth clearing up. Not all defects are necessarily
problematic, but they may point to underlying problems such as:

• Lack of Shared SystemUnderstanding: You and your partner have no commonmental
model of the software system, no common way of referring to its parts and aspects.

• Lack of Shared Understanding of Software Development: You and your partner
have no common toolkit (e.g., known libraries or tools) or way of approaching certain
types of programming tasks and issues (e.g., writing tests before production code or using
a debugger).

• No Shared Plan: You and your partner do not have a common conception of what steps
to take to achieve which goal and where you are in the process.

• Limited Workspace Awareness: You and your partner cannot fully perceive each
other’s actions in the code editor, see and read the same things on the screen, or no-
tice what each of you is looking at.

• Language Barrier: You and your partner may have difficulties expressing or understand-
ing each other thoughts on a phonetic, lexical, or semantic level. Even within the same
natural language, words and phrases do not mean the same to everyone.

All these problems reduce your Togetherness, but all can be mitigated by communicating
explicitly. Not every PP session will have problems in each area, but too many unhandled
problems might result in a Breakdown of the pair process, which then has none of the expected
benefits and may be even worse than working alone. Addressing all the areas, however, might
lead to a Focus Phase where you and your partner complete each other’s thoughts and make
fast progress.
Further Reading: Chapter 6 on Process Fluency and Pair Togetherness.

14.2.2 One Topic at a Time

Sometimes during a session, there are multiple things you want to understand or clarify at
once, especially since there are two members in a pair who may want to pursue different
topics. Experienced pairs manage to temporarily Limit their Scope such that only one topic
is relevant at every given moment. Once they are done with it, they Return Explicitly to the
original topic to make sure to not lose track. Unexperienced pairs, however, may start new
lines of inquiry whenever something catches their attention, which leads to many expensive
context switches and makes backtracking more difficult.
Further Reading: Chapter 10 on Patterns of Episodes.

362

14.2.3 Choose Mode of Knowledge Transfer

14.2.3 Choose Mode of Knowledge Transfer

There are different styles for transferring existing knowledge and for acquiring new knowledge.
Depending on the situation and your preferences, there are differentModes to choose from:

• Pull vs. Push: Knowledge which one partner already possess can be transferred either
by a series of questions from the developer in need (Pull) or by explanations driven by
the more knowledgeable pair member (Push). Pushing has the advantage that it may
transfer knowledge whose lack the partner was not yet even aware of, which can also be
confusing for her if the point of the push does not become clear soon.
Some developers may also have difficulties giving pro-active explanations in push mode.
Switching to an interview-style pull mode might help those pairs.

• Co-Production vs. Pioneering Production: Lacking knowledge can also be acquired
through reading source code, using a debugger, or interacting with the application. Often,
both partners are interested in the topic and engage in Co-Producing the knowledge. In
case one partner is less interested, however, the other may Pioneer for a moment until
she is satisfied and then continue to work together.

• Silent Pioneer vs. Talking Pioneer: Some developers prefer to read source code for
themselves (Pioneer), even if their partner could explain it to them. If you decide to do
this as a pair, the reader should be a Talking Pioneer, that is, to make clear what she is
looking for and what she understood so far, so her partner can validate her findings and
give useful pointers when the time is right. A Silent Pioneer, in contrast, makes it more
difficult for the partner to follow along.

Further Reading: Chapter 9 on Episodes of Knowledge Transfer.

14.2.4 Embed Pair Programming Sessions in the Team Process

Before the Session Consider the technical task and the knowledge it requires about the soft-
ware system as such and about software development in general (e.g., frameworks, technology
stack, design patterns, testing strategies): What are your Knowledge Needs, i.e., what relevant
knowledge does either of you not yet possess? Are there One-Sided Gaps where one of you
knows more about some area, or Two-Sided Gaps where both of you lack knowledge?

A setting of Complementary Gaps can be mutually beneficial, because both partners can
bring in some knowledge advantage. If your pair constellation is not yet complementary,
maybe the task can be amended in a way that both partners’ respective expertise can come
into play, e.g., by keeping an eye open for code smells and possible refactorings.

A Two-Sided Gap regarding general software development knowledge, e.g., where both of
you do not understand some technology, will probably not make for a good PP session if you
also try to work on a technical task. Better choose a different task and/or pairing.

Discuss which Knowledge Needs you want to address in your session. Understanding the
task-relevant parts of the software system is usually required for both of you, but sometimes
only one needs to continue with the task and an unclosed One-Sided Gap may be tolerable.

After the Session Reflect on what either of you learned. Chances are that each of you
remembers different episodes. Together, you get a fuller appreciation of which knowledge you
transferred and acquired, and where newly discovered knowledge gaps are.

Further Reading:Chapter 11 on Session Dynamics and Section 13.2 on Preparing and Reflecting
on a PP Session.

363

CHAPTER 14. CONCLUSION AND FURTHER WORK

14.3 Further Work

My work is done, but there is more to do. The following two areas for further investigation
occurred to me while considering the limitations inherent to my data (Section 4.3.4):

Ad-hoc Pairings I have no idea in which regards spontaneous pairings are different from
the at least half-planned sessions that ended up in the recordings repository. Recording such
sessions would probably require an always-on setup to get rid of session start-up times (similar
to what Socha et al., 2015, 2016, did, see page 144).

Application Domain Knowledge Developers in consulting may encounter new domain
concepts more often than my pairs, who work in their company’s own product. Knowledge
Needs of this type might influence pairs in different ways than S and G knowledge do.

Just as I used the base layer (Salinger & Prechelt, 2013), further pair programming research
may build upon my methods and concepts. Based on interesting phenomena I have seen in my
data but not analyzed, I deem the following two areas particularly relevant and insightful:

Fluency and Togetherness The Fluency of most analyzed sessions was normal, with both
Breakdowns and Focus Phases being the exception. I do not think that splitting up the Fluency
concept into more than these three levels is useful: Even though the appearance of normal
PP process varies across sessions, these differences do not appear to matter much. Almost all
analyzed pairs manage to achieve something useful in their sessions, with not many avoidable
detours along the way. There are, however, three directions I consider useful:

• Focus Phases appear highly productive and enjoyable. But: Is there an actual difference
between sessions with and without Focus Phases, or are they just an occasional side-effect
of high Togetherness? If they are desirable, is there anything pair programmers can do
(e.g., more strict Scope Limiting) to get more and longer Focus Phases?

• Similarly, further types of Breakdowns are worth investigating. I heard anecdotes about
terrible pair sessions, but none of my recorded sessions came close to those stories.
Assuming these stories are not over-dramatized, there appear to be practically relevant
ways how PP can go ‘wrong’ which my concepts cannot describe.

• Finally, I only considered how pairs Maintain Togetherness regarding two factors:
Shared system understanding and shared understanding of software development. I provide
initial observations on how pairs deal with language barrier, workspace awareness, and
one shared plan in Section 6.4.4. There might also be more factors influencing a pair’s
Togetherness besides the five I identified.

Decision Making The Episode concept can easily be transferred to other process aspects of
pair programming, such as discussing design decisions. I also expect the Propellor concept to
be applicable (i.e., one or possibly both developer(s) being active rather than reactive), and
differentModes to exist, in particular something Push-like where one developer pitches an
idea, and something Co-Production-like where both partner go back and forth on something.
Similarly, the patterns of Branching Wildly, Scope Limiting, and Returning Explicitly strike
me as not necessarily specific to knowledge transfer.

Years of qualitative research and building on the base layer led to the concept of Togetherness.
Its five factors appear central to fully understanding how pair programming works: maintaining
(1) a shared understanding of the system and of (2) software development, (3) one shared
plan, (4) good workspace awareness, and (5) dealing with any language barrier. My Grounded
Theory of knowledge transfer explains the mechanisms of the first two factors to a degree that
is enabling and meaningful to practitioners; the foundation for the other three has been laid.

364

❖

Appendices

365

Appendix A Own Publications

While working on this thesis, I (co-)authored a number of publications. Here, I list those that
relate to my doctoral research and explain their relationship to parts of this document:

1. Stephan Salinger, Franz Zieris, & Lutz Prechelt (2013). “Liberating Pair Programming Re-
search from the Oppressive Driver/Observer Regime.” In: Proc. 35th Int’l. Conf. on Software
Engineering. ICSE ’13 (NIER). IEEE, pp. 1201–1204. doi: 10.1109/ICSE.2013.6606678
We started developing a catalogue of empirically grounded roles for a richer characterization
than the terms ‘driver’ and ‘navigator’ allowed (see my discussion page 83). We only
analyzed one session (CA1) and did not further this line of investigation. The idea behind
the role of the “task expert” , however, would later resurface as the S Need of a developer
(Section 11.2.1): A task expert is a pair member with a low S Need.

2. Franz Zieris & Lutz Prechelt (2014). “On Knowledge Transfer Skill in Pair Programming.”
In: Proc. 8th ACM/IEEE Int’l. Symp. on Empirical Software Engineering and Measurement.
ESEM ’14. ACM. doi: 10.1145/2652524.2652529
We introduce many of the basic concepts: Target Content and Topic (Section 7.3); Expla-
nation Elicitors (called “explanation triggers” back then), the Clarification Cascade, and
Explanations (Chapter 8); and the notion of Episodes having a Propellor and being carried
out in one of severalModes (Chapter 9).
We also report the first elements of the “subtle skill” that is pair programming (in the spirit of
Beck, 1999, p. 100) which would eventually lead the low-level concepts of conversational
defects and corrective activities (Section 6.2), and also the high-level concepts of Scope
Limiting and Returning Explicitly (Chapter 10).

3. Lutz Prechelt, Franz Zieris, & Holger Schmeisky (2015). “Difficulty Factors of Obtaining Ac-
cess for Empirical Studies in Industry.” In: 2015 IEEE/ACM 3rd Int’l. Workshop on Conducting
Empirical Studies in Industry. CESI ’15. IEEE, pp. 19–25. doi: 10.1109/cesi.2015.11
We report on our experience of conducting pair programming research in the field, in
particular the idea of recording naturalistic sessions, maintaining a session repository, and
offering reflection interviews to the recorded developers (Section 4.3.2).

4. Franz Zieris (2015). “Qualitative Analysis of Knowledge Transfer in Pair Programming.”
In: 2015 IEEE/ACM 37th IEEE Int’l. Conf. on Software Engineering. ICSE ’15 (Doctoral
Symposium). IEEE, pp. 855–858. doi: 10.1109/icse.2015.277
I present an earlier version of my research process (Sections 4.3.2 and 4.3.3d) and sum-
marize the basic concepts of the time: the knowledge transferModes (Chapter 9) and the
Clarification Cascade (Section 8.2.1c).

367

https://doi.org/10.1109/ICSE.2013.6606678
https://doi.org/10.1145/2652524.2652529
https://doi.org/10.1109/cesi.2015.11
https://doi.org/10.1109/icse.2015.277

APPENDIX A. OWN PUBLICATIONS

5. Lutz Prechelt, Holger Schmeisky, & Franz Zieris (2016). “Quality Experience: A Grounded
Theory of Successful Agile Projects without Dedicated Testers.” In: Proc. 38th Int’l. Conf. on
Software Engineering. ICSE ’16. ACM, pp. 1017–1027. doi: 10.1145/2884781.2884789
We report a GroundedTheory on a team-level phenomenon. I supervisedHolger Schmeisky’s
master’s thesis, during which he collected data in three teams in two companies, and I
advised him in qualitative data analysis. This line of work later lead to the data collection
and recording of pair programming sessions in company N (Section 4.3.1 and Tables 4.1
and 4.2).

6. Franz Zieris & Lutz Prechelt (2016). “Observations on Knowledge Transfer of Professional
Software Developers During Pair Programming.” In: Proc. 38th Int’l. Conf. on Software
Engineering Companion. ICSE ’16 (SEIP). ACM, pp. 242–250. doi: 10.1145/2889160.2889249
We introduce the notion of pair members being motivated to transfer knowledge by internal
or external Knowledge Wants (called “knowledge need” then, Section 7.2) and that pairs
Maintain Togetherness (called “resychronization” then, Section 6.4.4).

7. Franz Zieris & Lutz Prechelt (2019). “Does Pair Programming Pay Off?” In: Rethinking
Productivity in Software Engineering. Ed. by Caitlin Sadowksi & Thomas Zimmermann.
Apress. Chap. 21. doi: 10.1007/978-1-4842-4221-6_21
This is a non-scientific publication for a practitioner audience. We summarize the Focus
Phase of pair C3/C4 (see Section 6.3.3), distinguish S knowledge and G knowledge (see
Section 7.3.1), and discuss three pair constellations One-Sided S Gap, Two-Sided S Gap,
and Complementary Gaps (see Sections 11.4.2 to 11.4.4).

8. Franz Zieris & Lutz Prechelt (2020b). PP-ind: A Repository of Industrial Pair Programming
Session Recordings. arXiv: 2002.03121v3 [cs.SE]
This technical report describes the repository of all recorded PP sessions and how the
data was collected. I wrote the report after Chapter 4 and reused several passages from
my thesis in the report, in particular: Sections 4.2.3a and 4.2.3c on the basic decision to
record and analyze PP sessions of professionals; Sections 4.3.2a to 4.3.2c on the general
description of the data collection protocol; and Sections 4.3.1 and 4.3.4 on how different
research interests reflect on otherwise neutral data collection.

9. Franz Zieris & Lutz Prechelt (2020a). “Explaining Pair Programming Session Dynamics
from Knowledge Gaps.” In: Proc. 42nd Int’l. Conf. on Software Engineering. ICSE ’20. ACM.
doi: 10.1145/3377811.3380925
This is the paper version of Chapter 11 and Section 13.2. The paper was written after the
thesis parts.

10. Franz Zieris (2020). “When Grounded Theory is Not Enough: Additions for Video-Based
Analyses of Software Engineering Process Phenomena.” In: Software Engineering 2020,
Fachtagung des GI-Fachbereichs Softwaretechnik, 24.–28. Februar 2020, Innsbruck, Österreich.
Ed. by Michael Felderer et al. SE ’20, pp. 153–154. doi: 10.18420/SE2020_47
This is not a reviewed publication, but (the extended abstract for) a talk I gave at the SE
2020 conference. I presented my considerations of the limitations of Straussian GTM in the
context of video-based analysis of software development process phenomena. Sections 3.3.5
and 4.6 formed the basis for that presentation.

368

https://doi.org/10.1145/2884781.2884789
https://doi.org/10.1145/2889160.2889249
https://doi.org/10.1007/978-1-4842-4221-6_21
https://arxiv.org/abs/2002.03121v3
https://doi.org/10.1145/3377811.3380925
https://doi.org/10.18420/SE2020_47

Year Data Collection Publications

Students Industry

2004

2007

2008

2011

2012

2013

2014

2015

2016

2018

2020

ZA
ZB
⋮ A, B

C, D,
E, F

J, K, L

M

N, O

P

Salinger, Plonka, &
Prechelt (2008)

Plonka et al. (2011)

Plonka et al. (2012b)

Plonka et al. (2012a)

Plonka et al. (2015)

Plonka (2012)

Salinger (2013)

Salinger & Prechelt (2013)

Salinger, Zieris, &
Prechelt (2013)

Schenk, Prechelt, &
Salinger (2014)

Schenk (2018)

Zieris & Prechelt (2014)

Zieris & Prechelt (2016)

Zieris & Prechelt (2020a) Zieris (2020)
(this document)

Z*

CA1–5, CB1, DA2–6,

EA1–7, FA1–4

BA1, CA2, ZB7

JA2–9

CA1–2

CA2–5, DA2,

JA1–2, KA1, KB1

AA1, BA1, CA1–5, DA2,

EA1, JA1–2, KA1, KB1

AA1, BA1–BB3, CA1–5, DA2, EA1, JA1–2, MA1,

KA1, KB1, KC1–2, OA1-2, OA5, OA8, PA1–4

Figure A.1: Timeline of data collection and major scientific publications originating in my research group, including my own work. Arrows between publications
() indicate reuse of ideas or building on results; arrows from data collection () indicate which PP sessions were analyzed. PhD theses are set bold.

369

APPENDIX A. OWN PUBLICATIONS

370

Appendix B Transcription Notation
In Section 4.5.2a, I described when and how I transcribed developer utterances from the pair
programming sessions. My notation is based on that of Salinger (2013, pp. 451–459), but I
amended it slightly. The following Table B.1 explains all notational elements used throughout
the examples in this thesis.

Purpose Notation Example

Emphasis, notable stress in
the utterance

Underlined “Do we have to do it now?”

Non-literal speech (quota-
tions and figurative speech)

In single quotes “You said ‘Let’s start over’, right?”

Low voice In parentheses “We could do this, (if we wanted).”

Unintelligble word(s) Tilde in parentheses “The (~) component.”

Speech pauses Parenthesized dots (one per
second)

“This is (. .) weird.”

Computer interaction (e.g.,
typing and clicking)

Parenthesized commas (one
per second)

“Meh (, , ,).”

References to source code
identifiers

Typewriter font “Let’s open class FooBar.”

Self-interruption Three dots in parentheses
with single bangs

“We need to (!...!) we have to change
this.”

Interrupt by the partner Three dots in parentheses
with double bangs

“Could you open the (‼...‼).”

Cross-Talk, speaking over
each other’s turns

Partner utterances in paren-
theses with double bangs

“This seems like (‼Why don’t we‼) like
a bad idea.”

Quasi-utterance, reading
screen contents aloud

In parentheses with pound
signs

“And then (#deleteFile#), that one.”

Quasi-utterance, speaking
while typing

In parentheses with double
pound signs

“Here we need (##this.file##).”

Actions, things the develop-
ers do

In angled brackets with
asteriks

“This <*looks to partner*> doesn’t work
anymore.”

Paraverbal, almost like
speech

In angled brackets “Oh <laughs> we need to delete this as
well.”

Anonymization In angled brackets with
double asteriks

“We should talk to <**lead developer**>
about this.”

Table B.1: Transcription notation. Note that the developers spoke German in most sessions
whereas identifiers in the source code are usually English. Since the developers incorporate
them naturally in their speech as a means of “conversational code switching” (Gumperz, 1982,
Ch. 4), they can actually ‘hear’ the mono-spaced font.

371

APPENDIX B. TRANSCRIPTION NOTATION

372

Appendix C Pair Programming Sessions
Here I provide short descriptions for all 27 analyzed PP sessions (see also Table 4.3), additional
annotated excerpts with more detail for some concepts discussed in the main text, and the
untranslated transcripts (i.e.,most of them in German, some in English) of all verbatim examples
in chronological order with backlinks to the examples they were used in. Not all analyzed data
has been transcribed (see Section 4.5.2a); see Appendix B for the transcript notation.

Part of this material was also analyzed by Plonka (2012), Salinger (2013), and Schenk (2018).
I provide an overview in Appendix C.23.

C.1 Session AA1

Experienced developers A1 and A2 work in a web-based content management system (CMS)
for 2:30 hours to fix inconsistencies across different list views. They work both in the frontend
code (written in Java) and in the backend code (written in Objective-C). They know their
code base well, but still spend some time along to way to understand its peculiarities. See
Section 4.4.1 for more details.

C.1.1 Focus Phases #4, #5, and #6

I discussed Focus Phases in Section 6.3.3 by using one example from session CA5which mainly
consists of deleting source code. Here, I provide three additional instances from the end of
session AA1 in less analytic detail: Two revolve around editing existing code, the third is
entirely verbal and no source code is changed.

Example C.1: Focus Phase #4 (AA1, 1:53:20–1:54:56)
Prior to this excerpt, the pair added a new parameter to a method signature. Now, they introduce
the parameter at one invocation and then a replace fixed value with function call (two times). Both
times, they (a) get an Object from a String-indexed map, (b) cast it to String and (c) convert
the result to boolean. One index is already named while the other is not, so they introduce a
named index in the form of a Java class constant.

274 return new CMReminder(manager.getObjectHandle(objectId), from, comment, objectType, path,
275 false, recipients); // FIXME: isMirror

Figure C.1: Relevant excerpts of the Java code before Focus Phase #4

The pairs starts with using an existing named index for the first case to get a value from the map
(step a) and convert it to boolean (step c). Then, they consider the second case.

(1) A1: “Now we have the other, that’s still broken.”

(2) A2: <*navigates to other constructor call*>

(3) A1: “Yes, and we have to put something in there.”

(4) A2: “It has to be both.”

(5) A1: “It has to take care of both somehow.”

(6) A2: “We already had something (!...!)”

373

APPENDIX C. PAIR PROGRAMMING SESSIONS

(7) A1: “Do we have to slam the Accessor in there?”

(8) A2: “<*cursor to fifth argument*> XmlUtils was it, right? <*types “XmlUtil.” then
auto-complete opens*>”

(9) A1: “(#parseBoolean#) yes”

(10) A2: “<*chooses entry*> (##parseBoolean##) (##data get CMReminderAcces-
sor.KEY_IS_ACTIVE##)”

A1 immediately abandons his own and follows A2’s idea. They first remember the necessity of
casting to String (step b), and then go on to copy the code for steps (a) and (b) for the second
case, define a name for the index in the second case, and finally consider the order of the two cases.

(11) A1: “<*sees compile error, is surprised*> Mhm.”

(12) A2: “<*introduces and deletes closing parenthesis*> It’s not completely correct yet.”

(13) A1: “Nope, you have to cast to String.”

(14) A2: <*copies current line to clipboard*>

(15) A1: “And the same again.”

(16) A2: <*pastes line as sixth argument, changes fifth argument to “KEY_IS_MIRROR”,
compile error is shown*>

(17) A1: “Was isMirror the first?”

(18) A2: “Yes. <*deletes left-over argument from before*>”

(19) A1: “OK.”

(20) “FIXME can go now, and cast to String”

(21) A2: <*opens tooltip on compile error on KEY_IS_MIRROR*>

(22) A1: “Huh? Ah, I see, ok.”

(23) A2: <*chooses “Create constant ‘KEY_IS_MIRROR’ in type ‘CMReminder’ ” which
automatically creates the constant in that class*>

(24) <*moves created constant statement a few lines to the top, deletes constant value
null*>

(25) A1: “‘Object’ is creative.”
(26) A2: <*sets constant value to “isMirror”*>

(27) <*changes type from Object to String*>

(28) A1: “OK.”

(29) A2: <*goes back to constructor call, opens help on other compile error, chooses “Cast
argument 1 to ‘String’ ”*>

(30) A1: “M-hm. Yes.”

(31) A2: <*deletes FIXME comment*>

(32) A1: “Not bad.”

Although some ideas byA1 do not get evaluated byA2,A1 is apparently satisfiedwith how smoothly
the change went.

274 return new CMReminder(manager.getObjectHandle(objectId), from, comment, objectType, path,
275 XmlUtil.parseBoolean((String)data.get(CMReminderAccessor.KEY_IS_MIRROR)),
276 XmlUtil.parseBoolean((String)data.get(CMReminderAccessor.KEY_IS_ACTIVE)), recipients);

Figure C.2: Relevant excerpts of the Java code after Focus Phase #4

Example C.1 (continued)

374

C.1.1 Focus Phases #4, #5, and #6

Example C.2: Focus Phase #5 (AA1, 1:55:45–1:57:04)
The pair discovers the place in the backend code where the data structure for an API response is
built. They identify which existing objects to use to include the additional data. See Figure C.3 for
the relevant source code.

(1) A1: “Ah, now we’re getting somewhere.”

(2) A2: <*puts cursor in line 167 (##reminder setObject forKey isMirror##)*>

(3) A1: “Ah, that’s a CMObject. That’s actually nice.”

(4) A2: “(##reminder setObject forKey isActive##)”

155 CMObject *object;
156
157 while ((object = [e nextObject]) != nil) {

160 NSMutableDictionary *reminder = [NSMutableDictionary dictionary]

168 [reminder setObject: forKey: @"isMirror"];
169 [reminder setObject: forKey: @"isActive"];
170 [mapping setObject: reminder forKey: [object objectId]];
171 [result addObject: reminder]
172 }

Figure C.3: Code in the middle of the Focus Phase: A2 wrote two statements to add the keys is
Mirror and isActive to the data structure (lines 168–169). This code could would not run as the first
(anonymous) parameter of the respective calls to the method setObject is not set.

(6) A2: “Ah, we already have an Object?”

(7) A1: “Yes, we have a CMObject. We only need to call object isMirror.”

(8) A2: “But the contents are missing. That’s bad.”

(9) A1: “Ah, you mean the problem is that if we (!...!)”

(10) “OK, for mirror it’s unproblematic, right? You can do it properly right away.”

(11) A2: “(Right.)”

(12) A1: “(Yes) And the active (!...!) ugh”

(13) A2: <*types [object isMirror] in line 169 (i.e., with isActive)*>

(14) A1: “Now you’re doing something wrong.”

(15) A2: “(Well, in a moment.) <*continues typing ? @"true" : @"false"*>”

(16) A1: “Wrong line.”

(17) A2: <*formats indentation*>

(18) A1: “And another bracket (!...!) (ah, it’s right.)”

(19) A2: <*switches statements*>

(20) A1: “OK.”

168 [reminder setObject: [object isMirror] ? @"true" : @"false"
169 forKey: @"isMirror"];
170 [reminder setObject:
171 forKey: @"isActive"];
172 [mapping setObject: reminder forKey: [object objectId]];
173 [result addObject: reminder]

Figure C.4: Code at the end of the Focus Phase. The value for isMirror is now set programmatically;
the value for isActive is not yet defined. The pair sets the static value "true" 16 minutes later.

375

APPENDIX C. PAIR PROGRAMMING SESSIONS

Example C.3: Focus Phase #6 (AA1, 1:57:38–2:00:55)
This Focus Phase begins shortly after #5. Here, the pair discusses the technical problem around
retrieving an object’s active status (which A2 noticed in line 8 and A1 understood in line 12 in
Example C.2 above).

(24) A2: “The reminder concerns the object. This means, whether this thing is valid or
invalid also depends on the view. <*looks at A1*>.”

(25) A1: “Yes. (. .) It really sucks. <*looks at A2*> (. . .) Bah!”

(26) A2: “<*pushes himself away from desk*> Shit.”

(27) A1: “In such cases we should distinguish the edited and the released and return
the isActive for both and let the GUI decide what it wants.”

(28) “<*takes off glasses*> Bah! That’s expensive, for these two.”

(29) A2: “Yes, or the GUI says what it wants.”

(30) A1: “(.) You mean a ‘prefer edited’ as an option attached, or what?”

(31) “Yes, but even then this query gets crazy complicated, right? Because we have to
join a lot of Contents.”

(32) A2: “(.) We managed to join it for the other one, too.”

(33) A1: “Yes, for the Tasks. For Tasks you now that there is an editedContent even-
tually. Or a committed.”

(34) A2: “(. .) Ah, I see.”

(35) A1: “<annoyed> Here there can be none, or only a released, or only an edited, or
what have you, or (!...!)”

(36) A2: “<*leans back*> Ah! <laughs>”

(37) A1: “That’s really stupid, isn’t it?”

(38) A2: “(. .) Yes.”

(39) A1: “Yes.”

(40) “Is there an isActive for the Object as a getter for the released or some-
thing?”

(41) A2: “Well, let’s see what actually happens. You do a SELECT WHERE (‼M-hm‼) and
get the objects (‼Yes‼). What you could do is (!...!) the query already is an Object,
an Object WHERE constraint, right? <*selects statement*>”

(42) A1: “M-hm.”

(43) A2: “What you could do is to say, ‘OK, additionally, select all contents where for the
Object-IDs these constraints hold’ <*points to screen*>, right? And also the
Content-ID is either committedContent (!...!) nope, is either editedContent
or committed or releasedContent of any of these Object-IDs (‼...‼)”

(44) A1: “And the thing is inactive.”

(45) A2: “Well, you can ignore this for now (‼...‼)”

(46) A1: “Nope, because otherwise you would not get those without a content.”

(47) “(. .) Hold on! (‼...‼)”

(48) A2: “No, listen.”

(49) “You only do the fetch. The result is that all these thingies are pushed into the
cache with just one SELECT. And then you can ask the Object. That’s fast.”

(50) A1: “Even better. (.) You don’t need to pull all the contents (.) Only get the Object-
IDs from the content table where the Object-IDs are in these things and it is
either edited, released, or committed and valid and (!...!) I mean, active. See,
and then you can simply set isActive to ‘Object-ID is in this list’.”

376

C.1.2 Misinterpretations

(51) A2: “‘Object is not a template’ and (!...!).”

(52) A1: “Right, yes, and also ‘is not a template’, right.”

(53) A2: “And also the Object-IDs from that list.”

(54) A1: “Yes. isActive means ‘is template’ or ‘is in that list’.”

(55) A2: “Exactly.”

(56) A1: “That would probably be the cheapest way.”

(57) A2: “Right. You can jot down how you’d imagine that, SELECT-wise. I’m just going
to the bathroom for a minute. <*gets up*>”

(58) A1: “OK”

Example C.3 (continued)

C.1.2 Misinterpretations

This is a description from my reconstruction efforts that illustrates the range of possible
interpretations.

Example C.4: Coding Surprises (AA1, 27:20–32:32)
The software uses different types of entries, all represented by subclasses of Node, and there
are new as well as legacy implementations of Pages which contain lists of such Nodes. The
developers look for the method that is responsible for rendering the label of a list entry.

First Analysis
Both read in the source code of the current Page class and then almost speak simultaneously. A1
considers the possibility that a Node subclass is responsible, A2 thinks about the Pages:

A1: “What does it do? <*reads in method overview*> Somehow (#prepareForRendering#)”

A2: “The problem is (!...!) <*switches to website*>”

A1: “Ah, the Nodes have such a render thingy, right?” propose_hypothesis
A2: “that’s a List.” explain_finding
A1: “Yes, ok. Ah! That’s still an old list page.” agree_finding
A2: “Exactly.” agree_finding

For the next four minutes, they read through the code of several Page classes and superclasses,
thus following A2’s finding. They do not find what they look for and reconsider the Nodes again,
thus following A1’s hypothesis—which turns out to be correct.

First Interpretation
They could have saved four minutes of their time if they just followed A1’s hunch. They had two
equally good options and just chose the wrong one.

Second Analysis
Considering the larger context of the session, however, it becomes clear that the pair already
worked on a similar label-rendering issue in this session where the respective Node class (not a
Page) contained the responsible logic. The pair could easily have checked A1’s hypothesis first.

Second Interpretation
They should and could have considered both ideas, but instead followed A2’s path without con-
sidering A1’s proposal. This episode is therefore an example for low Togetherness because the
partners did not make sure they understand each other’s ideas. At this time, I coded this episode
as Parallel Production. This is also the state of understanding reported in Zieris & Prechelt (2016).
(For the concepts of Togetherness and Parallel Production, see Sections 6.4 and 9.5.2, respectively.)

377

APPENDIX C. PAIR PROGRAMMING SESSIONS

Third Analysis
Considering not only the time before the above excerpt, but also the time after reveals that A2 did,
in fact, understand A1’s proposal. About one minute into following the Pages idea he says:

A2: “Maybe it’s the Nodes after all (,) Nope.” agree_hypothesis + disagree_hypothesis

A2 first considers A1 proposal and then rejects it. Either way: He understood it and evaluates it. The
German modal particles “ja” and “doch” also indicate that he refers back to A1’s idea rather than to
a fresh idea of his own (see also page 268 on German modal particles). The second interpretation
cannot be true.

Third Interpretation
A2 did not simply ignore A1’s idea, but just put in ‘on hold’. Both developers understood each
other’s ideas without much communication. The episode is therefore not an example of low but of
very high Togetherness.

Conclusion
Pair programmers do not verbalize all they think about. As a conservative approach, I therefore
assume full mutual understanding among the pair and then carefully consider contrary evidence.

Example C.4 (continued)

C.1.3 Transcripts of AA1 Excerpts

0:08:35
A2: <*legt Telefonhörer auf*> Pass auf: <**Product Owner**> geht nicht ran. Aber ich denke, das

können wir auch ganz zum Schluss machen, weil ich bin eigentlich der Meinung, hm (‼...‼)
A1: Wir können erstmal das Icon nur machen, als erstes (‼...‼)
A2: Egal, nee. Ich meine (‼da ist es klar‼) Hör’ mir doch mal zu Ende zu. Egal, ähm, wo wir’s

darstellen, wir stellen (!...!) also beim Icon ist es wirklich klar, weil da heißt das Ding dann ‘icon
deactivated Punkt PNG’.

A1: M-hm.
0:08:58 (start of Example 7.5)
A2: Um den Text jeweils kann man einfach nen ‘span inactive’ drumrum machen, und dann

kann man das nachher einfach mit nem Schalter durchstreichen oder nicht durchstreichen.
A1: <*schaut zu A2*> Ja.
A2: Und das heißt, die Frage können wir einfach am Schluss beantworten.
A1: OK. <*schaut zum Bildschirm*> Wie wird denn das momentan in dem da gemacht, das

Durchgestrichene?
A2: <*schaut zum Bildschirm, hebt Augenbrauen, schürzt die Lippen*>
A1: Ist da auch schon irgendwie span-Tag irgendwiesowas drin? Vielleicht ist das ja schon der

Fall. Kannst du mal Source irgendwie angucken? ‘Frame source’ irgendwie?
A2: <*öffnet Kontextmenü (, , , , ,)*> Ist ja grauenvoll.
A1: Nur ‘Frame öffnen’. Kann der nicht irgendwie ‘Source von diesem Frame’?
A2: (, ,) <*öffnet HTML-Code der aktuellen Seite*>
A1: Hä? Nee, das wollten wir nicht.
A2: Na, dann muss ich doch den Firefox nehmen.

0:09:40
[A2 schließt aktuellen Browser und stellt die gleiche Sitzung im Firefox-Browser wieder her.]

0:10:55
A1: Dann (!...!)
A2: Achso, ‘Source Code’, genau.
A1: Genau.

378

C.1.3 Transcripts of AA1 Excerpts

A2: <*öffnet Kontextmenü*>
A1: (#Aktueller Frame#) (#anzeigen#) gut.
A2: <*öffnet Quelltext des aktuellen Frames*>
A1: M-hm-hm.
A2: <*sucht “test”, selektiert den Treffer: test*>
A1: Ah, (#span class inactive#), okay.
A2: Genau.

0:11:08 (end of Example 7.5)
A2: Und genauso müssen wir es eigentlich in allen Listen machen, und wenn man es nicht mehr

durchgestrichen haben will, dann nimmt man einfach das (~) raus und die Sache ist erledigt.
A1: Genau, ok.

0:11:19 (start of Example 9.20)
A2: So, das heißt dann (!...!) ‘Bearbeitung abschließen’, zum Bleistift.
A1: Fangen wir damit an?
A2: Ja, würde ich sagen.
A1: Gut.
A2: <*wechselt zur IDE, öffnet Dialog “Open Type”*>
A1: Das ist die (!...!).
A2: <*wechselt zum Browser*>
A1: Wie heißt denn die, die Seite?
A2: <*rechtsklickt im Browser, wählt “Seiteninfomationen anzeigen” aus*>
A1: (#FinishTasksPage#), ok.
A2: <*wechselt zur IDE, tippt “FTP” in offenen Dialog und wählt FinishTasksPage aus*>

0:11:45 (end of Example 9.20)
[. . .]

0:13:10 (start of Example 9.17)
A1: Ja, das heißt wir müssen das getIconPrefix im TaskNode mal überschreiben (.) das

fehlt.
A2: A-ha? Ist das sinnvoll (‼...‼)
A1: Ja, der wird zusammengebaut, der Icon-Name (.) und der TaskNode im Endeffekt

delegiert der nur an den ObjectNode. Und deswegen sind das alles da als static Klassen
vorhanden, damit man den Code nicht dupliziert.

A2: Ah! Aber warum baut man das so umständlich zusammen?
A1: Das ist ne andere Frage.
A2: Das würde mich aber mal interessieren! <*öffnet Aufruf-Hierarchie der aktuell selektierten

Methode*> Guck mal, das gibt’s ja hier bei browse.Html im renderIcon() <*öffnet diese
Methode*> und da geht es darum, der macht das über die ViewConfig, ‘ja oder nein’.

A1: Jaja, das macht der ja jetzt auch, soll er ja auch. Wir wollen einfach diese Methode überschrei-
ben.

A2: Achso, achso, wegen dem an (!...!) und ein- und wegblenden und alles. Achso.
A1: Genau.

0:14:13 (end of Example 9.17)
[. . .]

0:16:20 (start of Example 7.2)
A2: Das fetchMiniObject holen wir uns eh, von daher (, , , ,) <*fängt an zu tippen “fetchM”*>
A1: Ja!
A2: <*Auto-Vervollständigung zeigt zwei Methoden “fetchMiniObject”, eine ohne Parameter

und eine mit boolean allowMicroObject*> Gibt’s die MicroObjects noch?
A1: Ja. Da noch, bei dir noch. Hab ich (!...!) ist auf’m Arbeitsbranch. true!
A2: Reicht das?

379

APPENDIX C. PAIR PROGRAMMING SESSIONS

A1: Ja, glaube.
A2: (, ,) <*tippt “true”*>
A1: M-hm.

0:16:42 (end of Example 7.2)
[. . .]

0:19:44 (start of Example 8.27)
A2: Jetzt machen wir aber gleich nen richtiges MiniObject draus <*entfernt Parameter, ändert

Variablentyp*>
A1: Nein!
A2: Ja, doch! Wir haben doch gesehen, dass er uns auch nur isActive fragt und dann berücksich-

tigt er den editedContent gar nicht.
A1: Eh, ja! Und? Was passiert wenn der Task auf einem nicht lesbaren Objekt liegt?
A2: (. .) Achso, dann krieg ich ne Exception.
A1: Jau. Genau.
A2: Achso, das ist ja Fallback, genau <*macht Änderungen rückgängig*> richtig.

0:20:13 (end of Example 8.27)
[. . .]

0:25:39 (start of Example 6.25)
A1: So, aber wie wird denn der gerendert?
A2: <angeekelt> Warum hat denn der nen eigenes isActive? <zieht Luft durch die Zähne>
A1: Keine Ahnung. Will ich jetzt auch nicht (!...!)
A2: Nee, das will ich aber schon heile machen, weil <lacht> sonst macht der irgendwie was anderes

als der andere und dann ist auch wieder Mist.
0:25:51
[Beide lesen im Quellcode und führen kurze Entwurfsdiskussion]

0:27:20
A2: So.
A1: Ja, wir müssen jetzt gucken, wie der rausgerendert wird. Weil wir müssen ja sehen, was der

(!...!)
A2: Na da fangen wir mal bei der obersten Seite wieder an. <*wechselt zum Browser, schaut auf A1s

handschriftliche Notizen*> Die oberste Seite, die du aufgeschrieben hattest, war ‘Bearbeitung
abschließen’, richtig? Nee.

A1: Wieso machen wir denn jetzt nicht die Version-Seite fertig?
A2: Weil wir die anderen auch noch nicht fertig gemacht haben.
A1: Hallo?
A2: Wir haben die anderen auch noch nicht fertig gemacht. <*wechselt zur IDE*>
A1: Wirwaren doch gerade bei der, wieso machen wir die jetzt nicht fertig? (‼Weil ich‼) Du brauchst

doch nur das Rendern des Textes ändern.
A2: <atmet hörbar aus>
A1: Nicht da <*zeigt auf Bildschirm*>, sondern in der ContentVersionsView-Dingsbums. Dann

können wir das Ding wenigstens soweit (!...!) (~) funktioniert’s dann wenigstens.
A2: <*öffnet ContentVersionsViewPage*>

0:28:00 (end of Example 6.25, start of Example C.4)
A1: Was macht der denn? <*liest in Methoden-Übersicht*> Irgendwie (#prepareForRendering#)
A2: Das Problem ist (!...!) <*wechselt zur Website*>
A1: Ach die Nodes haben so nen Render-Kram, oder?
A2: Das ist ne List.
A1: Ja, achso. Ah! Das ist noch ne alte Listen-Seite.
A2: Genau.

0:28:26 (start of Example 8.21)

380

C.1.3 Transcripts of AA1 Excerpts

A1: Die müsste doch eigentlich umgebaut werden, auf das neue Design (oder sowas, ne?)
A2: Nee, nee, die sollte so bleiben.
A1: Die soll so bleiben?
A2: Ja.
A1: A-ha.

0:28:33 (end of Example 8.21)
A2: Und die rendern sich (!...!) (#renderFields#) <*navigiert zu dieser Methode und liest Quellcode

(, , , , , , ,)*>
A1: <unzufrieden> Hm.
A2: <*liest weiter, scrollt dann nach oben (, , , , , , ,)*>
A1: Noch weiter oben.
A2: <*öffnet Oberklasse (, , ,)*> Nee, die sind weiter unten. <*zurück in vorherige Klasse (, , , , , , ,)*>

Vielleicht machen’s ja wirklich die Nodes. (,) Nee.
0:29:12
[Beide navigieren mehrmals durch fünf verschiedene Klassen und lesen Quellcode]

0:32:20
A2: <*markiert Zeile*> Hehe, der sagt nämlich (#node.getRenderingClass#)
A1: Aah!
A2: Das muss also wiederum die Node können.
A1: Alles klar.

0:32:32 (end of Example C.4)
[. . .]

0:49:53 (start of Example 9.18)
A1: Alles was er zurückkriegt vom <**Backend-System**> sozusagen, packt er da rein.
A2: Alles?
A1: Ja. Das heißt, wir können jetzt einfach mal in dem Node so tun als hätten wir da schon was

gekriegt.
A2: Und dieser TaskAccessorwird aber eigentlich auch nur für die TaskOverviewPage benutzt?
A1: Ja. Wir müssten da nen neuen Key definieren, den müssten wir irgendwie da reinschlumpseln.
A2: Was wollen wir’n wissen? isActive, ne?
A1: Joah.
A2: <*beginnt zu tippen*>
A1: Ich überleg gerade (!...!) ja doch, nee, hm.
A2: Wen fragt er denn da?
A1: Na, das ist nen Spezialding.
A2: Tatsächlich (, , , , ,) (#CMD_LIST_OVERVIEW#) <*minimiert die IDE und wechselt zum Quell-

code des Backends*>
A1: Deswegen, das ist wirklich nen Spezial (!...!) warum machst du jetzt wieder woanders weiter?
A2: Na ich will mal gucken, wie das implementiert ist.
A1: Ja wieso? Du definierst jetzt einfach nen neuen Key, sagst, den hättest du auch gerne, und äh,

dann können wir im GUI schon soweit alles fertig haben, nur dass wir den Key nicht kriegen.
Und dann machen wir das zum Schluss in den <**Backend-System**> rein. <*wartet und
schaut A2 zu*>

A2: <*navigiert durch den Backend-Quellcode (,)*> Den interessiert das näm-
lich (nicht) (!...!)

A1: Dem gibst du gar nicht an was du haben willst, sondern nur (‼...‼)
A2: Der liefert gar keine Keys! <*wechselst zurück zur IDE*>
A1: Nein! Natürlich, der liefert einfach ne Menge zurück. Du fragst ihn aber nichts Bestimmtes.

<*zeigt auf Frontend-Code*> Das sind die Keys wie sie zurückkommen. Ist nur für’s Zurückge-
ben.

381

APPENDIX C. PAIR PROGRAMMING SESSIONS

A2: <*liest im Frontend-Code (, , , , , , , ,)*> Hä? Aber der muss den doch irgendwo fragen? Also, äh
(‼...‼)

A1: Nein. Es gibt ein Kommando, das schickt ne feste Liste von, so ’ne feste Map zurück.
A2: Achso!
A1: Und hier wird nur definiert wie die Dinger heißen, damit man sie richtig rausholen kann.
A2: Achso <lacht> jetzt versteh ich (.) dich.

0:52:16 (end of Example 9.18)
[. . .]

0:59:12 (start of Example 8.19)
A2: <*setzt erstes von zwei Argumenten eines Aufrufes*> (##!isActive##) (. .) achso (‼...‼)
A1: Es gibt keine Tasks auf Spiegeln.
A2: (. . .) Nich?
A1: Nö.
A2: <*setzt zweites Argument auf false*> Stimmt.

0:59:25 (end of Example 8.19)
[. . .]

1:05:29 (start of Example 7.3)
A1: <amüsiert> (#TclCode#)?
A2: <grinst> Das willst du nicht wissen.
A1: Ok <schnaubt> (. . .) dann ist ja alles gut.

1:05:38 (end of Example 7.3)
[. . .]

1:23:27 (start of Example 9.21)
A2: Ach das ist gar nicht Link, sondern LinkChecker. <*öffnet die Datei*> Ah für den gibt’s aber

nen Test. <*öffnet auch die Test-Datei*>
A1: <*lehnt sich zurück, schaut im Büro umher*> M-hm.
A2: <*liest im Testcode*> (#unreachableUrls#)
A1: <*schaut zurück auf Bildschirm*> Hm hm hm hm hm.
A2: (,) (#testFetchUrls#) (#checkUrlsAreUnique#) (#unreachableForUrl-

Row#) (, , , , , , , ,)
A1: <*dreht sich wieder weg*>
A2: Ahja, hier wird unreachableUrls getestet.
A1: <*zurück zum Bildschirm*> Na das wird noch mehrmals, oder?
A2: Hier nich, hier auch nicht, aber hier <*liest Testfallnamen*> (#testFailedUrlsAreReachable#)

(#testInternalValidLinksIsNotUnreachable#) (#testLinksToInactiveObjectsFromInactiveAre-
Not#) (‼...‼)

A1: <*dreht sich weg*> M-hm, ja.
1:25:13 (end of Example 9.21)
[. . .]

1:43:40 (start of Example 9.19)
A2: <*beginnt TODO-Kommentar zu schreiben, navigiert durch Code*>
A1: Ah, (#CMReminder#). Gut. Hier <*zeigt auf Bildschirm*> da. <*schaut zu Kollegin, diese spricht

ihn an*>
1:43:57
[A2 liest weiter im Code, A1 spricht mit Kollegin bis diese geht]

1:44:17
A2: Der unterstützt das sogar schon.
A1: Wer?
A2: Na der Reminder. Achso, es gibt tatsächlich welche, wo der erzeugt wird, wo der weiß, dass

es ein Mirror ist.

382

C.1.3 Transcripts of AA1 Excerpts

A1: Ach!
1:44:31
[. . .]

1:45:11
[Kollegin kommt wieder, spricht mit A1, A2 liest weiter im Code; A1 wendet sich wieder an A2]

1:46:30
A1: Das ist doch wieder das alte GUI, braucht doch keiner.
A2: <*markiert Code-Zeile*> Äh, bei Reminders?
A1: Ups.
A2: Wofür gibt’s denn diese propertyClassMap?
A1: Keine Ahnung.
A2: Ist vollkommen überflüssig. Wahrscheinlich ruft auch diese propertyClassMap niemand auf.

<*sucht nach Verwendungen*> Doch. (#getClassForProperty#)
A1: (#jif.RemoteObjectAccessor#), ja schön, und?
A2: <*klappt Trefferliste auf*> Aber der ruft das ja nicht auf dem CMReminderAccessor auf.
A1: Mmh! Guck mal (#getXmlElementFor#) blubbelblubb (#value#) und sowas, ja weiß ich nicht.

<*wendet sich wieder Kollegin zu*>
1:47:00
[A1 spricht wieder mit Kollegin bis diese geht, während A2 weiter im Code liest]

1:47:17
A2: Also irgendwie glaube ich nicht, dass das wirklich verwendet wird. Da hat bloß einer den

ReminderAccessor von dem anderen Accessor abgeschrieben und sich gedacht ‘Aha, ich
muss das hier implementieren, weil ich ja RemoteObjectAccessor bin und da muss ich halt
irgendwas reinschreiben’. Ich schreib jetzt unseren neuen Key einfach nicht rein. Sehe ich nicht
ein. Ich sehe nicht ein, warum der da drinstehen muss.

A1: Ja.
1:47:42 (end of Example 9.19)
[. . .]

1:53:20 (start of Example C.1, Focus Phase #4)
A1: Jetzt haben wir den anderen noch, der ist noch kaputt.
A2: <*springt zum anderen Konstruktur-Aufruf*>
A1: Ja und da müssen wir uns jetzt was reinbauen.
A2: Der muss auf jeden Fall beides.
A1: Der muss beide da noch irgendwie reinbauen noch.
A2: Da hatten wir doch schon (!...!)
A1: Müssen wir in den Accessor jetzt noch was reinklatschen?
A2: <*Cursor zum fünften Argument*> XmlUtils hieß das glaub ich, ne? <*tippt “XmlUtil.”,

Autovervollständigung geht auf*>
A1: (#parseBoolean#) Ja.
A2: <*wählt Eintrag aus*> (##parseBoolean##) (##data get CMReminderAcces-

sor.KEY_IS_ACTIVE##)
A1: <*Compilerfehler wird angezeigt*> <überrascht> Mhm.
A2: <*fügt schließende Klammer ein und löscht sie wieder*> Ist noch nicht ganz korrekt.
A1: Nee, du musst noch auf String casten.
A2: <*kopiert aktuelle Zeile in Zwischenablage*>
A1: Und das gleiche nochmal.
A2: <*fügt Zeile als sechstes Argument ein, ändert fünftes Argument zu KEY_IS_MIRROR, Compi-

lerfehler wird angezeigt*>
A1: War isMirror der erste?
A2: Ja. <*löscht Rest-Argument von zuvor*>

383

APPENDIX C. PAIR PROGRAMMING SESSIONS

A1: OK. FIXME weg und auf String casten
A2: <*öffnet Tooltip zum Compilerfehler bei KEY_IS_MIRROR*>
A1: Hä? Achso, ja, ok.
A2: <*wählt “Create constant ‘KEY_IS_MIRROR’ in type ‘CMReminder’ ” was eine neue Konstante

anlegt; bewegt die neue Konstante ein paar Zeilen nach oben und löscht den Standard-Wert
null*>

A1: ‘Object’ ist kreativ.
A2: <*ändert Wert der Konstanten auf “isMirror”; ändert Typ von Object zu String*>
A1: OK.
A2: <*geht zurück zum Konstrukturaufruf, öffnet Tooltip zum anderen Compilerfehler, wählt “Cast

argument 1 to ‘String’ ”*>
A1: M-hm. Ja.
A2: <*löscht FIXME-Kommentar*>
A1: Nicht schlecht.

1:54:56 (end of Example C.1, Focus Phase #4)
[. . .]

1:55:45 (start of Example C.2, Focus Phase #5)
A1: Ah, da kommen wir der Geschichte näher.
A2: <*setzt Cursor in Zeile 167*> (##reminder setObject forKey isMirror##)
A1: Ach das ist CMObject. Das ist ja direkt gut.
A2: (##reminder setObject forKey isActive##) Ach wir haben schon nen Object?
A1: Ja, wir haben schon nen CMObject. Brauchen wir wirklich nur noch object isMirror abfra-

gen.
A2: Die contents sind aber nicht da. Das ist aber schlecht.
A1: Achso, du willst sagen, das Problem ist, dass wenn wir das so (!...!) OK, bei mirror ist es

unproblematisch, ne? Bei mirror kannst du es direkt richtig reinbauen.
A2: (Richtig)
A1: (Ja) Und das active (!...!) ugh
A2: <*tippt [object isMirror] in Zeile für isActive*>
A1: Jetzt machst du gerade irgendwas falsch.
A2: (Na, gleich.) <*tippt weiter ? @"true" : @"false"*>
A1: Falsche Zeile.
A2: <*formatiert Statements*>
A1: Und noch ne Klammer (!...!) (ach nee.)
A2: <*tauscht Statements*>
A1: OK.

1:57:04 (end of Example C.2, Focus Phase #5)
A1: Ach da haben wir sonst sowas gemacht irgendwie releasedActive und editedActive

(‼...‼)
A2: Was jetzt hier passiert in der WHERE-Expression (!...!) achso, genau. Es werden genau die Objekte

mit dieser Query geholt.
A1: M-hm (.) Hm. Und was machen wir jetzt?

1:57:38 (start of Example C.3, Focus Phase #6)
A2: Der reminder betrifft aber das Objekt. Das heißt, ob das Ding jetzt gültig oder ungültig ist,

hängt sogar noch von der Ansicht ab <*schaut zu A1*>.
A1: Ja. (. .) Ist richtig scheiße. <*schaut zu A2*> (. . .) Bah!
A2: <*schiebt sich vom Tisch weg*> Scheiße.
A1: In solchen Fällen müsste man eigentlich den vom edited und released getrennt die is

Active beide zurückgeben und das GUI entscheiden lassen, was es dann gerne hätte. <*nimmt
Brille ab*> Bah! Ist aber teuer, für diese beiden.

384

C.2. Session BA1

A2: Ja, oder das GUI sagt an.
A1: (.) So nen ‘prefer edited’ noch als Option da ranhängen, oder was?
A1: Ja aber selbst dann wird diese Query saukompliziert jetzt, ne? Weil wir müssen ne Menge

Contents ranjoinen.
A2: (.) Wir haben die doch bei dem anderen Teil auch rangejoint gekriegt.
A1: Ja, da waren’s Tasks. Bei Tasks weißt du ja, dass es nen editedContent im Endeffekt gibt,

oder nen committed.
A2: (. .) Achso.
A1: <genervt> Hier kann es keinen geben, oder nur nen released, oder nur nen edited, oder

weiß ich nicht was, oder (!...!)
A2: <*lehnt sich zurück*> Ah! <lacht>
A1: Das ist richtig blöd, oder?
A2: (. .) Ja.
A1: Ja. Gibt’s das isActive noch am Object als Getter für den released, oder irgenwas?
A2: Naja, was, guck mal, was ja passiert ist, du machst einmal SELECT WHERE (‼M-hm‼) und holst

die Objekte (‼Ja‼). Was du natürlich machen könntest, ist (!...!) dieQuery is ja schon ne Object-,
ist ja schon ne ObjectWHERE-Einschränkung, ja? <*selektiert Statement*>

A1: M-hm.
A2: Was man jetzt machen könnte, ist zu sagen, ‘OK, mache außerdem, selecte alle Contents,

wo für die Objekt-ID gilt, diese Einschränkung’, ja? <*zeigt auf Bildschirm*> Und außerdem,
die Content-ID ist entweder committedContent, nee ist entweder edittedContent, oder
committed, oder releasedContent von einer dieser Objekt-IDs (‼...‼)

A1: Und das Ding ist inaktiv.
A2: Mhm, na das kannste ja erstmal (‼...‼)
A1: Nee, aber dann kriegste immer noch nicht die raus, die gar keinen Content haben. (. .) Nee,

genau! (‼...‼)
A2: Nee, pass auf. Du fährst nur den Fetch ab. Das Ergebnis ist nämlich, dass die Dinger mit einem

SELECT alle in den Cache reingefahren werden. Und ab da an kannst du einfach das Objekt
fragen. Das ist dann schnell.

A1: Noch besser. (.) Du brauchst gar nicht die ganzen Contents ziehen. (.) Du holst dir nur die
Objekt-IDs aus der Content-Tabelle, wo die Objekt-IDs sind in diesen Dingen und der ist
entweder edited, released oder committed und gültig und (!...!) also aktiv. So, und dann machst
du hier einfach nur isActive kriegt ‘Objekt-ID ist in dieser Liste’.

A2: ‘Object ist kein Template’ und (!...!).
A1: Achja, und ‘ist kein Template’ noch, ja.
A2: Und ist noch die Objekt-IDs in dieser Liste.
A1: Ja. isActive heißt, ‘ist Template’ oder ‘ist in dieser Liste’.
A2: Genau.
A1: Das wäre doch die billigste Variante wahrscheinlich.
A2: Richtig. Du kannst dir ja mal aufschreiben, wie du dir das so SELECT-mäßig vorstellst. Ich geh

mal kurz für kleine Jungs. <*steht auf*>
A1: OK.

2:00:55 (end of Example C.3, Focus Phase #6)

C.2 Session BA1

Company B develops a social media platform in PHP and JavaScript. The full-stack developers
B1 andB2 also deal withMySQL,HTML, and CSS. They have been practicing pair programming
between six months and one year.

In session BA1, they take over some code of unknown quality written by outsourced
developers. Technically, they want to implement part of a cache. In particular, their logic

385

APPENDIX C. PAIR PROGRAMMING SESSIONS

should tell whether the requested data has changed since a given timestamp. In their session,
they need to understand all existing code for that functionality (a few dozen lines of PHP code),
make some additions, and encounter difficulties in specifying what exactly their cache should
do. In the first minutes they also struggle with the workstation which is not theirs and not
fully configured to their needs.

C.2.1 Transcripts of BA1 Excerpts

0:01:33 (start of Example 7.13)
B1: (#Couldn’t connect. cat: header.txt#) Curl kann immer noch nicht connecten. <*wechselt zur

IDE*>
<*zurück zur Shell, gibt Skript-Inhalt auf der Shell aus*> Ja, wir können das ja mal einfach hier
so ausprobieren. <*markiert Zeile mit curl-Kommando*>
Weil das doofe ist, wir können’s nicht einfach im Browser machen, weil der Mimetype appli-
cation/json oder javascript ist (!...!)
<*Rechtsklick in der Shell, ohne sichtbaren Effekt*> Wie kann man hier reinpasten?

B2: Rechts.
B1: Rechts?
B2: M-hm
B1: Habe ich gerade gemacht.
B2: Nee, mit Links kopierst du, mit rechts (!...!)
B1: Okay. <*markiert die curl-Zeile nochmal*> Mit Links kopier ich? Mit Links klick ich doch

einfach nur.
B2: Aber wenn du was markiert hast und dann linksklickst, dann wird’s kopiert.
B1: Achso. <*fügt curl-Befehl ein und führt ihn aus*> (#Couldn’t connect#) Gibt’s auch CTRL A?

<*ändern Hostnamen im Befehl von localhost auf dev-intern, schlägt wieder fehl*>
B2: Aber Curl ist schon noch drauf, oder? Ja, sonst hätten wir keinen Fehler.
B1: (#Couldn’t connect#)
B2: Versuch mal wget, dass du dir die einfach holst.
B1: <*versucht wget auf dev-intern, was fehlschlägt*> Fehlgeschlagen.
B2: Mach mal auf localhost statt dev-intern.
B1: <*versucht wget auf localhost, was fehlschlägt*> Hm, was’n da los?
B2: Firewall?
B1: (#Auflösen des Rechnernamens localhost#)
B2: Vielleicht (~)? Nee, hat er ja aufgelöst.

0:04:00 (end of Example 7.13)

C.3 Sessions BB1, BB2, and BB3

The same pair of developers as in session BA1 (see Appendix C.2) implements a new feature
from scratch in the course of one afternoon, going through their complete web development
stack, starting with template and internationalization in session BB1, continue with controller,
model, database layer, and template optics in session BB2, and conclude with making their
view more interactive through JavaScript in session BB3.

C.3.1 Transcripts of BB1 Excerpts

0:16:47 (start of Example 10.8)
B2: Was überlegst?
B1: Was eigentlich wo reingeht. <*liest in Template-Code*> (#slimcolbox#)
B2: H2 ist diese hübsche rote Farbe <*schaut auf Papierausdruck*>

386

C.4. Session CA1

B1: OK, das ist dann die zweite Überschrift <*schaut auch auf Papierausdruck*>
Wir müssen eigentlich hier alles reinpacken <*zeigt auf HTML-Code*>, wenn es so aussehen
soll wie da <*zeigt auf Ausdruck*>

B2: Und was ist slimcolbox?
B1: slimcol ist (!...!) wenn du zwei schmale Spalten nebeneinander hast. Und zwar <*öffnet

Website*> hier so.
B2: Hm!
B1: Denk ich mal. Kopiert hatten wir <**Bereich-Name**>.
B2: Die jetzt hier nicht auftauchen.
B1: (~) das Teil was wir gar nicht brauchen. <*fügt öffnenden Kommentar-Tag ein, scrollt*> Wo

macht er denn den div wieder zu?
B2: Hier! <*zeigt auf Zeile mit zwei schließenden </div>-Tags*>
B1: Ah ja. <*bewegt Cursor zwischen den beiden </div>-Tags*>
B2: Dieses clear brauchen wir glaub ich, damit er unser (~). Müssten wir dann (. .) in unseren

Sub-Header mit reinnehmen.
B1: <*kommentiert zweiten </div>-Tag aus*> (~) an der Stelle und danach ein.
B2: Genau.
B1: <*löscht zweiten </div>-Tag*> (~) verwendet. Er cleart doch nur diesen Inneren. Den anderen

haben wir doch eigentlich rausgenommen.
B2: Schmeiß doch den ganzen Block einfach weg.
B1: (.) Achso er macht da unten nen neuen div. <*macht letzte Änderungen rückgängig*> OK, ja.

<*formatiert Code neu, kommentiert ganzen Block aus*>
0:19:06 (end of Example 10.8)

C.4 Session CA1

Developer C1 (4 years of experience) started with implementing a new form in their graphical
Java-based application when C2 (9 years of experience) joins him (see Section 4.4.2 for details
on the software and the company). In their session, they mostly deal with making their new
GUI component in the form toggleable for which they reuse existing GUI logic.

C.4.1 Transcripts of CA1 Excerpts
0:00:55 (start of Example 9.3)
C1: Also wie gesagt, ich habe schon angefangen, ungefähr ne Stunde programmiert. Da hab ich

mit der GUI, mit der GUI hab ich angefangen. Kann ich dir grad mal zeigen. <*öffnet Übersicht
über letzte Änderungen*> Und zwar hab ich beim (‼...‼)

C2: <*hebt die Hand*> Erste, ganz kurze Frage. Inwiefern ist die ganze Sache destabilisierend, von
wegen der Branch der kommt, und dass da jetzt nur noch Konsolidierungen gemacht werden
soll, im Moment, auf’m Hauptast?

0:01:22 (end of Example 9.3)
[. . .]

0:06:17 (start of Example 9.13)
C2: Gibt’s nicht so’n ganzes, gibt’s nicht so’n ganzes Panel schon? Hast du das ganze Panel schon

vorgefertigt übernommen?
C1: Ja, aber das, äh (‼...‼)
C2: Oder nur die einzelnen Teile?
C1: Die beiden Auswahlboxen ist ein Panel. Die Checkbox gehört nicht dazu. Ähm, es gibt noch

ne größere Komponente, aber da ist noch ’n Button dabei, und ’n paar andere Sachen, die
eigentlich nichts mit diesem Arbeitspunkt zu tun haben.

C2: Mmmmh, würd ich aber trotzdem mal ganz gerne, ganz gern kurz sehen (‼Ok dann‼) einfach
mal damit ich mal, hast du, ham wir noch ’n gestartetes <**Software-Name**>? <*schaut
durch Taskleiste*>

387

APPENDIX C. PAIR PROGRAMMING SESSIONS

C1: Ja, <*zeigt auf Taskleiste*> haben wir noch.
C2: <*öffnet Anwendung*>
C1: Genau, das wär der ‘Maßstabs’-Reiter.
C2: <*öffnet den Reiter*>
C1: Genau, und das wäre praktisch die Komponente <*zeigt auf Bildschirm*> mit diesem Button

und dem Label oben drin, glaub ich.
C2: M-hm.

0:07:05 (end of Example 9.13)
[. . .]

0:12:10 (start of Example 9.4, part 1)
C2: Dann würde ich mir mal das Ding, FeatureLayerPropertiesPanel, anschauen.
C1: M-hm.
C2: <*schließt Anwendung, wechselt zur IDE, öffnet die Klasse und scrollt sie durch*>
C1: Und da gibt es jetzt nen LabelAttributesPanel.
C2: <*scrollt wieder hoch*> Ahja, genau.

0:12:47 (end of Example 9.4, part 1)
[. . .]

0:13:57 (start of Example 9.4, part 2)
C2: Dann mal schauen, wo das überall verwendet wird <*öffnet Liste mit Verwendung der Klassen-

variablen, hovert die Einträge nacheinander*> Okay.
C1: Ja, also ich hab schon angefangen, die Daten, also das Model zu erweitern.

0:14:32 (end of Example 9.4, part 2)
[. . .]

0:18:46 (start of Example 11.8)
C1: Muss dann dieses Panel dann das Interface implementieren, oder?
C2: [. . .] Genau, das hier. <*öffnet entsprechende Klasse, hovert Klassendeklaration mit extends*>

Gott
C1: <*diktiert*> ‘implements IEnableableComponentContainer’
C2: (#AbstractDialogPanel#), das ist ja interessant [. . .]

A-ha, was ist denn das schon wieder <*öffnet die Oberklasse, liest (, , , , , ,)*>
<*zurück zur vorherigen Klasse, tippt ’implements IEnableableComponentContainer’*>
Was hat’n der alles? Mal schauen. <*öffnet Interface, das hat eine Methode*>

C1: (#getComponents#), das ist ja cool. Sieht relativ simpel aus.
C2: Aha, <*hovert extends-Deklaration*> und nen IEnableable <*öffnet Ober-Interface*>

0:19:54 (end of Example 11.8)
C1: (#setEnabled#), ok.

0:19:57 (start of Example 9.15)
C2: Das Problem ist, das passt nicht, mit getComponents. <*scrollt durch die Datei*>
C1: Wieso passt es nicht?
C2: Denk ich mal, denk ich mal. Ich kann mich natürlich auch täuschen. Aber wobei (!...!) <*scrollt

weiter*>
C1: Wir müssen doch eigentlich nur die einzelnen Komponenten dann da rausholen, die das Panel

hat, oder (‼...‼) (ist das schwierig)?
C2: Ah, das hat sogar nen getContent. Das hat sogar nen getContent, seh ich grad.
C1: Ok (. .) und nen PanelBuilder, kann man da vielleicht das (!...!) die anderen Panels rausholen
C2: <*scrollt weiter (, , , , , ,)*> ich bin mir nicht sicher ob das alles so tut (, , , , ,)
C1: Gott, dann müssen wir ja noch (. .) hoffen, dass es n (!...!) n JPanel alleine, kann man das

deaktivieren?
C2: <*scrollt weiter (, , , , ,)*> OK, ich würde sagen (, , , , , , , , , ,) wollen wir einfach probieren, die

Methoden zu implementieren?
0:21:01 (end of Example 9.15)

388

C.5. Session CA2

C.5 Session CA2

Experienced developers C2 and C5 continue the implementation which C5 started earlier.
They mostly refactor existing code and fix newly introduced bugs in their complex Java-based
graphical geo-information system. See Section 4.4.2 for details.

C.5.1 Transcripts of CA2 Excerpts
0:10:07 (start of Examples 8.9 and 10.4)
C5: Dann, ist es so, zeig ich dir glaub ich erstmal was ich gemacht hab. <*opens IFeature

AttributeConfiguration*>
C2: OK.

0:10:14 (start of Example 6.1)
C5: Mhm. Also, was ich gemacht hab, mit Absprache von <**Lead Developer**>, das ist das I

FeatureAttributeConfiguration erweitert um nen IVirtualColumn, in dem ich quasi
(.) nen Objekt abholen kann, wo du die IColumns abholen kannst, wo du eventuell noch an
nen Provider oder so rankommst.

0:10:42 (start of Example 9.12)
C2: M-hm. Klar. Zeig mal kurz, wie die aussehen.
C5: <*öffnet die Interface-Datei IVirtualColumn*>

0:10:47 (end of Examples 6.1 and 8.9, start of Example 9.2)
Mehr ma(!...!) mehr ist da noch nicht drin, weil (‼...‼)

C2: O-kaaay.
0:10:54 (end of Example 9.12)
C5: Weil, ähm <*wedelt mit den Händen*> es ist, ich, äh, mehr (‼...‼)

0:10:58 (start of Example 8.22)
C2: Haben wir da überhaupt nen ColumnAttribute? Ist das so?
C5: Ich hab da (!...!) wir haben, wir brauchen ja nachher n I, nen ColumnAttribute, um das in

diese, äh all (!...!) in diese, wenn du alle abholst, einzufügen zu können.
C2: Ist das so? Brauchen wir das überhaupt für die Visualisierung in der Attribut-Tabelle?
C5: Wir brauchen für die Visualisierung in der Attribut-Tabelle, wenn wir das über getAll(. .)

AttributeColumns machen wollen, nen IColumn(. .) Attribute.
C2: Wenn wir’s dadrüber machen wollen, (ja ok.)

0:11:26 (end of Example 8.22)
C5: Wenn wir’s dadrüber machen wollen, das ist richtig. Also so hab ich bis jetzt unsere Absprachen

verstanden. Ich hab da noch nicht mehr rein (‼...‼)
0:11:32 (start of Example 8.18)
C2: Wie sind denn die vorhandenen Datenstrukturen, die für die GUI verwendet werden? Ist da

nen ColumnAttribute da? Ansonsten würde ich einfach die verwenden?
C5: Ich weiß nicht wovon du gerade redest.
C2: Von dem was ich gemacht hab, mit dem GUI.
C5: Du hattest nur nen VirtualAttribute?
C2: (. . . .) Ich dachte eigentlich, dass wir das für die Datenstruktur verwenden, was ich da gemacht

habe. (Aber ok. Aber zeig mal.)
0:11:55 (end of Example 8.18)
C5: Wir können erstmal weitergehen.

0:11:58 (end of Examples 9.2 and 10.4)
[. . .]

0:16:45 (start of Example 6.12)

389

APPENDIX C. PAIR PROGRAMMING SESSIONS

C5: Also momentan hat es keine Auswirkungen, weil es darüber weiter noch nicht funktioniert.
Aber in dem Moment, wenn diese Reihenfolge stehen bleibt, und das da oben <*zeigt auf
Zeile*> scharf gemacht wird, wenn wir das so implementieren wie ich das gedacht habe, würde
das momentan in nen Fehler laufen.

C2: Das passt ja dann aber auch.
C5: <*fährt herum, holt tief Luft, sieht C2 an*>
C2: Ok, jetzt mal kurz schauen <*nimmt Maus und liest weiter im Code*>
C5: M-hm. <*schaut zum Bildschirm*>

0:17:05 (end of Example 6.12)
[. . .]

0:19:30 (start of Example 7.7)
C5: Ich hab es halt erstmal so gemacht, weil ich möglichst wenig nach basis rüberziehen wollte,

von den Sachen. Und das Interface, was ich darüber geschoben habe, kennt halt nur Sachen,
die in basis bekannt sind.

0:19:54 (start of Example 6.2)
C2: Und das VirtualAttribute, wo ist das?
C5: Das hab ich rübergezogen.
C2: Ja, dann passt’s doch.

0:20:00 (end of Example 6.2)
C5: Nicht das Virtual, das IVirtualColumn <*zeigt auf Bildschirm*> habe ich rübergezogen.

Das VirtualAttribute ist hier in pro.
C2: In pro ist das VirtualAttribute? OK. <*opens file VirtualAttribute*>
C5: Ja.
C2: Ja, ok, ja, richtig. Das hatte ich da drin, weil wir es noch nirgends anders gebraucht haben.

0:20:37 (end of Example 7.7)
[. . .]

0:26:11 (start of Example 7.16)
C2: Wie ist das bei SVN und Verzeichnissen löschen, geht das? (Sollte eigentlich schon gehen)
C5: Du solltest doch wohl nen Package löschen können.
C2: Also im CVS geht’s ja nicht.
C5: <*schaut irritiert zu C2*>
C2: Im CVS geht’s nicht.
C5: Ein Package zu löschen?
C2: Ja, geht in CVS nicht. Das Verzeichnis bleibt immer erhalten.
C5: Das bleibt im CVS erhalten (‼...‼)
C2: Und es macht keinen Unterschied ob du es löscht oder nicht löscht, in CVS. <grinst> [. . .] Es

erscheint automatisch nicht, wenn es leer ist
C5: <*schaut zurück zum Bildschirm*>
C2: unabhängig davon, ob du es gelöscht hast oder nicht. [. . .] Wie es allerdings bei SVN ist, weiß

ich nicht. Da sieht es möglicherweise ganz anders aus.
C5: M-hm, werden wir ja sehen.
C2: Würde mich selber interessieren.

0:27:01 (end of Example 7.16)
[. . .]

0:28:16 (start of Examples 6.3 and 6.21)
C5: Oh, weißt du wie die (!...!) wie ich an die Funktion rankomme, ne Methode zu verändern?
C2: Das bringt dir doch gar nix.

0:28:23 (end of Example 6.21)
C5: Doch ich kann in der Methode, wenn ich die aufgemacht habe, das IVirtualColumn in nen

I (‼...‼)

390

C.5.1 Transcripts of CA2 Excerpts

C2: Aber das wird dir nicht viel bringen, aber das geht mit ALT SHIFT C, mach’s mit
ALT SHIFT C.

0:28:33 (end of Example 6.3)
[. . .]

0:31:17 (start of Example 6.4)
C5: <*öffnet Datei mit nächstem Compiler-Fehler, setzt Cursor neben den Fehler*>
[Paar wird für 10 Sekunden unterbrochen, beide schauen dann wieder auf den Bildschirm]
C5: <*bewegt Cursor in Zeile mit Fehler*> OK
C2: <*schaut im Büro umher*>
C5: Oh, ich dachte, die ändert er gleich mit.
C2: <*schaut weiter im im Büro umher*>
C5: <*benennt Methode manuell um*> M-hm <*macht Umbenennung rückgängig, lässt sich durch

IDE Methodenrumpf erzeugen*>
C2: <*schaut wieder auf Monitor*>

0:31:57 (end of Example 6.4)
[. . .]

0:32:41 (start of Example 6.5)
C5: <*öffnet Fehler-Vorkommen und liest Code*> Ähm (.) ah, ok, die müssen wir ändern. (##Vir-

tualAttributes##)
C2: Und umbenennen.
C5: <*ändert Typ einer Klassenvariablen und benennt sie dann um*>

0:33:07 (end of Example 6.5)
[. . .]

0:35:21 (start of Example 6.6)
C5: Das müssten wir auch verschieben.
C2: Wo bist du? In was für ’ner Klasse? Oder in was für ’nem Modul?
C5: Das was ich gemacht hab, es gibt ’n (‼...‼)
C2: In was für ’nem Modul bist du grad’?
C5: Ich habe die Factory,mit der ich diese VirtualColumn erzeuge, oder diese IVirtualColumn

habe ich auch nach basis verschoben.
C2: Ah ja.

0:35:29 (end of Example 6.6)
[. . .]

0:37:15 (start of Example 6.8)
C5: OK, der braucht dann all, ne? Vermutlich.
C2: Keine Ahnung (‼Ja‼) was das Ding macht. Ok.
C5: (. .) Das ist damit du ’nen eindeutigen Attributnamen hast.
C2: M-hm. Ich verstehe. Ok.

0:37:30 (end of Example 6.8)
C5: So. <*öffnet nächsten Compiler-Fehler*> Okay. Haben wir die gleichen Änderungen.
C2: Warte mal kurz.
C5: Das ist auch wieder die Änderung von VirtualColumn auf VirtualAttributes <*schaut

zu C2*>
C2: Äh, Moment.

0:37:52 (start of Example 6.7)
C5: Das ist ne andere Implementierung, die diese Abstracts nicht benutzt.
C2: (.) Ne andere Implementierung von der FeatureAttributeConfiguration?
C5: Ja, ja.
C2: Die was nicht benutzt?
C5: Die die abstrakte Klasse, die wir eben angepasst haben, nicht benutzt.

391

APPENDIX C. PAIR PROGRAMMING SESSIONS

C2: (. . .) Ok, dann müssen wir’s hier noch anpassen.
C5: <erleichtert> Ja, genau.

0:38:18 (end of Example 6.7)
[. . .]

0:43:02 (start of Example 6.9)
C5: Jetzt sind wir wieder fehlerfrei.
C2: OK.
C5: So (, , , ,) was mich dann jetzt interessieren würde, wenn wir uns die GUI mal, (‼Warte mal‼)

ob die GUI noch funktioniert.
C2: Jetzt würd ich gern, noch ne Methode einbauen, mit dem man die, so roh wie sie sind, abholen

kann auch.
C5: M-hm.
C2: Und dann würde ich mir gern mal die Sache mit dem Dialog und so mal kurz anschauen.
C5: OK.

0:43:26 (end of Example 6.9)
[. . .]

0:44:08 (start of Example 7.12)
C2: Dann probieren wir die GUI aus. Ganz einfach, weil nicht einchecken ist blöd. Ansonsten

machen wir jetzt was kaputt, und dann ist das ja auch mit kaputt. Wo war denn das? <*scrollt
durch Paket-Übersicht*> Wo waren wir denn?

C5: Du musst die Demo hier unten <*zeigt auf Bildschirm*>
C2: Die hier? <*klappt eines der vielen demo-Pakete auf*>
C5: Da müsste es drin sein, dieses (#EditColumnAttribute#) oder, achso nee (!...!)
C2: Das hier?
C5: Warte, du hattest damals die Demo geschrieben, weil du hattest die Attribute reingebracht.

Aber das muss (!...!) das ist die Action, die das aufruft. Moment, nee dann muss es doch hier
oben sein, oder?

C2: Meint ich doch <*startet Demo*>
C5: OK, aber, das was wir gemacht haben, hat eher Auswirkungen auf die Action, als auf die GUI.

Das heißt, ich würde es gerne aus <**Software-Name**> sehen.
C2: Klar. <*hovert das “Run”-Menu der IDE*> Oh Gott, wie läuft denn das noch mal? <*hovert

“Run”-Button*> Hier muss ich (~) machen?
C5: Ja, und dann <**Name der Run-Konfiguration**>.

0:45:52 (end of Example 7.12)
[. . .]

0:47:10 (start of Example 8.2)
C2: <*schaut auf GUI, stoppt Mausbewegung*> Ähm
C5: Einfach ‘Attributtabelle’.
C2: <*doppel-klickt woanders, anderes Fenster auf*> Ah, ‘Attributtabelle’. Natürlich.

0:47:21 (end of Example 8.2)
[. . .]

0:52:26 (start of Example 9.10)
C2: <*tippt “cad-507”*> So ging das mit dem Minus, oder?
C5: Bin mir nicht sicher, Minus (!...!) Ich glaub, das CAD groß oder so? (. .) Oder muss das klein

sein?
C2: Ähh, muss ich in meinen E-Mails kurz nachschauen, weiß ich nicht auswendig. <*verlässt den

Arbeitsplatz für eine Minute*> Ich schreib’s groß.
0:53:44 (end of Example 9.10)
[. . .]

0:55:41 (start of Example 6.10)
C2: Ähm, das wollten wir eben kurz rausnehmen? Das mit dem gleich Null.

392

C.6. Session CA3

C5: (. .)
C2: Dacht’ ich?
C5: (. . .)
C2: <*löscht die Zeilen*>

0:55:49 (end of Example 6.10)
[. . .]

1:03:46 (start of Example 9.7)
C5: (#getVirtualAttributes#), markier die mal (‼...‼)
C2: Wart mal kurz, ich will nur noch ganz kurz schauen (, , , , , , , ,) nur mal ganz kurz noch <*Hände

über dem Keyboard*> (. .) nee komm <*setzt Breakpoint (, , , , , , ,)*> dann würd ich einfach
das Ding gerne im Debug (!...!)

1:04:12 (end of Example 9.7)
[. . .]

1:05:29 (start of Example 9.9)
C5: Guck mal, ob die Delegates richtig sind.
C2: Ja, siehste doch.
C5: Ja, die die, ähm (!...!) Methoden, ob die die (‼...‼)
C2: Schau’n wir gleich.
C5: Mhm.

1:05:38 (end of Example 9.9)
[. . .]

1:14:07 (start of Example 6.11)
C2: Also, das Problem, was wir haben (.) ist (. .) dass wir natürlich keine FeatureProxies im

eigentlichen Sinn haben <*schaut zu C5*> (. .) für unsere Sachen.
C5: M-hm. So, ich hab ja mit <**Lead Developer**> gestern halt (‼oder?‼) drüber geredet.
C2: <*schaut zum Monitor*> (.) wobei (!...!)
C5: <*zieht Zettel zu sich*> Was erklärt, warum ich das mit dem Column gemacht hab
C2: wobei (, , ,) ja gut, ich mein (!...!) (. . . .)

1:14:42 (end of Example 6.11)
[. . .]

1:15:59 (start of Example 9.14)
C5: Am FeatureProxy müssen wir nichts ändern.
C2: An dem wie es funktioniert auf jeden Fall, vielleicht nicht an der Klasse, aber an dem wie es

funktioniert.
C5: Wir müssen irgendnem Provider das FeatureProxyübergeben, um die Werte zu kriegen.

Das ist je Änderung im Model.
C2: Müssen wir schauen. <*beginnt Code zu lesen*>
C5: Das einzigste ist, dass <**Lead-Developer**> und ich gestern darüber philosophiert haben,

dass wir das FeatureProxySet ändern, dann soll es nen getTableModel geben und das
man das irgendwie gegen ne Factory oder so austauscht.

C2: <*liest weiter imQuellcode (, , , , , , ,)*> Es würde mich jetzt interessieren (, , , ,) wo das Ding
aufgerufen wird.

1:16:43 (end of Example 9.14)

C.6 Session CA3

DevelopersC6 andC7 (less then three andmore than ten years of experience, respectively) want
to implement a new context menu entry which is only enabled under certain circumstances
(see Section 4.4.2 for details on the software and the company). They write test cases for the
menu entry to be enabled and disabled, and refactor code along the way. This is a simple task,
but their IDE froze many times for over a minute each time which slowed the pair down a lot.

393

APPENDIX C. PAIR PROGRAMMING SESSIONS

C.7 Session CA4

Experienced developers C4 and C7 (both ten years of experience) implement a new feature
to allow for selection of multiple graphical features while holding down the CTRL key (see
Section 4.4.2 for details on the company and the software). They have to adapt many interfaces
in the event handling part of the software since their feature is the first to react to the CTRL
key. They write tests, do refactorings, and discuss design a lot; quite some time is lost in the
second half of the session due to a problem with the team’s SVN (Subversion) server. The pair
also uses two sets of keyboard and mouse fluently.

C.7.1 Transcripts of CA4 Excerpts

0:34:25 (start of Example 4.3)
C4: Der DisplayPoint ist auch richtig ätzend.
C7: Inwiefern?
C4: Mag’ ich nich. Das ist so’n echt Kacke (. .) Objekt. <*öffnet Klasse DisplayPoint*>
C7: <*liest Quellcode (, ,)*> Urgh.
C4: <*schließt Klasse DisplayPoint*> Naja, aber egal.

0:34:41 (end of Example 4.3)

C.8 Session CA5

Experienced developers C3 and C4 start implementing a new feature that allows users to cut
existing geometries (such as points, lines, polygons) into parts by drawing arbitrary shapes
across them. See Section 4.4.2 for details on the company and the software.

C.8.1 Focus Phase #1

On the next page, I visualize Focus Phase #1 in its entirety as an attempt to make the high
degree of concurrency more palpable. See Example 6.15 for the detailed discussion.

31 protected void execute(final Component parentComponent) {
32 final Message message = (Message) validator.validate();
33 if (message != null) {
34 SwingMessageIndicator.showMessage(parentComponent, message);
35 return false;
36 }
37
38 final EditOptions editOptions = new EditOptions(new MapModelSelection(snapThemeModel));
39 final IScaleRange scaleRange = new ScaleRange(0, getFeatureLayer().getBaseScale());
40 editOptions.setScaleRange(scaleRange);
41 try {
42 final EditGeometryType editGeometryType = getEditStrategy().getEditGeometryType(
43 getFeatureLayer());
44 editOptions.setGeometryType(editGeometryType);
45 }

68 return true;
69 }

Figure C.5: Relevant excerpts of the Java code before Focus Phase #1 (see Figure C.6).

394

C.8.1 Focus Phase #1

explain_completion
A OK, there are a lot of

things we don’t need, or don’t
have.

A cursor to line 68

A deletes line 68
cursor to line 19

propose_designB You can just
return here B cursor to line 35

B delete false in line 35

amend_design
C Though, if you
think about it, we

don’t actually need it.
agree_design C Probably, this again turns

out to be (.) it depends
cursor along line 32

examine_sth (#validator#)

propose_strategy
C Could be we need
it, and then we can
get it back anyway. C deletes lines 32–37

agree_strategy
amend_design C Yes, would get rid of it.

cursor along line 38
propose_design D OK, snapThemeModel, we

need that.
propose_designD We need that.

examine_sth E (#featureLayer baseScale#) cursor along line 39

propose_design
explain_knowledge

E Guess we need, too, ’cause
what we split, we put a new
line automatically into a poly-
gon and that should have ex-
actly its input precision.

E M-hm.

agree_design

F cursor to line 42explain_standard
of knowledge

E We need the feature
Layer we’re editing, yeah.

E Exactly.

agree_knowledge

F cursor along line 42
explain_finding
propose_design

F The editStrategy get
EditGeometryType, that’s
wrong. Here we always use

propose_design
amend_design

F That is in either
case (.) POLYGON, right

F types EditGeometryType w/
auto-complete, <DOT>

write_sth (##dot##) erm

G F MULTI?
challenge_design

G Nope
disagree_design

disagree_design
propose_todo

F That’s the question.
G That remains to be de-

cided whether we (!...!)
F selects “POLYGON” in list

F confirms “POLYGON”
decide_design F Well, we can simply use

POLYGON for now
F deletes rest of old statement

in lines 42–43
decide_designF Let’s start

with POLYGON

F Right.
agree_design

propose_design G J Maybe leave a
TODO_NOW here

J calls “TODO_NOW” macro
between line 41 and 42

explain_findingH There’s still a bracket

amend_findingH still a bracket (.)
too much, at the end H cursor to line 43, deletes

parenthesis
agree_finding H Too much, yes J cursor back to TODO line

H M-hm.

agree_finding
propose_design J K Er, you’ve always added

the CAD? K types CAD-660
K M-hm.
agree_design

ask_knowledge K Six-sixty was it?
K M-hm.

agree_knowledge

Figure C.6: Focus Phase #1 of 60 seconds to scale (time goes top-down, vertical intervals
are 1 second). Audio waveform of C4 is on the left, C3 is on the right; utterances and base
concepts are next to them; C3’s computer interactions are shown as narrow boxes in the
right-most column. Line numbers refer to original state of the source code, see Figure C.5.

395

APPENDIX C. PAIR PROGRAMMING SESSIONS

protected void execute(final Component parentComponent) {
final EditOptions editOptions = new EditOptions(new MapModelSelection(snapThemeModel));
final IScaleRange scaleRange = new ScaleRange(0, getFeatureLayer().getBaseScale());
editOptions.setScaleRange(scaleRange);
try {
// TODO_NOW (<**C4’s account name**>) 09.05.2008: CAD-660
final EditGeometryType editGeometryType = EditGeometryType.POLYGON;
editOptions.setGeometryType(editGeometryType);

}

Figure C.7: Relevant excerpts of the Java code after Focus Phase #1 (see Figure C.6).

C.8.2 Transcripts of CA5 Excerpts

0:17:28 (start of Example 6.20)
C3: Ich bin mir noch nicht sicher, was davon wir wirklich wiederverwenden können.
C4: Ich auch nicht.
C3: Entweder wir versuchen hier ne Methode rauszuziehen und die versuchen zu verwenden. Oder

einfach mal, hau drauf, das kopieren, gucken, der Reihe nach, passt das so, ist es das was wir
brauchen, wo sind die Unterschiede? Und dann erst gucken, wie fügen wir es wieder zusammen,
gibt es Gemeinsamkeiten, die sich verwenden lassen.

C4: Ich such halt eigentlich die ganze Zeit (!...!) <*liest im Quellcode*> hier ist das, bis hierhin
irgendwo ist die Dings gestartet. Hier wird der Geometrie-Typ gesetzt, ne? Das hier ist tat-
sächlich dass er irgendwo den Modus an den Start bringt. Und hier wird es an die Toolbar
attacht und der Controller und dann wird er aktiviert. OK, kopieren wir das Ding einfach mal
ins execute(). Gucken wir was wir brauchen.

C3: M-hm
0:18:20 (end of Example 6.20)
[. . .]

0:19:12 (start of Example 6.15, Focus Phase #1)
C3: OK, da gibt’s schon mal jede Menge Sachen, die wir nicht brauchen, oder nicht haben. <*Cursor

zu Zeile 68, löscht Zeile 68, Cursor zu Zeile 19*>
C4: return kannste hier einfach <*zeigt auf Zeile 35*>
C3: <*Cursor zu Zeile 35, löscht false*>
C4: Wobei wir das, wenn man’s genau nimmt, eigentlich nicht brauchen
C3: Wahrscheinlich wird das wieder (.) je nach dem <*Cursor entlang Zeile 32*> (#validator#)
C4: Vielleicht brauchen wir’s und dann können wir’s uns immer noch wiederholen.
C3: <*löscht Zeilen 32–37*> Ja, würd’ ich wegmachen. <*in Zeile 38*> OK, snapThemeModel, das

brauchen wir.
C4: Das brauchen wir.
C3: (#featureLayer baseScale#) <*Cursor entlang Zeile 39*> bräucht, brauchen wir eigentlich auch,

weil wir das, was wir splitten <Schneidegeste> machen wir ja ne neue Linie automatisch in
nen Polygon rein und das soll die genaue Erfassgenauigkeit haben, des (!...!)

C4: M-hm.
C3: <*Cursor in Zeile 42*>
C4: Wir brauchen schon den featureLayer den wir editieren, ja.
C3: Genau. <*Cursor entlang Zeile 42*> Die (#editStrategy getEditGeometryType#), das ist falsch.

Hier nehmen wir immer (!...!)
C4: Das ist auf jeden Fall (.) POLYGON, genau.
C3: <*tippt EditGeometryType mit Auto-Vervollständigung*> (##Punkt##) ähm
C4: MULTI? Nee.
C3: Das ist die Frage. Das müssten wir noch klären, ob wir (!...!) <*wählt “POLYGON” in Liste,

bestätigt Eingabe*> Also, wir können einfach mit POLYGON anfangen <*löscht Rest des alten
Codes in Zeilen 42–43*>

396

C.8.2 Transcripts of CA5 Excerpts

C4: Fangen wir erst mal mit POLYGON an. Genau.
C3: Ähm, mal nen TODO_NOW vielleicht lassen? <*ruft ‘TODO_NOW’-Makro zwischen Zeilen 41

und 42 auf*>
C4: Da is noch ne Klammer <*zeigt auf Bildschirm*> (!...!) noch ne Klammer (.) zu viel hinten
C3: <*Cursor zu Zeile 43, löscht Klammer*> Zu viel, ahja <*Cursor zurück zur TODO-Zeile*>
C4: M-hm.
C3: Äh, du hast immer den CAD mit rangeschrieben? <*tippt CAD-660*>
C4: M-hm.
C3: Sechs-sechzig war’s?
C4: M-hm.

0:20:11 (end of Example 6.15)
[. . .]

0:23:20 (start of Example 6.26, part 1)
C3: Jetzt weißt du, was bei mir kommt.
C4: Nein. (‼Ich‼) Nein!
C3: <*tippt Ensure*>
C4: Bitte bitte nicht.

<lächelt> Lass uns Tests schreiben. (. .) Dann willst du diese Ensures da nicht haben. <*dreht
sich zu C3*> <lacht>

C3: Tun sie dir weh, wenn ich sie jetzt hinmach?
C4: <lachend> Ja, total. Aber gut, wenn’s dir nicht wehtut, wenn ich sie beim Testen wieder weg-

mach.
C3: Wenn du sie beim Testen (!...!) wenn sie dir beim Testen im Weg sind (!...!) aber so lange sie

nicht im Weg sind (!...!) <*fügt Ensure-Aufrufe ein*>
C4: <lächelnd> Argh, die sind im Weg.
C3: <*fügt vier Aufrufe von ensureArgumentNotNull ein, für jeden Methodenparameter einen,

schaut dann lächelnd zu C4*>
C4: Da werden wir uns nie einig. Nie!
C3: Wenn ne Lösung da ist, die das ganze viel besser macht, z.B. über die AspectJ?

0:24:20 (end of Example 6.26, part 1)
[. . .]

0:43:34 (start of Example 6.26, part 2)
C3: Du-hu? Schenkst du mir ein Ensure?
C4: Naargh. <*fügt Ensure-Statements ein*> Mein Gott bist du ein Sadist. (, , , , , ,) Wollen wir da

demnächst mal über ein paar Runden gehen? Das mal ausdiskutieren, wenn wir nicht gerade
am Programmieren sind?

C3: Wenn du magst, können wir das gerne machen.
0:43:57 (end of Example 6.26, part 2)
[. . .]

0:47:11 (start of Example 10.7, part 2)
C3: Würds dir was ausmachen, hier zumindest nen TODO_NOW ranzumachen? ‘Hier Lock releasen,

Fragezeichen’? Einfach um (‼...‼)
C4: Nö, überhaupt nicht <*schreibt TODO-Kommentar*>
C3: Dann ist die Information aus’m Kopf bei mir raus.

0:47:22 (end of Example 10.7, part 2)
[. . .]

1:19:58 (start of Example 6.19)
C4: Dann committen wir das noch.
C3: <*klickt auf ‘Synchronize’*> Könnten wir uns noch kurz drüber unterhalten, über Testbarkeit.

Jetzt hab ich da drauf geklickt, das wollt’ ich nicht.

397

APPENDIX C. PAIR PROGRAMMING SESSIONS

C4: <scherzend> Warum machst du denn sowas (‼Ja‼) synchronize an den Start bringen.
C3: Das ist (!...!) falsch geklickt (!...!) ich bin’s halt gewohnt, dass ich den (!...!) ich bin gewohnt hier

links unten nen Button zu klicken, der so aussieht, weil der bei mir hier unten als QuickView
ist, ne? Und dann (!...!) war’s nen Instinkt.

C4: <scherzend> Ahso.
C3: <lachend> Ja.

1:20:16 (end of Example 6.19)
[. . .]

1:21:57 (start of Example 10.7, part 3)
C4: Du hinterlässt verhältnismäßig viele TODO_NOWs. Ich schließe Dinge lieber rund und bin da

safe und dann gehe ich zum nächsten.
C3: M-hm. Das ist interessant, weil wenn ich das jetzt gemacht hätte, wenn wir es nicht zu zweit

gemacht hätten, hätte ich mehr Sachen gleich gemacht bevor ich weitergegangen wär.
1:22:20 (end of Example 10.7, part 3)

C.9 Session DA2

Two junior developers D3 and D4 should implement a new toolbar for some module, but
encounter problems and decide (after discussion with a senior developer) to perform a prepara-
tory refactoring instead, during which D4 explains many different things to D3 despite being
in his very first week at the company. See Section 4.4.3 for more information on the company,
the developers, and the session.

C.9.1 Transcripts of DA2 Excerpts
0:01:54 (start of Examples 7.9, 8.7, and 10.2)
D4: Wie habt ihr denn das jetzt generell gemacht. Weil, äh, irgendwie, habt ihr da jetzt eigentlich

mehr ne SWT-Oberfläche als Eclipse, oder so? Und ähm (!...!)
0:02:06 (end of Example 8.7)
D3: Also <**Software-Name**> an sich ist ja SWT-basiert. Der Kalender, da nutzen wir diese (~)

Kalender-Komponente (‼...‼)
D4: Das ist Swing.
D3: Nee, ja, also im Prinzip AWT.
D4: Achso, ok. AWT sogar.
D3: Und, ja, <lacht> da gibt’s halt diesen SWT-to-AWT-Container-Schnitzel und dadurch wird der

im Prinzip eingebunden. Wie dieser SWT-to-AWT-Dings funktioniert kann ich dir allerdings
auch nicht genau sagen. Aber den können wir uns nachher auch mal angucken.

D4: OK. Aber kann man dann da Kontextmenü und sowas auch einbinden? Jetz nen SWT-
Kontextmenü, oder so?

D3: Kann ich dir nicht hundertprozentig sagen. Müssen wir uns mal angucken.
0:02:47 (end of Example 7.9)
[. . .]

0:04:21 (start of Examples 7.18 and 7.19)
D4: Wie lange machst du das jetzt? Drei Monate?
D3: Bin jetzt seit 1.7. hier. Programmiert habe ich aber schon Jahre vorher. Angefangen halt mit

HTML, PHP, und dann rüber zu Delphi.
0:04:34
[. . .]

0:05:00
D3: Jetzt sitz ich hier bei Java. In zwei Monaten sitze ich wieder in VB.
D4: Ach dann bist du drüben oder was?

398

C.9.1 Transcripts of DA2 Excerpts

D3: Dann bin ich PS, ja.
D4: Ach dann in Service dann, nicht Entwicklung?
D3: Naja, Professional Services, die machen auch ein bisschen Entwicklung.

0:05:17
[. . .]

0:05:40
D3: Vor allem, wenn ich bedenke, das SVN-Repository liegt auf <**Computername**>. Im Prinzip

ist das nur nen Rüberschaufeln von Daten!
0:05:47
[. . .]

0:06:20
D3: Wir haben ja auch keine Glasfaseranbindung ans Internet. Wir haben ja bloß drei DSL-

Leitungen.
0:06:26
[. . .]

0:06:50
D3: Eigentlich, <**Computername**> ist schon nicht schlecht. Der müsste das eigentlich locker.

Mal gucken, was hat denn der hier, zwei Kerne <*öffnet Systemsteuerung*>
D4: Hier, 2.4 [GHz], zwei mal.

0:07:29 (end of Examples 7.18 and 7.19)
[. . .]

0:09:09
D4: Und das ist jetzt AWT? <*zeigt auf gestartete Anwendung*>
D3: Das ist eine AWT-Komponente, ja.
D4: Ach du Scheiße.
D3: Ach was heißt, ach du Scheiße? Ist halt (!...!)
D4: <lacht> Na dann zeig mir mal kurz die (‼...‼)

0:09:23 (start of Examples 7.6 and 8.8)
D3: Im Prinzip soll jetzt hier oben noch so ne Toolbar hin. Zeig dir dann gleich mal, wie die beim

alten Kalender aussah.
D4: Zeig mir auch dann noch mal, was der bis jetzt alles kann (und kurz was der können soll.)

0:09:37 (end of Example 8.8)
D3: Jaja, ich zeig dir am besten erstmal wo es hin (!...!) wo die Reise hingehen soll <*öffnet wieder

IDE*> Muss ich grad mal gucken, wo das hier mit den Menüpunkten war, genau, (#Calendar#),
ok, doch nicht, (#CalendarWeek#), <*öffnet Konfiguration eines ExtensionPoints*> genau
(#CalendarTestView#), und dann, das alte hieß, genau (##CalendarView##), genau. <*ändert
Konfiguration eines ExtensionPoints*>

0:10:11 (start of Example 9.6)
D4: Ist das jetzt noch nen Eclipse-View? Nee?
D3: <*zuckt mit den Schultern, schaut lächelnd zu D4*>
D4: <*schnaubt*>
D3: <lacht> Ich hab wirklich keine Ahnung von wegen ExtensionPoints und so, da bin ich nicht

wirklich konformmit, also da kann ich dir keine große Information geben. <*startet Anwendung
neu*>

D4: <*klickt mit Kugelschreiber, schaut auf Bildschirm*>
0:10:26 (end of Example 9.6)
[beide warten darauf, dass die Anwendung startet]

0:10:59
D4: Nee, ich hatte hier gerade noch mal in dem Buch gelesen, also, dass du das ja dann auch so

ähnlich machen könntest, dass du dann (!...!) zeig noch mal das Eclipse
D3: <*navigiert in Anwendung zu Kalenderansicht, Fehlermeldung wird angzeigt, klickt Fehlermel-

dung weg, wechselt zur IDE*>

399

APPENDIX C. PAIR PROGRAMMING SESSIONS

D4: Dass du hier so Contributions hast und wenn du dann den Kalender aktivierst, dass die dann
halt auch hier reinkommen. Aber ich weiß halt nicht ob generell überhaupt ne Toolbar geplant
ist?

D3: Das kann ich dir auch nicht sagen. Bin ja auch erst seit drei Monaten hier. <*wechselt zur
Anwendung*>

D4: <lacht> Aber wo soll denn die dann hin, hier oder was?
D3: Eigentlich dachte ich, genau, sollte die hier so hin. <*hovert schmale Leiste über dem Kalender*>

und eigentlich, weiß auch gar nicht warum sie jetzt nicht <*klickt herum, Fehlermeldung
erscheint*> (!...!) Was haben wir hier überhaupt für’n Fehler?

D4: (#ClassCastException#)
D3: (#Cannot be cast to CalendarTest#) achso <*schließt Fehlermeldung*> wahrscheinlich

<*schließt Anwendung, geht zur IDE zur ExtensionPoint-Konfiguration*> (#CalendarView#)
D4: Für was sind jetzt hier die Navigation-Sachen, also sind das Actions, oder?
D3: Mhm.
D4: Sind das Actions? Die dann (!...!) wo erscheinen die dann?
D3: Na die werden dann hier durch diese Klasse verarbeitet <*selektiert Klassennamen einer

Action*> und dann wird halt die entsprechende Methode aufgerufen, also da gibt’s ne (!...!)
wie heißt die? <*öffnet Package Explorer*> nee, nicht hier, sondern (!...!) <*navigiert zu einer
Methode*> genau, aber ist noch nicht die (!...!) Moment <*sucht weiter*>

D4: Na die muss dann irgendnen Interface erfüllen.
0:12:52 (start of Example 8.4)
D3: Ja, gibt’s auch. <*öffnet Datei*> (#CalendarTestView#) <*setzt Cursor in Zeile mit LicenseKey

und scrollt nach unten*>
D4: <lacht> (#LicenseKey#)?
D3: <*markiert drei Methoden*> Genau, die werden im Prinzip aufgerufen. Und von da aus,

<*markiert einzelne Zeile*> geht’s dann in die entsprechende Klasse, also bei mir jetzt in den
Test-Kalender. <*scrollt hoch, LicenseKey ist wieder sichtbar*> (#viewpart#), da isser, der
Kalender. OK, jetzt haben wir den natürlich wieder geschlossen.

D4: Ah, LicenseValidator ist von der Komponente, oder was?
D3: Ja, richtig.

0:13:21 (end of Example 8.4)
Die Komponente ist halt gekauft worden, und die haben da so’n setLicenseKey. Den siehst
du hier auch noch öfters. Fast jede Komponente, die will noch mal ihren License-Key haben.

D4: Wie? Musst du den kopieren, oder was?
D3: Inwiefern kopieren? Das ist im Prinzip so’n String (‼...‼)
D4: Nee, aber, wenn du ne neue Klasse machst, dass du das dann jedes Mal hast, oder (!...!)
D3: Du hast im Prinzip hier (!...!) ja, können wir ja einfach mal nach googeln <lacht> <*startet

Textsuche*> zum Beispiel hier, die MonthDateArea kriegt den, und (!...!) war’s das schon? OK,
eigentlich kriegen die noch mehr Komponenten.

D4: Wie, da musst du es für jede Komponente den gleichen LicenseKey setzen?
D3: Ähm, war ich eigentlich der Meinung, aber kann natürlich sein, dass das schon veraltet ist.

Muss ich gerade mal eben gucken. <*scrollt*> OK, dann hat sich das schon geändert. Gut,
dann war es doch nur diese eine Komponente, sehr schön. Hätte mich auch gewundert, wenn
jetzt jede Komponente das hat.
Weiß gar nicht, was ist das überhaupt? ’Nen DateAreaBean? <*hovert Variable, Tooltip er-
scheint*> (#DateAreaBean#), ja.
(. .) OK, so, wo waren wir stehen geblieben? <*sieht Stacktrace am unteren Bildschirmrand*>
Die Exception, genau. <*liest in Stacktrace*> (#Cannot be cast to CalendarTestView#) achso,
(#AbstractOpenCalendarView#), müssen wir hier natürlich auch ändern, in die CalendarView
<*ändert Statement, Fehlermeldung erscheint*>.

0:15:02 (start of Example 9.8)
Hm? <*öffnet Details der Fehlermeldung*> Checkstyle funktioniert nicht, ok. Dann scheißen
wir mal auf Checkstyle, würde ich sagen <lacht>.

400

C.9.1 Transcripts of DA2 Excerpts

D4: <lacht>
0:15:15 (end of Example 9.8)
D3: <*versucht Anwendung zu starten, Fehlermeldung erscheint*> Achso jetzt haben wir noch

nen ParseError.
D4: Du hast hier <*zeigt auf Bildschirm*> das musst du noch.
D3: Mhm.
D4: Hier, da ist doch immer noch ‘Test’.
D3: Ach. <*ändert Code*> Daran sollte es aber eigentlich nicht (!...!) <*Fehlermeldung erscheint*>

doch, cool! Alles klar.
D4: Mach noch mal ‘Organize Imports’, dann hast du die weg.
D3: Macht er eigentlich beim Speichern automatisch. Ja.
D4: Hast du so eingestellt, oder?
D3: Also auf meinem Rechner ja. Wie es hier eingestellt ist, weiß ich nicht. Aber ich denke mal

genauso.
D4: Weil standardmäßig ist nichts, nichts eingestellt.
D3: <*Fehlermeldung erscheint beim Versuch zu speichern.*> Hm?
D4: <genervt> Och, was ist das denn?
D3: Was hat er denn? Er buildet doch gar nicht. Jetzt haben wir hier schon wieder nen Error. Achso.
D4: <lacht> OK.
D3: Ah nee, das tue ich mir jetzt nicht an, dass Ganze umzustricken. Ich zeig’s dir woanders.
D4: Aber was ist denn (!...!)
D3: <*macht Code-Änderungen rückgängig*> Dann schauen wir uns einfach die Toolbar bei der

Wiedervorlage an. Weil bis wir das jetzt alles geändert haben.
D4: Hast du das auf deinem Rechner schon geändert, oder?
D3: Naja, das ist ja die alte Version, die ich gerade wiederhergestellt habe, der alte Kalender. Und

wir machen jetzt hier (##CalendarTestView##), ok. Dann zeige ich dir’s in der Wiedervorlage,
da ist die glaube ich schon eingebaut die Toolbar.

D4: Aber das ist jetzt, gut, das ist ja immer noch nen Eclipse-View, ne?
D3: Mhm.
D4: Das ist ja abgeleitet von dem ExtensionPoint, oder erfüllt den ExtensionPoint.
D3: Mhm. Kann’s ja auch. Hier ist ja jetzt wieder die CalendarTestView drin.
D4: Aber deine View ist jetzt der gesamte Kalender, oder?
D3: Ja.
D4: Und warum kein Editor? Ach die Editoren habt ihr ganz verworfen, oder?
D3: Wir arbeiten hier, also ich arbeite hier komplett unabhängig von dem eigentlichen Produkt.

<*öffnetQuellcode*> Das ist hier im Prinzip von nem Panel und hier ist im Prinzip schon alles
AWT. Im Prinzip haben wir angefangen damit (!...!) es gibt Demos von diesem (~) Kalender. Und
da habe ich mir die Demo, die am dichtesten an unseren Kalender rankommt, übernommen,
hab den hier rein kopiert und dann im Prinzip Stück für Stück angepasst. Weil Problem war ja
am Anfang, ich hatte keine Ahnung von Java und mit irgendwas musste ich ja anfangen.

D4: Achso, hast du vorher noch gar kein Java gemacht?
D3: Nee, ich war vollkommen unbeleckt in Sachen Java. Deswegen ist der Code auch total für’n

Arsch. Wenn du hier siehst, wie viele Zeilen wir inzwischen haben (!...!)
D4: God-Methods und God-Klassen, oder?
D3: Das ist (!...!) ja, 1917,müsstemanmal refactorn. <*wechselt zurAnwendung*> So,Wiedervorlage.

Obwohl, bei Positionabsrechnung hat man’s auch gesehen.
0:18:17 (start of Example 8.13)

<*hovert Toolbar im Bereich Wiedervorlage*> Im Prinzip, so ’ne Toolbar. Die haben sie jetzt
also da oben hingemacht.

D4: OK, und das sind jetzt (!...!) ist das jetzt ne Toolbar oder Coolbar oder sowas und dann die
eigenen Widgets drin, oder was ist das?

401

APPENDIX C. PAIR PROGRAMMING SESSIONS

D3: Ähm, ich vermute, ja. Sicher sagen kann ich es dir auch nicht, weil wie gesagt ich hab das auch
noch nicht gemacht bisher. Müssen wir uns einfachmal angucken,wie das in derWiedervorlage
zum Beispiel geschehen ist.

D4: Aber, ähm, soll es dann nicht mal Ziel sein, dass du immer diese Dinger hast?
D3: Ja, genau.
D4: Aber dann ist doch von dem Kalender hier (‼...‼)
D3: Ja, das warQuatsch was ich dir vorhin erzählt habe.
D4: Dann soll das ja da auch oben hin, ne?
D3: Wir machen das dann nicht in diese schmale Leiste hin, sondern doch da oben.

0:18:57 (end of Examples 7.6, 8.13, and 10.2)
[. . .]

0:19:27
D3: Hast du sowas schon mal gemacht, so ne Toolbar-Erstellung?
D4: Ich hab mir gerade hier (!...!) das hab ich mir mal im Urlaub reingezogen das Buch, aber wenn

du das natürlich alles nicht nachprogrammierst, dann vergisst du das alles, aber ich hab’s mir
gerad noch mal durchgelesen. Also zumindest stehen hier die Standardschritte drin.

0:19:49
[. . .]

0:21:23 (start of Example 7.18)
D4: Wer hat denn das gemacht?
D3: Die ExtensionPoints?
D4: Nee, generell die ToDo-Liste? Also das mit oben einfügen und so.

0:21:30 (end of Example 7.18)
[. . .]

0:40:03 (start of Example 6.22, part 1)
D3: <lacht> Ähm, okay? Ich sehe, du bist mehr mitgekommen als ich <lacht> Ja, dann probier mal.

0:40:18 (end of Example 6.22, part 1)
[. . .]

1:14:25 (start of Example 6.18)
D4: <*benennt Methodenparameter in “lista” um, IDE markiert zwei Compiler-Fehler*> OK,

also da holt er sich noch die (!...!) Objekte dann, wahrscheinlich <*macht Umbenennung
rückgängig*>

D3: Warum hattest du das gerade umbenannt in lista?
D4: Nee, nur um zu gucken ob der (!...!) was er hiermit macht.
D3: Achso.

1:14:44 (end of Example 6.18, start of Example 7.19)
D4: Ist normalerweise gar nicht meine Vorgehensweise. Normalerweise schreibe ich echt immer

nen Test.
D3: Machen wir hier fast gar nicht. Auch wenn wir es eigentlich sollten. Aber, naja.

1:15:04 (end of Example 7.19)
[. . .]

1:24:24 (start of Example 6.22, part 2)
D4: Ja, willst du dann noch mal machen, oder?
D3: Ich glaube, du bist da mehr involviert in diese ganze Sache. Ich bin da (!...!) für mich ist das

schon oberste Wissenskante <lacht>.
1:24:34 (end of Example 6.22, part 2)
[. . .]

1:29:55 (start of Example 7.15)
D4: Warum steht denn hier AbstractList noch davor? <*selektiert und löscht den Präfix, die

IDE meldet einen Compilerfehler*> Nee <*macht Änderung rückgängig*> Achso, ok. Weil wir
in der anonymen Klasse sind.

D3: In ’ner anonymen Klasse? Was ist ne anonyme Klasse?

402

C.9.1 Transcripts of DA2 Excerpts

D4: <*selektiert das new Statement, das den Anfang der anonymen Klasse markiert*> Na, sobald
du hier, z.B. so nen SelectionAdapter implementierst, dann ist das ja ne anonyme Klasse
<*selektiert den Rumpf der anonymen Klasse*> weil die Klasse keinen Namen hat.

D3: Achso, ja, richtig.
D4: Deshalb hatte ich mich gerade gewundert, weil ich das nicht gesehen hatte. Und wenn ich jetzt

natürlich this mache <*entfernt Präfix nochmal*>, dann ist das der SelectionAdapter,
also bzw. die Implementierung davon. <*fügt Präfix wieder ein*>

1:30:25 (end of Example 7.15)
D3: Ja, ist richtig.
D4: Gut, warum das jetzt ne listPreview hat, müssen wir ja nicht verstehen <lacht>. <*öffnet

nächsten Compiler-Fehler, hovert Fehler-Meldung*>
D3: ‘Import’ einfach.
D4: Jetzt müsste ich ja nen Import machen können <*wendet vorgeschlagene Autokorrektur an*>

ja.
1:30:49 (start of Example 7.17)

Kennst du das denn, mit dem OSGi-Class-Loading?
D3: Class was? Nicht wirklich, nee.
D4: Soll ich kurz sagen, oder?
D3: Na, ja klar.
D4: [. . .] Jedes Bundle [. . .] hat nen eigenen ClassLoader und der kann nur Klassen aus anderen

Bundles laden, wenn [. . .] das andere Bundle, wo du die Klasse haben willst, davon das Package
exportiert und wenn dein eigenes Bundle das explizit importiert. Und dann hast du hier halt
immer in den Manifest-Dateien [. . .] da kannst du einmal Import-Package machen [. . .]
dann sagst du, dass dieses Package haben willst.

D3: M-hm.
D4: [. . .] und normalerweise sollte man immer Import-Package nehmen, <lacht> hier ist es

immer Require-Bundle. So bestimmst du halt den logischen Namen von dem Bundle was
du importieren willst, so bist du explizit von diesem Bundle abhängig. Also du kannst jetzt
nicht sagen, ich nehme das Bundle weg und nehme dann ein anderes Bundle, das auch dieses
Package exportiert, dann würde sich OSGi dieses Bundle nehmen. [. . .] Deswegen ist Import-
Package eigentlich immer schöner. Weil mit Require-Bundle importierst du meistens auch
mehr Packages als du brauchst. [. . .] Dann kannste halt zur Laufzeit nichts mehr austauschen.
Naja, aber, egal.

1:35:15 (end of Example 7.17)
Äh, so <*öffnet nächsten Compiler-Fehler*> ach jetzt musste BusinessAction (!...!) nagut
<*öffnet nächsten Compiler-Fehler, lässt automatisch Methodenstummel erstellen*>

1:35:42 (start of Example 6.22, part 3)
D4: Also, sag, wenn du jetzt machen willst, ne?
D3: Nee, mach mal erst mal weiter. Ich sag, wenn ich wieder voll drin bin. Dann schrei ich schon.

1:35:52 (end of Example 6.22, part 3)
[. . .]

1:36:35 (start of Example 7.14)
D4: Kennst du denn das Pattern? [. . .] Weil das ist ja so ne Art Template Method. Also ich hab das

hier halt ausgelagert, die gemeinsame Logik. <*navigiert zu abstrakter Klasse, selektiert Aufruf
einer abstrakten Methode*>

D3: H-hm.
D4: [. . .] internalExecute ist ja praktisch meine Template Method. [. . .] Und dann kannst du

halt sehr schön immer Sachen, die allgemein sind, auslagern und machst dann für die Sachen,
die du noch nicht weißt, dann die abstrakte Methode, und die implementieren dann einfach
deine Oberklassen.

D3: H-hm.
D4: Ist halt sehr schön, weil du kein Copy-Paste machen musst.

403

APPENDIX C. PAIR PROGRAMMING SESSIONS

D3: Richtig.
1:37:58 (end of Example 7.14)
[. . .]

1:41:17 (start of Example 6.22, part 4)
D4: Ja aber, wenn du willst, kannst du jetzt auch (‼...‼)
D3: Ja [. . .] lass uns mal kurz die Seiten tauschen.

1:41:22 (end of Example 6.22, part 4)

C.10 Session DA5

I introduced the base layer and the base concepts in Section 3.4 and illustrated their application
with an excerpt from sessionDA5which Plonka (2012, pp. 185–186) characterized as “nudging” ,
as a “strategy [. . .] to provide a subtle learning opportunity” . I did not analyze the whole session
but just about 100 seconds. I shortened the pair’s exchange in Example 3.1. Here, I provide the
full dialog with comments (see next subsection for the original German transcript).

Example C.5: Coding with Base Concepts (DA5, 22:50–24:30)
The two developers are in the process of writing a test case. They already introduced about 20
lines of test setup and execution and now are about to write the first assertion.

(1) D8: “(##for##) <*selects foreach template
from autocompletion*> Well, I go through
and if I find one, what do I do with it?”

propose_designOE

D8 presents a partial design proposal and asks
her partner to complete it. (An ask_designwould
not contain any proposal.)

(2) D2: “Actually, it should have found exactly
one. Normally, it should be only one activ-
ity.” disagree_design + explain_knowledge

D2 makes clear he disagrees with D8’s proposal
without making one of his own.

(3) D8: “I see. Then I say ‘assert’?”
agree_knowledge + amend_designOE

D8 agrees with D2 and revises her proposal.

(4) D2: “Exactly.” agree_design D2 is content.

(5) D8: “<*deletes for statement*> So, only
check for this?” disagree_design

D8 now doubts the proposal.

(6) D2: “Actually, yes, only that (!...!) actually, it
would be enough that there is exactly one
activity.” amend_design

D2 reassures D8 and refines the proposal.

(7) D8: “Ah, during the test, I can see what’s
in there. I’m still thinking with my old
Sys.out” explain_standard of knowledge

D8 addresses her own mental model to explain
why she was not sure about the original pro-
posal.

(8) D2: “<laughts> No, we can debug this.”
propose_todoPI

D2 announces to use the debugger at some later
point to achieve what D8 had in mind.

(9) D8: “(##Assert##), that I still know”
explain_standard of knowledge

D8 states she only remembers how to begin an
assert statement and writes it down.

(10) D2: “There is ‘assertTrue’ (!...!) ‘assert
Equals’ you have to do” propose_stepPI

D2 tells D8 which assert method to select.

(11) D8: “(##assertEquals##) (#boolean ex-
pected#)” write_sth

D8 speaks while typing and reads out loud the
autocompletion overlay.

(12) D2: “‘true’.” amend_designPI D2 tells D8 which value to insert.

404

C.10. Session DA5

(13) D8: “(##true##) and now it’s expecting a
boolean? No.” explain_findingD

D8 notices the auto-completion does not match
with her expectations.

(14) D2: “‘activities.size() equals one’.”
amend_designPI

D2 tells D8 which expression to insert.

(15) D8: “Ah, so it’s boolean indeed.”
disagree_finding

D8 acknowledges the auto-completion is not
wrong after all.

(16) D8: “<*wiggles mouse*> Get lost!”
say_off topic

D8 tries to get rid of the auto-completion overlay.

(17) D2: “Nope, I’ll stay here.” say_off topic D2 makes a joke.

(18) D8: “I don’t know what it’s called! (##activ-
ities.size()##)”

explain_standard of knowledge

D8 cannot read the variable name behind the
overlay, but the auto-completion helps her re-
member it.

(19) D2: “‘equals one’.” amend_designPI D2 tells D8 how to complete the expression.

(20) D8: “<*types ==1*> Greater than zero?
Nope, equals one. Must be only one.”

challenge_designOE

D8 briefly considers another expression.

(21) D2: “I hope, there is only one. ‘There can be
only one.’ That’s the Highlander principle.”

explain_knowledge

D2 explains some reservations (again, there is
no concept more specific than knowledge) and
makes another joke.

(22) D8: “It took me a while until I understood
what y’all are talking about. Highlander.
<chuckles>” say_off topic

D8 refers to the joke. Possibly it is a running gag
in the team.

(23) D8: “OK. This is done now. And now <*in-
serts two empty lines*> we go on.”

explain_completion

D8 does not make a concrete proposal (neither
design nor step) but evaluates the result: The
assert statement is finished.

(24) D2: “We can also test this first?”
propose_stepOE

D2, in contrast, makes a concrete proposal.

(25) D8: “Yes? OK. <*deletes empty lines*>”
agree_step

D8 seems surprised by D2’s proposal, as if she
expected the session to take a different route
(which she does not verbalize), but agrees to it.

(26) D2: “You know, I have to admit, I’m a bit
nervous.” explain_knowledge

D2 appears to justify his proposal to run the test
case before adding new logic. If his disagreement
withD8’s assessment of the situation was clearer,
one could annotate disgree_completion instead.

Technical note:
The ‘expert’D2 dictates towrite the statementassertEquals(true, activities.size()==1),
which is quite verbose and does not indicate his proficiency with the JUnit framework. To the
very least, he could have proposed assertTrue(activities.size() == 1). A comparison of
integers would have been more straightforward and also produces more readable error messages:
assertEquals(1, activities.size()). In fact, in turn (13), his ‘novice’ colleagueD8 appears
to be confused by D2’s proposal to write an assertion with a boolean value where integers would
be more fitting.

Example C.5 (continued)

405

APPENDIX C. PAIR PROGRAMMING SESSIONS

C.10.1 Transcripts of DA5 Excerpts

0:22:50 (start of Examples 3.1 and C.5)
(1) D8: (##for##) <*wählt “foreach” Vorlage aus Autovervollständigung aus*> So, ich geh einmal

durch und wenn ich eine finde, was mach ich damit?
(2) D2: Eigentlich müsste er ja nur genau einen gefunden haben. Im Normalfall dürfte er nur eine

Aktivität haben.
(3) D8: Achso. Dann sage ich ‘assert’?
(4) D2: Genau.
(5) D8: <*löscht for-Statement*> Also nur danach prüfen?
(6) D2: Eigentlich ja, nur dass es (!...!) Eigentlichwürde es sogar reichen, dass es genau eine activity

gibt.
(7) D8: Achso beim Test kann ich sehen, hier sehen, bei Introspection oder so, was da drin steht. Ich

bin immer noch bei meiner alte Sys.out.
(8) D2: <lacht> Nee, wir können das debuggen.
(9) D8: (##Assert##), das hab ich noch
(10) D2: ‘assertTrue’ gibt’s (!...!) ‘assertEquals’ musste machen.
(11) D8: (##assertEquals##) (#boolean expected#)
(12) D2: ‘true’.
(13) D8: (##true##) und jetzt soll hier ein boolean? Nee.
(14) D2: ‘activities.size() gleich eins’.
(15) D8: Ach doch ein boolean.
(16) <*bewegt die Maus über Autocomplete-Popup*> Geh weg!
(17) D2: Nee, ich bleib hier sitzen
(18) D8: Ich weiß nicht wie das heißt! (##activities.size()##)
(19) D2: ‘gleich eins’.
(20) D8: <*tippt ==1*> Größer Null? Nee, gleich eins. Muss nur einer sein.
(21) D2: Ich hoffe, dass es nur einen davon gibt. Es kann nur einen geben. Das Highlander-Prinzip ist

das.
(22) D8: Ich habe lange gebraucht, bis ich das verstanden haben, wovon ihr sprecht. Highlander.

<lacht>
(23) OK. Das haben wir jetzt. Und jetzt <*fügt zwei Zeilenumbrüche ein*> gehen wir weiter.
(24) D2: Wir können das auch erstmal testen?
(25) D8: Ja? OK. <*löscht Leerzeile*>
(26) D2: Ich muss ja gestehen, ich hab ein bisschen Angst.

0:24:30 (end of Examples 3.1 and C.5)

C.11 Session EA1

Company E develops a graphical desktop application for different logistics related tasks in
the C++ programming language. Prior to session EA1, experienced developer E2 (ten years
of experience) already tried to debug a display error that leads to routes of ferries being
displayed with an extra segment. In their PP session, he and junior developer E1 (five months
of development and PP experience) go through the unfamiliar source code step by step with
a debugger. They would mostly set up a certain state, inspect variables, develop and test
hypotheses, but they do not change any code. They end their session after 80 minutes because
of a team meeting without having really circled in on the error.

406

C.11.1 Transcripts of EA1 Excerpts

C.11.1 Transcripts of EA1 Excerpts

0:04:23 (start of Example 10.5)
E2: Jetzt zeig ich dir mal wie ich das gemacht hab. <*klickt Fehlermeldung weg*> OK, das ist ganz

normal. <*startet Anwendung*> So, dann hab ich jetzt (#Routing#) (#Stationen laden#) da
hatten wir jetzt gehabt die <**Routename**> genau. So, wenn er die jetzt dann routet (!...!) ah
hier unten ist sie. Ah nee, was ist jetzt das? Falsche Route. <*öffnet andere Route*> Genau. Und
jetzt ist der Fehler quasi das hier. Also wenn ich jetzt die Fähren aktiviere, zum Beispiel jetzt
so <*klickt im Menü*> dann sieht man dass das letzte Segment hat noch so’n Extra-Punkt.

E1: Jo.
E2: Und der letze Punkt sollte eigentlich der hier sein <*zeigt auf zwei Punkte in der GUI*> und er

nimmt aber diesen hier.
0:05:35
[E2 erklärt weiter, E1 nickt immer zu]

0:09:54
E2: result ist die Anzahl der Punkte. Das wird eigentlich genauso ausgerechnet. Das wird jetzt

nochmal hier erhöht. <*öffnet Inspector*> Und jetzt hat er 131. Vorher hat er einen gehabt,
das ist glaube ich einfach der Startpunkt.

E1: M-hm.
E2: Und dann hat er jetzt noch mal 130 draufgekriegt. Und jetzt steht ja hier in diesen pPoints,

da stehen ja dann die (. . . .) stehen die Punkte da drin.
E1: Und die Polygon-Punkte, über die die Route geht, die haste noch drin?
E2: Ja genau, dieses TraceFerry, das hat nen Ausgabeparameter,wo jetzt die Punkte reingekopiert

werden.
E1: M-hm.
E2: Und der ruft das immer hintereinander auf, weißte der macht sich nen großes Array (‼Ja‼) und

da tut er erst für den einen Stummel, und dann sagt er dem anderen, ‘bitte ab hier reinkopieren’,
so macht er das dann.

E1: M-hm.
E2: Und in dem TraceFerry werden die dann da reinkopiert.
E1: OK.
E2: Genau. Und ähm, jetzt tut er in dieses pPoints-Array, das beinhaltet jetzt dann quasi die

Punkte. Und da müsste jetzt der Endpunkt eventuell richtig sein, oder auch nicht, das müssen
wir jetzt halt noch sehen. Ähm, jetzt ist wieder die Frage, wie viele das dann sind. Kann ich
da einfach 132 eingeben. So, also der 131er ist Null, das heißt, es sind tatsächlich schon 131
belegt, ja? Und jetzt siehst du, dass der gleich dem ist.

E1: Ja.
E2: Das heißt, da ist der Fehler eigentlich schon drin.
E1: M-hm. Aber warum?
E2: Also ich glaube wir könnten jetzt auch, zum Beispiel wenn wir uns den mal kurz notieren. Ich

schreib mal kurz auf. Kannste mal diktieren?
[E1 diktiert mehrere Punkt-Koordinaten, E2 schreibt sie auf Papier]
E2: Wenn wir jetzt wieder laufen lassen <*setzt Programmausführung ab Breakpoint fort*> dann

können wir jetzt nämlich hier sehen, dass das wahrscheinlich genau der da ist. <*vergleicht
Werte*> Ja, das ist der, und der ist da schon doppelt. Der Fehler legt dann also bei diesem
TraceFerry irgendwo drin. Jetzt müssen wir gucken, dass wir da wieder hinkommen. Ich lass
einfach nochmal laufen.

E1: Also sprich, der wird eigentlich (!...!) wir unterbrechen die Route insofern (!...!) also der geht
halt hier hin, geht hier hin, geht wieder zurück, und setzt den als Endpunkt dann auch, oder
was?

E2: Genau, also er hat quasi von den Punkten die ganzen da vorne. Dann hat er den, dann hat er
den, und anstatt dass er den, setzt er den falsch.

407

APPENDIX C. PAIR PROGRAMMING SESSIONS

E1: Ja, und dann geht er wieder zurück. OK.
E2: OK, alles klar. Ähm, ach nee, Quatsch. Also jetzt route ich noch mal. Jetzt haben wir natürlich

dummerweise nen Haufen Breakpoints. Jetzt suchen wir mal die Stelle, wo er die Polygone
zusammensammelt. So, hier sammelt er jetzt die Polygone. Und dann geht er in dieses Trace
Ferry hier rein. [. . .] Jetzt warten wir auf diesen Punkt hier. Jetzt hab ich irgendwie gedacht,
dass es an dem lag, aber daran liegts nicht, sondern es liegt an dem TraceFerry, da kommts
falsch raus.

0:13:45 (end of Example 10.5)

C.12 Session JA1

Domain expert J2 had designed and implemented a plugin-based architecture in Java to monitor
and download remote files from the servers of different radio stations about a year earlier. He
invites experienced consultant J1 to a distributed pair programming session to review and
clean-up the code together in order to ease the implementation of a new feature later on (see
Section 4.4.4 for more details on the context, the developers, and their session). In session JA1,
they review but one class, try and fail to refactor it by extracting local methods, and ultimately
decide to rewrite the whole system from scratch.

C.12.1 Transcripts of JA1 Excerpts

0:01:47
J2: Wir haben heute hier einen Task, hier am NewsPlugin etwas zu machen. Im großen Ganzen

geht’s um Refactoring von den ganzen Klassen, weil die schon relativ alt sind. Du weißt ja,
wie bei mir normalerweise alte Klassen aussehen (‼...‼)

J1: <lacht> richtig ja.
J2: <lacht> die etwas älter sind. Es geht zum einen um Refactoring zum anderen würde ich

gerne diese Samba-File-Geschichte loskriegen, das heißt Zugriff auf das DFS via Samba.
J1: M-hm.
J2: Und ersetzen durch Zugriffe auf’s lokale Dateisystem mit Linux-Freigaben.
J1: M-hm.
J2: Weil das einfach die Stabilität deutlich verbessert.
J1: Ja klar.

0:02:29 (start of Examples 5.1 and 7.1)
(1) J2: Kennst du das NewsPlugin, oder kennst du das nicht?
(2) J1: <atmet hörbar aus> zeig’s mir einfach noch mal.
(3) J2: Das mit dem Nachrichten-Mitschnitt, ich glaube wir sharen mal.

0:02:38
[Das Paar startet eine Saros-Sitzung.]

0:04:09 (start of Examples 6.13 and 10.3)
(4) J2: OK, aber ich kann dir ja schon mal sagen, was dieses Plugin im Großen und Ganzen tut.
(5) J1: Ja

0:04:15 (start of Examples 8.1 and 9.1)
(6) J2: Also hinten raus ploppt der Nachrichten-Mitschnitt von jeder Stunde.
(7) J1: M-hm.
(8) J2: Die Vorgehensweise ist so, es gibt mehrere (.) Processors, also es gibt das zentrale Plugin,

dann gibt es mehrere Processors, die sich alle um eine Welle jeweils kümmern.
(9) J1: <*nickt*>
(10) J2: Ähm. (.) Bei den meisten ist es so, dass kurz nach der vollen Stunde geprüft wird, ob auf

dem Share ein, oder, ob es auf dem entfernten Share eben eine neue Datei vorliegt.

408

C.12.1 Transcripts of JA1 Excerpts

(11) Wenn ja, (.) äh wird die letzte Datei ausgewählt und es wird angefangen zu prüfen, wie die
sich in ihrer Größe sich noch verändert.

(12) J1: <*hört auf zu nicken, schaut nach rechts oben*>
(13) J2: Das heißt, es wird so lange geguckt, bis die Datei nicht mehr größer wird, dann ist sie wohl

fertig.
(14) J1: M-hm
(15) J2: Und dann wird sie abgeholt und zur Transkodierung gegeben.

0:05:00 (start of Example 8.10)
(16) J1: In was für nem Zeitfenster wird dann geguckt?

0:05:03 (start of Example 7.20)
(17) J2: Ich fange an zu gucken um zwei Minuten nach der vollen Stunde, weil da garantiert ist, dass

dann Nachrichtendateien vorliegen wenn welche vorliegen.
(18) J1: OK
(19) J2: Undmonitor’ dann eben so lange diese Datei bis sie fertig ist. Das kann bis zu siebenMinuten

dauern, je nach Welle.
0:05:19 (end of Example 7.20)
(20) J1: Hm genau, aber mh, also das Zeitfenster für die Veränderung?
(21) J2: Ja genau, das ist, äh, Zeitfenster für die Veränderung, das ist variabel, je nachdem wie die

Nachrichten gehen.
(22) Das weiß ich ja nicht. Also es ist so, dass, die legen automatisch immer ne neue Datei an.

Wenn die Nachrichten zu Ende sind, wird wieder ne Datei angelegt. Das heißt, ich hab quasi
nie mehr als die Nachrichten.

(23) J1: Ja, nee, ich mein jetzt nur weil du sagst, du guckst halt so lange, ähm, äh, bis die Größe
aufhört sich zu ändern, ja?

0:05:48 (end of Example 8.10)
(24) J2: M-hm
(25) J1: Musst du ja noch ’nen gewisses Zeitfenster noch einplanen, in der immer noch ’ne Verände-

rung stattfinden könnte.
(26) J2: Ja gut, bis maximal fünf vor der neuen Stunde. Also, ich warte wirklich lange.

0:06:00 (start of Example 7.23)
(27) J1: <lacht> Nee, ich mein tatsächlich die Größe jetzt, die Größe des Zeitfensters, also (.) du

wartest 10 Sekunden, dann nach 10 Sekunden entscheidest du, in den 10 Sekunden hat sich
jetzt nichts mehr verändert, dann ist die Datei wohl fertig.

(28) J2: Achso, das meinst du, nee 30 Sekunden.
(29) J1: 30 Sekunden, das wollt ich wissen.

0:06:12 (end of Example 7.23)
(30) J2: Das ist 30 Sekunden lang das Zeitfenster. Jetzt hab ich dich verstanden.

0:06:15 (end of Examples 5.1, 6.13, 7.1, 8.1, and 9.1)
[. . .]
J2: Aber kann ich dir gleich zeigen.
J1: Ja. Und das NewsPlugin macht jetzt in dieser ganzen Sache was davon? Also, genau dieses

Monitoring und dann die Delegation an die einzelnen Wellen-Plugins, oder?
J2: Nee. Das NewsPlugin kümmert sich eigentlich nur darum (!...!) das wird eben periodisch aufge-

rufen vom Cron-Server [. . .]
0:06:33 (end of Example 10.3)
[. . .]

0:08:27 (start of Example 8.3)
J2: Die Funktion ist extrem lang, aber die lässt sich eigentlich ganz gut auch aufspalten, denke ich.

Also da sollten wir nachher im Zuge des (!...!) oder jetzt im Zuge des Refactorings vielleicht
mal drübergehen. Weil ich denke, dass vor allem nachher, wenn wir die Dateien austauschen
wollen, oder den Zugriff auf die Dateien austauschen wollen, wir (!...!) das in kleinen Bröckchen
irgendwie besser geht, also wenn wir da ne bessere Übersicht haben.

409

APPENDIX C. PAIR PROGRAMMING SESSIONS

J1: Ja.
J2: Teilst du meine Ansicht?
J1: Ja. Ähm, gibts, können, gnah.
J2: Wenn können auch gerne durchgehen, wenn du magst.
J1: (.) Ja? (. . . .) Ähm, wie isses denn (!...!) ja, lass’ uns mal durchgehen.
J2: Also, wir haben hier [. . .]

0:09:19 (end of Example 8.3)
[. . .]

0:09:32 (start of Example 8.14)
J1: Wir gehen rein mit der currentTime.
J2: Genau, currentTime, das ist der aktuelle Zeitstempel beim Aufruf.
J1: Beim Aufruf, wozu braucht er die (von außen)?
J2: Brauch ich noch öfters zum Beispiel hier bei getLastFile <*selektiert Statement*>, wenn er

sich die (!...!) damit er ne Vergleichszeit hat, ne?
J1: Ja, nee, ich meine, warum muss das von außen reingegeben werden? Also, die Funktion weiß

doch eigentlich auch selber wie viel Uhr wir haben.
J2: Dass jeder Processor die gleiche Zeit kriegt.
J1: OK (.) ja.

0:10:01 (end of Example 8.14)
J2: <*öffnet Datei*> Also wir haben hier, siehste ja, Zeile 85 <*markiert diese Zeile*>, dass wir die

currentTime hier speichern und dann kriegt jeder dieselbe. Also das ist die Zeit beim Aufruf.
Deswegen habe ich die von außen reingegeben. Aber du hast Recht, wir können nachher mal
prüfen, inwiefern wir die da dringend brauchen, also dass jeder dieselbe Zeit hat. Weil dann
könnten wir das auch nach innen verlagern, weil es ist natürlich schon ein bisschen komisch,
warum man die currentTime hier braucht.

J1: Das wäre jetzt halt meine nächste Frage gewesen, warum die halt (!...!)
0:10:31 (see Example 8.6)
J1: Gibt’s nen zwingenden Grund, dass alle NewsProcessors die gleiche (Zeit)?

0:10:39
[. . .]

0:13:15 (start of Example 10.6)
J2: Und setzt aber dafür das remoteNewsFile. Und zwar kriegt er das aus der Funktion getLast

File. Das wäre ne Funktion, die es nachher auch zu ersetzen gilt. [. . .] Sollen wir in die Funktion
reingehen, oder?

J1: Nee, erstmal nicht bitte.
J2: Erstmal nicht, ok.

0:13:43 (end of Example 10.6)
[. . .]

0:14:15 (see Example 8.6)
J1: Kann das (‼...‼) Ist das nen erwarteter Fall, also kann das passieren?
J2: Also das ist der Fall wenn er nichts gefunden hat.
J1: Aber sollte das passieren? Das sollte eigentlich nicht passieren, gell?
J2: So, und wenn die Minute nicht (!...!) wenn es nicht zwei nach der vollen Stunde ist, dann NOOP,

macht er halt nix.
J1: <**J2s Name**>? Hörst du mich?
J2: Ja.
J1: OK.

0:14:35 (start of Example 8.23)
J1: In diesen Fall hier mit dem Error sollte er eigentlich niemals reinrutschen, wenn alles glatt läuft,

richtig?
J2: Wenn alles glatt läuft, nie reinrutschen, genau.

410

C.12.1 Transcripts of JA1 Excerpts

J1: (OK)
J2: Also wenn er ne Datei gefunden hat, dann rutscht er da auch nicht rein. Ja? <*selektiert return-

Statement im default-Fall*> Weil dann ist er ja in diesem FileTracking-Modus. (. .) Ja? (.)
Oder nein? Warum sagst du nix? <lacht>

0:14:58 (end of Example 8.23)
[. . .]

0:19:13 (start of Example 9.16)
J2: Ok, dann haben wir hier (!...!) öh, ja, es wird halt kopiert. Siehst du ja hier, Zeile 101 <*setzt Cursor

in Zeile 101*>. Und zwar in die Datei localNewsFile <*selektiert this.localNewsFile in
Zeile 101*>. (. .) <*setzt Cursor in Zeile 102*> kopiert er das hier (‼Moment‼) ähm

J1: Momentmomentmoment
J2: Hm?
J1: Kurz gucken.
J2: (. . . .) Was meinst?
J1: OK. Ne, ich hab die Zeile nur nicht gelesen gehabt.
J2: OK.
J1: (. .) OK, ja.

0:19:39 (end of Example 9.16)
[. . .]

0:22:59 (start of Example 9.11)
J1: Weil du die in ner Klassenvariable gespeichert hast [. . .] Warum muss remoteNewsFile in der

Klasse selbst definiert sein? Warum reicht das nicht, das in der Methode zu machen?
J2: Ähm, das remoteNewsFile? Du meinst, warum es hier nicht reicht?
J1: Ja, das remoteNewsFile.
J2: Lass mal überlegen, ob der <**J1s Name**> da recht hat. <*beginnt zu scrollen*>
J1: <*liest im Code*> Es gibt ein Aufreten [. . .]

0:23:48 (end of Example 9.11)
[. . .]

0:24:16 (start of Example 8.24)
J2: Ja, also diese (!...!) man sollte es vielleicht so sagen: Die muss ichmir merken, denn diese execute-

Methode, <**J1s Name**>, die wird alle 30 Sekunden aufgerufen.
J1: Ja?
J2: Das heißt, ich muss mir ja den Status speichern. Wenn ich mir die Datei von remote geholt

habe und dann das FileTracking mache, muss ich mir ja ne Referenz darauf speichern. (. .)
Ich will’s ja nicht jedes Mal (. .) neu anlegen. Kann ich ja gar nicht.

0:24:44 (end of Example 8.24)
[. . .]

0:27:47 (start of Example 8.17)
J1: Das heißt, die gesamte Funktionalität hier oben ist eigentlich über alle anderen News-Plugins,

also die Unter-News-Plugins, gleich. Sehe ich das richtig, oder?
J2: Nee, das ist nicht korrekt. Denn, die sind alle so’n bisschen unterschiedlich.
J1: ‘So’n bisschen unterschiedlich’, ok?
J2: Ja, es ist etwas problematisch hier [. . .]
J1: Das heißt, jede einzelne Klassemit ‘_News’ am Endemachtwas eigenes in derexecute-Methode.
J2: Ja, die wird überschrieben. Siehst du ja auch hier (‼...‼)
J1: Jaja, das sehe ich. Aber, äh, das, womit es überschrieben wird, ist halt wirklich, also, wenn du

zwei beliebige Dateien nimmst und die vergleichst, sind die immer irgendwie unterschiedlich.
J2: Die sind unterschiedlich, ja!

0:28:44 (end of Example 8.17, start of Example 8.5)
J2: Das ist gleich für <**Alpha**> und <**Beta**>. [. . .]

411

APPENDIX C. PAIR PROGRAMMING SESSIONS

J1: <herausfordernd> Und deswegen ist es in AlphaNews.
J2: Warte mal, wenn du jetzt (‼...‼)
J1: Also wenn ich jetzt Alpha_News und Beta_News vergleichen würde, dann wäre es nicht unter-

schiedlich.
0:28:57 (start of Example 8.15)
J2: Ja, dann guck dir bitte mal Beta_News an. <*öffnet Beta_News, scrollt in die Mitte der Datei*>

Ich hab sie gerade offen. Du siehst, hier gibt es keine execute-Methode.
J1: <*springt zu J2s Position*> Da gibt es tatsächlich keine execute-Methode.
J2: Nein, weil für die beiden ist es gleich.
J1: Und das heißt?
J2: Wie, ‘das heißt’?

0:29:18 (end of Example 8.5)
J1: Das heißt, äh, wo ist denn die execute-Methode für <**Beta**>?
J2: Ja die execute-Methode von <**Beta**> entspricht der von <**Alpha**>.
J1: Ja, klar. Aber da muss ja irgendwo eine Verbindung hergestellt werden. [. . .]
J2: Ich verstehe die Frage nicht. Es tut mir leid. [. . .]
J1: [. . .] ach (#extends Alpha_News#)

0:29:47 (end of Example 8.15)
[. . .]

0:40:29 (start of Example 9.5)
J1: <*hat Code-Block selektiert, ruft Refactoring “Extract Method” auf*> Was macht das alles?
J2: Also es guckt eigentlich nur nach der Dateigröße [. . .] und lädt sie runter.
J1: <*tippt den Methodennamen “downloadRemoteFile”, klickt “Extract”*>
J2: Deswegen wollt ich nämlich hier oben dann <*selektiert einige Zeilen*>, damit wir das irgendwie

unterteilen könnten (‼...‼)
J1: <*Fehlermeldung geht auf*> Funktioniert so noch nicht.
J2: Also hier (‼...‼)
J1: <*schließt Fehlermeldung, liest Quellcode*> Stimmt, ja der macht ja nen return, genau.
J2: Also (‼...‼)
J1: Das funktioniert noch nicht.

0:40:42 (end of Example 9.5)
[. . .]

0:53:56 (start of Example 6.24)
J1: Ahja, das heißt diesen <*selektiert Zeilen 88 bis 105*> (!...!) das heißt diesen Fall können wir

eigentlich mal in das try [Zeilen 76 bis 79] reinziehen, oder?
J2: Das können wir (, ,) das, nein! Nein-nein-nein-nein-nein-nein-nein. Können wir nicht, weil

<*Cursor zu Zeile 51, selektiert if-Schlüsselwort für J1*> bedenke bitte in Zeile einundfünfzig
<*selektiert ganzes if-Statement für J1*> das localNewsFile

J1: Zeile einundfünfzig, was?
J2: Das können wir können wir nicht machen.
J1: Achso, du meinst <*scrollt nach oben*> dass wir (!...!)
J2: Was wir aber machen können (‼...‼)
J1: Aargh-ha-ha-ha urgh <kapitulierend>, oh Gott. Ja, du hast recht, du hast recht.

0:54:34 (end of Example 6.24)
[. . .]

0:58:23 (start of Example 10.9)
J2: Wo fang ich an zu erklären? <lacht> Das ist nämlich etwas komplizierter wie du denkst.
J1: Sicherlich.

412

C.13. Session JA2

J2: Weil wenn <**Welle Alpha**> oder <**Welle Beta**> keine eigenen Nachrichten haben, wenn
das bei denen irgendwie ausfallen sollte, dann übernehmen sie diese <**fallback**>-Nachrichten.
Und je nach dem, wenn es ihre eigenen sind, also wenn das Konstrukt hier hinten true ist <*zeigt
auf Code*>, dann sind es ihre eigenen Nachrichten-Dateien, dann soll er sie löschen. Wenn es
die <**fallback**>-News sind, soll er sie natürlich nicht löschen, weil es ja noch eventuell noch
andere gibt, die die auch noch benötigen. Ja? Aber das kann man in Zukunft alles etwas anders
gestalten (‼...‼)

J1: <*schüttelt den Kopf*> Andere Baustelle, andere Baustelle, das ist (‼...‼)
J2: Ja, das ist ist noch ne andere Baustelle. Das habe ich nur deswegen gemacht, weil der Download

immer so lange gedauert hat, von so ner blöden Nachrichten-Datei. Da habe ich mir gedacht, da
muss es nicht noch länger dauern, dann verwende ich für alle dieselbe. Wenn das nachher auf
dem lokalen Dateisystem läuft, dann geht das natürlich bedeutend schneller und dann kann
man die auch zweimal runterladen.

0:59:32 (end of Example 10.9)

C.13 Session JA2

The same pair as in session JA1 (see Section 4.4.4 for more details on the context, the developers,
and their session) starts with implementing J2’s system from scratch about two weeks later. In
the first part of the session, J2 shows J1 a number of helper implementations he wrote in the
meantime and J1 criticizes them. Afterwards, they discuss and collect requirements together
in a plain text file.

C.13.1 Transcripts of JA2 Excerpts

0:13:41 (start of Example 8.11)
J2: Im Grunde genommen funktioniert es so, du hast halt einen TranscodeJob, den du anlegen

möchtest. Da kann man beliebige InputFiles eben setzen. Ja? Du kannst beliebig viele
setzen. Ich habs deswegen gemacht, dass man nicht gleich mehrere setzen kann, weil du das ja
auch schon letztes Mal richtig erkannt hattest, das blockweise funktioniert. (‼Genau‼) Also du
hast ein InputFile, dann kommt alles was damit gemacht werden soll, dann OutputFile. Dann
kommt wieder das InputFile, alles was gemacht werden soll, OutputFile. (‼Ja‼) Also so ist das
aufgegebaut. (‼Ja‼) OK, ähm (‼...‼)

J1: Ja, momentmomentmoment, du hast doch gerade gesagt, du kannst beliebig viele setzen.
J2: Ja, in dem ich sag, (##job.setInputFile##) noch ein InputFile.

0:14:25 (end of Example 8.11)
[. . .]

0:17:53 (see Example 8.6)
J1: Wieso ist der Encoder als String und nicht als Konstante hinterlegt?
J2: Weil es da sehr sehr viele gibt. Und ich weiß nicht (!...!) und das kann sich mit den ffmpeg-

Versionen immer wieder ändern.
J1: Ja genau, und dann will ich es ja nicht überall mit String-Suche, wenn sich da was ändert,

irgendwie (‼...‼)
J2: Sicher. Nee, aber was da auf jeden Fall noch reinkommt, ist: Ich hab ne Klasse Encoder. Und

du kannst dir auch alle Encoder listen lassen, die es so gibt. Das heißt eigentlich wäre der
richtige Weg, dass man sich die listet und dann den entsprechenden Encoder raussucht.

J1: Würde ich so nicht sehen, nee. Ich würd’ nen Enum machen. Ich würd nen ganz einfaches
Enum machen.

J2: Nee, finde ich nicht gut.
J1: Wieso findest du das nicht gut?
J2: Finde ich nicht gut (‼...‼)

413

APPENDIX C. PAIR PROGRAMMING SESSIONS

J1: Anhand welcher Dings willst du denn den Encoder raussuchen?
0:18:38 (start of Example 9.22)
J1: Anhand welchen Parameters möchtest du es jetzt (!...!) also wenn du hier schreibst ‘set

Encoder’ von was? ‘Encoder.getEncoderBy’ und dann kommt was?
J2: Nee, pass auf. Es geht folgendermaßen. Du kannst dir ne Liste von allen zur Verfügung stehen-

den Audio-Encoder geben lassen.
J1: <zufrieden, erwartungsvoll> Ja. Und wie finde ich raus, welches der richtige ist?
J2: (, , ,) Äh, ja gut. Ist jetzt (!...!) ich mein du kannst ja nen beliebigen wählen. Es gibt ja nicht

‘den richtigen’.
J1: Ja, klar, aber nehm ich denn nen ‘beliebigen’, oder nehm ich den ersten, oder den fünften, oder

was? Ich will mir ja wahrscheinlich einen auswählen der WMAs generiert.
J2: Genau. (‼...‼)
J1: Das ist dann der WMA-Encoder, wmav2.
J2: Ja, genau, der heißt halt so (‼...‼)
J1: Genau, ‘der heißt halt so’ und du sagst jetzt, dieser Name kann sich in späteren Versionen von

ffmpeg möglicherweise ändern, richtig?
J2: Ja, man weiß es nicht.
J1: ‘Man weiß es nicht’, so das heißt man möchte es nicht an dem Namen festmachen, sondern

ich möchte es daran festmachen, dass es der WMA-Encoder ist. Da würde sich doch anbieten
(‼...‼)

J2: Nen Enum mit nem String, im Konstruktor nen String, ja, hm.
0:19:43 (end of Example 9.22)
[. . .]

0:25:21 (see Example 8.6)
J1: Warum ist denn das Timeout da?

0:25:23

C.14 Session KA1

Company K develops and operates a large real-estate online platform. Junior developers
K1 and K2 come together to work out an API between their respective teams’ subsystems:
K1 is responsible for a mobile app for which K2 writes the endpoint with Java Spring web
framework.1 Before they can start with their actual task of session KA1, they first need to
change the target URL of a single link which takes them more than 45 minutes and the help of
two colleagues, because their development environment was not properly set up. Afterwards,
K1 explains the data he needs with some dummy JSON file he prepared and K2 considers which
internal microservices are able to provide which kind of data.

C.14.1 Transcripts of KA1 Excerpts

0:51:17 (start of Example 7.10)
K2: Na, ich kann dir erstmal zeigen, was wir jetz schon haben, und dann können wir vergleichen,

was das Finanzexposee hat.
K1: <*kündigt an, dass er noch kurz etwas auf seinem Telefon fertig machen möchte; das dauert

ca. 90 Sekunden*>
K2: Also, wir haben ExposeApiClient <*öffnet diese Klasse*>. Der hat so ne getAsJson und

damit können wir uns generell erstmal das Exposée-JSON, was von der API kommt, holen. Das
ist aber nicht schön, weil du hast da hundert Sachen, die du nicht brauchst, und so verschachtelt
und alles.

1Project homepage: https://spring.io/

414

https://spring.io/

C.14.1 Transcripts of KA1 Excerpts

K1: Genau, und es gibt auch irgendwie tausend Fallunterscheidungen und es ist absolut beschissen
dokumentiert, habe ich festgestellt. Es ist irgendwie nur für einen Objekttyp dokumentiert, es
gibt aber ungefähr 20.

K2: Genau, richtig. Ja, genau, es gibt 20, ja. Äh, genau, dann haben wir den ExposeApiService,
der nutzt jetzt so’n Teil <*öffnet diese Klasse*>, also den ExposeApiClient, holt sich den
JSON und packt das bei uns in nen Mapper rein. Und der Mapper bildet das dann auf, ähnlich
wie beim Finanzexposee, auf die Objekte, die wir brauchen. <*wählt eine Reihe von Datenklasse
in der Übersicht aus*>.

0:53:37 (end of Example 7.10)
Bisher haben wir dann nur das Exposee selber <*öffnet diese Klasse*>, das ist für mich dieses
Hauptelement (‼...‼)

K1: M-hm. Da haste die ID (‼...‼)
K2: Da haben wir nur die ID jetzt drin (‼...‼).
K1: Und das hat dann halt nen Sub-Objekt.
K2: Genau und das ist dann das RealEstate. Und das RealEstate hat eigentlich auch noch (!...!)

was wichtig zurückkommt wäre auch laut Schema irgendwie ContactDetails, oder sowas,
aber das brauchen wir glaub ich nicht <*schaut zu K1*>. Weiß nicht, das Exposee braucht die
glaub ich auch nicht, äh Finanzexposee

0:54:00 (start of Example 7.21)
In dem RealEstate da haben wir jetzt auch erst mal nur die Daten, die wir brauchen <*öffnet
diese Klasse*>. Das sind bei uns Titel, ne Adresse, der Preis, livingSpace, plotArea (‼...‼)

K1: Was ist denn plotArea?
K2: Ähm,siteArea, also Grundstückspreis (‼OK‼) nee nichtGrundstückspreis,Grundstücksfläche.

(‼OK‼) livingArea ist halt Wohnfläche.
K1: Ja
K2: Und dann haben wir noch den marketValue, das ist auch so ne Art Preis. Und wir haben

constructionYear und modernizationYear.
0:54:29 (end of Example 7.21)
[. . .]

0:59:23 (start of Example 7.11)
K1: Und dann brauch ich halt diese ganzen, so ein paar Sachen, da dieser floorSpace und so

weiter, und wie viele Zimmer das Teil hat, und dann halt diese ganzen taxValues.
K2: Das haben wir schon <*selektiert nächste JSON-Zeile*> genau, das müssten wir halt noch

gucken <*selektiert nächste JSON-Zeile*> da ist halt nur die Frage, wo die alle herkommen,
bzw. wie wir die finden und ob das Unterschiede zwischen den Typen sind. Ich glaube bei dem
einen Meeting haben die gesagt, bei irgendeinem gab es noch Probleme. Ich weiß aber nicht,
ob die das schon gefixt haben. Weil eigentlich haben sie gesagt, sie haben keine Bugs mehr
offen.

1:00:01 (end of Example 7.11)
Wir können ja einfach mal bei denen noch mit reingucken. Das habe ich auch noch auf.

1:00:05 (start of Example 7.22)
Hier haben wir auch so nen Holder <*öffnet Klasse ExposeHolder*> das ist schon das Data-
Element. [. . .] Hier müsste alles dabei sein. courtage, brauchst du das?

K1: Was ist denn courtage?
K2: Keine Ahnung, <*öffnet Online-Wörterbuch*> es ist auf jeden Fall <*gibt ‘courtage’ ein*>

(#broker’s commission, broker’s fee#)
K1: Ja, (#broker’s commission#). Ja, die wär cool. [. . .] Ja, broker’s commission, so taucht’s dann

später glaube ich auf (‼M-hm‼) also das passt schon, also das bräuchte ich im Prinzip.
1:01:24 (end of Example 7.22)

415

APPENDIX C. PAIR PROGRAMMING SESSIONS

C.15 Session KB1

Session KB1 was recorded two months after session KA1. Developers K2 (who is now more
experienced in the domain) and K3 (who is more of a database expert) amend their data model:
First they introduce a new model class and discuss which fields to include. In the second half
they write and debug a database migration to adapt the database schema.

C.15.1 Transcripts of KB1 Excerpts

0:02:39 (start of Example 8.20)
K3: Das heißt, wir machen jetz erstmal nur das Refactoring, oder?
K2: Würd’ ich sagen.
K3: Ja, ne? Und dann machen wir weiter.
K2: Wenn wir das <*hovert Übersicht lokal geänderter Dateien*> nebenbei mit anfassen, ist jetzt

nicht schlimm, das kann ruhig hier mit rein.
K3: Was ist das?
K2: Also einmal <*öffnet eine der geänderten Dateien*> ist das der Controller, da hab ich jetzt das

Datumfeld in zwei Datumfelder, so’n Datum-Zeit-Feld gesplittet.
K3: Ja, ok.

0:02:58 (end of Example 8.20)
[. . .]

0:15:54 (start of Example 7.8)
K3: Oder wollen wir einfach nen Preis ranschreiben?
K2: Ähm, naja, die Idee war (!...!) dieser Preis da wollen die ja noch viel experimentieren. Deswegen

gibt’s halt jetzt gerade zwei Konfigurationsvariablen, einmal für LOW und für HIGH, im Preis.
Und je nachdem du halt hier für’n (.) Enum hast (.) wird das dann entsprechend rausgezogen.
(. .) Deswegen wollten wir den Preis nicht direkt schreiben.

K3: OK. Na gut. Ja man könnte auch einfach den Preis direkt als Zahl reinschreiben, und dann
kannst du so viele Varianten haben wie du willst.

0:16:27 (end of Example 7.8)

C.16 Sessions KC1 and KC2

Sessions KC1 and KC2 were recorded six months after session KB1. The team switched its
technology stack from Java to CoffeeScript.2 Now, developers K2 and K3 are in the process
of getting to know the jQuery JavaScript library because they want to write an integration
test of an auto-completion feature, for which they want to programmatically enter characters
into an input field. In session KC1, they set up their test environment and discuss different
test approaches. After a lunch break, they try out these approaches which does not work out
as intended and struggle with their debugger.

C.16.1 Transcripts of KC2 Excerpts

0:14:12 (start of Example 6.23, part 1)
K2: <*öffnet Doku*> (, , , , , ,) Das ist Event-Binding, aber ich will’s ausführen <*scrollt runter*>

(, , , , , , ,) Ah, <*selektiert Text unten auf dem Bildschirm*> (#keypress#) und dann <*scrollt
selektierten Text in Bildschirmmitte*> wird das ausgelöst.

K3: <*liest Text hinter der Selektion*> (#without an argument#), okay.

2Project homepage: https://coffeescript.org/

416

https://coffeescript.org/

C.17. SessionMA1

K2: <*scrollt hoch*> Aber, wie kann ich jetzt ’n (!...!) <*bewegt Cursor auf code mit EventData*>
K3: <*liest Text bei Cursor*> (#EventData#)
K2: Wir müssen dem doch irgendwie sagen, was er machen soll. <*scrollt runter*> Vielleicht

müssen wir’s einfach mal googlen. Google weiß sowas bestimmt.
K3: Oder wir gucken einfach bei (~) wie der das macht, im Code.
K2: Im Code <*wechselt zur IDE*>

0:15:04 (end of Example 6.23, part 1)
[. . .]

0:53:13
K2: Jetzt mach ich einfach so nen keypress, oder was (, , ,) <*tippt keypress-Aufruf ohne Para-

meter*>
K3: Eigentlich müssten wir das ja auch irgendwo sehen, oder, das Ding? Auf der Seite. Oder?
K2: (, ,) Das können wir machen, indem wir mal ’n (,) (. .) Breakpoint machen. Hier machen

wir mal ’n keydown (,) <*dupliziert Zeile*>. Oder, nee, testen wir’s einfach (,) <*löscht Zeile
wieder, wechselt zum Browser, klickt auf Zeile*> Also eigentlich sollte es hier schon da sein.

K3: Ja.
K2: <*lädt die Seite neu*>
K3: Aber was du da jetzt aufgeschrieben hast (‼...‼)
K2: Oh, da isses.
K3: Naja, immerhin.
K2: <*klickt im Browser herum*> steht da jetzt (‼...‼) nichts drinne, aber (!...!) was?

0:53:54 (start of Example 6.23, part 2)
K3: Aber, ja, ich glaube nicht, dass wir damit nen Event auslösen, sondern das ist eher ein Event-

Handler, den wir da (.) nicht implementieren.
K2: Wenn’s leer (!...!) nee wenn’s leer ist, das hatten wir doch hier geguckt <*öffnet Doku*> (#to

trigger the event manually#)
K3: Achso, (#without an argument#) (, ,) aber (, , , ,)

0:54:24 (end of Example 6.23, part 2)

C.17 SessionMA1

CompanyM develops software for multiple clients in the energy and logistics sector. In session
MA1, developerM2 goes through a number of database tables and asksM1 many questions
about their and their columns’ purpose. Since M2 had prepared a list of SQL SELECT queries
on the tables and columns in question their session is efficient and only lasts 25 minutes.

C.17.1 Transcripts ofMA1 Excerpts

0:05:13 (start of Example 7.4)
M1: We have a lookup table, which is this one. If you could open it?
M2: Actually, I have it here. <*highlights and executes next SELECT query in file*>
M1: So here we have, based on the componentName, we have these three columns.
M2: OK, got it.

0:05:30
[M1 explains different details and M2 listens]

0:09:43
M2: <*writes comment ‘take values from the lookup table’*>
M1: By the way: This is one lookup table, but there will be one or two more, similar like that, but

for other websites. Because this lookup table is for one website.
M2: Ah <*slow nodding*> okay, got it.

417

APPENDIX C. PAIR PROGRAMMING SESSIONS

0:10:13
[M1 explains more details andM2 listens.]

0:11:01
M2: <*adds ‘Lookup to be done based on componentName and fk_website’*>
M1: M-hm.
M2: Ok, cool. Understood.

0:11:16 (end of Example 7.4)
[. . .]

0:13:26 (start of Example 8.25)
M1: Everything that is not in the Vessel table can be changed along the time.
M2: OK.
M1: But it’s more likely that the Machinery and the Equipment won’t change, as you know,

adding a crane to a ship is not something you do every day.
0:13:41 (end of Example 8.25)

C.18 Sessions OA1 and OA2

Company O develops a web-based project planning tool. Junior developers O3 and O4 are
tasked with writing a test case for some new functionality. Even though they get some help
from a colleague along the way, they do not make progress in sessionsOA1 andOA2 (separated
by a lunch break). There are multiple reasons for this: They neither know that part of the
production code nor the underlying technology (React and Redux3) nor their development
environment so they resort to ‘console.log’-debugging for which they have to rebuild the
software in three-minute cycles. The pair speaks English throughout the session, which is
neither developer’s first language (see also Section 4.4.5 for more details on this session).

C.18.1 Transcripts of OA1 Excerpts

0:59:36 (start of Example 6.17)
O4: I want to propose that we will have a closer look at this TeamSelect which is used in the test

and (!...!) (, , , , ,) In the test, we have this function createTeamSelect. And the result of that,
we want to make some checks, whether (. .) it works.

O3: Yeah, so TeamSelect comes from TeamSelect.coffee
O4: And we use Team (!...!) TeamSelect
O3: Yeah, so it comes from TeamSelect.coffee which is a (. .) (React component).
O4: (.) So it’s a, the class TeamSelect inside (. .) this file.
O3: Exactly.
O4: TeamSelect is exported.
O3: Exactly. Which is a, which is also a React component.
O4: Yeah, where is it? <*looks at O3’s screen*>
O3: We just call it (‼...‼)
O4: This is the class? <*points right half of O3’s screen*>
O3: Exactly. So we just call it in the test.
O4: (. .) There is a render function, and (!...!) (,) Yes, in the tests, we

define props (, , , ,) (#createTeamSelect#), these are the props.

3Project homepages: https://reactjs.org/ and https://redux.js.org/

418

https://reactjs.org/
https://redux.js.org/

C.18.1 Transcripts of OA1 Excerpts

O3: M-hm. But (‼And‼) we don’t have, we don’t want to force any state, we just want to (!...!) So
what we want to do, is to, erm (. . .) so we can force some some some props in the state. But
we can just (.) call (. .) the render function of the React component and check if the props are
correct. (. . .) We don’t want (!...!) in here (!...!) I mean, because if here we would add something
here that says initial value (‼Yeah‼) because we then would be testing the mock, it doesn’t
make any sense.

O4: Yeah, this is why I would say, we should think about whether this makes sense.
1:02:51 (start of transcribed part of Example 6.17)
O3: If we test against the real React component, I think, we can (!...!) so we just have to render the

React component, the real one instead of the mocked one and check if the prop is there or not.
O4: (.) This initial value, it is here. TeamSelectForm is used TranslatedTeamSelect.

TranslatedTeamSelect is in the TeamSelectContainer, which is also exported, butwhich
is not a part of TeamSelect.

O3: (. . . .) Hm. <*selects definition of TeamSelectContainer*> Yeah? (.) Yeah, but this
is the (‼...‼)

O4: So maybe we have to test TeamSelectContainer.
O3: (.) I don’t know.
O4: (. . .) Or is TeamSelectContainer used somewhere else? <*turns to his machine*>
O3: So, TeamSelectContainer is the wrapper to make it a stateful component, so it connects to

Redux. But I don’t know if we need to call the (.) if we need Redux here anyway.
O4: <*continues searching (,)*>
O3: <*looks at source code at the same time (,)*>

Ah, what about this filterSelectedTeam? <*selects definition of said method*>
O4: <*looks to O3*> Sorry?
O3: What about this filterSelectedTeam? So it gets the formValue <*hovers code*>, it’s

exactly what we want. (#props.fields.teamSelect.value#) <*open debugger in web browser (, , ,
, , , ,)*> Ah, it’s not. <*goes back to editor*>

O4: <*continues searching (, , , , , , , ,)*>
O3: <*puts cursor in test code*> But let’s try getting the, instead of rendering (. . .) the TeamSelect,

we can try with the TeamSelectContainer.
O4: I’m just looking if there’s already a test (. .) for it, but I don’t see it.
O3: <*searches for occurrences of roleSelect in TeamSelect code (,

,) (.) <*selects three lines in TeamSelect
code*> I think it’s this guy that we want.*>

O4: Sorry?
O3: <meekly> Sorry to interrupt, erm
O4: No, it’s okay.
O3: I think it is that what we want, ’cause you were saying that we are looking at the wrong thing.

So we were looking at the TeamSelect section, where you define the name and you have this
button, and there is this part <*points to selected lines*>. So we have the className which is
the roleSelect and selectProps with (#props.fields.roleSelect#) and if you go here <*goes
to browser*> it’s this.

O4: (#roleSelect#)
O3: <*back to code*> I think it’s the selectProps. So selectProps <*to browser*> select

Props. And at some point, we have the initial value that is coming (.) from somewhere.
O4: But, yeah, I think it’s coming from the container.
O3: Right.
O4: It’s defined in a component which is covering, which wraps this TeamSelect component. (. . .

. . .) This is my impression, I’m not sure.
O3: OK, so let’s try to render instead of the TeamSelect, to render the TeamSelectContainer.

1:08:53 (end of Example 6.17)

419

APPENDIX C. PAIR PROGRAMMING SESSIONS

C.19 Session OA5

Experienced developer O1 and junior developer O3 work on a defect. They amend test cases,
refactor the production code, and eventually fix the bug. Along the way, O1 explains general
software development principles. The pair speaks English throughout the session, which is
neither developer’s first language (see also Section 4.4.5 for more background information).

C.20 Session OA8

Again, see Section 4.4.5 for details on the company, the software, and the team. In the larger
context of a bug, junior developers O3 and O4 investigate a test case that began to fail after
they started their bugfix. In session OA8, they investigate both production and test code to
understand the reason (which is: they changed some implementation but did not adapt the
mock objects used in the tests accordingly). They eventually adapt the mock objects and write
new test cases to reproduce the bug. For the first 17 minutes they are accompanied by O1. The
group speaks English throughout the session, which is neither developer’s first language.

C.20.1 Transcripts of OA8 Excerpts

0:10:35 (start of Example 8.16)
O4: offsetFraction means in the middle <*hovers offsetFraction: 0.5 in test case*>
O3: The offsetFraction, we didn’t change that. So, I’m assuming this is okay. But we did change

the offsetDays (‼...‼)
O4: I want to know what the meaning of offsetFraction is in this test.

0:10:49 (end of Example 8.16)
[. . .]

0:13:42 (start of Example 6.16)
O4: (#setDragProperties#) (, ,) the offsetDays has <*selects part of the console output*> (,)

not-a-number. (. .) Ok?
O3: Because, because it doesn’t have any arguments anymore. We changed the function. So, it says

that it should be, it was expecting some arguments there and didn’t receive any arguments. I
would, can you go to the code, to what we changed?

O4: <puzzled> We just changed the calculation.
O3: <*nods*>
O4: Maybe it’s not defined, the result is not defined, maybe. (, , , , , ,) <*moves cursor to test code*>
O1: Not-a-number is the result here of offsetDays, so it’s not-a-number is the result (‼...‼)
O4: <*hovers definition of duration mock*> Maybe, maybe, we have to give the start and end

point for the dataModel.
O1: <annoyed> Can you look here? <*points to screen*> offsetDay is NaN, not-a-number <*looks

atO4*> (‼Yeah‼) A number is expected and we don’t return a number. <*looks atO4*> It might
just be like we missed the brackets and pass a function or something. That might already be
(!...!)

O4: My idea is that (‼...‼)
O3: Yeah, I don’t know which arguments we are passing right now.
O1: So let’s have a look at the function setDragProperties.

0:15:03
[They search for and then look at the code under test. O1 leaves the group at 0:17:00.]

0:17:54
O4: <*hovers changed production code*> dataModel.getEnd() is not defined in the test, I guess.
O3: But if it calls this function (!...!)

420

C.20.1 Transcripts of OA8 Excerpts

O4: <*(.) switches to test code, hovers mock definition (,
, , , ,) (I have an idea.) <*switches to production code, inserts console.log statement (, , , , , , , , , , ,
, , , , , ,)*>*>

O3: You can also use, like, the debug (~) for the test.
0:19:22
[They struggle with using the debugger, and eventually return to the code.]

0:25:26
O3: So the way I see it now, this is getting an object, but it was expecting a number.
O4: <*hovers assertion*> The expectation is that offsetDays is 1. And offsetDays is not-a-

number. This is the value. <*hovers test code (, , , ,)*> And (, , ,) (#emit#) (, , , , , ,) (#to.have.
been.calledWith expectedDragProperties#) (, , , ,)

O3: <*points at screen*> But it’s outputting an object. So, an object is not a number.
O4: (~) <*looks puzzled at O3*>
O3: That’s what I’m understanding of this. (. .) Because it was expecting this guy

(#to.have.been.calledWith#) with a number. But expectedDragProperties is not a number,
it’s an object! It’s a key-value pair. <*looks at O4*>

O4: Erm (. . .) <*hovers call of setDragProperties in test code*> this is the function which (!...!)
<*reads in test code*> (,)

O3: <*points to screen*> <slightly helpless> The expectedDragProperties, the value, it’s an
object, so (!...!)

O4: <*moves cursor around the screen (,)*>
O3: What are you thinking?
O4: What I first wanted to do was, how I started was this console output <*hovers console output*>

(#dataModel#), which is like that <*points at the output*>. And I made this code at the
<**production class**> in this new function. (#console.log#). <*points at screen*>

O3: The thing is, in the test we don’t use the real data model, we stub, we fake one.
O4: Yes, and the problem is, maybe in the fake one, this end and start is not defined. <*looks at

O3*> So we maybe have to define them, so this function can be used.
O3: Yeah, maybe we have to add it to the stub, yeah.
O4: This was my idea.
O3: M-hm.

0:29:18
[They run the test cases again]

0:31:11
O4: <*reads the output*> (#undefined#) ok, but not (. .) not not-a-number.
O3: (. . . .) Yeah, because what is not a number is the argument, not the function call.
O4: (. . . .) Erm.
O3: Because the test is, it should have been called with these arguments, and it’s the arguments

that is not a number.
O4: <*reads in production code*> Here we make the output (. .) (#durationInDays#) (.) ok, it

makes this calculation afterwards. <*hovers line containing call of Math.floor*> (. .) So, I would
like to know what (!...!) let me try please

O3: Sure!
0:32:09
[They add a debugging statement and run the tests.]

0:33:04
O3: (#Not-a-number#)
O4: OK, this is what I thought.
O3: Which is weird, because the Math function should be (!...!) <*turns to her own machine*>
O4: In the test, maybe we can (!...!) <*opens test code*>
O3: So we are using Math dot? <*turns to O4*>

421

APPENDIX C. PAIR PROGRAMMING SESSIONS

O4: Here, we’re defining the duration of the (‼...‼)
O3: Yeah, which function, which (!...!) Math function are we using?
O4: Hm? (.) And (‼...‼)
O3: It’s Math dot (.) where is it? <*turns back to her machine*>
O4: Have a look at what we had before. Before we made this change. <*opens Git client to display

the diff (,)*> It was like that before, duration
InDays was (. .) <louder> Look here, please.

O3: Ah, okay! <*turns to O4 and then his screen*>
O4: This was the function before, (#model duration asDays#). And this is set in the test.
O3: Ah, okay, durationInDays is a function, right?
O4: <*opens test code, scrolls to the mock, reads it*> (#duration#)
O3: I mean in the <**production code file**>
O4: <*opens production code file*>
O3: durationInDays is a function (. .) right?
O4: It’s a variable, but it’s set by that function.
O3: <*looks at the code*> Ah (.) yeah (.) it’s a scope thing. durationInDays is not defined.
O4: <frustrated> It is defined. Here <*selects a line*>
O3: Yeah, but <*keeps looking at the source code*> I’m pretty sure the problem is here. Can we

debug this?
O4: <puzzled> We already did.
O3: But (.) check durationInDays, what is the value of durationInDays?
O4: The value is the result of this function. And the result is, erm, <*reads logging output*>

undefined, yes. And the result of that calculation is not-a-number. (.) Have a look how
it was before <*opens Git client and reads diff*> It was (#Math.floor dataModel.duration.
asDays#) and this duration was set in the test. And I think, now, this duration is calculated
differently, so we have to set other variables, so that the calculation is possible, the start and
the end.

O3: Ok, ok, I see.
0:37:07 (end of transcribed part of Example 6.16)
O4: So we should try to (!...!)
O3: Maybe now, we (!...!)
O4: (#returns#) not the duration, we need the (!...!)
O3: <excited> Yeah, because we don’t have this function anymore <*points to screen, looks at O4*>

this asDays.
O4: <*copies code for mocking duration*> not duration, what do we need? userstart?
O3: It can be like ‘duration in days’ as well
O4: Hm? I don’t want to delete it.
O3: Oh. So it can (!...!)
O4: We have, erm, (!...!) <*scrolls through test output*> (#calculatedStartDate#)? What do we need?

What do we have in the source code? <*switches back to production code*>
O3: Yeah, so (~)
O4: (#getEnd#) and (#getStart#), so we need to know how it is
O3: We can import this as well. Because, like, the same way we’re getting duration, we can get

the getEnd and getStart. We just have to calculate it exactly the same way.
O4: <*switches to test code*>
O3: Instead of duration we can just say, getEnd and getStart <*looks at O4*>
O4: Hm (#dataModel#)
O3: Because it also belongs to the dataModel, right?
O4: (#returns#) Hm, what do we need here?
O3: No, we don’t need the asDays anymore
O4: Yeah.

422

C.20.1 Transcripts of OA8 Excerpts

O3: We just need (!...!)
O4: <*changes mock definition to dataModel.getEnd.returns*> Is it a moment (. .) a moment

object? <*looks at O3*> It’s a Date (.) a Date object.
O3: So it returns, and then it’s like, the (~) and dot stub and moment, I think. Can we look, how

we stub models? Somewhere else in the code?
O4: I’m about to look whether (!...!) <*starts search for getEnd, another mock definition is the first

match*> OK
O3: Yeah, <*points to screen*> (#returns moment#)
O4: <*selects two lines of mock code from the first match*> this is exactly what we need
O3: Yep. <*leaves the desk*>

0:39:51
O4: <*copies the lines, navigates to test case, pastes the mock code, changes the end date to

three days after the start date, comments out the duration mock code, runs test case, test
succeeds*>

0:41:42 (end of Example 6.16)
[. . .]

0:49:10 (start of Example 6.14)
O4: <*moves cursor to line 108*> And the offset is?
O3: Erm, offsetDays would be (.) a lot. Because, like the difference between these two guys

<*points to start and end dates*>, right?
O4: What was the meaning of offsetDays?
O3: It’s the distance <*holds up two index fingers*>. (. .) So, how big is the bar <*points at screen

with two fingers*>.
O4: No, it’s an offset, not a duration or width.
O3: Offset is distance, so it’s like distance <*mimics growing and shrinking distance between her

two index fingers*> (. .) so the distance that goes from the beginning of the bar to the end of
the (.) bar, I think.

O4: <*hovers lines 94 and 95 in the previous test case’s setup*> No, it must be three or five days
here in this. But it’s 1! <*selects the assertion in line 99*>

O3: (.) (Erm, has it to do something with the weekend?)
O4: <*hovers line 96*> (#zero point five#) (.) <*hovers lines 94 and 95*> three days
O3: But we can check that if we console-log these. <*looks at O4*>
O4: Hm?
O3: We can check that, if you console-log, erm, so this, the real variable value, here in the <**pro-

duction code file**>, we can like console-log the (. .)
O4: <*switches to production code*>
O3: that object that has the offsetDays (.)
O4: <*scrolls down*>
O3: <*yeah, we can console-log this. <*looks at O4*>*>
O4: (. . .) In the test, we have to think about what the right value is before we start the test. <*looks

at O3*>
O3: Right, but like, what’s the meaning in the real life of offsetDays? <*looks at O4*>
O4: This is what I want, I’m (thinking about).
O3: <nods> So, in order to do that I would say, let’s check these values. Let’s console-log this.
O4: Ah, you mean on the <*hovers the calendar view with cursor*>, when I make a manual test,

we log it out.
O3: Yeah, exactly. <*looks at O4*>
O4: Ok (. .) to have feeling what it, what the meaning of this is.
O3: Exactly.

0:51:19 (end of Example 6.14)

423

APPENDIX C. PAIR PROGRAMMING SESSIONS

C.21 Sessions PA1 and PA2

Company P develops and operates a platform for car part retailers and buyers written in
PHP. In session PA1, experienced developers P1 and P2 (both with five years of experience)
go through a database migration written by P1 and later discuss the requirements that led to
the schema change in the first place. They continue after their lunch break with session PA2
where they test and debug the migration and end up refactoring their test cases.

C.22 Sessions PA3 and PA4

Experienced developers P1 (more backend proficient) and P3 (more frontend) continue the
implementation of a new API endpoint which P3 already started. In PA3, P3 shows his exist-
ing implementation for which they write tests; P1 explains some backend-related software
development best practices. On the next day, in session PA4, they continue with implement-
ing the database access which causes them problems because of some idiosyncrasy of their
object-relational (OR) mapper.

C.22.1 Transcripts of PA3 Excerpts

0:29:53 (start of Example 9.23)
P1: Wichtig ist halt, dass du kenntlich machst, dass nicht die letzten beiden 0.01 miteinander in

Beziehung stehen, weil die vielleicht doch nicht in Beziehung stehen, und jemand geht hin
und sagt ‘So, guck mal hier steht 001’ (‼...‼)

P3: Welche letzten beiden?
P1: Zum Beispiel die letzten beiden in der Zeile 31 und 32. Angenommen die würden, die beiden

Zahlen würden, nicht in Bezug zueinander stehen, (.) und derjenige, der die Implementierung
mit reinen Zahlen sieht, denkt sich ‘Oh, die haben doch nen Bezug zueinander, dann geb ich
den doch mal die gleiche Konstante’. Und dann kommt jemand hin und führt die noch überall
anders ein. (‼Joah‼) Jetzt haben die alle den gleichen Bezug. Jetzt weißt du, dass die explizit
tatsächlich umgerechnet werden sollen

P3: So lange sie den gleichen Bezug haben, kann man sie auch so behandeln. In dem Moment wo
sich das ändert, muss man’s dann anpassen.

P1: Ja, aber das weiß derjenige, der den Code sieht ja nicht, wenn du da reine Zahlen zu stehen
hast. Wenn du da nur Zahlen zu stehen hast, die alle den gleichen Wert haben. Was ist denn
bei 3660?

P3: Wann haben wir jemals 3660 als Prozentanzahl?
P1: Oder bei 3600. Nee, bei 3600 ist so’n Beispiel. Das ist ne Umrechnung von Stunden undMinuten,

es kann aber auch Sekunden und Minuten sein. Also je nach dem welchen Zusammenhang du
hast, es können zwei gleiche Zahlen sein, die können aber zwei völlig unterschiedliche Dinge
sein.

P3: Aber auf unseren Fall angewendet hat das doch jetzt keine Relevanz.
P1: Doch, hat es. Weil es ne Magic Number ist und Magic Number heißt (‼...‼)
P3: Aber sie ist ja nicht mehr Magic, wir haben sie gerade hier bezeichnet.
P1: <genervt> Ja, wir haben sie so bezeichnet, weil sie jetzt einen Bezug zwischen diesen einzelnen

Zahlen herstellt. Vorher war nicht klar (‼...‼)
P3: Ich verstehe nicht, was du jetzt willst, gerade.
P1: Ich wollte dir erklären warum wir das machen (‼...‼)
P3: <genervt> Das habe ich verstanden.
P1: Gut. Ist doch okay.
P3: <nervöses Lachen> Ich hab gerade versucht zu verstehen, was du jetzt noch ändern willst.

424

C.22.1 Transcripts of PA3 Excerpts

P1: Ich wollte nichts ändern. Ich wollte gar nichts ändern.
P3: <erleichtert> Ok.
P1: Ich wollte dir nur klarmachen, dass es wichtig ist (‼...‼)
P3: <genervt> Hab ich verstanden.
P1: mit dieser Umbenennung den Bezug herzustellen.
P3: <genervt, auf den Bildschirm gerichtet> So.
P1: Nicht nur die Variable umzubenennen.
P3: <genervt> Is ok.

0:31:37 (end of Example 9.23)

425

APPENDIX C. PAIR PROGRAMMING SESSIONS

C.23 Data Mapping

So far, three other researchers have analyzed pair programming sessions from the same
repository as I did: Plonka (2012), Salinger (2013), and Schenk (2018). Here, I provide a mapping
of which companies, sessions, and developers they refer to in their writing.

Plonka (2012) does not identify individual sessions or developers, but only the companies.
Combining the information from her Tables 4.1 and 4.3, company numbers 1 to 4 appear to
correspond to companies C, E, F, and D, respectively. As stated in Example 3.1, I was also able
to reconstruct the origin of one of her five transcripts.

Plonka Global ID

Company 1 Company C
Company 2 Company E
Company 3 Company F
Company 4 Company D

Transcript 4: Expert & Novice DA5 (22:32–27:04): D2 & D8

Table C.1: Mapping of Plonka’s data

Salinger (2013) mentions six industrial PP sessions, but does not uniquely name the developers.
There are also two mistakes: In his Table 4.8, session “PR2.2” (=CA1) is listed with a length of
01:57 hours although its actual length is only 01:18 hours; on his page 325, the participants of
session “PR2.1” (=CA2) and “PR2.2” (=CA1) are said to be disjoint, but C2 actually takes part
in both.

Salinger Global ID

Session PR1.1: developers P1 & P2 Session BA1: developers B1 & B2
Session PR2.1: developers P1 & P2 Session CA2: developers C5 & C2
Session PR2.2: developers P1 & P2 Session CA1: developers C2 & C1
Session PR2.3: developers P1 & P2 Session CA3: developers C7 & C6
Session PR2.4: developers P1 & P2 Session CA5: developers C4 & C3
Session PR3.1: developers P1 & P2 Session DA2: developers D3 & D4

Table C.2: Mapping of Salinger’s data

Schenk (2018, p. 137) analyzed eight recordings: sessions JA2 to JA9. Her developers “Dom”
and “Arc” (domain and architect) are developers J2 and J1, respectively.

The current extent and known usages of the PP session repository are maintained in a technical
report that is regularly updated:
Franz Zieris & Lutz Prechelt (2020b). PP-ind: A Repository of Industrial Pair Programming
Session Recordings. arXiv: 2002.03121v3 [cs.SE].

426

https://arxiv.org/abs/2002.03121v3

Appendix D Meta-Analyses
As part of my literature review (Chapter 2), I performed a number of meta-analyses of reported
pair programming effects. Here, I report the details of these analyses.

D.1 Technical Information

I use two types of effect sizes in my meta-analyses (Borenstein et al., 2009, Ch. 4). First, I use an
unbiased standardized effect size, Hedges’s 𝒈, which is based on the absolute mean difference
𝐷 (more precisely, 𝑔 is 𝐷 divided by the pooled standard deviation corrected by factor for small
sample sizes, see Figure 2.4). For ratio scales with a natural zero point, I additionally use the
means’ ratio 𝑹 to calculate the relative mean difference 𝑫% (with 𝐷% = (𝑅 − 1) ⋅ 100).

To see the difference in these approaches, consider a hypothetical study with the mean
scores of 𝑋1 = 80 and 𝑋2 = 90 and another with 𝑋1 = 30 and 𝑋2 = 40. Both have the same
absolute mean difference of𝐷 = 10 and, given the same pooled standard deviation, also the same
standardized effect size 𝑔. Comparing the studies’ ratios, however, makes clear the intuitive
difference of their outcomes. The first study has a ratio of 𝑅 = 90/80 = 1.125 (or a higher score
by 𝐷% = 12.5%), while the second has a ratio of 𝑅 = 40/30 ≈ 1.333 (or 𝐷% ≈ 33.3%).

Meta-analyses for standardized effect sizes and for mean ratios follow the same procedure,
except that mean ratios are (a) converted to a log scale first and (b) lead to summary effects
and standard errors that are on a log scale as well and thus need to be exponentiated in the
end (ibid., Ch. 4). The resulting confidence intervals are therefore not symmetric.

I use fixed-effect and random-effects models which calculate the summary effect as a
weighted mean of the primary studies’ effect sizes, with the weights being inverse to the
respective study’s effect size variance (ibid., Ch. 11 & 12). I report the heterogeneity with the
𝐼 2 statistic which estimates the “proportion of the observed variance that reflects real differences
in the effect size” (ibid., Ch. 16).

The forest plots below show the primary studies as boxes sized proportional to their weight,
positioned at their effect size point estimates, and with whiskers indicating the corresponding
confidence intervals (ibid., Ch. 41). The studies are sorted in decreasing order by their weight.
The summary effect is shown as a diamond spanning the full confidence interval. All confidence
intervals are given for 95%.

427

APPENDIX D. META-ANALYSES

D.2 Pair Programming Effect on Students’ Exam Scores

Salleh et al. (2011, Sec. 3.4) performed a fixed-effect meta-analysis of six studies on the effect
of students working in pairs or alone throughout the semester on their respective exam scores.
Since some primary studies report on more than one experiment, Salleh et al. summarize the
effects of a total of 10 experiments. They report a small summary effect size (Hedges’s 𝑔 = 0.16,
95%-CI: [0.06, 0.26]). I extend their meta-analysis as follows:

• I include the statistical results of two additional educational studies I discuss on page 55:
Cheney (1977) and Zacharis (2011).

• Unlike Salleh et al., I use a random-effects model rather than a fixed-effect model because
I do not expect all these different studies to point to the same effect.

• In addition to calculating the standardized effect size which is a measure of the means’
absolute differences, I also perform a meta-analysis based on the means’ ratios.

Result: Pair programming during the semester has a small positive effect on students’ exam
scores, a plus of about 4%.

Study

Random effects model
Heterogeneity: I 2 = 71%, p < 0.01

McDowell, Werner, et al. (2003)

Mendes et al. (2006)

Müller & Padberg (2004)

Williams et al. (2003)a

Williams et al. (2003)c

*Zacharis (2011)

*Cheney (1977)

Williams et al. (2002)

McDowell, Hanks, et al. (2003)c

Williams et al. (2003)b

McDowell, Hanks, et al. (2003)a

McDowell, Hanks, et al. (2003)b

n

899

119

173

106

 76

110

 65

 60

 69

 43

 26

 47

 5

Mean

74.40

63.00

61.50

73.20

67.50

75.90

70.40

67.20

93.30

74.90

81.90

78.20

Solos
SD

18.50

12.00

11.00

27.40

35.60

14.60

11.70

18.40

11.40

28.50

12.10

8.10

n

1168

 367

 110

 74

 82

 55

 64

 60

 44

 58

 198

 44

 12

Mean

75.20

68.20

68.60

70.60

75.10

78.70

78.00

74.10

89.80

71.90

79.60

84.70

Pairs
SD

18.90

12.00

13.00

28.80

15.70

16.70

9.90

16.50

8.40

26.70

12.50

9.50

-1 -0.5 0 0.5 1 1.5 2

Std. Effect on Final Exam Score

favors solos favors pairs

g

0.19

0.04

0.43

0.60

-0.09

0.25

0.18

0.70

0.39

-0.35

-0.11

-0.19

0.67

95%-CI

[0.01; 0.37]

[-0.16; 0.25]

[0.19; 0.67]

[0.29; 0.90]

[-0.40; 0.22]

[-0.08; 0.57]

[-0.17; 0.52]

[0.33; 1.07]

[0.01; 0.77]

[-0.75; 0.04]

[-0.52; 0.30]

[-0.60; 0.23]

[-0.40; 1.75]

Weight

100.0%

10.9%

10.4%

9.4%

9.3%

9.1%

8.7%

8.4%

8.2%

7.9%

7.8%

7.7%

2.4%

Study

Random effects model
Heterogeneity: I 2 = 72%, p < 0.01

McDowell, Hanks, et al. (2003)c

Mendes et al. (2006)

McDowell, Werner, et al. (2003)

*Cheney (1977)

Müller & Padberg (2004)

McDowell, Hanks, et al. (2003)a

*Zacharis (2011)

Williams et al. (2002)

McDowell, Hanks, et al. (2003)b

Williams et al. (2003)a

Williams et al. (2003)c

Williams et al. (2003)b

n

899

 43

173

119

 60

106

 47

 65

 69

 5

 76

110

 26

Mean

93.3

63.0

74.4

70.4

61.5

81.9

75.9

67.2

78.2

73.2

67.5

74.9

Solos
SD

11.4

12.0

18.5

11.7

11.0

12.1

14.6

18.4

8.1

27.4

35.6

28.5

n

1168

 58

 110

 367

 60

 74

 44

 64

 44

 12

 82

 55

 198

Mean

89.8

68.2

75.2

78.0

68.6

79.6

78.7

74.1

84.7

70.6

75.1

71.9

Pairs
SD

8.4

12.0

18.9

9.9

13.0

12.5

16.7

16.5

9.5

28.8

15.7

26.7

-20 -10 0 10 20 30

Exam Score Difference (in %)

favors solos favors pairs

D%

4.2

-3.8

8.3

1.1

10.8

11.5

-2.8

3.7

10.3

8.3

-3.6

11.3

-4.0

95%-CI

[0.3; 8.2]

[-7.7; 0.4]

[3.7; 13.1]

[-4.1; 6.5]

[5.1; 16.8]

[5.7; 17.7]

[-8.7; 3.5]

[-3.3; 11.2]

[0.4; 21.1]

[-3.9; 22.0]

[-14.6; 9.0]

[-2.9; 27.5]

[-17.2; 11.3]

Weight

100.0%

11.3%

11.2%

10.5%

10.4%

10.3%

9.6%

9.0%

7.2%

5.7%

5.5%

4.8%

4.4%

Figure D.1: Meta-analysis of PP effects on exam scores. The first forest plot shows the
standardized effect sizes (with an overall small positive effect), the second one shows relative
differences. Overall, pairers have 4.2% higher exam scores compared to non-pairers. Data
for all studies (except those with a *) comes from Salleh et al. (2011, Fig. 4); see there for full
citation. Heterogeneity between the studies is high and significant.

428

D.3. Pair Programming Effect on Students’ Assignment Scores

D.3 Pair Programming Effect on Students’ Assignment Scores

Salleh et al. (2011, Sec. 3.4) performed a meta-analysis of four studies (a total of 6 experiments)
on the effect of students working in pairs on their assignment scores. They report a medium
summary effect size (Hedges’s 𝑔 = 0.67, 95%-CI: [0.54, 0.80]). I extend their meta-analysis in
the following ways:

• I use a random-effects model because I consider the studies to be functionally different.
• I include the statistical results of Zacharis (2011) which I discussed on page 55. He reports
the data of different homework assignments on which the same students worked either
alone or with a partner. I used a fixed-effect model to calculate a summary effect (see
Appendix D.3.1) which I then include in the random-effects analysis of all studies.

• In addition to calculating the standardized effect size, I also perform a meta-analysis based
on the means’ ratios.

Result: The assignment scores of pair-programming students are about 11% higher.

Study

Random effects model
Heterogeneity: I 2 = 85%, p < 0.01

*Zacharis (2011)

McDowell, Werner, et al. (2003)

Mendes et al. (2005)

Mendes et al. (2006)

McDowell, Hanks, et al. (2003)c

McDowell, Hanks, et al. (2003)a

McDowell, Hanks, et al. (2003)b

n

564

 65

119

179

106

 43

 47

 5

Mean

68.1

72.0

74.0

76.7

80.2

89.7

Solos
SD

22.4

16.7

23.0

20.1

16.6

10.0

n

699

 32

367

112

 74

 58

 44

 12

Mean

86.6

78.6

81.0

86.9

89.5

90.6

Pairs
SD

14.7

14.0

19.0

9.4

10.5

7.5

-1 -0.5 0 0.5 1 1.5 2

Std. Effect on Assignment Score

favors solos favors pairs

g

0.53

0.19

1.09

0.42

0.32

0.68

0.66

0.10

95%-CI

[0.23; 0.83]

[-0.02; 0.40]

[0.88; 1.31]

[0.18; 0.66]

[0.03; 0.62]

[0.28; 1.08]

[0.24; 1.08]

[-0.89; 1.09]

Weight

100.0%

17.0%

16.9%

16.6%

15.7%

13.9%

13.7%

6.2%

Study

Random effects model
Heterogeneity: I 2 = 83%, p < 0.01

McDowell, Werner, et al. (2003)

Mendes et al. (2005)

*Zacharis (2011)

McDowell, Hanks, et al. (2003)a

McDowell, Hanks, et al. (2003)c

Mendes et al. (2006)

McDowell, Hanks, et al. (2003)b

n

564

119

179

 65

 47

 43

106

 5

Mean

68.1

72.0

80.2

76.7

74.0

89.7

Solos
SD

22.4

16.7

16.6

20.1

23.0

10.0

n

699

367

112

 32

 44

 58

 74

 12

Mean

86.6

78.6

89.5

86.9

81.0

90.6

Pairs
SD

14.7

14.0

10.5

9.4

19.0

7.5

-20 -10 0 10 20 30

Assignment Score Difference (in %)

favors solos favors pairs

D%

11.3

27.2

9.2

6.2

11.6

13.3

9.5

1.0

95%-CI

[5.0; 18.0]

[21.1; 33.5]

[4.0; 14.6]

[0.2; 12.7]

[4.3; 19.4]

[5.3; 21.9]

[0.9; 18.8]

[-8.2; 11.1]

Weight

100.0%

15.8%

15.8%

15.0%

14.3%

13.9%

13.2%

12.0%

Figure D.2: Meta-analysis of PP effects on assignment scores. The first forest plot shows
the standardized effect sizes (with an overall medium positive effect), the second one shows
relative differences. Overall, pairers have 11.3% higher assignment scores compared to non-
pairers. Data for all studies (except those with a *) comes from Salleh et al. (2011, Fig. 5); see
there for full citation. The data for Zacharis (2011) is in itself the result of a meta-analysis
(see Appendix D.3.1). Heterogeneity is high and significant.

429

APPENDIX D. META-ANALYSES

D.3.1 Meta-Analysis of Assignment Score Data by Zacharis (2011)

Zacharis (2011, Table V) reports statistical information on four consecutive homework assign-
ments. Since the students worked on these in the same pair/solo constellations, I assume a
common underlying effect. I calculated a standardized effect size and a ratio-based effect size
for inclusion in the respective random-effects analyses of Figure D.2.

Assignment

Fixed effect model
Heterogeneity: I 2 = 0%, p = 0.78

HW5

HW6

HW7

HW8

Mean

68.8

72.9

75.8

78.4

SD

14.5

24.4

27.2

27.1

Solos (n=65)

Mean

74.3

76.5

79.6

81.2

SD

13.3

26.2

28.3

27.2

Pairs (n=32)

-1 -0.5 0 0.5 1

Std. Effect on Assignment Score

favors solos favors pairs

g

0.19

0.39

0.14

0.14

0.10

95%-CI

[-0.02; 0.40]

[-0.04; 0.81]

[-0.28; 0.57]

[-0.29; 0.56]

[-0.32; 0.53]

Weight

100.0%

24.7%

25.1%

25.1%

25.1%

Assignment

Fixed effect model
Heterogeneity: I 2 = 0%, p = 0.96

HW5

HW6

HW7

HW8

Mean

68.8

72.9

75.8

78.4

SD

14.5

24.4

27.2

27.1

Solos (n=65)

Mean

74.3

76.5

79.6

81.2

SD

13.3

26.2

28.3

27.2

Pairs (n=32)

-20 -10 0 10 20 30

Assignment Score Difference (in %)

favors solos favors pairs

D%

6.2

8.0

4.9

5.0

3.6

95%-CI

[0.2; 12.7]

[-0.6; 17.3]

[-8.8; 20.8]

[-9.5; 21.9]

[-10.2; 19.5]

Weight

100.0%

50.4%

17.4%

15.5%

16.8%

Figure D.3: Meta-analysis of PP effects on assignment scores of Zacharis (2011). The first
forest plot shows the standardized effect sizes, the second one shows relative differences.
Heterogeneity is insignificant which supports the assumption of a fixed-effect model.

430

D.4. Pair Programming Effect on Quality

D.4 Pair Programming Effect onQuality

Hannay et al. (2009) performed a meta-analysis of 14 studies on the effect of pair programming
on quality. They report a small summary effect size (Hedges’s 𝑔 = 0.33, 95%-CI: [0.07, 0.60]).
I extend their meta-analysis as follows:

• I include the statistical results of Zacharis (2011), who reports the defect density for four
consecutive homework assignments. I summarize these partial results with a fixed-effect
meta-analysis in Appendix D.4.1 before I include it in the random-effects model.

• I include the statistical results of Wilson et al. (1992), who report on two similar experi-
ments, one with students and one with professionals. I do not assume a common effect
and thus include both as individual studies in the random-effects model.

Results: Pair programming has a positive effect on quality. The size of that effect is unclear.

Study

Random effects model
Heterogeneity: I 2 = 87%, p < 0.01

*Zacharis (2011)

Domino et al. (2007)

Arisholm et al. (2007)

Madeyski (2006)

Williams et al. (2000)

Madeyski (2007)

Heiberg et al. (2003)

Müller (2005)

Canfora et al. (2007)

Baheti et al. (2002)

*Wilson et al. (1992) stud

Phongpaibul & Boehm (2006)

Müller (2006)

Phongpaibul & Boehm (2007)

Nosek (1998)

*Wilson et al. (1992) pro

Xu & Rajlich (2006)

Solos

367

 65

 32

 99

 31

 13

 28

 19

 23

 8

 9

 10

 7

 6

 4

 5

 4

 4

Pairs

331

 32

 28

 98

 28

 14

 35

 23

 19

 5

 16

 6

 7

 4

 5

 5

 2

 4

-1 0 1 2 3

Std. Effect on Quality

favors solos favors pairs

g

0.53

1.53

-0.27

0.11

0.08

1.04

0.17

0.10

0.28

0.69

0.30

0.65

0.32

0.51

0.18

0.91

1.49

2.20

95%-CI

[0.15; 0.90]

[1.29; 1.77]

[-0.58; 0.04]

[-0.24; 0.46]

[-0.27; 0.43]

[0.65; 1.43]

[-0.32; 0.66]

[-0.44; 0.64]

[-0.32; 0.88]

[-0.08; 1.46]

[-0.49; 1.09]

[-0.33; 1.64]

[-0.68; 1.32]

[-0.59; 1.61]

[-1.00; 1.36]

[-0.28; 2.10]

[-0.11; 3.09]

[0.58; 3.82]

Weight

100.0%

7.7%

7.5%

7.4%

7.4%

7.3%

7.0%

6.8%

6.6%

5.9%

5.9%

5.2%

5.1%

4.7%

4.5%

4.4%

3.3%

3.2%

Figure D.4:Meta-analysis of PP effects on quality. The forest plot shows the standardized
effect sizes. Overall, pair programming has a medium positive effect on quality, but the
confidence interval is wide. Data for all studies (except those with *) comes from Hannay
et al. (2009, Fig. 1); see there for full citation. The data for Zacharis (2011) is itself the result
of a meta-analysis (see Appendix D.4.1). Heterogeneity is high and significant.

431

APPENDIX D. META-ANALYSES

D.4.1 Meta-Analysis of Quality Data of Zacharis (2011)

Zacharis (2011, Table IV) reports the defect densities of four consecutive homework assignments
(see discussion on page 63). Since the same students worked on these in the same pair/solo
constellations, I assume a common underlying effect and calculated the standardized effect
size for inclusion in Figure D.4.

Assignment

Fixed effect model
Heterogeneity: I 2 = 0%, p = 0.57

HW5

HW6

HW7

HW8

Mean

96.98

115.30

80.73

115.70

SD

27.65

32.73

26.21

35.22

Solos (n=65)

Mean

53.61

67.43

49.75

71.13

SD

15.47

18.32

13.71

21.62

Pairs (n=32)

-1 0 1 2 3

Std. Effect on Defect Density

favors solos favors pairs

g

1.53

1.77

1.65

1.34

1.41

95%-CI

[1.29; 1.77]

[1.27; 2.26]

[1.16; 2.13]

[0.88; 1.81]

[0.94; 1.88]

Weight

100.0%

23.4%

24.3%

26.4%

25.9%

Figure D.5: Meta-analysis of PP effects on quality of Zacharis (2011). The forest plot shows
standardized effect sizes. Heterogeneity is insignificant.

432

Index

The man who publishes a book without an index ought
to be damned 10 miles beyond hell, where the Devil
himself cannot get for stinging nettles.

– John Baynes (1758–1787)

Symbols
(initiative activity), 190, 191, 192,

192–209, 212–218, 220–222, 224,
227, 228, 234, 235, 285, 291, 350,
373–376, 395

expecting, 191, 192, 192, 197, 204, 207,
209, 224, 227, 234, 235

non-expecting, 191, 192, 192, 198, 209,
224, 235

(pair-referential activity), 190, 191, 192,
192–209, 212–217, 220–222, 224,
227, 228, 234, 235, 242, 350,
373–377, 395

(self-referential activity), 190–192, 193,
193, 194, 196–198, 201, 203, 204,
206–209, 212–216, 218, 220, 221,
224, 234, 350, 374–376, 395

(corrective activity), 190, 191, 194,
194–199, 201, 203–205, 208, 209,
211, 212, 214–218, 220, 221, 234,
235, 347, 350, 367, 374–376, 395

(conversational defect), 190, 191, 194, 196,
196–198, 201, 203, 204, 208,
212–218, 220, 221, 224, 234, 242,
263, 350, 367, 374–376

A
adjacency pairs, 112, 192, 234
AGSE, 128, 140, 144–146, 151, 369
Appropriateness, 196

appropriate, 191, 196, 196, 224, 234
misled, 191, 196, 196, 201, 224, 235,

242, 276, 317, 322

B
back channel, 112, 267
base activities, 87, 132
base coding, 167, 169–170
base concepts, 87, 132–135

constructive vs. unconstructive verbs,
134, 195

initiative vs. reactive verbs, 134, 190,
191

objects
*_actvitiy, 134
*_completion, 133
*_design, 133
*_finding, 134
*_gap in knowledge, 134
*_hypothesis, 134
*_knowledge, 134
*_requirement, 133
*_standard of knowledge, 134
*_state, 133
*_step, 133
*_sth, 133
*_strategy, 133
*_todo, 133

verbs
agree_*, 135
amend_*, 135
ask_*, 135
challenge_*, 135
decide_*, 135
disagree_*, 135
explain_*, 135
propose_*, 134

433

Index

remember_*, 135
base layer, 87, 130–137
Branching Wildly, 28, 186, 304, 309, 313,

314, 324, 325, 337, 345, 364
Breakdown, 27, 28, 72, 183, 184, 190, 198,

200, 200, 201, 204, 210, 211, 214,
218, 222, 223, 225, 226, 229, 234,
235, 243, 270, 316, 332, 335, 336,
359, 361, 362, 364, see also Normal
Programming and Focus Phase

C
camera angle, 155, 156, 271
catalyzed, see Episode
Clarification Cascade, 261, 264, 264, 269,

270, 272, 277, 289, 337, 343, 367
Co-Production, 28, 185, 230, 280, 280, 282,

283, 287–289, 291, 293, 294, 295,
295, 296, 299–301, 304, 306–310,
312, 321, 324, 326–332, 336, 337,
343, 345, 346, 350, 361, 363, 364

coding
axial coding, 119–121, 126, 174–175
focused coding, 126
initial coding, 126
open coding, 119, 126, 174
selective coding, 122–123, 126
theoretical coding, 126

common ground, 78–80, 85, 88, 93,
110–111, 270, 288, 289, see also
Refer to Common Ground

Complementary Gaps, 320, 322, 323, 323,
327, 329, 329, 350, 351, 353, 363,
368

constructivism, 115, 125–126, 166, 360
conversational defect, see Symbol:
conversational role, 191, 191, 234, 347, 350,

359, see also Symbols: , , ,
conversational turns, 112
corrective activity, see Symbol:

D
D knowledge, 353
data collection, 144–160
data segmentation, 119, 129, 131, 132, 174
Developers

A1, 142, 160, 160, 161, 209, 210, 232,
241–243, 254, 273, 274, 277, 284,

293–297, 303, 310, 317, 319, 326,
327, 373–385

A2, 142, 160, 160, 161, 209, 210, 232,
241–243, 273, 277, 293–297, 310,
317, 319, 326, 327, 373–385

B1, 137, 161, 174, 248, 249, 295, 312,
317, 322, 385, 385–387, 426

B2, 161, 170, 248, 249, 295, 312, 317,
322, 385, 385–387, 426

C1, 161, 227, 243, 284, 290, 292, 296,
317, 327–329, 331, 387, 387, 388,
426

C2, 161, 162, 162, 170, 171, 192–198,
223, 225, 227, 228, 236, 242, 243,
245, 246, 248, 250, 251, 262, 266,
271, 274, 283, 284, 286–288, 290,
292, 296, 299, 308, 309, 314, 317,
324–329, 331, 387–393, 426

C3, 161, 205–210, 224, 226, 233, 243,
311, 314, 327, 368, 394–398, 426

C4, 157, 161, 173, 205–210, 224, 226,
233, 311, 314, 327, 368, 394,
394–398, 426

C5, 18, 161, 162, 162, 170, 171,
192–198, 223, 225, 227, 228, 242,
245, 246, 248, 250, 251, 262, 266,
271, 274, 275, 283, 286–288, 290,
292, 298, 299, 308, 309, 314, 317,
324–326, 389–393, 426

C6, 161, 393, 393, 426
C7, 161, 173, 331, 393, 393, 394, 394,

426
C8, 157
D2, 136, 137, 170, 404–406, 426
D3, 161, 163, 163, 174, 224, 225, 228,

229, 243, 245–247, 249–252, 263,
266, 268, 286, 288, 298, 304–307,
314, 325, 329, 330, 398–404, 426

D4, 156, 160, 161, 163, 163, 224–226,
228, 229, 243, 245–247, 249–252,
263, 264, 266, 268, 270, 284, 286,
288, 297, 298, 303–307, 314, 318,
325, 329–331, 334, 398–404, 426

D6, 161, 163, 228, 229
D7, 161, 163, 228
D8, 136, 137, 170, 404–406, 426
E1, 161, 309, 310, 324, 406, 406–408
E2, 161, 309, 310, 324, 406, 406–408

434

Index

J1, 161, 163, 163, 164, 186, 187, 199,
200, 225, 227, 231, 239, 240, 244,
254, 258–260, 262–265, 267–271,
274–277, 281–283, 285, 287–289,
293, 296–298, 303, 307, 308,
310–314, 316–319, 329–331,
408–414, 426

J2, 161, 163, 163, 164, 186, 187, 199,
200, 225, 231, 239, 240, 244, 253,
254, 258–260, 262, 263, 265, 267,
269–271, 274–277, 281–283, 285,
287, 289, 293, 296, 298, 303, 307,
308, 310–314, 316, 317, 319,
329–331, 408–414, 426

K1, 158, 161, 247, 253, 254, 267, 297,
414, 414, 415

K2, 150, 158, 161, 229, 230, 246, 247,
253, 254, 267, 273, 296, 318, 331,
332, 360, 414, 414, 415, 416, 416,
417

K3, 150, 158, 161, 229, 230, 246, 273,
296, 318, 331, 332, 360, 416, 416,
417

K4, 158, 161
M1, 161, 242, 276, 324, 325, 417, 418
M2, 161, 242, 276, 324, 325, 417, 418
O1, 161, 210–213, 235, 420, 420
O3, 150, 161, 164, 164, 202–204,

210–222, 225–227, 231, 235, 242,
243, 264, 270, 276, 318, 332, 346,
418–423

O4, 150, 160, 161, 164, 164, 202–204,
210–222, 225–227, 242, 243, 264,
270, 276, 318, 332, 346, 418–423

O6, 161, 243
P1, 161, 235, 299, 300, 327, 328,

353–355, 424, 424, 425
P2, 161, 354, 355, 424, 424
P3, 161, 235, 299, 300, 327, 328, 353,

354, 424, 424, 425
Direct Asking, 258–261, 264, 265, 265–267,

269, 270, 273, 274, 277, 285, see
also Explanation Elicitor

distributed pair programming, 26, 51, 52,
54–56, 84–85, 144–146, 163–164,
187, 226, 231–232, 265, 285, 293,
408

DPP, see distributed pair programming

driver and navigator, 41, 72–73, 76, 80,
83–85, 88, 93, 142, 145, 229, 234,
359, 367

E
emergent research design, 114, 140, 180,

341–348
Entice to Simple Step, 258–261, 264, 268,

269, 272, 274–277, 284, 297, 298,
300, see also Explanation Elicitor
and Explanation

to failure, 272, 275–277, 298
to success, 272, 275–277, 298

Episode, 28, 176, 185, 186, 255, 277, 280,
280–301, 303–310, 312–314, 321,
324–326, 328, 337, 341–343,
345–347, 350, 353, 354, 357, 361,
364, 367

Catalyzed Episode, 186, 303, 303, 304,
306–310, 312–314, 325, 330

ignored, 283, 285, 290, 291, 292, 301
needs investigation, 283, 285, 287
partial success, 283, 285, 288, 289, 294,

306
postponed, 283, 285, 286, 287, 306, 311
resignation, 283, 285, 285, 286, 306,

309
Sub-Episode, 28, 186, 297, 301, 303,

303–310, 312–314, 324–326, 330,
337, 342, 345

successful, 283, 285, 288, 289, 306,
306, 343

unnecessary, 283, 285, 286, 289, 306
evaluation, see member reflection
Evaluativeness, 195

evaluative, 191, 195, 201, 204, 227, 234,
317

non-evaluative, 191, 196, 198, 201, 224,
225, 234, 242, 318

expecting, see (initiative activity)
Explanation, 28, 185, 255, 260, 266, 267, 272,

274, 275, 277, 280, 283, 285, 289,
297, 298, 317, 318, 343, 350, 367,
see also Present New Fact, Refer
to Common Ground, and Entice
to Simple Step

Explanation Elicitor, 28, 185, 255, 260, 261,
261–267, 269, 270, 272, 275–277,
280, 283, 285, 289, 343, 350, 357,

435

Index

367, see also Improper Asking,
Direct Asking, Refer to Common
Ground, Entice to Simple Step,
andMake Proposition

frustrating, 261–263
ignored, 261–263, 265, 271
insufficient, 261–267, 269
successful, 261–264, 269

explanation trigger, see Explanation
Elicitor

F
finding, see Improper Asking
Fluency, 27, 93, 183, 184, 190, 193, 200, 200,

201, 204, 209, 210, 222, 223, 226,
228, 234, 289, 335, 336, 346, 347,
350, 359, 364, see also
Togetherness, Normal Pair
Programming, Breakdown, and
Focus Phase

Focus Phase, 27, 183, 184, 190, 198, 200,
200, 201, 204–206, 209, 210, 222,
223, 226, 227, 234, 311, 314, 327,
335, 336, 347, 359, 361, 362, 364,
368, 373, 375, 376, 383–385,
394–396, see also Normal
Programming and Breakdown

frustrating, see Explanation Elicitor

G
G knowledge, 28, 39, 91, 93, 185, 186, 211,

244, 249, 249, 251, 252, 255, 291,
298, 300, 316–337, 342, 346, 347,
350–356, 358, 361, 364, 368

G Need, 315–317, 318, 318–323, 328–332,
335–337, 350, 351, 354, see also
Knowledge Need and S Need

G Opportunity, 28, 186, 316, 321, 322, 323,
327–331, 333, 336, 337, 347, 351,
353–355

Grice’s maxims, 111
Maxim of Quantity, 299
Maxim of Relation, 299

H
Hypothetical Target Content, 254, 254, 259,

261, 270, see also Target Content

I
ignored, see Explanation Elicitor and

Episode
Improper Asking, 259–263, 264, 264, 265,

267, 269, 273, 277, 285, see also
Explanation Elicitor

informed consent, 146
Initial Constellation, 28, 93, 186, 316, 319,

319–323, 350, 351, 353, 354, 356,
358, see also No Relevant Gaps,
One-Sided S Gap, Two-Sided S
Gap, One-Sided G Gap,
Two-Sided G Gap,
Complementary Gaps, and
Too-Big Two-Fold Gap

initiative activity, see Symbol:,
insufficient, see Explanation Elicitor
interviews vs. observation, 49, 51, 113, 143

K
knowledge, 39

explicit and tacit knowledge, 36
in philosophy, 35
in software engineering, 36–39
in the cognitive sciences, 35–36
knowledge silo, 23, 24, 44, 45, 105
knowledge transfer, 40
knowledge types, 244, see also

S knowledge and G knowledge
meta-knowledge, 134, 172, 260

Knowledge Need, 28, 92, 93, 170, 186, 240,
246, 314, 316, 317, 319–321, 323,
329, 335, 336, 343, 345, 347,
350–352, 354–356, 358, 361, 363,
364, see also S Need and G Need

Knowledge Want, 27, 28, 170, 184–186,
237–239, 240, 240–244, 246, 251,
253–255, 257, 258, 260–265, 267,
269, 272, 276, 277, 280–285,
287–291, 293–297, 299, 300,
303–305, 307, 310–314, 317, 320,
330, 331, 337, 342, 343, 346, 354,
355, 368

collective, 185, 240, 240, 243, 254, 280,
282, 283, 288, 295, 296, 300, 343

external, 185, 239, 240, 240, 242, 244,
255, 260, 272, 276, 280, 282–284,
288, 297, 299, 300, 304, 314, 317,
331, 343, 346, 354, 368

436

Index

internal, 185, 239, 240, 240, 241, 243,
244, 246, 254, 255, 258, 260, 261,
263–265, 276, 280, 282, 283,
288–291, 293, 295, 299, 300, 303,
304, 310, 314, 317, 343, 346, 354,
368

L
language barrier, 190, 228, 230, 234, 264,

265, 327, 335, 359, 361, 364, see
also Togetherness

M
magic of source code, 85, 231
Maintaining Togetherness, 27, 184, 190,

224, 225, 228–230, 232–236, 291,
295–297, 311, 314, 322, 327, 335,
345, 346, 359, 362, 364, 368

Make Proposition, 254, 259–261, 263–265,
270, 270, 271, 273, 275, 277, 297,
see also Explanation Elicitor

indifferent, 270
optimistic, 261, 270, 271, 275
pessimistic, 261, 270, 271, 275

member reflection, 116, 147, 150, 153–154,
347, 350–355, 358, 361

memos, 124, 175
code notes, 124
operational notes, 124, 344
theoretical notes, 124, 344

misled, see Appropriateness
mob programming, 143, 158
Mode, 28, 170, 176, 185, 280, 280, 282, 283,

287, 288, 288–290, 297–301, 303,
304, 306–310, 321, 326, 342, 343,
350, 351, 353, 354, 356, 358, 361,
363, 364, 367, see also Push, Pull,
Pioneering Production, and
Co-Production

N
No Relevant Gaps, 320, 322, 323, 323, 351
non-evaluative, see Evaluativeness
non-expecting, see (initiative activity)
Normal Pair Programming, 183, 190, 198,

200, 200, 201, 204, 205, 210, 211,
218, 222, 223, 227, 234, 364, see
also Breakdown and Focus Phase

O
one shared plan, 190, 228–230, 232, 234,

264, 291, 292, 297, 309, 311, 314,
327, 335, 359, 361, 364, see also
Togetherness

One-Sided Gap, 319, 319, 323, 363
One-Sided G Gap, 320, 322, 323, 323,

327, 329, 351, 354, see also
G Opportunity

One-Sided S Gap, 320–322, 323, 323,
327, 351, 353, 355, 368, see also
Primary Gap

opinions, 46, 49, 51, 78, 92, 173, 233,
272–274

P
P&P concepts, 133, 137, 141
pair programming, 143–144

as research instrument, 38, 77, 80, 82,
86, 95, 145

effect on assignment scores, 55–56,
429

effect on code quality, 63–64, 431
effect on effort, 63–64
effect on exam scores, 55–56, 428
practice vs. work mode, 19, 21, 25, 40,

42–44, 47, 144, 359
pair-referential activity, see Symbol:
Parallel Production, 230, 280, 288, 289, 296,

297, 301, 345, 346, 361, 377
Pioneering Production, 28, 185, 280, 280,

282–284, 286, 287, 289, 290, 291,
291–296, 299–301, 304–309, 312,
321, 324–330, 332, 336, 337, 343,
345, 350, 359, 363

Silent Pioneer, 280, 280, 286, 288, 289,
291–293, 295, 326, 337, 345, 361,
363

Talking Pioneer, 280, 280, 284, 286,
288, 289, 291–295, 326, 337, 345,
361, 363

PP, see pair programming
Present New Fact, 258–260, 266, 272–277,

297, 299, 300, see also Explanation
Primary Gap, 28, 84, 186, 316, 321, 321–333,

335–337, 345, 347, 351, 353–355
Production, see Pioneering Production and

Co-Production

437

Index

Propellor, 28, 185, 280, 280–283, 285,
288–291, 297–299, 303, 306–309,
313, 342, 343, 364, 367

Proposition, see Make Proposition
Pull, 28, 39, 176, 185, 280, 280–288, 289,

289–291, 293, 297–301, 303–310,
321, 324–330, 332, 336, 337, 342,
343, 345, 350, 354, 359, 361, 363

Push, 28, 39, 176, 185, 280, 280–285,
288–294, 297, 297–301, 303–310,
321, 324–332, 336, 337, 342, 343,
345, 350, 353, 354, 361, 363, 364

Q
QDA, 174–175

R
Refer to Common Ground, 258–261, 264,

266, 266–268, 272, 274, 276, 277,
297–300, see also Explanation and
Explanation Elicitor

reflective interview, 146, 149–150, 154,
157, 179, 210, 351, 354–355

Return Explicitly, 28, 186, 304, 307,
307–310, 313, 314, 324, 337, 342,
345, 362, 364, 367

rich vs. exhaustive codes, 75, 132

S
S knowledge, 28, 39, 91, 93, 185, 186, 211,

244, 244, 249, 252, 255, 262, 296,
316–337, 342, 346, 347, 350–356,
358, 359, 361, 364, 368

S Need, 315, 316, 317, 317–326, 329–332,
334–337, 350, 353, 354, 367, see
also Knowledge Need and G Need

Saros, 84, 163, 187, 226, 408
Scope Limiting, 28, 186, 304, 307, 310,

310–314, 322, 327, 330, 345, 362,
364, 367

Secondary Gap, 28, 186, 316, 321, 322,
322–324, 326–328, 330–333, 336,
337, 347, 353–355

self-referential activity, see Symbol:
session recordings, 147–148, 161
Sessions

AA1, 142, 156, 158, 161, 160–162, 185,
205, 226, 232, 241, 243, 273, 277,

293–297, 317, 319, 326, 327, 351,
373, 373, 375–377

BA1, 155, 158, 161, 170, 248, 317, 385,
385, 386, 426

BB1, 158, 161, 312, 320, 322, 351, 386,
386

BB2, 161, 322, 386, 386
BB3, 158, 161, 322, 386, 386
CA1, 149, 158, 161, 227, 243, 284, 290,

292, 296, 317, 325, 327, 328, 330,
331, 367, 387, 426

CA2, 148, 149, 155, 156, 161, 162, 170,
171, 175, 192–198, 226, 227, 245,
248, 250, 262, 266, 271, 274, 283,
286, 287, 290, 292, 298, 308, 317,
320, 322, 324, 325, 327, 342, 351,
389, 426

CA3, 149, 155, 161, 330, 331, 393, 426
CA4, 149, 161, 173, 324, 394
CA5, 149, 158, 161, 189, 205, 210, 224,

226, 233, 311, 327, 373, 394, 426
CB1, 149, 157, 158
DA1, 153, 158
DA2, 155, 156, 158, 161, 163, 224, 225,

228, 243, 245, 246, 249–252, 263,
266, 268, 286, 304–307, 318, 320,
325, 327, 329–331, 334, 351, 398,
426

DA5, 136, 147, 404, 404, 426
DA6, 147
EA1, 155, 156, 158, 161, 309, 320, 324,

406, 406
JA1, 158, 161, 163–164, 175, 177, 186,

199–201, 226, 231, 239, 253, 254,
257, 258, 263, 265, 267–271, 274,
275, 277, 281, 285, 287, 293, 296,
303, 307, 308, 310, 312, 316, 318,
319, 324, 327, 329–331, 343, 357,
408, 408, 413

JA2, 158, 161, 265, 267, 277, 298, 317,
318, 330, 413, 426

KA1, 141, 156, 158, 161, 247, 253, 414,
414, 416

KB1, 158, 161, 246, 273, 329, 360, 416,
416

KC1, 158, 161, 331, 360, 416, 416
KC2, 158, 161, 229, 318, 331, 332, 345,

360, 416, 416

438

Index

MA1, 147, 159, 161, 227, 231, 242, 276,
324, 325, 417, 417

OA1, 159, 161, 164, 189, 198, 218, 219,
222, 226, 227, 231, 243, 318, 331,
332, 346, 351, 352, 418, 418

OA2, 158, 159, 161, 222, 231, 243, 318,
331, 332, 346, 418

OA3, 158
OA4, 158
OA5, 159, 161, 227, 231, 235, 327, 420
OA6, 158
OA7, 158
OA8, 158, 159, 161, 175, 198, 201, 210,

218, 226, 227, 231, 270, 276, 318,
346, 420, 420

OA9, 158
OA10, 158, 352
PA1, 159, 161, 324, 352–355, 424, 424
PA2, 161, 353–355, 424, 424
PA3, 161, 235, 299, 327–329, 353, 354,

424, 424
PA4, 159, 161, 327, 328, 352, 354, 355,

424, 424
shared understanding of software

development, 190, 228, 230, 234,
264, 291, 335, 359, 361, 364, see
also Togetherness

shared understanding of the system, 190,
228, 230, 234, 264, 265, 297, 335,
359, 361, 364, see also
Togetherness

Simple Step, see Entice to Simple Step
speech acts, 112–113, 131, 132, 134, 135,

261
successful, see Explanation Elicitor and

Episode

T
Target Constellation, 28, 92, 93, 186, 316,

319, 319, 320, 323, 347, 350, 351,
354

Target Content, 28, 185, 238, 239, 241–243,
244, 244, 245, 247–255, 257–259,

261, 262, 264, 269, 270, 280, 282,
283, 285–296, 298, 306, 310, 312,
313, 325, 342, 343, 367, see also
Hypothetical Target Content

theoretical sampling, 117, 118, 147, 152,
158–160

theoretical saturation, 118, 361
theoretical sensitivity, 123, 135, 149, 169
Timeliness, 195

delayed, 191, 195, 196, 198, 201, 224,
242

prompt, 191, 195, 196, 201, 204, 209,
224, 228, 234

Togetherness, 27, 93, 184, 190, 222,
222–224, 226, 228–231, 234–236,
243, 261, 262, 264, 265, 267, 269,
270, 277, 282, 289, 291–293, 295,
296, 309, 314, 319, 322, 327,
335–337, 346, 347, 350, 354, 359,
361, 362, 364, 377, 378

Too-Big Two-Fold Gap, 320, 323, 323, 331,
332, 351, 353

Topic, 27, 28, 185, 186, 238, 239, 242, 243,
244, 244–255, 257–259, 261–265,
267, 269, 270, 277, 280–289,
291–296, 301, 303–314, 321, 324,
326, 327, 337, 342, 343, 361, 367

clarification, 244
transactive memory system, 98, 319
Two-Sided Gap, 319, 323, 363

Two-Sided G Gap, 322, 331, 332
Two-Sided S Gap, 320, 322, 323, 323,

326, 327, 351, 355, 368, see also
Secondary Gap

U
universal concepts, 134, 137, 141

W
workspace awareness, 190, 228, 230, 234,

264, 265, 291, 292, 327, 335, 359,
361, 364, see also Togetherness

439

Index

440

Name Index

A
Abrahamsson, Pekka, 43, 44, 70, 71, 255
Adamidis, Panagiotis, 58, 61
Ahlswede, Tom, 58
Altman, Douglas G., 50
Anastas, Jeane, 140
Anderson, Ann, 21
Anderson, John R., 76
Andres, Cynthia, 22, 40–42, 44
Angelis, Lefteris, 58, 61
Argyle, Michael, 198
Arisholm, Erik, 24, 51, 52, 54, 63–67, 73, 74,

94, 236, 347, 431
Armour, Phillip G., 23, 36, 38
Austin, John L., 112, 113, 192

B
Babbage, Charles, 20
Bahrami, Bahador, 94, 95, 103
Baker, Paul, 254
Balik, Suzanne, 60
Baltes, Sebastian, 37, 38
Barke, Helena, 7
Beck, Kent, 22, 23, 40–42, 44, 64, 67, 99, 190,

333, 334, 350, 367
Beckwith, Laura, 301
Begel, Andrew, 23, 43–46
Bellini, Emilio, 55, 61
Belshee, Arlo, 46, 47, 68, 69, 83, 84, 204, 234
Bergel, Alexandre, 301
Bicker, Mary, 130
Bonar, Jeffrey G., 38
BonJour, Laurence, 26, 35
Borenstein, Michael, 50, 58, 427
Bossche, Piet van den, 97–103
Boudigou, Francoise, 46
Boulay, Benedict du, 24, 72, 73, 75, 76, 83,

131, 184, 234, 342, 359
Boyer, Kristy Elizabeth, 62
Brekenfeld, Victor, 7
Bross, Fabian, 268

Brougham, Jennifer C., 57, 61
Bryan-Kinns, Nick, 234
Bryant, Sallyann, 24, 57, 72–76, 83, 87, 131,

132, 184, 234, 342, 359, see also
Freudenberg, Sallyann

Bullock, Heather E., 24
Burnett, Margaret, 301
Böhm, Andreas, 117, 122

C
Canfora, Gerardo, 55, 59–61, 92
Cannon-Bowers, Janis A., 98–103, 234
Cao, Lan, 58, 77, 78, 85, 86, 234
Chan, Keith C. C., 66
Chaparro, Edgar Acosta, 57
Charmaz, Kathy, 117, 118, 124–128, 152,

169, 178, 179, 360
Cheney, Paul H., 21, 55, 61, 428
Chisholm, Paul, 21
Chong, Jan, 69, 80, 81, 83–86, 92, 156, 184,

204, 234, 294, 342
Cimitile, Aniello, 55, 59, 60, 92
Cliburn, Daniel C., 58
Cockburn, Alistair, 24
Cohen, Cynthia F., 72, 74–76, 234
Collins, Rosann Webb, 72, 74–76, 234
Coman, Irina D., 43, 69, 70
Conboy, Kieran, 46
Constantine, Larry L., 21
Coplien, James, 20–22
Corbin, Juliet, 117–129, 135, 152, 167, 168,

178, 179, 333, 344
Crandall, Bill, 43
Crutcher, Robert J, 77
Cunningham, Ward, 21, 184, 204, 236
Curtis, Bill, 36
Cusumano, Michael, 43

D
Davenport, Thomas H., 34
Deeks, Jonathan J., 50

441

Name Index

Deligiannis, Ignatios, 58, 61
DeMarco, Tom, 43
Dey, Ian, 152
di Bella, Enrico, 69
Diehl, Stephan, 37, 38
Dimsdale, Bernie, 20
Dittrich, Yvonne, 24, 44, 81, 83, 85–87, 369
Domino, Madeline Ann, 72, 74–76, 234
Dybå, Tore, 24, 50–52, 54, 58, 63–67, 73,

236, 347, 431

E
Eapen, Abraham, 46
Edwards, Richard L., 57
Ehrhardt, Claus, 110, 111, 172
Ehrlich, Kate, 37, 38, 333, 334
Ellece, Sibonile, 254
Ellis, Judi, 78
Engvik, Harald, 66, 73, 74, 94
Eris, Ozgur, 86
Estácio, Bernardo José da Silva, 51, 52, 54,

56

F
Ferati, Mexhid, 57
Fernald, Julian, 24
Fiehler, Reinhard, 79
Fiore, Stephen M., 98–103
Fitzgerald, Brian, 25, 46, 49, 125, 126
Fleming, Scott D., 83–86, 92, 129, 255, 290
Flick, Uwe, 113, 114, 117, 341
Flor, Nick V., 78–80, 85, 86, 92, 100, 131,

235, 301
Francis, Jo, 20
Freeman, Susan F., 57, 61
Freudenberg, Sallyann, 72, 73, 75, see also

Bryant, Sallyann
Friedell, Morris F., 110
Frith, Chris D., 94, 95, 103
Fritz, Thomas, 38, 334
Fronza, Ilenia, 69, 70
Fuegi, John, 20
Furnham, Adrian, 198

G
Gabelica, Catherine, 98–103
Gallis, Hans, 65–67, 73
Gamma, Erich, 163, 229, 250
García, Félix, 55, 59–61, 92

Garfinkel, Harold, 110
Gehringer, Edward, 60
Gerard, Harold Benjamin, 198
Gettier, Edmund L., 35
Gevaert, Hudson, 59, 60
Gijselaers, Wim H., 97–103
Glaser, Barney G., 117, 118, 124–126, 152
Glaß, Kelvin, 7
Gleick, James, 20
Goodwin, Gerald F., 100–103, 234
Graham, Jean Ann, 198
Grice, H. Paul, 111, 112
Grot, Claudia, 46
Grundy, John C., 51, 52, 54–59, 61, 428, 429
Gumperz, John J., 371

H
Hackman, J. Richard, 99
Hanks, Brian, 56, 57
Hannay, Jo E., 24, 50–52, 54, 58, 63–67,

73–76, 94, 236, 301, 347, 431
Harms, Thomas, 233
Harrington, Kieran, 112
Hartnett, Gerard, 46
Healey, Patrick G. T., 234
Hedges, Larry V., 50, 58, 427
Heffner, Tonia S., 100–103, 234
Helm, Richard, 163, 229, 250
Henderson, Austin, 81
Hendrickson, Chet, 21
Heringer, Hans Jürgen, 110, 111, 172
Herlihy, Elizabeth, 130
Hevner, Alan R., 72, 74–76, 234
Higgins, Julian P. T., 50, 58, 427
Hildenbrand, Bruno, 117, 123
Holt, Richard C., 37, 334
Hoskin, Nathan, 60, 64, 66, 431
Howard, Elizabeth V., 57
Hughes, Janet, 82, 85, 86
Hulkko, Hanna, 43, 44, 70, 71, 255
Hurlbutt, Tom, 80, 81, 83–86, 92, 184, 204,

234, 342
Hutchins, Edwin, 78–80, 85, 86, 100, 235
Höst, Martin, 140

I
Idris, Sufian, 57

J
Jaeger, Beverly K., 57, 61

442

Name Index

Janes, Andrea, 57
Jeffries, Ron, 21, 184, 204, 236
Jensen, Randall W., 21
Johnson, Ralph, 163, 229, 250
Jones, Danielle L., 83–86, 92, 129, 255, 290
Jones, Edward Ellsworth, 198
Jordan, Brigitte, 81
Jucker, Andreas H., 263
Juristo, Natalia, 48

K
Kahlert, Björn, 7
Kameli, Nader, 46
Kampenes, Vigdis By, 50, 58
Kardorff, Ernst von, 113, 114, 117, 341
Katira, Neha, 59, 60
Kelle, Udo, 120
Kemerer, Chris F., 43
Kerr, Jessica, 334
Kessler, Robert R., 21, 40, 41, 44, 57, 142,

184, 204, 236
Kirschner, Paul A., 97–103
Kissinger, Cory, 301
Klausen, Tove, 78
Kleb, William L., 46
Klemmer, Scott R., 86
Ko, Amy J., 38
Korpi, Harri, 43, 70, 71, 92, 255
Kropp, Edna, 7
Kubelka, Juraj, 301

L
Lassenius, Casper, 46, 56, 71
Latham, Peter E., 94, 95, 103
Layman, Lucas, 59, 60
Leach, Joe, 234
Lee, Roger, 58
Leifer, Larry, 86
Lethbridge, Timothy C., 49
Lewis, Scott, 61, 62
Li, Paul Luo, 38
Linden, Janet van der, 23, 24, 44, 73–76, 81,

83–87, 156, 234, 369
Linnert, Barry, 7
Liou, Lin L., 60, 64, 66, 431
Lister, Timothy, 43
Lofland, John, 113
Lofland, Lyn H., 113
Lovelace, Ada, 20

Lui, Kim Man, 66

M
MacCormack, Alan, 43
Madeyski, Lech, 59, 60
Marcus, Andrian, 77, 80, 86, 132, 301
Martin, David, 80, 85, 86
Martin, Robert C., 77
Mathieu, John E., 100–103, 234
Mcdermott, Wesley, 46
McDowell, Charlie, 24
Mendes, Emilia, 51, 52, 54–59, 61, 428, 429
Miklos, Corey, 46
Miller, Carol, 60
Misirli, Ayse Tosun, 48
Miyake, Naomi, 95–97, 103
Mockus, Audris, 37, 38, 334
Muhr, Thomas, 124
Murphy, Gail C., 38, 80, 82, 86, 92, 255, 334
Murphy-Hill, Emerson, 38, 334
Mäntylä, Mika V., 51–54, 62
Müller, Matthias M., 59, 60

N
Nagappan, Nachiappan, 23, 43–46
Niessen, Cornelia, 37, 40
Nosek, John T., 60, 63, 64, 66, 431

O
Ohlsson, Magnus C., 140
Okada, Takeshi, 96, 97, 103, 196, 301
Olsen, Karsten, 94, 95, 103
Osborne, Jason A., 59, 60
Ou, Jingwen, 38, 334

P
Padberg, Frank, 59, 60
Palmieri, David W., 24
Pandey, Ajay, 46
Patton, Michael Quinn, 109, 113–115, 117,

118, 341, 346
Paul, Manoj, 46
Paulhus, Delroy L., 354
Phaphoom, Nattakarn, 69
Piattini, Mario, 55, 59–61, 92
Plauger, P.J., 21
Plonka, Laura, 7, 23, 24, 27, 44, 71, 73–76,

81, 83–87, 92, 128–131, 135, 143,
145, 147, 148, 150, 151, 153,

443

Name Index

155–157, 165, 168, 204, 234, 342,
369, 373, 404, 426

Plummer, Robert, 86
Prechelt, Lutz, 7, 27, 84–88, 128–135, 137,

148, 151, 157, 165, 169, 170, 190,
191, 193, 195, 196, 204, 230, 234,
240, 241, 254, 261, 264, 265, 301,
342, 343, 345–347, 359, 364, 369,
377

Price, Kimberly Michelle, 62
Prikladnicki, Rafael, 51, 52, 54, 56
Prusak, Laurence, 34
Przyborski, Aglaja, 109, 117, 120, 122–124,

126
Pyhäjärvi, Maaret, 235
Péraire, Cécile, 23, 44

R
Rajlich, Václav, 57, 61, 77, 80, 86, 92, 132,

301
Ralph, Paul, 7, 23, 44, 125, 126, 245
Ramesh, Balasubramaniam, 58
Rasmusson, Jonathan, 46, 255
Reenskaug, Trygve, 21
Rees, Geraint, 94, 95, 103
Reeves, Lauretta, 35, 36
Regnell, Björn, 140
Reichertz, Jo, 114, 123
Richards, John, 82, 85, 86
Robbes, Romain, 301
Robillard, Pierre N., 23, 26, 36–38, 69, 70,

333, 334
Robson, Colin, 117, 123
Rodríguez, Fernando J, 62
Roepstorff, Andreas, 94, 95, 103
Rogers, Yvonne, 78
Romero, Pablo, 24, 57, 72, 73, 75, 76, 83, 131,

184, 234, 342, 359
Rooksby, John, 80, 85, 86
Rosenberg, Doug, 42
Rosson, Mary Beth, 301
Rothstein, Hannah R., 50, 58, 427
Rouncefield, Mark, 80, 85, 86
Runeson, Per, 140
Russo, Barbara, 57

S
Sacks, Harvey, 112
Salas, Eduardo, 98–103, 234

Salinger, Stephan, 7, 27, 42, 71, 77, 84–88,
128–135, 137, 141, 143, 145, 147,
150, 151, 153, 155, 156, 165,
168–170, 173, 176, 190, 191, 193,
195, 196, 204, 234, 241, 254, 265,
342, 345, 359, 364, 369, 371, 373,
426

Salleh, Norsaremah, 51, 52, 54–61, 428, 429
Salman, Iflaah, 48
Salo, Outi, 43
Schegloff, Emanuel A., 112
Schenk, Julia, 7, 26, 27, 84–86, 145, 149, 151,

153, 156, 231, 369, 373, 426
Schindler, Christian, 43–45
Schmeisky, Holger, 7
Schön, Donald A., 333, 334
Schütz, Alfred, 108, 109
Searle, John R., 112, 113, 198
Sedano, Todd, 23, 44
Segal, Judith, 73–76, 156, 369
Segers, Mien, 97–103
Sfetsos, Panagiotis, 58, 61
Sharifabdi, Kamran, 46
Sharp, Helen, 23, 24, 44, 73–76, 81, 83–87,

156, 234, 369
Shaw, Marvin E., 97
Shneiderman, Ben, 37
Siino, Rosanne, 69, 156, 294
Sillito, Jonathan, 38, 80, 82, 86, 92, 255
Sillitti, Alberto, 43, 69, 70
Sim, Susan Elliott, 37, 49, 334
Simon, Herbert A., 96, 97, 103, 196, 301, 333
Singer, Janice, 49
Sjøberg, Dag I.K., 24, 50–52, 54, 58, 63–67,

73, 74, 94, 236, 347, 431
Skaar, Anne Lise, 21
Slunecko, Thomas, 109
Sobo, Elisa J., 130
Soloway, Elliot, 37, 38, 333, 334
Sommerville, Ian, 26
Sonnentag, Sabine, 37, 40
StackOverflow, 43
Stalnaker, Robert C., 110
Stamelos, Ioannis, 58, 61
Steiner, Ivan D., 97
Steinke, Ines, 113, 114, 117, 341
Stephens, Matt, 42
Stewart, Jennifer K., 57

444

Name Index

Stol, Klaas-Jan, 25, 49, 125, 126
Strasser, Garold, 98
Strauss, Anselm, 117–129, 135, 152, 167,

168, 178, 179, 333, 344
Stumpf, Simone, 301
Subrahmaniyan, Neeraja, 301
Subramaniam, Nantha Kumar, 57
Succi, Giancarlo, 43, 57, 69, 70
Sutedjo, Imelda, 46

T
Tessem, Bjørnar, 46
Thompson, Simon G., 50
Toole, Betty Alexandra, 20
Toye, George, 86
Tracy, Sarah J., 28, 115, 127, 141, 150, 152,

178, 349, 350, 356–358
Tschan, Franziska, 98

V
Van Toll III, Theodore, 58
VanDeGrift, Tammy, 57, 61
Vanhanen, Jari, 43, 46, 51–54, 56, 62, 70, 71,

92, 255
Vaughan, Sandra I., 98
Vijay, Vivek, 46
Visaggio, Corrado Aaron, 55, 59–61, 92
Vlasenko, Jelena, 69, 70
Vlissides, John, 163, 229, 250
Volder, Kris De, 38, 80, 82, 86, 92, 255
Volmer, Judith, 37, 40
von Neumann, John, 20

W
Wake, William C., 75
Walle, Thorbjørn, 73–76, 301
Webb, Noreen M., 61, 62
Weber, Max, 108

Wegner, Daniel M., 98
Weinberg, Gerald M., 20, 21, 108
Weisberg, Robert W., 35, 36
Werner, Linda, 24
Wesslén, Anders, 140
Wiebe, Eric, 60
Williams, Kipling D., 94
Williams, Laurie, 21, 24, 40, 41, 44, 57, 59,

60, 142, 184, 204, 236
Wilson, Judith D., 60, 64, 66, 431
Wittenbaum, Gwen M., 98
Wohlin, Claes, 140
Wohlrab-Sahr, Monika, 117, 120, 122–124,

126
Wood, William A., 46

X
Xu, Peng, 77, 78, 85, 86, 234
Xu, Shaochun, 57, 61, 77, 80, 86, 92, 132, 301

Y
Yang, Sherry, 301
Yin, Robert K., 51
Yngve, Victor, 112
Yuksel, Aybala, 57

Z
Zacharis, Nick Z., 55–57, 63, 64, 428–432
Zarb, Mark, 82, 85, 86
Zerbe, Wilfred J., 354
Zhou, Minghui, 37, 38, 334
Zhu, Jiamin, 38
Zieris, Franz, 85, 86, 145, 148, 151, 157, 230,

240, 261, 264, 301, 343, 345–347,
369, 377

Zin, Abdullah Mohd, 57
Ziv, Yael, 263
Zuliani, Paolo, 57

445

Name Index

446

Bibliography

Jeane Anastas (2000). Research Design for Social Work and the Human Services. Columbia
University Press. isbn: 978-0-231-52928-0 (cited on page 140).

John R. Anderson (1987). “Methodologies for studying human knowledge.” In: Behavioral and
Brain Sciences 10 (3), pp. 467–477. doi: 10.1017/s0140525x00023554 (cited on page 76).

Michael Argyle, Adrian Furnham, & Jean Ann Graham (1981). Social Situations. Cambridge
University Press. isbn: 0-521-29881-4 (cited on page 198).

Erik Arisholm, Hans Gallis, Tore Dybå, & Dag I.K. Sjøberg (2007). “Evaluating Pair Program-
ming with Respect to System Complexity and Programmer Expertise.” In: IEEE Transactions
on Software Engineering 33 (2), pp. 65–86. doi: 10.1109/TSE.2007.17 (cited on pages 65–67, 73).

Phillip G. Armour (2000). “The five orders of ignorance.” In: Communications of the ACM
43 (10), pp. 17–20. doi: 10.1145/352183.352194 (cited on pages 23, 36, 38).

John L. Austin (1962). How To Do Things With Words. The William James Lectures delivered at
Harvard University in 1955. Oxford University Press. isbn: 0-674-41152-8 (cited on pages 112–113,
192).

Charles Babbage (1889). Babbage’s Calculating Engines: Being a Collection of Papers Relating to
Them; Their History, and Construction. Ed. by Henry P. Babbage. London: E. & F.N. Spon.
isbn: 1108000967 (cited on page 20).

Bahador Bahrami, Karsten Olsen, Peter E. Latham, Andreas Roepstorff, Geraint Rees, & Chris
D. Frith (2010). “Optimally Interacting Minds.” In: Science 329 (5995), pp. 1081–1085. doi:
10.1126/science.1185718 (cited on pages 94–95, 103).

Paul Baker & Sibonile Ellece (2011). Key Terms in Discourse Analysis. Continuum International
Publishing Group. isbn: 978-1-8470-6320-5 (cited on page 254).

SebastianBaltes& Stephan Diehl (2018). “Towards a theory of software development expertise.”
In: Proc. 2018 26th ACM Joint Meeting on European Software Engineering Conf. and Symp.
on the Foundations of Software Engineering. ESEC/FSE ’18. ACM Press, pp. 187–200. doi:
10.1145/3236024.3236061 (cited on pages 37–38).

Kent Beck (1999). Extreme Programming Explained: Embrace Change. Addison-Wesley. isbn:
0201616416 (cited on pages 22–23, 40–42, 44, 64, 67, 99, 190, 333–334, 350, 367).

Kent Beck & Cynthia Andres (2004). Extreme Programming Explained: Embrace Change. 2nd ed.
Addison Wesley Professional. isbn: 0-321-27865-8 (cited on pages 22, 40–42, 44).

Andrew Begel & Nachiappan Nagappan (2007). “Usage and Perceptions of Agile Software
Development in an Industrial Context: An Exploratory Study.” In: First Int’l. Symp. on
Empirical Software Engineering and Measurement. ESEM ’07. IEEE, pp. 255–264. doi: 10.1109/
esem.2007.12 (cited on page 43).

Andrew Begel & Nachiappan Nagappan (2008). “Pair Programming: What’s in it for Me?” In:
Proc. Second ACM-IEEE Int’l. Symp. on Empirical Software Engineering and Measurement.
ESEM ’08. ACM, pp. 120–128. doi: 10.1145/1414004.1414026 (cited on pages 23, 44–46).

Emilio Bellini, Gerardo Canfora, Félix García, Mario Piattini, & Corrado Aaron Visaggio (2005).
“Pair designing as practice for enforcing and diffusing design knowledge.” In: Journal of

447

https://doi.org/10.1017/s0140525x00023554
https://doi.org/10.1109/TSE.2007.17
https://doi.org/10.1145/352183.352194
https://doi.org/10.1126/science.1185718
https://doi.org/10.1145/3236024.3236061
https://doi.org/10.1109/esem.2007.12
https://doi.org/10.1109/esem.2007.12
https://doi.org/10.1145/1414004.1414026

Bibliography

Software Maintenance and Evolution: Research and Practice 17 (6), pp. 401–423. doi: 10.1002/
smr.322 (cited on pages 55, 61).

Arlo Belshee (2005). “Promiscuous Pairing and Beginner’s Mind: Embrace Inexperience.” In:
Agile Development Conf. ADC 2005. IEEE, pp. 125–131. doi: 10.1109/ADC.2005.37 (cited on
pages 46–47, 68–69, 83–84, 204, 234).

Andreas Böhm (2004). “Theoretical Coding: Text Analysis in Grounded Theory.” In: A Com-
panion to Qualitative Research. Ed. by Uwe Flick, Ernst von Kardorff, & Ines Steinke. Sage
Publications. Chap. 5.13, pp. 270–275. isbn: 0-7619-7374-5 (cited on pages 117, 122).

Michael Bolton (2011). Jerry Weinberg Interview (from 2008). url: https://www.developsense.
com/blog/2011/01/jerry-weinberg-interview-from-2008/ (visited on 2018-06-17) (cited on
page 20).

Laurence BonJour (2010). Epistemology. Classic Problems and Contemporary Responses. 2nd ed.
Rowman & Littlefield Publishers, Inc. isbn: 978-0-7425-6418-3 (cited on pages 26, 35).

Michael Borenstein, Larry V. Hedges, Julian P. T. Higgins, & Hannah R. Rothstein (2009).
Introduction to Meta-Analysis. Wiley John + Sons. isbn: 978-0-470-05724-7 (cited on pages 50, 58,
427).

Piet van den Bossche, Wim H. Gijselaers, Mien Segers, & Paul A. Kirschner (2006). “Social
and Cognitive Factors Driving Teamwork in Collaborative Learning Environments: Team
Learning Beliefs and Behaviors.” In: Small Group Research 37 (5), pp. 490–521. doi: 10.1177/
1046496406292938 (cited on pages 97–103).

Fabian Bross (2012). “German modal particles and the common ground.” In: Helikon. A Mul-
tidisciplinary Online Journal 2, pp. 182–209. url: http://helikon-online.de/2012/Bross_
Particles.pdf (visited on 2019-10-02) (cited on page 268).

Nick Bryan-Kinns, Patrick G. T. Healey, & Joe Leach (2007). “Exploring mutual engagement
in creative collaborations.” In: Proc. 6th ACM SIGCHI Conf. on Creativity & Cognition. C&C
’07. ACM, pp. 223–232. doi: 10.1145/1254960.1254991 (cited on page 234).

Sallyann Bryant (2004). “Double Trouble: Mixing Qualitative and Quantitative Methods in the
Study of eXtreme Programmers.” In: IEEE Symp. on Visual Languages and Human Centric
Computing. VL/HCC ’04. IEEE, pp. 55–61. doi: 10.1109/VLHCC.2004.20 (cited on pages 72–76,
87, 131–132).

Sallyann Bryant, Pablo Romero, & Benedict du Boulay (2006). “The Collaborative Nature of
Pair Programming.” In: Extreme Programming and Agile Processes in Software Engineering.
Ed. by Pekka Abrahamsson, Michele Marchesi, & Giancarlo Succi. Vol. 4044. Lecture Notes
in Computer Science. Springer, pp. 53–64. doi: 10.1007/11774129_6 (cited on pages 72, 74–76, 83).

Sallyann Bryant, Pablo Romero, & Benedict du Boulay (2008). “Pair Programming and the
Mysterious Role of the Navigator.” In: International Jounal of Human-Computer Studies 66 (7),
pp. 519–529. doi: 10.1016/j.ijhcs.2007.03.005 (cited on pages 24, 72–76, 83, 131, 184, 234, 342, 359).

Gerardo Canfora, Aniello Cimitile, & Corrado Aaron Visaggio (2004). “Working in pairs as a
means for design knowledge building: an empirical study.” In: Proc. 12th IEEE Int’l. Workshop
on Program Comprehension. IWPC ’04. IEEE, pp. 62–68. doi: 10.1109/WPC.2004.1311048
(cited on page 55).

Gerardo Canfora, Aniello Cimitile, Félix García, Mario Piattini, & Corrado Aaron Visaggio
(2005). “Confirming the influence of educational background in pair-design knowledge
through experiments.” In: Proc. 2005 ACM Symp. on Applied Computing. SAC ’05. ACM Press,
pp. 1478–1484. doi: 10.1145/1066677.1067013 (cited on pages 55, 59–60, 92).

Janis A.Cannon-Bowers& Eduardo Salas (2001). “Reflections on Shared Cognition.” In: Journal
of Organizational Behavior 22 (2), pp. 195–202. doi: 10.1002/job.82 (cited on pages 98–99).

448

https://doi.org/10.1002/smr.322
https://doi.org/10.1002/smr.322
https://doi.org/10.1109/ADC.2005.37
https://www.developsense.com/blog/2011/01/jerry-weinberg-interview-from-2008/
https://www.developsense.com/blog/2011/01/jerry-weinberg-interview-from-2008/
https://doi.org/10.1177/1046496406292938
https://doi.org/10.1177/1046496406292938
http://helikon-online.de/2012/Bross_Particles.pdf
http://helikon-online.de/2012/Bross_Particles.pdf
https://doi.org/10.1145/1254960.1254991
https://doi.org/10.1109/VLHCC.2004.20
https://doi.org/10.1007/11774129_6
https://doi.org/10.1016/j.ijhcs.2007.03.005
https://doi.org/10.1109/WPC.2004.1311048
https://doi.org/10.1145/1066677.1067013
https://doi.org/10.1002/job.82

Bibliography

Lan Cao & Balasubramaniam Ramesh (2004). “An exploratory study on the effects of pair
programming.” In: Proc. 8th Int’l. Conf. on Empirical Assessment in Software Engineering.
EASE ’04. IET, pp. 21–28. doi: 10.1049/ic:20040395 (cited on page 58).

Lan Cao & Peng Xu (2005). “Activity Patterns of Pair Programming.” In: Proc. 38th Annual
Hawaii Int’l. Conf. on System Sciences. HICSS ’05. IEEE. doi: 10.1109/HICSS.2005.66 (cited on
pages 77–78, 85–86, 234).

Edgar Acosta Chaparro, Aybala Yuksel, Pablo Romero, & Sallyann Bryant (2005). “Factors
Affecting the Perceived Effectiveness of Pair Programming in Higher Education.” In: Proc.
17th Workshop of the Psychology of Programming Interest Group. PPIG ’05, pp. 5–18. url:
https://ppig.org/files/2005-PPIG-17th-chaparro.pdf (cited on page 57).

Kathy Charmaz (2006). Constructing Grounded Theory. A Practical Guide Through Qualitative
Analysis. SAGE Publications. isbn: 978-0-7619-7352-2 (cited on pages 117–118, 124–128, 152, 169,
178–179, 360).

Paul H. Cheney (1977). “Teaching Computer Programming in an Environment Where Col-
laboration Is Required.” In: AEDS Journal (Association for Educational Data Systems) 11 (1),
pp. 1–5 (cited on pages 21, 55, 61, 428).

Jan Chong, Robert Plummer, Larry Leifer, Scott R. Klemmer, Ozgur Eris, & George Toye (2005).
“Pair Programming: When and Why it Works.” In: Proc. 17th Workshop of the Psychology
of Programming Interest Group. PPIG ’05, pp. 43–48. url: https://ppig.org/files/2005-PPIG-
17th-chong.pdf (cited on page 86).

Jan Chong & Rosanne Siino (2006). “Interruptions on Software Teams: A Comparison of Paired
and Solo Programmers.” In: Proc. 20th Anniversary Conf. on Computer Supported Cooperative
Work. CSCW ’06. ACM, pp. 29–38. doi: 10.1145/1180875.1180882 (cited on pages 69, 80, 156, 294).

Jan Chong & Tom Hurlbutt (2007). “The Social Dynamics of Pair Programming.” In: Proc. 29th
Int’l. Conf. on Software Engineering. ICSE ’07. IEEE, pp. 354–363. doi: 10.1109/ICSE.2007.87
(cited on pages 80–81, 83–86, 92, 184, 204, 234, 342).

Daniel C. Cliburn (2003). “Experiences with pair programming at a small college.” In: Journal
of Computing Sciences in Colleges 19 (1), pp. 20–29. url: https://dl.acm.org/doi/10.5555/
948737.948741 (cited on page 58).

Alistair Cockburn & Laurie Williams (2001). “The Costs and Benefits of Pair Programming.”
In: Extreme Programming Examined. Ed. by Giancarlo Succi & Michele Marchesi. Addison-
Wesley, pp. 223–243. isbn: 0-201-71040-4 (cited on page 24). Repr. of “The Costs and Benefits
of Pair Programming.” In: Proc. eXtreme Programming and Flexible Processes in Software
Engineering – XP 2000. Cagliari, Sardinia, Italy, 2000.

Irina D. Coman, Alberto Sillitti, & Giancarlo Succi (2008). “Investigating the Usefulness of
Pair-Programming in a Mature Agile Team.” In: Agile Processes in Software Engineering and
Extreme Programming. Vol. 9. Lecture Notes in Business Information Processing. Springer,
pp. 127–136. doi: 10.1007/978-3-540-68255-4_13 (cited on pages 43, 69–70).

Irina D. Coman, Pierre N. Robillard, Alberto Sillitti, & Giancarlo Succi (2014). “Cooperation,
Collaboration and Pair-Programming: Field Studies on Backup Behavior.” In: Journal of
Systems and Software 91, pp. 124–134. doi: 10.1016/j.jss.2013.12.037 (cited on pages 69–70).

Larry L. Constantine (1995). Constantine on Peopleware. Yourdon Press. isbn: 0-13-331976-8
(cited on page 21).

Larry L. Constantine (2011). Comment on blog post “Improving Code Quality with Pair Pro-
gramming”. url: https://www.benlinders.com/2011/improving-code-quality-with-pair-
programming/#comment-467 (visited on 2019-10-02) (cited on page 21).

449

https://doi.org/10.1049/ic:20040395
https://doi.org/10.1109/HICSS.2005.66
https://ppig.org/files/2005-PPIG-17th-chaparro.pdf
https://ppig.org/files/2005-PPIG-17th-chong.pdf
https://ppig.org/files/2005-PPIG-17th-chong.pdf
https://doi.org/10.1145/1180875.1180882
https://doi.org/10.1109/ICSE.2007.87
https://dl.acm.org/doi/10.5555/948737.948741
https://dl.acm.org/doi/10.5555/948737.948741
https://doi.org/10.1007/978-3-540-68255-4_13
https://doi.org/10.1016/j.jss.2013.12.037
https://www.benlinders.com/2011/improving-code-quality-with-pair-programming/#comment-467
https://www.benlinders.com/2011/improving-code-quality-with-pair-programming/#comment-467

Bibliography

James Coplien (1998). “A Generative Development-Process Pattern Language.” In: The Patterns
Handbook: Techniques, Strategies, and Applications. Ed. by Linda Rising. Cambridge University
Press, pp. 243–300. isbn: 0-521-64818-1 (cited on page 22).

James Coplien (2015). Two Heads are Better than One. Computing Now, IEEE Computer Society;
archived at https://web.archive.org/web/20170711190543/https://computingnow.computer.
org/web/agile-careers/content?g=8504655&type=article&urlTitle=two-heads-are-better-
than-one (cited on pages 20–21).

Juliet Corbin & Anselm Strauss (1990). “Grounded Theory Research: Procedures, Canons, and
Evaluative Criteria.” In: Qualitative Sociology 13 (1), pp. 3–21. doi: 10.1007/BF00988593 (cited
on page 121).

Robert J Crutcher (1994). “Telling What We Know: The Use of Verbal Report Methodologies
in Psychological Research.” In: Psychological Science 5 (5), pp. 241–244. doi: 10.1111/j.1467-
9280.1994.tb00619.x (cited on page 77).

Bill Curtis (1984). “Fifteen Years of Psychology in Software Engineering: Individual Differences
and Cognitive Science.” In: Proc. 7th Int’l. Conf. on Software Engineering. ICSE ’84. IEEE Press,
pp. 97–106. url: https://dl.acm.org/doi/10.5555/800054.801956 (cited on page 36).

Michael Cusumano, Alan MacCormack, Chris F. Kemerer, & Bill Crandall (2003). “Software
development worldwide: The state of the practice.” In: IEEE Software 20 (6), pp. 28–34. doi:
10.1109/ms.2003.1241363 (cited on page 43).

Thomas H. Davenport & Laurence Prusak (2000). Working Knowledge: How Organizations
Manage What They Know. Harvard Business School Press. isbn: 978-1578513017 (cited on
page 34).

Tom DeMarco & Timothy Lister (2013). Peopleware: Productive Projects and Teams. 3rd ed.
Addison Wesley. isbn: 978-0-321-93411-6 (cited on page 43).

Ian Dey (1999). Grounding Grounded Theory: Guidelines for Qualitative Inquiry. Emerald Group
Publishing Limited. isbn: 978-0122146404 (cited on page 152).

Enrico di Bella, Ilenia Fronza, Nattakarn Phaphoom, Alberto Sillitti, Giancarlo Succi, & Jelena
Vlasenko (2013). “Pair Programming and Software Defects – A Large, Industrial Case Study.”
In: IEEE Transactions on Software Engineering 39 (7), pp. 930–953. doi: 10.1109/TSE.2012.68
(cited on page 69).

Madeline Ann Domino, Rosann Webb Collins, Alan R. Hevner, & Cynthia F. Cohen (2003).
“Conflict in Collaborative Software Development.” In: Proc. 2003 SIGMIS Conf. on Computer
Personnel Research. SIGMIS CPR ’03. ACM, pp. 44–51. doi: 10.1145/761849.761856 (cited on
pages 72, 74–76, 234).

Richard L. Edwards, Jennifer K. Stewart, & Mexhid Ferati (2010). “Assessing the effectiveness
of distributed pair programming for an online informatics curriculum.” In: ACM Inroads
1 (1), pp. 48–54. doi: 10.1145/1721933.1721951 (cited on page 57).

Claus Ehrhardt & Hans Jürgen Heringer (2011). Pragmatik. (lit. “Pragmatics”). Paderborn:
Wilhelm Fink. isbn: 978-3825234805 (cited on pages 110–111, 172).

Bernardo José da Silva Estácio & Rafael Prikladnicki (2015). “Distributed Pair Programming: A
Systematic Literature Review.” In: Information and Software Technology 63, pp. 1–10. doi:
10.1016/j.infsof.2015.02.011 (cited on pages 51–52, 54, 56).

Reinhard Fiehler (2005). “Gesprochene Sprache.” In: Duden. Vol. 4: Die Grammatik. Ed. by
Dudenredaktion. 7th ed. (lit. “Speech”). Bibliographisches Institut & FA Brockhaus AG,
pp. 1175–1256. isbn: 978-3-411-04047-6 (cited on page 79).

450

https://web.archive.org/web/20170711190543/https://computingnow.computer.org/web/agile-careers/content?g=8504655&type=article&urlTitle=two-heads-are-better-than-one
https://web.archive.org/web/20170711190543/https://computingnow.computer.org/web/agile-careers/content?g=8504655&type=article&urlTitle=two-heads-are-better-than-one
https://web.archive.org/web/20170711190543/https://computingnow.computer.org/web/agile-careers/content?g=8504655&type=article&urlTitle=two-heads-are-better-than-one
https://doi.org/10.1007/BF00988593
https://doi.org/10.1111/j.1467-9280.1994.tb00619.x
https://doi.org/10.1111/j.1467-9280.1994.tb00619.x
https://dl.acm.org/doi/10.5555/800054.801956
https://doi.org/10.1109/ms.2003.1241363
https://doi.org/10.1109/TSE.2012.68
https://doi.org/10.1145/761849.761856
https://doi.org/10.1145/1721933.1721951
https://doi.org/10.1016/j.infsof.2015.02.011

Bibliography

Brian Fitzgerald, Gerard Hartnett, & Kieran Conboy (2006). “Customising agile methods to
software practices at Intel Shannon.” In: European Journal of Information Systems 15 (2),
pp. 200–213. doi: 10.1057/palgrave.ejis.3000605 (cited on page 46).

Uwe Flick, Ernst von Kardorff, & Ines Steinke, eds. (2004). A Companion to Qualitative Research.
SAGE Publications. isbn: 0-7619-7374-5 (cited on pages 113–114, 117, 341).

Nick V. Flor & Edwin Hutchins (1991). “Analyzing distributed cognition in software teams: A
case study of team programming during perfective software maintenance.” In: Empirical
studies of programmers: Fourth workshop. Ablex Publishing Corp., pp. 36–64 (cited on pages 78–
80, 85–86, 100, 235).

Nick V. Flor (1998). “Side-by-side collaboration: a case study.” In: International Journal of
Human-Computer Studies 49, pp. 201–222. doi: 10.1006/ijhc.1998.0203 (cited on pages 78–80,
85–86, 92, 131, 301).

Susan F. Freeman, Beverly K. Jaeger, & Jennifer C. Brougham (2003). “Pair Programming: More
Learning And Less Anxiety In A First Programming Course.” In: Proc. ASEE Annual Conf.
Pp. 8.912.1–8.912.9. url: https://peer.asee.org/11728 (cited on pages 57, 61).

Sallyann Freudenberg (2006). “The ‘Tag Team’: Tools, tasks and roles in collaborative software
development.” PhD thesis. University of Sussex. url: https://salfreudenberg.files.wordpress.
com/2017/03/finalthesis.pdf (cited on pages 72, 75).

Sallyann Freudenberg, Pablo Romero, & Benedict du Boulay (2007). “‘Talking the talk’: Is
intermediate-level conversation the key to the pair programming success story?” In: Proc.
AGILE 2007 Conf. IEEE, pp. 84–91. doi: 10.1109/AGILE.2007.1 (cited on page 73).

Morris F. Friedell (1969). “On the structure of shared awareness.” In: Behavioral Science 14 (1),
pp. 28–39. issn: 1099-1743. doi: 10.1002/bs.3830140105 (cited on page 110).

Thomas Fritz, Jingwen Ou, Gail C. Murphy, & Emerson Murphy-Hill (2010). “A Degree-of-
Knowledge Model to Capture Source Code Familiarity.” In: Proc. 32nd Int’l. Conf. on Software
Engineering. ICSE ’10. New York, NY, USA: ACM, pp. 385–394. doi: 10.1145/1806799.1806856
(cited on pages 38, 334).

Ilenia Fronza, Alberto Sillitti, & Giancarlo Succi (2009). “An Interpretation of the Results of
the Analysis of Pair Programming during Novices Integration in a Team.” In: Proceerings of
the Third Int’l. Symp. on Empirical Software Engineering and Measurement. ESEM ’09. IEEE,
pp. 225–235. doi: 10.1109/ESEM.2009.5315998 (cited on pages 69–70).

John Fuegi & Jo Francis (2003). “Lovelace & Babbage and the Creation of the 1843 ‘Notes’.” In:
IEEE Annals of the History of Computing 25 (4), pp. 16–26. doi: 10.1109/MAHC.2003.1253887
(cited on page 20).

Catherine Gabelica, Piet van den Bossche, Stephen M. Fiore, Mien Segers, & Wim H. Gijselaers
(2016). “Establishing team knowledge coordination from a learning perspective.” In: Human
Performance 29 (1), pp. 33–53. doi: 10.1080/08959285.2015.1120304 (cited on pages 98–103).

ErichGamma, Richard Helm, Ralph Johnson, & John Vlissides (1995). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley. isbn: 0-201-63361-2 (cited on pages 163,
229, 250).

Harold Garfinkel (1967). Studies in Ethnomethodology. Englewood Cliffs, New Jersey: Prentice-
Hall, Inc. isbn: 0-7456-0005-0 (cited on page 110).

Markus Gärtner (2016). Interview with Jerry Weinberg. url: http://www.shino.de/2016/01/10/
interview-with-jerry-weinberg/ (visited on 2018-06-17) (cited on page 20).

Edmund L. Gettier (1963). “Is Justified True Belief Knowledge?” In: Analysis 23 (6), pp. 121–123.
doi: 10.2307/3326922 (cited on page 35).

451

https://doi.org/10.1057/palgrave.ejis.3000605
https://doi.org/10.1006/ijhc.1998.0203
https://peer.asee.org/11728
https://salfreudenberg.files.wordpress.com/2017/03/finalthesis.pdf
https://salfreudenberg.files.wordpress.com/2017/03/finalthesis.pdf
https://doi.org/10.1109/AGILE.2007.1
https://doi.org/10.1002/bs.3830140105
https://doi.org/10.1145/1806799.1806856
https://doi.org/10.1109/ESEM.2009.5315998
https://doi.org/10.1109/MAHC.2003.1253887
https://doi.org/10.1080/08959285.2015.1120304
http://www.shino.de/2016/01/10/interview-with-jerry-weinberg/
http://www.shino.de/2016/01/10/interview-with-jerry-weinberg/
https://doi.org/10.2307/3326922

Bibliography

Hudson Gevaert (2006). “Pair Programming Unearthed.” MA thesis. University of Manitoba.
url: http://hdl.handle.net/1993/20460 (cited on pages 59–60).

Barney G. Glaser & Anselm Strauss (1967). The Discovery of Grounded Theory: Strategies for
Qualitative Research. AldineTransaction. isbn: 0-202-30260-1 (cited on pages 117–118, 124–125,
152).

Barney G. Glaser (1978). Theoretical Sensitivity: Advances in the Methodology of Grounded
Theory. The Sociology Press. isbn: 978-1884156014 (cited on page 126).

Barney G. Glaser (2007). “Remodeling Grounded Theory.” In: Historical Social Research, Supple-
ment 19, pp. 47–68. url: https://nbn-resolving.org/urn:nbn:de:0168-ssoar-288341 (cited on
page 118).

James Gleick (2011). The Information: A History, A Theory, A Flood. Pantheon Books. isbn:
978-0-307-37957-3 (cited on page 20).

H. Paul Grice (1975). “Logic and Conversation.” In: Syntax and Semantics. 3: Speech Acts. Ed. by
Peter Cole & Jerry L. Morgan. New York: Academic Press, pp. 41–58. isbn: 978-0127854236
(cited on pages 111–112).

John J. Gumperz (1982). Discourse Strategies. Studies in Interactional Sociolinguistics 1. Cam-
bridge University Press. isbn: 0-521-24691-1 (cited on page 371).

J. Richard Hackman, ed. (1990). Groups that work (and those that don’t): Creating Conditions for
Effective Teamwork. Jossey-Bass. isbn: 1-55542-187-3 (cited on page 99).

BrianHanks (2006). “Student attitudes toward pair programming.” In: Proc. 11th Annual SIGCSE
Conf. on Innovation and Technology in Computer Science Education. ITiCSE. ACM, pp. 113–
117. doi: 10.1145/1140124.1140156 (cited on page 57).

Brian Hanks (2008). “Empirical evaluation of distributed pair programming.” In: International
Journal of Human-Computer Studies 66 (7), pp. 530–544. doi: 10.1016/j.ijhcs.2007.10.003 (cited
on page 56).

Jo E. Hannay, Tore Dybå, Erik Arisholm, & Dag I.K. Sjøberg (2009). “The effectiveness of pair
programming: A meta-analysis.” In: Information and Software Technology 51 (7), pp. 1110–
1122. doi: 10.1016/j.infsof.2009.02.001 (cited on pages 24, 51–52, 54, 63–67, 236, 347, 431).

Jo E. Hannay, Erik Arisholm, Harald Engvik, & Dag I.K. Sjøberg (2010). “Effects of Personality
on Pair Programming.” In: IEEE Transactions on Software Engineering 36 (1), pp. 61–80. doi:
10.1109/TSE.2009.41 (cited on pages 66, 73–74, 94).

ThomasHarms (2017). “Untersuchung von Fokus-Phasen in Paar-Programmierungs-Sitzungen.”
(lit. “Investigation of Focus Phases in Pair Programming Sessions”). BA thesis. Freie Uni-
versität Berlin. url: https://www.inf.fu-berlin.de/inst/ag-se/theses/Harms17-pp-fokus.pdf
(cited on page 233).

Kieran Harrington (2018). The Role of Corpus Linguistics in the Ethnography of a Closed Com-
munity: Survival Communication. Routledge. isbn: 978-1-138-71442-7 (cited on page 112).

Julian P. T. Higgins, Simon G. Thompson, Jonathan J. Deeks, & Douglas G. Altman (2003).
“Measuring inconsistency in meta-analyses.” In: BMJ 327 (7414), pp. 557–560. doi: 10.1136/
bmj.327.7414.557 (cited on page 50).

Bruno Hildenbrand (2004). “Anselm Strauss.” In: A Companion to Qualitative Research. Ed. by
Uwe Flick, Ernst von Kardorff, & Ines Steinke. Sage Publications. Chap. 2.1, pp. 17–23. isbn:
0-7619-7374-5 (cited on pages 117, 123).

Elizabeth V. Howard (2006). “Attitudes on Using Pair-Programming.” In: Journal of Educational
Technology Systems 35 (1), pp. 89–103. doi: 10.2190/5k87-58w8-g07m-2811 (cited on page 57).

452

http://hdl.handle.net/1993/20460
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-288341
https://doi.org/10.1145/1140124.1140156
https://doi.org/10.1016/j.ijhcs.2007.10.003
https://doi.org/10.1016/j.infsof.2009.02.001
https://doi.org/10.1109/TSE.2009.41
https://www.inf.fu-berlin.de/inst/ag-se/theses/Harms17-pp-fokus.pdf
https://doi.org/10.1136/bmj.327.7414.557
https://doi.org/10.1136/bmj.327.7414.557
https://doi.org/10.2190/5k87-58w8-g07m-2811

Bibliography

Hanna Hulkko & Pekka Abrahamsson (2005). “A Multiple Case Study on the Impact of Pair
Programming on Product Quality.” In: Proc. 27th Int’l. Conf. on Software Engineering. ICSE
’05. ACM, pp. 495–504. doi: 10.1145/1062455.1062545 (cited on pages 43–44, 70–71, 255).

EdwinHutchins (1989). “The Technology of Team Navigation.” In: Intellectual Teamwork: Social
and Technical Bases of Collaborative Work. Ed. by Jolene Galegher, Robert E. Kraut, & Carmen
Egido. Lawrence Erlbaum Associates. Chap. 8, pp. 191–220. isbn: 0-8058-0534-6 (cited on
page 78).

Edwin Hutchins & Tove Klausen (1998). “Distributed cognition in an airline cockpit.” In:
Cognition andCommunication atWork. Ed. by Yrjö Engeström&DavidMiddleton. Cambridge
University Press. Chap. 2, pp. 15–34. isbn: 0-521-64566-2 (cited on page 78).

Andrea Janes, Barbara Russo, Paolo Zuliani, & Giancarlo Succi (2003). “An Empirical Anal-
ysis on the Discontinuous Use of Pair Programming.” In: Proc. 4th. Intl. Conf. Extreme
Programming and Agile Processes in Software Engineering. XP ’03. Springer, pp. 205–214. doi:
10.1007/3-540-44870-5_26 (cited on page 57).

Ron Jeffries, Ann Anderson, & Chet Hendrickson (2001). Extreme Programming Installed.
Addison-Wesley. isbn: 978-0201708424 (cited on page 21).

Randall W. Jensen (2003). “A Pair Programming Experience.” In: Crosstalk. The Journal of De-
fense Software Engineering 16 (3), pp. 22–24. url: https://web.archive.org/web/20041027082334/
http://www.stsc.hill.af.mil/crosstalk/2003/03/jensen.html (cited on page 21).

Danielle L. Jones & Scott D. Fleming (2013). “What use is a backseat driver? A qualitative
investigation of pair programming.” In: Proc. IEEE Symp. on Visual Languages and Human
Centric Computing. IEEE, pp. 103–110. doi: 10.1109/VLHCC.2013.6645252 (cited on pages 83–86,
92, 129, 255, 290).

Edward Ellsworth Jones & Harold Benjamin Gerard (1967). Foundations of social psychology.
Oxford, England: Wiley. isbn: 978-0471449065 (cited on page 198).

Brigitte Jordan & Austin Henderson (1995). “Interaction Analysis: Foundations and Practice.”
In: The Journal of the Learning Sciences 4 (1), pp. 39–103. doi: 10.1207/s15327809jls0401_2
(cited on page 81).

Andreas H. Jucker & Yael Ziv, eds. (1998). Discourse Markers. Descriptions and Theory. John
Benjamins Publishing Company. isbn: 9027250715 (cited on page 263).

Vigdis By Kampenes, Tore Dybå, Jo E. Hannay, & Dag I.K. Sjøberg (2007). “A systematic review
of effect size in software engineering experiments.” In: Information and Software Technology
49 (11–12), pp. 1073–1086. doi: 10.1016/j.infsof.2007.02.015 (cited on pages 50, 58).

Neha Katira, Laurie Williams, Eric Wiebe, Carol Miller, Suzanne Balik, & Edward Gehringer
(2004). “On Understanding Compatibility of Student Pair Programmers.” In: Proc. 35th SIGCSE
Technical Symp. on Computer Science Education. SIGCSE ’04. ACM, pp. 7–11. doi: 10.1145/
971300.971307 (cited on page 60).

NehaKatira, LaurieWilliams,& Jason A. Osborne (2005). “Towards increasing the compatibility
of student pair programmers.” In: Proc. 27th Int’l. Conf. on Software Engineering. ICSE ’05.
ACM, pp. 625–626. doi: 10.1145/1062455.1062572 (cited on page 60).

UdoKelle (2007). “"Emergence" vs. "Forcing" of EmpiricalData? ACrucial Problem of "Grounded
Theory" Reconsidered.” In: Grounded Theory Reader. Ed. by Günter May & Katja Mruck.
Köln: Zentrum für Historische Sozialforschung, pp. 133–156 (cited on page 120).

Jessica Kerr (2017). Hyperproductive development. url: https://jessitron.com/2017/06/24/the-
most-productive-circumstances-for (visited on 2017-08-28) (cited on page 334).

453

https://doi.org/10.1145/1062455.1062545
https://doi.org/10.1007/3-540-44870-5_26
https://web.archive.org/web/20041027082334/http://www.stsc.hill.af.mil/crosstalk/2003/03/jensen.html
https://web.archive.org/web/20041027082334/http://www.stsc.hill.af.mil/crosstalk/2003/03/jensen.html
https://doi.org/10.1109/VLHCC.2013.6645252
https://doi.org/10.1207/s15327809jls0401_2
https://doi.org/10.1016/j.infsof.2007.02.015
https://doi.org/10.1145/971300.971307
https://doi.org/10.1145/971300.971307
https://doi.org/10.1145/1062455.1062572
https://jessitron.com/2017/06/24/the-most-productive-circumstances-for
https://jessitron.com/2017/06/24/the-most-productive-circumstances-for

Bibliography

Cory Kissinger, Margaret Burnett, Simone Stumpf, Neeraja Subrahmaniyan, Laura Beckwith,
Sherry Yang, & Mary Beth Rosson (2006). “Supporting End-User Debugging: What Do Users
Want to Know?” In: Proc. Working Conf. on Advanced Visual Interfaces. AVI ’06. ACM Press,
pp. 135–142. doi: 10.1145/1133265.1133293 (cited on page 301).

Juraj Kubelka, Romain Robbes, & Alexandre Bergel (2018). “The Road to Live Programming:
Insights From the Practice.” In: Proc. 40th Int’l. Conf. on Software Engineering. ICSE ’18. ACM,
pp. 1090–1101. doi: 10.1145/3180155.3180200 (cited on page 301).

Timothy C. Lethbridge, Susan Elliott Sim,& Janice Singer (2005). “Studying Software Engineers:
Data Collection Techniques for Software Field Studies.” In: Empirical Software Engineering
10 (3), pp. 311–341. doi: 10.1007/s10664-005-1290-x (cited on page 49).

Paul Luo Li, Amy J. Ko, & Jiamin Zhu (2015). “What Makes a Great Software Engineer?” In:
Proc. 37th Int’l. Conf. on Software Engineering. ICSE ’15. IEEE, pp. 700–710. doi: 10.1109/icse.
2015.335 (cited on page 38).

John Lofland & Lyn H. Lofland (1995). Analyzing Social Settings. A Guide to Qualitative Obser-
vation and Analysis. 3rd ed. Wadsworth Publishing Company. isbn: 9780534247805 (cited on
page 113).

Kim Man Lui & Keith C. C. Chan (2003). “When Does a Pair Outperform Two Individuals?” In:
Extreme Programming and Agile Processes in Software Engineering. Ed. by Michele Marchesi
& Giancarlo Succi. Vol. 2675. Lecture Notes in Computer Science. Springer, pp. 225–233.
doi: 10.1007/3-540-44870-5_28 (cited on page 66).

Kim Man Lui & Keith C. C. Chan (2004). “A Cognitive Model for Solo Programming and Pair
Programming.” In: Proc. Third IEEE Int’l. Conf. on Cognitive Informatics. ICCI ’04. IEEE,
pp. 94–102. doi: 10.1109/COGINF.2004.1327463 (cited on page 66).

Kim Man Lui & Keith C. C. Chan (2006). “Pair programming productivity: Novice–novice vs.
expert–expert.” In: International Journal of Human-Computer Studies 64 (9), pp. 915–925. doi:
10.1016/j.ijhcs.2006.04.010 (cited on page 66).

Lech Madeyski (2006). “Is External Code Quality Correlated with Programming Experience or
Feelgood Factor?” In: Extreme Programming and Agile Processes in Software Engineering. XP
2006. Springer Berlin Heidelberg, pp. 65–74. doi: 10.1007/11774129_7 (cited on pages 59–60).

Robert C.Martin (2002). Agile Software Development: Principles, Patterns, and Practices. Prentice
Hall. isbn: 978-0-13-597444-5 (cited on page 77).

John E. Mathieu, Tonia S. Heffner, Gerald F. Goodwin, Eduardo Salas, & Janis A. Cannon-
Bowers (2000). “The Influence of Shared Mental Models on Team Process and Performance.”
In: J. of Applied Psychology 85 (2), pp. 273–283. doi: 10.1037/0021-9010.85.2.273 (cited on
pages 100–103, 234).

Charlie McDowell, Linda Werner, Heather E. Bullock, & Julian Fernald (2003). “The Impact of
Pair Programming on Student Performance, Perception, and Persistance.” In: Proc. 25th Int’l.
Conf. on Software Engineering. ICSE ’03. IEEE, pp. 602–607. doi: 10.1109/ICSE.2003.1201243
(cited on page 24).

Naomi Miyake (1986). “Constructive Interaction and the Iterative Process of Understanding.”
In: Cognitive Science 10 (2), pp. 151–177. doi: 10.1207/s15516709cog1002_2 (cited on pages 95–97,
103).

Thomas Muhr (1994). “ATLAS/ti: ein Werkzeug für die Textinterpretation.” In: Texte verstehen:
Konzepte, Methoden, Werkzeuge. Ed. by Andreas Boehm, Andreas Mengel, & Thomas Muhr.
Vol. 14. (lit. “ATLAS/ti: A tool for text interpretation”). UVK Univ.-Verl. Konstanz, pp. 317–
324. isbn: 3-87940-503-4. url: https://nbn-resolving.org/urn:nbn:de:0168-ssoar-14628 (cited
on page 124).

454

https://doi.org/10.1145/1133265.1133293
https://doi.org/10.1145/3180155.3180200
https://doi.org/10.1007/s10664-005-1290-x
https://doi.org/10.1109/icse.2015.335
https://doi.org/10.1109/icse.2015.335
https://doi.org/10.1007/3-540-44870-5_28
https://doi.org/10.1109/COGINF.2004.1327463
https://doi.org/10.1016/j.ijhcs.2006.04.010
https://doi.org/10.1007/11774129_7
https://doi.org/10.1037/0021-9010.85.2.273
https://doi.org/10.1109/ICSE.2003.1201243
https://doi.org/10.1207/s15516709cog1002_2
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-14628

Bibliography

Matthias M. Müller & Frank Padberg (2004). “An Empirical Study about the Feelgood Factor
in Pair Programming.” In: Proc. 10th IEEE Int’l. Software Metrics Symp.METRICS ’04. IEEE,
pp. 151–158. doi: 10.1109/METRIC.2004.1357899 (cited on pages 59–60).

John T. Nosek (1998). “The case for collaborative programming.” In: Communications of the
ACM 41 (3), pp. 105–108. doi: 10.1145/272287.272333 (cited on page 63).

Takeshi Okada & Herbert A. Simon (1997). “Collaborative Discovery in a Scientific Domain.”
In: Cognitive Science 21 (2), pp. 109–146. doi: 10.1207/s15516709cog2102_1 (cited on pages 96–97,
103, 196, 301).

David W. Palmieri (2002). “Knowledge Management Through Pair Programming.” MA thesis.
North Carolina State University. url: http://www.lib.ncsu.edu/resolver/1840.16/1429 (cited
on page 24).

Ajay Pandey, Nader Kameli, Abraham Eapen, Corey Miklos, Francoise Boudigou, Imelda
Sutedjo, Manoj Paul, Vivek Vijay, & Wesley Mcdermott (2003). “Application of Tightly
Coupled Engineering Team for Development of Test Automation Software – A Real World
Experience.” In: Proc. 27th Annual Int’l. Computer Software and Applications Conf. COMPAC
’03. IEEE, pp. 56–63. doi: 10.1109/cmpsac.2003.1245322 (cited on page 46).

Michael Quinn Patton (2002). Qualitative Research and Evaluation Methods. 3rd ed. Sage
Publications. isbn: 0761919716 (cited on pages 109, 113–115, 117–118, 341, 346).

Nattakarn Phaphoom, Alberto Sillitti, & Giancarlo Succi (2011). “Pair Programming and Soft-
ware Defects – An Industrial Case Study.” In: Agile Processes in Software Engineering and
Extreme Programming. XP 2011. Ed. by Alberto Sillitti, Orit Hazzan, Emily Bache, & Xavier
Albaladejo. Vol. 77. Lecture Notes in Business Information Processing. Springer, pp. 208–222.
doi: 10.1007/978-3-642-20677-1_15 (cited on page 69).

Laura Plonka (2009). “Bericht Workshop Paar Programmierung bei [Firma C].” reprint as
ancillary file of Zieris & Prechelt (2020b). (lit. “Report Pair Programming Workshop at
[Company C]"). url: https://arxiv.org/src/2002.03121v3/anc/workshop-report-company-
c.pdf (cited on pages 145, 148, 153, 155, 157).

Laura Plonka, Judith Segal, Helen Sharp, & Janet van der Linden (2011). “Collaboration in
Pair Programming: Driving and Switching.” In: Agile Processes in Software Engineering and
Extreme Programming. XP 2011. Ed. by Alberto Sillitti, Orit Hazzan, Emily Bache, & Xavier
Albaladejo. Vol. 77. Lecture Notes in Business Information Processing. Springer, pp. 43–59.
doi: 10.1007/978-3-642-20677-1_4 (cited on pages 73–76, 86, 156, 369).

Laura Plonka, Helen Sharp, & Janet van der Linden (2012a). “Disengagement in pair program-
ming: Does it matter?” In: Proc. 34th Int’l. Conf. on Software Engineering. ICSE ’12. IEEE,
pp. 496–506. doi: 10.1109/ICSE.2012.6227166 (cited on pages 23, 73, 84–86, 234, 369).

Laura Plonka, Judith Segal, Helen Sharp, & Janet van der Linden (2012b). “Investigating Eq-
uity of Participation in Pair Programming.” In: Proc. Agile India 2012. IEEE. doi: 10.1109/
AgileIndia.2012.16 (cited on page 369).

Laura Plonka (2012). “Unpacking Collaboration in Pair Programming in Industrial Settings.”
PhD thesis. Open University. url: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.
577973 (cited on pages 27, 71, 81, 92, 128, 130–131, 135, 143, 145, 147–148, 150–151, 153, 156–157, 168, 369, 373,
404, 426).

Laura Plonka, Helen Sharp, Janet van der Linden, & Yvonne Dittrich (2015). “Knowledge
transfer in pair programming: An in-depth analysis.” In: International Journal of Human-
Computer Studies 73, pp. 66–78. doi: 10.1016/j.ijhcs.2014.09.001 (cited on pages 24, 44, 81, 83,
85–87, 369).

455

https://doi.org/10.1109/METRIC.2004.1357899
https://doi.org/10.1145/272287.272333
https://doi.org/10.1207/s15516709cog2102_1
http://www.lib.ncsu.edu/resolver/1840.16/1429
https://doi.org/10.1109/cmpsac.2003.1245322
https://doi.org/10.1007/978-3-642-20677-1_15
https://arxiv.org/src/2002.03121v3/anc/workshop-report-company-c.pdf
https://arxiv.org/src/2002.03121v3/anc/workshop-report-company-c.pdf
https://doi.org/10.1007/978-3-642-20677-1_4
https://doi.org/10.1109/ICSE.2012.6227166
https://doi.org/10.1109/AgileIndia.2012.16
https://doi.org/10.1109/AgileIndia.2012.16
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.577973
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.577973
https://doi.org/10.1016/j.ijhcs.2014.09.001

Bibliography

Lutz Prechelt, Franz Zieris, & Holger Schmeisky (2015). “Difficulty Factors of Obtaining Access
for Empirical Studies in Industry.” In: 2015 IEEE/ACM 3rd Int’l. Workshop on Conducting
Empirical Studies in Industry. CESI ’15. IEEE, pp. 19–25. doi: 10.1109/cesi.2015.11 (cited on
page 367).

Lutz Prechelt, Holger Schmeisky, & Franz Zieris (2016). “Quality Experience: A Grounded
Theory of Successful Agile Projects without Dedicated Testers.” In: Proc. 38th Int’l. Conf. on
Software Engineering. ICSE ’16. ACM, pp. 1017–1027. doi: 10.1145/2884781.2884789 (cited on
page 368).

Aglaja Przyborski&Thomas Slunecko (2009). “Against Reification! PraxeologicalMethodology
and its Benefits.” In: Dynamic Process Methodology in the Social and Developmental Sciences.
Ed. by Jaan Valsiner, Peter C.M. Molenaar, Maria C.D.P. Lyra, & Nandita Chaudhary. Chap. 7,
pp. 141–170. doi: 10.1007/978-0-387-95922-1_7 (cited on page 109).

Aglaja Przyborski &Monika Wohlrab-Sahr (2014). Qualitative Sozialforschung. Ein Arbeitsbuch.
4th ed. (lit. “Qualitative Social Research. A Textbook”). Oldenbourg Verlag. isbn: 978-3-486-
70892-9 (cited on pages 117, 120, 122–124, 126).

Maaret Pyhäjärvi (2018). Power dynamics in pairs and mobs. url: https : / / visible - quality.
blogspot.com/2018/05/power-dynamics-in-pairs-and-mobs.html (visited on 2018-09-13)
(cited on page 235).

Paul Ralph (2013). “The illusion of requirements in software development.” In: Requirements
Engineering 18 (3), pp. 293–296. doi: 10.1007/s00766-012-0161-4 (cited on page 245).

Jonathan Rasmusson (2003). “Introducing XP into Greenfield Projects: Lessons Learned.” In:
IEEE Software 20 (3), pp. 21–28. doi: 10.1109/ms.2003.1196316 (cited on pages 46, 255).

Trygve Reenskaug & Anne Lise Skaar (1989). “An environment for literate Smalltalk program-
ming.” In: Conf. Proc. on Object-Oriented Programming Systems, Languages and Applications.
OOPSLA’89. ACM Press, pp. 337–345. doi: 10.1145/74877.74912 (cited on page 21).

Jo Reichertz (2004). “Abduction, Deduction and Induction in Qualitative Research.” In: A
Companion to Qualitative Research. Ed. by Uwe Flick, Ernst von Kardorff, & Ines Steinke.
Sage Publications. Chap. 4.3, pp. 159–164. isbn: 0-7619-7374-5 (cited on pages 114, 123).

Pierre N. Robillard (1999). “The Role of Knowledge in Software Development.” In: Communi-
cations of the ACM 42 (1), pp. 87–92. doi: 10.1145/291469.291476 (cited on pages 23, 26, 36–38,
333–334).

Colin Robson (2002). Real World Research. 2nd ed. Blackwell Publishing. isbn: 978-0-631-21305-
5 (cited on pages 117, 123).

Fernando J Rodríguez, Kimberly Michelle Price, & Kristy Elizabeth Boyer (2017). “Exploring
the Pair Programming Process: Characteristics of Effective Collaboration.” In: Proc. 2017
ACM SIGCSE Technical Symp. on Computer Science Education. SIGCSE ’17. ACM, pp. 507–512.
doi: 10.1145/3017680.3017748 (cited on page 62).

Yvonne Rogers & Judi Ellis (1994). “Distributed Cognition: An Alternative Framework for
Analysing and Explaining Collaborative Work.” In: Journal of Information Technology 9 (2),
pp. 119–128. doi: 10.1057/jit.1994.12 (cited on page 78).

John Rooksby, David Martin, & Mark Rouncefield (2006). “Reading as Part of Computer Pro-
gramming. An Ethnomethodological Enquiry.” In: Proc. 18th Workshop of the Psychology of
Programming Interest Group. PPIG ’06, pp. 198–212. url: https://ppig.org/files/2006-PPIG-
18th-rooksby.pdf (cited on pages 80, 85–86).

Stephan Salinger, Laura Plonka, & Lutz Prechelt (2008). “A Coding Scheme Development
Methodology using Grounded Theory for Qualitative Analysis of Pair Programming.” In:

456

https://doi.org/10.1109/cesi.2015.11
https://doi.org/10.1145/2884781.2884789
https://doi.org/10.1007/978-0-387-95922-1_7
https://visible-quality.blogspot.com/2018/05/power-dynamics-in-pairs-and-mobs.html
https://visible-quality.blogspot.com/2018/05/power-dynamics-in-pairs-and-mobs.html
https://doi.org/10.1007/s00766-012-0161-4
https://doi.org/10.1109/ms.2003.1196316
https://doi.org/10.1145/74877.74912
https://doi.org/10.1145/291469.291476
https://doi.org/10.1145/3017680.3017748
https://doi.org/10.1057/jit.1994.12
https://ppig.org/files/2006-PPIG-18th-rooksby.pdf
https://ppig.org/files/2006-PPIG-18th-rooksby.pdf

Bibliography

Human Technology: An Interdisciplinary Journal on Humans in ICT Environments 4 (1), pp. 9–
25. doi: 10.17011/ht/urn.200804151350 (cited on pages 87, 128–130, 165, 204, 234, 342, 369).

Stephan Salinger (2013). “Ein Rahmenwerk für die qualitative Analyse der Paarprogram-
mierung.” (lit. “A framework for the qualitative analysis of pair programming”). PhD thesis.
Freie Universität Berlin. doi: 10.17169/refubium-14050 (cited on pages 27, 42, 71, 77, 87–88, 128–132,
137, 141, 143, 145, 147, 150–151, 153, 155–156, 165, 168–169, 173, 176, 369, 371, 373, 426).

Stephan Salinger, Franz Zieris, & Lutz Prechelt (2013). “Liberating Pair Programming Research
from the Oppressive Driver/Observer Regime.” In: Proc. 35th Int’l. Conf. on Software En-
gineering. ICSE ’13 (NIER). IEEE, pp. 1201–1204. doi: 10.1109/ICSE.2013.6606678 (cited on
pages 83, 85–86, 345, 367, 369).

Stephan Salinger & Lutz Prechelt (2013). Understanding Pair Programming: The Base Layer.
Norderstedt: Books on Demand. isbn: 978-3-7322-8193-0. url: http://www.inf.fu-berlin.
de/inst/ag-se/pubs/SalPre13-baseconbook.pdf (cited on pages 27, 88, 128, 131–135, 137, 151, 165,
169–170, 190–191, 193, 195–196, 204, 241, 254, 265, 342, 359, 364, 369).

Norsaremah Salleh, Emilia Mendes, & John C. Grundy (2011). “Empirical Studies of Pair
Programming for CS/SE Teaching in Higher Education: A Systematic Literature Review.”
In: IEEE Transactions on Software Engineering 37 (4), pp. 509–525. doi: 10.1109/TSE.2010.59
(cited on pages 51–52, 54–61, 428–429).

Norsaremah Salleh, Emilia Mendes, & John C. Grundy (2014). “Investigating the effects of
personality traits on pair programming in a higher education setting through a family of
experiments.” In: Empirical Software Engineering 19 (3), pp. 714–752. doi: 10.1007/s10664-
012-9238-4 (cited on pages 57–58).

Iflaah Salman, Ayse Tosun Misirli, & Natalia Juristo (2015). “Are Students Representatives of
Professionals in Software Engineering Experiments?” In: Proc. 37th Int’l. Conf. on Software
Engineering. ICSE ’15. IEEE, pp. 666–676. doi: 10.1109/icse.2015.82 (cited on page 48).

Outi Salo & Pekka Abrahamsson (2008). “Agile methods in European embedded software devel-
opment organisations: a survey on the actual use and usefulness of Extreme Programming
and Scrum.” In: IET Software 2 (1), pp. 58–64. doi: 10.1049/iet-sen:20070038 (cited on page 43).

Emanuel A. Schegloff (1968). “Sequencing in Conversational Openings.” In: American Anthro-
pologist 70 (6), pp. 1075–1095. doi: 10.1525/aa.1968.70.6.02a00030 (cited on page 112).

Emanuel A. Schegloff&Harvey Sacks (1973). “Opening up Closings.” In: Semiotica 8 (4), pp. 289–
327. doi: 10.1515/semi.1973.8.4.289 (cited on page 112).

Julia Schenk, Lutz Prechelt, & Stephan Salinger (2014). “Distributed-Pair Programming can
work well and is not just Distributed Pair-Programming.” In: Proc. 36th Int’l. Conf. on Software
Engineering. ICSE ’14. ACM Press, pp. 74–83. doi: 10.1145/2591062.2591188 (cited on pages 84,
151, 369).

Julia Schenk (2018). “Industrially Usuable Distributed Pair Programming.” PhD thesis. Freie
Universität Berlin. doi: 10.17169/refubium-938 (cited on pages 26–27, 84–86, 145, 149, 151, 153, 156,
231, 369, 373, 426).

Christian Schindler (2008). “Agile Software Development Methods and Practices in Austrian
IT-Industry: Results of an Empirical Study.” In: Proc. Int’l. Conf. on Computational Intelligence
for Modelling, Control and Automation (CIMCA), Intelligent Agents, Web Technologies and
Internet Commerce (IAWTIC), Innovation in Software Engineering (ISE). IEEE, pp. 321–326.
doi: 10.1109/CIMCA.2008.100 (cited on pages 43–45).

Donald A. Schön (1983). The Reflective Practitioner: How Professionals Think in Action. Basic
Books, Inc. isbn: 978-0-465-06878-4 (cited on pages 333–334).

457

https://doi.org/10.17011/ht/urn.200804151350
https://doi.org/10.17169/refubium-14050
https://doi.org/10.1109/ICSE.2013.6606678
http://www.inf.fu-berlin.de/inst/ag-se/pubs/SalPre13-baseconbook.pdf
http://www.inf.fu-berlin.de/inst/ag-se/pubs/SalPre13-baseconbook.pdf
https://doi.org/10.1109/TSE.2010.59
https://doi.org/10.1007/s10664-012-9238-4
https://doi.org/10.1007/s10664-012-9238-4
https://doi.org/10.1109/icse.2015.82
https://doi.org/10.1049/iet-sen:20070038
https://doi.org/10.1525/aa.1968.70.6.02a00030
https://doi.org/10.1515/semi.1973.8.4.289
https://doi.org/10.1145/2591062.2591188
https://doi.org/10.17169/refubium-938
https://doi.org/10.1109/CIMCA.2008.100

Bibliography

Alfred Schütz (1932). Der Sinnhafte Aufbau der sozialen Welt. Eine Einleitung in die verstehende
Soziologie. (lit. “The meaningful construction of the social world. An introduction to the
comprehending sociology”). Vienna: Julius Springer. isbn: 3709131081 (cited on pages 108, 458).

Alfred Schuetz (1953). “Common-Sense and Scientific Interpretation of Human Action.” In:
Philosophy and Phenomenological Research 14 (1), p. 1. doi: 10.2307/2104013 (cited on page 109).

Alfred Schutz (1954). “Concept and Theory Formation in the Social Sciences.” In: The Journal
of Philosophy 51 (9), pp. 257–273. doi: 10.1007/978-94-010-2851-6_2 (cited on pages 108–109).

Alfred Schutz (1967). The Phenomenology of the Social World. English translation of Schütz
(1932). Northwestern University Press. isbn: 978-0810103900 (cited on page 108).

John R. Searle (1969). SpeechActs: An Essay in the Philosophy of Language. Cambridge University
Press. isbn: 978-0521071840 (cited on pages 112–113, 198).

Todd Sedano, Paul Ralph, & Cécile Péraire (2016). “Sustainable Software Development through
Overlapping Pair Rotation.” In: Proc. 10th ACM/IEEE Int’l. Symp. on Empirical Software
Engineering and Measurement. ESEM ’16. ACM Press, 19:1–19:10. doi: 10.1145/2961111.
2962590 (cited on pages 23, 44).

Panagiotis Sfetsos, Panagiotis Adamidis, Lefteris Angelis, Ioannis Stamelos, & Ignatios Deli-
giannis (2013). “Heterogeneous Personalities Perform Better in Pair Programming: The
Results of a Replication Study.” In: Software Quality Professional Magazine 15 (4), pp. 4–15
(cited on pages 58, 61).

Kamran Sharifabdi & Claudia Grot (2002). “Team Development and Pair Programming - Tasks
and Challenges of the XP Coach.” In: Proc. 3rd Int’l. Conf. on Extreme Programming and
Flexible Processes in Software Engineering. XP 2002, pp. 166–169 (cited on page 46).

Marvin E. Shaw (1981). Group Dynamics: The Psychology of Small Group Behavior. 3rd ed.
McGraw-Hill. isbn: 0-07-056504-X (cited on page 97).

Ben Shneiderman (1976). “Exploratory experiments in programmer behavior.” In: International
Journal of Computer & Information Sciences 5 (2), pp. 123–143. doi: 10.1007/bf00975629 (cited
on page 37).

Jonathan Sillito (2006). “Asking and Answering Questions During a Programming Change
Task.” PhD thesis. University of British Columbia. url: http://pages.cpsc.ucalgary.ca/~sillito/
work/dissertation.pdf (cited on page 82).

Jonathan Sillito, Gail C. Murphy, & Kris De Volder (2008). “Asking and Answering Questions
during a Programming Change Task.” In: IEEE Transactions on Software Engineering 34 (4),
pp. 434–451. doi: 10.1109/TSE.2008.26 (cited on pages 38, 80, 82, 86, 92, 255).

Alberto Sillitti, Giancarlo Succi, & Jelena Vlasenko (2012). “Understanding the Impact of Pair
Programming onDevelopers Attention: ACase Study on a Large Industrial Experimentation.”
In: Proc. 34th Int’l. Conf. on Software Engineering. ICSE ’12, pp. 1094–1101. doi: 10.1109/ICSE.
2012.6227110 (cited on pages 69–70).

Susan Elliott Sim & Richard C. Holt (1998). “The Ramp-Up Problem in Software Projects: A
Case Study of How Software Immigrants Naturalize.” In: Proc. 20th Int’l. Conf. on Software
Engineering. ICSE ’98. Washington, DC, USA: IEEE Computer Society, pp. 361–370. doi:
10.1109/ICSE.1998.671389 (cited on pages 37, 334).

Herbert A. Simon (1996). The Sciences of the Artificial. 3rd ed. TheMIT Press. isbn: 9780262193740
(cited on page 333).

Elisa J. Sobo, Elizabeth Herlihy, & Mary Bicker (2011). “Selling medical travel to US patient-
consumers: the cultural appeal of website marketing messages.” In: Anthropology & Medicine
18 (1), pp. 119–136. doi: 10.1080/13648470.2010.525877 (cited on page 130).

458

https://doi.org/10.2307/2104013
https://doi.org/10.1007/978-94-010-2851-6_2
https://doi.org/10.1145/2961111.2962590
https://doi.org/10.1145/2961111.2962590
https://doi.org/10.1007/bf00975629
http://pages.cpsc.ucalgary.ca/~sillito/work/dissertation.pdf
http://pages.cpsc.ucalgary.ca/~sillito/work/dissertation.pdf
https://doi.org/10.1109/TSE.2008.26
https://doi.org/10.1109/ICSE.2012.6227110
https://doi.org/10.1109/ICSE.2012.6227110
https://doi.org/10.1109/ICSE.1998.671389
https://doi.org/10.1080/13648470.2010.525877

Bibliography

David Socha & Kevin Sutanto (2015). “The "Pair" as a Problematic Unit of Analysis for Pair
Programming.” In: Proc. 8th Int’l. Workshop on Cooperative and Human Aspects of Software
Engineering. CHASE ’15, pp. 64–70. doi: 10.1109/CHASE.2015.16 (cited on pages 144, 364).

David Socha, Robin Adams, Kelly Franznick, Wolff-Michael Roth, Kevin Sullivan, Josh Tenen-
berg, & Skip Walter (2016). “Wide-Field Ethnography: Studying Software Engineering in
2025 and Beyond.” In: Proc. 38th Int’l. Conf. on Software Engineering Companion. ICSE ’16.
ACM Press, pp. 797–802. doi: 10.1145/2889160.2889214 (cited on pages 144, 364).

Elliot Soloway, Kate Ehrlich, & Jeffrey G. Bonar (1982). “Tapping into Tacit Programming
Knowledge.” In: Proc. 1982 Conf. on Human Factors in Computing Systems. CHI ’82. ACM,
pp. 52–57. doi: 10.1145/800049.801754 (cited on page 38).

Elliot Soloway & Kate Ehrlich (1984). “Empirical studies of programming knowledge.” In: IEEE
Transactions on Software Engineering 10 (5), pp. 595–609. doi: 10.1109/TSE.1984.5010283
(cited on pages 37, 333–334).

Ian Sommerville (2007). Software Engineering. 8th ed. Addison-Wesley. isbn: 978-0-321-31379-9
(cited on page 26).

Sabine Sonnentag, Cornelia Niessen, & Judith Volmer (2006). “Expertise in Software Design.” In:
The Cambridge Handbook of Expertise and Expert Performance. Ed. by K. Anders Ericsson, Neil
Charness, Paul J. Feltovitch, & Robert R. Hoffmann. Cambridge University Press, pp. 373–387.
doi: 10.1017/CBO9780511816796.021 (cited on pages 37, 40).

StackOverflow (2018). 2018 StackOverflowDeveloper Survey. url: https://insights.stackoverflow.
com/survey/2018 (cited on page 43).

Robert C. Stalnaker (2002). “Assertion.” In: Formal Semantics: The Essential Readings. Ed. by
Paul H. Portner & Barbara H. Partee. Blackwell Publishers Ltd, pp. 147–161. isbn: 978-0-631-
21542-4. doi: 10.1002/9780470758335.ch5 (cited on page 110).

Ivan D. Steiner (1972). Group Process and Productivity. Academic Press. isbn: 0-12-665350-X
(cited on page 97).

Matt Stephens & Doug Rosenberg (2003). “Pair Programming (Dear Uncle Joe, My Pair Pro-
grammer Has Halitosis).” In: Extreme Programming Refactored: The Case Against XP. Apress.
Chap. 6, pp. 135–160. isbn: 978-1-59059-096-6 (cited on page 42).

Klaas-Jan Stol, Paul Ralph, & Brian Fitzgerald (2016). “Grounded theory in software engineering
research.” In: Proc. Int’l. 38th Conf. on Software Engineering. ICSE ’16. ACM Press, pp. 120–131.
doi: 10.1145/2884781.2884833 (cited on pages 125–126).

Klaas-Jan Stol & Brian Fitzgerald (2018). “The ABC of Software Engineering Research.” In:
ACM Transactions on Software Engineering and Methodology 27 (3), 11:1–11:51. doi: 10.1145/
3241743 (cited on pages 25, 49).

Anselm Strauss & Juliet Corbin (1990). Basics of Qualitative Research. Grounded Theory Proce-
dure and Techniques. Sage Publications. isbn: 978-0803932500 (cited on pages 117–129, 135, 152,
167–168, 178–179, 333, 344).

Bjørnar Tessem (2003). “Experiences in Learning XP Practices: A Qualitative Study.” In: Extreme
Programming andAgile Processes in Software Engineering. SpringerBerlin Heidelberg, pp. 131–
137. doi: 10.1007/3-540-44870-5_17 (cited on page 46).

Betty Alexandra Toole (1996). “Ada Byron, Lady Lovelace, An Analyst and Metaphysician.”
In: IEEE Annals of the History of Computing 18 (3), pp. 4–12. doi: 10.1109/85.511939 (cited on
page 20).

Sarah J. Tracy (2010). “Qualitative Quality: Eight “Big-Tent” Criteria for Excellent Qualitative
Research.” In: Qualitative Inquiry 16 (10), pp. 837–851. doi: 10.1177/1077800410383121 (cited
on pages 28, 115, 127, 141, 150, 152, 178, 349–350, 356–358).

459

https://doi.org/10.1109/CHASE.2015.16
https://doi.org/10.1145/2889160.2889214
https://doi.org/10.1145/800049.801754
https://doi.org/10.1109/TSE.1984.5010283
https://doi.org/10.1017/CBO9780511816796.021
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://doi.org/10.1002/9780470758335.ch5
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1145/3241743
https://doi.org/10.1145/3241743
https://doi.org/10.1007/3-540-44870-5_17
https://doi.org/10.1109/85.511939
https://doi.org/10.1177/1077800410383121

Bibliography

Franziska Tschan (2000). Produktivität in Kleingruppen: Was machen produktive Gruppen anders
und besser? (lit. “Productivity in Small Groups: What do productive groups do different and
better?”) Verlag Hans Huber. isbn: 9783456834467 (cited on page 98).

Theodore Van Toll III, Roger Lee, & Tom Ahlswede (2007). “Evaluating the Usefulness of
Pair Programming in a Classroom Setting.” In: 6th IEEE/ACIS Int’l. Conf. on Computer and
Information Science. ICIS ’07. IEEE, pp. 302–308. doi: 10.1109/icis.2007.96 (cited on page 58).

Tammy VanDeGrift (2004). “Coupling pair programming and writing.” In: Proc. 35th SIGCSE
technical symposium on Computer science education. SIGCSE ’04. ACM Press, pp. 2–6. doi:
10.1145/971300.971306 (cited on pages 57, 61).

Jari Vanhanen & Casper Lassenius (2005). “Effects of Pair Programming at the Development
Team Level: An Experiment.” In: Proc. 2005 Int’l. Symp. on Empirical Software Engineering
(ISESE). IEEE, pp. 336–345. doi: 10.1109/ISESE.2005.1541842 (cited on pages 56, 71).

Jari Vanhanen & Harri Korpi (2007). “Experiences of Using Pair Programming in an Agile
Project.” In: Proc. 40th Annual Hawaii Int’l. Conf. on System Sciences. HICSS’07. doi: 10.1109/
HICSS.2007.218 (cited on pages 43, 70–71, 92, 255).

Jari Vanhanen & Casper Lassenius (2007). “Perceived Effects of Pair Programming in an
Industrial Context.” In: Proc. 33rd EUROMICRO Conf. on Software Engineering and Advanced
Applications. IEEE, pp. 211–218. doi: 10.1109/EUROMICRO.2007.47 (cited on page 46).

Jari Vanhanen & Mika V. Mäntylä (2013). “A systematic mapping study of empirical studies on
the use of pair programming in industry.” In: International Journal of Software Engineering
and Knowledge Engineering 23 (09), pp. 1221–1267. doi: 10.1142/S0218194013500381 (cited on
pages 51–54, 62).

William C. Wake (2002). Extreme Programming Explored. Addison-Wesley. isbn: 978-0-201-
73397-6 (cited on page 75).

Thorbjørn Walle & Jo E. Hannay (2009). “Personality and the Nature of Collaboration in Pair
Programming.” In: Proc. 3rd Int’l. Symp. on Empirical Software Engineering and Measurement.
ESEM ’09. IEEE, pp. 203–213. doi: 10.1109/ESEM.2009.5315996 (cited on pages 73–76, 301).

Noreen M.Webb & Scott Lewis (1988). “The Social Context of Learning Computer Program-
ming.” In: Training and Learning Computer Programming: Multiple Research Perspectives.
Ed. by Richard E. Mayer. Mallory International. Chap. 8, pp. 179–206. isbn: 978-0805800739
(cited on pages 61–62).

MaxWeber (1922). “Wirtschaft und Gesellschaft.” In: Grundriss der verstehenden Soziologie. (lit.
“Economy and Society”). Tübingen: J. C. B. Mohr (Paul Siebeck) (cited on page 108).

Max Weber (1978). Max Weber: Selections in Translation. Ed. by W. G. Runciman. Trans. by
Matthews, E. Cambridge University Press. isbn: 0-521-29268-9 (cited on page 108).

Daniel M. Wegner (1987). “Transactive Memory: A Contemporary Analysis of the Group
Mind.” In: Theories of Group Behavior. Ed. by Brian Mullen & George R. Goethals. New York:
Springer. Chap. 9, pp. 185–208. doi: 10.1007/978-1-4612-4634-3_9 (cited on page 98).

Gerald M.Weinberg (1971). The Psychology of Computer Programming. Van Nostrand Reinhold
Company. isbn: 978-0-442-29264-5 (cited on pages 20–21, 108).

Robert W.Weisberg & Lauretta Reeves (2013). Cognition. From Memory to Creativity. Wiley.
isbn: 978-0-470-22628-5 (cited on pages 35–36).

Kipling D. Williams (2010). “Dyads Can Be Groups (and Often Are).” In: Small Group Research
41 (2), pp. 268–274. doi: 10.1177/1046496409358619 (cited on page 94).

Laurie Williams, Robert R. Kessler, Ward Cunningham, & Ron Jeffries (2000). “Strengthening
the Case for Pair Programming.” In: IEEE Software 17 (4), pp. 19–25. doi: 10.1109/52.854064
(cited on pages 184, 204, 236).

460

https://doi.org/10.1109/icis.2007.96
https://doi.org/10.1145/971300.971306
https://doi.org/10.1109/ISESE.2005.1541842
https://doi.org/10.1109/HICSS.2007.218
https://doi.org/10.1109/HICSS.2007.218
https://doi.org/10.1109/EUROMICRO.2007.47
https://doi.org/10.1142/S0218194013500381
https://doi.org/10.1109/ESEM.2009.5315996
https://doi.org/10.1007/978-1-4612-4634-3_9
https://doi.org/10.1177/1046496409358619
https://doi.org/10.1109/52.854064

Bibliography

Laurie Williams (2000). “The Collaborative Software Process.” PhD thesis. Department of
Computer Science, The University of Utah. url: https://collaboration.csc.ncsu.edu/laurie/
Papers/dissertation.pdf (cited on pages 41, 236).

LaurieWilliams & Robert R. Kessler (2000). “The Effects of "Pair-Pressure" and "Pair-Learning"
on Software Engineering Education.” In: Proc. 3th Conf. on Software Engineering Education &
Training. IEEE, pp. 59–65. doi: 10.1109/CSEE.2000.827023 (cited on page 57).

LaurieWilliams & Robert R. Kessler (2001). “Experiments with Industry’s “Pair-Programming”
Model in the Computer Science Classroom.” In: Computer Science Education 11 (1), pp. 7–20.
doi: 10.1076/csed.11.1.7.3846 (cited on page 236).

LaurieWilliams (2001). “Integrating Pair Programming into a Software Development Process.”
In: Proc. 14th Conf. on Software Engineering Education and Training. CSEET’01. IEEE, pp. 27–
36. doi: 10.1109/CSEE.2001.913816 (cited on page 41).

LaurieWilliams & Robert R. Kessler (2002). Pair Programming Illuminated. Addison-Wesley
Professional. isbn: 978-0-201-74576-4 (cited on pages 21, 40–41, 44, 142).

Laurie Williams, Lucas Layman, Jason A. Osborne, & Neha Katira (2006). “Examining the
Compatibility of Student Pair Programmers.” In: AGILE 2006. IEEE, pp. 411–420. doi: 10.
1109/AGILE.2006.25 (cited on pages 59–60).

Judith D. Wilson, John T. Nosek, Nathan Hoskin, & Lin L. Liou (1992). “The Effect of Collabo-
ration on Problem-Solving Performance Among Programmers.” In: Algorithms, Software,
Architecture. Information Processing 92: Proceedings of the IFIP 12th World Computer Congress.
Vol. 1. North-Holland Publishing Co., pp. 86–93. isbn: 0-444-89747-X (cited on pages 60, 63–64,
66, 431).

Gwen M.Wittenbaum, Sandra I. Vaughan, & Garold Strasser (1998). “Coordination in Task-
Performing Groups.” In: Theory and Research on Small Groups. Ed. by R. Scott Tindale, Linda
Heath, John Edwards, Emil J. Posavac, Fred B. Bryant, Yolanda Suarez-Balcazar, Eaaron
Henderson-King, & Judith Myers. Plenum Press. Chap. 9, pp. 177–204. doi: 10.1007/0-306-
47144-2_9 (cited on page 98).

ClaesWohlin, Per Runeson,Martin Höst, Magnus C. Ohlsson, Björn Regnell, & AndersWesslén
(2012). “Empirical Strategies.” In: Experimentation in Software Engineering. Springer Berlin
Heidelberg, pp. 9–36. doi: 10.1007/978-3-642-29044-2_2 (cited on page 140).

William A. Wood & William L. Kleb (2003). “Exploring XP for scientific research.” In: IEEE
Software 20 (3), pp. 30–36. doi: 10.1109/ms.2003.1196317 (cited on page 46).

Shaochun Xu, Václav Rajlich, & Andrian Marcus (2005). “An Empirical Study of Programmer
Learning during Incremental Software Development.” In: Proc. Fourth IEEE Conf. on Cognitive
Informatics. ICCI 2005, pp. 340–349. doi: 10.1109/COGINF.2005.1532650 (cited on pages 77, 80,
86, 132, 301).

Shaochun Xu & Václav Rajlich (2005). “Pair Programming in Graduate Software Engineering
Course Projects.” In: Proc. Frontiers in Education 35th Annual Conf. doi: 10.1109/fie.2005.
1612027 (cited on pages 57, 61, 92).

Robert K. Yin (2014). Case Study Research. Design and Methods. 5th ed. Sage Publications. isbn:
978-1-4522-4256-9 (cited on page 51).

Victor Yngve (1970). “On getting a word in edgewise.” In: Chicago Linguistics Society, 6th
Meeting, pp. 567–578 (cited on page 112).

Nick Z. Zacharis (2011). “Measuring the Effects of Virtual Pair Programming in an Introductory
Programming Java Course.” In: IEEE Transactions on Education 54 (1), pp. 168–170. doi:
10.1109/te.2010.2048328 (cited on pages 55–57, 63–64, 428–432).

461

https://collaboration.csc.ncsu.edu/laurie/Papers/dissertation.pdf
https://collaboration.csc.ncsu.edu/laurie/Papers/dissertation.pdf
https://doi.org/10.1109/CSEE.2000.827023
https://doi.org/10.1076/csed.11.1.7.3846
https://doi.org/10.1109/CSEE.2001.913816
https://doi.org/10.1109/AGILE.2006.25
https://doi.org/10.1109/AGILE.2006.25
https://doi.org/10.1007/0-306-47144-2_9
https://doi.org/10.1007/0-306-47144-2_9
https://doi.org/10.1007/978-3-642-29044-2_2
https://doi.org/10.1109/ms.2003.1196317
https://doi.org/10.1109/COGINF.2005.1532650
https://doi.org/10.1109/fie.2005.1612027
https://doi.org/10.1109/fie.2005.1612027
https://doi.org/10.1109/te.2010.2048328

Bibliography

Mark Zarb, Janet Hughes, & John Richards (2012). “Analysing Communication Trends in Pair
Programming Videos using Grounded Theory.” In: Proc. 26th BCS Conf. on Human Computer
Interaction (HCI). doi: 10.14236/ewic/HCI2012.106 (cited on pages 82, 86).

Mark Zarb, Janet Hughes, & John Richards (2013). “Industry-Inspired Guidelines Improve
Students’ Pair Programming Communication.” In: Proc. 18th ACM Conf. on Innovation and
Technology in Computer Science Education. ITiCSE ’13, pp. 135–140. doi: 10.1145/2462476.
2462504 (cited on pages 82, 85–86).

Mark Zarb, Janet Hughes, & John Richards (2014). “Evaluating Industry-Inspired Pair Program-
ming Communication Guidelines with Undergraduate Students.” In: Proc. 45th ACM Technical
Symp. on Computer Science Education. SIGCSE ’14. ACM Press. doi: 10.1145/2538862.2538980
(cited on pages 82, 86).

Wilfred J. Zerbe & Delroy L. Paulhus (1987). “Socially Desirable Responding in Organizational
Behavior: A Reconception.” In: The Academy of Management Review 12 (2), pp. 250–264. issn:
03637425. url: http://www.jstor.org/stable/258533 (cited on page 354).

Minghui Zhou & Audris Mockus (2010). “Developer Fluency: Achieving True Mastery in
Software Projects.” In: Proc. 18th ACM SIGSOFT Int’l. Symp. on Foundations of Software
Engineering. FSE ’10. ACM, pp. 137–146. doi: 10.1145/1882291.1882313 (cited on pages 37–38,
334).

Franz Zieris & Stephan Salinger (2013). “Doing Scrum Rather Than Being Agile: A Case Study
on Actual Nearshoring Practices.” In: Proc. 2013 IEEE 8th Int’l. Conf. on Global Software
Engineering. ICGSE ’13. IEEE, pp. 144–153. doi: 10.1109/ICGSE.2013.26 (cited on page 145).

Franz Zieris & Lutz Prechelt (2014). “On Knowledge Transfer Skill in Pair Programming.” In:
Proc. 8th ACM/IEEE Int’l. Symp. on Empirical Software Engineering and Measurement. ESEM
’14. ACM. doi: 10.1145/2652524.2652529 (cited on pages 151, 261, 264, 343, 367, 369).

Franz Zieris (2015). “Qualitative Analysis of Knowledge Transfer in Pair Programming.” In:
2015 IEEE/ACM 37th IEEE Int’l. Conf. on Software Engineering. ICSE ’15 (Doctoral Symposium).
IEEE, pp. 855–858. doi: 10.1109/icse.2015.277 (cited on page 367).

Franz Zieris & Lutz Prechelt (2016). “Observations on Knowledge Transfer of Professional
Software Developers During Pair Programming.” In: Proc. 38th Int’l. Conf. on Software
Engineering Companion. ICSE ’16 (SEIP). ACM, pp. 242–250. doi: 10.1145/2889160.2889249
(cited on pages 151, 230, 240, 301, 346, 368–369, 377).

Franz Zieris & Lutz Prechelt (2019). “Does Pair Programming Pay Off?” In: Rethinking Pro-
ductivity in Software Engineering. Ed. by Caitlin Sadowksi & Thomas Zimmermann. Apress.
Chap. 21. doi: 10.1007/978-1-4842-4221-6_21 (cited on page 368).

Franz Zieris & Lutz Prechelt (2020a). “Explaining Pair Programming Session Dynamics from
Knowledge Gaps.” In: Proc. 42nd Int’l. Conf. on Software Engineering. ICSE ’20. ACM. doi:
10.1145/3377811.3380925 (cited on pages 151, 347, 368–369).

Franz Zieris & Lutz Prechelt (2020b). PP-ind: A Repository of Industrial Pair Programming
Session Recordings. arXiv: 2002.03121v3 [cs.SE] (cited on pages 148, 151, 157, 368, 426, 455).

Franz Zieris (2020). “When Grounded Theory is Not Enough: Additions for Video-Based
Analyses of Software Engineering Process Phenomena.” In: Software Engineering 2020, Fach-
tagung des GI-Fachbereichs Softwaretechnik, 24.–28. Februar 2020, Innsbruck, Österreich. Ed. by
Michael Felderer, Wilhelm Hasselbring, Rick Rabiser, & Reiner Jung. SE ’20, pp. 153–154.
doi: 10.18420/SE2020_47 (cited on page 368).

Abdullah Mohd Zin, Sufian Idris, & Nantha Kumar Subramaniam (2006). “Improving Learning
of Programming Through E-Learning by Using Asynchronous Virtual Pair Programming.”
In: Turkish Online Journal of Distance Education 7, pp. 162–173 (cited on page 57).

462

https://doi.org/10.14236/ewic/HCI2012.106
https://doi.org/10.1145/2462476.2462504
https://doi.org/10.1145/2462476.2462504
https://doi.org/10.1145/2538862.2538980
http://www.jstor.org/stable/258533
https://doi.org/10.1145/1882291.1882313
https://doi.org/10.1109/ICGSE.2013.26
https://doi.org/10.1145/2652524.2652529
https://doi.org/10.1109/icse.2015.277
https://doi.org/10.1145/2889160.2889249
https://doi.org/10.1007/978-1-4842-4221-6_21
https://doi.org/10.1145/3377811.3380925
https://arxiv.org/abs/2002.03121v3
https://doi.org/10.18420/SE2020_47

Selbstständigkeitserklärung

Name: Zieris
Vorname: Franz

Ich erkläre gegenüber der Freien Universität Berlin, dass ich die vorliegende Dissertation
selbstständig und ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel
angefertigt habe. Die vorliegende Arbeit ist frei von Plagiaten. Alle Ausführungen, die
wörtlich oder inhaltlich aus anderen Schriften entnommen sind, habe ich als solche
kenntlich gemacht. Diese Dissertation wurde in gleicher oder ähnlicher Form noch in
keinem früheren Promotionsverfahren eingereicht.

Mit einer Prüfung meiner Arbeit durch ein Plagiatsprüfungsprogramm erkläre ich mich
einverstanden.

Berlin, 25. August 2020

. .

Unterschrift

463

	Title
	Abstract
	Zusammenfassung
	Contents
	List of Tables
	List of Figures
	List of Examples
	Notational Conventions
	Introduction
	A Brief History of Pair Programming
	Collaboration from the Very Beginning
	Programming Groups
	Programming with a Partner
	Pair Programming as a Practice

	Motivation
	Knowledge and Knowledge Transfer in Software Development
	Common Research Questions
	State of Research

	Goal of this Thesis
	Goal Formulation and Characterization
	Scope
	Research Approach and Initial Definitions
	Is this Software Engineering?

	Structure of this Thesis

	I Foundation
	Related Work
	Purpose and Structure of this Chapter
	Knowledge and Software Development
	Epistemology: Philosophy of Knowledge
	Knowledge Concepts in the Cognitive Sciences
	Knowledge in Software Engineering
	Two Notions of Expertise in Software Development
	Types of Knowledge Relevant for Software Development

	Summary and Definitions

	Pair Programming
	Practitioner Perspective
	What is Pair Programming?
	Work Mode: How and Why to Work as a Pair?
	The Practice: Embedding the Work Mode in a Project
	An Important Difference

	Industrial Adoption Rates
	Expected Effects and Mechanisms
	Practitioners' Observations on Knowledge Transfer
	Summary

	Overview of Pair Programming Research
	``Industrial'' vs. ``Educational'' Studies
	Properties of Different Research Designs
	Approaching the Body of Research on Pair Programming

	Pair Programming in Education
	Learning Effectiveness of Pair Programming
	Experimental Designs
	Self-reported achievements
	Summary

	Pair Compatibility
	Personality Types
	Skill Level

	Pair Process
	Summary of Pair Programming in Education

	Pair Programming with an Industry Focus
	Controlled Experiments on Pair Programming
	Quality, Duration, & Effort
	Expertise & Task Complexity
	Pair Member's Personalities
	Discussion

	Studying Pair Programming as a Practice
	On the Benefits of Fieldwork
	Observational Field Studies on the Project Level

	Qualitative-Quantitative Studies on the Pair Programming Work Mode
	Conflict Handling
	Driver and Navigator Roles
	Pair Members' Personalities
	Discussion: Problems of Qualitative-Quantitative Approaches
	Summary of Qualitative-Quantitative Studies

	Qualitative Analyses of the Pair Programming Work Mode
	Method: Protocol Analysis
	Method: Distributed Cognition
	Method: Ethnomethodology and Ethnography
	Method: Grounded Theory Methodology
	Results of Qualitative Analyses of Pair Programming
	Critique of Qualitative Analyses of Pair Programming
	Starting Pair Programming Research from Scratch

	Summary of Industrial PP Research

	Summary of Pair Programming Research
	Effectiveness
	Types of Knowledge
	Task Suitability
	Pair Constellations
	Pair Process

	Pair Work and Small Groups
	Pair Work on Distinct Tasks
	Joint Decision for Visual Perception Task
	Setup
	Results and Discussion

	Understanding a Complex System
	Background and Proposed Model
	Setup and Results
	Discussion

	Understanding a Simple System
	Background and Setup
	Results
	Discussion

	Small Groups and Knowledge Processing
	Coordination and Shared Cognition
	Output Approach: Coordination as a State
	Process Approach: Coordination as a Group Activity

	Effectiveness
	Exemplary Studies
	Long-Running Group Task
	Short Specialized Group Task

	Summary of Psychological Research on Pair Work

	Summary of Related Work

	Qualitative Research Methods
	Purpose and Structure of this Chapter
	Research Methods of the Social Sciences
	On Understanding and Reconstructing
	Common Ground and Reciprocal Knowledge
	Conversational Elements: Maxims, Turns, and Speech Acts
	Grice's Maxims
	Turn Taking
	Speech Acts

	Common Characteristics of Qualitative Research Methods
	Variability of Qualitative Research Methods
	Quality Criteria for Qualitative Research

	The Grounded Theory Methodology
	Overview
	Collecting Data
	Theoretical Sampling
	Theoretical Saturation

	Analyzing Data
	Open Coding
	Axial Coding
	Theoretical Critique of the Paradigm Model
	Practical Application of the Paradigm Model

	Conditional Matrix
	Selective Coding
	On Developing Concepts: Theoretical Sensitivity
	Writing Memos

	Different GTM Versions
	Classic Grounded Theory
	Constructivist Grounded Theory
	Multiple Realities and Solipsism
	Coding Procedures

	Discussion of GTM as a Qualitative Research Approach
	Meeting the Quality Criteria
	Filling the Common Traits

	The Base Layer for Pair Programming Research
	Auxiliary Practices for the Grounded Theory Methodology
	Perspective on the Data
	Concept Name Syntax Rules
	Analysis Results Metamodel
	Pair Coding

	The Base Layer in a Nutshell
	Layered Research Approach: Different Perspectives on the Data
	Seven Key Decisions
	The Base Concept Set
	Discourse Objects
	Verbs

	Example Application of the Base Concepts
	Notion of ``Knowledge'' in the Base Layer

	Research Goal, Method, and Data
	Purpose and Structure of this Chapter
	Goal Definition
	Topic of Interest: Knowledge Transfer
	Type of Results: Vocabulary and Behavioral Patterns
	Scope of Analysis: The Industrial PP Session
	Naturalistic Industrial Setting
	Pair Programming: Two Developers Working on Shared Task
	Limits of Data Collection: Pair Programming Sessions

	Data Collection
	Different Contexts and Headlines
	Generic Data Collection Protocol
	Overview
	Recording Sessions
	Questionnaires
	Quick Analysis
	Reflective Interview
	Field Observation & Ad Hoc Interviews
	Team Workshops
	Session Repository

	Supporting Practices
	Motivation: Difficulties of Applying the Grounded Theory Methodology
	Consider Sessions as Cases
	Long-Term Engagement with Companies
	Evaluation with Practitioners

	Discussion of Data Collection
	Limitation of Scope
	Effects of Recording Infrastructure
	Effects of Pre-Existing Notions
	Not Recording All Aspects
	Affecting Developer Behavior

	Summary of Data Quality

	Selecting Data for Analysis
	Excluding Data
	Theoretical Sampling
	1. Readily Available Data
	2. All Technical Contexts
	3. First Long-Term Engagement
	4. Non-German Context
	5. Reorientation?
	6. Second Long-Term Engagement
	7. Evaluation (1): Similar Context
	8. Evaluation (2): Consulting Sector

	Case Descriptions
	AA1: Complementary Frontend and Backend Knowledge
	Company, Pair, and Software System
	Session

	CA2: Undiscussed Design Rationale
	Company, Pair, and Software System
	Session

	DA2: A New-Hire's Successful First Session
	Company, Pair, and Software System
	Session

	JA1: Pair Review with Domain Expert and Programming Expert
	Company, Pair, and Software System
	Session

	OA1: The Impossible Task
	Company, Pair, and Software System
	Session

	Analysis Method
	Perspective on the Data
	Area of Interest, Focus
	Epistemological Stance

	Coding
	Translating and Transcribing
	Base Coding: Reconstructing Intended Meaning
	Reconstructing Technical Information and Subjective Understanding
	Conceptualizing Knowledge
	Working with the QDA Software ATLAS.ti
	Terminology and Features
	Basic Usage
	Limitations and Solutions

	Discussion of Overall Research Method

	II Results
	Results Overview
	Purpose and Structure of this Chapter
	Pair Programming Process
	Knowledge Transfer Episodes
	Pair Programming Session Dynamics
	A Recurring Example

	Process Fluency and Pair Togetherness
	Purpose and Structure of this Chapter
	Dialog Structure in Pair Programming
	Dialog in the Base Layer
	Five Types of Base Activities
	Initiative Activity
	Pair-Referential Activity
	Self-Referential Activity
	Corrective Activity
	Internal Detection of Misunderstanding
	External Detection of Misunderstanding

	Conversational Defect

	Discussion of Recurring Example

	Fluency
	Foreword to the Fluency Examples
	Normal Pair Programming
	Focus Phases
	Breakdowns in Pair Programming
	No Progress as a Pair
	No Progress at All

	Togetherness
	Degrees of Togetherness: Understanding Intentions
	Facilitators and Inhibitors of Togetherness
	Factor: Shared Understanding of the System
	Enabling Togetherness
	Hindering Togetherness

	Factor: Shared Understanding of Software Development
	Enabling Togetherness
	Hindering Togetherness

	Factor: One Shared Plan
	Enabling Togetherness
	Hindering Togetherness

	Factor: Workspace Awareness
	Enabling Togetherness
	Hindering Togetherness

	Factor: Language Barrier
	Enabling Togetherness
	Hindering Togetherness

	Factors' Interplay

	Not Maintaining Togetherness
	By Choice
	By Accident

	Maintaining Togetherness
	Excluded Factor: Language
	Excluded Factor: Workspace Awareness
	Excluded Factor: One Shared Plan
	Excluded Type: Opinions

	Discussion of Related Work and Summary

	Knowledge Conceptualized
	Purpose and Structure of this Chapter
	Three Situation-Based Knowledge Concepts
	Discussion of Recurring Example

	Knowledge Want
	Properties of Knowledge Wants
	Internal Knowledge Wants
	External Knowledge Wants
	Collective Knowledge Wants

	Topic and Target Content
	Types of Topics and Target Contents
	S knowledge: System-Specific Knowledge
	Requirements
	Architecture
	Design Rationale
	Technology
	Source Code
	Defects
	Routines
	State and Configuration

	G knowledge: Generic Software Development Knowledge
	Design and Programming Patterns
	Programming Languages
	Development Tools
	Technology

	Other Types of Knowledge
	Application Domain-Specific Knowledge?

	Hypothetical Target Contents

	Summary and Discussion of Related Work

	Knowledge Transfer Activities: Asking and Explaining
	Purpose and Structure of this Chapter
	Discussion of Recurring Example
	Overview of Knowledge Transfer Activities

	Asking Questions with Explanation Elicitors
	General Properties of Explanation Elicitors
	``Trigger'' or ``Elicit''?
	Role in the Conversation
	Successful Elicitors
	Insufficient Elicitors
	Frustrating Elicitors
	Ignored Elicitors

	Precedence of Elicitors: Clarification Cascade

	Improper Asking
	Direct Asking
	Refer to Common Ground
	Entice to Simple Step
	Make Proposition
	Optimistic Propositions
	Pessimistic Propositions

	Providing Explanations
	Present New Fact
	Present New Fact to Fill Gap
	Present New Fact to Correct False Understanding

	Refer to Common Ground
	Entice to Simple Step
	Enticing to Simple Step as Reaction to an Elicitor
	Entice Simple Step as Argument in Decision Making

	Summary

	Episodes of Knowledge Transfer
	Purpose and Structure of this Chapter
	Discussion of Recurring Example

	Properties of Episodes
	Starting an Episode
	Start Pursuing an Internal Knowledge Want
	Start Pursuing an External Knowledge Want

	Ending an Episode
	Stage: Started Initiative
	Stage: Acknowledged Initiative
	Stage: Understood Topic
	Stage: Transferred or Acquired Available Target Content
	Stage: Satisfied the Knowledge Want

	Defining Characteristics of an Episode's Mode

	Pull Mode
	Properties of Pull Episodes
	Short Pull Episodes for Factual Information
	Pulling for More Than Explanations

	Pioneering Modes
	Properties of Pioneering Episodes
	Silent Pioneering Mode
	Talking Pioneering Mode

	Co-Production Mode
	Properties of Co-Production Episodes
	Parallel Production Mode

	Push Mode
	Properties and Context of Push Episodes
	Transfer or Construction?
	Push is not just the Inverse of Pull

	Summary and Discussion of Related Work

	Patterns of Episodes
	Purpose and Structure of this Chapter
	Anti-Patterns
	Branching Wildly
	Discussion

	Positive Patterns
	Return Explicitly
	Scope Limiting
	Discussion

	Summary and Discussion

	Session Dynamics
	Purpose and Structure of this Chapter
	Individual Developers' Knowledge Needs
	S Need – Need for System-Specific Knowledge
	G Need – Need for Generic Software Development Knowledge
	Knowledge Needs in Practice

	Pair Constellations
	Session Context and Goal: Initial and Target Constellation
	Constellation Changes
	Session Visualizations

	Session Dynamics Prototypes
	No Knowledge Gaps, No Opportunity
	Dealing with the Primary Gap
	Proactive Explanations
	Interview Mode
	Pioneering

	Dealing with the Secondary Gap
	The G Opportunity
	Seizing or Not Seizing the G Opportunity
	Complementary Pairs
	When do Pair Programmers Seize their G Opportunity?

	Two-Sided G Gaps?

	Summary and Discussion of Related Work
	Related Work Discussion

	Grounded Theory of Knowledge Transfer Session Dynamics

	III Evaluation and Conclusion
	Actual Research Process
	Phase 1: Initial Analysis of Base Activities
	Data Collection
	Literature
	Data Analysis

	Phase 2: Developing the Episode Concept
	Data Analysis

	Phase 3: Analysis of Pull Episodes
	Data Collection
	Data Analysis

	Phase 4: New Knowledge Transfer Mode: Produce
	Data Analysis
	Writing

	Phase 5: First Round of Data Collection
	Data Collection
	Data Analysis

	Phase 6: Considering Practitioner Relevance
	Data Analysis

	Phase 7: Give Up Naturalistic Approach?
	Data Collection
	Data Analysis
	Writing

	Phase 8: Discovery of Second Knowledge Dimension
	Data Collection
	Data Analysis

	Phase 9: Member Reflection and Selective Coding
	Data Collection
	Data Analysis
	Writing

	Phase 10: Finishing the Thesis
	Writing

	Evaluation
	Purpose and Structure of this Chapter
	Member Reflection
	What to Validate? Ideas and Practices
	How to Evaluate? Interviews and Workshops
	Member Reflection Results
	Ideas 1 & 2: S vs. G knowledge and Knowledge Needs
	Idea 3: Initial Constellations
	Idea 4: S over G knowledge
	Idea 5: Modes of Knowledge Transfer
	Practice 1: Pair Forming
	Practice 2: Set Session Goal
	Practice 3: Reflect on Trajectory

	Summary and Consequences

	Eight Criteria for Qualitative Research
	Worthy Topic
	Rich Rigor
	Sincerity
	Credibility
	Resonance
	Significant Contribution
	Ethics
	Meaningful Coherence

	Conclusion and Further Work
	Research Contributions
	Practical Applications
	Maintain Togetherness
	One Topic at a Time
	Choose Mode of Knowledge Transfer
	Embed Pair Programming Sessions in the Team Process

	Further Work

	Appendices
	Own Publications
	Transcription Notation
	Pair Programming Sessions
	Session AA1
	Focus Phases #4, #5, and #6
	Misinterpretations
	First Analysis
	First Interpretation
	Second Analysis
	Second Interpretation
	Third Analysis
	Third Interpretation
	Conclusion

	Transcripts of AA1 Excerpts

	Session BA1
	Transcripts of BA1 Excerpts

	Sessions BB1, BB2, and BB3
	Transcripts of BB1 Excerpts

	Session CA1
	Transcripts of CA1 Excerpts

	Session CA2
	Transcripts of CA2 Excerpts

	Session CA3
	Session CA4
	Transcripts of CA4 Excerpts

	Session CA5
	Focus Phase #1
	Transcripts of CA5 Excerpts

	Session DA2
	Transcripts of DA2 Excerpts

	Session DA5
	Transcripts of DA5 Excerpts

	Session EA1
	Transcripts of EA1 Excerpts

	Session JA1
	Transcripts of JA1 Excerpts

	Session JA2
	Transcripts of JA2 Excerpts

	Session KA1
	Transcripts of KA1 Excerpts

	Session KB1
	Transcripts of KB1 Excerpts

	Sessions KC1 and KC2
	Transcripts of KC2 Excerpts

	Session MA1
	Transcripts of MA1 Excerpts

	Sessions OA1 and OA2
	Transcripts of OA1 Excerpts

	Session OA5
	Session OA8
	Transcripts of OA8 Excerpts

	Sessions PA1 and PA2
	Sessions PA3 and PA4
	Transcripts of PA3 Excerpts

	Data Mapping

	Meta-Analyses
	Technical Information
	Pair Programming Effect on Students' Exam Scores
	Pair Programming Effect on Students' Assignment Scores
	Meta-Analysis of Assignment Score Data by Zacharis (2011)

	Pair Programming Effect on Quality
	Meta-Analysis of Quality Data of Zacharis (2011)

	Index
	Name Index
	Bibliography
	Selbstständigkeitserklärung

