Aus dem Experimental and Clinical Research Center (ECRC) der Medizinischen Fakultät Charité – Universitätsmedizin Berlin und des Max-Delbrück-Centrums für molekulare Medizin (MDC)

DISSERTATION

Identifizierung Pathogenese-relevanter Kandidatengene im Hodgkin-Lymphom durch CRISPR/Cas9-basiertes *knockout*-Screening

zur Erlangung des akademischen Grades Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

von

Henrike Lisa Sczakiel

aus Heidelberg

Datum der Promotion: 05.03.2021

Meiner Familie

VORWORT

Im Rahmen dieser Arbeit wurde das CRISPR/Cas9-System in unserem Labor etabliert. Hierbei wurden auch Vektoren generiert, die in Experimenten der Arbeit Schleussner et al. 2018 verwendet wurden. Eine detaillierte Beschreibung der eigenen Anteile an dieser Publikation ist der Anteilserklärung zu entnehmen, die am Ende dieser Arbeit zu finden ist.

Diese Arbeit selbst, also der genomweite CRISPR/Cas9-Screen im Hodgkin-Lymphom sowie alle folgenden Untersuchungen zu den aus diesem Screen hervorgegangenen Kandidatengenen sind jedoch bisher unveröffentlicht. Ein Manuskript ist aktuell in Arbeit.

Berlin, 19.11.2019

INHALTSVERZEICHNIS

Авк	ÜRZUN	GEN	S. 7
Zus		FASSUNG	S. 9
Aвs	TRACT.		S. 10
	-		C 11
1.	EINL		5.11
1.1	Das	s Hodgkin-Lymphom	S. 11
1	.1.1	Klinische Aspekte des Hodgkin-Lymphoms	S. 11
1	.1.2	Biologie der B-Zelle	S. 13
1	.1.3	Molekularbiologie des Hodgkin-Lymphoms	S. 15
	1.1.3.1	1 Der zelluläre Ursprung des cHL	S. 15
	1.1.3.2	2 Linienfremde Genexpression im cHL	S. 16
	1.1.	3.2.1 Die Rolle von ABF1 und ID2 im cHL	S. 17
	1.1.3.3	B Der NF-κB-Signalweg im cHL	S. 17
	1.1.3.4	AP-1- und IRF-Transkriptionsfaktoren im cHL	S. 18
	1.1.3.5	5 Weitere molekulare Defekte im cHL	S. 19
1.2	Zell	lzyklusregulatoren	S. 20
1.3	Das	s kelch like ECH associated protein 1 (KEAP1)	S. 22
1.4	Das	s CRISPR/Cas9-System	S. 24
	1.4.1	Bakterielle CRISPR/Cas-Systeme	S. 24
	1.4.2	Das CRISPR/Cas9-System als molekularbiologisches Werkzeug.	S. 25
	1.4.3	CRISPR/Cas9-basiertes knockout-Screening	S. 26
1.5	Hei	rleitung der Fragestellung und Zielsetzung der Arbeit	S. 28
2.	Мат	ERIAL UND METHODEN	S. 29
21	Mat	terial	S 29
2.1	11	Chemikalien	S 29
2	12	Reagenzien	S 30
2	13	Medien und Zellkulturzusätze	S 30
-	213	1 RPMI-Standardmedium	S 30
	2.1.0.	2 DMFM-Standardmedium	S 31
	2.1.3.	2 Baktorionmodion	C. 31
2	2.1.J.	Zolllinion	S. 51 C 21
2	. 1.4	Zeimmen	0.01
2	.1.0	Antikärnor	ວ. ວ2 ຄວາ
2	. 1.0		<u>৩. ৩০</u>
2	.1.7	Enzyme	5.33
2	.1.8	verbraucnsmaterialien	5.33
2	.1.9	Plasmide	S. 34
2	.1.10	Oligonukleotide	S. 34
	2.1.10	0.1 Primer für Sequenzierungen	S. 35

2.1.10	.2 Primer für Klonierungen	S.	35
2.1.10	.3 Oligos für Klonierungen	S.	36
2.1.10	.4 Oligos für sgRNAs	S.	36
2.1.10	.5 Primer für CRISPR-Screen-Sequenzierung	S.	37
2.1.11	Kits	S.	38
2.1.12	Geräte	S.	38
2.1.13	Software	S.	39
2.1.14	Puffer	S.	39
2.1.14	.1 Zellkultur	S.	39
2.1.14	.2 RNA, DNA	S.	40
2.1.14	.3 Proteine, Immunpräzipitation, Western Blot	S.	41
2.2 Met	hoden	S.	43
2.2.1	RNA, DNA	S.	43
2.2.1.1	1 Aufreinigung von RNA aus Zellpellets	S.	43
2.2.1.2	2 Reverse Transkription (RT)	S.	43
2.2.1.3	B Polymerase Ketten Reaktion (PCR)	S.	43
2.2.1.4	4 Agarose-Gel-Elektrophorese	S.	44
2.2.1.	5 Sanger-Sequenzierung	S.	44
2.2.2	Proteine	S.	44
2.2.2.7	1 Aufreinigung von Protein aus Zellpellets	S.	44
2.2.2.2	2 SDS-PAGE	S.	44
2.2.2.3	3 Western Blot (WB)	S.	45
2.2.3	Bakterienkultur	S.	45
2.2.3.1	1 Präparation von Plasmid-DNA (pDNA) aus Bakterienkulturen		
	– Mini	S.	46
2.2.3.2	2 Präparation von pDNA aus Bakterienkulturen mit		
	NuceloBond® Xtra – Maxi / Midi	S.	46
2.2.4	Klonierungen	S.	46
2.2.4.1	1 Klonierungs-PCR	S.	46
2.2.4.2	2 Aufreinigung von DNA aus Agarose-Gelen	S.	47
2.2.4.3	3 Verdau mit Restriktionsenzymen	S.	47
2.2.4.4	4 Hybridisierung von Oligonukleotiden	S.	48
2.2.4.	5 Ligation von DNA-Fragmenten	S.	48
2.2.4.6	6 Transformation	S.	49
2.2.4.	7 Kontrolle der Klonierung	S.	49
2.2.4.8	3 Klassisch klonierte Vektoren	S.	49
2.2.4.9	9 Klonierungen mit Hilfe einer Gibson-Assembly oder		
	Overlap-Extension-PCR	S.	50
2.2.4.1	10 sgRNA-Klonierungen	S.	51
2.2.4.1	11 Klonierungen in pGEM®-T Easy	S.	51
2.2.5	Zellkultur	S.	53
2.2.5.	1 Stammhaltung laufender Zellkultur	S.	52
2.2.5.2	2 Einfrieren und Auftauen eukaryoter Zellen	S.	52

2.2.5.3	Herstellung von Zellpellets zur Aufbreitung von DNA, RNA	
	und Protein	S. 53
2.2.5.4	Puromycin-Selektions-Kurven	S. 53
2.2.5.5	Durchflusszytometrie	S. 54
2.2.5.6	Proliferationsanalysen mit ³ H-Thymidin	S. 54
2.2.5.7	Kompetitions-Assays	S. 54
2.2.6 Len	tiviraler Gentransfer	S. 55
2.2.6.1	Transfektion von HEK293T/17 zur Virusproduktion und Ernte	
	des virus-tragenden Überstandes	S. 55
2.2.6.2	Viruskonzentration durch Ultrazentrifugation	S. 56
2.2.6.3	Transduktion von Zielzelllinien mit lentiviralen Überständen	S. 56
2.2.6.4	Virus-Titer-Bestimmung	S. 57
2.2.7 Ana	lyse der <i>knockout</i> -Effizienz durch CRISPR/Cas9	S. 57
2.2.7.1	7 T7-Nuklease-Assay	S. 57
2.2.7.2	TIDE-Analysen	S. 59
2.2.8 CRI	SPR-Screens	S. 59
2.2.8.1	Präparation genomischer DNA aus humaner Zellkultur für	
	CRISPR-Screens	S. 60
2.2.8.2	Auslesen der sgRNA-Sequenz und Präparation der Proben	
	für die Hochdurchsatz-Sequenzierung	S. 60
2.2.8.3	Auswertung der Hochdurchsatz-Seguenzierung	S. 62
2.2.8.4	Klonierung der CRISPR-Bibliothek für den Bestätigungs-	
	Screen	S. 62
2.2.9 Stat	tistik	S. 63
3. ERGEBN	ISSE	S. 64
3.1 Etablier	ung des CRISPR/Cas9-Systems in humanen Lymphom-	
zelll	inien	S. 64
3.1.1 Klor	nierung von CRISPR/Cas9- und Expressionsvektoren für die	
	lentivirale Transduktion humaner Zielzelllinien	S. 64
3.1.1.1	Erstellung von Varianten des lentiCRISPRv1 sowie	
	lentiCRISPRv2 mit fluoreszierenden Reportern	S. 64
3.1.1.2	Klonierung eines Zwei-Vektoren-Systems für die	
	Generierung stabiler Cas9-exprimierender Zelllinien und	
	anschließende sgRNA-Transduktion	S. 66
3.1.1.3	Klonierung eines Leervektors sowie hieraus resultierender	
	Expressionsvektoren	S. 66
3.1.2 Tes	st-Transduktionen der <i>lentiCRISPRv1</i> - und <i>lentiCRISPRv2</i> -	
	Vektoren	S. 69
3,1.3 Eta	blierung des CRISPR/Cas9-Systems in Hodgkin-Zelllinien	S. 70
3.1.3.1	Analysen von CRISPR/Cas9-induzierten Mutationen der	
	genomischen DNA und des <i>knockouts</i> von ABF1. ID2	
	und E2A	S. 70
		2.70

3.1.	3.2 Analyse der Proliferation und Viabilität von Hodgkin-Zellen unter CRISPR/Cas9-basiertem <i>knockdown</i> von ABF1,	
	ID2 und E2A	S. 74
3.1.	3.3 Etablierung von Kompetitions-Assays zur Untersuchung von	
	cHL-Zellen nach CRISPR/Cas9-basiertem knockdown	0 75
	von ABF1, ID2 und E2A	S. 75
3.2 CR	ISPR/Cas9-Screening im Hodgkin-Lymphom	S. //
3.2.1	Konzept und Grundprinzip des Screens	S. //
3.2.2	Etablierung grundlegender Techniken	S. //
3.2.3	Durchfuhrung des genomweiten CRISPR-Screens	S. 80
3.2.4	Ergebnisse des genomweiten CRISPR-Screens	S. 82
3.2.	4.1 Allgemeine Auswertung und Überblick	S. 82
3.2.	4.2 Bestätigung zahlreicher bekannter Schlüsselfaktoren des	_
	cHL	S. 84
3.2.	4.3 Identifizierung neuer potentieller Kandidatengene für die	
	Pathogenese des Hodgkin-Lymphoms	S. 85
3.2.	4.4 Expression der ermittelten Kandidatengene in Hodgkin-	
	Zelllinien	S. 86
3.2.5	CRISPR/Cas9-Re-Screen zur Validierung potentieller	
	Kandidatengene in Hodgkin-Lymphom-Zelllinien	S. 87
3.2.	5.1 Bestätigung zahlreicher bekannter Schlüsselfaktoren des	S 01
2.0	CDL	5.91
3.2.	5.2 Bestaligung neuer polentieller Kandidalengene für die	0.00
0.0.0		5.92
3.2.6	Kompetitions-Assays ausgewaniter Kandidatengene	5.92
3.2.1	Die Transkriptionstaktoren IRF4, JUNB und BATF3 sind von	0 07
	zentraler Bedeutung für die Proliferation von CHL-Zellen	S. 97
3.2.8	Der Zellzyklusregulator CCND2 ist relevant und spezifisch für die	• • • •
	Proliferation von Hodgkin-Zellen	S. 99
3.2.9	Die Zellzyklusregulatoren CCNA2 und CDC25A sind wichtig für	
/ -	das Wachstum von cHL-Zellen	S. 99
3.2.10	Insbesondere der alternative, nicht der klassische NF-kB	
	Signalweg wird in beiden CRISPR/Cas9-Screens als	
	notwendig für das Überleben von cHL-Zellen identifiziert	S. 102
3.2.11	Die Methyltransferase HENMT1 ist ein neues Kandidatengen	
	im cHL	S. 103
3.2.12	KEAP1 ist ein potentes neues Onkogen im cHL	S. 104
3.3 K	lonierung von BATF- und BATF3-Expressionsvektoren sowie	S 106
3.3.1	Klonierung von saRNAs gegen BATF und BATF3	S. 106
3.3.2	Klonierung von BATF- und BATF3-Expressionsvektoren	S. 106
J.J.L		

4. Dis	KUSSION	S. 108
4.1 Etal	blierung, Technik und Analyse der CRISPR/Cas9-Screens	S. 108
4.1.1	Etablierung des CRISPR/Cas9-Systems: Generierung einer "tool box" von Vektoren für den effizienten knockout und	
	anschließende funktionelle Analysen	S. 108
4.1.2	Etablierung der CRISPR/Cas9-Technologie anhand des	
	knockouts von ABF1, ID2 und E2A	S. 110
4.1.3	Etablierung der Kontrolle eines effizienten CRISPR/Cas9 knockouts	S. 110
4.1.4	Etablierung von Kompetitions- und Proliferationsassays anhand	
	des CRISPR/Cas9-vermittelten knockouts von ABF1, ID2 und	
	E2A	S. 111
4.1.5	Verwendung des CRISPR/Cas9-Systems und lentiviralen	
	Transfers für genomweites loss-of-function Screening	S. 112
4.1.6	Technische Aspekte der CRISPR/Cas9-Screens	S. 115
4.1.7	Statistische Besonderheiten der CRISPR/Cas9-Screen	
	Auswertung	S. 115
4.1.8	Betrachtung der Effizienz von sgRNAs	S. 116
4.1.9	Einfluss der Proliferationsgeschwindigkeit einer Zelllinie auf die	
	Ergebnisse des CRISPR-Screens	S. 118
4.1.10	Validierung der CRISPR-Screen Resultate in Kompetitions-	0 440
4 0 T		S. 119
4.2 Tun	norbiologische Ergebnisse der CRISPR/Casy-Screens und weitere	0 400
4.0.4	Untersuchungen der Kandidatengene im cHL	S. 120
4.2.1	Genomweiter CRISPR/Cas9-Screen und Re-Screen Identifizieren	
	Zahireiche potente Kandidatengene für die Pathogenese des	S 100
4 2 2	Der NE vB Signelweg im ell : bekennter enkegener Treiber und	5. 120
4.2.2	nouo Erkonntnisso	S 120
103	Der IAK/STAT-Signalweg in cHL und CRISPR-Screens	S. 120 S. 121
4.2.5	AP-1 Transkriptionsfaktoren in cHL und CRISPR-Screens	S 122
425	IRF4 ist ein sehr starkes Kandidatengen der CRISPR-Screens	0. 122
1.2.0	und notwendig für das Überleben von Hodgkin-Zellen	S 123
426	Die Zellzyklusregulatoren CCND2 CCNA2 und CDC25A in cHI	0.120
	und CRISPR-Screens: Palbociclib als mögliche zielgerichtete	
	Therapie im Hodgkin-Lymphom.	S. 124
4.2.7	CRISPR/Cas9-basiertes <i>knockout</i> -Screening identifiziert neue	••••
	Kandidatengene für die Pathogenese des Hodgkin-	
	Lymphoms	S. 125
4.2.7	.1 Die Methyltransferase HENMT1 als neues Kandidatengen	
	im cHL	S. 125
4.2.7	.2 KEAP1 als potentes neues Kandidatengen im cHL	S. 126

4.3 Zusammenfassende Beurteilung der CRISPR/Cas9-Screens im Hodgkin-Lymphom	S. 127
	S. 130
ANHANG	S. 142
EIDESSTATTLICHE VERSICHERUNG	S. 174
CURRICULUM VITAE	S. 175
PUBLIKATIONSLISTE	S. 177
DANKSAGUNG	S. 178

ABKÜRZUNGEN

ABC	Activated B Cell like
Amp	Ampicillin
AP	Alkalische Phosphatase
APS	Ammoniumpersulfat
ATP	Adenosintriphosphat
BCR	B-Zell Rezeptor (B Cell Receptor)
bp	Basenpaare
BSA	Bovines Serumalbumin
bspw.	beispielsweise
BrdU	Bromodeoxyuridin
bzw.	beziehungsweise
cDNA	complementäre DNA
cHL	klassisches Hodgkin-Lymphom (classical Hodgkin lymphoma)
CRISPR	Clustered Regularly Interspaced Short Palindromic Repeats
crRNA	crisprRNA
ddH ₂ O	RNase und DNase freies Wasser
DLBCL	Diffus großzelliges B Zell Lymphom (Diffuse Large B Cell Lymphoma)
DMEM	Dulbecco's Modified Eagle's Medium
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
DTT	Dithiothreitol
EBFP	Enhanced Blue Fluorescent Reporter
EDTA	Ethylendiamintetraessigsäure
EGFP	Enhanced Green Fluorescent Reporter
EGTA	Ethylenglycol-bis(aminoethylether)-N,N,N',N'-tetraessigsäure
FACS	Fluoreszenz Aktivierte Zell Sortierung
FKS	Fötales Kälberserum
fwd	forward / vorwärts
GCB	Germinal Center B cell like
gDNA	genomische DNA
GeCKO	Genome Scale CRISPR Knock Out
ggf.	gegebenenfalls
HEBS	HEPES gepufferte Salzlösung
HEPES	2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfonsäure
HL	Hodgkin-Lymphom
HRP	Horseradish Peroxidase
HSL	High Salt Lysis
IPTG	Isopropyl-β-D-thiogalactopyranosid
IRB	Isothermal Reaction Buffer
kb	Kilobasenpaare
lac	Lactose

LB	Lysogeny Broth (Medium)
MACS	Magnetische Zell Separation
MOI	Multiplicity of Infection
mRNA	messengerRNA
NHL	Non-Hodgkin-Lymphom
NP40	Nonidet P40
NTP	Nukleosidtriphosphat
PAGE	Polyacrylamid Gel Elektrophorese
PAM	Protospacer Adjacent Motif
PBS	Phosphatgepufferte Salzlösung
PCR	Polymerase Ketten Reaktion
pDNA	Plasmid-DNA
рН	potentia Hydrogenii
PI	Propium-lodid
PNK	Polynukleotid Kinase
pSK	pBlue-Skript
resp.	respektive
rev	reverse / rückwärts
rpm	rounds per minute
RNA	Ribonukleinsäure
RNAi	RNA-Interferenz
ROS	reactive oxygen species
RPMI	Roswell Park Memorial Institute (Medium)
RT	Reverse Transkription
sgRNA	single guide RNA
shRNA	small hairpin RNA
siRNA	small interfering RNA
SDS	Natriumdodecylsulfat
SOC	Super Optimal Broth (Medium)
TBE	Tris Borat EDTA
TBS-T	Tris-gepufferte Salzlösung mit Tween20
TE	Tris EDTA
TEMED	N,N,N',N'-Tetramethylethylendiamin
TENS	Tris EDTA NaCI SDS
tracrRNA	transactivating-crisprRNA
UV	ultraviolett
WB	Western Blot
z.B.	zum Beispiel

ZUSAMMENFASSUNG

Das klassische Hodgkin-Lymphom (classical Hodgkin lymphoma, cHL) ist eine häufige lymphatische Neoplasie der B-Zell-Reihe, deren molekulare Pathogenese in den letzten Jahrzehnten Gegenstand intensiver Forschung war. Trotz zahlreicher Erkenntnisse, wie u.a. der Beschreibung der Rolle des NF-kB- und JAK/STAT-Signalwegs sowie von IRF-Transkriptionsfaktoren, ist die Frage nach den AP-1- und letztendlich tumorbiologisch entscheidenden molekularen Treibern des cHL bis heute nur unzureichend beantwortet. Um in einem unvoreingenommenen Ansatz nach diesen Treibern zu suchen, wurde in dieser Arbeit ein genomweiter loss-of-function Screen in Hodgkin- und Kontrollzelllinien durchgeführt. Hierfür wurde das CRISPR/Cas9-System etabliert und verwendet, mit dem ein gezielter knockout von Zielgenen erreicht werden kann. Nach zunächst genomweitem knockout-Screening erfolgte ein unabhängiger Bestätigungs-Screen anhand einer individuellen, selbst erstellten sgRNA-Bibliothek der ermittelten potentiellen Kandidatengene. Durch diese beiden sequentiellen CRISPR/Cas9-basierten knockout-Screens konnten zahlreiche bereits beschriebene Gene für die Pathogenese des cHL unabhängig identifiziert und bestätigt werden, was gleichzeitig die Validität des gewählten experimentellen Ansatzes sowie der CRISPR-Screens selbst demonstriert. Unter den so bestätigten Genen befinden sich zahlreiche Faktoren des NF-kB- und JAK/STAT-Signalwegs, die AP-1-Transkriptionsfaktoren JUNB und BATF3, der IRF-Transkriptionsfaktor IRF4 sowie u.a. der Zellzyklusregulator Cyclin D2. Darüber hinaus konnten mehrere neue Kandidatengene identifiziert werden, darunter bspw. weitere Transkriptionsfaktoren und Zellzyklusregulatoren, Faktoren der DNA-Reparatur und epigenetische Modifikatoren. Im Anschluss an die beiden CRISPR-Screens erfolgte die weitere Validierung ausgewählter Kandidatengene anhand von Kompetitions-Assays, in denen die Mehrzahl dieser Kandidatengene bestätigt werden konnte. Weitere funktionelle Untersuchungen unter Einsatz molekularer Inhibitoren konnten die Rolle von Cyclin D2 und weiterer Zellzyklusregulatoren für die Proliferation Hodgkin-Zellen demonstrieren. Schließlich von konnten ausgewählte neue Kandidatengene für die Pathogenese des cHL verifiziert werden; darunter KEAP1, das als ein Substratadapterprotein eines E3-Ubiguitin-Ligase-Komplexes fungiert und eine zentrale Rolle in der Regulation der zellulären Antwort auf oxidativen Stress einnimmt.

ABSTRACT

Classical Hodgkin lymphoma (cHL) is a common lymphoid malignancy that is derived from B cells. The pathogenesis of cHL has been studied intensively over the past decades and a number of deregulated signalling cascades (NF-KB, JAK/STAT) as well as transcription factor networks (AP-1, IRFs) could be identified. However, the question of the central and specific molecular mechanisms that drive the disease and their relative contribution still remains unanswered. To address this question by an unbiased approach, we performed genome-wide loss of function screening in Hodgkin and control cell lines. To this end, we applied a CRISPR/Cas9-based knockout approach which allows for a targeted knockout of genes on a genomic scale. Our genome-wide CRISPR/Cas9 knockout screen identified most of the so far known key factors of cHL pathogenesis, such as numerous members of the NF-kB signaling pathway and JAK/STAT signaling pathways, the AP-1 family transcription factors JUNB and BATF3 and the IRF transcription factor IRF4 as well as cell cycle regulators such as Cyclin D2; i.e. our screen provides the first unbiased and genomic view of functionally relevant factors in cHL tumorbiology. The identification of these previously described factors also served as a strong validation for the chosen approach and our screening results. Moreover, several new potential candidate genes for the pathogenesis of cHL could be discovered, including additional transcription factors and cell cycle regulators, epigentic modifiers as well as genes involved in DNA repair. To confirm our results obtained by genome-wide CRISPR/Cas9 screening, we designed and generated a targeted rescreen library and performed a second independent CRISPR/Cas9 screen. By these means, most of the known candidate genes as well as several new candidate genes could be validated. Following their identification by CRISPR/Cas9 screening, selected candidate genes were analyzed on a single candidate level by competition assays. Here, most of the selected candidate genes could be validated independently. Further functional studies applying molecular inhibitors of cell cycle regulators demonstrated the important role of these regulators for the proliferation of Hodgkin lymphoma cells.

Finally, also selected novel candidate genes for the pathogenesis of cHL could be verified. Among those is KEAP1 that serves as a substrate adaptor protein of an E3 ubiquitin ligase complex and is a key regulator of the cellular response to oxidative stress.

1. **EINLEITUNG**

1.1 Das Hodgkin-Lymphom

1.1.1 Klinische Aspekte des Hodgkin-Lymphoms

Das Hodgkin Lymphom (HL) ist eine lymphatische Neoplasie, die ihren Ursprung in der B-Zell-Reihe hat (Kanzler et al., 1996a) und histologisch durch große mono- oder multinukleäre Zellen charakterisiert ist, die als Hodgkin-Reed-Sternberg (HRS) Zellen bezeichnet werden (Reed, 1902; Sternberg, 1898). Mit einer Inzidenz von 3/100.000 pro Jahr ist das HL eines der häufigsten Lymphome. Eine Besonderheit des HL ist dabei sein Auftreten in zwei Altersgipfeln: zwischen 20 bis 30 sowie über 60 Lebensjahren (Thomas et al., 2002). Klinisch präsentiert sich das HL mit einer indolenten Lymphknotenvergrößerung, häufig zervikal, sowie ggf. einer B-Symptomatik bestehend aus Fieber >38°C und/oder Gewichtsverlust von >10% des Körpergewichts in 6 Monaten und/oder Nachtschweiß. Ferner kann Juckreiz bestehen oder ein durch Alkoholgenuss induzierter Lymphknotenschmerz auftreten, der pathognomonisch für das HL ist. Bei mediastinalem Befall kann es darüber hinaus zu großen Mediastinaltumoren und einer damit einhergehenden Symptomatik kommen (Engert and Skoetz, 2013).

Die histopathologische Einordnung des HL erfolgt nach der WHO-Klassifikation zunächst in das deutlich seltenere noduläre lymphozytenprädominante HL (NLPHL), das nur ca. 7% der Fälle ausmacht, sowie das klassische HL (93%, *classical Hodgkin lymphoma*, cHL), das sich wiederum in vier Subtypen gliedern lässt (Swerdlow et al., 2017):

- I. Nodulär-sklerosierende Form (ca. 60%)
- II. Gemischtzellige Form (ca. 30%)
- III. Lymphozytenreiche Form (ca. 5%)
- IV. Lymphozytenarme Form (< 1%)

Die Stadieneinteilung der Erkrankung erfolgt nach der (Cotswolds modifizierten) Ann-Arbor-Klassifikation in vier Stadien (Tab.1) (Carbone et al., 1971; Diehl et al., 2004). Die Standardtherapie des cHL erfolgt durch eine Chemotherapie, ggf. in Kombination mit einer nachfolgenden Bestrahlung (*combined modality treatment*). In limitierten Stadien (I-II) erfolgt die Chemotherapie dabei meist nach dem ABVD-Schema (Adriamycin + Bleomycin + Vinblastin + Dacarbazin), während in fortgeschrittenen Stadien zumindest in Deutschland vorzugsweise nach dem intensiveren BEACOPP-Schema (Bleomycin + Etoposid + Adriamycin + Cyclophosphamid + Oncovin (Vincristin) + Procarbazin + Prednison) behandelt wird. Bei refraktärem Verlauf oder in der Rezidivsituation kommen aggressivere Chemotherapieprotokolle bis hin zu einer myeloablativen Hochdosis-Chemotherapie gefolgt von autologer Stammzelltransplantation zum Einsatz (Engert and Skoetz, 2013). Zusätzlich ist auch die Therapie des cHL geprägt von der zunehmenden Erprobung und Zulassung neuer, zielgerichteter Therapien. So wird bereits, v.a. in fortgeschrittenen Stadien und im Rezidiv bzw. bei erhöhtem Rezidivrisiko, der Antikörper Brentuximab erfolgreich angewendet, der das Spindelgift Vedotin mit einem gegen das beinahe selektiv auf HRS-Zellen exprimierte CD30 gerichteten Antikörper verbindet. Darüberhinaus ist im Rahmen von Studien die Therapie mit den immunmodulierenden anti-PD1-Antikörpern Nivolumab und Pembrolizumab möglich (Alperovich and Younes, 2016; Younes et al., 2017).

Unter Standardtherapie besitzt das cHL eine sehr gute Prognose mit einem progressionsfreien Überleben von >90% in limitierten, >80% in fortgeschrittenen Stadien bei Therapie nach eskaliertem BEACOPP-Protokoll bzw. >70% bei Therapie mit ABVD (Engert et al., 2009, 2010). Dem primär guten Ansprechen auf die Chemound ggf. Strahlentherapie steht jedoch das vergleichsweise hohe Risiko von Kardio-Pulmotoxizität. insbesondere bei zusätzlicher Strahlentherapie, und oder Sekundärneoplasien entgegen (Dores et al., 2002; Hodgson, 2011). Ein Risiko, das umso schwerer wiegt, da ein großer Teil der Patienten in jungen Jahren erkrankt. Daher gilt heute als generelles Ziel der Therapie beim cHL, eine möglichst hohe Antitumoraktivität bei möglichst geringer Toxizität zu erzielen. Es wird versucht, dieses Ziel bspw. durch die individuelle Therapiesteuerung mittels Positronen-Emmissions-Tomographie (PET) zu erreichen, wodurch das Ansprechen auf die applizierte Chemotherapie beurteilt werden kann. Zusätzlich ist und bleibt die Erarbeitung neuer zielgerichteter Therapien ohne schwerwiegende Nebenwirkungen und Folgen gerade ein wichtiges Ziel. Für die Entwicklung neuer Therapiekonzepte ist es unerlässlich, die Pathogenese des cHL weiter zu ergründen und die molekularen Treiber der Erkrankung zu identifizieren, die so als gezielte Angriffspunkte für neue Therapien dienen können.

Stadium		Kriterien
1		Befall eines einzelnen Lymphknotens oder eines einzigen lokalisierten extranodalen Herdes
II		Befall von zwei oder mehr Lymphknotenregionen auf einer Seite des Zwerchfells oder lokalisierte extranodale Herde und Befall einer oder mehrerer Lymphknotenregionen auf einer Seite des Zwerchfells
III		Befall von zwei oder mehr Lymphknotenregionen auf beiden Seiten des Zwerchfells oder lokalisierte extranodale Herde auf beiden Seiten des Zwerchfells
IV		Disseminierter Befalle eines oder mehrerer extralymphatischer Organe mit oder ohne Befall von Lymphknoten
Zusätze	A B E S	ohne B-Symptomatik mit B-Symptomatik extranodaler Befall Milzbefall
Risiko- faktoren		großer Mediastinaltumor (>1/3 des Thoraxdurchmessers) extranodaler Befall hohe Blutsenkungsgeschwindigkeit Befall von ≥3 Lymphknotenarealen

Tab. 1.1 Stadieneinteilung des HL nach der Ann-Arbor-Klassifikation. (Carbone et al., 1971)

1.1.2 Biologie der B-Zelle

Über lymphoide Vorläuferzellen reifen im Knochenmark aus hämatopoetischen Stammzellen in mehreren genau definierten Entwicklungsstufen naive B-Zellen heran. Während dieser Schritte wird auch der B-Zell-Rezeptor (*B cell receptor*, BCR) ausgebildet, der aus je zwei schweren und zwei leichten Ketten besteht. Grundlage für die Ausbildung des BCR ist die Rekombination unabhängiger Gensegmente, so dass ein zufälliger, einzigartiger, spezifischer BCR entsteht. Dabei wird in der pro-B-Zelle zunächst die schwere Kette gebildet, in deren Genlocus drei Gruppen von Gensegmenten umgelagert werden, die als V-, D- und J-Segemente bezeichnet werden. Zu Beginn wird ein einzelnes D_H-Segment mit einem J_H-Segment verknüpft. Anschließend wird das entstandene DJ-Segment mit einem V_H-Segment verbunden. Wird diese sogenannte VDJ-Rekombination erfolgreich durchgeführt und resultiert in einer funktionalen schweren Kette, reift die pro-B-Zelle weiter zur prä-B-Zelle, die nun einen ersten prä-BCR exprimiert. Im nächsten Schritt erfolgt die Rekombination für die leichte Kette, indem sich je ein V_L- und J_L-Segment des κ- oder λ-Locus verbinden (Blom and Spits, 2006; Ghia et al., 1996; Küppers et al., 1999).

So entsteht nun die unreife B-Zelle, die einen vollständig funktionalen BCR exprimiert und zunächst eine negative Selektion durchläuft, in der solche B-Zellen, deren BCR Autoantigene erkennt, in die Apoptose geleitet werden. Trifft die nun reife, aber noch naive B-Zelle nach dem Verlassen des Knochenmarks auf ihrer Zirkulation durch Blutund Lymphsystem in einem lymphatischen Organ auf ein zu ihrem BCR passendes Antigen, kommt es bei entsprechender Hilfe durch T-Zellen und dendritischen Zellen zur sogenannten Keimzentrumsreaktion. Diese Reaktion ist durch eine sehr starke Proliferation der B-Zellen gekennzeichnet und bildet die Grundlage für eine weitere Reifung und Modifikation des BCR. Es erfolgt durch eine genetische Umlagerung ein Ig-Klassenwechsel hin zu den Effektorklassen IgA, IgG und IgE. Darüberhinaus wird durch somatische Hypermutation, d.h. die Einführung von Mutationen in die variable Region der Ig-Gene und anschließende Selektion, eine höhere Spezifität des BCR für sein Antigen erreicht. Einerseits führt die Keimzentrumsreaktion so zu besonders hochspezifischen B-Zellen und somit zu einer hochleistungsfähigen Immunantwort auf Pathogene (Basso and Dalla-Favera, 2015; Klein and Dalla-Favera, 2008). Auf der anderen Seite ist die Keimzentrums-B-Zelle durch die hohe Proliferationsrate in Kombination mit genetischer Rekombination und somatischer Mutation besonders anfällig für eine maligne Entartung (Küppers, 2005).

Die oben beschriebenen Entwicklungsschritte von der pro-B-Zelle zur reifen B-Zelle werden entscheidend durch die Aktivität spezifischer Transkriptionsfaktoren zu bestimmten Zeitpunkten gesteuert. Dabei sind die Transkriptionsfaktoren E2A, EBF1 und PAX5 für die Etablierung und Fixierung des B-Zell-typischen Expressionsprogramms in allen Entwicklungsstadien von der pro-B-Zelle bis zur reifen B-Zelle maßgeblich verantwortlich (Lin and Grosschedl, 1995; Rolink et al., 1999; Zhuang et al., 1994). Im pro-B-Zell-Stadium ist darüber hinaus der Transkriptionsfaktor PU.1 relevant, während ab der prä-B-Zelle ferner OCT2 eine bedeutende Rolle für die weitere Entwicklung zukommt (Corcoran et al., 1993; DeKoter and Singh, 2000).

Wird der BCR der reifen B-Zelle durch ein entsprechendes Antigen stimuliert, übernehmen zahlreiche Signalwege die intrazelluläre Signalübertragung und führen zur Proliferation der B-Zelle. Zu diesen zählt allen voran der NF-κB-Signalweg, aber auch bspw. der JAK/STAT- und PI3K/Akt-Signalweg. (Limon and Fruman, 2012; Malin et al., 2010; Matthias and Rolink, 2005)

Abb. 1.1 B-Zell-Entwicklung und -Reifung. Entwicklung der naiven B-Zelle im Knochenmark: Entscheidende Schritte der Entwicklung und Entstehung des B-Zell-Rezeptors sowie jeweils vorrangige Transkriptionsfaktoren. Somatische Hypermutation und Affinitätsreifung des B-Zell-Rezeptors (BCR) in sekundären lymphatischen Organen (v.a. Lymphknoten, Milz) unter Ausbildung einer Keimzentrumsreaktion. (Keimz. = Keimzentrum; Ged. = Gedächtnis)

1.1.3 Molekularbiologie des Hodgkin-Lymphoms

Wie bereits beschrieben lässt sich das HL histopathologisch in zwei Subtypen einteilen: das häufige klassische HL (cHL) sowie das deutlich seltenere NLPHL. Diese Arbeit konzentriert sich auf das klassische HL, vor allem wegen dessen starker Prädominanz, aber auch, da es für das seltene NLPHL bisher keine geeigneten Zelllinien-Modelle gibt.

1.1.3.1 Der zelluläre Ursprung des cHL

Das klassische Hodgkin-Lymphom ist eine Erkrankung maligne transformierter Keimzentrums-B-Zellen. Nachdem Thomas Hodgkin 1832 erstmals eine Zusammenstellung von Fällen mit charakteristischen Merkmalen einer Erkrankung der Lymphknoten und Milz publizierte, was heute als Erstbeschreibung des cHL gilt, konnten Carl Sternberg und Dorothy Reed 1898 bzw. 1902 die später nach ihnen benannten Hodgkin-Reed-Sternberg Zellen als typisches histopathologisches Merkmal der von Hodgkin beschriebenen Erkrankung identifizieren (Hodgkin, 1832; Reed, 1902; Sternberg, 1898). Die Suche nach dem zellulären Ursprung des cHL erwies sich allerdings als sehr schwierig und langwierig. Erschwert wurde dies u.a. auch durch das Fehlen eines eindeutigen Profils von Oberflächenmarkern auf den HRS-Zellen (s.u.) sowie die Tatsache, dass die HRS-Zellen als die eigentliche maligne Zellpopulation nur etwa 1% der Tumormasse des cHL ausmachen, während das übrige Bild geprägt wird

von einem gemischten nicht-malignen Begleitinfiltrat, das vor allem T-Zellen, Monozyten/Makrophagen sowie Fibroblasten enthält (Küppers, 2009). Erst knapp 100 Jahre später konnte so schließlich der zelluläre Ursprung des cHL sicher festgestellt werden: 1994 zeigten Küppers et al., dass in HRS-Zellen die variable Region des Genlocus für die schwere Kette des BCR rekombiniert und somatisch hypermutiert ist und identifizierten damit die Keimzentrums-B-Zelle als Ausgangspunkt der HRS-Zellen (Küppers et al., 1994). Dabei entstehen die HRS-Zellen aus Keimzentrums-B-Zellen, die das Keimzentrum fehlerhaft durchlaufen haben, wobei die Expression eines funktionsfähigen BCR verloren gegangen ist, insbesondere durch sog. *crippling mutations* der Ig-Gene, durch die das Leseraster zerstört wird (Kanzler et al., 1996a). Dies ist besonders bemerkenswert, da der Verlust ihres BCR normalerweise nicht mit dem Überleben einer B-Zelle vereinbar ist (Lam et al., 1997).

1.1.3.2 Linienfremde Genexpression im cHL

Ein weiterer Grund für die komplizierte Eruierung des zellulären Ursprungs des cHL liegt in den ausgeprägten Veränderungen der Genexpression in den HRS-Zellen. Nahezu sämtliche B-Zell-assoziierten Gene werden in diesen nicht oder nur sehr gering exprimiert, während zeitgleich die Expression linienfremder Gene, die physiologisch vor allem in T- oder myeloischen Zellen exprimiert werden, hochreguliert ist. Insgesamt betrachtet haben die HRS-Zellen einen großen Teil des B-Zell-typischen Genexpressionsprogramms herunterreguliert oder gar verloren. Beispiele hierfür sind zahlreiche Komponente des BCR-Signalwegs (Ig-Gene, CD79A/B, SYK), CD20 (Küppers et al., 2003; Schwering et al., 2003) oder die B-Zell-assoziierten Transkriptionsfaktoren PU1, BOB.1 und OCT2 (Jundt et al., 2002a; Re et al., 2001; Torlakovic et al., 2001). Ein anderer wichtiger Transkriptionsfaktor für das B-Zell-Genexpressionsprogramm, E2A, wird durch die hohe Expression zweier Antagonisten, ABF1 und ID2, in seiner transkriptionellen Aktivität verändert bzw. inhibiert, wodurch direkt die Expression linienfremder Gene, wie bspw. des CSF1R, induziert wird (Mathas et al., 2006). Darüber hinaus ist der Transkriptionsfaktor NOTCH1 linienfremd im cHL hoch exprimiert (Jundt et al., 2002b).

1.1.3.2.1 Die Rolle von ABF1 und ID2 im cHL

Verantwortlich für die Reprogrammierung des Transkriptionsfaktornetzwerkes in HRS-Zellen sind zu bedeutenden Teilen die beiden Proteine *inhibitor of DNA binding 2* (ID2) und activated B cell factor 1 (ABF1; auch musculin MSC) (Mathas et al., 2006; Renné et al., 2006). Wie der bereits beschriebene, für das Transkriptionsprogramm der B-Zell-Reihe relevante Transkriptionsfaktor E2A ist ABF1 ein basic helix-loop-helix (bHLH) Transkriptionsfaktor. Während die DNA-Bindung über die basische Domäne stattfindet, ist die Helix-Loop-Helix Domäne für die Homo- oder Heterodimerisierung mit anderen HLH-Proteinen verantwortlich. So interagiert ABF1 u.a. mit E2A, wobei ABF1-E2A Heterodimere dann nicht mehr an ursprüngliche E2A-E2A Homodimer DNA-Bindungsstellen binden oder statt einer aktivierenden eine reprimierende Wirkung auf die Transkription von E2A-Zielgenen entfalten (Massari et al., 1998). ID2 ist ein HLH-Protein ohne basische Domäne, sodass ID2 zwar Heterodimere mit u.a. E2A bilden kann, diese jedoch keine Fähigkeit zur DNA-Bindung besitzen. Über eine Inhibition der DNA-Bindung verursacht ID2 so einen Funktionsverlust von E2A und trägt gemeinsam mit ABF1 über diese Antagonisierung der E2A-Aktivität zum Verlust der Expression B-Zelllinien typischer Gene und der Expression linienfremder Gene im cHL bei. ID2 wird physiologisch u.a. hoch exprimiert in myeloischen Zellen, dendritischen Zellen, NK-Zellen oder bestimmten T-Zell-Subpopulationen (Ishiguro et al., 1996; Rivera and Murre, 2001).

1.1.3.3 Der NF-кB-Signalweg im cHL

Der NF-κB-Signalweg nimmt eine zentrale Rolle für die Proliferation und das Überleben von Hodgkin-Zellen ein. Während er physiologisch in B-Zellen nur intermittierend auf spezifische Reize, wie bspw. die Stimulation des BCR, hin aktiviert wird, ist der NF-κB-Signalweg in HRS-Zellen konstitutiv aktiv und unabhängig vom BCR, welcher in HRS-Zellen wie bereits beschrieben nicht mehr exprimiert oder nicht funktionell ist (Bargou et al., 1996; Emmerich et al., 1999; Hinz et al., 2001; Krappmann et al., 1999; Mathas et al., 2005).

Der NF- κ B-Signalweg führt über zwei Wege zur Aktivierung von Transkriptionsfaktoren und Expression seiner Zielgene (Sen and Baltimore, 1986; Staudt et al., 1986). Im klassischen NF- κ B-Signalweg, werden durch die Stimulation von Zelloberflächenrezeptoren wie dem BCR, CD40 oder BAFF die Kinasen IKK α , β und γ durch Phosphorylierung aktiviert und inhibieren dann ihrerseits die NF- κ B-Inhibitoren I κ B α und IkBε. Hierdurch werden RelA(p65)- und cRel-NF-kB1(p50) Heterodimere freigesetzt und können nun in den Zellkern translozieren, wo sie als Transkriptionsfaktoren die Expression zahlreicher Zielgene induzieren. Unter diesen befinden sich u.a. die Transkriptionsfaktoren IRF4 und MYC, zahlreiche Interleukine und Chemokine wie IL-6, CCL3, CCL4 und Lymphotoxin α (LTA) sowie STAT5A. Im alternativen NF-kB-Signalweg induziert NIK die Phosphorylierung von IKKα, das dann wiederum nach Prozessierung von NF-kB2 zu p52 RelB-p52 Heterodimere und p52-Homodimere aktiviert (Bonizzi and Karin, 2004; Hinz et al., 2002; Jost and Ruland, 2007; Kaileh and Sen, 2012).

Im cHL ist der NF-κB-Signalweg hingegen konstitutiv aktiv, wobei unterschiedliche Mechanismen zur Aktivierung beitragen können. Hierzu zählen die permanente Signalübertragung durch das EBV-Protein LMP1, den CD30-, CD40 oder RANK-Rezeptor, inaktivierende Mutationen der NF-κB-Inhibitoren IkBα und IkBε oder genomische Amplifikationen, v.a. von cRel in ca. 50% der Fälle (Barth et al., 2003; Cabannes et al., 1999; Emmerich et al., 2003; Fiumara et al., 2001; Jungnickel et al., 2000; Kilger et al., 1998; Martín-Subero et al., 2002). Zusätzlich konnte ein autokriner Mechanismus identifiziert werden, bei dem von HRS-Zellen sezerniertes LTA wiederum auf die Tumorzellen zurückwirkt und zur Aktivierung des klassischen und alternativen NF-κB-Signalwegs führt (Von Hoff et al., 2019).

1.1.3.4 AP-1- und IRF-Transkriptionsfaktoren im cHL

Das AP-1-Transkriptionsfaktornetzwerk wird gebildet aus Homo- und Heterodimeren von Mitgliedern der Familie der Jun-, Fos- und ATF-Proteine. Zahlreiche AP-1-Faktoren sind in HRS-Zellen hoch exprimiert und aktiv, darunter bspw. die Jun-Transkriptionsfaktoren JUNB und c-JUN sowie die *activating transcription factors* (ATF) ATF3 und BATF3 (Janz et al., 2006; Mathas et al., 2002). Zudem trägt auch der konstitutiv aktive NF-κB-Signalweg zu der hohen Aktivität der AP-1-Faktoren in HRS-Zellen bei. Durch die hohe Aktivität der AP-1-Faktoren werden im cHL zahlreiche wichtige Zielgene wie bspw. Cyclin D2, CCR7, CD30, Galectin-1, PD-L1 oder MYC reguliert (Green et al., 2012; Juszczynski et al., 2007; Lollies et al., 2018; Mathas et al., 2002).

Zusätzlich zu den AP-1-Faktoren sind auch wichtige Transkriptionsfaktoren der *interferon regulatory factor* (IRF) Familie, IRF4 und IRF5, hoch exprimiert im cHL. Neben ihrer eigenständigen transkriptionellen Aktivität besteht dabei auch ein Zusammenwirken von AP-1- und IRF-Transkriptionsfaktoren (Aldinucci et al., 2011; Kreher et al., 2014; Valsami et al., 2007).

1.1.3.5 Weitere molekulare Defekte im cHL

Neben dem NF-kB-Signalweg ist im cHL insbesondere auch der JAK-STAT-Signalweg regelhaft dereguliert. Über diesen Signalweg wirken vor allem zahlreiche der für die Pathogenese des cHL zentralen Zytokine, die sowohl aus den HRS-Zellen selbst als auch aus dem *Microenvironment* des Tumors stammen. Bei Stimulation des JAK-STAT-Signalweges werden durch JAK-Proteine STAT-Proteine phosphoryliert, die daraufhin dimerisieren und in den Zellkern translozieren, wo sie ihre Wirkung als Transkriptionsfaktoren entfalten (Joos et al., 2000; Weniger et al., 2006). Die Bedeutung des JAK/STAT-Signalwegs wird durch die Häufigkeit unterstrichen, mit der Komponenten dieser Signalkaskade im cHL von genetischen Veränderungen betroffen sind, wie z.B. Mutationenen im JAK-Inhibitor SOCS-1 und in STAT6 sowie Amplifikationen der genomischen Region 9p24, auf der JAK2 lokalisiert ist (Rui et al., 2010; Spina et al., 2018; Weniger et al., 2006).

Darüber hinaus konnte gezeigt werden, dass auch der PI3K-AKT-Signalweg relevant für das Überleben von HRS-Zellen ist. Ein aktiver ERK-Signalweg inhibiert außerdem die Apoptose in HRS-Zellen. Beide Signalwege werden vermutlich ebenfalls über die Rezeptoren CD30, CD40 und RANK aktiviert (Dutton et al., 2005; Georgakis et al., 2006; Zheng et al., 2003).

Schließlich sind für die Proliferation der HRS-Zellen auch direkte Veränderungen in Zellzyklusregulatoren verantwortlich. So ist bspw. das Cyclin D2 (CCND2) - u.a. durch die konstitutive NF-kB-Aktivität - stark exprimiert in HRS-Zellen und steuert deren Transition von der G1- zur S-Phase (Bai et al., 2004).

Abb. 1.2 Deregulierte Signalwege und Transkriptionsfaktoren im cHL: rot: NF-kB-Signalweg, gelb: JAK-STAT-Signalweg, grün: PI3K-Akt-Signalweg; blau: ATF- und IRF-Transkriptionsfaktoren.

1.2 Zellzyklusregulatoren

Der Zustand jeder Zelle variiert zwischen Phasen der Ruhe und der Teilung. Innerhalb dieses Zyklus der Zelle lassen sich dabei folgende Phasen unterscheiden: G1, S, G2 und M (Mitose). Während letzterer findet die eigentliche Teilung der Zelle statt, die sich nochmals in Prophase, Prometaphase, Metaphase, frühe Anaphase, späte Anaphase und Telophase unterteilen lässt. In der sich anschließenden G1-Phase werden zunächst wieder Zytoplasma und Zellorganellen vermehrt; der Chromosomensatz ist vollständig, jedoch liegt von jedem Chromosom nur eine Chromatide vor. Zellen, die sich nicht weiter teilen (sollen), gehen von der G1- zur G0-Phase über. Weiter im Zellzyklus voranschreitende Zellen treten nach der G1- in die S-Phase ein, in der nun die DNA verdoppelt wird und am Ende derer jedes Chromosom wieder aus zwei Chromatiden besteht. In der sich nun anschließenden G2-Phase wird die Zelle dann bereits wieder auf die nächste Mitose vorbereitet. Da bei der Zellteilung schwerwiegende Fehler wie Chromosomenfehlverteilungen oder DNA-Schäden

auftreten können, kommt der Kontrolle des Zellzyklus eine besondere Bedeutung zu. Kontrollpunkte liegen am Übergang der G2-Phase zur Mitose, am Übergang der Mitose in die G1-Phase sowie am Übergang der G1- zur S-Phase. Diese werden u.a. durch die im Folgenden beschriebenen Cycline und Cyclin-abhängigen Kinasen kontrolliert. (Cooper, 2000; Smith and Martin, 1973)

Cyclin D2 reguliert in B-Zellen gemeinsam mit den Cyclin-abhängigen Kinasen (*cyclin dependant kinase*, CDK) 4 bzw. 6 die Transition von der G1 zur S-Phase (Solvason et al., 1996; Tanguay and Chiles, 1996).

Zwar nicht für Cyclin D2 selbst, aber für CDK4/6 wurden potente Inhibitoren entwickelt und bereits in die Klinik gebracht (Fry et al., 2004; Toogood et al., 2005). So ist der CDK4/6-Inhibitor Palbociclib bereits zugelassen für die Therapie des lokal fortgeschrittenen oder metastasierten Mammakarzinoms (de Groot et al., 2017). Eine weitere Entität, für die der Einsatz von Palbociclib intensiv im Rahmen klinischer Studien getestet wird, ist das Mantelzelllymphom, für das die t(11;14) Translokation, die Cyclin D1 unter die Kontrolle des starken IgH-Enhancers bringt und so dessen Expression steigert, charakteristisch ist (Leonard et al., 2012; Marzec et al., 2006).

Cyclin A2 und die Zellzyklus assoziierte Phosphatase CDC25A (*cell division cycle 25A*) vermitteln gemeinsam mit der zyklinabhängigen Kinase CDK2 den Zellzyklusprogress durch die S-Phase. CDC25A trägt durch Dephosphorylierung zur Aktivierung von CDK2 bei und wird selbst wiederum bei Vorliegen von DNA-Schäden abgebaut, wodurch der Zellzyklusprogress von Zellen mit genomischen Schäden verhindert. Wie auch im Falle von CCND2 und CDK4/6 kann die in diesem Regelkreis wirkenden Kinase CDK2 durch spezifische Inhibitoren ausgeschaltet werden (Jinno et al., 1994; Pagano et al., 1992; Pines and Hunter, 1990).

Abb. 1.3 Zellzyklus und Zellzyklusregulation. (Erläuterung siehe oben, Kapitel 1.2)

1.3 Das kelch like ECH associated protein 1 (KEAP1)

KEAP1 fungiert als Substrat-Adapter-Protein eines E3-Ubiquitin-Ligase-Komplexes, der das RING-Protein CUL3 sowie die Ubiquitin-Ligase RBX1 enthält. Dabei besitzt KEAP1 drei funktionelle Domänen: Eine N-terminale BTB-Domäne, über die es CUL3 bindet und selbst dimerisiert, eine *intervening region* (IVR) und eine C-terminale Kelch-Domäne, über die das Substrat gebunden wird. Über die Bindung an definierte Zielproteine vermittelt KEAP1 so die Substratspezifität dieses E3-Ubiquitin-Ligase-Komplexes und damit eine gezielte Ubiquitinierung und folgende proteasomale Degradierung entsprechender Proteine. Das am besten beschriebene Substrat des KEAP1-E3-Ubiquitin-Ligase-Komplexes ist der Transkriptionsfaktor NRF2, auf den im Folgenden genauer eingegangen wird. (Jaramillo and Zhang, 2013; Zhang et al., 2004)

Abb. 1.4 KEAP1 A Aufbau des KEAP1-Proteins: Die N-terminale BTB-Domäne bindet Cul3 und KEAP1 selbst (Homodimerisierung). Die C-terminale Kelch-Domäne ist verantwortlich für die Substrat-Bindung.
B KEAP1 vermittelt die Substratspezifität eines Ubiquitin-Ligase-Komplexes, der neben KEAP1 aus Cul3, einer E2-Ligase und RBX1 besteht. Durch diesen Komplex polyubiquitinierte Proteine werden anschließend proteasomal degradiert.

Die KEAP1-NRF2-Achse ist der wichtigste Signalweg für die zelluläre Antwort auf oxidativen Stress und der zentrale Regulator für den Redox-Status der Zelle. Unter basalen Bedingungen, d.h. Zuständen mit einem geringen Grad an oxidativem Stress, ist KEAP1 aktiv und bindet an NRF2, wodurch dieses für den proteasomalen Abbau markiert wird. Unter steigendem oxidativem Stress werden Cystein-Reste an KEAP1 oxidiert, was zu einer Konformationsänderung des Proteins führt. Hierdurch wird NRF2 nicht mehr durch KEAP1 gebunden und freies NRF2 kann in den Nucleus translozieren, wo es zusammen mit kleinen Proteinen der MAF-Familie (*small* MAFs) an *anti-oxidant response elements* (ARE) bindet und die Expression anti-oxidativer Gene induziert. Unter diesen NRF2-Zielgenen befinden sich Thioredoxine, Enzyme des Glutathion-Systems, die Glucose-6-Phosphat-Dehydrogenase (G6PD) und Enzyme des Pentose-

Phosphat-Weges (Transketolase, Transaldolase); d.h. NRF2 induziert eine starke und koordinierte zytoprotektive Antwort. (Dinkova-Kostova et al., 2002; Jaramillo and Zhang, 2013; Zhang et al., 2004)

Für einige solide Tumore, insbesondere das Bronchialkarzinom, ist der Verlust von KEAP1 durch Punktmutationen, Deletionen oder Insertionen und die damit einhergehende konstitutive NRF2-Aktivierung als bedeutender Mechanismus für die onkogene Transformation beschrieben worden, die u.a. auch eine erhöhte Chemo- und Radioresistenz vermittelt (Lau et al., 2008; Singh et al., 2008).

1.4 Das CRISPR/Cas9-System

1.4.1 Bakterielle CRISPR/Cas-Systeme

Das CRISPR/Cas-System (CRISPR: clustered regularly interspaced short palindromic repeats; Cas: CRISPR-associated protein) ist ein bakterielles Immunsystem, das fremde Nukleotid-Sequenzen erkennt und gezielt zerstört. Inzwischen wurden zahlreiche unterschiedliche CRISPR/Cas-Systeme in verschiedenen Bakterienstämmen beschrieben. Im Folgenden beziehe ich mich auf das in Streptococcus pyogenes vorkommende CRISPR/Cas9-System, das die Grundlage für die molekularbiologische CRISPR/Cas-Technologie bildet. Durch das CRISPR/Cas9-System werden 20 Basen lange Bruchstücke eindringender fremder Nukleotid-Sequenzen, so genannte protospacer, in das eigene bakterielle Genom in die CRISPR-Loci eingebaut. Dort liegen sie zwischen den eigentlichen CRISPR-repeats und werden von hier mit einem Teil des nachfolgenden repeats gemeinsam als crisprRNA (crRNA) abgelesen. Diese crRNA hybridisiert mit einer zweiten RNA, der transactivating-crisprRNA (tracrRNA), um so gemeinsam die Nuklease Cas9 an die Zielsequenz zu führen. Dort verursacht die Cas9 einen Doppelstrangbruch zwischen dem 17. und 18. Basenpaar der protospacer-Sequenz. Um die Zerstörung des in den eigenen CRISPR-locus integrierten protospacers zu verhindern, muss für die Aktivierung der Cas9 neben dem eigentlichen protospacer ein angrenzendes protospacer adjacent motiv (PAM) erkannt werden, das aus drei Basen gebildet wird. Dieses unterscheidet sich zwischen den verschiedenen CRISPR/Cas-Systemen und lautet für das CRISPR/Cas9-System NGG. Hierdurch wird darüber hinaus allgemein die Spezifität des Systems weiter erhöht. (Doudna and Charpentier, 2014; Sander and Joung, 2014; Sorek et al., 2013)

1.4.2 Das CRISPR/Cas9-System als molekularbiologisches Werkzeug

Die Tatsache, dass das CRISPR/Cas9-System gezielt Doppelstrangbrüche in DNA einführt, kann als molekularbiologisches Werkzeug für die spezifische Modifikation des Genoms, insbesondere zum gezielten knockout von Genen genutzt werden. Über eine crRNA, die den zur Zielsequenz komplementären protospacer enthält, kann die Cas9 Zielaen gesteuert werden. Infolge des dort dann eingeführten zum Doppelstrangbruches kommt es bei der anschließenden Reparatur zu Deletionen, Insertionen und Substitutionen und damit in einem hohen Prozentsatz zu Leserasterverschiebungen, woraus schließlich ein funktioneller knockout des Zielgenes resultiert. Um die praktische Anwendbarkeit zu verbessern, wurden die crRNA und die tracrRNA zu einer gemeinsamen single-guideRNA (sgRNA) fusioniert. Alle von mir verwendeten und erstellten Plasmide beruhen dabei auf einem Konstrukt, bei dem über zwei Schnittstellen eines Restriktionsenzymes der passende 20 Basen lange protospacer in die sgRNA-Sequenz gesetzt werden kann. (Cong et al., 2013; Doudna and Charpentier, 2014)

Eine Übersicht zur Funktionsweise des CRISPR/Cas9-Systems als molekularbiologisches Werkzeug ist in Abb. 1.5 dargestellt.

Abb. 1.5 Funktionsweise des CRISPR/Cas9-Systems. Eine zum 20bp langen *protospacer* der genomischen DNA kompatible sgRNA führt die Nuklease Cas9 an das jeweilige Zielgen. Dort erzeugt diese einen Doppelstrangbruch in der genomischen DNA zwischen dem zweiten und dritten Basenpaar 5' des PAM.

1.4.3 CRISPR/Cas9-basiertes knockout-Screening

Um unvoreingenommen und über eine Vielzahl von Genen – bis hin zum gesamten Genom – funktionell nach für eine bestimmte Fragestellung relevanten Genen zu suchen, wurden schon lange vor der CRISPR/Cas9-Ära verschiedene Screening-Ansätze entwickelt. So wurden für die Analyse der funktionellen Konsequenzen eines Genverlustes vor allem RNA-Interferenz (RNAi) basierte Verfahren angewendet. RNAi stört die Expression des jeweiligen Zielgenes auf mRNA-Ebene und resultiert so in einem relativen *knockdown* der Genexpression (Bernards et al., 2006). Gegenüber RNAi-basierten Verfahren besitzen die nun möglichen CRISPR/Cas9-basierten *knockout*-Screening-Verfahren eine höhere Spezifität für das jeweilige Zielgen, also weniger sog. *off-target* Effekte auf andere Gene, sowie vor allem eine höhere Effizienz. Durch den irreversiblen *knockout* des Zielgens schon auf genomischer Ebene ist der Expressionsverlust gegenüber shRNAs nicht nur stärker ausgeprägt, sondern bleibt auch über die Zeit stabil, was Screening-Verfahren über einen langen Zeitraum erst ermöglicht. (Adamson et al., 2012; Schultz et al., 2011; Shalem et al., 2014; Wang et al., 2014)

Das molekularbiologische Grundprinzip eines jeden *knockout*-Screens ist Folgendes: Vom Zeitpunkt der Transduktion an werden über den Beobachtungszeitraum hinweg solche sgRNAs, die ein überlebens- oder proliferationsrelevantes Gen zum Ziel haben, in der Repräsentation aller sgRNAs abnehmen oder ganz verschwinden. SgRNAs, die hingegen einen Tumorsuppressorgen zum Ziel haben, werden über die Zeit in ihrem Anteil an der Gesamtmenge der sgRNAs zunehmen. Die hieraus resultierenden Veränderungen in der quantitativen Zusammensetzung des sgRNA-Pools können zu definierten Endpunkten durch Hochdurchsatz-Sequenzierung ausgelesen und hieraus für die jeweilige Zelllinie relevante Kandidatengene ermittelt werden. Dieses Grundprinzip wird in der Abbildung 1.6 für die sog. GeCKO-Bibliothek verdeutlicht, die als eine der ersten genomweiten Bibliotheken für funktionelles *knockout*-Screening publiziert wurde und deren verbesserte Nachfolgeversion auch in dieser Arbeit zum Einsatz kam. (Shalem et al., 2014, 2015; Wang et al., 2014)

Abb. 1.6. CRISPR/Cas9 *knockout*-Screening. Die GeCKO-Bibliothek wird durch lentivirale Transduktion in die Zielzellen eingebracht. Der Pool transduzierter Zellen wird über die Zeit hinweg beobachtet. Über die Entnahme von Zellpellets am Start- und Endzeitpunkt des Screens werden die sgRNA-Sequenzen und ihre relative Häufigkeit innerhalb des sgRNA-Pools über Hochdurchsatzsequenzierung ausgelesen. Der Vergleich der sgRNA-Pool-Zusammensetzung am Start- und Endzeitpunkt lässt auf potentielle onkogene (sgRNAs depletiert) und tumorsuppressive (sgRNAs angereichert) Kandidatengene schließen.

1.6 Herleitung der Fragestellung und Zielsetzung der Arbeit

Nachdem vor über 20 Jahren die Abstammung des Hodgkin-Lymphoms von B-Zellen gezeigt werden konnte, wurden auf molekularer Ebene zahlreiche deregulierte Signaltransduktions- (NF-kB, JAK/STAT) und Transkriptionsfaktornetzwerke (AP-1, IRF) entdeckt und in ihrer Bedeutung für das cHL untersucht. Alle diese Veränderungen sind jedoch für sich genommen nicht spezifisch für das cHL, sondern auch bei anderen Malignomen, einschließlich Lymphomen, anzutreffen. Trotz intensiver Forschung ist es bis heute nicht gelungen, den oder die zentralen, für die Tumorbiologie des cHL spezifischen molekularen Mechanismen zu identifizieren bzw. die letztendlich funktionellen molekularen Treiber der Pathogenese zu identifizieren. Um unabhängig von den bisherigen Untersuchungen in einem sog. *"discovery-driven"* Ansatz solche funktionellen Treiber des cHL zu ermitteln, wurde ein genomweiter *loss-of-function* Screen durchgeführt. Dabei ermöglicht die Wahl des CRISPR/Cas9-Systems zur Durchführung dieses Screens gegenüber bisher etablierten shRNA-basierten Screens eine höhere Effizienz sowie einen *knockout* bereits auf genomischer Ebene.

Da mit dieser Arbeit erstmalig ein genomweiter CRISPR/Cas9-basierter *knockout*-Screen im Hodgkin-Lymphom durchgeführt wurde, galt es zunächst das CRISPR/Cas9-System selbst sowie spezifische Screen-Bedingungen und spätere Einzelgen-Analysen zu etablieren. Im Anschluss konnten dann der genomweite CRISPR/Cas9-Screen sowie der auf diesen folgende Bestätigungsscreen durchgeführt werden. Mit diesen sollte untersucht werden, ob und welche bereits bekannten Pathogenese-Faktoren des cHL in diesen CRISPR-Screens zuverlässig identifiziert werden konnten, um die Frage nach der funktionellen Relevanz der bekannten Faktoren in einem unabhängigen und neuartigen genomischen Verfahren – auch im Vergleich untereinander – untersuchen zu können. Darüberhinaus sollten neue Kandidatengene ermittelt werden, die für das Überleben und Wachstum der Hodgkin-Zellen relevant sind.

Die Betrachtung aller Ergebnisse soll schließlich dazu dienen können, solche Faktoren und Signalwege zu identifizieren, die als besonders geeignete Angriffspunkte für eine gezielte Inhibition in Frage kommen um so neue Therapieoptionen für das Hodgkin-Lymphom zu ermöglichen. Dass es derer weiterhin dringend bedarf, steht in Anbetracht der Akut- und Langzeittoxizitäten der bisherigen Standardtherapien einerseits sowie eines immer noch relevanten Anteils an primärem und sekundärem Therapieversagen andererseits außer Zweifel.

2. MATERIAL UND METHODEN

2.1 Material

2.1.1 Chemikalien

Substanz	Hersteller	Katalog-Nr.
Acrvlamid 40 %	Roth. Deutschland	A515
Agarose	Biozym, Deutschland	840004
Ammoniumpersulfat (APS)	Roth, Deutschland	9592
Ampicillin	Roth, Deutschland	K029
Bacto [™] Agar	BD, ÚSA	214010
Bacto [™] Trypton	BD, USA	211705
Bacto [™] -Yeast Extract	BD, USA	288620
β-Mercaptoethanol	Roth, Deutschland	4277
Borsäure	Roth, Deutschland	5935
Bovines Serum Albumin	Sigma, USA	3803
Bromphenolblau	Sigma, USA	B0126
Chloroquin	Sigma, USA	C6628
Cresol Rot Natrium Salz	Sigma, USA	114480
D(+)-Saccharose	Roth, Deutschland	4621
DŤŤ	Roth, Deutschland	6908
EDTA	Roth, Deutschland	8040
EGTA	Roth, Deutschland	3052
Ethanol	Roth, Deutschland	9065
Ethidiumbromid	Roth, Deutschland	HP47
Glycerin	Roth, Deutschland	3783
HÉPES	Roth, Deutschland	HN77
IPTG, dioxanfrei	Roth, Deutschland	2816
Isopropanol (2-Propanol)	Roth, Deutschland	6752
Kaliumchlorid (KCI)	Roth, Deutschland	6781
Kalziumchlorid (CaCl ₂)	Fluka, Schweiz	21079
Magnesiumchlorid (MgCl ₂)	Sigma, USA	M3634
Magnesiumsulfat (MgSO ₄)	Sigma, USA	M1880
Methanol	Th. Geyer, Deutschland	1437.2511
Methylenblau	Roth, Deutschland	A514
Natriumacetat	Roth, Deutschland	6779
Natriumchlorid (NaCl)	Roth, Deutschland	3957
Natriumcitrat	Roth, Deutschland	4088
Natriumfluorid (NaF)	Roth, Deutschland	2618
Natriumhydroxid (NaOH)	Roth, Deutschland	8655
Natriumorthovanadat	Roth, Deutschland	0735
Nonidet P40 (NP40)	Roche , Schweiz	11754599001
Polyethylenglykol 8000 (PEG-8000)	Roth, Deutschland	0263
Ponceau S	Roth, Deutschland	5938
Propium-Iodid (PI)	Sigma, USA	P4170
Salzsäure 37 % (HCl)	Roth, Deutschland	9277
SDS	Roth, Deutschland	CN30
TEMED	Roth, Deutschland	UN2372
Tris	Roth, Deutschland	5429
Triton-X	Roth, Deutschland	3051
Tween20	Roth, Deutschland	9127
X-β-Gal	Roth, Deutschland	2315

2.1.2 Reagenzien

<u>Substanz</u>	Hersteller	Katalog-Nr.
1 kb plus DNA ladder	Life Technologies, USA	10787-018
cOmplete™ Mini EDTA-free	Roche, Schweiz	4693159001
Protease Inhibitor Cocktail		
dNTP Set, 100 mM	ThermoFisher Scientific, USA	R0182
GeneRuler [™] 1kb DNA ladder	Fermentas, USA	SM0313
GeneRuler [™] 100bp Plus DNA ladder	Fermentas, USA	SM0313
Microsint [™] -O	PerkinElmer, USA	6013611
Nuclease-Free Water (ddH ₂ O)	Invitrogen, USA	AM9937
Pierce [™] ECL Western Blotting Substrate	ThermoFisher Scientific, USA	32106
PageRuler [™] Plus Prestained Protein Ladder	ThermoFisher Scientific, USA	26619
Protein Assay Dye Reagent Concentrate	Biorad, USA	500-0006
QuickExtract [™] DNA Extraction Solution	Epicentre, USA	QE0905T
Random Primers	Invitrogen, USA	48190011
RNasin® Plus	Promega, USA	N261B
Skim Milk Powder	Sigma, USA	70166

2.1.3 Medien und Zellkulturzusätze

Substanz	Hersteller	Katalog-Nr.
Bovines Serumalbumin (BSA)	Sigma, USA	A3803
DMEM	Gibco, USA	11960
DMSO	Roth, Deutschland	4720
Fötales Kälberserum (FKS)	Biochrom, Deutschland	S0115
		(LOT 1247B)
Gentamycin	Lonza, Schweiz	17-519Z
GlutaMAX [™] , 100x	Gibco, USA	35050
Natrium-Pyruvat, 100mM	Gibco, USA	11360
KO3861	Selleckchem, USA	S8100
Palbociclib	Selleckchem, USA	S1116
Penicillin/Streptomycin	Gibco, USA	15140
(10'000 U/ml Penicillin		
10'000 µg/ml Streptomycin)		
PBS pH 7,2	Gibco, USA	20012
PBS, Powder	Gibco, USA	21600
Puromycin	Sigma, USA	P8833
RPMI 1640	Gibco, USA	72400
Trypsin-EDTA	Gibco, USA	15400
3[H]-Thymidin	PerkinElmer / NEN, USA	NET027250-
		UC

2.1.3.1 RPMI-Standardmedium

Endkonzentration	Substanz
10 %	FKS (bei 56°C für 30 min Hitze-inaktiviert)
100 U/ml / 100µg/ml	Penicillin/Streptomycin
1 mM	Natrium-Pyruvat
	in RPMI

2.1.3.2 DMEM-Standardmedium

Endkonzentration	Substanz
10 %	FKS (bei 56°C für 30 min Hitze-inaktiviert)
100 U/ml / 100µg/ml	Penicillin/Streptomycin
1 mM	Natrium-Pyruvat
1x	GlutaMAX [™]
	in DMEM

2.1.3.3 Bakterienmedien

LB-Medium

Endkonzentration	Substanz
10 g/l	Bacto [™] Tryptone
5 g/l	Bacto [™] Yeast Extract
10 g/l	NaCl

LB-Agar für Platten

Endkonzentration	Substanz
10 g/l	Bacto [™] Tryptone
5 g/l	Bacto [™] Yeast Extract
10 g/l	NaCl
15 g/l	Bacto [™] Agar

SOC-Medium

Endkonzentration	Substanz
20 g/l	Bacto [™] Tryptone
5 g/l	Bacto [™] Yeast Extract
10mM	NaCl
2,5mM	KCI
10mM	MgCl ₂
10mM	MgSO ₄
20mM	Glukose

2.1.4 Zelllinien

Zelllinie	Ursprung	Entität
HEK293T/17	human	Transformierte embryonale Nierenzelllinie
NIH3T3	mouse	Embryo Fibroblasten
L428	human	Hodgkin Lymphom
L1236	human	Hodgkin Lymphom
KM-H2	human	Hodgkin Lymphom
L591	human	Hodgkin Lymphom
HDLM-2	human	Hodgkin Lymphom
L540	human	Hodgkin Lymphom
L540Cy	human	Hodgkin Lymphom
UHO-1	human	Hodgkin Lymphom
Reh	human	Akut lymphoblastische prä-B-Zell Leukämie

BJAB	human	Burkitt Lymphom
Namalwa	human	Burkitt Lymphom
BL-60	human	Burkitt Lymphom
SU-DHL-4	human	Diffus großzelliges B-Zell Lymphom
SU-DHL-6	human	Diffus großzelliges B-Zell Lymphom
Oci-Ly-1	human	Diffus großzelliges B-Zell Lymphom
Mino	human	Mantelzelllymphom

2.1.5 Bakterienstämme

Stamm	Hersteller	Katalog-Nr.
E. coli XL1-Blue One Shot® Stbl3 [™] Chemically	Stratagene / Agilent, USA Invitrogen, USA	50-125-058 C7373-03
Competent E. coli E. cloni 10G Elite Duo Electrocompetent Cells	Lucigen, USA	60052

2.1.6 Antikörper

<u>Spezifität</u>	Istotyp	Hersteller	Katalog-Nr.
ABF1 (MSC)	Ziege IgG, polyklonal	Santa Cruz, USA	sc-9555
β-Aktin	Maus IgG2a, monoklonal	Sigma, USA	A2228
BATF3	Schaf IgG, polyklonal	R&D, USA	AF7437
с-Мус	Maus IgG1, monoklonal	Santa Cruz, USA	sc-40
Cyclin A	Maus IgG2a, monoklonal	Santa Cruz, USA	sc-271682
Cyclin D2	Maus IgG2b, monoklonal	Santa Cruz, USA	sc-376676
E2A	Maus IgG1, monoklonal	Santa Cruz, USA	sc-416
Flag M2	Maus IgG1, monoklonal	Sigma, USA	F1804
HA-Tag	Kaninchen IgG, monoklonal	Cell Signaling, USA	#3724
HENMT1	Kaninchen IgG, polyklonal	abcam, USA	ab121991
ID2	Kaninchen IgG, polyklonal	Santa Cruz, USA	sc-489
ΙΚΚα	Maus IgG2b, monoklonal	Santa Cruz, USA	sc-7606
ΙΚΚβ	Maus IgG2a, monoklonal	Santa Cruz, USA	sc-8014
ΙΚΚγ	Maus IgG1, monoklonal	Santa Cruz, USA	sc-166398
IRF4	Ziege IgG, polyklonal	Santa Cruz, USA	sc-6059
Jun B	Maus IgG1, monoklonal	Santa Cruz, USA	sc-8051
KEAP1	Maus IgG2b, monoklonal	Santa Cruz, USA	sc-365626
NFкB	Maus IgG1, monoklonal	Santa Cruz, USA	sc-8414
NFκB p52	Maus IgG2a, monoklonal	Santa Cruz, USA	sc-7386
NFκB p65	Maus IgG1, monoklonal	Santa Cruz, USA	sc-8008
RelB	Maus IgG1, monoklonal	Santa Cruz, USA	sc-48366
lgG-HRP			
Kaninchen	Ziege	Promega, USA	W401B
Maus	Ziege	Promega, USA	W402B
Schaf	Esel IgG, polyklonal	R&D, USA	HAF016
Ziege	Esel IgG, polyklonal	Santa Cruz, USA	sc-2020

2.1.7 Enzyme

Enzym	Hersteller	Katalog-Nr.
DreamTaq DNA Polymerase	ThermoFisher Scientific, USA	EP0702
InviTaq DNA Polymerase	Stratec, Deutschland	3020100300
Phusion High-Fidelity DNA Polymerase	ThermoFisher Scientific, USA	F530S
Q5® High-Fidelity DNA Polymerase	New England BioLabs, USA	M0491S
FastAP Thermosensitive Alkaline	ThermoFisher Scientific, USA	EF0654
Plasmid-Safe [™] ATP-dependent DNase	Epicentre / Lucigen, USA	E3101K
T4 DNA Ligase	ThermoFisher Scientific, USA	EL0014
T4 Polynukleotide Kinase (PNK)	ThermoFisher Scientific, USA	EK0032
T5 Exonuklease	New England BioLabs, USA	M0363S
T7 Endonuklease	New England BioLabs, USA	M0302S
Taq-DNA-Ligase	New England BioLabs, USA	M0208S
SuperScript [™] II Reverse Transcriptase	Invitrogen, USA	18064014
RNase A	Sigma, USA	R6513
Restriktionsenzyme Agel (BshTI) BamHI BamHI (FastDigest) BsmBI (Esp3I) DpnI EcoRI EcoRI (FastDigest) Mlul (FastDigest) Nhel Nhel (Fast Digest) PacI (FastDigest) PmeI (MssI) PmeI (MssI) (FastDigest)	ThermoFisher Scientific, USA ThermoFisher Scientific, USA	ER1461 ER0051 FD0055 ER0452 ER1701 ER0271 FD0275 FD0564 ER0975 FD0974 FD2204 ER1341 FD1344

2.1.8 Verbrauchsmaterialien

Material	Hersteller	Katalog-Nr.
Amersham [™] Protran [™] 0,45µm NC BackSeal-96/384 (für Unifilter®-Platte)	GE, Großbritannien Perkin/Elmer, USA	10600003 6005199
CL-Xposure [™] Film High Sensitivity DNA Kit High Sensitivity DNA Reagents	Agilent, USA	34089 5067-4626 5067-4627
Thinwall Ultra-Clear [™] Tube TopSeal-A Plus (für Unifilter®-Platte)	BeckmannCoulter, Deutschland Perkin/Elmer, USA	344058 6050185
Unifilter® GF/C [™] , 96-well Mikroplatte Whatman [™] Grade 3MM Chr Blotting Paper	Perkin/Elmer, USA GE, Großbritannien	6005174 3030-917
2.1.9 Plasmide

<u>Plasmid</u>	Hersteller / Ursprung	Katalog-Nr.
GeCKOv1	Feng Zhang via addgene, USA	-
GeCKO v2	Feng Zhang via addgene, USA	1000000048
lentiCRISPRv1	Feng Zhang via addgene, USA	49535
lentiCRISPRv2	Feng Zhang via addgene, USA	52961
pBlueScript SK (-)	Stratagene	-
pEGFP-N3	Clontech, USA	-
pGEM®-T Easy	Promega, USA	A1360
pLJM1-EGFP	David Sabatini via addgene, USA	19319
pCMV-VSV-G	Bob Weinberg via addgene, USA	8454
psPAX2	Didier Trono via addgene, USA	12260
MIB (MSCV-IRES2-EBFP)	AG F. Rosenberg, MDC Berlin	-
pFU-luc-2A-mCherry	AG M. Lipp, MDC Berlin	-
pcDNA-BATF	AG Janz/Mathas, MDC Berlin	-
pcDNA-BATF3	AG Janz/Mathas, MDC Berlin	
lentiCRISPRv1-EGFP	diese Arbeit, modifiziert von lentiCRISPRv2	1
lentiCRISPRv2-EGFP	diese Arbeit, modifiziert von lentiCRISPRv2	2
lentiCRISPRv2-BFP	diese Arbeit, modifiziert von lentiCRISPRv2	2
lentiCRISPRv2-mcherry	diese Arbeit, modifiziert von lentiCRISPRv2	2
lentiCRISPRv2-EGFP-Cas9only	diese Arbeit, modifiziert von lentiCRISPRv2	2-EGFP
lentiCRISPRv2-BFP-sgRNAonly	diese Arbeit, modifiziert von lentiCRISPRv2	2-EBFP
lentiCRISPRv2-mcherry -sgRNAonly	diese Arbeit, modifiziert von <i>lentiCRISPRv2</i>	2-mcherry
lentiCRISPRv2-EGFP-emptyvector	diese Arbeit, modifiziert von lentiCRISPRv2	2-EGFP
lentiCRISPRv2-BFP-emptyvector	diese Arbeit, modifiziert von lentiCRISPRv2	P-BFP
lentiCRISPRv2-mcherry -emptyvector	diese Arbeit, modifiziert von <i>lentiCRISPRv2</i>	2-mcherry
lenti-Irf4-BFP (mouse)	diese Arbeit, modifiziert von <i>lentiCRISPRv2</i> -emptyvector	2-BFP
lenti-BATF-EGFP	diese Arbeit, modifiziert von <i>lentiCRISPRv2</i> -emptyvector	2-EGFP
lenti-BATF-BFP	diese Arbeit, modifiziert von <i>lentiCRISPRv2</i> -emptyvector	2-BFP
lenti-BATF3-EGFP	diese Arbeit, modifiziert von <i>lentiCRISPRv2</i> -emptyvector	2-EGFP
lenti-BATF3-BFP	diese Arbeit, modifiziert von <i>lentiCRISPRv2</i> -emptyvector	2-BFP

2.1.10 Oligonukleotide

Alle Oligonukleotide, aus denen die sgRNAs des Re-Screens entstanden, wurden durch die biomers GmbH synthetisiert und in ddH₂O zu 100µmol gelöst in Platten geliefert. Die Sequenzen dieser Oligonukleotide der Re-Screen *library* sind dem Anhang zu entnehmen.

Alle weiteren Oligonukleotide wurden synthetisiert durch die BioTeZ Berlin-Buch GmbH und nach Erhalt mit ddH₂O zu einem 100 µmolaren Stock angesetzt. Für Primer wurden

darüber hinaus ausgehend von diesen Stocks 10 µmolare Racemate des forward und reverse Primers erstellt.

Bezeichnung	Sequenz (5' – 3')
EGFP-lentiCRISPR_v2 fwd	CAC AAA GAA GGC TGG ACA GG
EGFP-lentiCRISPR_v2 rev	TAG AAG GCA CAG TCG AGG CT
EGFP-lentiCRISPR_v2 rev II	GGA AAG GAC AGT GGG AGT GG
hCas9-EGFP seq1 fwd	GCA ACA GAC ATA CAA ACT AAA G
hCas9-EGFP seq1 rev	ATG TGC GCT CTG CCC ACT GA
sgRNAonly seqHS24 fwd	GGC ACC GAG TCG GTG CTTT
sgRNAonly seqHS24 rev	GGT TGA TTG TCG ACT TAA CGCG
lentiEmptyVector fwd	GAG AAC CGT ATA TAA GTG CAG
lentiEmptyVector rev	CGG TCC AGG ATT CTC TTC GAC
pSK (Gibson) fwd	CAG TCA CGA CGT TGT AAA ACG
pSK (Gibson) rev	GTG AGT TAG CTC ACT CAT TAG G
U6-promotor fwd	ACT ATC ATA TGC TTA CCG TAA C

2.1.10.1 Primer für Sequenzierungen

2.1.10.2 Primer für Klonierungen

Bezeichnung	Sequenz (5' – 3')
EGFP fwd (+P2A)	AC GCTAGC GGC AGC GGC GCC ACC AAC TTC AGC CTG CTG AAG CAG GCC GGC GAC GTG GAG GAG AAC CCC GGC CCC ATG GTG AGC AAG GGC GAG GAG
EGFP rev	AC ACGCGT TTA CTT GTA CAG CTC GTC CAT GCC GAG AGT GAT CCC GGC GGC
pBlueScript fwd [Gibson] pBlueScript rev [Gibson]	GTTT AAAC AAC ATA CGA GCC GGA AGC ATA AA C GAC ATC TCC GGC TTG TTT CAG CAG AGA GAA GTT TGT TGC GCC GGA TCC CCC GGT ACC CAA TTC GCC CTA TAG T
EGFP fwd [Gibson]	CT TCT CTC TGC TGA AAC AAG CCG GAG ATG TCG AAG AGA ATC CTG GAC CG ATG GTG AGC AAG GGC GAG GA
EGFP rev [Gibson]	GTC GAC TTA ACG CGT TTA CTT GTA CAG CTC GTC CA
WPRE fwd [Gibson]	GAG CTG TAC AAG TAA ACG CGT TAA ACG CGT TAA GTC GAC AAT CA
WPRE rev [Gibson]	TTT ATG CTT CCG GCT CGT ATG TT GTTTAAAC GGG CCC TGC TAG AGA TTT TC
Irf4 Agel fwd (mouse) Irf4 Xbal rev (mouse)	AC ACCGGT GCCACC ATG AAC TTG GAG ACG GGC AC TCTAGA CTC TTG GAT GGA AGA ATG ACG
BATF Agel fwd	AC ACCGGT GCCACC ATG GAC TAC AAG GAT GA
BATF Xbal rev	AC TCTAGA GGG CTG GAA GCG CGG GGA GCT
BATF3 Agel fwd	AC ACCGGT GCCGCCACC ATG TCG CAA
BATF3 Xbal rev	AC TCTAGA TCG GGG CAA GCA GCC GGC CAC

Bezeichnung	Sequenz (5' – 3')
Insert Cas9 +	CCGG T GTT GTA AAT GAG CAC ACA G
Insert Cas9 -	GATC C TGT GTG CTC ATT TAC AAC A
Insert sgRNA +	GTT GTA AAT GAG CAC ACA AAA G
Insert sgRNA -	AATTC TTT TGT GTG CTC ATT TAC AAC AT
Insert BamHI +	CTAG C GGATCC GTT GTA TCTAGA A
Insert Xba -	GATC T TCTAGA TAC AAC GGATCC G

2.1.10.3 Oligos für Klonierungen

2.1.10.4 Oligos für sgRNAs

Bezeichnung	Sequenz (5' – 3')
sgABF1-1 fwd	CACC GGA GCT TCG GGG GCT GCA GC
sgABF1-1 rev	AAAC GCT GCA GCC CCC GAA GCT CC
sgABF1-2 fwd	CACC GGG GCT GCA GCG GGA GTA CC
sgABF1-2 rev	AAAC GGT ACT CCC GCT GCA GCC CC
sgABF1-3 fwd	CACC GAG GAG GAG CGC TGC GCT CT
sgABF1-3 rev	AAAC AGA GCG CAG CGC TCC TCC TC
sgABF1-4 fwd	CACC GCA GCG CGG AAG GCT GCA AG
sgABF1-4 rev	AAAC CTT GCA GCC TTC CGC GCT GC
sgBATF-1 fwd	CACC GAC AGA ACG CGG CTC TAC GCA
sgBATF-1 rev	AAAC TGC GTA GAG CCG CGT TCT GTC
sgBATF-2 fwd	CACC GGA CTC TAC CTG TTT GCC AGG
sgBATF-2 rev	AAAC CCT GGC AAA CAG GTA GAG TCC
sgBATF-3 fwd	CACC GCC TCT GTC GGC TCT TCT GGG
sgBATF-3 rev	AAAC CCC AGA AGA GCC GAC AGA GGC
sgE2A-1 fwd	CACC GAC CAC AGC TGG CAG CTC CG
sgE2A-1 rev	AAAC CGG AGC TGG CAG CTG TGG TC
sgE2A-2 fwd	CACC GCA GCC CAA GAA GGT CCG GA
sgE2A-2 rev	AAAC TCC GGA CCT TCT TGG GCT GC
sgE2A-3 fwd	CACC GAT AGA AGA CCA CCT GGA CG
sgE2A-3 rev	AAAC CGT CCA GGT GGT CTT CTA TC
sgE2A-4 fwd	CACC GCT AGG GCG AGC AGG TGC CA
sgE2A-4 rev	AAAC TGG CAC CTG CTC GCC CTA GC
sgID2-1 fwd	CACC GTT TTT CCT AAC GGA CCT CA
sgID2-1 rev	AAAC TGA GGT CCG TTA GGA AAA AC
sgID2-2 fwd	CACC GTC CAC AGG GGT TTT GCT CC
sgID2-2 rev	AAAC GGA GCA AAA CCC CTG TGG AC
sgID2-3 fwd	CACC GCT CAT CGG GTC GTC CAC AG
sgID2-3 rev	AAAC CTG TGG ACG ACC CGA TGA GC
sgID2-4 fwd	CACC GGC TCA TCG GGT CGT CCA CA
sgID2-4 rev	AAAC TGT GGA CGA CCC GAT GAG CC
<i>non-targeting</i> -1 fwd	CACC ACG GAG GCT AAG CGT CGC AA
non-targeting-1 rev	AAAC TTG CGA CGC TTA GCC TCC GT
non-targeting-2 fwd	CACC CGC TTC CGC GGC CCG TTC AA
non-targeting-2 rev	AAAC TTG AAC GGG CCG CGG AAG CG
non-targeting-3 fwd	CACC ATC GTT TCC GCT TAA CGG CG
non-targeting-3 rev	AAAC CGC CGT TAA GCG GAA ACG AT
non-targeting-4 fwd	CACC GTA GGC GCG CCG CTC TCT AC
non-targeting-4 rev	AAAC GTA GAG AGC GGC GCG CCT AC

Bezeichnung	Sequenz (5' – 3')
sgRNA fwd I	AAT GGA CTA TCA TAT GCT TAC CGT AAC TTG AAA GTA TTT CG
sgRNA rev I (v2)	TCT ACT ATT CTT TCC CCT GCA CTGT tgt ggg cga tgt gcg ctc tg
(1) illumina fwd p5	AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCT \underline{T} tct tgt gga aag gac
(2) illumina fwd p5	gaa aca ccg AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCT <u>AT</u> tct tgt gga aag gac
(3) illumina fwd p5	gaa aca ccg AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCT GAT tct tgt gga aag gac
(4) illumina fwd p5	AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCT <u>CGA T</u> tct tgt gga aag
(5) illumina fwd p5	gac gaa aca ccg AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCT <u>TCG AT</u> tct tgt gga aag
(6) illumina fwd p5	gac gaa aca ccg AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCT <u>ATC GAT</u> tct tgt gga aag
(7) illumina fwd p5	gac gaa aca ccg AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCT <u>GAT CGA T</u> tct tgt gga
(8) illumina fwd p5	aag gac gaa aca ccg AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCT <u>CGA TCG AT</u> tct tgt gga
(9) illumina fwd p5	aag gac gaa aca ccg AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATCT <u>ACG ATC GAT</u> tct tgt
(a) illumina rev p7	CAA GCA GAA GAC GGC ATA CGA GAT GCC AAT GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT tct act att ctt tcc cct aca ctat
(b) illumina rev p7	CAA GCA GAA GAC GGC ATA CGA GAT CTT GTA GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT tct act
(c) illumina rev p7	CAA GCA GAA GAC GGC ATA CGA GAT GTG AAA GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT tct act
(d) illumina rev p7	ALL CLITICC CCLIGCA CLGT CAA GCA GAA GAC GGC ATA CGA GAT ACA GTG GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT tct act
(e) illumina rev p7	ALL CLE CCE GCA CLGE CAA GCA GAA GAC GGC ATA CGA GAT ATG TCA GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT tct act
(f) illumina rev p7	Att ctt tcc cct gca ctgt CAA GCA GAA GAC GGC ATA CGA GAT CGA TGT GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT tct act
(g) illumina rev p7	att ctt tcc cct gca ctgt CAA GCA GAA GAC GGC ATA CGA GAT TGA CCA GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT tct act

2.1.10.5 Primer für CRISPR-Screen-Sequenzierung

	att ctt tcc cct gca ctgt
(h) illumina rev p7	CAA GCA GAA GAC GGC ATA CGA GAT CAG ATC GTG
	ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT tct act
	att ctt tcc cct gca ctgt
(i) illumina rev p7	CAA GCA GAA GAC GGC ATA CGA GAT CCG TCC GTG
	ACT GGA GTT CAG ACG TGT GCT CTT CCG ATCT tct act
	att ctt tcc cct gca ctgt
illumina-p5_forw	ATG ATA CGG CGA CCA CCG AG
illumina-p5_forw_II (3' of	TCT TGT GGA AAG GAC GAA ACA C
stagger)	
illumina-p7 rev (5' of index)	CAA GCA GAA GAC GGC ATA CG

2.1.11 Kits

Kit	Hersteller	Katalog-Nr.
Blood & Cell Culture DNA Midi Kit	Qiagen, USA	13343
Invisorb® Spin Plasmid Mini Two	Stratec, Deutschland	101040300
NucleoBond® Xtra Maxi Kit	Macherey-Nagel, Deutschland	740414
NucleoBond® Xtra Midi Kit	Macherey-Nagel, Deutschland	740410
Plasmid Maxi Kit	Qiagen, USA	12163
RNeasy Mini Kit	Qiagen, USA	74106
Zymoclean [™] Gel DNA Recovery	Zymo Research, USA	D4007

2.1.12 Geräte

Gerät	Hersteller	Katalog-Nr.
Agilent 2100 Bioanalyzer	Agilent, USA	G2939BA
Avanti J-26 XP, Zentrifuge	BeckmanCoulter, USA	393124
BDK-SK 1200, Sicherheitswerkbank Kl. II	BDK / neoLab®, Deutschland	83 99 51200
Bio Doc Analyze System T5	Biometra, Deutschland	-
Blue Marine [™] 200, Agarose-Gel-Kammer	Serva Electrophoresis, Deutschland	BM-200.01
C1000 Touch™ Thermal Cycler	Bio-Rad, Großbritannien	1851148
Centrifuge 5810R	Eppedorf, Deutschland	5811000420
CURIX 60, Entwicklermaschine	Agfa, Belgien	-
DU® 640 Spectrophotometer	BeckmanCoulter, USA	-
DS-11 FX+ Spektrophotometer	DeNovix / Biozym, Deutschland	31DS-11FX
Duomax 1030, Plattformschüttler	Heidolph, Deutschland	543-32205-00
FACS Aria [™] Fusion	BD, USA	656700
FACS Canto [™] II	BD, USA	338962
FACS LSRFortessa [™]	BD, USA	649225
FiveEasy pH meter F20	Mettler Toledo, USA	30266658
Heraeus [™] BB6220, Inkubator	ThermoFisher Scientific, USA	51007413
Heraeus [™] FunctionLine B6, Inkubator	ThermoFisher Scientific, USA	50042301
Heraeus [™] Multifuge [™] X3 FR	ThermoFisher Scientific, USA	75004536
Heraeus [™] Pico [™] 17, Tischzentrifuge	ThermoFisher Scientific, USA	75002410
HiSeq® 2500	Illumina®, USA	SY-401-9001
Inkubations- / Inaktivierungsbad	GFL®, Deutschland	1003
JA-14, Fixed Angle Rotor	BeckmanCoulter, USA	339247
Mikrowelle KOR-6305	Daewoo, Südkorea	-
Minigel-Twin G-42	Biometra, Deutschland	010-130
MiSeq®	Illumina®, USA	SY-410-1003
Multigel G44	Biometra, Deutschland	010-230
Multitron 2 Standard, Inkubationsschüttler	InforsHT, Schweiz	-

Novotron 50, Inkubationsschüttler	InforsHT, Schweiz	-
Optima [™] L-60, Ultrazentrifuge	BeckmanCoulter, USA	-
PowerPac [™] 300	Bio-Rad, Großbritannien	-
PS 304 II minipac	Apelex, Frankreich	-
RCT basic, Magnetrührer	IKA, Deutschland	3810000
Safe 2020 biologische Sicherheits- werkbank II	ThermoFisher Scientific, USA	51026638
Sartorius Universal, Feinwaage	Sartorius, Deutschland	U4600P
Standard Power Pack Biometra P25	Biometra, Deutschland	846-040-800
SW 28 Ti Rotor, Swinging Bucket	BeckmanCoulter, USA	342204
ThermoMixer® compact	Eppendorf, Deutschland	-
ThermoStat® plus	Eppendorf, Deutschland	-
TopCount NXT	Perkin/Elmer, USA	-
Trans-Blot® SD Semi-Dry Transfer Cell	Bio-Rad, Großbritannien	1703940
Unifilter-96, Cell Harvester	Perkin/Elmer, USA	C961961
Unimax 1010, Plattformschüttler	Heidolph, Deutschland	543-12310-00
Variolab Mobilien W90, Werkbank	Waldner, Deutschland	-
Vortex-Genie2 [™]	neoLab®, Deutschland	7-0092

2.1.13 Software

Software	Hersteller
4peaks 1.7.2	Nucleobytes, Niederlande
Adobe Illustrator CS5.1	Adobe Systems, USA
ApE, a plasmid editor 2.0.45	M. Wayne Davis, University of Utah, USA
BD FACSDiva™ software	BD, USA
FlowJo 10.0.8r1	BD, USA
GraphPad Prism 6.00	GraphPad Software Inc, USA
Microsoft Excel 2011 14.7.7	Microsoft, USA
Microsoft PowerPoint 2011 14.7.7	Microsoft, USA
Microsoft Word 2011 14.7.7	Microsoft, USA
R 3.4.3	R Core Team / Gnu Project
RStudio 1.1.423	RStudio Inc / Gnu Project
SnapGene Viewer 4.1.4	GSL Biotech LLC, USA

2.1.14 Puffer

2.1.14.1 Zellkultur

MACS-Puffer

Endkonzentration	Substanz
2 mM	EDTA
0,5 %	BSA
	in 1x PBS pH 7,2

2x HEBS

Endkonzentration	Substanz
50mM	HEPES
280mM	NaCl
1,5mM	Na ₂ HPO ₄

2.1.14.2 RNA, DNA

ΤE

Endkonzentration	Substanz
10 mM	Tris-HCl pH 8,0
1 mM	EDTA pH 8,0

TENS

Endkonzentration	Substanz
10 mM	Tris-HCl pH 8,0
1 mM	EDTA pH 8,0
0,1 N	NaOH
0,5 %	SDS

TBE

Endkonzentration	Substanz
0,1 M	Tris
0,1 M	Borsäure
2,5 mM	EDTA

10x Rot Ladepuffer

Endkonzentration	Substanz
1mM	Cresol Rot Natrium-Salz
1,75 mM	Sucrose

5x IRB Gibson-Assembly-Puffer

Endkonzentration	Substanz
500 mM	Tris-HCl pH 7,5
50 mM	MgCl ₂
1 mM	dNTPs
50 mM	DTT
5 mM	NAD
25 %	PEG-8000

2.1.14.3 Proteine, Immunpräzipitation, Western Blot

TX HIGH-Sail-Lysis-Puller (HSL)

Endkonzentration	Substanz
20mM	HEPES, pH 7.9
350mM	NaCl
1mM	MgCl ₂
0.5mM	EDTA
0.1mM	EGTA
0.02%	NP40
1mM	DTT
2mM	Na-Orthovanadate
1mM	NaF
+ 1 Tablette / 5ml	cOmplete™ Mini EDTA-free Protease Inhibitor Cocktail

4x Lämmli-Puffer

Endkonzentration	Substanz
200mM	Tris-HCl pH 6,8
40%	Glycerol
16%	SDS
20%	β-Mercaptoethanol
0,02%	Bromphenol-Blau

SDS-PAGE-Trenngel

Endkonzentration	Substanz
375mM	Tris-HCl pH 8,8
0,1%	SDS
0,1%	APS
0,05%	TEMED
8-15%	Acrylamid

SDS-PAGE-Sammelgel

Endkonzentration	Substanz
125mM	Tris-HCl pH 6,8
0,1%	SDS
0,1%	APS
0,05%	TEMED
5%	Acrylamid

1x Laufpuffer

Endkonzentration	Substanz
50mM	Tris
500mM	Glycin
0,2%	SDS

1x Blotpuffer

Endkonzentration	Substanz
48mM	Tris
39mM	Glycin
0,036%	SDS
20%	Methanol

1x TBS-T

Endkonzentration	Substanz
20mM	Tris-HCl pH 7,5
135mM	NaCl
0,01%	Triton-X

2.2 Methoden

2.2.1 RNA und DNA

2.2.1.1 Aufreinigung von RNA aus Zellpellets

RNA wurde mithilfe des *RNeasy Mini Kit* nach Angaben des Herstellers aufgereinigt und dabei zusätzlich ebenfalls nach Protokoll des Herstellers eine DNase-Behandlung durchgeführt. Die Konzentrationsbestimmung erfolgte photometrisch am *DS-11 FX+ Spektrophotometer*.

2.2.1.2 Reverse Transkription (RT)

Jeweils 1µg isolierte RNA wurde in 10,5µl Gesamtvolumen aufgenommen. Zu diesem wurden anschließend je 4 µl *5xFirst-Strand-Buffer*, 2 µl 0,1 M DTT, 1 µl 10mM dNTPs, 0,5 µl *RNasin*® *Plus* und 2 µl *Random Primer* hinzugefügt und die so komplettierten Ansätze für 10 min bei 70°C inkubiert. Zur Umschreibung in complementäre DNA (cDNA) wurden nun jeweils 1 µl *SuperScript*TM *II Reverse Transcriptase* sowie 0,3 µl *RNasin*® *Plus* hinzugegeben und zunächst für 10 min bei Raumtemperatur, gefolgt von 50 min bei 42°C und schließlich 5 min bei 95°C inkubiert.

2.2.1.3 Polymerase Ketten Reaktion (PCR)

Für PCR auf cDNA, bzw. auf genomischer DNA (gDNA), wurde je Probe der folgende 50µl Ansatz erstellt:

Menge	Substanz	_
5 µl	10x DreamTag [™] Puffer	
5 µl	10x Rot Ladepuffer	
1 µl	10mM dNTPs	
1 μΙ	je 10µM Primer forward und reverse	
0,25 μl	DreamTaq [™] DNA Polymerase	
50 ng	cDNA, resp. genomische DNA	
-	ddH₂0 auf 50 µl	

Anschließend wurde im *C1000 Touch*[™] *Thermal Cycler* folgendes für die *DreamTaq*[™] *DNA Polymerase* optimiertes Programm gefahren:

Initiale Denaturierung	95°C	5 min	_
Denaturierung	95°C	15 s	
Hybridisierung	58-62°C	15 - 30 s	- 30 - 40 Zyklen
Elongation	72°C	1 min / 1kb	
Terminale Elongation	72°C	5 min	

2.2.1.4 Agarose-Gel-Elektrophorese

Für DNA-Fragmente von 0,5 bis 5 kb Länge wurden 1%-ige, für kleinere Fragmente höher resp. für größere Fragmente niedriger konzentrierte Gele gegossen. Für ein 1%-iges Gel wurde 1g Agarose in 100ml TBE in der Mikrowelle bis zum Kochen erhitzt und anschließend mit 5 Tropfen Ethidiumbromid-Lösung versetzt. Nach kurzem Abkühlen wurden Gele gegossen und nach ihrem erkalten mit TBE-Puffer überschichet und anschließend mit den jeweiligen Proben und dem entsprechenden beladen. Eine Spannung von 80 bis 120 V wurde so lange angelegt bis die Lauffront der Proben in Abhängigkeit von der erwarteten Bandengröße etwa 2/3 des Geles passiert hatte. Die Visualisierung der Gele erfolgte mittels des *Bio Doc Analyze System T5.*

2.2.1.5 Sanger-Sequenzierung

Sanger-Sequenzierungen von Einzelproben wurden durchgeführt durch die *LGC Genomics GmbH* und die erhaltenen Ergebnisse mithilfe von *4peaks* und *ApE* analysiert.

2.2.2 Proteine

2.2.2.1 Aufreinigung von Protein aus Zellpellets

Aufgetaute Zellpellets wurden je nach Zellzahl in 30 - 100 µl 1xHSL aufgenommen und für 15 min auf Eis inkubiert. Anschließend wurden die Proben für 10 min bei 14 000 rpm, 4°C zentrifugiert und der proteintragende Überstand in ein neues 1,5 ml Reaktionsgefäß überführt. Die Protein-Konzentration wurde jeweils nach Messung einer Standardkurve mit 2-10 µg/ml BSA photometrisch bestimmt. Hierzu wurden je 2 µl Probe in eine mit 1 ml *Protein Assay Dye Reagent Concentrate* (1:5 in H₂O) befüllte Küvette pipettiert, in dieser gemischt und nach 5 min Inkubation gemessen.

2.2.2.2 SDS-PAGE

Für SDS-Polyacrylamid-Gele wurde zunächst das Trenngel zwischen zwei entsprechenden Glasplatten gegossen und mit 1 ml H₂O überschichtet. Sobald dieses fest war, wurde das H₂O mit einem Filterpapier abgenommen und das 1 cm hohe Sammelgel darüber gegossen, in dieses wurde sofort der jeweilige Kamm mit den entsprechenden Geltaschen gesetzt. Nachdem auch das Sammelgel ausgehärtet war, wurde der Kamm herausgenommen und die Taschen mit 1xLaufpuffer gespült. Das fertige Gel wurde in eine *Biometra* Gel-Kammer gesetzt, mit den Protein-Proben und je 5 μl *PageRuler[™] Plus Prestained* Marker geladen und mit 1xLaufpuffer bei 80 – 120 V gefahren. Für die Proteinproben wurden jeweils 10 - 30 μg Protein mit H₂O auf ein Volumen von 12 μl gebracht und anschließend 4 μl 4xLämmli-Ladepuffer hinzugegeben. Diese Proben wurden für 5 min bei 95°C inkubiert und anschließend auf das entsprechende SDS-Polyacrylamid-Gel geladen.

2.2.2.3 Western Blot (WB)

Gelaufene SDS-Polyacrylamid-Gele wurden abgebaut und von unten nach oben in folgender Reihe in einer Trans-Blot® SD Semi-Dry Transfer Cell geschichtet: 5 Blatt Whatman[™] Grade 3MM Chr Blotting Paper, 1 Blatt Amersham[™] Protran[™] 0,45µm NC Membran, SDS-Polyacrylamidgel, 5 Blatt Whatman[™] Grade 3MM Chr Blotting Paper. Anschließend wurde je nach Größe des Zielproteins für 35 - 50 min bei 20 V geblottet, der Blot abgebaut und die nun proteintragende Membran in Ponceau-Lösung gefärbt. Hiernach wurde die Membran mit 5% Milk Powder in TBS-T 1h bei Raumtemperatur oder über Nacht bei 4°C auf dem Unimax Plattformschüttler geblockt und dann mit 2 - 8 µg primärem Antikörper in 10 ml 5% Milk Powder in TBS-T über Nacht bei 4°C oder für 1 - 2 h bei Raumtemperatur auf dem Unimax Plattformschüttler inkubiert. Anschließend wurde 3x für jeweils 10 min in 1% Milk Powder in TBS-T auf dem Duomax Plattformschüttler gewaschen, mit 1 - 4 µg des entsprechenden sekundären, HRPgekoppelten Antikörpers für 1 h bei Raumtemperatur inkubiert auf dem Unimax Plattformschüttler und erneut 3x für jeweils 10 min in 1% Milk Powder in TBS-T auf dem Duomax Plattformschüttler gewaschen. Zuletzt wurde die so behandelte Membran für 1 min unter Schwenken in 4 ml Pierce[™] ECL Western Blotting Substrate inkubiert, hiermit ein *CL-Xposure[™] Film* für 10 s - 1 h belichtet und in der *CURIX* 60 Entwicklermaschine entwickelt.

2.2.3 Bakterienkultur

Zur Transformation wurden im eigenen Labor hergestellte chemisch kompetente *XL-1 Blue* verwendet. LB-Amp-Platten wurden aus mit 1 µg/ml Ampicillin versetztem LB-Agar gegossen. Transformationen wurden auf LB-Amp-Platten ausplattiert und diese über Nacht bei 37°C inkubiert. Große, einzeln wachsende Kolonien wurden mit einem Zahnstocher von der Platte gepickt und hiermit circa 4 ml LB-Amp-Medium (1 µg/ml Ampicillin) für Minis angeimpft. Maxis wurden aus gleichermaßen entstandenen Vorkulturen angeimpft. Beide wurden bei 37°C und 180 rpm über Nacht im *Novotron 50* oder *Multitron 2 Standard* Inkubationsschüttler inkubiert.

2.2.3.1 Präparation von Plasmid-DNA (pDNA) aus Bakterienkulturen – Mini

"Real Fast Mini Preps" nach S. Finkbeiner, Gladstone Institutes (Finkbeiner)

Circa 1,5 ml Übernacht-Bakterienkultur wurden in ein 1,5 ml Reaktionsgefäß überführt und anschließend für 5 min bei 3.000 rpm in der *HeraeusTM PicoTM 17* Tischzentrifuge zentrifugiert. Der Überstand wurde verworfen, wobei ein Rest von etwa 50 bis 100 µl im Reaktionsgefäßverblieb. 300 µl TENS-Puffer wurden hinzugefügt und bis zur vollständigen Resuspension des Pellets auf dem *Vortex* gemischt. Nach 10 min Inkubation auf Eis wurden 150 µl 3M Natrium-Acetat pH 5,2 hinzugegeben und kurz gemischt. Anschließend wurde für 6 min bei 13.000 rpm zentrifugiert, der Überstand in eine neues mit 700 µl auf -20°C vorgekühltem 100%-Ethanol befülltes Reaktionsgefäß überführt und abermals für 2 min bei 13.000 rpm zentrifugiert. Der Überstand wurde verworfen und das Pellet mit ebenfalls auf -20°C vorgekühltem 70%-Ethanol gewaschen sowie für 2 min bei 13.000 rpm zentrifugiert. Schließlich wurde der Überstand abgenommen und das Pellet an der Raumluft getrocknet. Die Resuspension erfolgte nach vollständigem Trocknen in 100 µl H₂O, versetzt mit 1 µl RNase A.

Die Präparation von Plasmid-DNA mit Hilfe des *Invisorb*® *Spin Plasmid Mini Two* Kits erfolgte gemäß Herstellerangaben.

2.2.3.2 Präparation von pDNA aus Bakterienkulturen mit NuceloBond® Xtra – Maxi / Midi

Je 250 (Midi) - 500 (Maxi) ml Übernacht-Kultur wurden in der *Avanti J-26 XP* Zentrifuge für 10 min bei 5.000 rpm und 4°C zentrifugiert. Aus den Pellets erfolgte die Präparation der pDNA mit dem *NuceloBond*® *Xtra Midi / Maxi* Kit nach den Angaben des Herstellers.

2.2.4 Klonierungen

2.2.4.1 Klonierungs-PCR

Zu klonierende Inserts wurden mittels spezifischer Primer PCR-amplifiziert. Um Lesefehler zu minimieren wurde die Q5® *High-Fidelity* DNA Polymerase oder *Phusion High-Fidelity* DNA Polymerase verwendet. Pro Ansatz wurden in ein 100 µl fassendes PCR-Reaktionsgefäß pipettiert:

Menge	Substanz
10 µl	5x Puffer der jeweiligen DNA Polymerase
5 μİ	10x Rot Ladepuffer
1 µl	10mM dNTPs
1 µl	je 10µM Primer fwd und rev
0,5 µl	Q5® / Phusion High-Fidelity DNA Polymerase
50 ng	cDNA resp. pDNA
-	ddH₂0 auf 50 µl

Anschließend wurden die PCR-Reaktionsgefäße in den C1000 Touch[™] Thermal Cycler gesetzt und in diesem folgendes für die Q5® / Phusion High-Fidelity DNA Polymerase optimiertes Programm gefahren:

Initiale Denaturierung	98°C	<u> 30 sec - 2 min</u>	
Denaturierung	98°C	8 s	
Hybridisierung	60°C	15 - 30 s	- 30 - 40 Zyklen
Elongation	72°C	30 s / 1kb	
Terminale Elongation	72°C	2 - 10 min	

Zuletzt wurde eine Agarose-Gel-Elektrophorese gemäß dem oben beschriebenen Procedere durchgeführt.

2.2.4.2 Aufreinigung von DNA aus Agarose-Gelen

Banden der Zielgröße wurden unter UV-Licht sichtbar gemacht, mittels eines Skalpells ausgeschnitten und in ein 1,5 ml Reaktionsgefäß überführt. Die Aufreinigung der DNA aus dem Agarose-Gel erfolgte mit Hilfe des *Zymoclean[™] Gel DNA Recovery Kit* gemäß den Angaben des Herstellers.

2.2.4.3 Verdau mit Restriktionsenzymen

Für den Verdau mit Restriktionsenzymen wurden Proben folgendermaßen angesetzt und für 1 h bei 37°C inkubiert:

Menge	Substanz
10 % 10 %	10x Rot Ladepuffer Puffer des jeweiligen Restriktionsenzyms
10 % 1 - 3 μg	DNA

Für Doppelverdaus wurden die jeweils genauen Empfehlungen des Herstellers befolgt (DoubleDigest Calculator, Thermo Scientific, am 18.10.19). Zusätzlich wurde nur der Ziel-Vektor, nicht jedoch das Insert, anschließend für 30 min bei 37°C durch *FastAP*-

Behandlung dephosphoryliert. Nach Verstreichen der Inkubationszeit wurden die Ansätze in ein Agarose-Gel geladen, unter ultraviolettem (UV) Licht visualisiert und schließlich ggf. die DNA der benötigten Banden aus dem Gel aufgereinigt.

2.2.4.4 Hybridisierung von Oligonukleotiden

Um eine nach dem Verdau mit Restriktionsenzymen entstandene Lücke in einem Vektor ohne Ligation eines neuen kodierenden DNA-Fragments nur zu schließen, wurden kurze Oligonukleotide erstellt, die den durch die Behandlung mit den jeweils verwendeten Restriktionsenzymen enstandenen Überhang füllen und zwischen beiden Schnittstellen eine Spanne von 6 bp einbringen. Diese wurden für den jeweiligen Sinnund Gegensinn-Strang passend erstellt. Präparation und Sequenzen der Oligonukleotide sind in Kapitel 2.1.10.3 dargestellt. Um das Sinn- mit seinem passenden Gegensinn-Oligonukleotid zu hybridisieren, wurde folgende Reaktion angesetzt und anschließend folgendermaßen im C1000 Touch™ Thermal Cycler inkubiert:

Menge	Substanz
1 µl	Oligo + (Sinn)
1 µl	Oligo - (Gegensinn)
1 µl	10x T4 Ligase Puffer
0.5 µl	T4 PNK
6.5 µl	ddH ₂ O
Temperatur	Inkubationsdauer
37°C	30 min
95°C	5 min

Herunterkühlen auf 25°C mit -5°C/min

2.2.4.5 Ligation von DNA-Fragmenten

Für die Ligation wurden insgesamt 50 ng aufgereinigte, geschnittene DNA-Fragmente in äquimolaren Teilen gemischt und mit Hilfe der T4 DNA Ligase entweder für 1 h bei Raumtemperatur (Quick-Ligase-Puffer) oder über Nacht bei 16°C (Standard-Ligase-Puffer) inkubiert. Für die Ligation hybridisierter Oligonukleotide wurden diese zunächst 1:100 in H₂O verdünnt und hiervon 1 μ I wie beschrieben in 50 ng des entsprechenden verdauten Zielvektors ligiert.

2.2.4.6 Transformation

1 - 2 μl des Ligationsansatzes wurden in ein neues 1,5 ml Reaktionsgefäß überführt. Kompetente Zellen wurden von -80°C auf Eis aufgetaut, jeweils 25 - 50 μl von diesen zu jedem 1,5 ml Reaktionsgefäß hinzugeben und in diesem durch Rühren mit der Pipettenspitze mit dem Ligationsansatz vermengt. Die entstandene Mischung wurde für 20 min auf Eis inkubiert, für 40 s bei 42°C Hitze-geschockt und anschließend nochmals für 2 min auf Eis inkubiert. Dann wurden 450 μl SOC-Medium hinzugegeben und die Proben für 1 h bei 37°C und 180 rpm geschüttelt. Schließlich wurden je nach zu erwartender Effizienz 50 μl des Ansatzes bis hin zum gesamten Ansatz auf LB-Amp-Platten ausplattiert und diese über Nacht bei 37°C inkubiert.

2.2.4.7 Kontrolle der Klonierung

Von aus der Transformation über Nacht gewachsenen Kolonien wurden Mini-Kulturen à 3 - 5 ml angeimpft und aus diesen wie oben beschrieben pDNA gewonnen. Diese wurde mit den zur Klonierung verwendeten Restriktionsenzymen verdaut und in einer Agarose-Gel-Elektrophorese überprüft, ob der jeweilige Klon in Fragmente der korrekten Anzahl und Größe aufgespalten wurde. Im Kontroll-Verdau korrekte Klone wurden anschließend mit den in Kapitel 2.1.10.1 aufgeführten Sequenzierungs-Primern zur Sanger-Sequenzierung an die *Igc genomics GmbH* übergeben. Aus jeweils einem in der Sanger-Sequenzierung korrekten Klon wurde dann eine Midi, bzw. Maxi-Kultur angesetzt, aus dieser pDNA präpariert und für die weiteren Experimente eingesetzt.

2.2.4.8 Klassisch klonierte Vektoren

Vektor	Primer / Oligos	PCR auf	Ligation in	<u>Schnittstellen</u>
lentiCRISPRv1 -EGFP	EGFP (+P2A)	pEGFP-N3	lentiCRISPRv1	Nhel / Mlul
lentiCRISPRv2 -EGFP-Cas9only	Insert Cas9 +/-	hybridisierte Oligos	lentiCRISPRv2 -EGFP	Agel / Xbal
lentiCRISPRv2 -EGFP-sgRNAonly	Insert sgRNA +/-	hybridisierte Oligos	lentiCRISPRv2 -EGFP	EcoRI / Pacl
lentiCRISPRv2 -EBFP-sgRNAonly	Insert sgRNA +/-	hybridisierte Oligos	lentiCRISPRv2 -EBFP	EcoRI / Pacl
lentiCRISPRv2 -mcherry-sgRNAon	Insert sgRNA +/- ly	hybridisierte Oligos	lentiCRISPRv2 -mcherry	EcoRI / Pacl
lentiEmptyVector -EGFP	Insert BamHI + Insert Xbal -	hybridisierte Oligos	lentiCRISPRv2 -EGFP-sgRNAonly	BamHI / Xbal
lentiEmptyVector -EBFP	Insert BamHI + Insert Xbal -	hybridisierte Oligos	lentiCRISPRv2 -EBFP-sgRNAonly	BamHI / Xbal

Gemäß dem oben beschriebenen Procedere wurden folgende Vektoren erstellt:

lentilrf4-EBFP (mouse)	Irf4 Agel fwd Irf4 Xbal rev	cDNA (Abl)	lentiEmptyVector -EBFP	Agel / Xbal
lentiBATF-EGFP (mouse)	BATF Agel fwd BATF Xbal rev	pcDNA -BATF	lentiEmptyVector -EGFP	Agel / Xbal
lentiBATF3-EGFP	BATF3 Agel fwd BATF3 Xbal rev	pcDNA -BATF3	lentiEmptyVector -EGFP	Agel / Xbal

2.2.4.9 Klonierungen mit Hilfe einer Gibson-Assembly oder Overlap-Extension-PCR

Um die Puromycin-Resistenz aus dem original lentiCRISPRv2 Vektor mit einem fluoreszierenden Reporter (EGFP, EBFP, bzw. mcherry) zu ersetzen, wurde zunächst ein die in lentiCRISPRv2 vorhandenen Schnittstellen BamHI und Pmel umspannendes und statt der Puromycin-Resistenz den entsprechenden fluoreszierenden Reporter tragendes Fragment in den Vektor pSK(-) gesetzt. Hierfür wurden über eine PCR folgende drei sich jeweils um 30 bp überlappende Fragmente generiert:

Fragment	Primer / Oligos	PCR auf	<u>Schnittstellen</u>
pSK	pSK-BamHI-P2A fwd pSK-BamHI-P2A rev	pSK(-)	BamHI
P2A-EGFP	P2A-EGFP-WPRE fwd P2A-EGFP-WPRE rev	pEGFP-N3	
P2A-EBFP	P2A-EGFP-WPRE fwd P2A-EGFP-WPRE rev	MIB (MSCV-IRES2-E	BFP)
P2A-mcherry	P2A-EGFP-WPRE fwd P2A-EGFP-WPRE rev	pFU-luc-2A-mCherry	
EGFP-WPRE	EGFP-WPRE-Pmel fwd EGFP-WPRE-Pmel rev	lentiCRISPRv2	Pmel

Zur Elimination der eingesetzten Plasmid-DNA wurden die entstandenen PCR-Fragmente wurden über Nacht mit DpnI verdaut und anschließend wie bereits beschrieben über eine Agarose-Gel-Elektrophorese aufgereinigt und durch eine *Gibson Assembly* wie folgt ligiert (Gibson, 2009):

Menge	Substanz
4 μl	5x IRB
2 µl	Taq-Ligase
1 µl	10x T4 Ligase Puffer
0,4 µl	Exonuklease, 1:50 in ihrem Puffer verdünnt
0,2 µl	Phusion High-Fidelity Polymerase
Temperatur	Inkubationsdauer
50°C	1h

Da die Sequenzen der drei verschiedenen klonierten fluoreszierenden Reporter in den für die Primer genutzten Abschnitten identisch sind, konnte das P2A-EGFP-WPRE-Primerpaar nicht nur für die Amplifikation von EGFP sondern auch von EBFP und mcherry genutzt werden. In einem zweiten Klonierungsschritt wurde anschließend das in pSK so zusammengesetzte Fragment über die Schnittstellen BamHI und PmeI in einer klassischen Klonierung gemäß dem oben beschriebenen Procedere in lentiCRISPRv2 gesetzt.

2.2.4.10 sgRNA-Klonierungen

SgRNAs wurden mit CrispRGold entworfen und an der von Le Cong et al. publizierten Strategie orientierend kloniert (Chu et al., 2016; Cong et al., 2013). Dazu wurden die sgRNA-Oligos wie bereits oben für die Insert-Oligos beschrieben hybridisiert und über BsmBI in lentiCRISPRv2-EGFP, -EBFP oder mcherry kloniert. Hierfür wurde der entsprechende lentiCRISPR-Vektor wie folgt aufbereitet und über eine Agarose-Gel-Elektrophorese aufgereinigt:

Menge	Substanz
5 µg	lentiCRISPRv2-EGFP/EBFP/mcherry
3 µl	BsmBl
3 µl	FastAP
6 µl	10x Tango Puffer
0,6 µl	100mM DTT
	ddH₂O auf 60 μl

Schließlich wurden die fertigen sgRNAs 1:200 in H₂O verdünnt in jeweils 50 ng des aufgereinigten lentiCRISPRv2-Vektors ligiert.

2.2.4.11 Klonierungen in pGEM®-T Easy

PCR-Amplifikation, Gel-Elektrophorese und Gel-Aufreinigung erfolgten wie für die klassische Klonierung beschrieben. Um mit den 3'-T-Überhängen des *pGEM*®-*T Easy* Vektors ligiert werden zu können, müssen die Inserts mit einem 3'-A-Überhang versehen werden. Für einen 10 µl Ansatz wurden hierzu pipettiert und anschließend für 30 min bei 70°C inkubiert:

Menge	Substanz
5 μl	eluierte DNA
1 μl	10x NH₄-Puffer

1,1µI	25 mM MgCl ₂
2 µl	10 mM dATP
1 µl	InviTaq DNA Polymerase

Die Ligation erfolgte unter der gleichen Berechnung wie bei der klassischen Klonierung unter Einsatz der zusammen mit dem *pGEM®-T Easy* Vektor von *Promega* zur Verfügung gestellten Reagenzien (2x Ligase Puffer, T4-DNA-Ligase). Auch die Transformation wurde wie für die klassische Klonierung beschrieben vollzogen. Da der *pGEM®-T Easy* Vektor das lac-Operon exprimiert, wurde hier zur Differenzierung zwischen Klonen mit gegen solche ohne erfolgreich ligiertes Insert zusätzlich eine Blau-Weiß-Selektion angewandt. Hierzu wurden vor der Transformation jeweils 40 μ I X- β -Gal (20 mg/ml) sowie 40 μ I IPTG (0,1 M) auf den LB-Amp-Platten ausplattiert.

2.2.5 Zellkultur

2.2.5.1 Stammhaltung laufender Zellkultur

Alle Suspensionszelllinien wurden mit einer Dichte von 1 - 5 x 10^5 Zellen / ml in RPMI-Standardmedium bei 37°C und 5 % CO₂ gehalten und alle 2 bis 3 Tage dünn gesetzt sowie mit frischem Medium versehen.

Die adhärente Zelllinie HEK293T/17 wurde mit einer Dichte von 1 - 5 x 10⁵ Zellen / ml in DMEM-Standardmedium bei 37°C und 5 % CO₂ gehalten und alle 2 bis 3 Tage mit Hilfe von Trypsin vom Boden der Zellkulturflasche gelöst, ausgedünnt und mit frischem Medium versehen.

2.2.5.2 Einfrieren und Auftauen eukaryoter Zellen

Pro Pellet wurden 1 x 10⁷ Zellen aus möglichst junger laufender Kultur abgenommen und einmal mit 1xPBS gewaschen, d.h. 5 min bei 1.200 rpm zentrifugiert, der Überstand abgegossen, das Pellet in frischem 1xPBS wiederaufgenommen und nochmals 5 min bei 1.200 rpm zentrifugiert. Das nun entstandene Pellet wurde in für jedes Reaktionsgefäß jeweils 1 ml vorgekühltem FKS + 10 % DMSO resuspendiert und dieser Mix auf die entsprechende Anzahl an Kryo-Reaktionsgefäße verteilt. Diese wurden in einem Isopropanol-Ständer über Nacht langsam bei -80°C abgekühlt und am nächsten Morgen in flüssigen Stickstoff umgelagert.

Zum Auftauen wurde die aus dem flüssigen Stickstoff entnommenen Zellen langsam bei Raumtemperatur angetaut und unverzüglich in 10 ml der jeweiligen Zelllinie entsprechendem Medium aufgenommen, für 5 min bei 1.200 rpm zentrifugiert, der Überstand abgegossen, das Pellet in frischem Medium resuspendiert und in eine mit vorgewärmtem Medium vorbereitete Zellkulturflasche überführt.

2.2.5.3 Herstellung von Zellpellets zur Aufbreitung von DNA, RNA und Protein

Alle nachfolgend beschriebenen Schritte wurden auf Eis resp. bei 4°C durchgeführt. Pro Pellet wurden etwa 1 x 10⁷ Zellen aus laufender Kultur abgenommen und für 5 min bei 1.200 rpm zentrifugiert und das entstandene Pellet einmal in kaltem 1xPBS gewaschen, anschließend wieder in kaltem 1xPBS aufgenommen und auf die entsprechende Anzahl 1,5 ml Reaktionsgefäße verteilt. Diese wurden für 5 min bei 3.000 rpm zentrifugiert und der Überstand komplett abgenommen. Das verbleibende Pellet wurde über flüssigen Stickstoff bei -80°C eingefroren.

2.2.5.4 Puromycin-Selektions-Kurven

Zu untersuchende Zellen wurden aus laufender Kultur entnommen und auf eine Konzentration von 4 x 10^5 Zellen / ml eingestellt. Diese wurden zu je 5 ml pro *well* auf 6-*well*-Platten ausgesetzt. Jedes *well* erhielt eine Konzentration einer Konzentrationsreihe an Puromycin, die zunächst den Bereich von 0,5 µg/ml bis 2,0 µg/ml sowie eine Kontrolle ohne Puromycin abdeckte. Die Viabilität jedes *wells* wurde für etwa 7 bis 9 Tage täglich mit Hilfe einer PI-Färbung durchflusszytometrisch bestimmt und aus den gewonnen Ergebnissen Kaplan-Meyer-Kurven generiert. Als optimale Puromycin-Konzentration wurde die niedrigste Konzentration gewählt, bei der am Ende des Untersuchungszeitraumes keine lebenden Zellen mehr zu detektieren waren. Wo nötig, wurde basierend auf diesen Ergebnissen eine zweite Puromycin-Selektions-Kurve angelegt, die nun einen kleineren Bereich um den vermuteten Zielwert abdeckte.

Für die im Screen verwendeten Zelllinien ergaben sich dabei folgende Puromycin-Konzentrationen:

L428	0,8	µg/ml
L1236	0,5	µg/ml
BJAB	0,6	µg/ml
SU-DHL-4	0,4	µg/ml

2.2.5.5 Durchflusszytometrie

Durchflusszytometrische Analysen wurden am *BD FACS CantoTM II* oder *FACS LSRFortessaTM* vorgenommen und mit Hilfe dessen Software (*FACSDivaTM*) oder *FlowJo* ausgewertet. Hierfür wurden 1 x $10^5 - 10^6$ Zellen aus der zu untersuchenden Zellkultur entnommen und in ein mit 3 ml 1xPBS befülltes 5 ml FACS-Röhrchen gegeben. Dieses wurde für 5 min bei 1.200 rpm zentrifugiert, der Überstand abgenommen und das entstandene Pellet in 1xPBS wiederaufgenommen. Für die Darstellung toter Zellen wurde das Pellet in 0,8 µg/ml PI in 1xPBS resuspendiert.

2.2.5.6 Proliferationsanalysen mit ³H-Thymidin

Für Proliferationsanalysen mit ³H-Thymidin wurden je 4x10⁴ Zellen in 200µl in ein *well* einer 96-*well*-Platte gegeben. ³H-Thymidin wurde 1:20 in RPMI-Standardmedium verdünnt. Anschließend wurden zu jedem *well* 20µl 1:20 verdünntes ³H-Thymidin hinzugegeben und die Zellen mit diesem 16h (über Nacht) inkubiert. Im Anschluss an die Inkubationszeit wurde die 96-*well*-Platte bei -20°C durchgefroren, um die Zellen aufzuschließen. Nach dem Auftauen der Platte wurde diese mit Hilfe des *Unifilter*-96 *Cell Harvester* auf eine *Unifilter* Mikroplatte geerntet. Auf dieser wurde nach Trocknung jedes *well* mit 10µl *Microscint*TM-O versehen, die Platte mit einem *TopSeal* und *BackSeal* verschlossen und schließlich die inkorporierte ³H-Aktivität am *TopCount NXT* gemessen.

2.2.5.7 Kompetitions-Assays

Für die Durchführung von Kompetitions-Assays wurden die Hodgkin-Zelllinien L428, L1236 und UHO-1 sowie die B-NHL-Kontrollzellinie BJAB jeweils entweder mit einem Pool aus den drei im Re-Screen verwendeten sgRNAs gegen das entsprechende Kandidatengen oder einem Pool aus sieben *non-targeting* sgRNAs transduziert. Dabei wurden die *knockout*-Konstrukte grün (*lentiCRISPRv2-EGFP*) und die *non-targeting* Kontrollen blau fluoreszierend gewählt (*lentiCRISPRv2-EBFP*). Nach lentiviraler Transduktion und durchflusszytometrischer Zellsortierung (für L428 und UHO-1; Methoden s.u.) wurde eine Mischpopulation aus knockout- (EGFP) und Kontrollzellen (EBFP) erstellt. Diese wurde über einen Zeitraum von 30 Tagen mit Hilfe von Durchflusszytometrie auf ihr Verteilungsverhältnis untersucht. Die Veränderung dieses Verteilungsverhältnisses wurde zunächst für die *knockout*- und Kontrollprobe im

Vergleich zum jeweiligen Ausgangswert berechnet. Anschließend wurde diese Veränderung der *knockout*-Probe in Relation zur Kontrollprobe gesetzt:

Quotient 1-A	[(% reporterpositive Zellen Tag X knockout) /
	(% reporterpositive Zellen Tag 1 knockout)]
Quotient 1-B	[(% reporterpositive Zellen Tag X Kontrolle) /
	(% reporterpositive Zellen Tag 1 Kontrolle)]
End-Quotient	[(Quotient 1-A <i>knockout</i> Tag X) / (Quotient 1-B Kontrolle Tag X)]

2.2.6 Lentiviraler Gentransfer

2.2.6.1 Transfektion von HEK293T/17 zur Virusproduktion und Ernte des virustragenden Überstandes

Am Tag vor der Transfektion wurden HEK293T/17 aus laufender Kultur entnommen und mit ca. 4 x 10⁶ Zellen in 9 ml DMEM-Standardmedium so auf 10 cm Schalen ausgesetzt, dass sie am nächsten Morgen zu circa 70 - 80 % konfluierten. In einem sterilen 1,5 ml Reaktionsgefäß wurden 10 µg des Ziel-Plasmids und je 5 µg der lentiviralen Verpackungsplasmide pCMV-VSV-G und psPAX2 mit H₂O auf 450 µl aufgefüllt. Zu diesem DNA-Gemisch wurden nun jeweils 50 µl 2,5 M CaCl₂ hinzugegeben, auf dem Vortex gemischt und für 5 min bei Raumtemperatur inkubiert. In dieser Zeit wurde in 15 ml Polystyrene-Röhrchen je 500 µl 2xHEBS vorgelegt. Auf dem laufenden Vortex wurde nach verstrichener Inkubationszeit das DNA-CaCl₂-Gemisch in den HEBS Puffer eingetropft und anschließend für weitere 20 min bei Raumtemperatur inkubiert. Währenddessen wurde auf den 10 cm Platten das Medium zu je 9 ml DMEM-Standardmedium + 9 µl 25 µM Chloroquin gewechselt. Schließlich wurde der DNA-CaCl₂-Puffer-Mix tropfenweise unter ständigem Schwenken auf die Platten gegeben und diese für 48 h bei 37°C inkubiert, wobei nach den ersten 6 - 8 h das Medium auf DMEM-Standardmedium (ohne Chloroquin) zurückgewechselt wurde. Nach 48 h wurde das Medium mit einer 10 ml Spritze aspiriert und durch einen 45 µm Sterilfilter entweder in ein 15 ml Polypropylene-Röhrchen oder für folgende Ultrazentrifugation in ein 30 ml Thinwall Ultra-ClearTM Reaktionsgefäß gegeben. Virus, das nicht weiter konzentriert wurde, wurde unverzüglich auf -80°C eingefroren.

2.2.6.2 Viruskonzentration durch Ultrazentrifugation

Die mit virustragendem Überstand befüllten *Thinwall Ultra-Clear*TM Reaktionsgefäße wurden bis auf 10 mg genau austariert und anschließend in den zum Rotor gehörigen Hülsen in den *Beckmann SW28Ti* Rotor eingehängt. In diesem wurde in der *Optima*TM *L-60* Ultrazentrifuge für 2 h bei 24.000 rpm und 4°C im Vakuum zentrifugiert. Der Überstand wurde vorsichtig abgegossen und dessen Reste durch invertiertes Platzieren des Reaktionsgefäße auf einem Papiertuch entfernt. Für eine 100-fache Konzentration wurde das Pellet in 300 µl DMEM-Standardmedium + 1 % BSA wiederaufgenommen und über Nacht bei 4°C inkubiert, um das Pellet vollständig zu lösen. Am nächsten Morgen wurde der konzentrierte Virusüberstand aller Reaktionsgefäße gemischt, aliquotiert und bei -80°C eingefroren.

2.2.6.3 Transduktion von Zielzelllinien mit lentiviralen Überständen

Zu transduzierende Zellen wurden aus laufender Kultur entnommen und zu je 1,5 - 3 x 10^{6} Zellen pro *well* in 2 ml bei der Transduktion mit unkonzentriertem Virus, resp. in 4 ml bei der Transduktion mit konzentriertem Virus, in 6-*well*-Platten ausgesetzt und mit 2 - 3 ml Virusüberstand, resp. 10 - 50 µl bei konzentriertem Virus, versetzt. Anschließend wurden die Platten für 2 h bei 2.000 rpm und 32°C zentrifugiert und daraufhin unter den oben beschriebenen Standardbedingungen bei 37°C inkubiert. Für die Selektion erfolgreich transduzierter Zellen mittels Puromycin, wurden die Zellen zwei Tage nach Transduktion gemeinsam mit einer nicht-transduzierten Kontrolle so lange mit der wie oben beschrieben ermittelten idealen Konzentration unter Puromycin-Selektionsdruck gesetzt, bis in der Kontrolle keine lebenden Zellen verblieben waren. Die Selektion erfolgreich transduzierter Zellen bei fluoreszierendem Reporter (EGFP, EBFP oder mcherry) erfolgte mit Hilfe durchflusszytometrischer Zellsortierung am *FACS AriaTM Fusion* an Tag 4 - 6 nach Transduktion. Hierfür wurden die jeweiligen Zellen zuvor in MACS-Puffer aufgenommen.

Für die initiale Titerbestimmung bei konzentriertem Virus wurden die Zielzellen mit einer Verdünnungsreihe von 10 μ l über jeweils einen 10er-Potenz-Schritt bis 10⁻² μ l konzentriertem Virus transduziert. In weiteren Transduktionen wurde das Virus-Volumen gewählt, dessen erziehlte Multiplicity of Infection (MOI) am nächsten an \leq 0,4 lag (entsprechend etwa 33% transduzierten Zellen). Für nicht-konzentriertes Virus wurden jeweils 2 ml Virusüberstand pro *well* eingesetzt.

2.2.6.4 Virus-Titer-Bestimmung

Die Transduktion mit einer MOI von ≤ 0,4 ist elementar für die Durchführung der CRISPR-Screens, da bei einer MOI, die über dieser Zahl liegt, die Wahrscheinlichkeit für die Transduktion einer Zelle mit mehreren sgRNAs deutlich ansteigt und so die Ergebnisse für die Relevanz einzelner Gene verfälschen kann. Daher kommt der Bestimmung des biologischen Virus-Titers für jede Virus-Charge und Zelllinie eine wichtige Bedeutung zu.

Für die Titerbestimmung mithilfe der Puromycin-Selektion wurden die Zielzelllinien wie bereits beschrieben transduziert. Am Tag des Beginns der Puromycin-Selektion wurde jedes *well* transduzierter Zellen gezählt und anschließend auf zwei *wells* gesplittet, wovon eines belassen und das andere unter Puromycin-Selektionsdruck gesetzt wurde. Sobald in der nicht-transduziertern Kontrolle, die gleichermaßen unter Puromycin-Selektionsdruck gesetzt worden war, keine lebenden Zellen mehr verblieben waren, wurden die beiden Duplikat-*wells* der transduzierten Zellen gezählt und die Transduktionseffizienz nach folgender Formel berechnet:

Zellzahl des *wells* unter Puromycin-Selektionsdruck x 100 Zellzahl des *wells* ohne Puromycin-Selektionsdruck

Zur besseren Kontrolle der Transduktionseffizienz wurde die Transduktionseffizienz darüber hinaus durchflusszytometrisch bestimmt. Hierfür wurde das Puromycin-Resistenz-Gen des erhaltenen lentiCRISPR-Vektors mittels klassischer Klonierung (für lentiCRISPRv1) resp. Gibson-Assembly (lentiCRISPRv2) durch EGFP ersetzt. Die Analyse der EGFP-Expression erfolgte dann an Tag 5 nach Transduktion am *BD FACS CantoTM II*. Dabei entspricht der Prozentsatz EGFP-positiver Zellen der Transduktionseffizienz.

2.2.7 Analyse der knockout-Effizienz durch CRISPR/Cas9

2.2.7.1 T7-Nuklease-Assay

Zunächst erfolgte die Aufreinigung genomischer DNA aus CRISPR/Cas9-modifizierten Zellen mit Hilfe von Quick Extract nach Angaben des Herstellers. Für die Durchführung von T7-Nuklease-Assays wurde zunächst ein etwa 1 bis 2 kb großes PCR-Fragment von der gewonnenen genomischen DNA amplifiziert, das den *protospacer* der jeweiligen sgRNA enthält und bei einer Aufspaltung des Fragments an der erwarteten sgRNA-Schnittstelle in zwei ungleich große Fragmente zerfällt. Dieses wurde über ein Agarose-Gel aufgereinigt und in ddH₂O eluiert. 200ng dieses jeweiligen PCR-Produktes wurden nun mit ddH₂O auf ein Gesamtvolumen von 9µl gebracht und 1µl NEB Puffer 2 hinzugegeben. Anschließend erfolgte die DNA-Dimer-Formation, bei der nun entweder Homodimere aus unmodifizierten (also nicht durch CRISPR/Cas9 geschnittener und veränderter) DNA-Fragmenten oder Heterodimere aus unmodifizierten und modifizierten (oder auch zwei unterschiedlich modifizierten) DNA-Fragmenten entstehen, nach folgendem Protokoll:

Denaturierung	95°C	10 min
Abkühlen	95°C – 85°C	à -2°C/min
Halten	85°C	1 min
Abkühlen	85°C – 75°C	à -0,3°C/min
Halten	75°C	1 min
Abkühlen	75°C – 65°C	à -0,3°C/min
Halten	65°C	1 min
Abkühlen	65°C – 55°C	à -0,3°C/min
Halten	55°C	1 min
Abkühlen	55°C – 45°C	à -0,3°C/min
Halten	45°C	1 min
Abkühlen	45°C – 35°C	à -0,3°C/min
Halten	35°C	1 min
Abkühlen	35°C – 25°C	à -0,3°C/min
Halten	25°C	1 min

Anschließend wurde für jede Probe folgende Reaktion angesetzt und für 30min bei 37°C inkubiert:

Menge	Substanz
10 µl	DNA-Duplexe
0,5 µl	T7-Endonuklease
0,5 µl	NEB Puffer 2
4 µl	ddH ₂ O

Das so entstandene Gemisch aus durch die T7-Endonuklease geschnittenen Heterodimeren und ungeschnittenen Homodimeren wurde nun mit 3µl 10x rot Ladepuffer versetzt und auf ein Ethidiumbromid-Agarosegel geladen, laufen gelassen und unter UV-Licht visualisiert. Die Analyse der CRISPR/Cas9-Modifikationseffizienz erfolgte durch den Vergleich der Mengen geschnittener zu ungeschnittener DNA. Als Negativ-Kontrolle wurde jeweils eine *non-targeting* sgRNA transduzierte Probe mitgeführt (wird nicht geschnitten).

2.2.7.2 TIDE-Analysen

Die TIDE-Analysen erfolgten anhand des von Brinkman et al. veröffentlichten gleichnamigen Programmes (https://tide.deskgen.com/)(Brinkman et al., 2014). Hierfür wurden die für die T7-Nuklease-Assays erzeugten PCR-Fragmente nach Sanger sequenziert. Über die angegebene Internetseite wurden nun jeweils das entsprechende PCR-Fragment aus *non-targeting* Kontroll-Zellen und *knockout-*Zellen hochgeladen. Der TIDE Algorithmus vergleicht nun diese beiden Sequenzen. In erfolgreich durch CRISPR/Cas9 modifizierten Zellen ist es zu Insertionen und Deletionen und damit zu Leserasterverschiebungen gekommen, sodass ab der Schnittstelle ein Gemisch vieler verschiedener Sequenzen zu sehen ist. Dieses Gemisch kann durch den TIDE-Algorithmus wieder auf die unterschiedlichen zugrunde liegenden Insertionen und Deletionen und Deletionen und hieraus auf die CRISPR/Cas9-Effizienz geschlossen werden.

2.2.8 CRISPR-Sreens

Für die beiden CRISPR-Screens wurden die beiden Hodgkin-Zelllinien L428 und L1236 sowie die beiden Kontroll-Zelllinien BJAB (Burkitt Lymphom) und SU-DHL-4 (Diffus großzelliges B-Zell Lymphom) frisch aufgetaut und zunächst wie oben beschrieben für jede Zielzelllinie der Titer der konzentrierten lentiviralen CRISPR-Bibliothek bestimmt. Der die lentivirale CRISPR-Bibliothek tragende Überstand wurde in einem einizigen Versuchsablauf parallel produziert, nach der Konzentration gepoolt und in Aliquots verteilt, um eine konstante Effizienz des viralen Überstands zu gewährleisten. Es erfolgte schließlich die Transduktion der Zielzelllinien in Proben à 1 x 10⁸ Zellen dem jeweiligen Titer ensprechend so, dass eine MOI von \leq 0,4 erzielt wurde. Für jede Probe wurden hierfür jeweils 3 x 10⁶ Zellen pro *well* in insgesamt 35 *wells* ausgesetzt und mit der entsprechenden Menge konzentrierten Virusüberstandes versetzt und in einem 36. *well* je untransduzierte Negativ-Kontrolle für die nachfolgende Puromycin-Selektion mitgeführt. Für jede Zelllinie wurden Duplikate als biologische Replikate angefertigt. Die Transduktion wurde wie oben beschrieben durchgeführt und die Proben mit Puromycin

in der der jeweiligen Zelllinie entsprechenden Konzentration unter Selektionsdruck gesetzt. Um die Repräsentation der CRISPR-Bibliothek zu wahren, wurde in der folgenden Zellkultur beim Umsetzen der Zellen stets darauf geachtet, dass zu jedem Zeitpunkt des CRISPR-Screens für jede Probe eine Mindest-Zellzahl von 3 x 10⁷ Zellen erhalten blieb. Als Auswertungsbasis der CRISPR-Screens diente die Veränderung der sgRNA-Repräsentation über die Zeit, die zunächst durch die Entnahme von Zellpellets zu den Zeitpunkten Tag 1 und 21 nach Transduktion für den GeCKO-Screen, bzw. an Tag 1, 14, 21 und 28 für den Bestätigungs-Screen erfasst wurde. Aus diesen wurde anschließend genomische DNA extrahiert, aus dieser die jeweils integrierte sgRNA-Sequenz über eine PCR ausgelesen und schließlich mit den für die Hochdurchsatz-Sequenzierung am *HiSeq 2500* benötigten *Illumina*®-Adaptern versehen.

2.2.8.1 Präparation genomischer DNA aus humaner Zellkultur für CRISPR-Screens

Genomische DNA humaner Zelllinien wurde mit dem *Qiagen Blood & Cell Culture DNA Midi* Kit nach Herstellerangaben aufgereinigt und die DNA-Konzentration und -Reinheit photmetrisch am *DS-11 FX*+ bestimmt.

2.2.8.2 Auslesen der sgRNA-Sequenz und Präparation der Proben für die Hochdurchsatz-Sequenzierung

Zunächst wurde die integrierte sgRNA-Sequenz durch eine PCR aus der genomischen DNA ausgelesen. Um die volle Repräsentation aller sgRNAs der CRISPR-Bibliotheken zu wahren, wurde diese dabei für jede Probe in 10 parallelen Reaktionen folgendermaßen durchgeführt:

Menge	Substanz		
20 µl	5x Puffer der Q5-DNA-Polymerase		
2 µl	10µM dNTPs		
5 µl	10µM primer <i>sgRNA I (v2)</i>		
1 µl	Q5-DNA-Polymerase		
10 µg	genomische DNA		
	H₂O auf 100µl		

Initiale Denaturierung	98°C	<u>30 sec</u>	
Denaturierung	98°C	8 s	
Hybridisierung	62°C	30 s	20 Zyklen
Elongation	72°C	30 s	
Terminale Elongation	72°C	2 min	

Anschließend wurden die 10 Reaktionen jeder Probe gepoolt und aus diesen eine 2. PCR angesetzt, in der die für die Sequenzierung am HiSeq 2500 benötigten *Illumina*®-Adapter angehängt wurden. Mit dem fwd-Primer wurde zusätzlich ein 1-9 bp langer Stagger eingebracht, der die Qualität der Sequenzierung im *Illumina*®-System verbessert. Mit dem rev-Primer wurde ein 6 bp langer Index eingeführt, anhand dessen die Ergebnisse der parallelen Sequenzierung wieder ihren ursprünglichen Proben zugeordnet werden können. Wiederum zur Erhaltung der Repräsentation wurden hier für jede Probe 12 parallele Reaktionen wie folgt ausgeführt:

Menge	Substanz
20 ul	5x Puffer der Q5-DNA-Polymerase
2 µl	10µM dNTPs
5 µl	10µM primer (1)-(9) illumina fwd p5 + (a)-(i) illumina rev p7
1 µl	Q5-DNA-Polymerase
5 μl	gepooltes PCR-Produkt aus der 1. PCR H₂O auf 100µl

Initiale Denaturierung	98°C	<u>30 sec</u>	
Denaturierung	98°C	8 s	7
Hybridisierung	65°C	30 s	- 13 Zyklen
Elongation	72°C	30 s	
Abschluss-Elongation	72°C	2 min	

Anschließend erfolgte die Aufreinigung der Proben über ein 1,7%-Agarose-Gel mit Hilfe des *ZymocleanTM Gel DNA Recovery* Kits, gefolgt von einer Konzentrationsbestimmung am *DS-11 FX*+ Spektrophotometer und einer Qualitäts-Analyse am *Bioanalyzer*. Für die Hochdurchsatz-Sequenzierung wurden die Proben an die entsprechende *Core Facility* des MDC übergeben. Hier erfolgte die Sequenzierung mit jeweils 4 (GecKO-Screen), resp. 16 (Bestätigungs-Screen), Proben pro *lane*, sodass sich eine Sequenzierungs-

Tiefe ergab, bei der jede sgRNA-Sequenz rechnerisch 250x (GeCKO-Screen), bzw. > 1000x (Bestätigungs-Screen), ausgelesen wurde.

2.2.8.3 Auswertung der Hochdurchsatz-Sequenzierung

Die sich aus der Sequenzierung ergebenden Rohdaten wurden zunächst normalisiert. Anschließend wurde die Veränderung des sgRNA-Pools jeder Probe von Tag 1 zu Tag 21 (GeCKO-Screen), bzw. zu den Tagen 14, 21 und 28 (Bestätigungs-Screen) als Quotient der normalsierten *read-*Zahlen berechnet. Nachdem solche sgRNAs ausgeschlossen wurden, die keinen biologischen Effekt, also keine Veränderung von Tag 1 zum jeweiligen späteren Zeitpunkt, aufwiesen, ausgeschlossen worden waren, wurden solche Gene für die weitere Analyse ausgewählt, für die mindestens 2 sgRNAs eine Depletion mit einem Quotienten (Q1=[sgRNA-read-Zahl Tag 21] / [sgRNA-read-Zahl Tag 1]) von < 0,6 aufweisen konnten. Von diesen Genen wurden für das Hodgkin-Lymphom spezifische Gene ermittelt, indem das Verhältnis der Quotienten der sgRNA-Repräsentation zwischen der jeweiligen Hodgkin- und Kontrollzelllinie berechnet wurde (Q2=[Q1 Hodgkin-Zelllinie] / [Q1 Kontrollzelllinie]). Als spezifisch wurden solche Gene klassifiziert, für die Q2 ≤ 0,5 galt.

2.2.8.4 Klonierung der CRISPR-Bibliothek für den Bestätigungs-Screen

Die sgRNAs für den Bestätigungsscreen wurden ebenfalls mit CrispRGold entworfen, in 13 96-*well*-Platten synthetisiert und wie oben beschrieben jeweils einzeln hybridisiert (http://crisprgold.mdc-berlin.de/)(Chu et al., 2016). Anschließend wurden jeweils 96, bzw. 48 der verbleibenden 13. Platte, hybridisierte sgRNAs gepoolt und in 7 getrennten Reaktionen in wie oben beschrieben verdauten und aufbereiteten lentiCRISPRv2 ligiert. Alle Ligationen wurden nun wiederum gepoolt um die entstandene vollständige sgRNA-Bibliothek folgendermaßen in zwei parallelen Ansätzen in *E. cloni 10G Elite Duo* elektrokomptente Zellen transformiert: jeweils 2 µl des Ligations-Pools wurden auf Eis in 25 µl elektrokompetenten Zellen gemischt und bei 10 µF, 600 Ω und 1800 V im *Gene PulserTM Xcell* elektroporiert. Anschließend wurden sofort 975 µl SOC-Medium hinzugefügt und die Transformationen für 1 h bei 32°C im *Novotron 50* inkubiert. Beide Ansätze wurden anschließend gemeinsam auf insgesamt 6 LB-amp-Platten wie bereits beschrieben ausplattiert und inkubiert. Am nächsten Tag wurden Pellets direkt von den Platten geerntet, gepoolt und über drei Säulen mit dem *Qiagen Plasmid DNA Maxi* Kit pDNA extrahiert. Zur Kontrolle wurden auf dieser wie oben beschrieben über eine 1. und 2. PCR die sgRNA-Sequenz ausgelesen, auf dem *Illumina MiSeq* sequenziert und die Verteilung der sgRNAs auf Gleichverteilung geprüft.

2.2.9. Statistik

Die Auswahl der für die jeweilige Fragestellung angewendeten statistischen Tests erfolgte nach Beratung durch das Institut für Biometrie und Klinische Epidemiologie (iBikE). Die statistische Analyse der Kompetitions-Assays geschah anhand eines zweiseitigen 1-Stichproben t-Tests gegen den Wert 1. Zur statistischen Bewertung von ³H-Thymidin-Proliferationsassays wurde ein zweiseitiger ungepaarter t-Test angewendet. Die Statistik der in TIDE durchgeführten Analysen erfolgte nach dessen Algorithmus.

3.1 Etablierung des CRISPR/Cas9-Systems in humanen Lymphomzelllinien

3.1.1 Klonierung von CRISPR/Cas9- und Expressionsvektoren für die lentivirale Transduktion humaner Zielzelllinien

Als Ursprungsvektoren für die Etablierung des CRISPR/Cas9-Systems in humanen Lymphomzelllinien verwendeten wir die Vektoren *lentiCRISPRv1* und *lentiCRISPRv2*, die im Labor von Feng Zhang (MIT, Boston) entwickelt wurden (Cong et al., 2013; Sanjana et al., 2014). Diese Vektoren enthalten neben der Cas9 auch das konstante sgRNA-Grundgerüst. Die spezifische sgRNA-Sequenz kann über die Restriktionsschnittstelle *BsmBI* eingebracht werden (Abb. 3.1).

Ausgehend von den *lentiCRISPR*-Vektoren wurden mehrere Varianten für spezifische Anwendungen und experimentelle Fragestellungen generiert: Zur validen Kontrolle des erfolgreichen lentiviralen Gentransfers und der Transgenexpression eignet sich die Koexpression eines fluoreszierenden Reporterproteins, die mittels Durchflusszytometrie schnell, sicher und einfach bestimmt werden kann. Da die ursprünglichen *lentiCRISPR*-Vektoren jedoch über keinen fluoreszierenden Reporter verfügen, wurden diese zunächst entsprechend modifiziert. Außerdem wurde ein Zwei-Vektoren-System erstellt, mit dem eine getrennte Transduktion zunächst nur mit der Cas9 und anschließend mit einer spezifischen sgRNA ermöglicht wird. Schließlich wurde das Grundgerüst der so veränderten *lentiCRISPR*-Vektoren auch zur Herstellung eines lentiviralen Leervektors genutzt, der wiederum als Ausgangsvektor für die Herstellung hoch effizienter Expressionskonstrukte genutzt wurde.

3.1.1.1 Erstellung von Varianten des *lentiCRISPRv1* sowie *lentiCRISPRv2* mit fluoreszierenden Reportern

Um aus dem eine Puromycinresistenz tragenden ursprünglichen *lentiCRISPRv1*-Vektor eine Variante zu generieren, die ein fluoreszierendes Reportergen exprimiert, wurde mit Hilfe einer PCR auf *pEGFP-N3* ein P2A-EGFP Fragment erzeugt und über *NheI* und *MluI* in *lentiCRISPRv1* subkloniert, wodurch dort P2A-PuroR durch P2A-EGFP ersetzt wurde. Die Verbindung über ein sog. selbstschneidendes 2A-Peptid erlaubt dabei die gleichzeitige Expression zweier unabhängiger Proteine von einem durchgehenden Leseraster (Ryan and Drew, 1994; Szymczak-Workman et al., 2012). Um in späteren Experimenten mehrere sgRNAs in eine Zelle zu transduzieren (z.B. für den gleichzeitigen Doppel-knockout zwei verschiedener Gene) oder Mischpopulationen unterschiedlich transduzierter Zellpopulationen zu untersuchen (z.B. für die unten beschriebenen Kompetitions-Assays), wurden drei Varianten des ursprünglichen *lentiCRISPRv2*-Vektors erstellt, von denen eine ein grün fluoreszierendes Reporterprotein (enhanced green fluorescent protein, EGFP) exprimiert, eine ein blaues (enhanced blue fluorescent protein, EBFP) und eine weitere ein rotes (mCherry). Die Klonierung dieser lentiCRISPRv2-Varianten erfolgte mit Hilfe einer Gibson-Assembly, bei der PCR-Produkte mit kompatiblen Überhängen ohne den Gebrauch von Restriktionsschnittstellen ligiert werden (Gibson, 2009). Hierfür erfolgte die PCR-Amplifikation folgender DNA-Fragmente (von den entsprechenden Plasmiden): pSK-BamHI-P2A (pBlueScript), P2A-EGFP/-EBFP/-mCherry (pEGFP-N3 / AG F. Rosenbauer, MDC Berlin / AG M. Lipp, MDC Berlin), WPRE-Pmel (IentiCRISPRv2). Diese Fragmente wurden in der anschließenden Gibson-Assembly zu einem Plasmid verbunden, aus dem in einem zweiten Schritt das so entstandene BamHI-P2A-EGFP/EBFP/mcherry-WPRE-Pmel Konstrukt anschließend über BamHI und Pmel in lentiCRISPRv2 umgesetzt wurde. Alle hierfür genutzten Primer sind im Kapitel 2.1.10.2 (Material und Methoden) zu finden. Die entstandenen Vektoren lentiCRISPRv2-EGFP, *lentiCRISPRv2-EBFP* und *lentiCRISPRv2-mCherry* wie sind, auch die Ursprungsvektoren lentiCRISPRv1 und lentiCRISPRv2, in Abb. 3.1 schematisch dargestellt.

Nach positivem Kontrollverdau und Sanger-Sequenzierung wurde die Funktionsfähigkeit der entstandenen Vektoren durch Herstellung von Viren sowie durch anschließende Transduktion verschiedener vorwiegend lymphatischer Zelllinien und durchflusszytometrische Untersuchung auf Expression des entsprechenden Reporters überprüft. Es zeigte sich eine deutliche Population für den jeweiligen Reporter positiver Zellen nach Transduktion (siehe auch Abb. 3.2).

65

3.1.1.2 Klonierung eines Zwei-Vektoren-Systems für die Generierung stabiler Cas9-exprimierender Zelllinien und anschließende sgRNA-Transduktion

Um einen Vektor (*lentiCRISPRv2-Cas9only*) für die Generierung stabiler Cas9exprimierender Zelllinien zu erhalten, bei dem zu einem späteren Zeitpunkt durch eine zweite unabhängige Transduktion die gewünschte sgRNA eingeführt werden kann, wurde in dem wie oben beschrieben erzeugten Vektor *lentiCRISPRv2-EGFP* der für den U6-Promotor sowie die sgRNA kodierende Bereich mit Hilfe eines kurzen Oligonukleotids über *PacI* und *EcoRI* entfernt.

Für die Erstellung eines zweiten nun ausschließlich die sgRNA exprimierenden Vektors (*lentiCRISPRv2-sgRNAonly*) wurde in den oben beschriebenen Vektoren *lentiCRISPRv2-EBFP* und *-mCherry* die Cas9 über *XbaI* und *BamHI* entfernt und die entstandene Lücke ebenfalls mithilfe eines kurzen Oligonukleotids *in frame* geschlossen.

Die Sequenz der jeweils verwendeten Oligonukleotide findet sich in Material und Methoden, Kapitel 2.1.10.3. Die entstandenen Vektoren wurden durch einen Kontrollverdau sowie Sanger-Sequenzierung überprüft.

3.1.1.3 Klonierung eines Leervektors sowie hieraus resultierender Expressionsvektoren

Als Ausgangsvektoren für die Generierung lentiviraler Expressionsvektoren wurden zunächst aus den einen fluoreszierenden Reporter tragenden *lentiCRISPRv2*-Konstrukten lentivirale Leervektoren erstellt, d.h. Vektoren, aus denen die Cas9- und sgRNA-Elemente entfernt wurden, um an Stelle der Cas9 cDNA-Konstrukte für die Überexpression von Kandidatengenen zu klonieren. Auf diese Weise entstanden lentivirale Expressionskonstrukte mit jeweils EGFP, EBFP oder mCherry als Reporter, um auch hier eine möglichst hohe Flexibilität für zellbiologische Experimente zu erhalten. Zunächst wurden aus den *lentiCRISPRv2-EGFP/EBFP/mCherry*-Konstrukten jeweils mit Hilfe eines kurzen Oligos über *Pacl* und *EcoRI* der U6-Promotor und das sgRNA-Grundgerüst entfernt. Danach wurde mittels eines weiteren Oligos über *Xbal* und *BamHI* die Cas9 entfernt und die beiden Schnittstellen in ihrer Reihenfolge invertiert, d.h. es entstand ein Klonierungselement mit 5'-Agel-BamHI-Xbal-3'. Die Sequenz der jeweiligen Oligonukleotide findet sich in Material und Methoden, Kapitel 2.1.10.3. Die Kontrolle der entstandenen Leervektoren erfolgte ebenfalls durch einen

Kontrollverdau und Sanger-Sequenzierung gefolgt von Durchflusszytometrie transfizierter resp. transduzierter Zielzellen.

Um schließlich Expressionsvektoren einzelner Zielgene (hier: Irf4, BATF und BATF3) zu klonieren, wurden die entsprechenden Sequenzen von der jeweiligen cDNA ausgehend unter Einführung der benötigten Schnittstellen amplifiziert und über *Agel* und *Xbal* oder *BamHI* und *Xbal* in die Leervektoren eingebracht. Die hierfür verwendeten Primer sind im Abschnitt 2.1.10.2 (Material und Methoden) aufgeführt.

Erläuterung zu Abb. 3.1 Schematische Darstellung der *lentiCRISPR*-Vektoren. Abgebildet sind auf den Orignalversionen in weiß Bestandteile des lentiviralen Grundgerüstes sowie auf allen Vektoren farbig die relevanten Strukturen des CRISPR/Cas9-Systems. Fett eingezeichnet sind zudem relevante Schnittstellen von Restriktionsenzymen. **A** *lentiCRISPRv1* Originalversion und erstellte EGFP-exprimierende Variante (grau). **B** *lentiCRISPRv2* Originalversion und erstellte Varianten (schwarz) sowie Zwei-Vektoren-System (braun) und lentiviraler Leervektor (schwarz kursiv).

Abb. 3.1 (Erläuterung siehe vorherige Seite)

Erläuterung zu Abb. 3.2 Test und Vergleich der *lentiCRISPR*-Vektoren Version 1 und 2 in der lentiviralen Transduktion ausgewählter, vorwiegend lymphatischer Zelllinien. **A** Erzielte Transduktionseffizienz mit *lentiCRISPRv1*-EGFP und *lentiCRISPRv2*-EGFP in vier Zelllinien (L428, L1236, NIH3T3, HEK293). Die Pfeile zeigen die Veränderung der Transduktionseffizienz jeder Zelllinie. **B** Transduktionseffizienz von *lentiCRISPRv2*-EGFP in einem breiten Probensatz an cHL- und B-NHL-Zelllinien. **C** Exemplarische durchflusszytometrische Darstellung der EGFP-Expression in NIH3T3 Fibroblasten nach Transduktion mit den beiden Varianten des *lentiCRISPR*-Vektors (Kontrolle: untransduzierte Zellen).

3.1.3 Etablierung des CRISPR/Cas9-Systems in Hodgkin-Zelllinien

Um das CRISPR/Cas9-System in unserem Labor zu etablieren und für die von uns verwendeten humanen Lymphomzelllinien zu optimieren, wurden exemplarisch *knockout* Versuche für die Transkriptionsfaktoren ABF1, ID2 und E2A durchgeführt, von denen unsere Arbeitsgruppe bereits gezeigt hat, dass sie entscheidend an der Ausprägung eines linienfremden Genexpressionsprofils im cHL beteiligt sind (Mathas et al., 2006). Diese Experimente boten neben dem rein technischen Aspekt zusätzlich die Möglichkeit, die Grundlagen für weitere Arbeiten auf diesem Gebiet zu schaffen. Zu diesem Zweck wurden in die Vektoren *lentiCRISPRv2-EGFP* und *-EBFP* sowie *lentiCRISPRv2-sgRNAonly-EBFP* folgende sgRNAs kloniert: sgABF1 (1-4), sgID2 (1-4), sgE2A (1-4) und *non-targeting*-Kontroll-sgRNAs (ntg, 1-4). Die Sequenzen der jeweiligen sgRNAs und die Details der Klonierung sind in den Kapiteln 2.1.10.4 und 2.2.4.10 (Material und Methoden) aufgeführt.

3.1.3.1 Analysen von CRISPR/Cas9-induzierten Mutationen der genomischen DNA und des *knockouts* von ABF1, ID2 und E2A

Zur Analyse der Frequenz und des Musters der durch das CRISPR/Cas9-System verursachten Mutationen der genomischen DNA der Zielgene wurden die Lymphomzelllinien L428 und BJAB mit Virus der sgRNA-tragenden *lentiCRISPRv2-EGFP* Vektoren transduziert. Mit Hilfe von FACS (*fluorescence-activated cell sorting*) wurden reporterpositive Zellen aufgereinigt und aus diesen über das QuickExtract-Protokoll genomische DNA isoliert (Kapitel 2.2.7.1, Material und Methoden). Von dieser wurden mittels PCR jene Bereiche der Zielgene amplifiziert, in denen die jeweiligen sgRNAs einen Doppelstrangbruch verursachen sollen. Die Häufigkeit der aus den Doppelstrangbrüchen resultierenden genetischen Modifikationen des Ziellocus dieser

sgRNAs wurde anschließend anhand eines T7-Nuclease-Assays bestimmt, bei dem die T7 Endonuclease die entstandenen PCR-Fragmente im Bereich von *mismatch* Nukleotidpaarungen in kleinere Fragmente schneidet (siehe Abb. 3.3 sowie Kapitel 2.2.7.1). Ergänzend wurden die entstandenen PCR-Produkte nach Sanger sequenziert und die Frequenz entstandener Insertionen und Deletionen mit Hilfe der *online* verfügbaren Software TIDE ermittelt (Abb. 3.4) (Brinkman et al., 2014). Darüber hinaus wurde der jeweilige *knockout* resp. *knockdown* auf Proteinebene im Western Blot kontrolliert (Abb. 3.5).

Insgesamt zeigte sich für E2A für zwei sgRNAs ein guter *knockout* auf Proteinebene. Auch für ABF1 und ID2 ließen sich mit jeweils einer sgRNA Insertionen und Deletionen auf genomischer DNA-Ebene sowie ein *knockout* auf Proteinebene nachweisen.

Die *knockout*-Kontrolle über Western Blot erfolgte dabei in den stabil Cas9exprimierenden Lymphomzelllinien L428 und BJAB (*lentiCRISPRv2-Cas9only*), die zusätzlich mit dem die jeweilige sgRNA-tragenden Vektor (*lentiCRISPRv2-sgRNAonly*) transduziert worden waren.

Abb. 3.3 T7-Assay und Sequenz-Analysen von durch CRISPR/Cas9 verursachten Mutationen in L428 Zellen (*lentiCRISPRv2-EGFP*). A T7-Nuclease-Assay von PCR-Produkten genomischer DNA nach CRISPR/Cas9 *knockout* mit sgRNAs gegen ID2 (links) und ABF1 (rechts), jeweils im Vergleich zu einer *non-targeting* sgRNA (ntg). Zu sehen ist ein Amplikon der genomischen DNA des jeweiligen Locus sowie bei erfolgreicher CRISPR/Cas9-vermittelter Modifikation je zwei kürzere Fragmente (aufgrund der an der Mutationsstelle entstehenden T7-Endonuclease-Aktivität bei *mismatch* DNA-Paarungen zwischen Wildtyp und mutierten Fragmenten). Die theoretische errechnete Länge dieser Fragmente ist in kursiv aufgeführt. B Exemplarische Sanger-Sequenzierung des Amplikons der genomischen DNA des Zielbereichs von sgID2-3. Es ist eine durch erfolgreiche CRISPR/Cas9-Modifikation entstandene Verschiebung des Leserasters ab der errechneten sgRNA Schnittstelle zu sehen. Gezeigt ist ein repräsentatives Experiment von zwei.

Abb. 3.4 (Erläuterung siehe folgende Seite)

Erläuterung zu Abb. 3.4. TIDE-Analysen der sgRNA-Effizienzen von sgID2-3 (**A**) und sgABF1-3 (**B**) in L428 (*lentiCRISPRv2-EGFP*). Grundprinzip des TIDE-Programms ist der Vergleich zwischen der Kontroll-Sanger-Sequenzierung (unveränderte Sequenz, Wildtyp) und den Sequenzen nach CRISPR/Cas9-vermittelter Mutation des entsprechenden Genlocus; letztere bilden ab der Mutationsstelle eine Sammlung unterschiedlicher Sequenzen (je nach entstandener Veränderung), die bioinformatisch wieder getrennt und systematisch mit der Wildtyp-Sequenz verglichen werden, wodurch Häufigkeit und Art der Modifikationen (Deletion, Insertion) zu erkennen sind. Dargestellt ist die aus den Leserasterverschiebungen in Sanger-Sequenzierungen errechnete Gesamt-Effizienz der jeweiligen sgRNA sowie die jeweiligen Anteile der verschiedenen Mutationen (Insertion, Deletion) für die zu untersuchende sgRNA (*test sample*, grün) im Vergleich zur ntg-Kontrolle (*control sample*, schwarz). Der Punkt 0 auf der X-Achse der oberen Balkendiagramme sowie die blaue Linie in den unteren Sequenz-Darstellungen bezeichnen jeweils die vorhergesagte Position des durch die jeweilige sgRNA eingeführten Doppelstrangbruchs (*expected cut*). Statistisch signifikante (p<0.001) Mutationen sind rot dargestellt. Gezeigt ist ein repräsentatives Experiment von zwei.

Abb. 3.5 Western-Blot-Analysen von Proteinextrakten L428-Cas9 Zellen, die jeweils mit einer ntg-Kontrolle oder einer Zielgen-spezifischen sgRNA transduzierten wurden (Zwei-Vektoren-System; Transduktion von *lentiCRISPRv2-Cas9only* und *lentiCRISPRv2-sgRNAonly*). Zu sehen ist der *knockout* für die bereits oben beschriebenen sgRNAs sgld2-3 (**A**) und sgABF1-3 (**B**). **C** Test der *knockout*-Effizienz der sgRNAs gegen E2A. β-Aktin als Ladungskontrolle. Gezeigt ist ein repräsentatives Experiment von mindestens zwei.

3.1.3.2 Analyse der Proliferation und Viabilität von Hodgkin-Zellen unter CRISPR/Cas9-basiertem *knockdown* von ABF1, ID2 und E2A

Um die Auswirkungen eines ABF1-, ID2- und/oder E2A-Verlustes auf die Proliferation von cHL-Zelllinien zu untersuchen, wurden ³H-Thymidin basierte Proliferations-Analysen durchgeführt. Es zeigte sich in der Hodgkin-Zelllinie L428 bei Verlust von E2A ein Proliferationsnachteil, der den Effekt eines E2A-Verlustes in BJAB-Kontrollzellen übertraf. Hingegen führte der Verlust von ABF1 und ID2 nur zu einem moderaten Proliferationsnachteil.

Darüber hinaus wurde die Viabilität der so veränderten Zellen anhand von PI-Färbung durchflusszytometrisch bestimmt. In der Hodgkin-Zelllinie L428 zeigten sich nach E2Aknockdown im Vergleich zur Kontrolle vermehrt PI-positive Zellen als Ausdruck einer reduzierten Viabilität, während sich auch hier nur ein minimaler Unterschied zwischen ID2-knockdown und Kontrolle ergab. In der B-NHL-Kontrollzelllinie BJAB ergab sich kein Unterschied hinsichtlich der Viabilität sowohl für den E2A- als auch den ID2-knockdown im Vergleich zur Kontrolle.

3.1.3.3 Etablierung von Kompetitions-Assays zur Untersuchung von cHL-Zellen nach CRISPR/Cas9-basiertem *knockdown* von ABF1, ID2 und E2A

Um neben Veränderungen in der Proliferationsrate und der Viabilität die allgemeine Wettbewerbsfähigkeit der jeweiligen *knockout*- im Vergleich zur Kontrollpopulation zu untersuchen, wurden Kompetitions-Assays nach folgendem Prinzip etabliert: Jede zu untersuchende Zelllinie wurde getrennt mit Konstrukten von sgRNAs gegen das Zielgen sowie mit *non-targeting* Kontroll-sgRNAs transduziert; für beide Transduktionen wurden Vektoren mit einem unterschiedlichen Reporter verwendet (hier: *knockout*-Zellen EGFP, *non-targeting* Kontroll-Zellen EBFP). Anschließend wurden die Zellpopulationen per FACS aufgereinigt und dann eine Misch-Population erstellt. Das Verhältnis der Reporter in der jeweiligen Kultur zueinander wurde schließlich über die Zeit durchfluss-zytometrisch bestimmt. Eine Verschiebung des Verhältnisses zugunsten einer Subpopulation weist dabei auf einen Wettbewerbsvorteil dieser Zellen hin.

In Übereinstimmung mit den Ergebnissen der Proliferations- und Viabilitätsanalysen zeigte sich in Kompetitions-Assays bei E2A-Verlust ebenfalls ein deutlicher Nachteil für die cHL-Zelllinie L428 während der Verlust von ID2 nur minimale Auswirkungen aufwies. Für die B-NHL-Kontrollzelllinie BJAB zeigte sich auch in Kompetitions-Assays kein nachteiliger Effekt eines E2A- oder ID2-*knockdowns*.

Abb. 3.6 Funktionelle Untersuchungen in CRISPR/Cas9-*knockout* Zellen. Stabil Cas9-exprimierende L428 und BJAB Zellen (*lentiCRISPRv2-Cas9only*) wurden mit den sgRNAs sgID2-3, sgABF1-3 und sgE2A-1 (*lentiCRISPRv2-sgRNAonly*) transduziert. **A** Proliferationsanalysen mittels ³H-Thymidin (Statistik: zweiseitiger t-Test; * p<0,05 ** p<0,01 *** p<0,001). **B** Durchflusszytometrische Bestimmung des Anteils lebender (FSC-A vs. SSC-A) und toter (PI-positiver) Zellen. **C** Kompetitions-Assay von ID2-und E2A-*knockout* im Vergleich zu Kontroll-Zellen (ntg); cHL-Zelllinie L428 (links) und B-NHL-Kontrollzelllinie BJAB (rechts).

3.2 CRISPR/Cas9-Screening im Hodgkin-Lymphom

3.2.1 Konzept und Grundprinzip des Screens

Für die Durchführung eines genomweiten CRISPR/Cas9-basierten *knockout*-Screens wurde die von Shalem et al. generierte *Genome-scale-CRISPR-Knockout version2* (*GeCKOv2*) Bibliothek verwendet, die mit über 120 000 *single guide* RNAs (sgRNAs) etwa 20 000 humane Gene zum Ziel hat (Shalem et al., 2014).

Diese Bibliothek wurde genutzt, um einen genomweiten *dropout*-Screen durchzuführen, dessen Grundprinzip folgendermaßen beschrieben werden kann: Vom Zeitpunkt der Transduktion an werden über den Beobachtungszeitraum hinweg solche sgRNAs, die ein überlebens- oder proliferationsrelevantes Gen zum Ziel haben, in der Repräsentation aller sgRNAs abnehmen oder ganz verschwinden. SgRNAs, die hingegen einen Tumorsuppressorgen zum Ziel haben, werden über die Zeit in ihrem Anteil an der Gesamtmenge der sgRNAs zunehmen. Die hieraus resultierenden Veränderungen in der quantitativen Zusammensetzung des sgRNA-Pools können zu definierten Endpunkten durch Hochdurchsatz-Sequenzierung ausgelesen und hieraus für die jeweilige Zelllinie relevante Kandidatengene ermittelt werden.

3.2.2 Etablierung grundlegender Techniken

Da die beschriebene genomweite CRISPR-Bibliothek über lentivirale Transduktion in jeweiligen Zielzellen eingebracht wird, wurde zunächst die die generelle Empfänglichkeit von humanen Hodgkin-Zelllinien für eine lentivirale Transduktion mit dem EGFP exprimierenden lentiviralen Plasmid pLJM1-EGFP getestet (Sancak et al., 2008). Diese Testtransduktionen zeigten eine hohe Transduzierbarkeit der beiden Zelllinien L428 (78,4%) und L1236 (96,3%), die gleichzeitig sehr etablierte Zelllinienmodelle für das cHL darstellen (Diehl et al., 1985; Kanzler et al., 1996b; Schaadt et al., 1980; Wolf et al., 1996). Die hohen Transduktionsraten bestätigten sich ebenfalls in weiteren Tests mit dem Vektor lentiCRISPRv2, der auch die GeCKOv2-Bibliothek trägt und mit dem Transduktionseffizienzen von 59,9% in L428 und 94,0% in L1236 erreicht wurden. Zur besseren direkten Kontrolle der Transduktionseffizienz wurde dabei wie oben beschrieben eine Variante des lentiCRISPRv2-Vektors kloniert, die statt der ursprünglichen Puromycin-Resistenz einen EGFP-Reporter trägt (*lentiCRISPRv2-EGFP*). Auf dieselbe Weise wurden Non-Hodgkin-Zelllinien, die in dem folgenden Screen als Kontrolle dienen sollten, auf ihre Empfänglichkeit für eine lentivirale Transduktion getestet. Dabei erwiesen sich die Burkitt Lymphom Zelllinie BJAB sowie die DLBCL-Zelllinie SU-DHL-4 (*diffuse large B cell lymphoma* (DLBCL), *germinal center B cell-like* (GCB) Subtyp) als geeignete Kontrollen (Epstein et al., 1978; Klein et al., 1974). Die beschriebenen Transduktionseffizienzen des Testvektors *pLJM1-EGFP* sind in Abb. 3.7 sowie die des *lentiCRISPRv2* in Abb. 3.2 (B) dargestellt.

Abb. 3.7 Transduktionstests mit *pLJM1-EGFP*. **A** Erzielte Transduktionseffizienz mit *pLJM1-EGFP* in einer Auswahl an cHL-Zelllinien und NIH3T3 Fibroblasten. **B** Schematische Darstellung des *pLJM1-EGFP* Vektors: Das EGFP-Reportergen steht unter Kontrolle eines CMV-Promoters, das Puromycinresistenzgen unter Kontrolle eines hPGK-Promoters.

Darüber hinaus ist es für die Validität des Screens von besonderer Bedeutung, eine Mehrfachtransduktion einzelner Zellen mit mehr als einer sgRNA zu vermeiden, da sonst nicht nur die tatsächlich relevante sgRNA am Ende des Beobachtungszeitraumes depletiert bzw. angereichert sein wird, sondern auch die zufällig co-transduzierte(n) sgRNA(s). Um dies zu gewährleisten, wurden die Zielzelllinien mit jeweils der Menge an konzentriertem, virustragendem Überstand transduziert der zu einer *multiplicity of infection* (MOI) von 0,4 führte, sodass sich eine der Poission-Verteilung folgende Verteilung in 67% nicht transduzierte, 27% einfach transduzierte und max. 6 % mehrfach transduzierte Zellen ergab. Zur Bestimmung der hierfür jeweils benötigten Virus-Konzentration wurde jede Zelllinie zunächst mit einer Konzentrationsreihe des virustragenden Überstandes transduziert, der hernach auch für den eigentlichen

CRISPR-Screen verwendet wurde, und die Transduktionseffizienz wie beschrieben bestimmt (siehe auch Kapitel 2.2.6.4, Material und Methoden).

Der die *GeCKOv2*-Bibliothek tragende Vektor *lentiCRISPRv2* kodiert gleichzeitig für eine Resistenz gegen das zytotoxisch wirkende Nukleosid-Antibiotikum Puromycin, d.h. es kann mit Hilfe der Puromycin-Behandlung auf erfolgreich transduzierte Zellen selektiert werden. Die jeweilige minimale letale Puromycin-Dosis für die ausgewählten Zielzelllinien wurde in Konzentrationsreihen ermittelt und anschließend für die Selektion während des genomweiten CRISPR/Cas9-Screens eingesetzt. Diese beträgt für L428 0,8 µg/ml, für L1236 0,4 µg/ml, für BJAB 0,6 µg/ml und für SU-DHL-4 0,4 µg/ml Puromycin (siehe Abb. 3.8).

Abb. 3.8 Puromycin-Selektionskurven: Die ausgewählten Zelllinien wurden in Konzentrationsreihen mit Puromycin behandelt und über die Zeit durchflusszytometrisch der Anteil noch lebender Zellen bestimmt (hier dargestellt: über FSC-A vs. SSC-A *gating*). Gezeigt ist ein repräsentatives Experiment von mindestens zwei.

3.2.3 Durchführung des genomweiten CRISPR-Screens

Für den genomweiten CRISPR-Screen wurden die oben beschriebenen Hodgkin-Zelllinien L428 und L1236 sowie die Non-Hodgkin-Kontrollzelllinien BJAB und SU-DHL-4 verwendet. Es wurden in Duplikaten jeweils 1x10⁸ Zellen jeder Zelllinie mit der entsprechenden Menge konzentrierten virustragenden Überstands der *GeCKOv2*-Bibliothek transduziert. Zellpellets à je 3x10⁷ Zellen wurden zur Erfassung der sgRNA-Repräsentation als Startpunkt an Tag 1 nach Transduktion sowie als Endpunkt an Tag 21 nach Transduktion entnommen und aus diesen wie beschrieben genomische DNA aufbereitet, aus der schließlich die jeweiligen sgRNA-Sequenzen mittels Hochdurchsatzsequenzierung ausgelesen wurden. Hierfür wurden in einer ersten PCR die jeweils spezifischen sgRNA-Sequenzen mit Hilfe von Primern amplifiziert, die in der integrierten lentiviralen DNA proximal und distal im gemeinsamen Sequenzbereich binden. In einer zweiten PCR wurden dann die für die Sequenzierung benötigten *Illumina*®-Adapter, *stagger* und Indices eingebracht (Abb. 3.9; siehe auch Kapitel 2.2.8.2, Material und Methoden).

Abb. 3.9 (Erläuterung siehe folgende Seite)

Erläuterung zu Abb. 3.9 Arbeitsfluss der Erstellung einer library für die Hochdurchsatzsequenzierung aus genomischer DNA: Die für das Zielgen spezifische sgRNA-Sequenz des in die genomische DNA integrierten lentiCRISPRv2-Vektors wurde in einer 1. PCR ausgelesen und anschließend in einer 2. PCR die entsprechenden Illumina®-Adapter inklusive Indices und stagger angehängt. Die so entstandene sgRNA-Sequenz-library jeder Probe wurde über ein Agarose-Gel aufgereinigt und anschließend am BioAnalyzer auf Reinheit und korrekte Fragment-Größe kontrolliert. Bei der folgenden Hochdurchsatzsequenzierung am Illumina® HiSeq 2500 wurden aus jeder library in einem 53bp langen Illumina® read die spezifischen sgRNA-Sequenzen ausgelesen und anschließend ihren Zielgenen zugeordnet.

Zur Kontrolle wurden darüber hinaus Zellpellets für die Präparation von Protein und anschließende Überprüfung der Cas9-Expression im Western Blot gewonnen. Es zeigte sich eine starke Expression der Cas9 in den mit der *GeCKOv2*-Bibliothek transduzierten Proben (Abb. 3.10).

Abb 3.10 Western Blot: Expression der Cas9 in den *GeCKOv2*-transduzierten Zelllinien (Tag 28 nach Transduktion). β-Aktin wurde als Ladungskontrolle verwendet.

3.2.4 Ergebnisse des genomweiten CRISPR-Screens

3.2.4.1 Allgemeine Auswertung und Überblick

Aus der Hochdurchsatzsequenzierung am Illumina® HiSeq 2500 gingen normalisierte Lesezahlen der einzelnen sgRNA-Sequenzen hervor. Sämtliche verwendete stagger konnten gleichverteilt sowie alle Proben mit einer mindestens 500fachen Sequenzierungstiefe gelesen werden, was zunächst die technische Validität und Qualität der Sequenzierung selbst unterstreicht (Abb. 3.11 A). In der Analyse zeigte der direkte Vergleich der Zusammensetzung des sgRNA-Pools zum Endzeitpunkt (Tag 21) mit der zum Ausgangszeitpunkt (Tag 1) eine deutliche Abnahme der Vielfalt der jeweils repräsentierten sgRNAs (Abb. 3.11 B). Zur weiteren Auswertung auf Einzelgenebene wurde zunächst für jede sgRNA jeder Probe der Quotient ihrer Lesezahl am Endpunkt zu der Lesezahl am Startpunkt gebildet. SgRNAs mit einem Quotienten <1 nahmen über den Beobachtungszeitraum ab, sodass angenommen werden kann, dass sie ein proliferationsrelevantes Gen ausgeschaltet haben. SgRNAs hingegen mit einem Quotienten >1 nahmen über den Beobachtungszeitraum zu, sodass analog geschlossen werden kann, dass sie ein proliferationshemmendes Gen ausgeschaltet haben. Um zufällige Effekte und Schwankungen in der sgRNA-Repräsentation zu minimieren, wurde in der folgenden Analyse auf solche Gene fokussiert, bei denen mindestens 2 sgRNAs unabhängig voneinander so depletiert waren, dass sie jeweils einen Quotienten von ≤0,6 aufwiesen. Auf diese Weise ließen sich zahlreiche bekannte house keeping Gene (d.h. Gene, die generell eine wichtige Überlebensfunktion besitzen) sowie bekannte entitätsübergreifende Onkogene, wie bspw. MYC, identifizieren, die so als Positivkontrolle dienten und die Validität des Screens sowie der Analysemethode bestätigten. Als Negativkontrollen dienten nicht in lymphatischen Zellen exprimierte bzw. nicht für deren Proliferation relevante Kontrollgene wie Albumin (ALB), Apolipoprotein B (APOB) oder die Geruchsrezeptoren (olfactory receptors, OR). Es konnte gezeigt werden, dass diese über die Zeit keiner Depletion oder Mehranreicherung unterlagen und keine Unterschiede zwischen den Hodgkin-Zelllinien und Kontrollen aufwiesen.

Abb. 3.11 (Erläuterung siehe folgende Seite)

Erläuterung zu Abb. 3.11 Genomweiter CRISPR-Screen. **A** Verteilung der *stagger* (1-9bp Länge): eine gleichmäßige Verteilung der *stagger*-Längen zeigt eine repräsentative Verteilung der Proben untereinander. **B** Dargestellt ist die Verschiebung der log2-normalisierten sgRNA-*read* Zahlen (entspricht der sgRNA-Häufigkeit) von Tag 1 zu Tag 21 im Vergleich zum errechneten Hintergrund (*noise*; grau). Es zeigt sich eine Reduktion des sgRNA-Pools über den Beobachtungszeitraum für alle Zelllinien. **C** Streudiagramm der sgRNA-Häufigkeit an Tag 1 vs. Tag 21. Exemplarische Hervorhebung einzelner depletierter Kandidatengene in den Hodgkin-Zelllinien L428 (links) und L1236 (rechts). **D** Heatmap der sgRNA-Depletion der ermittelten Kandidatengene sowie von zwei Positiv- (MYC und GAPDH) sowie Negativkontrollen (APOB und ALB) in den Hodgkin-Zelllinien L428 und L1236 im Vergleich zur Kontrollzelllinie BJAB.

3.2.4.2 Bestätigung zahlreicher bekannter Schlüsselfaktoren des cHL

Um für das Hodgkin-Lymphom spezifische Kandidatengene zu identifizieren, wurden im Folgenden alle sgRNAs errechnet, die selektiv in den Hodgkin-Lymphom-Zelllinien im Vergleich zu den B-NHL-Zellinien über die Zeit depletiert wurden. Hierfür wurde zunächst der Quotient aus der Verschiebung der sgRNA-Repräsentation von Tag 21 im Vergleich zu Tag 1 in den beiden Hodgkin-Zelllinien errechnet. Als relevant depletiert wurden solche Gene gewertet, bei denen jeweils mindestens zwei (aus sechs) sgRNAs einen Quotienten von ≤0,6 aufwiesen. Als Hodgkin-spezifische Kandidatengene wurden anschließend aus diesen solche Gene klassifiziert, für die wiederum mindestens zwei sgRNAs nicht nur die Kriterien der allgemeinen Depletion erfüllten (s.o.), sondern auch der Quotient der jeweiligen cHL-Zelllinie zu dem Mittel der beiden B-NHL-Kontrollen mindestens ≤0,6 für L428 resp. ≤0,75 für L1236 betrug. Unter Anwendung dieser Kriterien ergaben sich so 267 potentielle Kandidatengene für die Pathogenese des Hodgkin-Lymphoms, davon 158 für L428, 137 für L1236 und 28 gemeinsame in L428 und L1236. Unter diesen fanden sich zahlreiche gut beschriebene Schlüsselfaktoren für das Hodgkin-Lymphom wieder, was ebenfalls als valide interne Kontrolle des Screens und seiner Analyse diente. So wurde der NF-kB-Signalweg auf mehreren Ebenen mit den errechneten Kandidatengenen IKKa, NFKB2 und RELB zuverlässig identifiziert. Mit JAK1 und STAT5B wurde darüber hinaus auch der JAK-STAT-Signalweg getroffen. Ebenfalls identifiziert werden konnten mehrere im cHL treibende Transkriptionsfaktoren der AP-1- und ATF-Familie (JUNB, BATF3) sowie IRF4. (Abb. 3.12)

Bei der Betrachtung angereicherter sgRNAs, also potentiellen Tumorsuppressoren, fiel eine deutlich geringere Zahl potentieller Kandidatengene auf: Bei einem *cut-off* von 2

für den Quotienten von Tag 21 zu Tag 1 und mindestens 2 sgRNAs, die dieses Kriterium erfüllen, waren sgRNAs für 94 Gene in den Hodgkin-Zelllinien angereichert. Bei der weiteren Auswahl spezifisch angereicherter sgRNAs (Quotient von cHL- zu B-NHL-Proben >1,5) sank diese Zahl weiter auf 31. Darunter fand sich kein bekannter Tumorsuppressor, wie z.B. TP53, der als Positivkontrolle dienen konnte. (siehe Anhang)

Abb. 3.12 Ergebnisse des genomweiten CRISPR-Screens. **A** sgRNA-Verhältnis von Tag 21 zu Tag 1. Grau: OR1D2 (Negativ-Kontrolle) sowie GAPDH und MYC (Positiv-Kontrollen). Blau resp. türkis: bekannte und neue Kandidatengene (L428, blau; L1236, türkis). Positiv-Kontrollen sowie Kandidaten sind deutlich depletiert; hingegen keine Veränderung der Negativ-Kontrolle (OR1D2). **B** Übersicht über relevante Signalwege im cHL; Hits im genomweiten CRISPR-Screen sind rot umrandet hervorgehoben.

3.2.4.3 Identifizierung neuer potentieller Kandidatengene für die Pathogenese des Hodgkin-Lymphoms

Neben bereits beschriebenen Genen konnten durch den genomweiten CRISPR-Screen auch zahlreiche bisher für die Pathogenese des cHL unerforschte potentielle Kandidatengene aufgedeckt werden. Viele dieser Gene lassen sich dabei wichtigen Schlüsseldomainen der Zellbiologie zuordnen. So finden sich unter den errechneten Kandidatengenen neben dem bereits als hochexprimiert im Hodgkin-Lymphom beschriebenen Cyclin D2 (CCND2) mehrere weitere Zellzyklusregulatoren wie bspw. Cyclin A2 (CCNA2), CDCA2, CDCA5 und CDC25A. Einen weiteren wichtigen Aspekt der Biologie maligner Zellen nimmt die Reparatur von und Antwort auf DNA-Schäden ein. Auch in diesem Feld ließen sich mit den Genen XRCC6, RAD51C und den Hitzeschockproteinen HSPA9 und HSPE1 einige vielversprechende Kandidaten aufzeigen. Mit den Methyltransferasen HENMT1, SETD8 und METTL2B sowie dem Histonprotein HIST2H2AB ließen sich darüber hinaus auch interessante neue Faktoren im Bereich der epigenetischen Modifikation identifizieren. Schließlich konnten mit BTF3L4, MLX, ZBTB7A und ZNF398 für die Pathogenese des cHL auch neue potentiell relevante Transkriptionsfaktoren ermittelt werden. Darüber hinaus ergaben sich weitere potentielle Kandidatengene, die zunächst keiner übergeordneten Gruppe zugeteilt werden konnten. Eine Zusammenstellung aller aus dem genomweiten CRISPR-Screen hervorgegangenen Kandidatengene sowie der hieraus für die weiteren Analysen ausgewählten Kandidaten ist dem Anhang dieser Arbeit zu entnehmen.

3.2.4.4 Expression der ermittelten Kandidatengene in Hodgkin-Zelllinien

Für den ersten Schritt der Validierung dieser aus dem genomweiten CRISPR-Screen hervorgegangenen Kandidatengene, wurden diese anhand eigener bereits angefertigter Genexpressionsdaten auf ihre Expression im cHL überprüft. Dabei konnte für alle Kandidatengene eine relevante Expression nachgewiesen werden. Die beiden Negativ-Kontrollen APOB und OR1D2 werden wie erwartet nicht exprimiert. (Abb. 3.13)

Abb. 3.13 Expression von relevanten Kontroll- und Kandidatengenen in cHL-Zelllinien: Mittelwert normalisierter RNA *Read*-Zahlen der Zelllinien L428 (Triplikate), L1236 (Duplikate) und UHO-1 (Triplikate) (eigene RNA-seq Daten eines anderen Projektes, 2018).

3.2.5 CRISPR/Cas9-Re-Screen zur Validierung potentieller Kandidatengene in Hodgkin-Lymphom-Zelllinien

Um die aus dem genomweiten CRISPR/Cas9-Screen hervorgegangenen Kandidatengene zu validieren erfolgte ein weiterführender CRISPR/Cas9-Re-Screen. Hierfür wurde eigenständig eine unabhängige Re-Screen-Bibliothek von etwa 1200 sgRNAs entworfen und kloniert, die neben Positiv- und Negativ-Kontrollen insgesamt 141 potentielle Kandidatengene, 21 zusätzliche Gene sowie 9 weitere (im GeCKO-Screen nicht als Kandidaten identifizierte) NF-kB Gene umfasst und auf demselben lentiCRISPRv2-Grundplasmid beruht. Für jedes Gen wurden dabei je drei neue, von solchen aus dem genomweiten CRISPR/Cas9-Screen unabhängige, sgRNAs entworfen (Design der sgRNAs mit Hilfe der Software CrispRGold (Chu et al., 2016)). Eine vollständige Liste aller von dieser Re-Screen-Bibliothek erfassten Gene findet sich im Anhang.

Analog zum vorangegangenen genomweiten CRISPR-Screen wurden die Zellinien L428 und L1236 für das cHL sowie die Kontrollzelllinien BJAB und SU-DHL-4 mit aus dem library-Plasmid-Pool gewonnenem Virusüberstand transduziert. Unter Puromycin wurden positiv transduzierte Zellen selektioniert. Zellpellets für die Ausgangs- und Endverteilung der sgRNAs wurden an Tag 1, 14, 21 sowie 28 nach Transduktion entnommen. Wieder erfolgte die Aufreinigung von genomischer DNA, aus der auf die oben beschriebene Weise die sgRNA-Sequenz ausgelesen und das entstandene PCR-Produkt für die Hochdurchsatzsequenzierung auf dem Illumina® HiSeg 2500 präpariert wurde. Die bioinformatische Auswertung erfolgte ebenfalls analog zum genomweiten CRISPR/Cas9-Screen mit je mindestens zwei sgRNAs pro Gen mit einem Quotienten des End- zum Ausgangszeitpunkt von ≤0,6 für L428 bzw. ≤0,7 für L1236 sowie anschließend von cHL zu Kontrolle für L428 von ≤0,6 bzw. für L1236 von ≤0,75. Die erfolgreiche Durchführung dieses Bestätigungsscreens konnte dabei durch unveränderte Negativkontrollen und non-targeting sgRNAs sowie deutlich depletierte Positivkontrollen verifiziert werden. Insgesamt konnten so in diesem unabhängigen Re-Screen für L428 40 und für L1236 15 der potentiellen Kandidaten aus dem genomweiten Screen bestätigt werden. Sieben dieser Kandidatengene ließen sich in beiden Hodgkin-Zelllinien bestätigen. Eine exemplarische Auswahl der im Re-Screen bestätigten Kandidatengene ist in Abb. 3.15 C und D dargestellt. Eine vollständige Liste über alle in diesem CRISPR-Re-Screen validierten Kandidatengene ist Tabelle 3.1 sowie dem Anhang zu entnehmen.

Die bioinformatische Auswertung des Re-Screens in technischer Hinsicht zeigte eine fortgesetzte Veränderung des sgRNA-Pools über die Zeit. Dabei fiel eine ähnliche Entwicklung der sgRNA-Pools für L428, BJAB und SU-DHL-4, jedoch eine deutlich langsamere Veränderung in L1236 Zellen auf, deren sgRNA-Pool-Zusammensetzung

Erläuterung zu Abb. 3.15 Ergebnisse des CRISPR-Re-Screens. **A** Verteilung der *stagger* (1-9bp Länge): eine gleichmäßige Verteilung der *stagger*-Längen zeigt eine repräsentative Verteilung der Proben untereinander. **B** Dargestellt ist die Verschiebung der log2-normalisierten sgRNA-*read* Zahlen (entspricht der sgRNA-Häufigkeit) von Tag 1 zu Tag 28 im Vergleich zur Hintergrund-Kontrolle (*noise*; grau). Es zeigt sich eine Reduktion des sgRNA-Pools über den Beobachtungszeitraum für alle Zelllinien (roter Pfeil). **C** Streudiagramm der sgRNA-Häufigkeit an Tag 1 vs. Tag 28. Exemplarische Darstellung depletierter Kandidatengene in den cHL Zelllinien L428 (links) und L1236 (rechts). **D** Heatmap der sgRNA-Depletion der ermittelten Kandidatengene sowie von zwei Postiv- (MYC und GAPDH) sowie Negativkontrollen (APOB und ALB) in den Hodgkin-Zelllinien L428 und L1236 im Vergleich zur B-NHL-Kontrollzelllinie BJAB.

Abb. 3.15 (Erläuterung siehe vorherige Seite)

L428			L1236		
bekannte Gene	neue Kandidatengene		bekannte Gene	neue Kandidatengene	
BATF3 CCNA2 CCND2 CHUK IRF4 JAK1 JUNB MAP3K14 NFKBIB REL	AOC2 BTF3L4 CDCA5 COPRS DNM1 EEF2 EIF1 EIF1AX HENMT1 HSPA9 HSPE1 INCENP KEAP1 METTL2B MIR6878	MLX NHP2L1 NMNAT1 PAQR6 PHIP POLR2E PPP1R37 PSMA7 PTTG1 RAD51C SLC7A1 TNFAIP3 TUBB ZNE398	BATF3 CCNA2 CCND2 CHUK IRF4 JAK1 NFKB2 RELB	DPM2 EIF1AX FNDC3B IRAK1 LYRM7 STX12 WDR20	

Tab. 3.1 Im Re-Screen bestätigte bekannte sowie neue Kandidatengene für die Pathogenese des Hodgkin-Lymphoms in den beiden Zelllinien L428 und L1236. Fette Kandidatengene sind beiden Zelllinien gemeinsam.

3.2.5.1 Bestätigung zahlreicher bekannter Schlüsselfaktoren des cHL

Auch im Re-Screen fanden sich die wichtigsten der bereits bekannten Faktoren für die Pathogenese des cHL wieder. Die im genomweiten Screen errechneten Kandidatengene des NF-kB-Signalwegs IKKa und NFKB2 konnten zuverlässig bestätigt werden. Des Weiteren zeigten sich auch die im genomweiten CRISPR-Screen nicht signifikant depletierten NF-kB-Komponenten NIK und REL nun im Re-Screen als zuverlässige Kandidatengene. NFKB1 hingegen wies auch in diesem zweiten CRISPR-Screen keine relevante Depletion auf. Während STAT5B im Bestätigungsscreen keine Signifikanz mehr erreichen konnte, konnte JAK1 deutlich als Kandidatengen validiert werden. Auch die im cHL bekannten und im genomweiten Screen identifizierten Transkriptionsfaktoren der AP-1- und ATF-Familie (JUNB, BATF3) sowie IRF4 konnten eindrucksvoll verifiziert werden. Mit einem durchschnittlichen Quotienten von 0,15 (L428) bzw. 0,62 (L1236) im Vergleich über die Zeit (Tag 28 zu Tag 1) sowie im Vergleich zu den B-NHL-Kontrollen von 0,12 (L428) bzw. 0,32 (L1236) erwies sich IRF4 als das am stärksten proliferationsrelevante hodgkinspezifische Zielgen des CRISPR/Cas9-Re-Screens. Für die stärkste IRF4-sgRNA betrug der Quotient über die Zeit dabei nur 0,05 (L428) bzw. 0,08 (L1236) und der Quotient zu den B-NHL-Kontrollen wiederum ebenfalls nur 0,05 (L428) bzw. 0,08 (L1236). (Abb. 3.15 C, D sowie Anhang)

3.2.5.2 Bestätigung neuer potentieller Kandidatengene für die Pathogenese des Hodgkin-Lymphoms

Über die Bestätigung bereits beschriebener Faktoren hinaus konnten im genomweiten CRISPR/Cas9-Screen zahlreiche neue potentielle Kandidatengene für die Pathogenese des cHL identifiziert werden. Mehrere dieser Gene konnten in einem zweiten Schritt auch in dem anschließend durchgeführten CRISPR/Cas9-Re-Screen gefunden und damit bestätigt werden. Unter den so validierten neuen Kandidatengenen befinden sich die Zellzyklusregulatoren Cyclin D2 (CCND2), Cyclin A2 (CCNA2), CDCA5 und CDC25A. Auch die in die DNA-Reparatur involvierten Kandidatengene ließen sich teilweise im Bestätigungs-Screen validieren. So konnte in diesem ein cHL-spezifischer Effekt von RAD51C gesehen werden. Die beiden Hitzeschockproteine HSPA9 und HSPE1 präsentierten sich in allen vier Lymphom-Zelllinien mit einem Einfluss auf die Proliferation, der in der cHL-Zelllinie L428 auch deutlich stärker war als in den B-NHL-Kontrollzelllinien. Aus dem Bereich der epigenetischen Modifikation ließen sich die Methyltransferasen HENMT1 und METTL2B durch den Re-Screen validieren. Zuletzt konnten mit BTF3L4, MLX und ZNF398 auch mehrere interessante der im genomweiten CRISPR/Cas9-Screen ermittelten neuen Kandidaten aus der Gruppe der Transkriptionsfaktoren bestätigt werden. (Abb. 3.15 C,D; Tab. 3.1; Anhang)

3.2.6 Kompetitions-Assays ausgewählter Kandidatengene

Um die im genomweiten CRISPR/Cas9-Screen ermittelten und im unabhängigen Re-Screen bestätigten Kandidatengene weiterführend zu untersuchen und zu validieren, wurden für ausgewählte Kandidatengene Kompetitions-Assays durchgeführt. Hierfür wurden die beiden bereits in den Screens verwendeten Hodgkin-Zelllinien L428 und L1236 sowie eine dritte, neue cHL-Zelllinie, UHO-1, und die Kontrollzelllinie BJAB jeweils entweder mit einem Pool aus den drei im Re-Screen verwendeten sgRNAs oder einem Pool von sieben *non-targeting* (ntg) Kontroll-sgRNAs transduziert. Die *targeting* sgRNAs wurden zu diesem Zweck in den selbst erstellten, einen EGFP-Reporter tragenden *lentiCRISPRv2-*Vektor (*lentiCRISPRv2-EGFP*) kloniert, während die *nontargeting* sgRNAs in eine ebenfalls selbst erstellte, einen EBFP-Reporter tragende *lentiCRISPRv2-*Variante (*lentiCRISPRv2-EBFP*) gesetzt wurden. Die transduzierten Zelllinien wurden mittels FACS auf reporterpositive Zellen sortiert und aus diesen anschließend Mischpopulationen von EGFP-positiver *knockout-* zu EBFP-positiver Kontrollpopulation mit einem Mischungsverhältnis von 2:1 erstellt. Dieses Vorgehen ermöglichte es, die Veränderungen im Verhältnis der beiden Populationen zueinander (EGFP⁺, *targeting* sgRNAs, d.h. *knockout*, vs. EBFP⁺, *non-targeting* sgRNAs, d.h. Kontrolle) direkt in einer gemeinsamen Kultur über einen Zeitraum von 30 Tagen durchflusszytometrisch hinsichtlich zu beobachten. Auf diese Weise zeigte sich für die Mehrzahl der untersuchten Kandidatengene für die Hodgkin-Zelllinien eine deutliche Abnahme bzw. Verschiebung des Verhältnisses hin zur Kontrollpopulation und damit also – vergleichbar zu den Ergebnissen aus den beiden CRISPR/Cas9-Screens – ein Proliferations-/Überlebensnachteil der jeweiligen *knockout*-Variante gegenüber kontrollbehandelten Zellen. (Abb. 3.16)

Die technische Überprüfung eines erfolgreichen CRISPR/Cas9-*knockouts* des jeweiligen Zielgenes erfolgte parallel hierzu auf Proteinebene im Western Blot, wenn entsprechende Antikörper verfügbar waren (IKKα, NFKB2, IRF4, JUNB, BATF3, CCNA2, KEAP1, HENMT1; Abb. 3.17).

Eine vollständige Übersicht über alle in den Kompetitions-Assays validierten Kandidatengene ist der unten stehenden Tabelle zu entnehmen. (Tab. 3.2)

Kandidatengen	Validiert in Hodgkin-Zelllinie			
-	L428	L1236	UHO-1	
BATF3	Х	Х	-	
CCNA2	-	х	Х	
CCND2	-	х	х	
CDC25A	-	х	х	
HENMT1	-	-	х	
ΙΚΚα	Х	х	х	
IRF4	х	х	х	
JAK	х	Х	Х	
JUNB	х	х	х	
KEAP1	х	Х	Х	
METTL2B	х	-	-	
NFKB2	Х	Х	Х	
NIK	х	х	х	
RAD51C	х	х	х	
REL	х	х	х	
WDR20	х	-	-	
ZBTB7A	х	-	-	
ZNF398	-	х	х	

Tab. 3.2 Validierte Kandidatengene: aus den beiden sequentiellen CRISPR-Screens hervorgegangene potentielle Kandidatengene. Dargestellt ist die folgende Validierung in Kompetitions-Assays. Mit x markierte Kandidatengene konnten in der jeweiligen Zelllinie mit mindestens p < 0,05 bestätigt werden. Für mit - markierte Kandidatengene konnte kein signifikanter Effekt in der jeweiligen Zelllinie nachgewiesen werden.

Erläuterung zu Abb. 3.16 Kompetitions-Assays ausgewählter Kandidatengene. **A** Ablauf und Grundprinzip der Kompetitions-Assays: Erläuterungen siehe Haupttext. **B** Kompetitions-Assays der Kandidategene HENMT1, JAK1, RAD51C, WDR20, ZBTB7A und ZNF398. Veränderung der sgRNA-Repräsentation (Verteilungsverhältnis) über die Zeit im Vergleich zum Ausgangsverhältnis in den jeweiligen *knockouts* in Relation zu den Kontrollen. Dargestellt sind die gemeinsamen Ergebnisse aus zwei Experimenten für JAK1 und RAD51C bzw. einfach durchgeführte Experimente für METTL2B, WDR20, ZBTB7A und ZNF398. Statistik: 1-Stichproben t-Test; * p <0,05 ** p<0,01 *** p<0,001 n.s. - nicht signifikant.

Abb. 3.16 (Erläuterung siehe vorherige Seite)

Abb. 3.17 Western Blots zur *knockout*-Kontrolle aller untersuchten Zielproteine, für die ein funktionaler Antikörper zur Verfügung stand. Getestet wurde jeweils dieselbe Kombination aus allen drei im Re-Screen eingesetzten sgRNAs wie sie auch für die Kompetitions-Assays verwendet wurde. Als Kontrolle diente ebenfalls die Transduktion mit einem Pool aus *non-targeting* sgRNAs (ntg). Tag 9 bis 12 nach Transduktion. β-Aktin als Ladungskontrolle.

3.2.7 Die Transkriptionsfaktoren IRF4, JUNB und BATF3 sind von zentraler Bedeutung für die Proliferation von cHL-Zellen

Der Transkriptionsfaktor IRF4 sowie die beiden zur weiteren AP-1-Familie gehörenden Transkriptionsfaktoren JUNB und BATF3 konnten im genomweiten CRISPR/Cas9-Screen als starke potentielle Kandidatengene identifiziert und im anschließenden Re-Screen bestätigt werden. In den nachfolgend durchgeführten Kompetitions-Assays wurde der besonders starke nachteilige Effekt eines Verlustes dieser Faktoren auf die Proliferation von cHL Tumorzellen deutlich. Dabei präsentierte sich IRF4, das differentiell in Hodgkin-Zelllinien exprimiert ist (im Vergleich zu B-NHL-Zelllinien; Abb. 3.18 B), als das stärkste aller in Kompetitions-Assays untersuchten Kandidatengene mit einer Verschiebung des relativen Verhältnisses der IRF4-knockout- zur Kontroll-Population von 1 zum Ausgangszeitpunkt auf 0,09 (L428), 0,11 (L1236) bzw. 0,17 (UHO-1) zum Endzeitpunkt (30 Tage). In denselben Untersuchungen der beiden JUN bzw. ATF Transkriptionsfaktoren zeigte sich ein Abfall des Verhältnisses der jeweiligen knockout- zur Kontroll-Population auf 0,22 (L428), 0,21 (L1236) bzw. 0,33 (UHO-1) für JUNB bzw. 0,52 (L428), 0,62 (L1236) für BATF3. Kein Nachteil eines BATF3-Verlustes zeigte sich mit einem Quotienten von 1,01 zum Endzeitpunkt lediglich für UHO-1 (Abb. 3.18 A, C). Für IRF4, das sich auch in den Kompetitions-Assays mit einem sehr starken Effekt präsentierte, wurden darüber hinaus Rescue-Experimente durchgeführt. Hierfür erfolgte die doppelte Transduktion der Zielzelllinien mit entweder einer Kombination aus murinem Irf4 (EBFP-Reporter), in dem eine der humanen sgRNAs aufgrund von vier Basen-Fehlpaarungen (darunter eine direkt vor dem PAM und damit besonders relevant) nicht schneiden sollte, und dieser IRF4-sgRNA (EGFP-Reporter) oder einem Leervektor (EBFP-Reporter) und IRF4-sgRNA (EGFP-Reporter). Nun erfolgte ebenfalls die Durchführung von Kompetitions-Assays, indem wiederum Mischpopulationen aus jeweils diesen doppelt reporterpositiven Zellpopulationen und einer mit einer nontargeting sgRNA Kontrolle (mCherry-Reporter) transduzierten Zellpopulation erstellt und deren Verhältnis zueinander über die Zeit beobachtet wurde. Hier ergab sich zwar kein murine Irf4, jedoch noch ein vollständiger Rescue durch das deutlicher Proliferationsvorteil gegenüber der kompletten IRF4-knockout-Population, insbesondere in L1236 und UHO-1 (Abb. 3.18 C). Die Kontrolle der IRF4-Level im Western Blot zeigte eine zu diesen Ergebnissen passende Reduktion von IRF4 im knockout (in Kombination mit der Transduktion eines Leervektors) und eine wieder vermehrte IRF4-Expression in den rescue-Proben (knockout plus Transduktion mit murinem Irf4) (Abb. 3.18 D).

Abb. 3.18 Funktionelle Analyse der Kandidatengene IRF4, BATF3 und JUNB in Kompetitions-Assays. **A** Kompetitions-Assay für IRF4-*knockout* in cHL-Zelllinien. **B** RT-PCR: Expression von IRF4 in cHL- und B-NHL-Zelllinien; GAPDH als Kontrolle. **C** IRF4-*knockout* in Kombination mit einem Leervektor (*knockout*, rot) oder mit einem murines Irf4 exprimierenden Vektor (*rescue*, grün) in Hodgkin-Zelllinien **D** Western Blot zur Expressions- und *knockout*-Kontrolle des IRF4 *rescue*: *non-targeting* sgRNA als Kontrolle, sgIRF4 plus Leervektor (*lentiCRISPRv2-EBFP-emptyvector*) als *knockout* und sgIRF4 plus murines Irf4 (*lentiCRISPRv2-EBFP-Irf4*) als *rescue*. **E** Kompetitions-Assays für BATF3- und JUNB-*knockout* in cHL-Zelllinien. **A**, **C**, **E** Dargestellt ist das gemeinsame Ergebnis von zwei unabhängigen Experimenten für IRF4, BATF3 und JUNB, sowie ein repräsentatives Experiment von zwei für den *rescue* von IRF4. Statistik: 1-Stichproben t-Test; * p <0,05 ** p<0,01 *** p<0,001 n.s. - nicht signifikant.

3.2.8 Der Zellzyklusregulator CCND2 ist relevant und spezifisch für die Proliferation von Hodgkin-Zellen

Der Zellzyklusregulator CCND2 bewies sich nach seiner Identifikation im genomweiten CRISPR/Cas9-Screen auch im anschließenden Bestätigungs-Screen als starkes Kandidatengen für die Proliferation von cHL-Zellen. So führte der Verlust von CCND2 in den drei untersuchten Hodgkin-Zelllinien im Kompetitions-Assay zu einem deutlichen Proliferationsnachteil. (Abb. 3.19 A)

Wie beschrieben sind zwar keine direkten Inhibitoren für Cyclin D2 verfügbar, für die Cyclin D2 abhängigen Kinasen CDK4/6 kann jedoch u.a. der Inhibitor Palbociclib eingesetzt werden (Fry et al., 2004; Leonard et al., 2012; Marzec et al., 2006; Toogood et al., 2005). Zur weiteren Evaluation der Bedeutung der CCND2-CDK4/6-Achse für das Hodgkin-Lymphom wurden daher mehrere Hodgkin-Zelllinien mit Palbociclib behandelt und dessen Effekte auf die Proliferation analysiert. Als Positiv-Kontrolle diente die Mantelzell-Lymphom Zelllinie Mino, die eine t(11;14) Translokation mit daraus resultierender Cyclin D1 Überexpression aufweist und daher als besonders empfindlich gegenüber einer Hemmung von CDK4/6 gilt (Lai et al., 2002; Marzec et al., 2006). Dabei bestätigte eine geringere ³H-Thymidin-Inkorporation in Proliferations-Analysen den signifikanten Wachstumsnachteil für cHL-Zellen bei Inhibition der CCND2-CDK4/6-Achse. (Abb. 3.19 B)

3.2.9 Die Zellzyklusregulatoren CCNA2 und CDC25A sind wichtig für das Wachstum von cHL-Zellen

Das Cyclin CCNA2 und die Zellzyklus-assoziierte Phosphatase CDC25A sind beide als valide Kandidatengene aus den sequentiellen CRISPR-Screens hervorgegangen. Auch in den anschließend durchgeführten Kompetitions-Assays konnte für CCNA2 in allen drei untersuchten Hodgkin-Zelllinien und für CDC25A in UHO-1 ein relevanter Effekt nachgewiesen werden. (Abb. 3.19 A)

CCNA2 und auch CDC25A regulieren jeweils gemeinsam mit der zyklinabhängigen Kinase CDK2 den Zellzyklusprogress. Daher wurde untersucht, ob nicht nur der *knockout* von CCNA2 bzw. CDC25A sondern auch die Behandlung mit dem CDK2-Inhibitor K03861 zu einem Proliferationsnachteil der cHL-Zellen führt (Alexander et al., 2015). Hierfür wurde ein Panel an Hodgkin-Zelllinien steigenden Konzentrationen von K03861 bzw. einer H₂O-Kontrolle ausgesetzt und anschließend deren Auswirkungen

auf die Proliferation untersucht (³H-Thymidin-Proliferations-Assay). Es ergab sich ein moderater negativer Effekt der CDK2-Inhibition auf die Proliferation für einige der Hodgkin-Zelllinien. (Abb. 3.19 C)

Erläuterung zu Abb. 3.19 Kandidatengene: Zellzyklus-Regulatoren. **A** Kompetitions-Assays des CCNA2-, CDC25A- und CCND2-*knockouts*: Veränderung der sgRNA-Repräsentation über die Zeit im Vergleich zum Ausgangsverhältnis in den jeweiligen *knockouts* in Relation zu den Kontrollen. **B**, **C** Funktionelle Untersuchungen mit den Inhibitoren Palbociclib (CDK4/6; CCND2) und K03861 (CDK2; CCNA2/CDC25A) in cHL-Zelllinien und der Mantelzell-Lymphom Zelllinie Mino als Kontrolle: ³H-Thymidin-basierte Proliferationsanalyse von Tag 5 auf Tag 6 unter Palbociclib (**B**) und K03861 (**C**). Gezeigt ist jeweils ein repräsentatives Experiment von zwei. Statistik: 1-Stichproben (**A**) bzw. zweiseitiger (**B**,**C**) t-Test; * p <0,05 ** p<0,01 *** p<0,001 n.s. - nicht signifikant.

3.2.10 Insbesondere der alternative, nicht der klassische NF-κB Signalweg wird in beiden CRISPR/Cas9-Screens als notwendig für das Überleben von cHL-Zellen identifiziert

Wie bereits beschrieben, spielt eine konstitutive Aktivierung des NF-κB Signalwegs eine wichtige Rolle in der Pathogenese des Hodgkin-Lymphoms (Bargou et al., 1996; Emmerich et al., 1999; Hinz et al., 2001; Krappmann et al., 1999; Mathas et al., 2005). Damit übereinstimmend konnten die Komponenten des NF-κB Signalwegs IKKα und NFKB2 im genomweiten CRISPR-Screen identifiziert und im folgenden Re-Screen bestätigt werden. Im Hinblick auf die zentrale Bedeutung von NF-κB in der Pathogenese des cHL waren in den Re-Screen zusätzlich NFKB1, REL, RELA und NIK eingeschlossen worden, um eine möglichst breite Abdeckung des Signalweges zu erreichen. Hiervon konnten in diesem zweiten CRISPR-Screen als Kandidatengen in L1236 erschienen war, konnte in diesem Re-Screen jedoch nicht bestätigt werden.

Mit NIK und NFKB2 sind hierbei zwei Faktoren getroffen, die im alternativen, nicht jedoch im klassischen NF-κB Signalweg wirken. Darüber hinaus fällt das Fehlen der ausschließlich im klassischen NF-κB Signalweg beteiligten Kinasen IKKβ und IKKγ sowie NFKB1 auf. Damit ist der alternative NF-κB Signalweg auf allen Ebenen getroffen worden, während der klassische NF-κB Signalweg nur mit den von beiden Signalwegen geteilten Faktoren an den Kandidatengenen beteiligt ist.

Alle der so identifizierten Kandidatengene des NF-κB Signalwegs konnten in unabhängigen Kompetitions-Assays bestätigt werden. (Abb. 3.20)

Abb. 3.20 Kandidatengene aus dem NF-κB Signalweg: Kompetitions-Assays für IKKα, NIK, NFKB2 und REL: Veränderung der sgRNA-Repräsentation (Verteilungsverhältnis) über die Zeit im Vergleich zum Ausgangsverhältnis in den jeweiligen *knockouts* in Relation zu den Kontrollen. Gezeigt ist ein repräsentatives Experiment von zwei. Statistik: 1-Stichproben t-Test; * p <0,05 ** p<0,01 *** p<0,001.

3.2.11 Die Methyltransferase HENMT1 ist ein neues Kandidatengen im cHL

Die *HEN Methyltransferase 1* (HENMT1) ist bisher weitgehend unerforscht und lediglich in der Spermatogenese beschrieben, wo sie transposable Elemente unterdrückt (Lim et al., 2015). Die beiden durchgeführten CRISPR-Screens sowie der anschließende Kompetitions-Assay konnten HENMT1 als neues Kandidatengen im cHL identifizieren und validieren. Dabei zeigte sich ein deutlicher Proliferationsnachteil des HENMT1-Verlustes in L428 und UHO-1 sowie eine leicht nachteilige Tendenz in L1236. (Abb. 3.21 A)

Die Expression von HENMT1 in Hodgkin- und B-NHL-Kontrollzelllinien sowie die Spezifität des HENMT1-*knockouts* wurden im Western Blot untersucht. Schon an Tag 4 war hier in L1236 und ab Tag 6 auch in L428 ein deutlicher *knockout* zu sehen. (Abb. 3.21 B,C)

Abb. 3.21 Kandidatengen HENMT1. **A** Kompetitions-Assay: HENMT1-*knockout* in Relation zur *nontargeting* Kontrolle. Gezeigt ist ein repräsentatives Experiment von zwei. Statistik: 1-Stichproben t-Test; * p < 0,05 ** p < 0,01 *** p < 0,001 n.s. - nicht signifikant. **B** RT-PCR: RNA-Expression von HENMT1 in cHL- und B-NHL-Zelllinien; GAPDH als Kontrolle. **C** Western-Blot: *knockout* von HENMT1 an Tag 4, 6 und 8 nach lentiviraler Transduktion im Vergleich zu mit Leervektor transduzierten L428 und L1236 Zellen; β -Aktin als Ladungskontrolle.

3.2.12 KEAP1 ist ein potentes neues Onkogen im cHL

Das Kelch-like ECH-assoziierte Protein 1 (KEAP1) ging als starker und molekularbiologisch interessanter Kandidat aus den beiden sequentiellen CRISPR/Cas9-Screens hervor. In den anschließend durchgeführten Kompetitions-Assays präsentierte sich KEAP1 mit einem signifikanten Proliferationsnachteil des KEAP1-knockouts in allen drei untersuchten cHL-Zelllinien. Dieser Effekt war deutlich ausgeprägt mit einer Reduktion der knockout-Population im Vergleich zur Kontrolle von 1,00 zum Ausgangszeitpunkt auf 0,44 in L428, 0,37 in L1236 und 0,38 in UHO-1 zum Endzeitpunkt (Tag 30), während sich in BJAB B-NHL-Zellen mit 1,17 kein nachteiliger Effekt des KEAP1-knockouts zeigte. Der beobachtete biologische Effekt bei einem knockout von KEAP1 in Hodgkin-Zelllinien bewegte sich damit in einer ähnlichen Größenordnung wie die Auswirkungen eines Verlust der im cHL sehr gut charakterisierten Faktoren des NF-kB und AP-1 Signalwegs. Auf RNAund Proteinebene zeigte sich eine gleichmäßige, stabile Expression von KEAP1 sowohl in den Hodgkin- als auch in den B-NHL-Kontrollzelllinien. (Abb. 3.22)

Abb. 3.22 Kandidatengen KEAP1. **A** RT-PCR: RNA-Expression von KEAP1 in Hodgkin- und B-NHL-Zelllinien; GAPDH als Kontrolle. **B** Western-Blot: Protein-Expression von KEAP1 in Hodgkin- und B-NHL-Zelllinien; β -Aktin als Ladungskontrolle. **C** Kompetitions-Assay: KEAP1-*knockout* in Relation zur *nontargeting* Kontrolle. Gezeigt ist ein repräsentatives Experiment von drei. Statistik: 1-Stichproben t-Test; * p <0,05 ** p<0,01 *** p<0,001. **D** Western-Blot: *knockout* von KEAP1 an Tag 4, 6 und 8 nach lentiviraler Transduktion im Vergleich zu mit Leervektor transduzierten L428 und L1236 Zellen; β -Aktin als Ladungskontrolle.
3.3 Klonierung von BATF- und BATF3-Expressionsvektoren sowie -sgRNAs

Im Rahmen eines anderen Projektes unseres Labors, bei dem die Bedeutung der AP-1 Transkriptionsfaktoren BATF und BATF3 für Wachstum, Überleben und Differenzierung des anaplastisch großzelligen Lymphoms (ALCL) untersucht wurde, erfolgte die Erstellung der hierfür benötigten lentiviralen CRISPR/Cas9 *knockout*-Konstrukte sowie der Expressionsplasmide für BATF und BATF3. Diese Konstrukte wurden eingesetzt, um die Veränderung der Expression von BATF und BATF3 Zielgenen nach *knockout* von BATF und BATF3 sowie die Kompensation des siRNA basierten BATF resp. BATF3 *knockdowns* durch ektope Überexpression dieser zu untersuchen und sind als Teil der Arbeit Schleussner et al., 2018 publiziert worden (*Figure* 4E und *Supplementary Figure* 3A) (Schleussner et al., 2018). Die Sequenzen aller Oligonukleotide einschließlich der sgRNAs sind unter Material und Methoden in den Kapiteln 2.1.10.2 und 2.1.10.3 aufgelistet.

3.3.1 Klonierung von sgRNAs gegen BATF und BATF3

Jeweils drei sgRNAs wurden wie in Kapitel 2.2.4.10 (Material und Methoden) erläutert erstellt und in die oben beschriebenen lentiCRISPR-Vektoren *lentiCRISPRv2-EGFP*, *lentiCRISPRv2-BFP* und *lentiCRISPRv2-mcherry* kloniert.

3.3.2 Klonierung von BATF- und BATF3-Expressionsvektoren

Für die Generierung lentiviraler Expressionsvektoren für BATF und BATF3 wurden die cDNAs von im Labor vorhandener Plasmid-DNA durch PCR amplifiziert, wobei im Rahmen dieser Reaktion die für die Subklonierung notwendigen Restriktions-Schnittstellen eingebracht wurden. Anschließend wurde das entstandene Fragment über eine Agarose-Gel-Elektrophorese aufgereinigt und über *Agel* und *Xbal* in die wie oben beschrieben generierten lentiviralen Leervektoren *lentiCRISPRv2-EGFP-emptyvector* kloniert. (Abb. 3.23)

Abb. 3.23 Schematische Darstellung der klonierten lentiviralen Expressionsvektoren (**A**) für BATF (*lentiCRISPRv2-EGFP-BATF*) und (**B**) für BATF3 (*lentiCRISPRv2-BATF3*). Hervorgehoben sind der EFS-Promoter, der die Expression von BATF- bzw. BATF3-cDNA treibt, gekoppelt über ein 2A-Peptid an die Expression eines Reportergens (hier EGFP, in einer zweiten Version für Doppeltransduktionen auch EBFP).

4. **DISKUSSION**

4.1 Etablierung, Technik und Analyse der CRISPR/Cas9-Screens

4.1.1 Etablierung des CRISPR/Cas9-Systems: Generierung einer *"tool box"* von Vektoren für den effizienten *knockout* und anschließende funktionelle Analysen

Die genomweite CRISPR/Cas9 GeCKOv2-Bibliothek beruht auf einem lentiviralen Grundgerüst, bei dem sgRNA und Cas9 über einen gemeinsamen ca. 14kb großen Vektor in die Zielzelle eingebracht werden (Shalem et al., 2014). Außerdem ist die Cas9 über ein sich selbst schneidendes Peptid (P2A) mit einem Puromycin-Resistenz-Gen verbunden. (Abb. 3.1)

Für ein CRISPR-Screening ist diese ursprüngliche Vektor-Variante sehr sinnvoll, da auf diese Weise über den gesamten Screening-Zeitraum mit Hilfe von Puromycin ein Selektionsdruck angelegt und aufrecht erhalten werden kann; und das bei Zellzahlen die über durchflusszytometrische Zellsortierung - wie sie bei einem Farbreporter notwendig würde - nicht erreicht werden können. Dieser Selektionsdruck ist dabei insbesondere relevant wegen der für die Validität des Screens notwendigen niedrigen MOI von 0,4 (das entspricht ca. 33% transduzierten Zellen vs. 67% nicht transduzierten Zellen). Ein Nachteil dieser eine Puromycin-Resistenz beinhaltenden Vektoren ist jedoch die fehlende Möglichkeit einer einfachen, direkten Kontrolle der Transduktion und Bestimmung ihrer Effizienz. Für diese sind wiederum Farbreporter ideal, weswegen die Erstellung von Varianten des ursprünglichen lentiCRISPRv2-Vektors mit verschiedenen fluoreszierenden Reportern erfolgte. Mit Hilfe des lentiCRISPRv2-EGFP konnte zunächst orientierend auf die mit der GeCKOv2-Bibliothek erzielte Transduktionseffizienz geschlossen werden, deren Feinbestimmung dann wie beschrieben anhand der Analyse des Verhältnisses der Zellzahlen unter und ohne Puromycin-Selektion durchgeführt wurde. Darüber hinaus ermöglichen die erstellten lentiCRISPRv2-Varianten mit drei verschiedenen fluoreszierenden Reportern die schnelle Anreicherung kleiner Zellzahlen mit Hilfe durchflusszytometrischer Zellsortierung. Sie erlauben außerdem die Analyse transduzierter Subgruppen und eröffnen durch die eingesetzten drei verschiedenen fluoreszierenden Proteine die Möglichkeit zur kontrollierten Kombination mehrerer Vektoren. Daher wurden diese

Varianten für sämtliche Untersuchungen einzelner (Kandidaten-)Gene eingesetzt. (Abb. 3.1)

Als mit dieser Arbeit begonnen wurde, war zunächst nur die ursprüngliche *lentiCRISPRv1*-Variante und die auf dieser beruhende GeCKOv1-Bibliothek verfügbar. Während der Etablierung der CRISPR/Cas9-Technologie für diese Arbeit wurde jedoch eine verbesserte zweite Variante (*lentiCRISPRv2* und GeCKOv2) veröffentlicht (Sanjana et al., 2014). Bei der vergleichenden Testung beider Vektoren fiel in den untersuchten Zelllinien eine deutlich höhere Effizienz des *lentiCRISPRv2*-Vektors auf, sodass alle folgenden Experimente mit diesem durchgeführt und für den genomweiten CRISPR-Screen die GeCKOv2-Bibliothek, die auf diesem neuen Grundgerüst basiert und zusätzlich noch einmal mehr sgRNAs enthält, eingesetzt wurde. (Abb. 3.2)

Um schließlich für die Arbeit mit einzelnen (Kandidaten-)Genen einen noch einfacheren und effektiveren knockout zu erzielen, wurde ein Zwei-Vektoren-System erstellt, mit dessen Hilfe zunächst über einen lentiviralen Cas9-Expressionsvektor diese stabil in Zielzelllinien eingebracht und dann anschließend mit einem zweiten Vektor die jeweils Zielgen-spezifische sgRNA transduziert werden kann (Abb. 3.1). Da die CRISPR/Cas9-Vektoren vor allem aufgrund der Länge der Cas9 (ca. 4kb) in vielen Zelllinien nur geringe Transduktionseffizienzen erreichen, wird hier mit zwei nun kleineren Vektoren dieses Problem abgemildert. Aus den durchgeführten Experimenten ging hervor, dass Zellen, in die die Cas9 bereits erfolgreich eingebracht wurde, mit einer Transduktionseffizienz von zu nahezu 100% im Anschluss auch den deutlich kleineren sgRNAexprimierenden Vektor aufnehmen. Ist mit diesem System einmal eine Cas9-stabile Zelllinie generiert, kann also die Transduktion mit sgRNAs ohne anschließende Selektion oder durchflusszytometrische Zellsortierung erfolgen. Hierdurch können bereits frühere Zeitpunkte nach der Transduktion beobachtet werden (Tage, die sonst zunächst auf die Aufreinigung und Anreicherung transduzierter Zellen entfallen), größere Zellzahlen erreicht und Zellstress vermieden werden. Auf der anderen Seite gilt es, die durch die hohe Transduktionseffizienz des kleinen sgRNA-Vektors (8kb vs. 14kb des lentiCRISPRv2) leicht entstehende zu hohe Viruslast der einzelnen Zelle durch Mehrfachtransduktion zu vermeiden.

Da mit dem *lentiCRISPRv2*-Vektor außerdem ein effizientes lentivirales Transfersystem vorlag, das die Effizienzen anderer in unserer Arbeitsgruppe vorhandener lentiviraler Expressionsvektoren deutlich übertrifft, wurde dieses Grundgerüst für die Erstellung

109

eines *lentiCRISPRv2*-basierten Leervektors für die lentivirale Expression von Zielgenen genutzt. (Abb. 3.1, Abb. 3.18 C und D und Abb. 3.23)

4.1.2 Etablierung der CRISPR/Cas9-Technologie anhand des *knockouts* von ABF1, ID2 und E2A

Um parallel zur Durchführung der beiden CRISPR-Screens bereits ein System für die Untersuchung ausgewählter einzelner Kandidatengene zu etablieren, wurden die erstellten Vektoren und möglichen Analysemethoden anhand von Test-Kandidatengenen untersucht. In diesem Rahmen wurden die beschriebenen basic Helix-Loop-Helix Proteine ABF1 und ID2 sowie der von ihnen gebundene Transkriptionsfaktor E2A hinsichtlich der Auswirkungen ihres Verlustes in Hodgkin-Zelllinien untersucht. In einer zurückliegenden Untersuchung unserer Arbeitsgruppe konnte die Bedeutung von ABF1 und ID2 für die für das cHL typische linienfremde Genexpression gezeigt werden (Mathas et al., 2006). Mangels effizienter shRNAs konnten zum damaligen Zeitpunkt jedoch keine oder nur begrenzte Aussagen über die Auswirkung eines Verlustes dieser Proteine im cHL getroffen werden. Genau in diesem Fall ermöglicht nun also erst das CRISPR/Cas9-System derartige Untersuchungen, sodass die Etablierung des Systems mit der Beantwortung einer bis dahin noch offenen Fragestellung verbunden werden konnte.

4.1.3 Etablierung der Kontrolle eines effizienten CRISPR/Cas9 knockouts

Zunächst erfolgte die Kontrolle der *knockout*-Effizienz der eingesetzten sgRNAs im T7-Assay sowie im Western Blot. Der T7-Assay beruht auf dem Einsatz der T7-Endonuklease, die Basenfehlpaarungen in DNA erkennt und sie an diesen Stellen schneidet (Kapitel 2.2.7.1, Material und Methoden, und Abb. 3.3). Genomische DNA von Zielgenen, die effektiv durch die Cas9 geschnitten und deren Sequenz bei der anschließenden Reparatur mutiert wurde, bildet nach einer PCR-Amplifikation Heterodimere aus unveränderter und/oder unterschiedlich mutierter DNA, während rein unveränderte, nicht modifizierte DNA weiterhin fehlerfrei gepaarte Homodimere bildet. Da die T7-Endonuclease ausschließlich Hetero- nicht aber Homodimere schneidet, kann aus ihrer Aktivität auf die Effizienz der erfolgten Cas9-Modifikation geschlossen werden. Vorteil dieser Analysemethode ist die einfache und kostengünstige Anwendbarkeit: ist der Assay einmal etabliert, müssen lediglich Primer zur Amplifikation sodass der Assay auf allen beliebigen DNA-Abschnitten von Interesse durchgeführt werden. Da dieser Assay jedoch direkt auf Ebene der genomischen DNA stattfindet, kann er nur Aussagen über deren Veränderung durch CRISPR/Cas9 treffen. Der Rückschluss auf die tatsächliche knockout-Effizienz auf Proteinebene kann hieraus nur extrapoliert werden. Eine direkte Untersuchung der CRISPR/Cas9 knockout-Effizienz kann hingegen auf Proteinebene im Western Blot erfolgen, für den dann wiederum für jedes zu untersuchende Zielgen ein spezifischer Antikörper eingesetzt werden muss. Darüber hinaus erlaubt der Western Blot nur die Untersuchung des durch CRISPR/Cas9 erzeugten knockouts von exprimierten Zielgenen. Eine Überprüfung der CRISPR/Cas9-Aktivität in nicht transkribierten Bereichen, wie bspw. Promotor- oder Enhancerbereichen, ist so nicht möglich. Da das CRISPR/Cas9-System in dieser Arbeit ausschließlich zum knockout von Zielgenen eingesetzt wurde, ist der Western Blot zur Analyse dieses knockouts geeignet und die Methode der Wahl. Daher erfolgten nach erfolgreicher Etablierung beider Verfahren sämtliche knockout-Kontrollen im Western Blot, während der T7-Assay als Methode der zweiten Wahl verbleiben kann, bspw. für weniger intensiv untersuchte Proteine, gegen die bisher kein funktionaler Antikörper erhältlich ist.

Die bei der Durchführung eines T7-Assays entstehenden Amplikons genomischer DNA aus dem Bereich der CRISPR/Cas9-Modifikation können zusätzlich durch Sanger-Technik sequenziert und diese Sequenzen anschließend mit Hilfe des TIDE-Algorithmus analysiert werden, der detaillierte Informationen über das Muster der eingeführten Mutationen liefert. Auch diese Methode konnte erfolgreich getestet werden und bestätigte die Wirksamkeit des von uns eingesetzten CRISPR/Cas9-Ansatzes. (Abb. 3.3 und 3.4)

4.1.4 Etablierung von Kompetitions- und Proliferationsassays anhand des CRISPR/Cas9-vermittelten *knockouts* von ABF1, ID2 und E2A

In ³H-Thymidin-basierten Proliferationsuntersuchungen konnte ein milder negativer Effekt des ABF1- resp. ID2-Verlustes sowie ein deutlicher Nachteil durch E2A-*knockout* in der Hodgkin-Zelllinie L428 festgestellt werden. Außerdem zeigte sich eine leichte (ABF1) bis prominente (E2A) Reduktion der Viabilität der *knockout*-Zellen für die Hodgkin-Zelllinie L428. Die neu etablierten Kompetitions-Assays zeigen mit einem ebenfalls leichten (ABF1) bis deutlichem (E2A) Nachteil für die jeweiligen *knockout*-

Populationen ein Ergebnis, das damit übereinstimmt mit den Resultaten aus den Proliferations- und Viabilitätsanalysen. (Abb. 3.6)

Somit konnte die für die spätere Analyse der aus den CRISPR/Cas9-Screens hervorgegangenen Kandidatengene notwendige Methodik erfolgreich etabliert und getestet werden.

Da der Fokus dieses Teils der Arbeit auf der grundsätzlichen Etablierung der CRISPR/Cas9-Technologie lag, erfolgten diese Analysen zunächst in nur einer cHLund einer Kontroll-B-NHL-Zelllinie. Die Aussagen, die mit diesen ersten Experimenten über die Effekte eines ID2-, ABF1 bzw. E2A-Verlustes auf Hodgkin-Zellen getroffen wurden, bedürfen daher in Zukunft noch weiterer Validierung durch Wiederholung und Durchführung auch in einem größeren Panel an Zelllinien.

4.1.5 Verwendung des CRISPR/Cas9-Systems und lentiviralen Transfers für genomweites *loss-of-function* Screening

Für die Durchführung genomweiter Screens steht eine Vielzahl an Methoden zur Verfügung. Unterscheidet man zunächst prinzipiell zwischen sog. gain-of-function vs. loss-of-function Screens, so stehen für erstere bspw. cDNA-Bibliotheken, CRISPRbasierte Aktivierungs-Screens oder das *PiggyBac*-Transposon-System zur Verfügung. Das PiggyBac-Transposon-System ist dabei besonders geeignet für vorwärtsgerichtete Screeningverfahren, bspw. in Mausmodellen, also zur Suche nach Kandidatengenen, die zur Tumorentstehung beitragen (Rad et al., 2010). Um ein Screening im humanen System und in bereits entstandenen Tumoren durchzuführen, haben wir uns für die des cHL entschieden. Arbeit mit etablierten Zelllinien Hier ist nun ein rückwärtsgerichtetes Screeningverfahren hilfreich, also die Frage: welche deregulierten Gene und Signalwege sind entscheidend für das Überleben der Tumorzellen? Für diese Fragestellung eignet sich ein loss-of-function Screen, weswegen sich auch in dieser Arbeit für einen solchen entschieden wurde.

Methodisch kommen für einen über einen längeren Zeitraum angelegten *loss-offunction* Screen nach heutigem Stand vor allem zwei Systeme in Betracht: shRNA- oder CRISPR/Cas9-basierter *knockdown* resp. *knockout. Small hairpin* RNAs (shRNAs) sind kleine RNAs, die jeweils spezifisch eine passende mRNA binden und damit deren Abbau fördern und/oder die Translation verhindern. Dadurch wird ein *knockdown* des jeweiligen Zielproteins erreicht. Lentivirale shRNA-Bibliotheken ermöglichen genomweite *loss-of-function* Screens exprimierter Gene. Eine Untersuchung regulatorischer DNA-Elemente ist durch die Angriffsebene auf mRNA-Ebene nicht möglich. Weitere Nachteile shRNA-basierter Screeningverfahren sind vor allem eine niedrigere *knockdown*-Effizienz sowie höhere *off-target* Effekte, also Effekte, die durch das unspezifische Wirken einer shRNA auf ein anderes als das eigentliche Zielgen auftreten oder durch Überexpression der shRNA zelluläre Abwehrmechanismen aktivieren. Zwar beschränkt sich auch der von uns mit Hilfe der GeCKO-Bibliothek durchgeführte CRISPR/Cas9-Screen auf Gene und deckt keine regulatorischen DNA-Elemente ab, das CRISPR/Cas9-basierte Screening überzeugt aber durch die Möglichkeit eines unumkehrbaren *knockouts* direkt auf der genomischen Ebene mit im Vergleich höherer *knockout*-Effizienz sowie durch relativ geringere *off-target* Effekte. (Adamson et al., 2012; Schultz et al., 2011; Shalem et al., 2014; Wang et al., 2014)

Prinzipiell kann der Transfer von Expressionskonstrukten in Zielzellen durch eine Vielzahl verschiedener Methoden erfolgen. Transfektion beschreibt dabei den Transfer des Expressionskonstruktes (in Form eines Plasmides), das entweder durch eine chemisch oder elektrisch erzeugte Durchlässigkeit der Zellmembran der Zielzelle in wird diese eingeschleust und zu einer vorübergehenden, kurzfristigen Transgenexpression führt. Retrovirale Transfersysteme bedienen sich der Fähigkeit dieser Viren, in Wirtszellen einzudringen und ihre RNA nach einer reversen Transkription in die genomische DNA der Zielzelle zu integrieren (Grandgenett and Mumm, 1990). Um eine möglichst hohe knockout-Effizienz durch das CRISPR/Cas9-System zu erreichen, ist neben einer hohen Transduktions- resp. Transfektionseffizienz auch eine lange Transgenexpression relevant, da auf diese Weise die Cas9 so lange aktiv bleibt bis die Ziel-DNA erfolgreich geschnitten und so verändert wurde, dass sie durch die ihr ursprünglich entsprechende sgRNA nicht mehr erkannt wird. In den in dieser Arbeit durchgeführten Experimenten konnte beobachtet werden, dass dieser Prozess innerhalb einer großen Zellpopulation regelhaft mehrere Tage in Anspruch nimmt, bevor ein suffizienter knockout erreicht ist und sich die biologischen Folgen ausbilden (Abb. 3.21 C und Abb. 3.22 D).

Aus diesen Gründen haben wir uns, um ein möglichst effektives und valides *loss-offunction* Screening in cHL- und B-NHL-Zelllinien zu erreichen, für einen lentiviralen genomweiten CRISPR/Cas9-Screen, zunächst unter Verwendung der publizierten GeCKO-Bibliothek sowie im Re-Screen mit einer selbst entworfenen und klonierten sgRNA-Bibliothek, entschieden. Für die Durchführung des CRISPR-Screens wurde eine MOI von 0,4 angestrebt, die einer Transduktionseffizienz von 33% entspricht (siehe Kapitel 2.2.6.4). Hierdurch wird einerseits wie beschrieben die Transduktion einer Zelle mit mehr als einer sgRNA (wie es bei einer höheren Transduktionseffizienz zu erwarten wäre) vermieden und andererseits eine so hohe Transduktionseffizienz erzielt, dass eine möglichst gute Repräsentation des sgRNA-Pools durch die Transduktion möglichst vieler Zellen erreicht wird (siehe Kapitel 2.2.6.4 sowie 3.2.2). Daraus folgt, dass in für einen solchen CRISPR-Screen geeigneten Zelllinien mit der maximalen unverdünnten Virusmenge mindestens eine Transduktionseffizienz von 33% erreicht werden muss; bei Erzielung höherer Transduktionseffizienzen kann dann über Titration die Menge Virusüberstand bestimmt werden, mit der genau noch eine Transduktionseffizienz von 33% erzielt wird. In Test-Transduktionen mit demselben Vektor-Grundgerüst, wie es auch für den Screen verwendet wurde, konnte eine hohe Transduktionseffizienz für die beiden Hodgkin-Zelllinien L1236 (>90%) und L428 (ca. 60%) erreicht werden. Für eine dritte Hodgkin-Zelllinie, HDLM-2 konnte mit 34% eine noch ausreichende Transduktionseffizienz erreicht werden (Abb. 3.2). Da diese sich jedoch durch ihren in der Ätiologie des cHL sehr seltenen T-Zell-Ursprung von den B-Zell-abgeleiteten klassischen Hodgkin-Zelllinien unterscheidet, wurde sie nicht in den Screen aufgenommen (Drexler et al., 1989). Die in späteren Experimenten verwendete zusätzliche Hodgkin-Zelllinie UHO-1 stand dem Labor zum Zeitpunkt der Durchführung der beiden CRISPR-Screens noch nicht zur Verfügung.

Als Kontrollzelllinien wurden Zelllinien ausgewählt, die aus NHL B-Zell-Neoplasien hervorgegangen sind. Insbesondere wurden hierfür *germinal center B-cell like* (GCB) DLBCL sowie Burkitt-Lymphom Zelllinien ausgewählt, da diese durch ihren B-Zell Ursprung einerseits nahe genug, durch ihre deutlich distinkte bisher bekannte Tumorbiologie aber auch weit genug entfernt vom cHL sind, sodass Grund für die Annahme bestand, sehr gut Unterschiede herausarbeiten zu können. Ein anderer Subtyp des DLBCL, der *activated B-cell like* (ABC) Typ eignet sich aufgrund seiner hohen NF-kB-Aktivität hingegen deutlich schlechter als Kontrolle, da er damit einen sehr wichtigen deregulierten Signalweg mit dem cHL teilt (Davis et al., 2001; Lam et al., 2005). In Test-Transduktionen wurden in den beiden GCB-DLBCL-Zelllinien BJAB und SU-DHL-4 mit ca. 85% bzw. ca. 35% gute Transduktionseffizienzen erreicht, sodass diese beiden Zelllinien aufgrund ihrer Entität und der guten lentiviralen

Transduzierbarkeit als Kontrollzelllinien für das CRISPR/Cas9-Screening ausgewählt wurden.

4.1.6 Technische Aspekte der CRISPR/Cas9-Screens

In der für den genomweiten Screen verwendeten GeCKO-Bibliothek wird jedes Gen durch jeweils sechs individuelle sgRNAs adressiert. Bei der Auswertung dieses genomweiten CRISPR/Cas9-Screens fiel bei der Betrachtung der Positivkontrollen wie ACTB und GAPDH jedoch auf, dass nicht alle sgRNAs dieselbe Wirkung entfalten konnten, d.h. jeweils neben einigen sehr effizienten sgRNAs für ein Gen auch weniger effiziente bis hin zu unwirksamen sgRNAs in der Bibliothek enthalten waren. Um dennoch alle potentiellen Kandidatengene für die Pathogenese des cHL identifizieren zu können, wurde die Bedingung gewählt, dass nur mindestens zwei der insgesamt sechs sgRNAs jedes Gens eine relevante Depletion über den Beobachtungszeitraum aufweisen müssen (Repräsentations-Verhältnis ≤0,6 von Tag 21 zu Tag 1 des Screens). Damit wurde ein gewisser Anteil falsch positiver ermittelter Kandidatengene für die Optimierung der Sensitivität des genomweiten Screens in Kauf genommen. Um jedoch eine ausreichende Spezifität des gesamten Screening-Prozesses zu gewährleisten, erfolgte die Durchführung eines zweiten, unabhängigen CRISPR/Cas9-Screens mit insgesamt 141 ermittelten potentiellen Kandidatengenen sowie 44 zusätzlichen Genen und Kontrollgenen und 69 non-targeting sgRNAs als weitere Negativ-Kontrollen. In diesem Re-Screen wurden für jedes Gen drei neue sgRNAs selbst entworfen und hierfür ein sgRNA-Design-Tool von besonderer Effizienz verwendet (CrispRGold)(Chu et al., 2016), so dass in diesem Bestätigungs-Screen nun die große Mehrheit aller sgRNAs als effizient gewertet werden und stringentere Kriterien für die Auswertung angewendet werden konnten. So ergab sich schließlich mit derselben Bedingung für eine relevante Depletion der sgRNA-Repräsentation über den Beobachtungszeitraum, die nun für zwei aus drei sgRNAs erfüllt sein musste, eine finale Anzahl von ca. 40 robusten Kandidatengenen für die Pathogenese des cHL. (Tabelle 3.1; Anhang)

4.1.7 Statistische Besonderheiten der CRISPR/Cas9-Screen Auswertung

Da sich die Effizienz jeder sgRNA unterscheidet, weichen auch die analysierten Effekte für die Depletion jeder einzelnen sgRNA für ein bestimmtes Zielgen methodenbedingt immanent voneinander ab, wie auch die in Abb. 3.11 zu beobachtende hohe

Standardabweichung zwischen den Quotienten der sgRNAs zeigt. Dadurch muss der Effekt jeder sgRNA zunächst für sich betrachtet werden, bevor in einem zweiten Schritt die Zahl der unabhängig depletierten sgRNAs pro Gen berechnet wird. Um also Replikate für statistische Berechnungen zu generieren, dürfen nicht mindestens drei verschiedene sgRNAs als Replikate betrachtet werden, sondern müsste der Screen selbst in mindestens Triplikaten durchgeführt werden, um anschließend mindestens drei unabhängige Depletionswerte für jede sgRNA zu erhalten und auf Grundlage dessen Signifikanzen berechnen zu können. Dies war zum Zeitpunkt der Durchführung dieser aus technischen Gründen sowie wegen der hohen Kosten Arbeiten der Hochdurchsatzsequenzierung für große Probenzahlen bei gleichbleibender Tiefe der Sequenzierung nicht möglich. Die Validität der Ergebnisse wurde daher durch die Frage nach der Reproduzierbarkeit in einem sequenziellen CRISPR-Re-Screen mit unabhängigen neuen sgRNAs getestet. Dieses Vorgehen hat zudem den zusätzlichen Vorteil, dass - im Gegensatz zu der beschriebenen alternativen Vorgehensweise in Triplikaten desselben GeCKO-Screens - durch die Verwendung neuer unabhängiger sgRNAs so auch auf off-target Effekte einer sgRNA zurückzuführende Depletionen ausgeschlossen werden können. Darüber hinaus erfolgte schließlich eine dritte unabhängige Untersuchung und Bestätigung der in den beiden sequenziellen CRISPR/Cas9-Screens ermittelten Kandidatengene durch Kompetitions-Assays.

4.1.8 Betrachtung der Effizienz von sgRNAs

Im Gegensatz zu der in den Hodgkin-Zelllinien beobachteten geringen Effizienz der sgRNAs im GeCKO-Screen, berichteten Shalem et al. in ihrer Arbeit zur GeCKO-sgRNA-Bibliothek von einer deutlich höheren sgRNA-Effizienz von über 90%. Diese testeten sie jedoch lediglich anhand von einzelnen sgRNAs gegen EGFP und zwar in HEK293 Zellen, die jeweils nur eine einzelne Kopie des EGFP-Gens enthielten (Shalem et al., 2014).

Die deutlich schlechtere gemittelte Effizienz über die gesamte GeCKO-sgRNA-Bibliothek, wie sie sich im genomweiten Screen in Hodgkin-Zelllinien darstellte, kann im Vergleich auf mehrere Unterschiede zurückgeführt werden. Eine erste methodische Differenz ist die unterschiedliche Auswahl der gezielten sgRNAs gegen EGFP und der Zusammenstellung der gesamten GeCKO-Bibliothek und ihrer über 120 000 sgRNAs. Während die sechs gegen EGFP gerichteten sgRNAs individuell entworfen wurden, wurde die GeCKO-Bibliothek nach einem neu entwickelten Algorithmus entworfen. Darüber hinaus wurde die GeCKO-Bibliothek als konzentriertes Virus und, um Mehrfachtransduktionen zu vermeiden, mit einer niedrigen MOI transduziert, während für die Transduktionen mit den EGFP-sgRNAs unkonzentriertes, frisches Virus in einer vermutlich auch höheren MOI eingesetzt wurde. Eine effizientere und ggf. sogar mehrfache Transduktion hat selbstverständlich auch eine höhere knockout-Effizienz zur Folge. Des Weiteren kommt hinzu, dass die für die EGFP-Testexperimente von Shalem et al. verwendete modifizierte HEK293-Zelllinie nur eine einzelne Kopie des EGFP-Gens besitzt, während alle Zielgene auf genomischer DNA doppelt vorliegen. Der knockout einer einzelnen Kopie eines Zielgenes ist dabei also wahrscheinlicher als der gleichzeitige *knockout* von zwei Kopien (oder gar mehr, s.u.). (Shalem et al., 2014) Zusätzlich ist die Effizienz der Cas9 selbst darüber hinaus von der Zugänglichkeit der genomischen DNA in dem betreffenden Bereich abhängig, d.h. offenes Chromatin ist leichter zugänglich als (partiell) geschlossene genomische DNA. In der Regel korreliert dies auch mit der Expressionsstärke des jeweiligen Gens, sodass das Chromatin hoch exprimierter und damit eventuell auch überlebensrelevanter Gene auch tendenziell offen ist (Verkuijl and Rots, 2019). Besonders gut zugänglich sind auch retroviral von außen in die Zielzelle eingebrachte fremde Gene, wie das EGFP im Fall des sgRNA-Tests bei Shalem et al., da sich diese selbst in besonders offene Bereiche des Chromatins integrieren (Sultana et al., 2017) – ein zweiter unabhängiger Faktor also, der die höhere knockout-Effizienz bei Shalem et al. zu erklären vermag. Dazu passend haben auch andere Gruppen in ihren CRISPR-Screens niedrigere sgRNA-Effizienzen beobachtet (Koike-Yusa et al., 2014; Parnas et al., 2015). Schließlich kann die geringere sgRNA-Effizienz zusätzlich in einer besonderen biologischen Eigenschaft der Hodgkin-Zelllinien begründet liegen: Diese haben meist einen mehr als diploiden Chromosomensatz, sodass in jeder Zelle nicht nur zwei Allele jedes Gens, sondern oft vier oder mehr Kopien vorliegen, die für einen effizienten knockout alle einzeln getroffen und zerstört werden müssen. So hat die für den genomweiten CRISPR/Cas9-Screen eingesetzte Zelllinie L428 einen hypertetraploiden Karyotyp und die L1236 immerhin einen hypotriploiden (DSMZ: L428 (ACC197), L1236 (ACC530)).

Um diese Limitationen des genomweiten CRISPR/Cas9-Screens zu überwinden und die aus diesem Screen hervorgegangenen potentiellen Kandidatengene zu überprüfen, wurde ein unabhängiger gezielter Bestätigungsscreen durchgeführt. Dieser deckte 141 potentielle Kandidatengene und 14 Positiv- und Negativkontrollgene ab (sowie zusätzlich 9 zu untersuchende Gene des NF-κB Signalwegs und 21 weitere Gene von

Interesse; siehe Anhang). Die sgRNAs wurden ausgewählt mit CrispRGold, das zusätzlich zu ersten sgRNA-Design-Tools solche sgRNAs auswählt, die nicht nur eine geringe off-target-Aktivität haben, sondern auch alle Transkriptvarianten des Zielgens ansteuern. Außerdem werden für die Vorhersage der Effizienz der sgRNA mögliche Sekundärstrukturen der entstehenden sgRNA-Sequenz berücksichtigt. Insgesamt erreicht dieses sgRNA-Design-Verfahren so deutlich höhere Effizienzen (11 aus 12 getesten sgRNAs mit hoher knockout-Effizienz in der Originalarbeit) (Chu et al., 2016). Aufgrund der damit wahrscheinlich deutlich höheren sgRNA-Effizienz, wurde für den Re-Screen eine sgRNA-Bibliothek erstellt, in der jedes Zielgen durch jeweils drei verschiedene sgRNAs abgedeckt wurde und die zusätzlich 69 non-targeting sgRNAs als Kontrollen enthält. Durch diesen gezielten Re-Screen konnten über 40 Kandidatengene in einem unabhängigen Experiment bestätigt werden. Darunter fanden sich mit den oben beschriebenen Faktoren des NF-kB und JAK-STAT-Signalwegs und der AP-1/JUN-Transktiptionsfaktoren, IRF4 sowie Cyclin D2 beinahe alle im genomweiten Screen identifizierten bereits bekannten Faktoren der Pathogenese des cHL wieder.

4.1.9 Einfluss der Proliferationsgeschwindigkeit einer Zelllinie auf die Ergebnisse des CRISPR-Screens

Bei der Analyse der sgRNA-Depletionen im genomweiten CRISPR-Screen wie auch im Re-Screen fiel eine insgesamt geringere Depletion der sgRNAs für die Hodgkin-Zelllinie L1236 auf (Abb. 3.12 A und 3.14). Könnte dies für sich betrachtet auf eine geringere Relevanz des jeweiligen Zielgenes für die Biologie dieser Zelllinie hinweisen, so zeigt die generelle Breite dieses Effektes, der auch die Positiv-Kontroll-Gene gleichermaßen betrifft, dass es sich um ein von der Relevanz des jeweiligen Genes unabhängigen, allgemeinen Effekt handelt. So weisen bspw. sgRNAs gegen GAPDH für L1236 im Re-Screen im Mittel einen Quotienten von 0,40 auf, während dieser für L428 bei 0,17, für BJAB bei 0,15 und für SU-DHL-4 ebenfalls bei 0,15 liegt. Der Verlauf der allgemeinen Veränderung der sgRNA-Pool-Zusammensetzung über die Zeit, wie er in Abb. 3.13 dargestellt ist, zeigt, dass der sgRNA-Pool der Zelllinie L1236 gegenüber denen der übrigen Zelllinien auf der Zeitachse zurückfällt. So hat der sgRNA-Pool in L1236 an Tag 28 erst eine Veränderung seiner Zusammensetzung im Vergleich zum Startpunkt erreicht, die die übrigen Zelllinien bereits an Tag 14 aufweisen. Dieser Effekt geht einher mit der Beobachtung, dass die Proliferationsgeschwindigkeit der L1236 in

unserer Zellkultur deutlich langsamer ist als die der übrigen Zelllinien. Diese Beobachtung bestätigt auch der Abgleich mit dem Zelllinienkatalog der DSMZ, der für L1236 eine Verdopplungszeit von 48 Stunden beschreibt während diese für L428 mit nur 35 sowie für BJAB mit ca. 40 Stunden angegeben ist (DSMZ: L428 (ACC197), L1236 (ACC530), BJAB (ACC757)). Über den Beobachtungszeitraum der CRISPR-Screens hinweg konnten sich somit bei niedriger Proliferationsgeschwindigkeit die im *loss-of-function* Screen beobachteten negativen Effekte eines Zielgen-*knockouts* auf die Proliferation entsprechend nur weniger deutlich auswirken.

Vergleicht man also unter Berücksichtigung dieser Unterschiede nun den mittleren Quotienten der sgRNAs gegen GAPDH von L1236 an Tag 28 mit dem der Kontrolle BJAB an Tag 14, so kommt man mit 0,40 und 0,38 zu vergleichbaren Effekten. Um die insgesamt schwächeren Effekte in L1236 daher bei der Berechnung und Analyse zu berücksichtigen, wurden im Re-Screen mit einem *cut-off* von $\leq 0,7$ für L1236 vs. $\leq 0,6$ für L428 für den Quotienten von Tag 28 zu Tag 1 (und einem *cut-off* von $\leq 0,6$ für L428 bzw. für L1236 von $\leq 0,75$ für den Quotienten zu den B-NHL-Kontrollen) für den beobachteten Effekt leicht korrigierte Kriterien angewendet.

4.1.10 Validierung der CRISPR-Screen Resultate in Kompetitions-Assays

Um die Ergebnisse der beiden CRISPR-Screens in einem unabhängigen dritten Versuch zu validieren, wurden Kompetitions-Assays durchgeführt, bei denen Mischpopulationen EBFP-positiver *non-targeting* Kontroll-Zellen und EGFP-positiver *knockout*-Zellen des jeweiligen Kandidatengenes über die Zeit durchflusszytometrisch beobachtet wurden. Die beiden bereits in den CRISPR-Screens eingesetzten Zelllinien L428 und L1236 wurden in diesen Experimenten um eine zu diesem Zeitpunkt nun neu in unserem Labor vorhandene Hodgkin-Zelllinie, UHO-1, die ebenfalls eine sehr gute lentivirale Transduzierbarkeit aufweist, ergänzt und damit die Aussagekraft der in den Kompetitions-Assays beobachteten Effekte weiter verbessert.

In diesen Untersuchungen konnte eine Vielzahl der getesteten Kandidatengene validiert werden. Dies bestätigt und festigt die Ergebnisse des genomweiten Screens und des Bestätigungsscreens und etabliert gleichzeitig ein neues Verfahren zur Untersuchung der Effekte des *knockouts* eines Zielgenes auf Proliferation und/oder Überleben einer Zelle.

4.2 Tumorbiologische Ergebnisse der CRISPR/Cas9-Screens und weitere Untersuchungen der Kandidatengene im cHL

4.2.1 Genomweiter CRISPR/Cas9-Screen und Re-Screen identifizieren zahlreiche potente Kandidatengene für die Pathogenese des Hodgkin-Lymphoms

In diesem genomweiten CRISPR/Cas9-basierten *knockout*-Screen und einem nachfolgenden Re-Screen wurden schließlich über 40 Kandidatengene für die Pathogenese des cHL identifiziert (Tab. 3.1; Anhang). Der Einsatz eines genomweiten Screens erlaubte dabei eine unvoreingenommene und offene Suche nach solchen Kandidatengenen über das gesamte humane Genom hinweg. So wurden nicht nur bekannte relevante Gene für das Überleben von Hodgkin-Zellen entdeckt, sondern auch mehrere neue Kandidatengene identifiziert. Das zuverlässige und breite Auffinden bereits als relevant für die Pathogenese des cHL beschriebener Faktoren dient dabei als Marker für die Validität des CRISPR/Cas9-Screens und seiner Analyse selbst. Zudem erlaubt der genomweite Screen gemeinsam mit seinem unabhängigen Bestätigungs-Screen erstmals, die Relevanz dieser bisher in Einzeluntersuchungen beschriebenen Gene im Vergleich untereinander zu beurteilen und diese hinsichtlich ihres Einflusses auf die Proliferation und das Überleben von Hodgkin-Zelllinien zu evaluieren.

4.2.2 Der NF-κB Signalweg im cHL: bekannter onkogener Treiber und neue Erkenntnisse

Unter den ermittelten Kandidatengenen des genomweiten CRISPR/Cas9-Screens konnten zahlreiche Faktoren des in der Pathogenese des Hodgkin-Lymphoms gut beschriebenen NF-κB Signalwegs gefunden werden (Bargou et al., 1996; Hinz et al., 2001; Jungnickel et al., 2000; Krappmann et al., 1999; Martín-Subero et al., 2002; Mathas et al., 2005). Mit NIK, IKKα, NFKB2 und RELB wurde dabei der alternative NF- κ B Signalweg auf jeder seiner Ebenen getroffen. Im Gegensatz dazu wurde der klassische NF- κ B Signalweg mit IKKα zwar ebenfalls identifiziert (wenn auch die Bedeutung von IKKα für diesen Zweig vermutlich geringer anzusetzen ist), jedoch zeigten bei der Betrachtung beider unabhängiger Screens seine hauptsächlichen Faktoren IKKβ und NEMO (IKKγ), NFKB1, REL und RELA keinen die Kriterien der Depletion erfüllenden, relevanten Proliferationsnachteil für Hodgkin-Zelllinien. Dieses

Muster spricht für eine deutliche Überlegenheit des alternativen gegenüber dem klassischen NF-κB Signalweg hinsichtlich der Relevanz für die Proliferation von Hodgkin-Zelllinien. Unterstützt werden diese Ergebnisse u.a. durch eine Arbeit von Oliveira et al., in der ebenfalls gezeigt wurde, dass in Hodgkin-Zellen vorrangig der alternative NF-κB Signalweg entscheidend ist (de Oliveira et al., 2016). Auch konnte insbesondere gezeigt werden, dass das cHL besonders von NIK und RELB, also dem alternativen NF-κB Signalweg, abhängig ist, während bspw. hingegen das DLBCL v.a. auf REL und RELA angewiesen ist, also Faktoren, die mit dem klassichen NF-κB Signalweg assoziert sind (Gamboa-Cedeño et al., 2019; Ranuncolo et al., 2012). (Abb. 3.20)

Obwohl der NF-kB Signalweg in seiner wichtigen Rolle für die Pathogenese des Hodgkin-Lymphoms und anderer Lymphom- und Tumorentitäten lange bekannt ist, ist es bisher nicht gelungen, eine effektive Inhibition des NF-kB Signalwegs als Therapieoption zu etablieren (Mottok and Steidl, 2018). Dies kann u.a. darin begründet liegen, dass der NF-kB Signalweg mit seinem alternativen und klassischen Weg und den dabei existierenden Querverbindungen kaum durch die Inhibition eines einzelnen Faktors auszuschalten sein mag. Auch werden es von Entität zu Entität unterschiedliche Punkte im NF-kB Signalweg sein, die für eine effiziente, tumorbiologisch relevante Hemmung geblockt werden müssen. Gemeinsam mit den oben beschriebenen Arbeiten könnten nun die aus den CRISPR-Screens gewonnen Ergebnisse als Grundlage genutzt werden, um gezielte Ansätze für die Inhibition des NF-kB Signalwegs in der Therapie des cHL zu etablieren. So legen die aus den CRISPR-Screens gewonnenen Erkenntnisse nahe, dass bspw. eine Inhibition von IKKa oder NIK im cHL erfolgversprechend sein könnte. Für NIK sind dabei bereits einige Inhibitoren verfügbar und bspw. auch als wirkungsvolle Inhibitoren des alternativen NFκB Signalwegs im Mantelzell-Lymphom identifiziert worden (Blaquiere et al., 2018; Castanedo et al., 2017; Rahal et al., 2014).

4.2.3 Der JAK/STAT-Signalweg in cHL und CRISPR-Screens

Während zunächst im genomweiten CRISPR-Screen mit JAK1 und STAT5B zwei Faktoren des JAK/STAT-Signalweges identifiziert worden waren, konnte im Re-Screen nur JAK1 als valides Kandidatengen bestätigt werden. Dieses zeigte dann jedoch auch einen deutlichen Effekt in den zuletzt durchgeführten Kompetitions-Assays. (Abb. 3.16)

Die Aktivierung des JAK/STAT-Signalweges ist als wichtiger Aspekt der Molekularbiologie des cHL bekannt und ausführlich untersucht (Baus and Pfitzner, 2006; Cochet et al., 2006). Insbesondere ist auch das von uns im genomweiten Screen identifizierte STAT5(B) sowohl als aktiviert als auch als mutiert beschrieben (Scheeren et al., 2008; Tiacci et al., 2018; Weniger et al., 2006). Im Re-Screen zeigte eine von drei sgRNAs ebenfalls einen negativen Effekt des STAT5B-Verlustes. Da jedoch zwei sgRNAs nicht die Depletions-Kriterien erreichten, wurde STAT5B nicht als bestätigt klassifiziert. In Zusammenschau der Ergebnisse aus dem genomweiten Screen, der einen damit einhergehend depletierten sgRNA im Bestätigungs-Screen sowie der eindeutigen Beschreibung in der Literatur, kann eine Relevanz von STAT5B für das Überleben und die Proliferation von Hodgkin-Zellen jedoch als wahrscheinlich angenommen werden. Das Nicht-Erfüllen der Depletions-Kriterien im Re-Screen ist unter diesen Aspekten vermutlich am ehesten auf eine mangelnde Effizienz von zwei der drei sgRNAs zurückzuführen.

Die Rezeptortyrosinkinase JAK1, über die STATs wie STAT5B aktiviert werden, ist als validiertes Kandidatengen aus beiden CRISPR-Screens hervorgegangen und konnte auch in Kompetitions-Assays bestätigt werden. Insgesamt konnte so also eine relevante Rolle des JAK/STAT-Signalweges für die Proliferation resp. das Überleben von Hodgkin-Zelllinien, wie sie bereits in anderen Arbeiten beschrieben wurde, gezeigt werden.

4.2.4 AP-1 Transkriptionsfaktoren im cHL und in den CRISPR-Screens

Auch zahlreiche bereits als dereguliert im cHL beschriebene Transkriptionsfaktoren konnten in den beiden CRISPR/Cas9-Screens nachvollzogen werden, darunter die Transkriptionsfaktoren der AP-1 Familie JUNB und BATF3. JUNB ist im cHL hoch experimiert und ist, teilweise gemeinsam mit Faktoren des NF-kB Signalwegs, relevant für die Proliferation von Hodgkin-Zellen (Mathas et al., 2002). In Übereinstimmung mit diesen Befunden zeigte der Verlust von JUNB sowohl in den CRISPR-Screens als auch in den Kompetitions-Assays einen deutlichen und spezifischen Proliferationsnachteil für die untersuchten Hodgkin-Zelllinien.

Neben JUNB ist die Hochregulation von ATF-Transkriptionsfaktoren wie BATF3 im cHL bekannt. Dabei bildet BATF3 Heterodimere mit JUN-Transkriptionsfaktoren wie c-JUN und JUNB, die die Transkription von Zielgenen, bspw. von MYC, induzieren (Lollies et al., 2018). Auch hier konnte in den sequenziellen CRISPR-Screens sowie

anschließenden Kompetitions-Assays ein Nachteil des BATF3-Verlustes für Hodgkin-Zelllinien gezeigt werden. (Abb. 3.18)

Da BATF3 und JUNB kooperativ wirken, wäre darüber hinaus in weiteren Arbeiten eine Untersuchung der Auswirkung eines Doppel-*knockouts* beider Zielgene auf die Proliferation und das Überleben von HRS-Zellen interessant.

4.2.5 IRF4 ist ein sehr starkes Kandidatengen der CRISPR-Screens und notwendig für das Überleben von Hodgkin-Zellen

Auch IRF4 ist zwar bereits im cHL beschrieben, konnte durch den genomweiten Screening-Ansatz jedoch erstmals hinsichtlich seiner Relevanz untersucht werden (Aldinucci et al., 2011; Buettner et al., 2005; Carbone et al., 2002). Während die deregulierten Transkriptionsfaktoren der AP-1 Familie in der Betrachtung der Tumorbiologie des cHL bisher deutlich gegenüber IRF4 im Fokus standen, konnte nun gezeigt werden, dass der IRF4-Verlust den stärksten aller beobachten cHL-spezifischen Effekte aufweist (Abb. 3.18; Anhang). Schon im genomweiten CRISPR-Screen konnte IRF4 mit fünf (L428) bzw. drei (L1236) aus sechs sgRNAs mit Depletionen von 0,08 bis 0,54 von Tag 21 zu Tag 1 als starkes Kandidatengen identifiziert werden. Dies bestätigte sich anschließend im Re-Screen sowie in den Kompetitions-Assays. Da für diese beiden Experimente neue sgRNAs entwickelt und eingesetzt wurden, ist anzunehmen, dass der starke nachteilige Effekt des IRF4-Verlusts tatsächlich auf die notwendige Rolle von IRF4 im cHL und eben nicht auf einen zufällig besonders starken knockout oder ggf. unspezfischen Effekt nur einer sgRNA zurückzuführen ist. Darüber hinaus erfolgte die Kontrolle des knockouts von IRF4 durch die drei in Re-Screen und Kompetitions-Assays verwendeten sgRNAs im Western Blot. Auch der knockout der AP1-Faktoren JUNB und BATF3 wurde auf dieselbe Weise überprüft und für alle drei Transkriptionsfaktoren eine vergleichbare knockout-Effizienz beobachtet (Abb. 3.17). Auch diese Ergebnisse stärken die Annahme, dass es der IRF4-Verlust selbst ist, der eine herausstellende Rolle für das Überleben von Hodgkin-Zellen darstellt. Es ist anzumerken, dass ein unmittelbarer quantitativer Vergleich der biologischen Effekte für die knockouts verschiedener Gene wegen der zahlreichen experimentellen Variablen nur bedingt möglich ist; dennoch liefern die beschriebenen Daten – gerade wenn wie hier geschehen ähnliche knockout-Effizienzen auf Proteinebene nachgewiesen wurden - zumindest erste Anhaltspunkte für eine relative Einordnung der Bedeutung der unterschiedlichen Signalwege.

Wegen der beobachteten starken Abhängigkeit aller untersuchten Hodgkin-Zelllinien von IRF4 erfolgte zur weiteren Untersuchung dieser ein rescue-Versuch des IRF4knockouts durch die exogene Expression von murinem Irf4, das sich in seiner Nukleotidsequenz vom humanen IRF4 im Bereich der Zielsequenz der verwendeten sgRNA unterscheidet (siehe unten). Zwar konnte keine vollständige Kompensation des IRF4-knockouts erreicht werden, jedoch eine deutliche Abschwächung des Effektes insbesondere in den beiden Zelllinien L1236 und UHO-1, während diese Abmilderung für L428 schwächer ausfiel. Eine Kontrolle des knockouts von IRF4 und der Expression von murinem Irf4 in den rescue-Proben erfolgte im Western Blot, der für die rescue-Proben eine Rückkehr des IRF4-Levels zum Ausgangsniveau zeigte (Abb. 3.18). Dass also trotz der ausreichenden Level an ektopem murinen Irf4 im rescue-Versuch nicht die Kurvenverläufe der non-targeting Kontrollen erreicht wurden, könnte bspw. darauf zurückzuführen sein, dass humanes und murines IRF4 funktionell nicht vollständig gleichartig wirken. Das murine Irf4 wurde jedoch gewählt, weil in diesem durch mismatches in den Basenpaarungen der gewählten sgRNA und ihrer PAM diese sgRNA nicht aktiv ist, während exogen eingebrachtes humanes IRF4 ebenfalls durch CRISPR/Cas9 erkannt und inaktiviert würde. Der deutlich schwächere Effekt des rescues in der Zelllinie L428 steht ferner im Einklang mit einer aktuellen anderen Untersuchung unserer Arbeitsgruppe, in der beobachtet wurde, dass IRF4 in L428 mutiert ist und diese Mutante spezifische biologische Effekte besitzt, die durch Wildtyp-IRF4 nicht kompensiert werden können (noch unveröffentlicht, persönliche Mitteilung S. Mathas).

4.2.6 Die Zellzyklusregulatoren CCND2, CCNA2 und CDC25A in cHL und CRISPR-Screens: Palbociclib als mögliche zielgerichtete Therapie im Hodgkin-Lymphom

Die beiden Cycline D2 und A2 sowie CDC25A konnten im genomweiten Screen als Kandidatengene im cHL identifiziert und im anschließenden Re-Screen wie den Kompetitions-Assays bestätigt werden.

CCNA2 und CDC25A, die beide über die Cyclin-abhängige Kinase CDK2 wirken, zeigten dabei in den Kompetitions-Assays einen moderaten Effekt für alle (CCNA2) resp. insbesondere eine (CDC25A) der untersuchten Hodgkin-Zelllinien. Um diese Ergebnisse weiter zu vertiefen und zu untersuchen, ob diese Achse auch auf die Behandlung mit einem Inhibitor anspricht, wurden Hodgkin-Zelllinien mit dem CDK2-

Inhibitor K03861 behandelt (Alexander et al., 2015). Dabei zeigte sich in einigen Zelllinien eine verminderte Proliferationsrate unter steigenden Dosen von K03861. Diese Beobachtungen bestätigen die Ergebnisse aus den *knockout*-Versuchen und legen gleichzeitig die Grundlage für weitere Untersuchungen mit dem Ziel einer molekularen Therapiestrategie für das cHL. (Abb. 3.19 A, C)

Den stärksten Effekt wies jedoch CCND2 auf, das u.a. durch den NF-κB Signalweg und STAT5 induziert wird, und im cHL ebenso wie diese Signalwege dereguliert resp. hoch exprimiert ist (Bai et al., 2004; Teramoto et al., 1999). Die Inhibition der durch CCND2 aktivierten Cyclin-abhängigen Kinasen CDK4/6 mit Palbociclib führte ebenfalls zu einer signifikanten Proliferationseinschränkung in allen sechs untersuchten Hodgkin-Zelllinien. Da Palbociclib bereits in der Therapie solider Tumore zugelassen ist und für die Therapie des Mantelzell-Lymphoms, dessen Charakteristikum eine Translokation von CCND1 unter die Kontrolle des IgH-Enhancers und eine daraus resultierende Überexpression von CCND1 ist, intensiv untersucht wird, besteht hier potentiell und nach weiteren Untersuchungen die Möglichkeit der Etablierung einer neuen effektiven zielgerichteten Therapie des Hodgkin-Lymphoms (Leonard et al., 2012). (Abb. 3.19 A,B)

4.2.7 CRISPR/Cas9-basiertes *knockout*-Screening identifiziert neue Kandidatengene für die Pathogenese des Hodgkin-Lymphoms

Durch den genomweiten CRISPR/Cas9-Screen konnten neben der beschriebenen Rekonstruktion des bisher bekannten tumorbiologischen Netzwerkes im cHL auch neue, für die Pathogenese des Hodgkin-Lymphoms bisher unbekannte Kandidatengene identifiziert und im anschließenden Re-Screen bestätigt werden. Eine Übersicht über diese insgesamt 30 (L428) bzw. sieben (L1236) Kandidatengene ist in der Tabelle 3.2 zu finden. Acht dieser Kandidatengene wurden weiterführend in Kompetitions-Assays untersucht und konnten dabei teilweise für alle drei, teilweise nur für ein oder zwei der untersuchten Hodgkin-Zelllinien bestätigt werden (Tab. 3.2 sowie Abb. 3.16, 3.21 A und 3.22 C). Zwei besonders interessante neue Kandidatengene wurden schließlich noch weitergehend untersucht.

4.2.7.1 Die Methyltransferase HENMT1 als neues Kandidatengen im cHL

Die bisher weitgehend unerforschte Methyltransferase HENMT1 ging als neues Kandidatengen im cHL aus den sequenziellen CRISPR/Cas9-Screens hervor und konnte auch – bei moderaten Effekten – in Kompetitions-Assays bestätigt werden. Eine Western Blot Kontrolle zeigte den effizienten *knockout* von HENMT1, das auch in der Mehrzahl der untersuchten Hodgkin-Zelllinien exprimiert ist, wie RNA-seq Daten und eine RT-PCR belegen. (Abb. 3.13 und 3.21)

Da HENMT1 bislang kaum untersucht ist, wäre es vermutlich in keine gezielte Untersuchung zur Pathogenese des cHL aufgenommen wurden und konnte so nur durch das unvoreingenommene genomweite CRISPR/Cas9-Screening als Kandidatengen für Proliferation und Überleben von Hodgkin-Zellen identifiziert werden. Gleichzeitig gilt es so nun jedoch auch, den Mechanismus hinter diesem Effekt und die molekulare Rolle von HENMT1 im Hodgkin-Lymphom zu ergründen.

4.2.7.2 KEAP1 als potentes neues Kandidatengen im cHL

KEAP1, das als Substratadapter-Protein eines E3-Ubiquitin-Ligase-Komplexes bekannt ist, konnte durch CRISPR/Cas9-basiertes genomweites *knockout*-Screening identifiziert und durch einen Re-Screen und Kompetitions-Assays als das stärkste neue Kandidatengen für die Proliferation und das Überleben von Hodgkin-Zellen verifiziert werden.

Die Effizienz des *knockouts* konnte in Western Blot Kontrollen dargestellt werden (Abb. 3.22 D). Expressionsanalysen anhand von RNA-seq Daten und RT-PCR zeigen eine ubiquitäre Expression von KEAP1 in allen untersuchten Hodgkin- und B-NHL-Zelllinien (Abb. 3.13 und 3.22 A). Trotz seines offensichtlich starken biologischen Effektes wäre es durch die Betrachtung differenzieller Genexpression also nicht als Kandidatengen für das cHL identifiziert worden. Dies zeigt noch einmal eindrücklich die methodische Stärke des gewählten genomweiten *loss-of-function* CRISPR-Screenings in Bezug auf die funktionelle Identifizierung von Kandidatengenen.

Die bisher bekannte zentrale Funktion von KEAP1 ist die Regulation der Antwort auf oxidativen Stress. Unter normalen physiologischen Bedingungen bindet KEAP1 an NRF2, den wichtigsten Transkriptionsfaktor für die zelluläre Reaktion auf reaktive Sauerstoffverbindungen (*reactive oxygen species*, ROS), und vermittelt dessen Ubiquitinierung und proteosomalen Abbau. Beim Auftreten von oxidativem Stress kommt es durch die Modifikation von Cysteinresten zu einer Konformationsänderung

von KEAP1, was eine Freisetzung von NRF2 mit anschließender Translokation in den Zellkern mit Aktivierung zahlreicher zytoprotektiv wirkender Zielgene zur Folge hat. In der Tumorbiologie ist KEAP1 bisher als Tumorsuppressor eingeordnet worden. Dies bezieht sich insbesondere auf das nicht-kleinzellige Lungenkarzinom, wo Deletionen und inaktivierende Mutationen von KEAP1 zu einer Überaktivität von NRF2 führen, die mit einem verstärkten Schutz der malignen Zelle vor hohem oxidativen Stress einhergeht, wie er in diesen in typischer Weise vorkommt (Dinkova-Kostova et al., 2002; Jaramillo and Zhang, 2013; Zhang et al., 2004). In einem Screen ausgewählter bekannter Onkogene wäre KEAP1 also ebenso wenig berücksichtigt worden wie bei der Auswahl differenziell exprimierter Gene.

Als Kandidatengen selbst ist KEAP1 darüber hinaus aufgrund der bisher bekannten Biologie mechanistisch sehr interessant. In weiterführenden Arbeiten soll die Rolle von KEAP1 im Hodgkin-Lymphom für die Zellbiologie untersucht werden. Dabei ist nicht nur die klassische KEAP1-NRF2-Achse von Interesse, sondern vor allem die Frage nach neuen, bisher unzureichend beschriebenen KEAP1-Funktionen. Dies verbindet sich mit der Frage nach dem zugrunde liegenden Mechanismus der dualen Rolle von KEAP1 als Tumorsupressor im Lungenkarzinom und Onkogen im Hodgkin-Lymphom.

4.3 Zusammenfassende Beurteilung der CRISPR/Cas9-Screens im Hodgkin-Lymphom

Mit dem genomweiten CRISPR/Cas9-Screen und dem folgenden Re-Screen konnten über 40 Kandidatengene für die Pathogenese des Hodgkin-Lymphoms identifiziert werden. Dabei wurden mit Kandidatengenen aus dem NF-KB und JAK/STAT-Signalweg, den Transkriptionsfaktoren der AP-1 Familie und IRF4 sowie dem Zellzyklusregulator Cyclin D2 zahlreiche bekannte wichtige Faktoren im cHL erfasst. Damit konnten in einer einzigen Arbeit nahezu alle in den letzten 20 Jahren mühsam erarbeiteten cHL-assoziierten Signalwege nachvollzogen werden. Einerseits validiert hierbei das Finden dieser bekannten Faktoren die technische Herangehensweise wie bioinformatische Auswertung des Screens. Umgekehrt kann auch der Screen diese bisher gewonnenen Erkenntnisse über die Pathogenese des cHL validieren. Dabei stellt der Ansatz des genomweiten Screenings eine erste unvoreingenommene (da eben genomweite) Analyse der tumorbiologisch relevanten Treiber der Hodgkin-Pathogenese dar. Durch diese offene, von allen bisherigen Hypothesen zur Pathogenese des cHL unabhängige Herangehensweise (*"discovery-driven"*) konnten so neue Kandidatengene wie HENMT1 und KEAP1 identifiziert werden, die in auf bisherigen Hypothesen aufbauenden Untersuchungen (*"hypothesis-driven"*) nicht berücksichtigt worden wären. Zugleich steht durch den Ansatz des CRISPR/Cas9-basierten *knockout* die funktionelle Relevanz der untersuchten Gene für das Überleben und Wachstum der Hodgkin-Zellen im Fokus. Dies unterscheidet diese Analysen elementar von der Untersuchung von Expressionsprofilen und Sequenzierung, d.h. es wurden die relevanten Treiber des cHL jenseits der klassischen Kriterien von Überexpression und genomischen Aberrationen identifiziert. So ist bspw. auch das neu identifizierte Kandidatengen KEAP1 ubiquitär, also nicht differentiell und Hodgkin-spezifisch, exprimiert und im cHL auch auf genomischer Ebene nicht verändert. Es wäre damit durch die klassischen Analysen von Überexpression und genomischen Aberrationen nicht entdeckt worden.

Schließlich erlaubt das parallele Screening (zunächst genomweit und anschließend unter 141 ausgewählten potentiellen Kandidatengenen) die Möglichkeit des direkten Vergleiches der Effekte eines *knockouts* aller möglichen Kandidatengene relativ zueinander und damit bis zu einem gewissen Grad eine Gewichtung ihrer funktionellen Relevanz. Dies wurde bspw. anhand von IRF4 deutlich, für das ein Effekt beobachtet werden konnte, der in seiner Stärke deutlich über den anderer identifizierter und bekannter Transkriptionsfaktoren hinaus reichte.

Es ist jedoch anzumerken, dass dieser Screen keinen Anspruch auf eine vollständige Erfassung aller relevanten Treiber der cHL-Pathogenese erheben kann und will. Dies liegt an den technischen und experimentellen Bedingungen, wie z. B. an den oben diskutierten Limitationen der verwendeten genomweiten CRISPR/Cas9 *library*, die eine Erstgeneration-Bibliothek mit noch eingeschränkter Effizienz darstellt, sowie an der limitierten Zahl verwendeter Hodgkin- und Kontrollzelllinien. Verbesserte Bibliotheken, insbesondere solche mit einem speziellen Fokus, können durchaus zu einer verfeinerten Analyse mit zusätzlichen Kandidatengenen führen.

Darüber hinaus können zwar durch das CRISPR/Cas9-System prinzipiell auch nicht kodierende Bereiche des Genoms und der Einfluss von epigenetischen Modifikationen untersucht werden, durch den ausgewählten Screen mit der GeCKO-Bibliothek wurden in dieser Arbeit jedoch nur die Effekte eines *knockouts* von Zielgenen untersucht. Eine weitere Limitation ist die Arbeit mit Zelllinien: Diese stellen ein (dedifferenziertes) spätes Stadium der Erkrankung dar, sind vollständig immortalisiert mit einer hohen Last an

genetischen Aberrationen und wachsen unabhängig des im cHL eigentlich besonders wichtigen Tumormicroenvironments. Veränderungen, die unter Umständen sehr wichtig für die Entwicklung des cHL sind, aber ggf. für den Erhalt des dann erreichten dedifferenzierten Stadiums wieder entbehrlich sind, werden so durch das funktionelle *knockout*-Screening in etablierten Zelllinien nicht (mehr) identifiziert. Zudem können nur intrinsische Faktoren der Hodgkin-Zellen erfasst werden während Interaktionen mit dem Tumormicroenvironment nicht oder nur schlecht zu untersuchen sind – was gerade im cHL mit seinen komplexen Wechselwirkungen mit dem Tumormicroenvironment, das gegenüber ca. 1% HRS-Zellen den Großteil der Zellen im betroffenen Gewebe ausmacht, eine wichtige Limitation darstellt.

In weiterführenden Arbeiten gilt es nun, die aus den CRISPR-Screens gewonnenen Ergebnisse für die Erprobung neuer Therapieoptionen zu nutzen und hierzu beispielsweise wie beschrieben den Einsatz gezielter Inhibitoren des alternativen NF-ĸB Signalwegs (NIK-Inhibitoren) und/oder der CCND2-CDK4/6-Achse (Palbociclib) in weiteren *in vitro* und folgenden *in vivo* Experimenten zu untersuchen. Um solche Therapieoptionen in Zukunft auch für die neu identifizierten Kandidatengene entwickeln zu können, soll deren tumorbiologisches Wirkprinzip weiter entschlüsselt werden. So soll unter anderem geklärt werden, welcher molekulare Mechanismus der dualen Rolle von KEAP1 als Tumorsupressor im Lungenkarzinom und Onkogen im Hodgkin-Lymphom zugrunde liegt. Zu diesem Zweck werden in einer anderen Arbeit die Interaktionspartner von KEAP1 im Hodgkin-Lymphom mit Hilfe von Immunpräzipitation und Massenspektrometrie ermittelt sowie die Effekte eines KEAP1-*knockouts* auf Transkriptom und Proteom untersucht werden.

LITERATURVERZEICHNIS

Adamson, B., Smogorzewska, A., Sigoillot, F.D., King, R.W., and Elledge, S.J. (2012). A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response. Nat. Cell Biol. *14(3)*, 318–328.

Aldinucci, D., Celegato, M., Borghese, C., Colombatti, A., and Carbone, A. (2011). IRF4 silencing inhibits Hodgkin lymphoma cell proliferation, survival and CCL5 secretion. Br. J. Haematol. *152(2)*, 182–190.

Alexander, L.T., Möbitz, H., Drueckes, P., Savitsky, P., Fedorov, O., Elkins, J.M., Deane, C.M., Cowan-Jacob, S.W., and Knapp, S. (2015). Type II Inhibitors Targeting CDK2. ACS Chem. Biol. *10(9)*, 2116–2125.

Alperovich, A., and Younes, A. (2016). Targeting CD30 using brentuximab vedotin in the treatment of Hodgkin lymphoma. Cancer J. (United States) 22(1), 23–26.

Bai, M., Tsanou, E., Agnantis, N.J., Kamina, S., Grepi, C., Stefanaki, K., Rontogianni, D., Galani, V., and Kanavaros, P. (2004). Proliferation profile of classical Hodgkin's lymphomas. Increased expression of the protein cyclin D2 in Hodgkin's and Reed-Sternberg cells. Mod. Pathol. *17(11)*, 1338–1345.

Bargou, R.C., Leng, C., Krappmann, D., Emmerich, F., Mapara, M.Y., Bommert, K., Royer, H.D., Scheidereit, C., and Dörken, B. (1996). High-level nuclear NF-kB and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells. Blood *87(10)*, 4340–4347.

Barth, T.F.E., Martin-Subero, J.I., Joos, S., Menz, C.K., Hasel, C., Mechtersheimer, G., Parwaresch, R.M., Lichter, P., Siebert, R., and Möller, P. (2003). Gains of 2p involving the REL locus correlate with nuclear c-Rel protein accumulation in neoplastic cells of classical Hodgkin lymphoma. Blood *101(9)*, 3681–3686.

Basso, K., and Dalla-Favera, R. (2015). Germinal centres and B cell lymphomagenesis. Nat. Rev. Immunol. *15(3)*, 172–184.

Baus, D., and Pfitzner, E. (2006). Specific function of STAT3, SOCS1, and SOCS3 in the regulation of proliferation and survival of classical Hodgkin lymphoma cells. Int. J. Cancer *118(6)*, 1404–1413.

Bernards, R., Brummelkamp, T.R., and Beijersbergen, R.L. (2006). shRNA libraries and their use in cancer genetics. Nat. Methods 3(9), 701–706.

Blaquiere, N., Castanedo, G.M., Burch, J.D., Berezhkovskiy, L.M., Brightbill, H., Brown, S., Chan, C., Chiang, P.C., Crawford, J.J., Dong, T., Fan, P., Feng, J., Ghilardi, N., Godemann, R., Gogol, E., Grabbe, A., Hole, A.J., Hu, B., Hymowitz, S.G., Ismaili, M., Hicham A., Le, H., Lee, P., Lee, W., Lin, X., Liu, N., McEwan, P.A., McKenzie, B., Silvestre, H.L., Suto, E., Sujatha-Bhaskar, S., Wu, G., Wu, L.C., Zhang, Y., Zhong, Z., and Staben, S.T. (2018). Scaffold-Hopping Approach to Discover Potent, Selective, and Efficacious Inhibitors of NF-κB Inducing Kinase. J. Med. Chem. *61(15)*, 6801–6813.

Blom, B., and Spits, H. (2006). Development of Human Lymphoid Cells. Annu. Rev. Immunol. 24(1), 287–320.

Bonizzi, G., and Karin, M. (2004). The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. *25(6)*, 280–288.

Brinkman, E.K., Chen, T., Amendola, M., and Van Steensel, B. (2014). Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. *42(22)*, e168.

Buettner, M., Greiner, A., Avramidou, A., Jäck, H.M., and Niedobitek, G. (2005). Evidence of abortive plasma cell differentiation in Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma. Hematol. Oncol. *23*(*3*-*4*), 127–132.

Cabannes, E., Khan, G., Aillet, F., Jarrett, R.F., and Hay, R.T. (1999). Mutations in the IkBa gene in Hodgkin's disease suggest a tumour suppressor role for IkBα. Oncogene *18(20)*, 3063–3070.

Carbone, A., Gloghini, A., Aldinucci, D., Gattei, V., Dalla-Favera, R., and Gaidano, G. (2002). Expression pattern of MUM1/IRF4 in the spectrum of pathology of Hodgkin's disease. Br. J. Haematol. *117(2)*, 366–372.

Carbone, P.P., Kaplan, H.S., Musshoff, K., Smithers, D.W., and Tubiana, M. (1971). Report of the Committee on Hodgkin's Disease Staging Procedures. Cancer Res. *31(11)*, 1860–1861.

Castanedo, G.M., Blaquiere, N., Beresini, M., Bravo, B., Brightbill, H., Chen, J., Cui, H.F., Eigenbrot, C., Everett, C., Feng, J., Godemann, R., Gogol, E., Hymowitz, S., Johnson, A., Kayagaki, N., Kohli, P.B., Knüppel, K., Kraemer, J., Krüger, S., Loke, P., McEwan, P., Montalbetti, C., Roberts, D.A., Smith, M., Steinbacher, S., Sujatha-Bhaskar, S., Takahashi, R., Wang, X., Wu, L.C., Zhang, Y., and Staben, S.T. (2017). Structure-based design of tricyclic NF-kB inducing kinase (NIK) inhibitors that have high selectivity over phosphoinositide-3-kinase (PI3K). J. Med. Chem. *60(2)*, 627–640.

Chu, V.T., Graf, R., Wirtz, T., Weber, T., Favret, J., Li, X., Petsch, K., Tran, N.T., Sieweke, M.H., Berek, C., Kühn, R., and Rajewsky, K. (2016). Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line. Proc. Natl. Acad. Sci. U. S. A. *113(44)*, 12514–12519.

Cochet, O., Frelin, C., Peyron, J.F., and Imbert, V. (2006). Constitutive activation of STAT proteins in the HDLM-2 and L540 Hodgkin lymphoma-derived cell lines supports cell survival. Cell. Signal. *18(4)*, 449–455.

Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science (80-.). 339(6121), 819–823.

Cooper, G.M., and Hausmann R.E. (2013). The Cell Cycle. In: The Cell - A Molecular Approach. 6th Edition. Sunderland, Massachusetts U.S.A. Sinauer Associates *2013*, 641-80

Corcoran, L.M., Karvelas, M., Nossal, G.J.V., Ye, Z.S., Jacks, T., and Baltimore, D. (1993). Oct-2, although not required for early B-cell development, is critical for later B-cell maturation and for postnatal survival. Genes Dev. 7(4), 570–582.

Davis, E.R., Brown, K.D., Siebenlist, U., and Staudt, L.M. (2001). Constitutive nuclear factor κ B activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med. *194(12)*, 1861–1874.

DeKoter, R.P., and Singh, H. (2000). Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science. *288(5470)*, 1439–1441.

Diehl, V., Pfreundschuh, M., Fonatsch, C., Stein, H., Falk, M., Burrichter, H., and Schaadt, M. (1985). Phenotypic and genotypic analysis of Hodgkin's disease derived cell lines: histopathological and clinical implications. Cancer Surv. *4*(*2*), 399–419.

Diehl, V., Thomas, R.K., and Re, D. (2004). Part II: Hodgkin's lymphoma - Diagnosis and treatment. Lancet Oncol. 5(1), 19–26.

Dinkova-Kostova, A.T., Holtzclaw, W.D., Cole, R.N., Itoh, K., Wakabayashi, N., Katoh, Y., Yamamoto, M., and Talalay, P. (2002). Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. U. S. A. *99(18)*, 11908–11913.

Dores, G.M., Metayer, C., Curtis, R.E., Lynch, C.F., Clarke, E.A., Glimelius, B., Storm, H., Pukkala, E., Van Leeuwen, F.E., Holowaty, E.J., Andersson, M., Wiklund, T., Joensuu, T., Van'T Veer, M.B., Stovall, M., Gospodarowicz, M., and Travis, L.B. (2002). Second malignant neoplasms among long-term survivors of Hodgkin's disease: A population-based evaluation over 25 years. J. Clin. Oncol. *20(16)*, 3484–3494.

Doudna, J.A., and Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science (80-.). *346(6213)*, 1258096.

Drexler, H.G., Gignac, S.M., Hoffbrand, A. V., Leber, B.F., Norton, J., Lok, M.S., and Minowada, J. (1989). Characterization of Hodgkin's disease derived cell line HDLM-2. Recent Results Cancer Res. *117*, 75–82.

DSMZ - L428 (ACC197): https://www.dsmz.de/collection/catalogue/details/culture/ACC-197 ; zugegriffen am 18.09.2019.

DSMZ - L1236(ACC530): https://www.dsmz.de/collection/catalogue/details/culture/ACC-530 ; zugegriffen am 18.09.2019.

DSMZ - BJAB (ACC757): https://www.dsmz.de/collection/catalogue/details/culture/ACC-757 ; zugegriffen am 18.09.2019.

Dutton, A., Reynolds, G.M., Dawson, C.W., Young, L.S., and Murray, P.G. (2005). Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin's lymphoma cells through a mechanism involving Akt kinase and mTOR. J. Pathol. *205(4)*, 498–506.

Emmerich, F., Meiser, M., Hummel, M., Demel, G., Foss, H.D., Jundt, F., Mathas, S., Krappmann, D., Scheidereit, C., Stein, H., and Dörken, B. (1999). Overexpression of I kappa B alpha without inhibition of NF-κB activity and mutations in the I kappa B alpha gene in Reed-Sternberg cells. Blood *94(9)*, 3129–3134.

Emmerich, F., Theurich, S., Hummel, M., Haeffker, A., Vry, M.S., Döhner, K., Bommert, K., Stein, H., and Dörken, B. (2003). Inactivating I kappa B epsilon mutations in Hodgkin/Reed-Sternberg cells. J. Pathol. *201(3)*, 413–420.

Engert, A., and Skoetz, N. (2013). Hodgkin Lymphom S3-Leitlinie Diagnostik, Therapie und Nachsorge des Hodgkin Lymphoms bei erwachsenen Patienten. Leitlinienprogr. Onkol. Der AWMF, Dtsch. Krebsgesellschaft e.V. Und Dtsch. Krebshilfe e.V. 1–158.

Engert, A., Diehl, V., Franklin, J., Lohri, A., Dörken, B., Ludwig, W.D., Koch, P., Hänel, M., Pfreundschuh, M., Wilhelm, M., Trümper, L., Aulitzky, W.E., Bentz, M., Rummel, M., Sezer, O., Müller-Hermelink, H.K., Hasenclever, D., and Löffler, M. (2009). Escalated-dose BEACOPP in the treatment of patients with advanced-stage Hodgkin's lymphoma: 10 Years of follow-up of the GHSG HD9 study. J. Clin. Oncol. *27*(*27*), 4548–4554.

Engert, A., Plütschow, A., Eich, H.T., Lohri, A., Dörken, B., Borchmann, P., Berger, B., Greil, R., Willborn, K.C., Wilhelm, M., Debus, J., Eble, M.J., Sökler, M., Ho, A., Rank, A., Ganser, A., Trümper, L., Bokemeyer, C., Kirchner, H., Schubert, J., Král, Z., Fuchs, M., Müller-Hermelink, H.K., Müller, R.P., and Diehl, V. (2010). Reduced treatment intensity in patients with early-stage Hodgkin's lymphoma. N. Engl. J. Med. *363*(7), 640–652.

Epstein, A.L., Levy, R., Kim, H., Henle, W., Henle, G., and Kaplan, H.S. (1978). Biology of the human malignant lymphomas. IV. Functional characterization of ten diffuse histiocytic lymphoma cell lines. Cancer *42*(*5*), 2379–2391.

Finkbeiner, S. Real Fast Mini Preps. Gladstone Institutes: http://gladstone.org/u/sfinkbeiner/labdocs/dnatech/Real.Fast.Mini.Preps.pdf; zugegriffen am 12.11.2019.

Fiumara, P., Snell, V., Li, Y., Mukhopadhyay, A., Younes, M., Gillenwater, A.M., Cabanillas, F., Aggarwal, B.B., and Younes, A. (2001). Functional expression of receptor activator of nuclear factor κB in Hodgkin disease cell lines. Blood *98(9)*, 2784–2790.

Fry, D.W., Harvey, P.J., Keller, P.R., Elliott, W.L., Meade, M.A., Trachet, E., Albassam, M., Zheng, X.X., Leopold, W.R., Pryer, N.K., and Toogood, P.L. (2004). Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol. Cancer Ther. *3(11)*, 1427–1438.

Gamboa-Cedeño, A.M., Castillo, M., Xiao, W., Waldmann, T.A., and Ranuncolo, S.M. (2019). Alternative and canonical NF-kB pathways DNA-binding hierarchies networks define Hodgkin lymphoma and Non-Hodgkin diffuse large B Cell lymphoma respectively. J. Cancer Res. Clin. Oncol. *145(6)*, 1437–1448.

Georgakis, G. V., Li, Y., Rassidakis, G.Z., Medeiros, L.J., Mills, G.B., and Younes, A. (2006). Inhibition of the phosphatidylinositol-3 kinase/Akt promotes G1 cell cycle arrest and apoptosis in Hodgkin lymphoma. Br. J. Haematol. *132(4)*, 503–511.

Ghia, P., Ten Boekel, E., Sanz, E., De La Hera, A., Rolink, A., and Melchers, F. (1996). Ordering of human bone marrow B lymphocyte precursors by single-cell polymerase chain reaction analyses of the rearrangement status of the immunoglobulin H and L chain gene loci. J. Exp. Med. *184(6)*, 2217–2229.

Gibson, D.G. (2009). Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res. *37(20)*, 6984–6990.

Grandgenett, D.P., and Mumm, S.R. (1990). Unraveling retrovirus integration. Cell 60(1), 3-4.

Green, M.R., Rodig, S., Juszczynski, P., Ouyang, J., Sinha, P., O'Donnell, E., Neuberg, D., and Shipp, M.A. (2012). Constitutive AP-1 activity and EBV infection induce PD-I1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: Implications for targeted therapy. Clin. Cancer Res. *18(6)*, 1611–1618.

de Groot, A.F., Kuijpers, C.J., and Kroep, J.R. (2017). CDK4/6 inhibition in early and metastatic breast cancer: A review. Cancer Treat. Rev. *60*, 130–138.

Hinz, M., Löser, P., Mathas, S., Krappmann, D., Dörken, B., and Scheidereit, C. (2001). Constitutive NFκB maintains high expression of a characteristic gene network, including CD40, CD86, and a set of antiapoptotic genes in Hodgkin/Reed-Sternberg cells. Blood *97(9)*, 2798–2807.

Hinz, M., Lemke, P., Anagnostopoulos, I., Hacker, C., Krappmann, D., Mathas, S., Dörken, B., Zenke, M., Stein, H., and Scheidereit, C. (2002). Nuclear factor kb-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J. Exp. Med.

Hodgkin (1832). On Some Morbid Appearances of the Absorbent Glands and Spleen. J. R. Soc. Med. *17*, 68–114.

Hodgson, D.C. (2011). Late effects in the era of modern therapy for Hodgkin lymphoma. Hematology Am. Soc. Hematol. Educ. Program *2011*, 323–329.

Von Hoff, L., Kärgel, E., Franke, V., McShane, E., Schulz-Beiss, K.W., Patone, G., Schleussner, N., Kolesnichenko, M., Hübner, N., Daumke, O., Selbach, M., Akalin, A., Mathas, S., and Scheidereit, C. (2019). Autocrine LTA signaling drives NF-kB and JAK-STAT activity and myeloid gene expression in Hodgkin lymphoma. Blood *133(13)*, 1489–1494.

Ishiguro, A., Spirin, K.S., Shiohara, M., Tobler, A., Gombart, A.F., Israel, M.A., Norton, J.D., and Koeffler, H.P. (1996). Id2 expression increases with differentiation of human myeloid cells. Blood *87(12)*, 5225–5231.

Janz, M., Hummel, M., Truss, M., Wollert-Wulf, B., Mathas, S., Jöhrens, K., Hagemeier, C., Bommert, K., Stein, H., Dörken, B., and Bargou, R.C. (2006). Classical Hodgkin lymphoma is characterized by high constitutive expression of activating transcription factor 3 (ATF3), which promotes viability of Hodgkin/Reed-Sternberg cells. Blood *107(6)*, 2536–2539.

Jaramillo, M.C., and Zhang, D.D. (2013). The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27(20), 2179–2191.

Jinno, S., Suto, K., Nagata, A., Igarashi, M., Kanaoka, Y., Nojima, H., and Okayama, H. (1994). Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J. *13(7)*, 1549–1556.

Joos, S., Küpper, M., Ohl, S., Von Bonin, F., Mechtersheimer, G., Bentz, M., Marynen, P., Möller, P., Pfreundschuh, M., Trümper, L., et al. (2000). Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30 + Hodgkin cells. Cancer Res. *60(3)*, 549–552.

Jost, P.J., and Ruland, J. (2007). Aberrant NF-κB signaling in lymphoma: Mechanisms, consequences, and therapeutic implications. Blood *109*, 2700–2707.

Jundt, F., Kley, K., Anagnostopoulos, I., Pröbsting, K.S., Greiner, A., Mathas, S., Scheidereit, C., Wirth, T., Stein, H., and Dörken, B. (2002a). Loss of PU.1 expression is associated with defective immunoglobulin transcription in Hodgkin and Reed-Sternberg cells of classical Hodgkin disease. Blood *99(8)*, 3060–3062.

Jundt, F., Anagnostopoulos, I., Förster, R., Mathas, S., Stein, H., and Dörken, B. (2002b). Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood *99(9)*, 3398–3403.

Jungnickel, B., Staratschek-Jox, A., Bräuninger, A., Spieker, T., Wolf, J., Diehl, V., Hansmann, M.L., Rajewsky, K., and Küppers, R. (2000). Clonal deleterious mutations in the IkappaBalpha gene in the malignant cells in Hodgkin's lymphoma. J Exp Med. *191(2)*, 395-402.

Juszczynski, P., Ouyang, J., Monti, S., Rodig, S.J., Takeyama, K., Abramson, J., Chen, W., Kutok, J.L., Rabinovich, G.A., and Shipp, M.A. (2007). The AP1-dependent secretion of galectin-1 by Reed-Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc. Natl. Acad. Sci. U. S. A. *104(32)*, 13134–13139.

Kaileh, M., and Sen, R. (2012). NF-kB function in B lymphocytes. Immunol. Rev. 246(1), 254–271.

Kanzler, H., Küppers, R., Hansmann, M.L., and Rajewsky, K. (1996a). Hodgkin and Reed-Sternberg cells in Hodgkin's disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J. Exp. Med. *184(4)*, 1495–1505.

Kanzler, H., Hansmann, M.L., Kapp, U., Wolf, J., Diehl, V., Rajewsky, K., and Küppers, R. (1996b). Molecular single cell analysis demonstrates the derivation of a peripheral blood-derived cell line (L1236) from the Hodgkin/Reed-Sternberg cells of a Hodgkin's lymphoma patient. Blood *87(8)*, 3429–3436.

Kilger, E., Kieser, A., Baumann, M., and Hammerschmidt, W. (1998). Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. *17(6)*, 1700–1709.

Klein, U., and Dalla-Favera, R. (2008). Germinal centres: Role in B-cell physiology and malignancy. Nat. Rev. Immunol. *8*(*1*), 22–33.

Klein, G., Lindahl, T., Jondal, M., Leibold, W., Menézes, J., Nilsson, K., and Sundström, C. (1974). Continuous lymphoid cell lines with characteristics of B cells (bone marrow derived), lacking the Epstein Barr virus genome and derived from three human lymphomas. Proc. Natl. Acad. Sci. U. S. A. *71(8)*, 3283–3286.

Koike-Yusa, H., Li, Y., Tan, E.P., Velasco-Herrera, M.D.C., and Yusa, K. (2014). Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. *32(3)*, 267–273.

Krappmann, D., Emmerich, F., Kordes, U., Scharschmidt, E., Do, B., and Scheidereit, C. (1999). Molecular mechanisms of constitutive NF-kB / Rel activation in Hodgkin/Reed-Sternberg cells. Oncogene *18(4)*, 943–953.

Kreher, S., Bouhlel, M.A., Cauchy, P., Lamprecht, B., Li, S., Grau, M., Hummel, F., Köchert, K., Anagnostopoulos, I., Jöhrens, K., Hummel, M., Hiscott, J., Wenzel, S.S., Lenz, P., Schneider, M., Küppers, R., Scheidereit, C., Giefing, M., Siebert, R., Rajewsky, K., Lenz, G., Cockerill, P.N., Janz, M., Dörken, B., Bonifer, C., and Mathas, S. (2014). Mapping of transcription factor motifs in active chromatin identifies IRF5 as key regulator in classical Hodgkin lymphoma. Proc. Natl. Acad. Sci. U. S. A. *111(42)*, E4513-22.

Küppers, R. (2005). Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5(4), 251–262.

Küppers, R. (2009). The biology of Hodgkin's lymphoma. Nat. Rev. Cancer 9(1), 15–27.

Küppers, R., Rajewsky, K., Zhao, M., Simons, G., Laumann, R., Fischer, R., and Hansmann, M.L. (1994). Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc. Natl. Acad. Sci. U. S. A. *91(23)*, 10962–10966.

Küppers, R., Klein, U., Hansmann, M.L., and Rajewsky, K. (1999). Cellular Origin of Human B-Cell Lymphomas. N. Engl. J. Med. *341(20)*, 1520–1529.

Küppers, R., Klein, U., Schwering, I., Distler, V., Bräuninger, A., Cattoretti, G., Tu, Y., Stolovitzky, G.A., Califano, A., Hansmann, M.L., and Dalla-Favera, R. (2003). Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J. Clin. Invest. *111(4)*, 529–537.

Lai, R., McDonnell, T., O'Connor, S., Medeiros, L., Oudat, R., Keating, M., Morgan, M., Curiel, T., and Ford, R. (2002). Establishment and characterization of a new mantle cell lymphoma cell line, Mino. Leuk. Res. *26(9)*, 849–855.

Lam, K.P., Kühn, R., and Rajewsky, K. (1997). In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell *90(6)*, 1073–1083.

Lam, L.T., Davis, R.E., Pierce, J., Hepperle, M., Xu, Y., Hottelet, M., Nong, Y., Wen, D., Adams, J., Dang, L., and Staudt, L.M. (2005). Small molecule inhibitors of IkB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling. Clin. Cancer Res. *11(1)*, 28–40.

Lau, A., Villeneuve, N., Sun, Z., Wong, P., and Zhang, D. (2008). Dual roles of Nrf2 in cancer. Pharmacol Res 58(5-6), 262–270.

Leonard, J.P., LaCasce, A.S., Smith, M.R., Noy, A., Chirieac, L.R., Rodig, S.J., Yu, J.Q., Vallabhajosula, S., Schoder, H., English, P., Neuberg, D.S., Martin, P., Millenson, M.M., Ely, S.A., Courtney, R., Shaik, N., Wilner, K.D., Randolph, S., Van Den Abbeele, A.D., Chen-Kiang, S.Y., Yap, J.T., and Shapiro, G.I. (2012). Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients with mantle cell lymphoma. Blood *119(20)*, 4597–4607.

Lim, S.L., Qu, Z.P., Kortschak, R.D., Lawrence, D.M., Geoghegan, J., Hempfling, A.L., Bergmann, M., Goodnow, C.C., Ormandy, C.J., Wong, L., Mann, J., Scott, H.S., Jamsai, D., Adelson, D.L., and O'Bryan, M.K. (2015). HENMT1 and piRNA Stability Are Required for Adult Male Germ Cell Transposon Repression and to Define the Spermatogenic Program in the Mouse. PLoS Genet. *11(10)*, 1–30.

Limon, J.J., and Fruman, D.A. (2012). Akt and mTOR in B cell activation and differentiation. Front. Immunol. 3, 228.

Lin, H., and Grosschedl, R. (1995). Failure of B–cell differentiation in mice lacking the transcription factor EBF. Nature *376(6537)*, 263–267.

Lollies, A., Hartmann, S., Schneider, M., Bracht, T., Weiß, A.L., Arnolds, J., Klein-Hitpass, L., Sitek, B., Hansmann, M.L., Küppers, R., and Weniger, M.A. (2018). An oncogenic axis of STAT-mediated BATF3 upregulation causing MYC activity in classical Hodgkin lymphoma and anaplastic large cell lymphoma. Leukemia *32(1)*, 92–101.

Malin, S., McManus, S., Cobaleda, C., Novatchkova, M., Delogu, A., Bouillet, P., Strasser, A., and Busslinger, M. (2010). Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nat. Immunol. *11(2)*, 171–179.

Martín-Subero, J.I., Gesk, S., Harder, L., Sonoki, T., Tucker, P.W., Schlegelberger, B., Grote, W., Novo, F.J., Calasanz, M.J., Hansmann, M.L., Dyer, M.J., and Siebert, R. (2002). Recurrent involvement of the REL and BCL11A loci in classical Hodgkin lymphoma. Blood *99(4)*, 1474-7.

Marzec, M., Kasprzycka, M., Lai, R., Gladden, A.B., Wlodarski, P., Tomczak, E., Nowell, P., DePrimo, S.E., Sadis, S., Eck, S., Schuster, S.J., Diehl, J.A., and Wasik, M.A. (2006). Mantle cell lymphoma cells express predominantly cyclin D1a isoform and are highly sensitive to selective inhibition of CDK4 kinase activity. Blood *108(5)*, 1744-50.

Massari, M.E., Rivera, R.R., Voland, J.R., Quong, M.W., Breit, T.M., van Dongen, J.J.M., de Smit, O., and Murre, C. (1998). Characterization of ABF-1, a Novel Basic Helix-Loop-Helix Transcription Factor Expressed in Activated B Lymphocytes. Mol. Cell. Biol. *18*(6), 3130–3139.

Mathas, S., Hinz, M., Anagnostopoulos, I., Krappmann, D., Lietz, A., Jundt, F., Bommert, K., Mechta-Grigoriou, F., Stein, H., Dörken, B., and Scheidereit, C. (2002). Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-κB. EMBO J. *21(15)*, 4104–4113.

Mathas, S., Jöhrens, K., Joos, S., Lietz, A., Hummel, F., Janz, M., Jundt, F., Anagnostopoulos, I., Bommert, K., Lichter, P., Stein, H., Scheidereit, C., Dörken, B., (2005). Elevated NF-κB p50 complex formation and Bcl-3 expression in classical Hodgkin, anaplastic large-cell, and other peripheral T-cell lymphomas. Blood *106(13)*, 4287–4293.

Mathas, S., Janz, M., Hummel, F., Hummel, M., Wollert-Wulf, B., Lusatis, S., Anagnostopoulos, I., Lietz, A., Sigvardsson, M., Jundt, F., Jöhrens, K., Bommert, K., Stein, H., and Dörken, Bernd (2006). Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat. Immunol. *7(2)*, 207–215.

Matthias, P., and Rolink, A.G. (2005). Transcriptional networks in developing and mature B cells. Nat. Rev. Immunol. *5(6)*, 497–508.

Mottok, A., and Steidl, C. (2018). Biology of classical Hodgkin lymphoma: Implications for prognosis and novel therapies. Blood *131*, 1654–1665.

de Oliveira, K.A.P., Kaergel, E., Heinig, M., Fontaine, J.F., Patone, G., Muro, E.M., Mathas, S., Hummel, M., Andrade-Navarro, M.A., Hübner, N., and Scheidereit, C. (2016). A roadmap of constitutive NF-κB activity in hodgkin lymphoma: Dominant roles of p50 and p52 revealed by genome-wide analyses. Genome Med. *8(1)*, 28.

Pagano, M., Pepperkok, R., Verde, F., Ansorge, W., and Draetta, G. (1992). Cyclin A is required at two points in the human cell cycle. EMBO J. *11(3)*, 961–971.

Parnas, O., Jovanovic, M., Eisenhaure, T.M., Herbst, R.H., Dixit, A., Ye, C.J., Przybylski, D., Platt, R.J., Tirosh, I., Sanjana, N.E., Shalem, O., Satija, R., Raychowdhury, R., Mertins, P., Carr, S.A., Zhang, F., Hacohen, N., and Regev, A. (2015). A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks. Cell *162*, 675–686.

Peng, L., Zhang, F., Shang, R., Wang, X., Chen, J., Chou, J.J., Ma, J., Wu, L., and Huang, Y. (2018). Identification of substrates of the small RNA methyltransferase Hen1 in mouse spermatogonial stem cells and analysis of its methyl-transfer domain. J. Biol. Chem. *293(26)*, 9981–9994.

Pines, J., and Hunter, T. (1990). Human cyclin A is adenovirus E1A-associated protein p60 and behaves differently from cyclin B. Nature *346(6286)*, 760–763.

Rad, R., Rad, L., Wang, W., Cadinanos, J., Vassiliou, G., Rice, S., Campos, L.S., Yusa, K., Banerjee, R., Li, M.A., De La Rosa, J., Strong, A., Lu, D., Ellis, P., Conte, N., Yang, F.T., Liu, P., and Bradley, A. (2010). PiggyBac transposon mutagenesis: A tool for cancer gene discovery in mice. Science. *330(6007)*, 1104–1107.

Rahal, R., Frick, M., Romero, R., Korn, J.M., Kridel, R., Chan, F.C., Meissner, B., Bhang, H.E., Ruddy, D., Kauffmann, A., Farsidjani, A., Derti, A., Rakiec, D., Naylor, T., Pfister, E., Kovats, S., Kim, S., Dietze, K., Dörken, B., Steidl, C., Tzankov, A., Hummel, M., Monahan, J., Morrissey, M.P., Fritsch, C., Sellers, W.R., Cooke, V.G., Gascoyne, R.D., Lenz, G., and Stegmeier, F. (2014). Pharmacological and genomic profiling identifies NF-kB-targeted treatment strategies for mantle cell lymphoma. Nat. Med. *20(1)*, 87–92.

Ranuncolo, S.M., Pittaluga, S., Evbuomwan, M.O., Jaffe, E.S., and Lewis, B.A. (2012). Hodgkin lymphoma requires stabilized NIK and constitutive RelB expression for survival. Blood *120(18)*, 3756–3763.

Re, D., Müschen, M., Ahmadi, T., Wickenhauser, C., Staratschek-Jox, A., Holtick, U., Diehl, V., and Wolf, J. (2001). Oct-2 and bob-1 deficiency in hodgkin and reed sternberg cells. Cancer Res. *61(5)*, 2080–2084.

Reed, D. (1902). On the pathological changes in Hodgkin's disease with special reference to its relation to tuberculosis. John Hopkins Hosp. Rep. *10*, 133–193.

Renné, C., Martin-Subero, J.I., Eickernjäger, M., Hansmann, M.L., Küppers, R., Siebert, R., and Bräuninger, A. (2006). Aberrant expression of ID2, a suppressor of B-cell-specific gene expression, in Hodgkin's lymphoma. Am. J. Pathol. *169(2)*, 655–664.

Rivera, R., and Murre, C. (2001). The regulation and function of the Id proteins in lymphocyte development. Oncogene *46*(*5*), 818–834.

Rolink, A.G., Nutt, S.L., Melchers, F., and Busslinger, M. (1999). Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature *401(6753)*, 603–606.

Rui, L., Emre, N.C.T., Kruhlak, M.J., Chung, H.J., Steidl, C., Slack, G., Wright, G.W., Lenz, G., Ngo, V.N., Shaffer, A.L., Xu, W., Zhao, H., Yang, Y., Lamy, L., Davis, R.E., Xiao, W., Powell, J., Maloney, D., Thomas, C.J., Möller, P., Rosenwald, A., Ott, G., Muller-Hermelink, H.K., Savage, K., Connors, J.M., Rimsza, L.M., Campo, E., Jaffe, E.S., Delabie, J., Smeland, E.B., Weisenburger, D.D., Chan, W.C., Gascoyne, R.D., Levens, D., and Staudt, L.M. (2010). Cooperative Epigenetic Modulation by Cancer Amplicon Genes. Cancer Cell *18(6)*, 590–605.

Ryan, M.D., and Drew, J. (1994). Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J. *13(4)*, 928–933.

Sancak, Y., Peterson, T.R., Shaul, Y.D., Lindquist, R.A., Thoreen, C.C., Bar-Peled, L., and Sabatini, D.M. (2008). The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science (80-.). *320(5882)*, 1496–1501.

Sander, J.D., and Joung, J.K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. *32(4)*, 347–350.

Sanjana, N.E., Shalem, O., and Zhang, F. (2014). Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods *11(8)*, 783–784.

Schaadt, M., Diehlm, V., Stein, H., Fonatsch, C., and Kirchner, H.H. (1980). Two neoplastic cell lines with unique features derived from Hodgkin's disease. Int. J. Cancer *26(6)*, 723–731.

Scheeren, F.A., Diehl, S.A., Smit, L.A., Beaumont, T., Naspetti, M., Bende, R.J., Blom, B., Karube, K., Ohshima, K., Van Noesel, C.J.M., and Spits, H. (2008). IL-21 is expressed in Hodgkin lymphoma and activates STAT5: Evidence that activated STAT5 is required for Hodgkin lymphomagenesis. Blood *111(9)*, 4706–4715.

Schleussner, N., Merkel, O., Costanza, M., Liang, H.C., Hummel, F., Romagnani, C., Durek, P., Anagnostopoulos, I., Hummel, M., Jöhrens, K., Niedobitek, A., Griffin, P.R., Piva, R., Sczakiel, H.L., Woessmann, W., Damm-Welk, C., Hinze, C., Stoiber, D., Gillissen, B., Turner, S.D., Kaergel, E., von Hoff, L., Grau, M., Lenz, G., Dörken, B., Scheidereit, C., Kenner, L., Janz, M., and Mathas, S. (2018). The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma. Leukemia *32(9)*, 1994–2007.

Schultz, N., Marenstein, D.R., De Angelis, D.A., Wang, W.Q., Nelander, S., Jacobsen, A., Marks, D.S., Massagué, J., and Sander, C. (2011). Off-target effects dominate a large-scale RNAi screen for modulators of the TGF-β pathway and reveal microRNA regulation of TGFBR2. Silence *2*, 3.

Schwering, I., Bräuninger, A., Klein, U., Jungnickel, B., Tinguely, M., Diehl, V., Hansmann, M.L., Dalla-Favera, R., Rajewsky, K., and Küppers, R. (2003). Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood *101(4)*, 1505–1512.

ThermoFisher Scientific - Double Digest Calculator:

https://www.thermofisher.com/de/de/home/brands/thermo-scientific/molecular-biology/thermo-scientific-restriction-modifying-enzymes/restriction-enzymes-thermo-scientific/double-digest-calculator-thermo-scientific.html ; zugegriffen am 30.10.2019.

Sen, R., and Baltimore, D. (1986). Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell *46(5)*, 705–716.

Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T.S., Heckl, D., Ebert, B.L., Root, D.E., Doench, J.G., and Zhang, F. (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. *343*, 84–87.

Shalem, O., Sanjana, N.E., and Zhang, F. (2015). High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. *16*, 299–311.

Singh, A., Boldin-Adamsky, S., Thimmulappa, R.K., Rath, S.K., Ashush, H., Coulter, J., Blackford, A., Goodman, S.N., Bunz, F., Watson, W.H., Gabrielson, E., Feinstein, E., and Biswal, S. (2008). RNAimediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res. *68(19)*, 7975–7984.

Smith, J.A., and Martin, L. (1973). Do Cells Cycle? (cell kinetics/control of growth/DNA replication/cell culture). Proc. Nat. Acad. Sci. USA 70(4), 1263–1267.

Solvason, N., Wu, W.W., Kabra, N., Wu, X., Lees, E., and Howard, M.C. (1996). Induction of cell cycle regulatory proteins in anti-immunoglobulin- stimulated mature B lymphocytes. J. Exp. Med. *184(2)*, 407–417.

Sorek, R., Lawrence, C.M., and Wiedenheft, B. (2013). CRISPR-Mediated Adaptive Immune Systems in Bacteria and Archaea. Annu. Rev. Biochem. *82*, 237–266.

Spina, V., Bruscaggin, A., Cuccaro, A., Martini, M., Trani, M. Di, Forestieri, G., Manzoni, M., Condoluci, A., Arribas, A., Terzi-Di-Bergamo, L., Locatelli, Silvia L., Cupelli, E., Ceriani, L., Moccia, A.A., Stathis, A., Nassi, L., Deambrogi, C., Diop, F., Guidetti, F., Cocomazzi, A., Annunziata, S., Rufini, V., Giordano, A., Neri, A., Boldorini, R., Gerber, B., Bertoni, F., Ghielmini, M., Stüssi, G., Santoro, A., Cavalli, F., Zucca, E., Larocca, L.M., Gaidano, G., Hohaus, S., Carlo-Stella, C., and Rossi, D. (2018). Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood *131(22)*, 2413–2425.

Staudt, L.M., Singh, H., Sen, R., Wirth, T., Sharp, P.A., and Baltimore, D. (1986). A lymphoid-specific protein binding to the octamer motif of immunoglobulin genes. Nature *323(6089)*, 640–643.

Sternberg, C. (1898). Über eine eigenartige unter dem Bilde der Pseudoleukämie verlaufende Tuberkulose des lymphatischen Apparates. Z. Heilkd. *19*, 21–90.

Sultana, T., Zamborlini, A., Cristofari, G., and Lesage, P. (2017). Integration site selection by retroviruses and transposable elements in eukaryotes. Nat. Rev. Genet. *18(5)*, 292–308.

Swerdlow, S.H., Campo, E., Harris, N.L., Jaffe, E.S., Pileri, S.A., Stein, H., Thiele, J., and Vardiman, J.W. (2017). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues.

Szymczak-Workman, A.L., Vignali, K.M., and Vignali, D.A.A. (2012). Design and construction of 2A peptide-linked multicistronic vectors. Cold Spring Harb. Protoc. 2012(2), 199–204.

Tanguay, D.A., and Chiles, T.C. (1996). Regulation of the catalytic subunit (p34PSK-J3/cdk4) for the major D-type cyclin in mature B lymphocytes. J. Immunol. *156(2)*, 539–548.

Teramoto, N., Pokrovskaja, K., Szekely, L., Polack, A., Yoshino, T., Akagi, T., and Klein, G. (1999). Expression of cyclin D2 and D3 in lymphoid lesions. Int. J. Cancer *81(4)*, 543–550.

Thomas, R.K., Re, D., Zander, T., Wolf, J., and Diehl, V. (2002). Epidemiology and etiology of Hodgkin's lymphoma. Ann. Oncol. *13(4)*, 147–152.

Tiacci, E., Ladewig, E., Schiavoni, G., Penson, A., Fortini, E., Pettirossi, V., Wang, Y., Rosseto, A., Venanzi, A., Vlasevska, S., Pacini, R., Piattoni, S., Tabarrini, A., Pucciarini, A., Bigerna, B., Santi, A., Gianni, A.M., Viviani, S., Cabras, A., Ascani, S., Mecucci, C., Pasqualucci, L., Rabadan, R., and Falini, B. (2018). Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood *131(22)*, 2454–2465.

Toogood, P.L., Harvey, P.J., Repine, J.T., Sheehan, D.J., VanderWel, S.N., Zhou, H., Keller, P.R., McNamara, D.J., Sherry, D., Zhu, T., Brodfuehrer, J., Choi, C., Barvian, M.R., and Fry, D.W. (2005). Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J. Med. Chem. *48*(7), 2388–2406.

Torlakovic, E., Tierens, A., Dang, H.D., and Delabie, J. (2001). The transcription factor PU.1, necessary for B-cell development is expressed in lymphocyte predominance, but not classical Hodgkin's disease. Am. J. Pathol. *159(5)*, 1807–1814.

Valsami, S., Pappa, V., Rontogianni, D., Kontsioti, F., Papageorgiou, E., Dervenoulas, J., Karmiris, T., Papageorgiou, S., Harhalakis, N., Xiros, N., Nikiforakis, E., and Economopoulos, T. (2007). A clinicopathological study of B-cell differentiation markers and transcription factors in classical Hodgkin's lymphoma: A potential prognostic role of MUM1/IRF4. Haematologica *92(10)*, 1343–1350.

Verkuijl, S.A., and Rots, M.G. (2019). The influence of eukaryotic chromatin state on CRISPR–Cas9 editing efficiencies. Curr. Opin. Biotechnol. *55*, 68–73.

Wang, T., Wei, J.J., Sabatini, D.M., and Lander, E.S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science *343(6166)*, 80–84.

Weniger, M.A., Melzner, I., Menz, C.K., Wegener, S., Bucur, A.J., Dorsch, K., Mattfeldt, T., Barth, T.F., and Möller, P. (2006). Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene *25(18)*, 2679–2684.

Wolf, J., Kapp, U., Bohlen, H., Kornacker, M., Schoch, C., Stahl, B., Mücke, S., Von Kalle, C., Fonatsch, C., Schaefer, H.E., Hansmann, M.L., and Diehl, V. (1996). Peripheral blood mononuclear cells of a patient with advanced Hodgkin's lymphoma give rise to permanently growing Hodgkin-Reed Sternberg cells. Blood *87(8)*, 3418–3428.

Younes, A., Ansell, S., Fowler, N., Wilson, W., De Vos, S., Seymour, J., Advani, R., Forero, A., Morschhauser, F., Kersten, M.J., Tobinai, K., Zinzani, P.L., Zucca, E., Abramson, J., and Vose, J. (2017). The landscape of new drugs in lymphoma. Nat. Rev. Clin. Oncol. *14(6)*, 335–346.

Zhang, D.D., Lo, S.-C., Cross, J. V., Templeton, D.J., and Hannink, M. (2004). Keap1 Is a Redox-Regulated Substrate Adaptor Protein for a Cul3-Dependent Ubiquitin Ligase Complex. Mol. Cell. Biol. *24*(*24*), 10941–10953.

Zheng, B., Flumara, P., Li, Y. V., Georgakis, G., Snell, V., Younes, M., Vauthey, J.N., Carbone, A., and Younes, A. (2003). MEK/ERK pathway is aberrantly active in Hodgkin disease: A signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood *102(3)*, 1019–1027.

Zhuang, Y., Soriano, P., and Weintraub, H. (1994). The helix-loop-helix gene E2A is required for B cell formation. Cell *79(5)*, 875–884.
ANHANG

Ergebnisse des Genomweiten CRISPR/Cas9-Screens: depletierte sgRNAs

Legende:

Unterstrichene Kandidaten sind ausgewählt für den Re-Screen

Fette Kandidaten sind beiden Zelllinien (L428 und L1236) gemein

Kandidatengene L428				Kandidatengene L1236				
sgRNA	GeCKO- ID	Verhältnis d21/d1 cHL	Verhältnis zu B-NHL	sgRNA	GeCKO- ID	Verhältnis d21/d1 cHL	Verhältnis zu B-NHL	
ABHD17A	HGLibA_ 00264	0,22	0,51	ABCA7	HGLibA_ 00122	0,49	0,30	
ABHD17A	HGLibB_ 00264	0,49	0,55	ABCA7	HGLibB_ 00121	0,53	0,45	
AGPAT3	HGLibB_ 01221	0,53	0,36	ADAMTS15	HGLibA_ 00807	0,43	0,44	
AGPAT3	HGLibB_ 01222	0,57	0,60	ADAMTS15	HGLibA_ 00805	0,56	0,50	
ANKRD52	HGLibA_ 02117	0,23	0,53	AOC2	HGLibB_ 02268	0,47	0,43	
ANKRD52	HGLibB_ 02116	0,56	0,59	<u>AOC2</u>	HGLibB_ 02267	0,55	0,51	
ANXA2	HGLibB_ 02230	0,43	0,47	APPL1	HGLibA_ 02566	0,54	0,64	
ANXA2	HGLibB_ 02229	0,47	0,47	APPL1	HGLibA_ 02565	0,59	0,74	
ARCN1	HGLibB_ 02635	0,31	0,54	AREL1	HGLibB_ 02641	0,50	0,47	
ARCN1	HGLibB_ 02634	0,56	0,59	AREL1	HGLibB_ 02640	0,60	0,57	
ARF5	HGLibA_ 02654	0,53	0,18	ARF5	HGLibA_ 02654	0,53	0,28	
ARF5	HGLibA_ 02655	0,59	0,38	ARF5	HGLibB_ 02652	0,59	0,59	
ARF5	HGLibB_ 02652	0,60	0,41	ARF5	HGLibA_ 02655	0,60	0,63	
ASPHD1	HGLibA_ 03354	0,50	0,42	ARHGEF25	HGLibA_ 02838	0,54	0,37	
ASPHD1	HGLibA_ 03353	0,57	0,44	ARHGEF25	HGLibB_ 02836	0,58	0,72	
<u>ATP2A2</u>	HGLibA_ 03608	0,30	0,26	ATP5J2	HGLibA_ 03674	0,11	0,42	
ATP2A2	HGLibB_ 03607	0,50	0,59	ATP5J2	HGLibB_ 03671	0,48	0,57	
ATP2C2	HGLibA_ 03629	0,42	0,54	ATP6V1G1	HGLibB_ 03756	0,12	0,50	
ATP2C2	HGLibA_ 03628	0,52	0,55	ATP6V1G1	HGLibB_ 03755	0,29	0,75	
BTAF1	HGLibB_ 04887	0,38	0,43	BATF3	HGLibA_ 04180	0,47	0,25	
BTAF1	HGLibB_ 04888	0,47	0,50	BATF3	HGLibB_ 04176	0,49	0,31	
BTF3L4	HGLibA_ 04939	0,55	0,57	BATF3	HGLibA_ 04179	0,54	0,43	
BTF3L4	HGLibA_ 04937	0,59	0,60	BCL2L1	HGLibB_ 04300	0,07	0,52	
C12orf44	HGLibB_ 05242	0,36	0,47	BCL2L1	HGLibB_ 04301	0,30	0,75	
C12orf44	HGLibA_ 05247	0,39	0,52	<u>C17orf72</u>	HGLibB_ 05564	0,39	0,49	
C17orf96	HGLibB_ 05589	0,40	0,50	C17orf72	HGLibA_ 05567	0,49	0,54	
C17orf96	HGLibA_ 05594	0,60	0,60	C19orf80	HGLibB_	0,41	0,57	
C22orf26	HGLibA_ 06063	0,04	0,23	C19orf80	HGLibA_ 05712	0,57	0,75	

C22orf26	HGLibB_ 06057	0,30	0,58	C9orf66	HGLibA_ 06751	0,48	0,54
CCDC130	HGLibB_ 07585	0,49	0,53	C9orf66	HGLibB_ 06748	0,55	0,67
CCDC130	HGLibB_	0,59	0,60	CCDC19	HGLibB_	0,52	0,51
CCNA2	HGLibA_	0,12	0,13	CCDC19	HGLibA_	0,54	0,71
CCNA2	HGLibB_	0,35	0,53	CCL21	HGLibB_	0,37	0,33
CCND2	HGLibB_	0,33	0,16	CCL21	HGLibA_	0,56	0,51
CCND2	HGLibA_	0,36	0,23	CDADC1	HGLibB_	0,44	0,49
CCND2	HGLibB_	0,59	0,60	CDADC1	HGLibB_	0,55	0,72
CDADC1	HGLibB_	0,44	0,22	CDC25A	HGLibA_	0,45	0,43
CDADC1	HGLibB_ 08495	0,55	0,56	CDC25A	HGLibB_ 08521	0,51	0,68
<u>CDC20</u>	HGLibB_ 08511	0,56	0,38	CDCA2	HGLibB_ 08595	0,59	0,58
<u>CDC20</u>	HGLibB_ 08512	0,33	0,43	CDCA2	HGLibB_ 08596	0,57	0,66
<u>CDC20</u>	HGLibB_ 08510	0,23	0,49	<u>CEP290</u>	HGLibB_ 09123	0,36	0,60
CDCA5	HGLibA_ 08612	0,47	0,26	<u>CEP290</u>	HGLibA_	0,52	0,74
CDCA5	HGLibB_ 08603	0,32	0,37	<u>CHUK</u>	HGLibB_ 09661	0,20	0,31
<u>CEP290</u>	HGLibB_ 09123	0,36	0,46	<u>CHUK</u>	HGLibA_ 09669	0,48	0,37
<u>CEP290</u>	HGLibA_ 09131	0,52	0,52	<u>CHUK</u>	HGLibA_ 09670	0,30	0,47
<u>CHUK</u>	HGLibB_	0,20	0,39	<u>CHUK</u>	HGLibB_	0,53	0,65
<u>CHUK</u>	HGLibB_	0,53	0,53	CRABP2	HGLibA_ 11057	0,53	0,70
<u>COPRS</u>	HGLibB_ 10700	0,54	0,58	CRABP2	HGLibB_ 11044	0,54	0,71
<u>COPRS</u>	HGLibB_	0,59	0,59	CROT	HGLibA_	0,59	0,36
CPSF3	HGLibB_	0,23	0,47	CROT	HGLibB_	0,54	0,62
CPSF3	HGLibA_ 11001	0,21	0,58	<u>CRP</u>	HGLibA_	0,53	0,21
<u>CST7</u>	HGLibA_	0,39	0,53	<u>CRP</u>	HGLibB_	0,56	0,39
<u>CST7</u>	HGLibB_ 11453	0,43	0,56	<u>CST7</u>	HGLibB_ 11453	0,43	0,53
CTC1	HGLibB_	0,49	0,58	<u>CST7</u>	HGLibA_	0,39	0,54
CTC1	HGLibB_ 11581	0,41	0,60	CYP2E1	HGLibB_	0,56	0,44
DAB2	HGLibA_	0,57	0,38	CYP2E1	HGLibB_ 12117	0,55	0,54
DAB2	HGLibB_ 12256	0,38	0,55	DGKB	HGLibB_ 13044	0,54	0,54
<u>DDX18</u>	HGLibA_ 12661	0,30	0,44	DGKB	HGLibB_ 13043	0,56	0,70
<u>DDX18</u>	HGLibB_ 12645	0,25	0,51	DNMBP	HGLibA_ 13695	0,59	0,37
<u>DDX18</u>	HGLibA_	0,41	0,58	DNMBP	HGLibB_ 13676	0,53	0,51
DDX59	HGLibB_ 12743	0,26	0,45	DNMT3B	HGLibA_ 13705	0,28	0,35
DDX59	HGLibA_	0,40	0,52	DNMT3B	HGLibB_	0,54	0,42

	12757				13684		
DNAH8	HGLibB_ 13479	0,60	0,53	DPM2	HGLibA_ 13861	0,37	0,44
DNAH8	HGLibB_ 13480	0,57	0,58	DPM2	HGLibB_	0,34	0,49
DNM1	HGLibB_	0,56	0,29	DYNLRB1	HGLibB_	0,36	0,35
DNM1	HGLibB_	0,59	0,30	DYNLRB1	HGLibA_	0,31	0,67
<u>DNMBP</u>	HGLibA_ 13695	0,59	0,48	DYRK1A	HGLibA_	0,22	0,35
DNMBP	HGLibB_	0,53	0,49	DYRK1A	HGLibA_	0,49	0,68
DNTTIP2	HGLibA_ 13722	0,54	0,49	EFCAB2	HGLibA_ 14536	0,47	0,45
DNTTIP2	HGLibB_	0,52	0,53	EFCAB2	HGLibB_ 14514	0,53	0,49
DUX2	HGLibA_ 14202	0,47	0,43	ERBB3	HGLibB_ 15396	0,56	0,61
DUX2	HGLibB_ 14181	0,54	0,50	ERBB3	HGLibA_ 15419	0,55	0,65
EEF2	HGLibA_ 14507	0,46	0,16	EXOC7	HGLibA_ 15759	0,38	0,38
EEF2	HGLibA_ 14508	0,41	0,31	EXOC7	HGLibA_ 15760	0,55	0,48
EEF2	HGLibB_	0,43	0,42	FAHD2B	HGLibA_	0,55	0,57
EFCAB2	HGLibB_ 14514	0,53	0,33	FAHD2B	HGLibB_ 15940	0,40	0,69
EFCAB2	HGLibA_ 14536	0,47	0,53	FGF21	HGLibB_ 17373	0,59	0,58
<u>EIF1</u>	HGLibB_ 14683	0,25	0,15	FGF21	HGLibB_ 17374	0,49	0,65
<u>EIF1</u>	HGLibA_ 14705	0,26	0,54	FNDC3B	HGLibA_ 17750	0,57	0,68
EIF2B1	HGLibA_ 14736	0,28	0,43	FNDC3B	HGLibB_ 17728	0,37	0,71
EIF2B1	HGLibB_ 14713	0,55	0,56	GGA2	HGLibA_ 18984	0,54	0,69
EIF2B5	HGLibB_ 14726	0,24	0,52	GGA2	HGLibB_ 18959	0,59	0,75
EIF2B5	HGLibB_ 14725	0,44	0,53	GLI1	HGLibA_ 19247	0,60	0,54
EIF2S3	HGLibA_ 14760	0,50	0,38	GLI1	HGLibA_ 19246	0,56	0,54
EIF2S3	HGLibA_ 14758	0,55	0,54	GNL3L	HGLibB_ 19525	0,57	0,58
EIF3A	HGLibB_ 14741	0,49	0,55	GNL3L	HGLibB_ 19527	0,41	0,73
EIF3A	HGLibB_ 14740	0,56	0,59	GOLGA6L4	HGLibA_ 19625	0,30	0,53
<u>EIF3D</u>	HGLibA_ 14773	0,35	0,21	GOLGA6L4	HGLibA_ 19626	0,47	0,65
<u>EIF3D</u>	HGLibA_ 14774	0,29	0,39	<u>GPD1L</u>	HGLibA_ 19785	0,60	0,35
<u>EIF3D</u>	HGLibA_ 14775	0,47	0,54	<u>GPD1L</u>	HGLibB_ 19757	0,59	0,36
EXOSC3	HGLibA_ 15777	0,47	0,30	GTF3C6	HGLibA_ 20594	0,58	0,49
EXOSC3	HGLibB_ 15757	0,34	0,43	GTF3C6	HGLibA_ 20596	0,32	0,65
FBN3	HGLibA_ 16962	0,56	0,52	HADHB	HGLibB_ 20783	0,32	0,18
FBN3	HGLibB_ 16939	0,55	0,55	HADHB	HGLibB_ 20784	0,47	0,61
FBXO41	HGLibA_ 17095	0,50	0,40	HIST2H2AB	HGLibA_ 21529	0,53	0,42

<u>FBXO41</u>	HGLibA_	0,50	0,47	HIST2H2AB	HGLibB_	0,57	0,65
<u>FGF21</u>	17097 HGLibB_ 17373	0,59	0,37	HIST2H2AB	21501 HGLibB_ 21499	0,44	0,71
<u>FGF21</u>	HGLibB_	0,49	0,55	HNRNPH1	HGLibA_	0,57	0,48
GOLPH3	HGLibB_	0,32	0,28	HNRNPH1	HGLibB_	0,41	0,58
GOLPH3	HGLibB_	0,60	0,42	hsa-mir-548q	HGLibA_	0,41	0,46
GPX4	HGLibA_	0,55	0,50	hsa-mir-548q	HGLibA_ 27112	0,43	0,48
GPX4	HGLibB_ 20152	0,40	0,56	ICAM1	HGLibB_ 22464	0,52	0,40
GTF2A1	HGLibB_ 20491	0,48	0,53	ICAM1	HGLibB_ 22462	0,57	0,62
GTF2A1	HGLibA_ 20520	0,37	0,56	IFT46	HGLibB_ 22729	0,57	0,63
GUK1	HGLibB_ 20644	0,37	0,26	IFT46	HGLibA_ 30050	0,47	0,70
GUK1	HGLibA_ 20674	0,53	0,56	IRF4	HGLibA_ 30877	0,19	0,08
HENMT1	HGLibA_ 21135	0,53	0,47	IRF4	HGLibA_ 30878	0,46	0,38
HENMT1	HGLibA_ 21136	0,57	0,55	IRF4	HGLibB_ 23557	0,21	0,54
HIATL1	HGLibA_ 21280	0,57	0,52	ISG20L2	HGLibB_ 23627	0,60	0,59
HIATL1	HGLibB_ 21252	0,54	0,53	ISG20L2	HGLibB_ 23629	0,21	0,72
HMGB1	HGLibB_ 21663	0,36	0,32	<u>JAK1</u>	HGLibB_ 23879	0,17	0,19
HMGB1	HGLibB_ 21662	0,26	0,59	<u>JAK1</u>	HGLibB_ 23880	0,26	0,23
HNRNPH1	HGLibA_	0,57	0,39	JAK1	HGLibA	0,34	0,25
	21823				31202		
HNRNPH1	21823 HGLibB_ 21794	0,41	0,59	JAK3	31202 - HGLibA_ 31207	0,59	0,67
HNRNPH1 HRC	21823 HGLibB_ 21794 HGLibA_ 22084	0,41 0,46	0,59 0,55	JAK3 JAK3	31202 HGLibA_ 31207 HGLibB_ 23885	0,59 0,51	0,67 0,71
HNRNPH1 HRC HRC	21823 HGLibB_ 21794 HGLibA_ 22084 HGLibB_ 22056	0,41 0,46 0,46	0,59 0,55 0,58	JAK3 JAK3 JUNB	31202 HGLibA_ 31207 HGLibB_ 23885 HGLibA_ 31293	0,59 0,51 0,58	0,67 0,71 0,30
HNRNPH1 HRC HRC hsa-mir- 449a	21823 HGLibB_ 21794 HGLibA_ 22084 HGLibB_ 22056 HGLibA_ 25472	0,41 0,46 0,46 0,50	0,59 0,55 0,58 0,54	JAK3 JAK3 JUNB JUNB	31202 HGLibA_ 31207 HGLibB_ 23885 HGLibA_ 31293 HGLibB_ 23972	0,59 0,51 0,58 0,35	0,67 0,71 0,30 0,66
HNRNPH1 HRC HRC hsa-mir- 449a hsa-mir- 449a	21823 HGLibB_ 21794 HGLibA_ 22084 HGLibB_ 22056 HGLibA_ 25472 HGLibA_ 25471	0,41 0,46 0,46 0,50 0,60	0,59 0,55 0,58 0,54 0,60	JAK3 JAK3 <u>JUNB</u> JUNB KRTAP4-9	31202 HGLibA_ 31207 HGLibB_ 23885 HGLibA_ 31293 HGLibB_ 23972 HGLibB_ 25744	0,59 0,51 0,58 0,35 0,37	0,67 0,71 0,30 0,66 0,40
HNRNPH1 HRC HRC hsa-mir- 449a hsa-mir- 449a hsa-mir- 4512	21823 HGLibB_ 21794 HGLibA_ 22084 HGLibB_ 22056 HGLibA_ 25472 HGLibA_ 25471 HGLibA_ 25545	0,41 0,46 0,46 0,50 0,60 0,18	0,59 0,55 0,58 0,54 0,60 0,34	JAK3 JAK3 JUNB JUNB KRTAP4-9 KRTAP4-9	31202 HGLibA_ 31207 HGLibB_ 23885 HGLibA_ 31293 HGLibB_ 23972 HGLibB_ 25744 HGLibA_ 33068	0,59 0,51 0,58 0,35 0,37 0,58	0,67 0,71 0,30 0,66 0,40 0,71
HNRNPH1 HRC HRC hsa-mir- 449a hsa-mir- 449a hsa-mir- 4512 hsa-mir- 4512	21823 HGLibB_ 21794 HGLibA_ 22084 HGLibB_ 22056 HGLibA_ 25472 HGLibA_ 25471 HGLibA_ 25545 HGLibA_ 25544	0,41 0,46 0,46 0,50 0,60 0,18 0,12	0,59 0,55 0,58 0,54 0,60 0,34 0,48	JAK3 JAK3 JUNB JUNB KRTAP4-9 KRTAP4-9 KRTAP9-2	31202 HGLibA_ 31207 HGLibB_ 23885 HGLibA_ 31293 HGLibB_ 23972 HGLibB_ 25744 HGLibA_ 33068 HGLibA_ 33121	0,59 0,51 0,58 0,35 0,37 0,58 0,40	0,67 0,71 0,30 0,66 0,40 0,71 0,51
HNRNPH1 HRC HRC hsa-mir- 449a hsa-mir- 449a hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 4512	21823 HGLibB_ 21794 HGLibA_ 22084 HGLibB_ 22056 HGLibA_ 25472 HGLibA_ 25545 HGLibA_ 25545 HGLibA_ 25544 HGLibA_ 26378	0,41 0,46 0,46 0,50 0,60 0,18 0,12 0,30	0,59 0,55 0,58 0,54 0,60 0,34 0,48 0,38	JAK3 JAK3 JUNB JUNB KRTAP4-9 KRTAP4-9 KRTAP9-2 KRTAP9-2	31202 HGLibA_ 31207 HGLibB_ 23885 HGLibA_ 31293 HGLibB_ 23972 HGLibB_ 25744 HGLibA_ 33068 HGLibA_ 33121 HGLibB_ 25797	0,59 0,51 0,58 0,35 0,37 0,58 0,40 0,32	0,67 0,71 0,30 0,66 0,40 0,71 0,51 0,69
HNRNPH1 HRC HRC hsa-mir- 449a hsa-mir- 449a hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 453	21823 HGLibB_ 21794 HGLibA_ 22084 HGLibB_ 22056 HGLibA_ 25472 HGLibA_ 25545 HGLibA_ 25545 HGLibA_ 26378 HGLibA_ 26379	0,41 0,46 0,46 0,50 0,60 0,18 0,12 0,30 0,32	0,59 0,55 0,58 0,54 0,60 0,34 0,48 0,38 0,53	JAK3 JAK3 JUNB JUNB KRTAP4-9 KRTAP4-9 KRTAP9-2 KRTAP9-2 KRTAP9-6	31202 HGLibA 31207 HGLibB 23885 HGLibA 31293 HGLibB 23972 HGLibB 25744 HGLibA 33068 HGLibA 33121 HGLibB 25797 HGLibA 33130	0,59 0,51 0,58 0,35 0,37 0,58 0,40 0,32 0,60	0,67 0,71 0,30 0,66 0,40 0,71 0,51 0,69 0,71
HNRNPH1 HRC HRC hsa-mir- 449a hsa-mir- 449a hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 483 hsa-mir- 483 hsa-mir- 483 hsa-mir- 483	21823 HGLibB_ 21794 HGLibA_ 22084 HGLibB_ 22056 HGLibA_ 25472 HGLibA_ 25545 HGLibA_ 25545 HGLibA_ 26378 HGLibA_ 26379 HGLibA_ 27754	0,41 0,46 0,46 0,50 0,60 0,18 0,12 0,30 0,32 0,53	0,59 0,55 0,58 0,54 0,60 0,34 0,48 0,38 0,53 0,43	JAK3 JAK3 JUNB JUNB KRTAP4-9 KRTAP4-9 KRTAP9-2 KRTAP9-2 KRTAP9-6 KRTAP9-6	31202 HGLibA 31207 HGLibB 23885 HGLibA 31293 HGLibB 23972 HGLibB 25744 HGLibA 33068 HGLibA 33121 HGLibB 25797 HGLibA 33130 HGLibB 25806	0,59 0,51 0,58 0,35 0,37 0,58 0,40 0,32 0,60 0,53	0,67 0,71 0,30 0,66 0,40 0,71 0,51 0,69 0,71 0,74
HNRNPH1 HRC HRC hsa-mir- 449a hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 483 hsa-mir- 483 hsa-mir- 483 hsa-mir- 616	21823 HGLibB_ 21794 HGLibA_ 22084 HGLibB_ 22056 HGLibA_ 25472 HGLibA_ 25545 HGLibA_ 25545 HGLibA_ 26378 HGLibA_ 26379 HGLibA_ 27754 HGLibA_ 27753	0,41 0,46 0,46 0,50 0,60 0,18 0,12 0,30 0,32 0,53 0,52	0,59 0,55 0,58 0,54 0,60 0,34 0,48 0,38 0,53 0,43 0,48	JAK3 JAK3 JUNB JUNB KRTAP4-9 KRTAP4-9 KRTAP9-2 KRTAP9-2 KRTAP9-6 KRTAP9-6 LETM1	31202 HGLibA 31207 HGLibB 23885 HGLibA 31293 HGLibB 23972 HGLibB 25744 HGLibA 33068 HGLibA 33121 HGLibB 25797 HGLibA 33130 HGLibB 25806 HGLibA 33620	0,59 0,51 0,58 0,35 0,37 0,58 0,40 0,32 0,60 0,53 0,35	0,67 0,71 0,30 0,66 0,40 0,71 0,51 0,69 0,71 0,74 0,54
HNRNPH1 HRC HRC hsa-mir- 449a hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 483 hsa-mir- 483 hsa-mir- 616 hsa-mir- 616 hsa-mir- 616	21823 HGLibB_ 21794 HGLibA_ 22084 HGLibB_ 22056 HGLibA_ 25472 HGLibA_ 25545 HGLibA_ 25545 HGLibA_ 26378 HGLibA_ 26379 HGLibA_ 27754 HGLibA_ 27753 HGLibA_ 27753 HGLibA_ 28752	0,41 0,46 0,46 0,50 0,60 0,18 0,12 0,30 0,32 0,53 0,52 0,55	0,59 0,55 0,58 0,54 0,60 0,34 0,48 0,38 0,53 0,43 0,48 0,23	JAK3 JAK3 JUNB JUNB KRTAP4-9 KRTAP4-9 KRTAP9-2 KRTAP9-2 KRTAP9-6 KRTAP9-6 LETM1 LETM1	31202 HGLibA 31207 HGLibB 23885 HGLibA 31293 HGLibB 23972 HGLibB 25744 HGLibA 33068 HGLibA 33121 HGLibB 25797 HGLibA 33130 HGLibB 25806 HGLibA 33620 HGLibB 26296	0,59 0,51 0,58 0,35 0,37 0,58 0,40 0,32 0,60 0,53 0,35 0,56	0,67 0,71 0,30 0,66 0,40 0,71 0,51 0,69 0,71 0,74 0,54 0,61
HNRNPH1 HRC HRC hsa-mir- 449a hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 453 hsa-mir- 616 hsa-mir- 616 hsa-mir- 616 hsa-mir- 618 hsa-mir- 618	21823 HGLibB_ 21794 HGLibA_ 22084 HGLibB_ 22056 HGLibA_ 25472 HGLibA_ 25545 HGLibA_ 25545 HGLibA_ 26378 HGLibA_ 26379 HGLibA_ 27754 HGLibA_ 27753 HGLibA_ 27753 HGLibA_ 28752 HGLibA_ 28751	0,41 0,46 0,46 0,50 0,60 0,18 0,12 0,30 0,32 0,53 0,52 0,55 0,48	0,59 0,55 0,58 0,54 0,60 0,34 0,48 0,38 0,53 0,43 0,43 0,48 0,23 0,36	JAK3 JAK3 JUNB JUNB KRTAP4-9 KRTAP4-9 KRTAP9-2 KRTAP9-2 KRTAP9-6 KRTAP9-6 LETM1 LETM1 LINGO4	31202 HGLibA 31207 HGLibB 23885 HGLibA 31293 HGLibB 23972 HGLibB 25744 HGLibA 33068 HGLibA 33121 HGLibB 25797 HGLibA 33130 HGLibB 25806 HGLibA 33620 HGLibB 26296 HGLibA 33882	0,59 0,51 0,58 0,35 0,37 0,58 0,40 0,32 0,60 0,53 0,35 0,56 0,50	0,67 0,71 0,30 0,66 0,40 0,71 0,51 0,69 0,71 0,74 0,54 0,61 0,58
HNRNPH1 HRC HRC hsa-mir- 449a hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 453 hsa-mir- 616 hsa-mir- 616 hsa-mir- 616 hsa-mir- 618 hsa-mir- 618 hsa-mir- 6878 hsa-mir- 6878 hsa-mir-	21823 HGLibB_ 21794 HGLibA_ 22084 HGLibB_ 22056 HGLibA_ 25472 HGLibA_ 25545 HGLibA_ 25545 HGLibA_ 26378 HGLibA_ 26379 HGLibA_ 27754 HGLibA_ 27753 HGLibA_ 27753 HGLibA_ 28752 HGLibA_ 28751 HGLibB_ 22268	0,41 0,46 0,46 0,50 0,60 0,18 0,12 0,30 0,32 0,53 0,52 0,55 0,48 0,32	0,59 0,55 0,58 0,54 0,60 0,34 0,48 0,38 0,53 0,43 0,43 0,48 0,23 0,36 0,32	JAK3 JAK3 JUNB JUNB KRTAP4-9 KRTAP4-9 KRTAP9-2 KRTAP9-2 KRTAP9-6 LETM1 LETM1 LINGO4 LINGO4	31202 HGLibA 31207 HGLibB 23885 HGLibA 31293 HGLibB 23972 HGLibB 25744 HGLibA 33068 HGLibA 33121 HGLibB 25797 HGLibA 33130 HGLibB 25806 HGLibA 33620 HGLibB 26296 HGLibA 33882 HGLibB 26558	0,59 0,51 0,58 0,35 0,37 0,58 0,40 0,32 0,60 0,53 0,35 0,56 0,50 0,58	0,67 0,71 0,30 0,66 0,40 0,71 0,51 0,69 0,71 0,74 0,54 0,61 0,58 0,69
HNRNPH1 HRC HRC hsa-mir- 449a hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 4512 hsa-mir- 453 hsa-mir- 616 hsa-mir- 616 hsa-mir- 616 hsa-mir- 618 hsa-mir- 618 hsa-mir- 6878 hsa- 8878 hsa- 8878 hsa- 8878 hsa- 88788 hsa- 88788 hsa- 887888 hsa- 8878888888888888888888888888888888888	21823 HGLibB_ 21794 HGLibA_ 22084 HGLibB_ 22056 HGLibA_ 25472 HGLibA_ 25545 HGLibA_ 25545 HGLibA_ 26378 HGLibA_ 26379 HGLibA_ 27754 HGLibA_ 27753 HGLibA_ 27753 HGLibA_ 28752 HGLibA_ 28751 HGLibB_ 22268 HGLibA_ 29587	0,41 0,46 0,46 0,50 0,60 0,18 0,12 0,30 0,32 0,53 0,52 0,55 0,48 0,32 0,32	0,59 0,55 0,58 0,54 0,60 0,34 0,48 0,38 0,53 0,43 0,43 0,23 0,36 0,32 0,50	JAK3 JAK3 JUNB JUNB KRTAP4-9 KRTAP4-9 KRTAP9-2 KRTAP9-2 KRTAP9-6 KRTAP9-6 LETM1 LETM1 LINGO4 LINGO4 LINGO4	31202 HGLibA 31207 HGLibB 23885 HGLibA 31293 HGLibB 23972 HGLibB 25744 HGLibA 33068 HGLibA 33121 HGLibB 25797 HGLibA 33130 HGLibB 25806 HGLibA 33620 HGLibB 26296 HGLibA 33882 HGLibB 26558 HGLibA 34377	0,59 0,51 0,58 0,35 0,37 0,58 0,40 0,32 0,60 0,53 0,56 0,56 0,50 0,58 0,45	0,67 0,71 0,30 0,66 0,40 0,71 0,51 0,69 0,71 0,74 0,54 0,61 0,58 0,69 0,42

	29586				34378		
HSPE1	HGLibA_ 29622	0,31	0,39	LSM5	HGLibA_ 34834	0,45	0,53
HSPE1	HGLibB_ 22304	0,41	0,58	LSM5	HGLibA_ 34833	0,47	0,67
IFITM3	HGLibA_	0,38	0,42	LSM6	HGLibA_ 34835	0,13	0,39
IFITM3	HGLibB_	0,19	0,51	LSM6	HGLibB_	0,29	0,61
INCENP	HGLibA_	0,24	0,26	LY6E	HGLibA_	0,57	0,58
INCENP	HGLibA_ 30566	0,60	0,47	LY6E	HGLibA_ 34945	0,40	0,71
INSL3	HGLibB_ 23351	0,15	0,39	MAD2L2	HGLibA_ 35140	0,27	0,31
INSL3	HGLibB_ 23349	0,46	0,41	MAD2L2	HGLibB_ 27809	0,51	0,75
IRF4	HGLibB_ 23556	0,49	0,38	MBTD1	HGLibA_ 35820	0,57	0,49
IRF4	HGLibA_ 30877	0,19	0,44	MBTD1	HGLibA_ 35821	0,59	0,63
IRF4	HGLibB_ 23557	0,21	0,47	MCM10	HGLibB_ 28561	0,52	0,26
IRF4	HGLibB_ 23555	0,34	0,49	MCM10	HGLibA_ 35890	0,38	0,62
IRF4	HGLibA_ 30878	0,46	0,51	METTL2B	HGLibA_ 36290	0,43	0,47
JAK1	HGLibB_ 23879	0,17	0,16	METTL2B	HGLibA_ 36292	0,54	0,53
JAK1	HGLibB_ 23880	0,26	0,35	MIPOL1	HGLibB_ 29256	0,58	0,61
JAK1	HGLibA_ 31202	0,34	0,53	MIPOL1	HGLibB_ 29257	0,48	0,66
<u>JUNB</u>	HGLibB_ 23972	0,35	0,42	MRPS36	HGLibA_ 37390	0,49	0,50
<u>JUNB</u>	HGLibA_ 31293	0,58	0,60	MRPS36	HGLibB_ 30061	0,52	0,68
KEAP1	HGLibB_ 24514	0,52	0,26	MYO1A	HGLibA_ 38107	0,56	0,54
KEAP1	HGLibA_ 31837	0,42	0,57	MYO1A	HGLibB_ 30778	0,48	0,61
KRTCAP2	HGLibB_ 25817	0,55	0,23	NAB2	HGLibA_ 38308	0,59	0,28
KRTCAP2	HGLibA_ 33143	0,53	0,28	NAB2	HGLibA_ 38310	0,58	0,65
KRTCAP2	HGLibB_ 25819	0,47	0,42	NAB2	HGLibB_ 30978	0,43	0,74
LYRM7	HGLibA_ 35045	0,57	0,42	<u>NCAPH</u>	HGLibB_ 31233	0,35	0,40
LYRM7	HGLibA_ 35046	0,53	0,44	<u>NCAPH</u>	HGLibA_ 38564	0,53	0,50
MAGT1	HGLibA_ 35300	0,20	0,32	NCK1	HGLibB_ 31263	0,42	0,32
MAGT1	HGLibB_ 27971	0,52	0,56	NCK1	HGLibA_ 38592	0,39	0,73
MEIS1	HGLibA_ 36158	0,41	0,46	<u>NDC80</u>	HGLibA_ 38672	0,30	0,67
MEIS1	HGLibB_ 28830	0,44	0,50	<u>NDC80</u>	HGLibA_ 38670	0,49	0,72
<u>MLX</u>	HGLibB_ 29396	0,41	0,35	NFKB2	HGLibB_ 31775	0,35	0,27
<u>MLX</u>	HGLibA_ 36727	0,59	0,45	NFKB2	HGLibA_ 39105	0,33	0,46
MROH1	HGLibB_ 29825	0,49	0,42	NFKB2	HGLibB_ 31776	0,47	0,66
MROH1	HGLibA_ 37154	0,41	0,42	NMNAT1	HGLibA_ 39473	0,30	0,53

MRPL34	HGLibA_ 37244	0,48	0,34	<u>NMNAT1</u>	HGLibA_ 39472	0,18	0,65
MRPL34	HGLibB_ 29917	0,16	0,49	NRBP1	HGLibA_ 39944	0,50	0,54
<u>MUS81</u>	HGLibA_ 37863	0,46	0,33	NRBP1	HGLibB_ 32612	0,60	0,67
<u>MUS81</u>	HGLibB_ 30532	0,54	0,43	NRD1	HGLibA_ 39951	0,28	0,41
MZT1	HGLibA_ 38228	0,25	0,43	NRD1	HGLibB_ 32619	0,39	0,42
MZT1	HGLibB_ 30898	0,53	0,59	OSBPL8	HGLibB_ 34623	0,36	0,66
NELFB	HGLibB_ 31630	0,30	0,44	OSBPL8	HGLibA_ 41955	0,39	0,66
NELFB	HGLibA_ 38961	0,15	0,58	OXGR1	HGLibB_ 34776	0,60	0,63
NFKB2	HGLibA_ 39105	0,33	0,57	OXGR1	HGLibB_ 34777	0,56	0,68
NFKB2	HGLibB_ 31775	0,35	0,58	PNPT1	HGLibA_ 44719	0,44	0,48
NHP2L1	HGLibB_ 31868	0,26	0,48	PNPT1	HGLibA_ 44720	0,37	0,64
NHP2L1	HGLibA_ 39200	0,60	0,49	POLR2I	HGLibB_ 37540	0,32	0,47
<u>NMNAT1</u>	HGLibA_ 39472	0,18	0,13	POLR2I	HGLibB_ 37539	0,27	0,69
<u>NMNAT1</u>	HGLibB_ 32142	0,24	0,42	PPP1R37	HGLibA_ 45382	0,57	0,21
NPIPA5	HGLibB_ 32428	0,57	0,41	PPP1R37	HGLibA_ 45383	0,45	0,62
NPIPA5	HGLibB_ 32429	0,18	0,52	PRPF19	HGLibA_ 46000	0,35	0,56
NPLOC4	HGLibB_ 32439	0,34	0,41	PRPF19	HGLibA_ 46001	0,27	0,61
NPLOC4	HGLibB_ 32440	0,38	0,55	PTPN22	HGLibA_ 46747	0,37	0,66
<u>NUP155</u>	HGLibA_ 40316	0,44	0,23	PTPN22	HGLibA_ 46748	0,55	0,68
<u>NUP155</u>	HGLibB_ 32984	0,31	0,43	PTPN4	HGLibA_ 46758	0,55	0,49
PDE1B	HGLibA_ 43059	0,54	0,31	PTPN4	HGLibB_ 39418	0,60	0,59
PDE1B	HGLibB_ 35725	0,48	0,38	PYURF	HGLibB_ 39657	0,58	0,48
<u>PELO</u>	HGLibA_ 43329	0,46	0,41	PYURF	HGLibB_ 39658	0,58	0,74
<u>PELO</u>	HGLibB_ 35996	0,57	0,52	RC3H1	HGLibA_ 47951	0,46	0,22
PES1	HGLibA_ 43353	0,41	0,46	RC3H1	HGLibB_ 40610	0,40	0,58
PES1	HGLibA_ 43355	0,41	0,51	RELB	HGLibB_ 40764	0,46	0,36
PES1	HGLibA_ 43354	0,57	0,57	RELB	HGLibB_ 40763	0,46	0,55
PGK1	HGLibB_ 36194	0,49	0,24	RELB	HGLibB_ 40765	0,40	0,74
PGK1	HGLibA_ 43527	0,57	0,50	<u>RNF125</u>	HGLibB_ 41441	0,51	0,45
PHF12	HGLibA_ 43626	0,53	0,49	<u>RNF125</u>	HGLibB_ 41442	0,51	0,71
PHF12	HGLibB_ 36293	0,47	0,51	<u>RNF20</u>	HGLibB_ 41559	0,56	0,38
PHIP	HGLibB_ 36353	0,57	0,50	RNF20	HGLibA_ 48898	0,57	0,62
PHIP	HGLibA_ 43686	0,59	0,51	RPL4	HGLibA_ 49270	0,25	0,66
POLR2E	HGLibB_	0,58	0,47	RPL4	HGLibB_	0,33	0,68

	37527				41929		
POLR2E	HGLibA_ 44865	0,52	0,50	RRM2	HGLibA_ 49543	0,36	0,68
POLR2E	HGLibB_ 37526	0,31	0,56	RRM2	HGLibA_ 49541	0,46	0,71
PRIM2	HGLibB_ 38435	0,39	0,39	RUNX1	HGLibA_ 49744	0,46	0,70
PRIM2	HGLibB_ 38437	0,45	0,52	RUNX1	HGLibB_ 42402	0,60	0,70
<u>PRR13</u>	HGLibA_ 46065	0,36	0,39	RXFP4	HGLibB_ 42450	0,50	0,67
<u>PRR13</u>	HGLibA_ 46064	0,50	0,49	RXFP4	HGLibB_ 42449	0,47	0,70
PSMA5	HGLibA_ 46371	0,43	0,48	SDAD1	HGLibB_ 43042	0,48	0,62
PSMA5	HGLibB_ 39032	0,51	0,60	SDAD1	HGLibA_ 50381	0,41	0,75
PSMA7	HGLibA_ 46377	0,52	0,36	SENP3	HGLibA_ 50679	0,60	0,72
PSMA7	HGLibB_ 39039	0,54	0,49	SENP3	HGLibB_ 43337	0,60	0,74
PSMB3	HGLibB_ 39056	0,26	0,25	SETD8	HGLibA_ 50950	0,57	0,56
PSMB3	HGLibA_ 46394	0,32	0,58	SETD8	HGLibB_ 43607	0,48	0,66
PSMD8	HGLibB_ 39136	0,46	0,55	SETD8	HGLibA_ 50948	0,58	0,71
PSMD8	HGLibA_ 46473	0,41	0,58	SH2B3	HGLibA_ 51168	0,45	0,56
<u>PTPN11</u>	HGLibA_ 46720	0,60	0,31	SH2B3	HGLibB_ 43828	0,57	0,73
PTPN11	HGLibB_ 39384	0,28	0,36	SLC1A4	HGLibA_ 51803	0,55	0,46
PTTG1	HGLibA_ 46851	0,41	0,41	SLC1A4	HGLibA_ 51805	0,50	0,75
PTTG1	HGLibA_ 46849	0,54	0,48	<u>SLC34A1</u>	HGLibB_ 44885	0,51	0,45
RAD51C	HGLibB_ 40039	0,44	0,43	<u>SLC34A1</u>	HGLibB_ 44886	0,41	0,64
RAD51C	HGLibA_ 47378	0,26	0,54	SLC3A2	HGLibB_ 45081	0,31	0,50
<u>RBX1</u>	HGLibA_ 47946	0,32	0,28	SLC3A2	HGLibA_ 52420	0,42	0,62
<u>RBX1</u>	HGLibA_ 47948	0,38	0,49	<u>SLIT3</u>	HGLibB_ 45458	0,59	0,30
RDM1	HGLibB_ 40703	0,57	0,48	<u>SLIT3</u>	HGLibB_ 45457	0,58	0,32
<u>RDM1</u>	HGLibA_ 48042	0,60	0,60	<u>SLITRK3</u>	HGLibA_ 52806	0,56	0,29
RERE	HGLibA_ 48146	0,45	0,49	<u>SLITRK3</u>	HGLibA_ 52807	0,60	0,49
RERE	HGLibB_ 40806	0,59	0,57	SLMO2	HGLibB_ 45487	0,55	0,54
RFC5	HGLibB_ 40862	0,14	0,38	SLMO2	HGLibB_ 45488	0,13	0,57
RFC5	HGLibB_ 40863	0,39	0,46	SMARCC2	HGLibB_ 45572	0,54	0,33
RFC5	HGLibA_ 48201	0,46	0,58	SMARCC2	HGLibA_ 52913	0,47	0,54
RNF20	HGLibB_ 41559	0,56	0,53	SNAPC1	HGLibA_ 53178	0,18	0,36
RNF20	HGLibA_ 48898	0,57	0,58	SNAPC1	HGLibB_ 45835	0,57	0,70
RPL11	HGLibA_ 49149	0,17	0,43	<u>SNW1</u>	HGLibB_ 45965	0,47	0,60
RPL11	HGLibB_ 41809	0,47	0,53	<u>SNW1</u>	HGLibB_ 45964	0,50	0,68

RPL11	HGLibA_ 49150	0,28	0,56	SPINK14	HGLibA_ 53976	0,33	0,23
RPL13A	HGLibB_ 41818	0,51	0,19	<u>SPINK14</u>	HGLibA_ 53977	0,49	0,25
RPL13A	HGLibA_	0,25	0,40	SREK1IP1	HGLibB_ 46900	0,58	0,58
RPL18	HGLibB_ 41834	0,60	0,29	SREK1IP1	HGLibA_ 54246	0,58	0,69
RPL18	HGLibA_ 49173	0,60	0,56	<u>STX12</u>	HGLibB_ 47564	0,55	0,50
RPL5	HGLibB_ 41933	0,51	0,35	<u>STX12</u>	HGLibA_ 54908	0,55	0,64
RPL5	HGLibB_ 41935	0,23	0,56	<u>SUZ12</u>	HGLibA_ 55160	0,27	0,58
RPL8	HGLibA_ 49290	0,55	0,35	<u>SUZ12</u>	HGLibB_ 47813	0,58	0,75
RPL8	HGLibA_ 49289	0,50	0,60	TBCC	HGLibA_ 55873	0,58	0,67
RPLP0	HGLibB_ 41955	0,45	0,29	TBCC	HGLibB_ 48524	0,35	0,74
RPLP0	HGLibA_ 49297	0,43	0,44	TFRC	HGLibB_ 49137	0,51	0,41
<u>RPS16</u>	HGLibA_ 49370	0,56	0,37	TFRC	HGLibB_ 49136	0,28	0,71
<u>RPS16</u>	HGLibB_ 42031	0,29	0,48	TLDC1	HGLibB_ 49542	0,42	0,46
<u>RPS16</u>	HGLibB_ 42030	0,35	0,52	TLDC1	HGLibA_ 56889	0,50	0,72
RPS20	HGLibB_ 42050	0,55	0,51	TMCC2	HGLibB_ 49714	0,48	0,45
RPS20	HGLibB_ 42051	0,58	0,54	TMCC2	HGLibA_ 57063	0,59	0,70
RPS20	HGLibA_ 49392	0,26	0,58	TMED2	HGLibB_ 49745	0,46	0,41
RPS26	HGLibA_ 49406	0,19	0,49	TMED2	HGLibB_ 49744	0,47	0,65
RPS26	HGLibB_ 42066	0,51	0,60	TMEM194A	HGLibA_ 57442	0,55	0,32
RPS29	HGLibB_ 42082	0,38	0,36	TMEM194A	HGLibB_ 50094	0,57	0,74
RPS29	HGLibB_ 42081	0,09	0,53	<u>TMEM52</u>	HGLibA_ 57720	0,43	0,34
RRM2	HGLibB_ 42201	0,23	0,45	TMEM52	HGLibB_ 50372	0,51	0,56
RRM2	HGLibA_ 49543	0,36	0,59	TMSB10	HGLibA_ 57946	0,43	0,40
RRP12	HGLibB_ 42217	0,54	0,47	TMSB10	HGLibB_ 50596	0,37	0,47
RRP12	HGLibA_ 49558	0,39	0,60	TOMM70A	HGLibA_ 58271	0,42	0,67
SDC1	HGLibB_ 43045	0,53	0,46	TOMM70A	HGLibB_ 50920	0,59	0,70
SDC1	HGLibB_ 43044	0,56	0,60	TUBA1B	HGLibB_ 52182	0,44	0,53
SDE2	HGLibB_ 43068	0,57	0,31	TUBA1B	HGLibB_ 52180	0,12	0,56
SDE2	HGLibA_ 50410	0,45	0,46	<u>UBXN7</u>	HGLibA_ 60082	0,40	0,43
<u>SF1</u>	HGLibB_ 43634	0,24	0,16	<u>UBXN7</u>	HGLibB_ 52729	0,53	0,65
<u>SF1</u>	HGLibB_ 43636	0,10	0,50	VDAC1	HGLibB_ 53532	0,52	0,48
<u>SF1</u>	HGLibA_ 50977	0,32	0,54	VDAC1	HGLibA_ 60886	0,54	0,59
SHFM1	HGLibA_ 51314	0,42	0,53	VPS4A	HGLibA_ 61084	0,56	0,62
SHFM1	HGLibB_	0,35	0,55	VPS4A	HGLibB_	0,40	0,70

	43975				53731		
<u>SLC25A3</u>	HGLibA_ 51986	0,44	0,44	<u>WDR20</u>	HGLibB_ 53981	0,58	0,30
<u>SLC25A3</u>	HGLibB_	0,49	0,51	<u>WDR20</u>	HGLibB_	0,54	0,37
SLC34A1	HGLibB_	0,51	0,35	WNT5A	HGLibA_	0,46	0,42
SLC34A1	HGLibB_	0,41	0,56	WNT5A	HGLibB_	0,57	0,56
SLC7A1	HGLibA	0,45	0,15	XRCC6	HGLibA	0,50	0,52
SLC7A1	HGLibA	0,46	0,44	XRCC6	HGLibA_	0,56	0,53
SNRNP35	HGLibA_	0,48	0,42	<u>ZBTB20</u>	HGLibB_	0,58	0,20
SNRNP35	HGLibA_	0,46	0,43	<u>ZBTB20</u>	HGLibB_	0,59	0,69
SNW1	HGLibB_	0,34	0,44	ZBTB39	HGLibB_	0,38	0,67
<u>SNW1</u>	HGLibB_	0,47	0,57	ZBTB39	HGLibB_	0,46	0,68
SPAG6	HGLibB_ 46308	0,38	0,44	ZBTB7A	HGLibB_ 54850	0,32	0,31
SPAG6	HGLibB_	0,44	0,47	ZBTB7A	HGLibA_	0,53	0,57
SPATA5	HGLibB_	0,45	0,53	<u>ZNF398</u>	HGLibA_	0,60	0,37
SPATA5	HGLibA_	0,29	0,60	<u>ZNF398</u>	HGLibB_	0,59	0,44
SPINK14	HGLibA_	0,49	0,46	ZNRD1	HGLibA_	0,29	0,53
SPINK14	HGLibA_	0,33	0,54	ZNRD1	HGLibA_ 64224	0,56	0,73
SQRDL	HGLibB_ 46858	0,47	0,43	ZSWIM4	HGLibA_ 64334	0,56	0,46
SQRDL	HGLibB_ 46859	0,58	0,56	ZSWIM4	HGLibB_	0,55	0,73
SSRP1	HGLibA_ 54453	0,36	0,27		00000		
SSRP1	HGLibA_ 54454	0,59	0,59				
STAT5B	HGLibB_ 47339	0,45	0,39				
STAT5B	HGLibA_ 54684	0,47	0,48				
<u>STX12</u>	HGLibA_ 54908	0,55	0,30				
<u>STX12</u>	HGLibB_ 47564	0,55	0,39				
<u>SUZ12</u>	HGLibA_ 55159	0,43	0,43				
<u>SUZ12</u>	HGLibB_ 47814	0,48	0,50				
TAC3	HGLibB_ 48095	0,43	0,54				
TAC3	HGLibA_ 55441	0,52	0,55				
TBL3	HGLibB_ 48560	0,34	0,41				
TBL3	HGLibB_ 48562	0,48	0,53				
TBX5	HGLibB_ 48615	0,53	0,53				
TBX5	HGLibA_ 55963	0,47	0,60				
TCP1	HGLibA_	0,17	0,33				

TCP1	HGLibB_ 48770	0,50	0,48
THOP1	HGLibB_ 49321	0,51	0,26
THOP1	HGLibA_ 56670	0,52	0,34
<u>TIGD3</u>	HGLibA_ 56756	0,51	0,42
<u>TIGD3</u>	HGLibA_ 56758	0,55	0,47
TMCC2	HGLibB_ 49714	0,48	0,47
TMCC2	HGLibA_ 57063	0,59	0,50
TMED2	HGLibA_ 57092	0,42	0,53
TMED2	HGLibB_ 49744	0,47	0,54
TNFAIP3	HGLibA_ 58001	0,51	0,28
TNFAIP3	HGLibA_ 57999	0,50	0,58
TRMT5	HGLibB_ 51627	0,41	0,50
TRMT5	HGLibB_ 51626	0,47	0,59
TTLL9	HGLibB_ 52152	0,27	0,22
TTLL9	HGLibA_ 59505	0,49	0,56
<u>TUBB</u>	HGLibA_ 59558	0,34	0,10
<u>TUBB</u>	HGLibB_ 52204	0,48	0,49
TUBG1	HGLibB_	0,26	0,47
TUBG1	HGLibA_	0,58	0,59
TXNL4A	HGLibA_ 59725	0,45	0,25
TXNL4A	HGLibB_ 52373	0,36	0,45
UBXN7	HGLibA_	0,32	0,24
UBXN7	HGLibA_	0,40	0,45
UTP3	HGLibB_	0,53	0,30
UTP3	HGLibB_	0,49	0,52
UTP3	HGLibB_	0,49	0,54
VDAC1	HGLibA_	0,54	0,32
VDAC1	HGLibB_	0,52	0,49
VPS18	HGLibB_	0,51	0,36
VPS18	HGLibA_	0,59	0,47
XRCC6	HGLibA_	0,50	0,30
XRCC6	HGLibA_	0,56	0,50
ZBTB39	HGLibB_	0,38	0,52
<u>ZBTB39</u>	HGLibB_	0,60	0,57

	54807		
ZDHHC8	HGLibB_ 55062	0,42	0,53
ZDHHC8	HGLibA_ 62418	0,41	0,55

In Hodgkin-Zelllinien angereicherte sgRNAs

sgRNA	GeCKO-ID	Verhältnis d21/d1 cHL	Verhältnis zu B-NHL
A4GALT	HGLibA_00017	2,43	2,50
A4GALT	HGLibB_00016	2,21	1,53
ATP10B	HGLibB_03545	4,04	1,68
ATP10B	HGLibA_03548	2,52	1,56
C1orf105	HGLibB_05730	7,02	4,36
C1orf105	HGLibA_05735	2,33	1,57
CCDC129	HGLibA_07587	3,52	2,61
CCDC129	HGLibB_07580	2,69	1,92
CNKSR2	HGLibA_10299	2,14	2,15
CNKSR2	HGLibB_10287	4,58	1,90
CTAGE9	HGLibA_11581	3,03	2,75
CTAGE9	HGLibB_11568	2,14	1,53
DPCR1	HGLibA_13815	2,09	2,22
DPCR1	HGLibA_13814	2,07	1,75
EVI2B	HGLibB_15667	4,85	4,10
EVI2B	HGLibA_15689	2,32	2,16
GKN1	HGLibB_19182	2,54	4,17
GKN1	HGLibB_19183	4,20	2,06
HOXB9	HGLibA_21953	4,58	2,42
HOXB9	HGLibA_21952	2,27	1,71
hsa-mir-1284	HGLibA_22649	2,45	2,70
hsa-mir-1284	HGLibA_22650	2,78	2,11
hsa-mir-450a-1	HGLibA_25528	2,27	2,69
hsa-mir-450a-1	HGLibA_25527	2,44	1,92
hsa-mir-6795	HGLibA_28412	2,33	3,18
hsa-mir-6795	HGLibA_28410	2,12	3,12
hsa-mir-92b	HGLibA_29352	12,90	14,83
hsa-mir-92b	HGLibA_29351	2,42	2,12
KIAA0391	HGLibB_24599	2,00	1,57
KIAA0391	HGLibB_24598	2,14	1,53
KLK14	HGLibB_25210	3,73	2,32
KLK14	HGLibA_32534	2,07	2,06
KRBOX4	HGLibA_32683	2,39	2,20
KRBOX4	HGLibA_32684	2,13	1,69
KRT79	HGLibB_25513	4,82	6,38
KRT79	HGLibB_25514	2,57	2,44
KRTAP1-1	HGLibB_25544	3,36	6,46

KRTAP1-1	HGLibB_25542	3,25	3,28
MTFP1	HGLibB_30315	3,31	1,74
MTFP1	HGLibB_30317	2,69	1,56
NLRP5	HGLibB_32080	2,61	2,29
NLRP5	HGLibA_39413	2,57	1,54
RNF123	HGLibA_48778	2,41	1,81
RNF123	HGLibA_48777	2,69	1,50
RNF223	HGLibB_41595	2,14	1,78
RNF223	HGLibA_48935	2,52	1,62
RP2	HGLibA_49081	2,70	2,32
RP2	HGLibA_49082	2,49	2,28
SLC5A2	HGLibA_52552	2,94	3,12
SLC5A2	HGLibB_45213	2,37	1,91
SMIM21	HGLibB_45694	4,02	2,50
SMIM21	HGLibA_53038	2,43	1,73
TIGD1	HGLibA_56752	3,56	7,01
TIGD1	HGLibA_56751	3,76	1,89
TMEM86B	HGLibB_50469	3,51	7,32
TMEM86B	HGLibB_50468	2,52	1,56
UBQLN3	HGLibA_60025	8,86	8,81
UBQLN3	HGLibA_60026	2,22	1,50
USP17L8	HGLibB_53221	2,95	2,48
USP17L8	HGLibA_60575	2,08	1,83
XPOT	HGLibA_61865	2,34	1,93
XPOT	HGLibA_61864	2,14	1,78

(Kandidaten-)Gene in der CRISPR/Cas9-Re-Screen library

Legende: *Kursive* Gene waren depletiert, aber erfüllten die Depletions-Kriterien nicht vollständig Insgesamt 185 Gene (à 3 sgRNAs) und 69 *non-targeting* sgRNAs

GeCKO-Screen Kandidaten	Negativ- Kontrollen	Positiv- Kontrollen	NF-κB Gene	Zusätzliche Gene
Gecko-screen Kandidaten 141 ABCA7 ANXA2 AOC2 AREL1 ARF5 ASPHD1 ATF2A2 BATF3 BDP1 BTAF1 BTF3L4 C170RF72 CCDC130 CCDC19 CCNA2 CCND2 CDADC1 CDC25A CDCA5 CEP290 CHUK COPRS CRP CST7 DDX18 DNM13B DNMT3B DNMT3B DNM2 DUX2	Negativ- Kontrollen 12 ALB APOB OR10J3 OR13G1 OR1D2 OR2H2 OR3A1 OR4F4 OR51E1 OR5V1 OR6A2 OR7D4 69 <i>non-targeting</i> sgRNAs	Positiv- Kontrollen 2 GAPDH MYC	NF-KB Gene 9 IKBKB IKBKG MAP3K14 NFKB1A NFKBIA NFKBIB NOTCH1 REL RELA	Zusätzliche Gene 21 C6orf223 EFCAB9 EIF1AX IGIP IQCA1 IRAK4 KDM4C PAQR6 PPP1CB RNF8 USF2 ZNF175 HIF1A IRAK1 KDM3B SETD2 TLR4 TLR7 RPS3A TPTE UMPS
DNMI1 DNMBP DNMT3B DNTTIP2 DPM2 DUX2 DYRK1A EEF2 EFCAB2 EIF1 EIF3D EXOC7 EXOSC3 FBXO41 FGF21 FNDC3B GOLPH3 GPD1L HENMT1 HIST2H2AB HMGB1 HNRNPH1 HSPA9 HSPE1 INCENP INSL3				

IRF4		
JAK1		
JUNB		
KEAP1		
KRTCAP2		
LPHN2		
LYRM7		
MEIS1		
METTL2B		
MIR6878		
MLX		
MROH1		
MRPL34		
MUS81		
NAB2		
NCAPH		
NDC80		
NEKB2		
NHP2L1		
NMNAT1		
NRD1		
NUP155		
PDE1B		
PELO		
PES1		
PGK1		
PHIP		
PNPT1		
POLR2E		
PPP1R37		
PRR13		
PSMA7		
PTPN11		
PTTG1		
RAD51C		
RBX1		
RDM1		
RELB		
RERE		
RFC5		
RNF125		
RNF20		
RPL13A		
RPLP0		
RPS16		
RRM2		
RUNX1		
SDE2		
SETD8		
SF1		
SLC25A3		
SLC34A1		
SLC7A1		
SLIT3		
SLITRK3		
SMARCC2		
SNRNP35		
SNW1		
SPAG6		
SPINK14		
SSRP1		
STAT5B		
STX12		

SI 1712		
50212		
TCP1		
THOP1		
TIGD3		
TLDC1		
TMCC2		
TMEM52		
TMSB10		
TNFAIP3		
TUBB		
UTP3		
VDAC1		
VPS18		
WDR20		
WNT5A		
XRCC6		
ZBTB20		
ZBTB39		
ZBTB7A		
ZDHHC8		
ZNF308		
ZSVVIIVI4		

Ergebnisse des CRISPR/Cas9-Re-Screens

Legende: Fette Kandidaten sind beiden Zelllinien (L428 und L1236) gemein

Kandidatengene L428		Kandidatengene L1236			
	Verhältnis	Verhältnis		Verhältnis	Verhältnis
sgRNA	d28/d1 cHL	zu B-NHL	sgRNA	d28/d1 cHL	zu B-NHL
AOC2_1	0,43	0,42	BATF3_2	0,63	0,46
AOC2_3	0,57	0,47	BATF3_3	0,31	0,31
BATF3_2	0,34	0,25	CCNA2_2	0,24	0,57
BATF3_3	0,25	0,25	CCNA2_3	0,21	0,52
BTF3L4_2	0,40	0,40	CCND2_1	0,33	0,28
BTF3L4_3	0,59	0,48	CCND2_2	0,13	0,13
CCNA2_2	0,20	0,49	CCND2_3	0,40	0,33
CCNA2_3	0,19	0,46	CHUK_1	0,29	0,34
CCND2_1	0,08	0,07	CHUK_3	0,53	0,49
CCND2_2	0,05	0,05	DPM2_1	0,48	0,68
CCND2_3	0,20	0,16	DPM2_3	0,56	0,65
CDCA5_2	0,36	0,48	EIF1AX_1	0,30	0,52
CDCA5_3	0,42	0,39	EIF1AX_2	0,61	0,74
CHUK_1	0,36	0,42	FNDC3B_1	0,66	0,68
CHUK_3	0,54	0,50	FNDC3B_3	0,69	0,61
COPRS_1	0,48	0,51	IRAK1_2	0,47	0,38
COPRS_3	0,41	0,43	IRAK1_3	0,38	0,32
DNM1_1	0,42	0,34	IRF4_1	0,08	0,08
DNM1_3	0,18	0,23	IRF4_2	0,66	0,55
EEF2_1	0,40	0,57	IRF4_3	0,49	0,33
EEF2_3	0,15	0,59	JAK1_1	0,36	0,34
EIF1_1	0,43	0,45	JAK1_3	0,31	0,30
EIF1_2	0,30	0,31	LYRM7_1	0,53	0,64
EIF1AX_1	0,14	0,24	LYRM7_2	0,68	0,55
EIF1AX_2	0,45	0,54	NFKB2_1	0,49	0,38
HENMT1_1	0,51	0,51	NFKB2_2	0,62	0,60
HENMT1_3	0,50	0,60	NFKB2_3	0,14	0,16
HSPA9_1	0,13	0,44	RELB_1	0,57	0,51
HSPA9_3	0,35	0,54	RELB_2	0,69	0,66
HSPE1_1	0,10	0,30	STX12_2	0,68	0,65
HSPE1_2	0,24	0,42	STX12_3	0,59	0,57
INCENP_1	0,21	0,46	WDR20_1	0,53	0,52
INCENP_2	0,10	0,39	WDR20_3	0,52	0,44
IRF4_1	0,05	0,05			
IRF4_2	0,24	0,20			
IRF4_3	0,15	0,10			
JAK1_1	0,19	0,18			
JAK1_3	0,16	0,15			
JUNB_1	0,42	0,28			
JUNB_2	0,47	0,30			
JUNB 3	0,57	0,39			

KEAP1_1	0,47	0,38
KEAP1_2	0,44	0,41
MAP3K14_1	0,25	0,21
MAP3K14_2	0,52	0,41
METTL2B_1	0,33	0,53
METTL2B_3	0,40	0,47
MIR6878_1	0,50	0,56
MIR6878_3	0,55	0,45
MLX_1	0,33	0,41
MLX_2	0,26	0,37
MLX_3	0,57	0,50
NFKBIB_1	0,49	0,38
NFKBIB_3	0,60	0,47
NHP2L1_1	0,17	0,55
NHP2L1_2	0,24	0,54
NMNAT1_2	0,43	0,44
NMNAT1_3	0,43	0,46
NRD1_2	0,43	0,43
NRD1_3	0,26	0,31
PAQR6_1	0,38	0,49
PAQR6_2	0,48	0,57
PAQR6_3	0,41	0,51
PHIP_2	0,58	0,49
PHIP_3	0,45	0,43
POLR2E_1	0,05	0,59
POLR2E_2	0,13	0,60
PPP1R37_2	0,53	0,51
PPP1R37_3	0,39	0,53
PSMA7_2	0,17	0,57
PSMA7_3	0,09	0,59
PTTG1_2	0,60	0,56
PTTG1_3	0,54	0,53
RAD51C_1	0,07	0,43
RAD51C_2	0,16	0,38
REL_1	0,38	0,37
REL_2	0,11	0,14
REL_3	0,30	0,24
SLC7A1_1	0,25	0,56
SLC7A1_2	0,16	0,46
SLC7A1_3	0,25	0,47
TNFAIP3_2	0,15	0,13
TNFAIP3_3	0,10	0,09
TUBB_2	0,15	0,18
TUBB_3	0,04	0,58
ZNF398_2	0,44	0,43
ZNF398_3	0,46	0,52

sgRNA-Sequenzen der CRISPR/Cas9-Re-Screen library

sgRNA	Oligo + (5'-3')	Oligo - (5'-3')
ABCA7_1	CACCGTGCTCGCGGAACATCGATTC	AAACGAATCGATGTTCCGCGAGCAC
ABCA7_2	CACCGTGACCGTGGACGAGCACGTC	AAACGACGTGCTCGTCCACGGTCAC
ABCA7_3	CACCGGAACCAGACGTGCTCGTCCA	AAACTGGACGAGCACGTCTGGTTCC
ALB_1	CACCGGCAGCATTCCGTGTGGACTT	AAACAAGTCCACACGGAATGCTGCC
ALB_2	CACCGTTTAGCTCGGCTTATTCCAG	AAACCTGGAATAAGCCGAGCTAAAC
ALB_3	CACCGGCAACTCTTCGTGAAACCTA	AAACTAGGTTTCACGAAGAGTTGCC
ANXA2_1	CACCGCAGCACTTACCCGAGCATCT	AAACAGATGCTCGGGTAAGTGCTGC
ANXA2_2	CACCGTCTCTGTGCATTGCTGCGGT	AAACACCGCAGCAATGCACAGAGAC
ANXA2_3	CACCGTGGGAAACCAACCTTTGCCA	AAACTGGCAAAGGTTGGTTTCCCAC
AOC2_1	CACCGTGACTGTGGAGCGTCACGGC	AAACGCCGTGACGCTCCACAGTCAC
AOC2_2	CACCGGGGCACTACTATGCAGACTT	AAACAAGTCTGCATAGTAGTGCCCC
AOC2_3	CACCGACTTAAACTCCCGTTCCAAC	AAACGTTGGAACGGGAGTTTAAGTC
APOB_1	CACCGCGACCCGATTCAAGCACCTC	AAACGAGGTGCTTGAATCGGGTCGC
APOB_2	CACCGAAACTCACTTGTTGACCGCG	AAACCGCGGTCAACAAGTGAGTTTC
APOB_3	CACCGGTCCCCGGTCAGCGGATAGT	AAACACTATCCGCTGACCGGGGACC
AREL1_1	CACCGGACTATTTATGACTACGTGC	AAACGCACGTAGTCATAAATAGTCC
AREL1_2	CACCGGTAAATGCTCACGCCTGAAG	AAACCTTCAGGCGTGAGCATTTACC
AREL1_3	CACCGATCTCGGGGTACTATTTGAA	AAACTTCAAATAGTACCCCGAGATC
ARF5_1	CACCGTCCCCGGGCTCACCTATGGT	AAACACCATAGGTGAGCCCGGGGAC
ARF5_2	CACCGGGACAGTAATGACCGGGAGC	AAACGCTCCCGGTCATTACTGTCCC
ARF5_3	CACCGTTGTGGTGGACAGTAATGAC	AAACGTCATTACTGTCCACCACAAC
ASPHD1_1	CACCGCCTACGCAAGGCGCTACTCC	AAACGGAGTAGCGCCTTGCGTAGGC
ASPHD1_2	CACCGTTGCGTAGGCCCGAAGCCGC	AAACGCGGCTTCGGGCCTACGCAAC
ASPHD1_3	CACCGCTCTGGTACTGCTACCGCCT	AAACAGGCGGTAGCAGTACCAGAGC
ATP2A2_1	CACCGTTCGGCGTCAACGAGAGTAC	AAACGTACTCTCGTTGACGCCGAAC
ATP2A2_2	CACCGAAATGCCATCGAAGCCCTTA	AAACTAAGGGCTTCGATGGCATTTC
ATP2A2_3	CACCGTTCAATGACCCGGTTCATGG	AAACCCATGAACCGGGTCATTGAAC
BATF3_1	CACCGGCGCCGCGACGCTCCTCTGC	AAACGCAGAGGAGCGTCGCGGCGCC
BATF3_2	CACCGCCCGATCTCTCTCCGCAGCA	AAACTGCTGCGGAGAGAGATCGGGC
BATF3_3	CACCGAGCAAGAAAACACCATGCTG	AAACCAGCATGGTGTTTTCTTGCTC
BDP1_1	CACCGGTGCCCACAGTCGATTTCGG	AAACCCGAAATCGACTGTGGGCACC
BDP1_2	CACCGCACAGTCGATTTCGGTGGAG	AAACCTCCACCGAAATCGACTGTGC
BDP1_3	CACCGGCTCCACCGAAATCGACTGT	AAACACAGTCGATTTCGGTGGAGCC
BTAF1_1	CACCGTCATTCTGCATTCGTGTGAA	AAACTTCACACGAATGCAGAATGAC
BTAF1_2	CACCGAAAATGTGTCGGAGCATATC	AAACGATATGCTCCGACACATTTTC
BTAF1_3	CACCGTAAACGCGGCTGCACAGCTA	AAACTAGCTGTGCAGCCGCGTTTAC
BTF3L4_1	CACCGCACTCACCTTGCCCCCTATC	AAACGATAGGGGGCAAGGTGAGTGC
BTF3L4_2	CACCGTACAGCTCGCAGAAAGAAGA	AAACTCTTCTTTCTGCGAGCTGTAC
BTF3L4_3	CACCGTCAGAGTTCTCTAAAAAAAC	AAACGTTTTTTTAGAGAACTCTGAC
C170RF72_1	CACCGAGGTGGGACGGCCCACGAGA	AAACTCTCGTGGGCCGTCCCACCTC
C170RF72_2	CACCGTCACCTTCCTTCACGCGGCC	AAACGGCCGCGTGAAGGAAGGTGAC
C170RF72_3	CACCGCCAGCTGCTGCTGAGTCGCC	AAACGGCGACTCAGCAGCAGCTGGC
C6ORF223_1	CACCGAGGCCCACTCCGTTGCTGAA	AAACTTCAGCAACGGAGTGGGCCTC

C6ORF223_2	CACCGcctaGGTGCCTCCAGTTTGA
C6ORF223_3	CACCGTCTCACCCTCCGCAGAATGC
CCDC130_1	CACCGGATCACGTAGTCGCAGTTGG
CCDC130_2	CACCGTGCGACTACGTGATCGTGAG
CCDC130_3	CACCGCACGATCACGTAGTCGCAGT
CCDC19_1	CACCGAGCGGCAGAAATCCATTCAA
CCDC19_2	CACCGCTTATCTCGGAGCAGCACAA
CCDC19_3	CACCGGACCAAAGCCGTGAGCTCTG
CCNA2_1	CACCGCCGTCCAACAACCGCGGACC
CCNA2_2	CACCGCAGCGCCCGTCCAACAACCG
CCNA2_3	CACCGGCAGCAGACGGCGCTCCAAG
CCND2_1	CACCGCCAACCCTACATGCGCAGAA
CCND2_2	CACCGGTAAATGCACAGCTTCTCCG
CCND2_3	CACCGAGCGCTCCTCGATGGTGAGC
CDADC1_1	CACCGTCAACCTTTGGTGTGTTATA
CDADC1_2	CACCGTCTAGTGAAGATTTACATGC
CDADC1_3	CACCGAGAAATAAGTTTGCTTACGG
CDC20_1	CACCGGGCGCATCCAGGATACGGTC
CDC20_2	CACCGCAGACCTGAACCTTGTGGAT
CDC20_3	CACCGTGCACTTACAATAGTCATTT
CDC25A_1	CACCGCTTCACGACGGGCTGCGACG
CDC25A_2	CACCGCCAAATAGCGCCTTCACGAC
CDC25A_3	CACCGCCCGTCGTGAAGGCGCTATT
CDCA2_1	CACCGACAGTAACCGTAGAGCAATT
CDCA2_2	CACCGGGATATTCTCCGACGTTTGG
CDCA2_3	CACCGGCAAATACTCCATTGCGTAA
CDCA5_1	CACCGCACGATCCTCTTTAAGACGA
CDCA5_2	CACCGCAGCTGTCCAATCACCTCGC
CDCA5_3	CACCGCCCTGGCAGGGAGCTTACTA
CEP290_1	CACCGTTGTCGCTCCAATTCTACTA
CEP290_2	CACCGTTCCGGTAAGCTGATCAACT
CEP290_3	CACCGCTGCAGGTGGACGAGATACT
CHUK_1	CACCGACAGACGTTCCCGAAGCCGC
CHUK_2	CACCGGGCTATTTGGTTGAGGTAAA
CHUK_3	CACCGATCACAGGCCTTTACAACAT
COPRS_1	CACCGATCAGAGTCCTCCTCATCCA
COPRS_2	CACCGCATGGACCTTCAGGCCGCCG
COPRS_3	CACCGGGCATGGACCTTCAGGCCGC
CRP_1	CACCGACGGAACTGTCCTCGACCCG
CRP_2	CACCGGCTTCGTTAACGGTGCTTTG
CRP_3	CACCGATAGGAAGTATCCGACTCTT
CST7_1	CACCGCCAGACCGTTACCTGAACTA
CST7_2	CACCGCTTAACTCACGTGTGAAGCC
CST7_3	CACCGACAATAAAGACCAATGACCC
DDX18_1	CACCGGATGAACGCTTACCATTCCT
DDX18_2	CACCGAGCTGATCGTATCTTGGATG

AAACTCAAACTGGAGGCACCTAGGC AAACGCATTCTGCGGAGGGTGAGAC AAACCCAACTGCGACTACGTGATCC AAACCTCACGATCACGTAGTCGCAC AAACACTGCGACTACGTGATCGTGC AAACTTGAATGGATTTCTGCCGCTC AAACTTGTGCTGCTCCGAGATAAGC AAACCAGAGCTCACGGCTTTGGTCC AAACGGTCCGCGGTTGTTGGACGGC AAACCGGTTGTTGGACGGGCGCTGC AAACCTTGGAGCGCCGTCTGCTGCC AAACTTCTGCGCATGTAGGGTTGGC AAACCGGAGAAGCTGTGCATTTACC AAACGCTCACCATCGAGGAGCGCTC AAACTATAACACACCAAAGGTTGAC AAACGCATGTAAATCTTCACTAGAC AAACCCGTAAGCAAACTTATTTCTC AAACGACCGTATCCTGGATGCGCCC AAACATCCACAAGGTTCAGGTCTGC AAACAAATGACTATTGTAAGTGCAC AAACCGTCGCAGCCCGTCGTGAAGC AAACGTCGTGAAGGCGCTATTTGGC AAACAATAGCGCCTTCACGACGGGC AAACAATTGCTCTACGGTTACTGTC AAACCCAAACGTCGGAGAATATCCC AAACTTACGCAATGGAGTATTTGCC AAACTCGTCTTAAAGAGGATCGTGC AAACGCGAGGTGATTGGACAGCTGC AAACTAGTAAGCTCCCTGCCAGGGC AAACTAGTAGAATTGGAGCGACAAC AAACAGTTGATCAGCTTACCGGAAC AAACAGTATCTCGTCCACCTGCAGC AAACGCGGCTTCGGGAACGTCTGTC AAACTTTACCTCAACCAAATAGCCC AAACATGTTGTAAAGGCCTGTGATC AAACTGGATGAGGAGGACTCTGATC AAACCGGCGGCCTGAAGGTCCATGC AAACGCGGCCTGAAGGTCCATGCCC AAACCGGGTCGAGGACAGTTCCGTC AAACCAAAGCACCGTTAACGAAGCC AAACAAGAGTCGGATACTTCCTATC AAACTAGTTCAGGTAACGGTCTGGC AAACGGCTTCACACGTGAGTTAAGC AAACGGGTCATTGGTCTTTATTGTC AAACAGGAATGGTAAGCGTTCATCC AAACCATCCAAGATACGATCAGCTC

DDX18_3	CACCGGACGTTACCTGTCAGTCCCA
DNM1_1	CACCGTGATGACCCCGATGGTGCGC
DNM1_2	CACCGGAAGGACATTACCGCCGCCT
DNM1_3	CACCGGAAATTCACCGACTTCGAGG
DNMBP_1	CACCGAGGTAGGACGGTGTCGAGAT
DNMBP 2	CACCGGGTGACCTGGTGATTCTCGA
DNMBP 3	CACCGGACAAGCCCGGGCCCTAATG
DNMT3B 1	CACCGAAGACTCGATCCTCGTCAAC
DNMT3B 2	CACCGAGAGTCGCGAGCTTGATCTT
DNMT3B 3	CACCGCAAGCTCGCGACTCTCCAAG
DNTTIP2 1	CACCGCCGCGTCGGCTGAAAGTTCC
DNTTIP2 2	CACCGGGGACTGAACCATCTACGGA
DNTTIP2 3	CACCGAACTACAGGCTCACTACCAA
DPM2 1	CACCGTGATCAGGCTAACGGCGACG
DPM2_2	CACCGACATGCTGACTGTCGATGAA
DPM2 3	CACCGTCTTCACCTACTACACCGCC
DUX2 1	CACCGGGCGGTCTGGGATCCGGTGA
DUX2 2	CACCGCCGTTCCCCACGCGCCGGTG
	CACCGCCTTCGCCCACACCGGCGCG
DYRK1A 1	CACCGCACTTATGTTTGGCTGGCGA
DYRK1A 2	CACCGTATGACTAGAATCGTCTCCC
DYRK1A 3	
FFF2 1	
EEF2 2	
EEF2 3	
EECAB2 1	
EFCAB2_1	
EFCAB2_2	
EFCABO 1	
EFCAD9_2	
EIF1_3	
EIF1AX_1	
EIF1AX_2	CACCGTTTAAACCATCAGGTAAAGG
EIF1AX_3	CACCGGGCGGCATTACCTTTATTCT
EIF3D_1	CACCGCAAATCTCATTCGATTCCGC
EIF3D_2	CACCGATGCGCTTGATGCTCCGCAG
EIF3D_3	CACCGTGCGCGCTGTATCCACCAGC
EXOC7_1	CACCGCATCCCTGTGCACAAGCAGA
EXOC7_2	CACCGTGAGAGCCGCCTTATGAAGC
EXOC7_3	CACCGTGGAGTTCTCCAGCTTCATA
EXOSC3_1	CACCGGGTGCGCGTTGTATGCGGTC
EXOSC3_2	CACCGTCGCGGGTGCGCGTTGTATG
EXOSC3_3	CACCGTTGTATGCGGTCCGGGCCTT

AAACTGGGACTGACAGGTAACGTCC AAACGCGCACCATCGGGGTCATCAC AAACAGGCGGCGGTAATGTCCTTCC AAACCCTCGAAGTCGGTGAATTTCC AAACATCTCGACACCGTCCTACCTC AAACTCGAGAATCACCAGGTCACCC AAACCATTAGGGCCCGGGCTTGTCC AAACGTTGACGAGGATCGAGTCTTC AAACAAGATCAAGCTCGCGACTCTC AAACCTTGGAGAGTCGCGAGCTTGC AAACGGAACTTTCAGCCGACGCGGC AAACTCCGTAGATGGTTCAGTCCCC AAACTTGGTAGTGAGCCTGTAGTTC AAACCGTCGCCGTTAGCCTGATCAC AAACTTCATCGACAGTCAGCATGTC AAACGGCGGTGTAGTAGGTGAAGAC AAACTCACCGGATCCCAGACCGCCC AAACCACCGGCGCGTGGGGAACGGC AAACCGCGCCGGTGTGGGCGAAGGC AAACTCGCCAGCCAAACATAAGTGC AAACGGGAGACGATTCTAGTCATAC AAACTCATCTGTTCGGCTTGCACCC AAACGTCCTCGGTACCGTGGGCTTC AAACACGGTACCGAGGACAGGATCC AAACCCTTGGCGGCGAACTTGGCCC AAACACGGAAGGAGAGCTGCATGAC AAACTCCGTAGGACAGCATCCTAAC AAACTGAGTCGAATAATACAGTGGC AAACTGCACGTCCAGAATATGAAAC AAACTGAATGGTCAGTACTTTCAGC AAACACCAGGCAAGTAGCCGCGCGC AAACCTCTTTCGGTAAGCTATGGGC AAACCCACTCTTTCGGTAAGCTATC AAACGAACCTCCACTCTTTCGGTAC AAACGAGCATACTCTAGCGGGGGAGC AAACCCTTTACCTGATGGTTTAAAC AAACAGAATAAAGGTAATGCCGCCC AAACGCGGAATCGAATGAGATTTGC AAACCTGCGGAGCATCAAGCGCATC AAACGCTGGTGGATACAGCGCGCAC AAACTCTGCTTGTGCACAGGGATGC AAACGCTTCATAAGGCGGCTCTCAC AAACTATGAAGCTGGAGAACTCCAC AAACGACCGCATACAACGCGCACCC AAACCATACAACGCGCACCCGCGAC AAACAAGGCCCGGACCGCATACAAC

FBXO41_1	CACCGCCGAGGACGCCACGGACTTG
FBXO41_2	CACCGCCGCAAGTCCGTGGCGTCCT
FBXO41_3	CACCGTGCTCTCGAAGACCTCTCGC
FGF21_1	CACCGCTGTGTAGAGGTACCGCTGC
FGF21_2	CACCGCAGTCCTCTCCTGCAATTCG
FGF21_3	CACCGGGAAACTCACCGATCCATAC
FNDC3B_1	CACCGCTGGCCGCTCGAAACGACAT
FNDC3B_2	CACCGGGTACCAATGTCGTTTCGAG
FNDC3B_3	CACCGTAAGGCCACCTCGTAACTGT
GAPDH_1	CACCGCTGCTGTAGGCTCATTTGCA
GAPDH_2	CACCGTTCCTCACCTGATGATCTTG
GAPDH_3	CACCGTTCCACTCACTCCTGGAAGA
GOLPH3_1	CACCGGCAACGCCGCCGACAAGGAg
GOLPH3_2	CACCGTGTAAGTCAGATGCTCCAAC
GOLPH3 3	CACCGgcTCCTTGTCGGCGGCGTTG
GPD1L 1	CACCGTCCTTGTAGGGCATAGACGA
GPD1L 2	CACCGCACTCGAGTTACCTTGATGA
GPD1L 3	CACCGTGACATCATCCGTGAGAAGA
HENMT1 1	CACCGTGGTACCGCTGTCTGTATAG
HENMT1 2	CACCGAACCTCCACTATACAGACAG
HENMT1 3	CACCGATTGTATCATGGCTCCGTTG
HIF1A 1	CACCGAAGTGTACCCTAACTAGCCG
HIF1A 2	CACCGGAGCGGCCTAAAAGTTCTTC
HIF1A 3	CACCGTTCTTTACTTCGCCGAGATC
HIST2H2AB 1	CACCGGGTCCTCGAGTACCTGACCG
HIST2H2AB 2	CACCGGTACCTGACCGCGGAAATTC
HIST2H2AB 3	CACCGGACCGCCGCCAGGTACACCG
HMGB1 1	CACCGAGATACTCACGGAGGCCTCT
HMGB1 2	CACCGGATACTCACGGAGGCCTCTT
HMGB1_3	CACCGAGATATGGCAAAAGCGGACA
HNRNPH1 1	CACCGTCAACAAAAGCCTCGCCACT
HNRNPH1 2	CACCGAACATTGCCGGTGGACTTCC
HNRNPH1 3	
HSPA9 1	
HSPA9 2	
HSPA9 3	
HSPF1 1	
HSPE1 2	
HSPE1 3	
IGIP 1	
INBNB_3	
INBNG_1	CAUUGGGUAGUAGATUAGGAUGTAC

AAACCAAGTCCGTGGCGTCCTCGGC AAACAGGACGCCACGGACTTGCGGC AAACGCGAGAGGTCTTCGAGAGCAC AAACGCAGCGGTACCTCTACACAGC AAACCGAATTGCAGGAGAGGACTGC AAACGTATGGATCGGTGAGTTTCCC AAACATGTCGTTTCGAGCGGCCAGC AAACCTCGAAACGACATTGGTACCC AAACACAGTTACGAGGTGGCCTTAC AAACTGCAAATGAGCCTACAGCAGC AAACCAAGATCATCAGGTGAGGAAC AAACTCTTCCAGGAGTGAGTGGAAC AAACcTCCTTGTCGGCGGCGTTGCC AAACGTTGGAGCATCTGACTTACAC AAACCAACGCCGCCGACAAGGAGCC AAACTCGTCTATGCCCTACAAGGAC AAACTCATCAAGGTAACTCGAGTGC AAACTCTTCTCACGGATGATGTCAC AAACCTATACAGACAGCGGTACCAC AAACCTGTCTGTATAGTGGAGGTTC AAACCAACGGAGCCATGATACAATC AAACCGGCTAGTTAGGGTACACTTC AAACGAAGAACTTTTAGGCCGCTCC AAACGATCTCGGCGAAGTAAAGAAC AAACCGGTCAGGTACTCGAGGACCC AAACGAATTTCCGCGGTCAGGTACC AAACCGGTGTACCTGGCGGCGGTCC AAACAGAGGCCTCCGTGAGTATCTC AAACAAGAGGCCTCCGTGAGTATCC AAACTGTCCGCTTTTGCCATATCTC AAACAGTGGCGAGGCTTTTGTTGAC AAACGGAAGTCCACCGGCAATGTTC AAACTAAGCTTTCGTGGTGGATCAC AAACGCGATATGATGATCCTGAAGC AAACAGCGTCTCATTGGCCGGCGAC AAACATGAGACGCTTGGTAGCATAC AAACAGTATTGGTTGAAAGGAGTGC AAACATCCAACAGCGACTACTGTTC AAACATACTCGGTCAAAGAGTGGAC AAACTATTTGCTGTCATGTTCTCCC AAACGACACACTGCGTTTCTTCATC AAACGCACTGAGATGGGAGAACATC AAACGTAGTCGACGGTCACTGTGTC AAACCGTATGGGCCCAATGGCTGCC AAACCGACAGAGGGGGCACGGATCCC AAACGTACGTCCTGATCTGCTGCCC

IKBKG_2	CACCGTGGTGGCCCGGCAGCAGATC	A
IKBKG_3	CACCGCTGGGCGAAGAGTCTCCTCT	A
INCENP_1	CACCGGAGTCCGTGCGAGAGCCCGT	A
INCENP_2	CACCGGCACGGACTCTCAATCGGTG	A
INCENP_3	CACCGCTCTCGCACGGACTCTCAAT	A
INSL3_1	CACCGGCACTAGCGCGCGTACGAAG	A
INSL3_2	CACCGCTAGCGCGCGTACGAAGTGG	A
INSL3_3	CACCGCTGGCTTCGGTGGACCAGCG	A
IQCA1_1	CACCGGGCACGGCAAGGTCGCCTAA	A
IQCA1_2	CACCGTGCATTCGATGAACCAATGC	A
IQCA1_3	CACCGGCGACGTTTCCATCAACGTA	A
IRAK1_1	CACCGCGGTCTGGTCGCGCACGATC	A
IRAK1_2	CACCGGATCAACCGCAACGCCCGTG	A
IRAK1_3	CACCGCTTTGGGTGCGTGTACCGGG	A
IRAK4_1	CACCGCTGTCTAGCAATGAACCATT	A
IRAK4_2	CACCGGATGAACGACCCATTTCTGT	A
IRAK4_3	CACCGATGGTACTCCACCACTTTCT	A
IRF4_1	CACCGCTGATCGACCAGATCGACAG	A
IRF4_2	CACCGACGTCATGGGACATTGGTAC	A
IRF4_3	CACCGCAGACCCGTACAAAGTGTAC	A
JAK1_1	CACCGGTTGTGGACGATCAACGGGG	A
JAK1_2	CACCGGATCAACGGGGGGGGCCACGT	A
JAK1_3	CACCGTATGTTGTGGACGATCAACG	A
JUNB_1	CACCGCACGACGACGCCTACACCCC	A
JUNB_2	CACCGGCGCTTTGAGACTCCGGTAG	A
JUNB_3	CACCGACACAGCTACGGGATACGGC	A
KDM3B_1	CACCGTCTTGTATGGGCGCCCCGTG	A
KDM3B_2	CACCGCACCTCCATAAGACGAGTGA	A
KDM3B_3	CACCGATCTTCTGGATCGAGAGCTT	A
KDM4C_1	CACCGCTTTGCAAGACCCGCACGAT	A
KDM4C_2	CACCGAGCTCGCCTCAATACAGTCT	A
KDM4C_3	CACCGGAACTCCCGGAACTCCTCCA	A
KEAP1_1	CACCGTGACAGCACCGTTCATGACG	A
KEAP1_2	CACCGACAGCGACGGTTCTACGTCC	A
KEAP1_3	CACCGGAACGTGCGCTGCGAGTCCG	A
KRTCAP2_1	CACCGGCAGATGTACAGCCGTCAGC	A
KRTCAP2_2	CACCGTGCGCATAGCTAACCGCACC	A
KRTCAP2_3	CACCGGCCCCGCCCGTGAGTCCAAC	A
LPHN2_1	CACCGTTGAGAGCGCTAACTATGGT	A
LPHN2_2	CACCGATTAAAGTATCGGTACGATA	A
LPHN2_3	CACCGTATAATACCCGATTAAACCG	A
LYRM7_1	CACCGATACTTACCTTCTAATGCTC	A
LYRM7_2	CACCGAGCTCTTTAAAACACTGCAC	A
LYRM7_3	CACCGTTCTTCATTTATCTTTATTC	ŀ
MAP3K14_1	CACCGCTAACATATGGGGCGCCGAG	A
MAP3K14_2	CACCGTCTGATCAAGACTCTCGGAC	A

AACGATCTGCTGCCGGGCCACCAC AACAGAGGAGACTCTTCGCCCAGC AACACGGGCTCTCGCACGGACTCC AACCACCGATTGAGAGTCCGTGCC AACATTGAGAGTCCGTGCGAGAGC AACCTTCGTACGCGCGCTAGTGCC AACCCACTTCGTACGCGCGCTAGC AACCGCTGGTCCACCGAAGCCAGC AACTTAGGCGACCTTGCCGTGCCC AACGCATTGGTTCATCGAATGCAC AACTACGTTGATGGAAACGTCGCC AACGATCGTGCGCGACCAGACCGC AACCACGGGCGTTGCGGTTGATCC AACCCCGGTACACGCACCCAAAGC AACAATGGTTCATTGCTAGACAGC AACACAGAAATGGGTCGTTCATCC AACAGAAAGTGGTGGAGTACCATC AACCTGTCGATCTGGTCGATCAGC AACGTACCAATGTCCCATGACGTC AACGTACACTTTGTACGGGTCTGC AACCCCCGTTGATCGTCCACAACC AACACGTGGCCCCCCGTTGATCC AACCGTTGATCGTCCACAACATAC AACGGGGTGTAGGCGTCGTCGTGC AACCTACCGGAGTCTCAAAGCGCC AACGCCGTATCCCGTAGCTGTGTC AACCACGGGGCGCCCATACAAGAC AACTCACTCGTCTTATGGAGGTGC AACAAGCTCTCGATCCAGAAGATC AACATCGTGCGGGTCTTGCAAAGC AACAGACTGTATTGAGGCGAGCTC AACTGGAGGAGTTCCGGGAGTTCC AACCGTCATGAACGGTGCTGTCAC AACGGACGTAGAACCGTCGCTGTC AACCGGACTCGCAGCGCACGTTCC AACGCTGACGGCTGTACATCTGCC AACGGTGCGGTTAGCTATGCGCAC AACGTTGGACTCACGGGCGGGGCC AACACCATAGTTAGCGCTCTCAAC AACTATCGTACCGATACTTTAATC AACCGGTTTAATCGGGTATTATAC AACGAGCATTAGAAGGTAAGTATC AACGTGCAGTGTTTTAAAGAGCTC AACGAATAAAGATAAATGAAGAAC AACCTCGGCGCCCCATATGTTAGC AACGTCCGAGAGTCTTGATCAGAC

MAP3K14_3	CACCGCACGTGGTTCAGACATTGCA	AAACTGCAATGTCTGAACCACGTGC
MEIS1_1	CACCGACGACGATCTACCCCATTAC	AAACGTAATGGGGTAGATCGTCGTC
MEIS1_2	CACCGTCTACCCCATTACGGGGGGCA	AAACTGCCCCGTAATGGGGTAGAC
MEIS1_3	CACCGGACGATCTACCCCATTACGG	AAACCCGTAATGGGGTAGATCGTCC
METTL2B_1	CACCGGTTACATTCTCCTCCACAGG	AAACCCTGTGGAGGAGAATGTAACC
METTL2B_2	CACCGCTCTTATCGGCGAGGATTGC	AAACGCAATCCTCGCCGATAAGAGC
METTL2B_3	CACCGGCGCCGGATCGCTCAGGAAC	AAACGTTCCTGAGCGATCCGGCGCC
MIR6878_1	CACCGGTCAGCTAAAGACCATGAGA	AAACTCTCATGGTCTTTAGCTGACC
MIR6878_2	CACCGTGTCAGCTAAAGACCATGAG	AAACCTCATGGTCTTTAGCTGACAC
MIR6878_3	CACCGAGATTCTGAAAATCACTAAC	AAACGTTAGTGATTTTCAGAATCTC
MLX_1	CACCGAGTCCTACAAAGACCGGCGG	AAACCCGCCGGTCTTTGTAGGACTC
MLX_2	CACCGAGGAGTCCTACAAAGACCGG	AAACCCGGTCTTTGTAGGACTCCTC
MLX_3	CACCGGGTGACATCCTTGCGTAACG	AAACCGTTACGCAAGGATGTCACCC
MROH1_1	CACCGCTGCCGCAGATACTCCTCGC	AAACGCGAGGAGTATCTGCGGCAGC
MROH1_2	CACCGGCTGGACGCCATCACCGATA	AAACTATCGGTGATGGCGTCCAGCC
MROH1_3	CACCGTCAGGACCGCTGCTCGGTAT	AAACATACCGAGCAGCGGTCCTGAC
MRPL34_1	CACCGAGTAGGTCGGCAGCGTTGCT	AAACAGCAACGCTGCCGACCTACTC
MRPL34_2	CACCGAACGCTGCCGACCTACTCGT	AAACACGAGTAGGTCGGCAGCGTTC
MRPL34_3	CACCGACCTACTCGTGGGGCCCAAC	AAACGTTGGGCCCCACGAGTAGGTC
MUS81_1	CACCGGGCGCTCACCGCCCGATGTT	AAACAACATCGGGCGGTGAGCGCCC
MUS81_2	CACCGTCGTTCGCTGGCTGACCGAG	AAACCTCGGTCAGCCAGCGAACGAC
MUS81_3	CACCGTTCCGCAAGTCGCCCCTGCG	AAACCGCAGGGGCGACTTGCGGAAC
MYC_1	CACCGAACGTTGAGGGGCATCGTCG	AAACCGACGATGCCCCTCAACGTTC
MYC_2	CACCGGCCGTATTTCTACTGCGACG	AAACCGTCGCAGTAGAAATACGGCC
MYC_3	CACCGGGTGTGACCGCAACGTAGGA	AAACTCCTACGTTGCGGTCACACCC
NAB2_1	CACCGTTGCCCACTAACTTGAGTCT	AAACAGACTCAAGTTAGTGGGCAAC
NAB2_2	CACCGTGGGGGTGGTCCAGACCGAC	AAACGTCGGTCTGGACCACCCCCAC
NAB2_3	CACCGCCTGCCCCAACGTCCGACTC	AAACGAGTCGGACGTTGGGGCAGGC
NCAPH_1	CACCGCAAGATCTATGCTGTGCGCG	AAACCGCGCACAGCATAGATCTTGC
NCAPH_2	CACCGGGGCAAAGATGCACCGTCTT	AAACAAGACGGTGCATCTTTGCCCC
NCAPH_3	CACCGGGACTCTGTATACATCGGCA	AAACTGCCGATGTATACAGAGTCCC
NDC80_1	CACCGGGATCCCGGAATAGTCAACT	AAACAGTTGACTATTCCGGGATCCC
NDC80_2	CACCGTGTCAGGAAGTTCGTATGAG	AAACCTCATACGAACTTCCTGACAC
NDC80_3	CACCGACAATGTGAGGCCATGTATG	AAACCATACATGGCCTCACATTGTC
NFKB1_1	CACCGGATAGTTTCGGCGGTGGTAG	AAACCTACCACCGCCGAAACTATCC
NFKB1_2	CACCGACATGAGCCGCACCACGCTG	AAACCAGCGTGGTGCGGCTCATGTC
NFKB1_3	CACCGCCATCCCATGGTGGACTACC	AAACGGTAGTCCACCATGGGATGGC
NFKB2_1	CACCGACCCATACCCGTAAGGCCCT	AAACAGGGCCTTACGGGTATGGGTC
NFKB2_2	CACCGCATGTGGGAGCCACCCCCGA	AAACTCGGGGGTGGCTCCCACATGC
NFKB2_3	CACCGCCACTCCATAGAATCTCCGG	AAACCCGGAGATTCTATGGAGTGGC
NFKBIA_1	CACCGCTGGACGACCGCCACGACAG	AAACCTGTCGTGGCGGTCGTCCAGC
NFKBIA_2	CACCGCCTCGAAAGTCTCGGAGCTC	AAACGAGCTCCGAGACTTTCGAGGC
NFKBIA_3	CACCGTCCTTCTTCAGCCCGTCGCG	AAACCGCGACGGGCTGAAGAAGGAC
NFKBIB_1	CACCGCCCGACACCTACCTCGCTCA	AAACTGAGCGAGGTAGGTGTCGGGC
NFKBIB_2	CACCGCTGAGCGAGGTAGGTGTCGG	AAACCCGACACCTACCTCGCTCAGC
NFKBIB_3	CACCGTTGGTGTCGGGAGTACGGTC	AAACGACCGTACTCCCGACACCAAC

NHP2L1_1	CACCGAGTTACATGACTGCTGAACG
NHP2L1_2	CACCGCATGTAACTATAAGCAGCTT
NHP2L1_3	CACCGTCGGCAAGGGGATAGGCCTT
NMNAT1_1	CACCGGGAAGGTACACAGTTGTCAA
NMNAT1_2	CACCGTTGCTACCAAGAATTCTAAA
NMNAT1_3	CACCGGACTCATTCCTGCCTATCAC
NOTCH1_1	CACCGCGTTGACGTCGATCTCGCAT
NOTCH1_2	CACCGTTGACGTCGATCTCGCATCG
NOTCH1_3	CACCGCGTGTATTGACGACGTTGCC
NRD1_1	CACCGTGTCAAATGGATCCGTTAAA
NRD1_2	CACCGCTGATCCAGATGACCTGCCG
NRD1_3	CACCGAGTGCGTTCACAATCAGTTG
NUP155_1	CACCGACCAGGAGGTGTCGCACATG
NUP155_2	CACCGTGAACCAGCGTCAGTGTATT
NUP155_3	CACCGAGTGTATTAGGCCGTGCTAA
OR10J3 1	CACCGCCATGATGACTGAATACCTT
OR10J3 2	CACCGGAGCTGAGTGGCACAGCTTT
OR10J3 3	CACCGTCCAGAGGCCAGTTGGATAC
OR13G1 1	CACCGAAGCATCATACCGAAGATGC
OR13G1 2	CACCGGCATCATACCGAAGATGCTG
OR13G1 3	CACCGTGCACACAGCTCTTATCATG
OR1D2 1	CACCGTGGGTCCTATCCGTCCTCTA
OR1D2 2	CACCGTGAGGCCATAGAGGACGGAT
OR1D2 3	CACCGGACGGATAGGACCCAACACA
OR2H2 1	CACCGCACCTGCCGATCGGGGCAGA
OR2H2 2	CACCGGCCCTTCTGCCCCGATCGGC
OR2H2_3	CACCGAATCATCCACCTGCCGATCG
OR3A1 1	CACCGGAACTGCACGCTTGCGGGAC
OR3A1 2	CACCGCACAGGGAACTGCACGCTTG
OR3A1 3	CACCGGGTTGCCCCTGACCGTGACC
OR4F4_1	CACCGAGGCCAACTGGCTCACCGAA
OR4F4_2	CACCGGGCATTATGGCTGTCGCATG
OR4F4_3	CACCGGCCGTGCACTTACCCTTCTG
OR51F1_1	
OR51E1_1	
OR51E1_2	
OR5V1_1	
OR5\/1_2	
OR5V1_2	
OR642 1	
OR6A2_2	
UR/D4_3	
PAQR6_1	CACCGGTTGTCGAACAGGAATGGAT

AAACCGTTCAGCAGTCATGTAACTC AAACAAGCTGCTTATAGTTACATGC AAACAAGGCCTATCCCCTTGCCGAC AAACTTGACAACTGTGTACCTTCCC AAACTTTAGAATTCTTGGTAGCAAC AAACGTGATAGGCAGGAATGAGTCC AAACATGCGAGATCGACGTCAACGC AAACCGATGCGAGATCGACGTCAAC AAACGGCAACGTCGTCAATACACGC AAACTTTAACGGATCCATTTGACAC AAACCGGCAGGTCATCTGGATCAGC AAACCAACTGATTGTGAACGCACTC AAACCATGTGCGACACCTCCTGGTC AAACAATACACTGACGCTGGTTCAC AAACTTAGCACGGCCTAATACACTC AAACAAGGTATTCAGTCATCATGGC AAACAAAGCTGTGCCACTCAGCTCC AAACGTATCCAACTGGCCTCTGGAC AAACGCATCTTCGGTATGATGCTTC AAACCAGCATCTTCGGTATGATGCC AAACCATGATAAGAGCTGTGTGCAC AAACTAGAGGACGGATAGGACCCAC AAACATCCGTCCTCTATGGCCTCAC AAACTGTGTTGGGTCCTATCCGTCC AAACTCTGCCCCGATCGGCAGGTGC AAACGCCGATCGGGGCAGAAGGGCC AAACCGATCGGCAGGTGGATGATTC AAACGTCCCGCAAGCGTGCAGTTCC AAACCAAGCGTGCAGTTCCCTGTGC AAACGGTCACGGTCAGGGGCAACCC AAACTTCGGTGAGCCAGTTGGCCTC AAACCATGCGACAGCCATAATGCCC AAACCAGAAGGGTAAGTGCACGGCC AAACCAGTACTTACGTTGCCTCGTC AAACCTACCTTATTGCTGTGCTAGC AAACGGGAGGCCTATTAGGATGAAC AAACCCAGATGATGGTGCACCTCCC AAACTCATCTGGGGGGACATTGCTGC AAACTCTGTGGCAACAATCAGATTC AAACCTACAGGTACTATTGTTTGCC AAACCAAAGGAGATTAGCTGTCCAC AAACATGTGTTGGTGCTGACTGAGC AAACGGGACTCTCAGATGATCCTGC AAACTTGTTGACATCTGTTTCATCC AAACGGAGGAGAAATTTTGATAATC AAACATCCATTCCTGTTCGACAACC

PAQR6_2	CACCGAGGCGAAGGCTCCTGTGCGG	AAACCCGCACAGGAGCCTTCGCCTC
PAQR6_3	CACCGTCCTTACCCGATAAAAGAGT	AAACACTCTTTTATCGGGTAAGGAC
PDE1B_1	CACCGTAACATCGGCTGCGTGGATC	AAACGATCCACGCAGCCGATGTTAC
PDE1B_2	CACCGTCTGGGTAACATCGGCTGCG	AAACCGCAGCCGATGTTACCCAGAC
PDE1B_3	CACCGGAACCGCAGTAGAGTAAGTG	AAACCACTTACTCTACTGCGGTTCC
PELO_1	CACCGGGCTTGAGAGTCGAAGTCGA	AAACTCGACTTCGACTCTCAAGCCC
PELO_2	CACCGCACTTACAACCTCGTGCAGG	AAACCCTGCACGAGGTTGTAAGTGC
PELO_3	CACCGGGTACTGGAGCGCATCGAGC	AAACGCTCGATGCGCTCCAGTACCC
PES1_1	CACCGTGCCTACTAGCTCGAGGGTC	AAACGACCCTCGAGCTAGTAGGCAC
PES1_2	CACCGCCCTTTGCCTACTAGCTCGA	AAACTCGAGCTAGTAGGCAAAGGGC
PES1_3	CACCGGGCTGGGGTCCTACCTTCGG	AAACCCGAAGGTAGGACCCCAGCCC
PGK1_1	CACCGAGAGTTCTTCATACCCGCCC	AAACGGGCGGGTATGAAGAACTCTC
PGK1_2	CACCGCCAGCATATTATTGATGAGC	AAACGCTCATCAATAATATGCTGGC
PGK1_3	CACCGTCTCTTTGGTTGCAGGATTA	AAACTAATCCTGCAACCAAAGAGAC
PHIP_1	CACCGCTACGTCTTAGTCCTACGTT	AAACAACGTAGGACTAAGACGTAGC
PHIP_2	CACCGACTCTAGGATCGAACGGGTG	AAACCACCCGTTCGATCCTAGAGTC
PHIP_3	CACCGTTATCGTACAAGATCTGCAT	AAACATGCAGATCTTGTACGATAAC
PNPT1_1	CACCGCCTTCTGCCACGGCGGGATC	AAACGATCCCGCCGTGGCAGAAGGC
PNPT1_2	CACCGTCACTATAGGTGCGATGGTC	AAACGACCATCGCACCTATAGTGAC
PNPT1_3	CACCGCTATATCACTATAGGTGCGA	AAACTCGCACCTATAGTGATATAGC
POLR2E_1	CACCGTCACCAGATAGCCACGGTCG	AAACCGACCGTGGCTATCTGGTGAC
POLR2E_2	CACCGCATCACACGGGCTCTCATCG	AAACCGATGAGAGCCCGTGTGATGC
POLR2E_3	CACCGGTGCCACGACCGTGGCTATC	AAACGATAGCCACGGTCGTGGCACC
PPP1CB_1	CACCGGATTGATGCTAGCACACTCA	AAACTGAGTGTGCTAGCATCAATCC
PPP1CB_2	CACCGTCAGTACGAGGATGTCGTCC	AAACGGACGACATCCTCGTACTGAC
PPP1CB_3	CACCGAGGCTTATGTATCAAGTCTC	AAACGAGACTTGATACATAAGCCTC
PPP1R37_1	CACCGACACGATATCCTCGTCGGAC	AAACGTCCGACGAGGATATCGTGTC
PPP1R37_2	CACCGCGTCACATTCCCGTCCGACG	AAACCGTCGGACGGGAATGTGACGC
PPP1R37_3	CACCGCATGATCGAGTACTACGAGT	AAACACTCGTAGTACTCGATCATGC
PRR13_1	CACCGCCCCAAACACCTACCGGCAT	AAACATGCCGGTAGGTGTTTGGGGC
PRR13_2	CACCGCCCAAACACCTACCGGCATT	AAACAATGCCGGTAGGTGTTTGGGC
PRR13_3	CACCGGGACCCAACGGTTGGCATCC	AAACGGATGCCAACCGTTGGGTCCC
PSMA7_1	CACCGCTTCAGACTGGCGATGTAGC	AAACGCTACATCGCCAGTCTGAAGC
PSMA7_2	CACCGCGCGGTCGAGCCCTTCTTGA	AAACTCAAGAAGGGCTCGACCGCGC
PSMA7_3	CACCGCCAAGTGGAGTACGCGCAGG	AAACCCTGCGCGTACTCCACTTGGC
PTPN11_1	CACCGAATATTGATACTTACAGGGC	AAACGCCCTGTAAGTATCAATATTC
PTPN11_2	CACCGGTTACTGACCTTTCAGAGGT	AAACACCTCTGAAAGGTCAGTAACC
PTPN11_3	CACCGTTCTTCTAGTTGATCATACC	AAACGGTATGATCAACTAGAAGAAC
PTTG1_1	CACCGGATACTACCTAGAGGATTGA	AAACTCAATCCTCTAGGTAGTATCC
PTTG1_2	CACCGCCCGTGTGGTTGCTAAGGAT	AAACATCCTTAGCAACCACACGGGC
PTTG1_3	CACCGGCCCATCCTTAGCAACCACA	AAACTGTGGTTGCTAAGGATGGGCC
RAD51C_1	CACCGGTTACCTTTGCTAAGCTCGG	AAACCCGAGCTTAGCAAAGGTAACC
RAD51C_2	CACCGCTTGAGCAGGAGCATACCCA	AAACTGGGTATGCTCCTGCTCAAGC
RAD51C_3	CACCGTCAGCACTAGATGATATTCT	AAACAGAATATCATCTAGTGCTGAC
RBX1_1	CACCGCTTCTGAAGTAGCGGACGCC	AAACGGCGTCCGCTACTTCAGAAGC
RBX1_2	CACCGCATAGAATGTCAAGCTAACC	AAACGGTTAGCTTGACATTCTATGC

RBX1_3	CACCGACCCCGAGCGGCACCAACAG	AAACC
RDM1_1	CACCGTTAATGACGGCATAGAAACC	AAACO
RDM1_2	CACCGGTTTCAATGGGTGTTCCAAA	AAACT
RDM1_3	CACCGCTTGGCATTTGGAACTGTTC	AAACO
REL_1	CACCGTAAATTGGGTTCGAGACAAC	AAACO
REL_2	CACCGATTGGGTTCGAGACAACAGG	AAACC
REL_3	CACCGGGTCTATTACCTGGATAGAA	AAACT
RELA_1	CACCGTGCCGAGTGAACCGAAACTC	AAACO
RELA_2	CACCGAGCAGAGCCGCACAGCATTC	AAACO
RELA_3	CACCGGTTCCTATAGAAGAGCAGCG	AAACC
RELB_1	CACCGTACATCAAGGAGAACGGCTT	AAACA
RELB_2	CACCGGGGACACTAGTCGGCCCAGG	AAACC
RELB_3	CACCGCTACGAGTGCGAGGGCCGCT	AAACA
RERE_1	CACCGAGTCGCAGCGTCAACGATGA	AAACT
RERE_2	CACCGTTAAGAGTAACAAACGCCAG	AAACC
RERE_3	CACCGCAGATGTCGACACTACGCAG	AAACC
RFC5_1	CACCGCGCTGCACGAGGTTTCGGTT	AAACA
RFC5_2	CACCGCGAACCGAAACCTCGTGCAG	AAACC
RFC5_3	CACCGCTGAATGCTTCAGATGACCG	AAACC
RNF125_1	CACCGGCGCAGTCGAAGGACGTGAC	AAACO
RNF125_2	CACCGGGAAGATATGCCCGGCAATA	AAACT
RNF125_3	CACCGCTTTAGACTGGTAGCAATAC	AAACO
RNF20_1	CACCGTATTGATTGTCAACCGATAC	AAACO
RNF20_2	CACCGGCTCCAGATCATAACGTTTA	AAACT
RNF20_3	CACCGCATCCTTAAACGTTATGATC	AAACO
RNF8_1	CACCGGTGACTGTAGGACGAGGATT	AAACA
RNF8_2	CACCGAGCGCGTCTGGAACCTTTAA	AAACT
RNF8_3	CACCGCTTGAGCCAAGTAAGACCAC	AAACO
RPL13A_1	CACCGCACGCTCTGCTCACCTCGCA	AAACT
RPL13A_2	CACCGGCATAGCTCACCTTGTCGTA	AAACT
RPL13A_3	CACCGTAGCTCACCTTGTCGTAGGG	AAACC
RPLP0_1	CACCGCTGCACTTACGATGATCTTA	AAACT
RPLP0_2	CACCGCAATTGTCCCCTTACCTTAT	AAACA
RPLP0_3	CACCGCACCACAGCCTTCCCGCGAA	AAACT
RPS16_1	CACCGCCTGGGACTCACCATAAATC	AAACO
RPS16_2	CACCGACCTTGTACTGTAGCGTGCG	AAACC
RPS16_3	CACCGACAGAAGACAGCGACAGCTG	AAACC
RPS3A_1	CACCGCGCGACTTACACTTTCTTCT	AAACA
RPS3A_2	CACCGTAAGCTACTTACTGGTTCCT	AAACA
RPS3A_3	CACCGCTTACTGGTTCCTTGGGTCC	AAACO
RRM2_1	CACCGGGGTCCTCCGATTACCTCCT	AAACA
RRM2_2	CACCGGATCCTCCTCGCGGTCTTGC	AAACO
RRM2_3	CACCGTCCTCCGATTACCTCCTCGG	AAACC
RUNX1_1	CACCGGGTAGGTGGCGACTTGCGGT	AAACA
RUNX1_2	CACCGCTCAGGTTTGTCGGTCGAAG	AAACC
RUNX1_3	CACCGTTCACTGAGCCGCTCGGAAA	AAACT

CTGTTGGTGCCGCTCGGGGTC GGTTTCTATGCCGTCATTAAC TTGGAACACCCATTGAAACC GAACAGTTCCAAATGCCAAGC **GTTGTCTCGAACCCAATTTAC** CCTGTTGTCTCGAACCCAATC TCTATCCAGGTAATAGACCC GAGTTTCGGTTCACTCGGCAC GAATGCTGTGCGGCTCTGCTC CGCTGCTCTTCTATAGGAACC AGCCGTTCTCCTTGATGTAC CCTGGGCCGACTAGTGTCCCC AGCGGCCCTCGCACTCGTAGC CATCGTTGACGCTGCGACTC CTGGCGTTTGTTACTCTTAAC CTGCGTAGTGTCGACATCTGC ACCGAAACCTCGTGCAGCGC CTGCACGAGGTTTCGGTTCGC CGGTCATCTGAAGCATTCAGC GTCACGTCCTTCGACTGCGCC TATTGCCGGGCATATCTTCCC **GTATTGCTACCAGTCTAAAGC** GTATCGGTTGACAATCAATAC TAAACGTTATGATCTGGAGCC GATCATAACGTTTAAGGATGC ATCCTCGTCCTACAGTCACC TAAAGGTTCCAGACGCGCTC GTGGTCTTACTTGGCTCAAGC GCGAGGTGAGCAGAGCGTGC **FACGACAAGGTGAGCTATGCC** CCTACGACAAGGTGAGCTAC TAAGATCATCGTAAGTGCAGC ATAAGGTAAGGGGACAATTGC TCGCGGGAAGGCTGTGGTGC GATTTATGGTGAGTCCCAGGC CGCACGCTACAGTACAAGGTC CAGCTGTCGCTGTCTTCTGTC AGAAGAAAGTGTAAGTCGCGC AGGAACCAGTAAGTAGCTTAC GGACCCAAGGAACCAGTAAGC AGGAGGTAATCGGAGGACCCC GCAAGACCGCGAGGAGGATCC CCGAGGAGGTAATCGGAGGAC ACCGCAAGTCGCCACCTACCC CTTCGACCGACAAACCTGAGC TTCCGAGCGGCTCAGTGAAC

SDE2_1	CACCGATCCCGACAAGCTTCTCGAT	
SDE2_2	CACCGCCGGTGGATAAAATCCCGGA	
SDE2_3	CACCGAGTGCCGGTGGATAAAATCC	
SETD2_1	CACCGACTCTGATCGTCGCTACCAT	
SETD2_2	CACCGTAGCGCGTCCTCTCTCGATA	
SETD2_3	CACCGCAAGAAACCCTCGTATCAAC	
SETD8_1	CACCGCTGCTTACCCCGTCGGTGCG	
SETD8_2	CACCGAGGGTGCCTGCTTACCCCGT	
SETD8_3	CACCGGCACGTGACTACCTGCAGCT	
SF1_1	CACCGCTGACTCGTAAACTGCGCAC	
SF1_2	CACCGATGCCAAGATTATGATCCGG	
SF1_3	CACCGAGCCCATCTACAATAGCGAG	,
SLC25A3_1	CACCGGCTGGTGCACGATGGTCTCG	,
SLC25A3_2	CACCGCAACACGCCACATCTGCAGC	
SLC25A3_3	CACCGCTTAAAGAGGATGGTGTTCG	,
SLC34A1_1	CACCGCGCCTGCATCAGGGCCACGA	
SLC34A1_2	CACCGCTCGCATCACATGCCCCCCA	
SLC34A1_3	CACCGTCACATGCCCCCCACGGACT	
SLC7A1_1	CACCGAGGTACTTCAAGCGTAGCGA	
SLC7A1_2	CACCGGCCTATCAGCTCGTCGAAGG	
SLC7A1_3	CACCGGTCCGTGAGAACTCCCCGAT	
SLIT3_1	CACCGCTTCCGAGCGCTGCGCGATT	
SLIT3_2	CACCGTCTCCAAATCGCGCAGCGCT	
SLIT3_3	CACCGCAAATCGCGCAGCGCTCGGA	
SLITRK3_1	CACCGTTAGTCAGATTACCGAGTTC	,
SLITRK3_2	CACCGGTCCTCTATTAGGGGAATCG	
SLITRK3_3	CACCGTACCCCGATTCCCCTAATAG	
SMARCC2_1	CACCGTTGTCCCGTCGATCTGAATC	
SMARCC2_2	CACCGAGTTCGACAACGTGCGGCTG	
SMARCC2_3	CACCGCCTTACACTAAGTCAAAGCG	
SNRNP35_1	CACCGTGAAGACCCACACGACCGCG	,
SNRNP35_2	CACCGTCCAGACCGCGCGGTCGTGT	,
SNRNP35_3	CACCGACACGACCGCGCGGTCTGGA	
SNW1_1	CACCGGCCTTTCCGGTATCCGTACG	
SNW1_2	CACCGCCCCGTACGGATACCGGAA	,
SNW1_3	CACCGCAGCCTTTCCGGTATCCGTA	
SPAG6_1	CACCGGAGAACTCTTCTTCTGGACG	,
SPAG6_2	CACCGTTGTGGAGCACTGGATACGC	,
SPAG6_3	CACCGGCTCAGGCAATAGTCGATTG	,
SPINK14_1	CACCGAGACACTGGTGGCCACCACG	,
SPINK14_2	CACCGTTTCAGGCCCTAGACACTGG	
SPINK14_3	CACCGACCTTAATAATTCCACGTGG	
SSRP1_1	CACCGCGAATGTCATAACGACCACG	
SSRP1_2	CACCGCCCGGCTGACCATCTCATAG	,
SSRP1_3	CACCGTCGACTGAGGTTGAGCCGTC	
STAT5B_1	CACCGTGCGGCATTATTTATCCCAG	,

AAACATCGAGAAGCTTGTCGGGATC AAACTCCGGGATTTTATCCACCGGC AAACGGATTTTATCCACCGGCACTC AAACATGGTAGCGACGATCAGAGTC AAACTATCGAGAGAGGACGCGCTAC AAACGTTGATACGAGGGTTTCTTGC AAACCGCACCGACGGGGTAAGCAGC AAACACGGGGTAAGCAGGCACCCTC AAACAGCTGCAGGTAGTCACGTGCC AAACGTGCGCAGTTTACGAGTCAGC AAACCCGGATCATAATCTTGGCATC AAACCTCGCTATTGTAGATGGGCTC AAACCGAGACCATCGTGCACCAGCC AAACGCTGCAGATGTGGCGTGTTGC AAACCGAACACCATCCTCTTTAAGC AAACTCGTGGCCCTGATGCAGGCGC AAACTGGGGGGGCATGTGATGCGAGC AAACAGTCCGTGGGGGGGCATGTGAC AAACTCGCTACGCTTGAAGTACCTC AAACCCTTCGACGAGCTGATAGGCC AAACATCGGGGAGTTCTCACGGACC AAACAATCGCGCAGCGCTCGGAAGC AAACAGCGCTGCGCGATTTGGAGAC AAACTCCGAGCGCTGCGCGATTTGC AAACGAACTCGGTAATCTGACTAAC AAACCGATTCCCCTAATAGAGGACC AAACCTATTAGGGGAATCGGGGTAC AAACGATTCAGATCGACGGGACAAC AAACCAGCCGCACGTTGTCGAACTC AAACCGCTTTGACTTAGTGTAAGGC AAACCGCGGTCGTGTGGGTCTTCAC AAACACACGACCGCGCGGTCTGGAC AAACTCCAGACCGCGCGGTCGTGTC AAACCGTACGGATACCGGAAAGGCC AAACTTCCGGTATCCGTACGGGGGC AAACTACGGATACCGGAAAGGCTGC AAACCGTCCAGAAGAAGAGTTCTCC AAACGCGTATCCAGTGCTCCACAAC AAACCAATCGACTATTGCCTGAGCC AAACCGTGGTGGCCACCAGTGTCTC AAACCCAGTGTCTAGGGCCTGAAAC AAACCCACGTGGAATTATTAAGGTC AAACCGTGGTCGTTATGACATTCGC AAACCTATGAGATGGTCAGCCGGGC AAACGACGGCTCAACCTCAGTCGAC AAACCTGGGATAAATAATGCCGCAC

STAT5B_2	CACCGCATCAGATGCAAGCGTTATA	AAACTATAA
STAT5B_3	CACCGTCTAGCTCAGTTTGGCCCGC	AAACGCGGG
STX12_1	CACCGTGCTGCTGAAGTCCCGGAGC	AAACGCTCC
STX12_2	CACCGGGTACCCCGGCTCACTGGCT	AAACAGCCA
STX12_3	CACCGAGCATCATCCAGACGTGCAG	AAACCTGCA
SUZ12_1	CACCGCAGTTCACTCTTCGTTGGAC	AAACGTCCA
SUZ12_2	CACCGCGAAGAGTGAACTGCAACGT	AAACACGTT
SUZ12_3	CACCGCATTTGCAGCTTACGTTTAC	AAACGTAAA
TCP1_1	CACCGAAACGCATTGCCAAAGCTTC	AAACGAAGC
TCP1_2	CACCGACAGAGTTGACTGGATAGCG	AAACCGCTA
TCP1_3	CACCGAGACATACCTCCAGAAGCTT	AAACAAGCT
THOP1_1	CACCGCACGCACGCCGACTATGTCC	AAACGGACA
THOP1_2	CACCGAACCTGGTCATACACGCGCT	AAACAGCGC
THOP1_3	CACCGCTGTGGTAAACGACCTGCGG	AAACCCGCA
TIGD3_1	CACCGCTCGTCGATCCCGCTGTACT	AAACAGTAC
TIGD3_2	CACCGCAAGTACAGCGGGATCGACG	AAACCGTCG
TIGD3_3	CACCGTCTTGCAGATGCGCGAGATC	AAACGATCT
TLDC1_1	CACCGTGCGGAGGGTCGACCTGACA	AAACTGTCA
TLDC1_2	CACCGGTCCCCGGCAGAACCACGTC	AAACGACGT
TLDC1_3	CACCGCTGTGACCGAGCTGTGATCG	AAACCGATC
TLR4_1	CACCGAGTAGTCTAAGTATGCTAAT	AAACATTAG
TLR4_2	CACCGAGAAGTCCATCGTTTGGTTC	AAACGAACC
TLR4_3	CACCGATAAGTCAATAATATCATCG	AAACCGATG
TLR7_1	CACCGAATGGGGCATTATAACAACG	AAACCGTTG
TLR7_2	CACCGGTGAGGTTCGTGGTGTTCGT	AAACACGAA
TLR7_3	CACCGCAGATCCAATTGGATGAGGC	AAACGCCTC
TMCC2_1	CACCGGGAGGCTCGCGACGACAATG	AAACCATTG
TMCC2_2	CACCGCCGCCGTCGGTCTCGGGAAA	AAACTTTCC
TMCC2_3	CACCGAGCACGCGGTTGAAGGCGGT	AAACACCGC
TMEM52_1	CACCGCCCCGACTTACTGGTCCGAG	AAACCTCGG
TMEM52_2	CACCGCCCCCGACTTACTGGTCCG	AAACCGGAC
TMEM52_3	CACCGAGGGATGACTGCCACGTCGC	AAACGCGAC
TMSB10_1	CACCGGGAAATCGCCAGCTTCGATA	AAACTATCG
TMSB10_2	CACCGCAGCTTGGCCTTATCGAAGC	AAACGCTTC
TMSB10_3	CACCGGCTGAAGAAAACGGAGACGC	AAACGCGTC
TNFAIP3_1	CACCGTTCCAGTGTGTATCGGTGCA	AAACTGCAC
TNFAIP3_2	CACCGCACGCAACTTTAAATTCCGC	AAACGCGGA
TNFAIP3_3	CACCGTGTCATAGCCGAGAACAATG	AAACCATTG
TPTE_1	CACCGTCTAGATAGAACAGGAACTA	AAACTAGTT
TPTE_2	CACCGTGATTCTAACGACCCTATTA	AAACTAATA
TPTE_3	CACCGATAAAGACCCTTACCTTGAT	AAACATCAA
TUBB_1	CACCGGACTGCATTCCAGGTCAGTC	AAACGACTG
TUBB_2	CACCGACTGCATTCCAGGTCAGTCT	AAACAGACT
TUBB_3	CACCGTCCCCCTCGGCAGTTCTGGG	AAACCCCAG
TXNL4A 1	CACCGCCTTCTCGGCGATGCTGTAC	AAACGTACA
TXNL4A_2	CACCGAGTCCGGCGCGCTACCTTCT	AAACAGAAG

CGCTTGCATCTGATGC GCCAAACTGAGCTAGAC CGGGACTTCAGCAGCAC GTGAGCCGGGGTACCC CGTCTGGATGATGCTC ACGAAGAGTGAACTGC GCAGTTCACTCTTCGC CGTAAGCTGCAAATGC CTTTGGCAATGCGTTTC TCCAGTCAACTCTGTC TCTGGAGGTATGTCTC ATAGTCGGCGTGCGTGC CGTGTATGACCAGGTTC AGGTCGTTTACCACAGC AGCGGGATCGACGAGC GATCCCGCTGTACTTGC CGCGCATCTGCAAGAC GGTCGACCCTCCGCAC **IGGTTCTGCCGGGGACC** CACAGCTCGGTCACAGC CATACTTAGACTACTC CAAACGATGGACTTCTC **ATATTATTGACTTATC STTATAATGCCCCATTC** CACCACGAACCTCACC ATCCAATTGGATCTGC TCGTCGCGAGCCTCCC CGAGACCGACGGCGGC CCTTCAACCGCGTGCTC BACCAGTAAGTCGGGGC CCAGTAAGTCGGGGGGGC CGTGGCAGTCATCCCTC AAGCTGGCGATTTCCC GATAAGGCCAAGCTGC CTCCGTTTTCTTCAGCC CGATACACACTGGAAC AATTTAAAGTTGCGTGC TTCTCGGCTATGACAC CCTGTTCTATCTAGAC GGGTCGTTAGAATCAC GGTAAGGGTCTTTATC ACCTGGAATGCAGTCC GACCTGGAATGCAGTC BAACTGCCGAGGGGGAC GCATCGCCGAGAAGGC GTAGCGCGCCGGACTC

TXNL4A_3	CACCGTCGTCCATCTTCATGCACGT	AAACACGT
UBXN7_1	CACCGACCGCGTCTCTTACCGGTAA	AAACTTAC
UBXN7_2	CACCGTGCTCCACACATCGCGGTTG	AAACCAAC
UBXN7_3	CACCGAGTGCCTCAACCGCGATGTG	AAACCACA
UMPS_1	CACCGCCCGCAGATCGATGTAGAT	AAACATCT
UMPS_2	CACCGCCGCAGATCGATGTAGATGG	AAACCCAT
UMPS_3	CACCGTTTGTGGCAGCGAATCATAA	AAACTTAT
USF2_1	CACCGCAGCCACGACAAGGGACCCG	AAACCGGG
USF2_2	CACCGCCACGACAAGGGACCCGAGG	AAACCCTC
USF2_3	CACCGGCGTCATCATGACGTAGAAC	AAACGTTC
UTP3_1	CACCGCCCACGCTCACCGACGAAAA	AAACTTTT
UTP3_2	CACCGTCCCGGGCCGCCTTAGCTAA	AAACTTAG
UTP3_3	CACCGACTTTCATGAGGCACGATCC	AAACGGAT
VDAC1_1	CACCGTTGAAGGAATTTACAAGCTC	AAACGAGC
VDAC1_2	CACCGGCAACACTCACCATAGCCCT	AAACAGGG
VDAC1_3	CACCGTGAAACTCTTACCCAGTGTT	AAACAACA
VPS18_1	CACCGACTGGTAATGCGCTCGGAAG	AAACCTTC
VPS18_2	CACCGAGACTGGTAATGCGCTCGGA	AAACTCCG
VPS18_3	CACCGCATTTAGCACGTACAATGGG	AAACCCCA
WDR20_1	CACCGCTGGTCGTTGAGGTTTACGA	AAACTCGT
WDR20_2	CACCGCCGGGTGCCCTTCAACTCGC	AAACGCGA
WDR20_3	CACCGTTACGAAGGAGACGCGGACA	AAACTGTC
WNT5A_1	CACCGAGTATCAATTCCGACATCGA	AAACTCGA
WNT5A_2	CACCGTTCGATGTCGGAATTGATAC	AAACGTAT
WNT5A_3	CACCGCGAGACGGCCTTCACATACG	AAACCGTA
XRCC6_1	CACCGAAATATGCCCACCTGTATCT	AAACAGAT
XRCC6_2	CACCGTCTACCTACCTGAGACCTCT	AAACAGAG
XRCC6_3	CACCGCTCCCTGTTCGTGTACCCAG	AAACCTGG
ZBTB20_1	CACCGTCATGTACAGCGGCGTGCTA	AAACTAGC
ZBTB20_2	CACCGGACGTAACGGTGCGCATCCA	AAACTGGA
ZBTB20_3	CACCGACGGTTGCGCTGCTCGTTGA	AAACTCAA
ZBTB39_1	CACCGTGCGACGTCACCATTGTGGT	AAACACCA
ZBTB39_2	CACCGCTACGAGGTAGCTGAGCGTC	AAACGACG
ZBTB39_3	CACCGCAGGCTATGGTTAGCGTCAC	AAACGTGA
ZBTB7A_1	CACCGTAAGCCGTTGCAGTCGCCCG	AAACCGGG
ZBTB7A_2	CACCGATCATCGGACGCCCCAAAGG	AAACCCTT
ZBTB7A 3	CACCGGTCATCATCGGACGCCCCAA	AAACTTGG
ZDHHC8 1	CACCGGGCTTCAAACTCACCGCGAG	AAACCTCG
ZDHHC8 2	CACCGGGCTCCGCTGTACAAGAACG	AAACCGTT
ZDHHC8 3	CACCGGCTTAGTGACAACGGGCTGA	AAACTCAG
	CACCGCTTGATGACGTTGTTGGGTC	AAACGACC
 ZNF175_2	CACCGGTATATCTGACAGATCATAC	AAACGTAT
 ZNF175_3	CACCGCTATAGCCATCTCTTCGCAG	AAACCTGC
ZNF398 1	CACCGGGCACAACGAGGATCTAGCA	AAACTGCT
ZNE398_2		AAACCTTC
ZNF398_3	CACCGAACACCTGCTCGCCAACTGG	AAACCCAG

GCATGAAGATGGACGAC CGGTAAGAGACGCGGTC CGCGATGTGTGGAGCAC TCGCGGTTGAGGCACTC ACATCGATCTGCGGGGC CTACATCGATCTGCGGC GATTCGCTGCCACAAAC **STCCCTTGTCGTGGCTGC** GGGTCCCTTGTCGTGGC TACGTCATGATGACGCC CGTCGGTGAGCGTGGGC CTAAGGCGGCCCGGGAC CGTGCCTCATGAAAGTC CTTGTAAATTCCTTCAAC GCTATGGTGAGTGTTGCC CTGGGTAAGAGTTTCAC CGAGCGCATTACCAGTC AGCGCATTACCAGTCTC TTGTACGTGCTAAATGC AAACCTCAACGACCAGC AGTTGAAGGGCACCCGGC CGCGTCTCCTTCGTAAC TGTCGGAATTGATACTC CAATTCCGACATCGAAC TGTGAAGGCCGTCTCGC ACAGGTGGGCATATTTC GTCTCAGGTAGGTAGAC GTACACGAACAGGGAGC ACGCCGCTGTACATGAC TGCGCACCGTTACGTCC CGAGCAGCGCAACCGTC CAATGGTGACGTCGCAC GCTCAGCTACCTCGTAGC CGCTAACCATAGCCTGC GCGACTGCAACGGCTTAC TGGGGCGTCCGATGATC GGCGTCCGATGATGACC CGGTGAGTTTGAAGCCC CTTGTACAGCGGAGCCC CCCGTTGTCACTAAGCC CAACAACGTCATCAAGC GATCTGTCAGATATACC GAAGAGATGGCTATAGC AGATCCTCGTTGTGCCC TGGTTGAATCTGAGATC **STTGGCGAGCAGGTGTTC**

ZNRD1_1 ZNRD1 2 ZNRD1_3 ZSWIM4_1 ZSWIM4_2 ZSWIM4_3 non-targeting 1 non-targeting_2 non-targeting_3 non-targeting 4 non-targeting_5 non-targeting_6 non-targeting 7 non-targeting_8 non-targeting 9 non-targeting 10 non-targeting_11 non-targeting_12 non-targeting_13 non-targeting_14 non-targeting_15 non-targeting_16 non-targeting_17 non-targeting_18 non-targeting_19 non-targeting 20 non-targeting_21 non-targeting_22 non-targeting_23 non-targeting_24 non-targeting_25 non-targeting_26 non-targeting_27 non-targeting 28 non-targeting_29 non-targeting_30 non-targeting 31 non-targeting_32 non-targeting 33 non-targeting_34 non-targeting 35 non-targeting 36 non-targeting 37 non-targeting_38 non-targeting_39 non-targeting_40

CACCGGGTGACCGTATCCTGAGCCC CACCGTCGGTTGTGTTCCACCAACT CACCGTTCCTCCACCGACATAGGCA CACCGACCAAAACACGATGCGCTTC CACCGGGGCGTGCCGAATGCGGTAC CACCGAATCAGCATGCGCGCCCCGT CACCGACGGAGGCTAAGCGTCGCAA CACCGCGCTTCCGCGGCCCGTTCAA CACCGATCGTTTCCGCTTAACGGCG CACCGTAGGCGCGCCGCTCTCTAC CACCGCCATATCGGGGCGAGACATG CACCGTACTAACGCCGCTCCTACAG CACCGTGAGGATCATGTCGAGCGCC CACCGGGCCCGCATAGGATATCGC CACCGTAGACAACCGCGGAGAATGC CACCGACGGGCGGCTATCGCTGACT CACCGCGCGGAAATTTTACCGACGA CACCGCTTACAATCGTCGGTCCAAT CACCGCGTGCGTCCCGGGTTACCC CACCGCGGAGTAACAAGCGGACGGA CACCGCGAGTGTTATACGCACCGTT CACCGCGACTAACCGGAAACTTTTT CACCGCAACGGGTTCTCCCGGCTAC CACCGCAGGAGTCGCCGATACGCGT CACCGTTCACGTCGTCTCGCGACCA CACCGTGTCGGATTCCGCCGCTTA CACCCACGAACTCACACCGCGCGA CACCGCGCTAGTACGCTCCTCTATA CACCGTCGCGCTTGGGTTATACGCT CACCGCTATCTCGAGTGGTAATGCG CACCGAATCGACTCGAACTTCGTGT CACCGCCCGATGGACTATACCGAAC CACCGACGTTCGAGTACGACCAGCT CACCGCGCGACGACTCAACCTAGTC CACCGGTCACCGATCGAGAGCTAG CACCGCTCAACCGACCGTATGGTCA CACCGCGTATTCGACTCTCAACGCG CACCGCTAGCCGCCCAGATCGAGCC CACCGAATCGACCGACACTAATGT CACCGACTTCAGTTCGGCGTAGTCA CACCGTGCGATGTCGCTTCAACGT CACCGCGCCTAATTTCCGGATCAAT CACCGCGTGGCCGGAACCGTCATAG CACCGACCCTCCGAATCGTAACGGA CACCGAAACGGTACGACAGCGTGTG CACCGACATAGTCGACGGCTCGATT

AAACGGGCTCAGGATACGGTCACCC AAACAGTTGGTGGAACACAACCGAC AAACTGCCTATGTCGGTGGAGGAAC AAACGAAGCGCATCGTGTTTTGGTC AAACGTACCGCATTCGGCACGCCCC AAACACGGGGCGCGCATGCTGATTC AAACTTGCGACGCTTAGCCTCCGTC AAACTTGAACGGGCCGCGGAAGCGC AAACCGCCGTTAAGCGGAAACGATC AAACGTAGAGAGCGGCGCGCCTAC AAACCATGTCTCGCCCCGATATGGC AAACCTGTAGGAGCGGCGTTAGTAC AAACGGCGCTCGACATGATCCTCAC AAACGCGATATCCTATGCGGGCCC AAACGCATTCTCCGCGGTTGTCTAC AAACAGTCAGCGATAGCCGCCCGTC AAACTCGTCGGTAAAATTTCCGCGC AAACATTGGACCGACGATTGTAAGC AAACGGGTAACCCGGGACGCACGC AAACTCCGTCCGCTTGTTACTCCGC AAACAACGGTGCGTATAACACTCGC AAACAAAAAGTTTCCGGTTAGTCGC AAACGTAGCCGGGAGAACCCGTTGC AAACACGCGTATCGGCGACTCCTGC AAACTGGTCGCGAGACGACGTGAAC AAACTAAGCGGCGGAATCCGACAC AAACTCGCGCGGTGTGAGTTCGTGC AAACTATAGAGGAGCGTACTAGCGC AAACAGCGTATAACCCAAGCGCGAC AAACCGCATTACCACTCGAGATAGC AAACACACGAAGTTCGAGTCGATTC AAACGTTCGGTATAGTCCATCGGGC AAACAGCTGGTCGTACTCGAACGTC AAACGACTAGGTTGAGTCGTCGCGC AAACCTAGCTCTCGATCGGTGACC AAACTGACCATACGGTCGGTTGAGC AAACCGCGTTGAGAGTCGAATACGC AAACGGCTCGATCTGGGCGGCTAGC AAACACATTAGTGTCGGTCGATTC AAACTGACTACGCCGAACTGAAGTC AAACACGTTGAAGCGACATCGCAC AAACATTGATCCGGAAATTAGGCGC AAACCTATGACGGTTCCGGCCACGC AAACTCCGTTACGATTCGGAGGGTC AAACCACACGCTGTCGTACCGTTTC AAACAATCGAGCCGTCGACTATGTC

non-targeting_41 non-targeting_42 non-targeting_43 non-targeting_44 non-targeting_45 non-targeting_46 non-targeting 47 non-targeting_48 non-targeting_49 non-targeting 50 non-targeting_51 non-targeting_52 non-targeting 53 non-targeting_54 non-targeting_55 non-targeting_56 non-targeting_57 non-targeting_58 non-targeting_59 non-targeting_60 non-targeting_61 non-targeting_62 non-targeting_63 non-targeting_64 non-targeting_65 non-targeting_66 non-targeting_67 non-targeting_68 non-targeting_69 CACCGATGGCGCTTCAGTCGTCGG CACCGATAATCCGGAAACGCTCGAC CACCGCGCCGGGCTGACAATTAACG CACCGCGTCGCCATATGCCGGTGGC CACCGCGGGCCTATAACACCATCGA CACCGCGCCGTTCCGAGATACTTGA CACCGCGGGACGTCGCGAAAATGTA CACCGTCGGCATACGGGACACACGC CACCGAGCTCCATCGCCGCGATAAT CACCGATCGTATCATCAGCTAGCGC CACCGTCGATCGAGGTTGCATTCGG CACCGCTCGACAGTTCGTCCCGAGC CACCGCGGTAGTATTAATCGCTGAC CACCGTGAACGCGTGTTTCCTTGCA CACCGCGACGCTAGGTAACGTAGAG CACCGCATTGTTGAGCGGGGCGCGCT CACCGCCGCTATTGAAACCGCCCAC CACCGAGACACGTCACCGGTCAAAA CACCGTTTACGATCTAGCGGCGTAG CACCGTTCGCACGATTGCACCTTGG CACCGGTTAGAGACTAGGCGCGCG CACCGCCTCCGTGCTAACGCGGACG CACCGTTATCGCGTAGTGCTGACGT CACCGTACGCTTGCGTTTAGCGTCC CACCGCGCGGCCCACGCGTCATCGC CACCGAGCTCGCCATGTCGGTTCTC CACCGAACTAGCCCGAGCAGCTTCG CACCGCGCAAGGTGTCGGTAACCCT CACCGCTTCGACGCCATCGTGCTCA

AAACCCGACGACTGAAGCGCCATC AAACGTCGAGCGTTTCCGGATTATC AAACCGTTAATTGTCAGCCCGGCGC AAACGCCACCGGCATATGGCGACGC AAACTCGATGGTGTTATAGGCCCGC AAACTCAAGTATCTCGGAACGGCGC AAACTACATTTTCGCGACGTCCCGC AAACGCGTGTGTCCCGTATGCCGAC AAACATTATCGCGGCGATGGAGCTC AAACGCGCTAGCTGATGATACGATC AAACCCGAATGCAACCTCGATCGAC AAACGCTCGGGACGAACTGTCGAGC AAACGTCAGCGATTAATACTACCGC AAACTGCAAGGAAACACGCGTTCAC AAACCTCTACGTTACCTAGCGTCGC AAACAGCGCGCCCGCTCAACAATGC AAACGTGGGCGGTTTCAATAGCGGC AAACTTTTGACCGGTGACGTGTCTC AAACCTACGCCGCTAGATCGTAAAC AAACCCAAGGTGCAATCGTGCGAAC AAACCGCGCGCCTAGTCTCTAACC AAACCGTCCGCGTTAGCACGGAGGC AAACACGTCAGCACTACGCGATAAC AAACGGACGCTAAACGCAAGCGTAC AAACGCGATGACGCGTGGGCCGCGC AAACGAGAACCGACATGGCGAGCTC AAACCGAAGCTGCTCGGGCTAGTTC AAACAGGGTTACCGACACCTTGCGC AAACTGAGCACGATGGCGTCGAAGC

EIDESSTATTLICHE VERSICHERUNG

"Ich, Henrike Lisa Sczakiel, versichere an Eides statt durch meine eigenhändige Unterschrift, dass ich die vorgelegte Dissertation mit dem Thema: ,Identifizierung Pathogenese-relevanter Kandidatengene im Hodgkin-Lymphom durch CRISPR/Cas9-basiertes *knockout*-Screening' selbstständig und ohne nicht offengelegte Hilfe Dritter verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel genutzt habe.

Alle Stellen, die wörtlich oder dem Sinne nach auf Publikationen oder Vorträgen anderer Autoren beruhen, sind als solche in korrekter Zitierung kenntlich gemacht. Die Abschnitte zu Methodik (insbesondere praktische Arbeiten, Laborbestimmungen, statistische Aufarbeitung) und Resultaten (insbesondere Abbildungen, Graphiken und Tabellen) werden von mir verantwortet.

Meine Anteile an etwaigen Publikationen zu dieser Dissertation entsprechen denen, die in der untenstehenden gemeinsamen Erklärung mit dem Betreuer, angegeben sind. Für sämtliche im Rahmen der Dissertation entstandenen Publikationen wurden die Richtlinien des ICMJE (International Committee of Medical Journal Editors; www.icmje.og) zur Autorenschaft eingehalten. Ich erkläre ferner, dass mir die Satzung der Charité – Universitätsmedizin Berlin zur Sicherung Guter Wissenschaftlicher Praxis bekannt ist und ich mich zur Einhaltung dieser Satzung verpflichte.

Die Bedeutung dieser eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unwahren eidesstattlichen Versicherung (§§156, 161 des Strafgesetzbuches) sind mir bekannt und bewusst."

Datum

Unterschrift

Anteilserklärung an etwaigen erfolgten Publikationen

Henrike Lisa Sczakiel hatte folgenden Anteil an der folgenden Publikation:

Schleussner N., Merkel O., Costanza M., Liang H.C., Hummel F., Romagnani C., Durek P., Anagnostopoulos I., Hummel M., Jöhrens K., Niedobitek A., Griffin P.R., Piva R., Sczakiel H.L., Woessmann W., Damm-Welk C., Hinze C., Stoiber D., Gillissen B., Turner S.D., Kaergel E., von Hoff L., Grau M., Lenz G., Dörken B., Scheidereit C., Kenner L., Janz M., and Mathas S. (2018). **The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma.** Leukemia *32(9)*:1994-2007.

Beitrag im Einzelnen:

- Klonierung der sgRNAs für CRISPR/Cas9-*knockout* von BATF und BATF3. Methoden: siehe *Supplementary Methods*. Verwendung dieser in *Figure* 4E.

- Klonierung von lentiviralen Expressionskonstrukten für BATF und BATF3. Methoden: siehe *Supplementary Methods*. Verwendung dieser in *Supplementary Figure* 3A.

Unterschrift, Datum und Stempel des betreuenden Hochschullehrers

Unterschrift der Doktorandin

CURRICULUM VITAE

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.

PUBLIKATIONSLISTE

Schleussner N., Merkel O., Costanza M., Liang H.C., Hummel F., Romagnani C., Durek P., Anagnostopoulos I., Hummel M., Jöhrens K., Niedobitek A., Griffin P.R., Piva R., **Sczakiel H.L.**, Woessmann W., Damm-Welk C., Hinze C., Stoiber D., Gillissen B., Turner S.D., Kaergel E., von Hoff L., Grau M., Lenz G., Dörken B., Scheidereit C., Kenner L., Janz M., and Mathas S. (2018). **The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma.**

Leukemia 32(9):1994-2007.
DANKSAGUNG

In erster Linie danke ich Herrn PD Dr. Martin Janz für die Überlassung dieses spannenden Projektes und die Möglichkeit, in seiner Arbeitsgruppe zu promovieren. Vor allem bedanke ich mich dabei sehr für das mir entgegengebrachte Vertrauen sowie die sehr lehrreiche und enge Betreuung und Begleitung über all die Jahre hinweg.

Mein besonders herzlicher Dank gilt auch Brigitte Wollert-Wulf für die einmalige technische Einarbeitung und experimentelle wie persönliche Unterstützung.

Darüber hinaus danke ich Herrn Prof. Dr. Stephan Mathas sowie allen anderen Mitgliedern unserer Arbeitsgruppe für Diskussionen und die unterstützende, kollegiale Atmosphäre.

Außerdem möchte ich unseren Kooperationspartnern Herrn Prof. Dr. Michael Hummel für Sequenzierungen, Dr. Robin Graf für sgRNA-Desgin und Arthur Yio für bioinformatische Unterstützung danken. Herrn Dr. Konrad Neumann vom Institut für Biometrie und Klinische Epidemiologie danke ich für die statistische Beratung.

Nicht zuletzt gilt mein besonderer Dank meiner Familie und all meinen Freunden, die mich in den vergangenen Jahren begleitet und sehr unterstützt haben.