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Abstract

In railway transportation, each train needs to have a timetable that specifies which track
at which time will be occupied by it. This task can be addressed by automatization tech-
niques both in generating a timetable and in optimizing an existing one. In this paper, we
give an overview on the state of the art of these techniques. We study the computation of a
technically valid slot for a train that guarantees a (short) spatial and temporal way through
the network. Furthermore, the construction of a cyclic timetable where trains operate e.g.
every 60 minutes, and the simultaneous construction of timetables for multiple trains are
considered in this paper. Finally, timetables also need to be robust against minor delays. We
will review the state of the art in the literature for these aspects of railway timetabling with
respect to models, solution algorithms, complexity results and applications in practice.

1 Introduction

Before a train can operate, it is mandatory that it has a timetable. Therefore, railway undertak-
ers request timetables at the infrastructure manager for their train operations. The task of the
infrastructure manager is to coordinate these requests and create a timetable for all operating
trains. In this paper, we review the literature on the state of the art on how this coordination
and generation process can be enhanced by automatization. That is, for the different planing
horizons, periodicities and objectives, we present mathematical models, solution algorithms,
complexity results and application tools.

Single Slot Construction. The timetable of a single train is called a slot. Most of the European
infrastructure managers use the blocking time model to construct a slot (Hansen and Pachl,
2014). In the blocking time model, a slot is a sequence of block segments. Each block segment
is defined from one signal to the next one and has a temporal expansion that reflects the trains
driving dynamics. If two slots of different trains have overlapping block segments, we say that
the trains have a conflict.

Planning Horizons. Depending on the planning horizon, the infrastructure manager has dif-
ferent degrees of flexibility to schedule the requested trains. In the annual timetable, all train
operation requests, both for passenger and freight trains, are collected and then considered si-
multaneously. The request to operate a train comes with a desired planning period, for exam-
ple, only on weekdays. Due to requests from other trains, or due to infrastructure restrictions,
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the infrastructure manager can split the planning period and construct for each part a separate
slot. No two trains can have conflicting slots. For shorter planning horizons and especially in
the intraday ad-hoc timetabling, there already exist the timetables from the annual timetable
and the new slots need to be constructed individually and without any conflicts to existing
slots.

Periodicities. Especially for passenger trains, the railway undertakers often wish to operate
their train periodically, that is, for example, every 60 minutes. Periodical timetabling is mostly
relevant for the annual timetable and ad-hoc train operations run aperiodically.

Objectives. As most infrastructure managers construct their timetables manually, one objec-
tive in automatic timetable generation simply is to generate a timetable without any manual
work but by automatized algorithms. Moreover, in the models for timetable generation, typ-
ically three objectives are considered and balanced out against each other. First, the capacity
utilization shall be maximized, that is, as many trains as possible should operate. Second, the
timetable quality shall be maximized which means that the slots should have minimal running
times. Third, the timetables robustness shall be maximized. That is, the expected follow-up
delays shall be minimized given minor disturbances.

Generation versus Adaption. Timetable optimization can take place in the generation of the
timetable, or in adapting an existing timetable to improve some objective function.

The outline of this paper is as follows. In Section 2, we review models to construct sin-
gle slots in a time-space network that is restricted by capacity utilization. This task comes in
ad-hoc planning, for example, when other trains already use some parts of the infrastructure.
Then, in Section 3, we point out the difference between aperiodic and periodic timetabling. In
particular, we present the Periodic Event Scheduling Problem (PESP) and analyze its complex-
ity. Another complexity in timetabling is planning multiple trains simultaneously, as needs to
be done in the annual timetable. Section 4 is about modelling and solving this problem, which
is called the Train Path Assignment Problem (TPAP). In Section 5, we review timetabling op-
timization models, for both generation and adaption. Finally, in Section 6, we conclude this
paper.

2 Slot Construction

A slot y = ((x, t)i)
n
i=0 of a train is a trajectory through time and space. It specifies the time t a

position x (mostly a signal) is passed. The time difference t′ − t between x and x′ depends on
the infrastructure and the train characteristics. Mostly, the starting time interval, the starting
position and the target position are given. Then, in this simplest model, a slot can be computed
as a constrained path through the time-discretized time-expanded infrastructure graph (cf.
e.g. Caprara et al. (2002), Zhang et al. (2019)). For a mathematical formulation MIP-slot, let F
denote its incidence matrix. That is, F is −1 for each arc entering a particular position x at a
particular time t and +1 for each arc leaving x at t. The set of arcs that can be reached from
an arc depends on the train characteristics, such as maximum speed, and the infrastructure
graph. Furthermore, the indicator vector I is 1 for each arc in the starting position in the
starting interval in time, −1 for the destination arcs, and zero elsewhere. Thus, (1b) ensures
flow conservation. The conflict matrix C ensures that the slot y can only occupy tracks at times
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that are not occupied, yet. Finally, (1d) indicates which arcs the slot uses. The objective (1a)
minimizes the total travel time of the slot.

MIP-slot Minimize tn − t0 (1a)
s.t. Fy = I (1b)

Cy ≤ 1 (1c)
yi ∈ {0, 1} for each yi = (x, t)i (1d)

In particular, the slot construction MIP-slot is polynomially solvable when applying a
shortest path or flow algorithm (Ford and Fulkerson, 1956). However, modelling the driv-
ing on a track only by the time span the train takes to pass the track is too rough for most
infrastructure managers. A more sophisticated model describes a slot as a sequence of block
segments as defined in Hansen and Pachl (2014). A block segment is the time span a track is
utilized by a train in which no other train can enter the track including overlaps and headway
times and depending on the concrete driving dynamics of a train. For example, if a train halts,
depending on its load, it might block the succeeding track for some time because there might
be an overlap. Figure 1 illustrates the construction of a slot as a sequence of block segments in
the capacity that remains after other slots have been planned already. The German infrastruc-
ture manager DB Netz works with the block segment model. Therefore, Dahms et al. (2019)
propose a heuristic shortest path algorithm to compute a slot with its block segments automat-
ically. In the application click and ride, this algorithm comes into practice for the construction
of ad-hoc slots for freight trains.

Figure 1: Block segments in the time-track diagram: The orange train can be scheduled in the
capacity that remains after three other trains (grey) have been scheduled.

3 (A-)Periodic Timetabling

In this section, we will discuss the additional task of a timetable to satisfy periodicity con-
straints. That is, a train is supposed to be operated every T minutes with the same timetable.
We denote T by the period. Following Serafini and Ukovich (1989), the periodic timetabling
problem is modelled in the event network.
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Definition 3.1. An event network is a tuple N = (D, l, u) where D = (V, A) is a directed graph
and l, u ∈ Q|A| such that la ≤ ua for all a ∈ A. The vertices V and arcs A are called events and
activities, respectively.

Events are e.g. passings of a train at a given station or signal. Activities are the driving
from one signal to the next one or the headway times from one train to a succeeding train.
Hence, multiple trains can be scheduled simultaneously. Unlike in the time-discretized time-
expanded infrastructure graph, the events are fixed. That is, deviations in the spatial way a
train takes or different overtaking opportunities are not considered. The only flexibility is the
time differences between the events.

Definition 3.2. Given an event network N = (D, l, u). Then, an aperiodic timetable for N is a
vector π ∈ Q|V| that satisfies

πw − πv ∈ [la, ua] ∀ a = (v, w) ∈ A

A vector π ∈ Q|V| is called a periodic timetable for N with period T if there exists p ∈ Z|A| such
that for all a = (v, w) ∈ A we have

la ≤ πw − πv + paT ≤ ua

Periodicity is not only practical for passengers but also has operational purposes. For ex-
ample, a whole tour of a train is supposed to be a multiple of the period. The following exam-
ple illustrates this situation.

Example 3.3. An event network with cyclic constraints and possible solution (π(1), π(2), π(3)) =
(2, 7, 12).

1

2 3

[4, 6]15

[4, 6]15

[5, 5]15

The aperiodic timetable π or the periodic timetable π mod T together with fixed positions
of the events forms a slot. The acyclic timetabling problem is polynomially solvable using a
shortest paths algorithm (Liebchen, 2006), as is the slot construction. However, the Periodic
Event Scheduling Problem (PESP), i.e. the problem of finding a periodic timetable in the event
network, is NP-complete for T ≥ 3 (Odijk, 1994). The following MIP formulation additionally
minimizes the weighted activity times.

MIP-PESP Minimize ∑
a∈A

ωa(πw − πv + paT − la) (2a)

s.t. πw − πv + paT ≤ ua ∀a = (v, w) ∈ A (2b)
πw − πv + paT ≥ la ∀a = (v, w) ∈ A (2c)

pa ∈ Z ∀a ∈ A (2d)

Solution approaches to tackle the PESP include satisfiability solving (Großmann et al.,
2012), the modulo simplex method by Nachtigall (1998), banch-and-cut of the MIP (Liebchen,
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2006) and mixtures of these (Borndörfer et al., 2020). When the event network is a tree, then the
PESP is polynomially solvable (Liebchen, 2006). Lindner and Reisch (2020) extend this result
by giving pseudo-polynomial-time dynamic programming algorithms if the event network
has bounded tree- or branchwidth. Liebchen (2008) put the PESP into practice and computed
a cyclic timetable for the Berlin underground. In general, cyclic timetabling is most common
for long-term planning of passenger trains.

4 Train Path Assignment Problem

In Section 2, we pointed out that a single slot can be constructed by applying a flow algorithm.
If multiple slots are constructed simultaneously such that no two of them occupy the same
infrastructure at the same time, this problem generalizes to the multi-commodity flow problem
(Caprara et al., 2002). In general, this problem arises in long-term planning of both freight and
passenger trains and we denote the problem of assigning a slot to each of maximally many
trains R the Train Path Assignment Problem (TPAP). Let qr incidate whether or not a train r is
assigned to a slot, Fr the incidence matrix of the train r and C the conflict matrix between arcs
occupying the same infrastructure at the same time. Then, the TPAP can be modelled in the
following MIP.

MIP-TPAP Maximize ∑
r∈R

qr (3a)

s.t. Fryr = qr Ir ∀ r ∈ R (3b)
Cy ≤ 1 (3c)
qr ∈ {0, 1} ∀ r ∈ R (3d)
yr = (((x, t)i)

n
i=0)r ∀ r ∈ R (3e)

(yi)r ∈ {0, 1} ∀ (yi)r = ((x, t)i)r ∀ r ∈ R (3f)

A variant is that the number of trains is fixed and the traveling times of the slots are mini-
mized (Caprara, 2015; Zhang et al., 2019). Even et al. (1975) proved that the multi-commodity
flow problem is NP-complete even for two commodities. This complexity result holds for
both variants. Therefore, studies that solve TPAP for traveling time minimization, schedule at
most several hundred of trains, as Zhang et al. (2019) have pointed out. On the other hand,
Nachtigall and Opitz (2014) use column generation to solve the TPAP for maximizing the ca-
pacity utilization of freight trains in the east of Germany. Reisch et al. (2020) extend this work
by a heuristic column general approach and solve the TPAP for capacity maximization for all
freight trains in Germany, that is, more than 5000. Zhang et al. (2019) close the gap to periodic
timetabling by incorporating constraints to generate a cyclic timetable in the TPAP model.

5 Timetable Robustness

So far, we have seen models and solution approaches to schedule as many trains as possible
or to find schedules with minimal traveling times. A third objective in railway timetabling is
the robustness against minor delays that occur stochastically in railway operations. That is,
given a distribution of minor disturbances, the sum of expected delays is to be minimized.
The means to achieve this goal are buffer times between train trips on the one hand and time
supplements in the timetable of a train, on the other hand. When buffer times are sufficiently
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large, minor delays of a train trip will not be propagated to the consecutive trip whereas sup-
plements enable a train to compensate for delays that have occured already.

Stochastically occuring delays can be modelled by adding the amount ζ of delay to the min-
imum traveling times from x to x′ in the TPAP model or to the lower bounds on the activities l
in the PESP model. The vector ζ is referred to as a scenario. The scenario ζ̂ ∈ Z without any de-
lays is called the nominal scenario. In (strict) robust optimization, the generated timetable needs
to be feasible for every possible scenario ζ in a set Z of plausible delay scenarios (Goerigk and
Schöbel, 2010). Let F be the constraints, x be the variable and f the objective. Then, in its most
general form, a (strict) robust optimization problem reads as follows.

strict-robustness Minimize f (x) (4a)
s.t. F(x, ζ) ≤ 0 ∀ζ ∈ Z (4b)

Since this modelling is very conservative, Fischetti and Monaci (2009) introduce the concept
of light robustness for train timetabling where exceedances γi of a constraint i are minimized in
the objective function. Let z∗ be the optimal value of the nominal problem and δ a parameter
restricting the deviation from the optimal solution value of the nominal scenario. Then, the
light robustness problem reads as follows.

light-robustness Minimize ∑ γi (5a)

s.t. F(x, ζ̂) ≤ 0 (5b)

f (x, ζ̂) ≤ (1 + δ)z∗ (5c)
Fi(x, ζ) ≤ γi ∀i ∀ζ ∈ Z (5d)
γ ≥ 0 (5e)

Schöbel and Kratz (2009) apply the robust optimization to the aperiodic timetabling in an
bi-criteria approach compromising robustness and travelling times. Furthermore, there are
studies where the robust timetable is not generated but merely modified. For instance, Maróti
(2017) applies stochastic programming to find an optimal allocation of buffer and supplement
times of a given reference timetable and applies it to a 1-hour timetable of the whole Nether-
lands Railways (NS).

Finally, there is a number of approaches that consist of evaluations of the robustness of a
modified timetable only. Such approaches include both simulation (Middelkoop and Bouw-
man, 2000), and analytical computations (Huisman and Boucherie, 2001) to derive the expected
amount of propagated delays in a timetable with respect to a distribution of occurring delays.
Reisch and Kliewer (2020) close the gap to robust timetable modification by introducing black-
box optimization rules for these evaluation approaches with the aim of adjusting the timetable
such that the new one improves the objective of minimal delays.

6 Conclusion

In this state of the art overview, we considered different aspects of computer-aided railway
timetabling. We presented the notion of a slot which is a timetable for a single train and that it
can be computed in polynomial time. Furthermore, we stated the difference between periodic
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and aperiodic timetables and showed that the periodic problem modelled as the PESP, is NP-
complete. Likewise, the complexity of scheduling multiple trains on a limited infrastructure,
modelled as the TPAP, is NP-complete. Finally, we presented approaches that optimize railway
timetables with respect to minimizing the sum of expected delays.
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Even, S., Itai, A., and Shamir, A. (1975). On the complexity of time table and multi-commodity
flow problems. In 16th Annual Symposium on Foundations of Computer Science (sfcs 1975), pages
184–193.

Fischetti, M. and Monaci, M. (2009). Light Robustness, page 61–84. Springer-Verlag, Berlin,
Heidelberg.

Ford, L. R. and Fulkerson, D. R. (1956). Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404.
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