
 
 
 
 
 
 
 

Chapter 3: Figure Legends and Figures 



Figure legends 
 

Figure 1. Structure and excitability of MN5 

(A) Expression patterns of C380-GAL4; UAS-mCD8-GFP, Cha-GAL80 in the ventral nerve 

cord of the adult fly. (A) shows the thoracic neuromeres with expression in the flight 

motoneurons MN1-5, a ventral unpaired median (VUM) neuron, and about 10 unidentified 

neurons in each thoracic hemisegment. The locations of the somata of MN1-5 are marked by 

white arrows. Expression of mCD8-GFP under the control of C380-GAL4 in the abdominal 

neuromeres is depicted in (Ai). (B) shows the location and overall dendritic structure of the 

flight motoneurons MN1-5 as revealed by selective retrograde staining from the DLM flight 

muscle. The fine structure of MN5 is depicted in (C) as a projection view of all confocal 

optical sections into one image plane. The intracellular label of MN5 is superimposed by a 3-

dimensional dendritic reconstruction in (Ci). The run of the link segment is indicated by two 

white arrows (see text). The branching structure as determined by geometric reconstruction is 

shown as dendrogram in (Cii). Representative traces from in situ patch-clamp recordings from 

the soma of MN5 in current-clamp mode are shown in (D). Injecting current into the soma of 

MN5 results in a phasic firing response. The current injection protocol is shown as inset in 

(D). From the resting membrane potential 14 current injections of 200 ms duration and with 

increasing amplitude in 100 pA increments were given. The larger the amplitude of the 

injected current, the shorter is the delay to action potential initiation. This is shown as 

selective enlargement of the time scale in (Di). (Dii) shows 14 consecutive sweeps of 

increasing current injection amplitude at a low but easy to compare time resolution. To 

account for some variability as occurring in the recordings in (E) a non-representative extreme 

example of a similar current-clamp experiment is shown. The firing response to somatic 

current injection is also phasic but triplets of spikes occur. (F) shows a representative example 

of the existence of a sag potential upon negative somatic current injection.  

 

 

Figure 2. Intrinsic in vivo excitability of MN5 is altered by genetic manipulations of 

potassium channels 

Representative examples of spiking responses to current injected into the soma of MN5 as 

determined by in situ patch-clamp recordings are depicted for 4 different genotypes in (A to 

D). Selective enlargements of the onset of the voltage response to 1.4 nA current injection are 
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shown in (Ai to Di). The typical phasic firing responses of MN5 from heterozygous control 

animals is shown in (A). Dominant negative eag potassium channel knock-down increases the 

number of spikes caused by current injections of a given amplitude, but the firing patterns are 

still phasic, and the amplitude of additional spikes becomes increasingly smaller (B). 

Dominant negative double knock-down of eag and Shaker causes a tonic firing response (C). 

Expression of two copies of EKO causes an absence of action potentials as response to 

somatic current injection.  

To account quantitatively for variability in the firing responses within each genotype, the 

firing responses were classified in 5 types (no response, graded peak, single spike, phasic 

firing and tonic firing). The percentage of recordings falling into each of these categories is 

plotted for each of the four genotypes (E).  

 

 

Figure 3. Genetic manipulations of potassium membrane currents do not affect overall but 

detailed dendritic branching structure 

The left column (A to D) shows representative intracellular stainings of MN5 from different 

genotypes. For visualization of all dendrites in one image, all optical sections from confocal 

image stacks are projected into one image plane using the maximum intensity method (A = 

control; B = eagSDN double knock-down; C = eagDN knock-down; D = expression of EKO). 

In (Ai to Di) the projection views are overlaid with images of geometric reconstructions from 

confocal image stacks. In (Aii to Dii) the branching diagrams (dendrograms) resulting from 

geometric reconstructions are shown. 

 

 

Figure 4. Quantitative comparison of the dendritic structure of MN5 from control, 

hyperexcitable (eagSDN knock-down) and hypoexcitable (expression EKO) MN5 

The total dendritic length (TDL) from all 3 genotypes is shown in (A). The number of branch 

points is depicted in (B). Mean dendritic length of all dendritic segments is shown in (C), and 

the mean maximum branch order for each genotype is depicted in (D). The mean distance of 

all dendritic segments to the origin of the tree is depicted in (E) and mean surface of all three 

genotypes is shown in (F). Green bars are control, dark blue bars represent eagSDN, and light 

blue bars are EKO. Error bars represent standard deviation. The number of animals for 
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eagSDN and EKO is 5 each, and the number of control animals is 7. Statistical significance is 

indicated by asterisks; * = p < 0.05, ** = p < 0.001.  

 

Figure 5. Branch order analysis of the dendritic structure of MN5 from control, 

hyperexcitable (eagSDN knock-down) and hypoexcitable (expression EKO) MN5 

(A) shows the mean number of dendritic branches (y-axis) per branch order. (B) shows the 

mean dendritic branch length per branch order. Green bars are control, dark blue bars 

represent eagSDN, and light blue bars are EKO. The number of animals for eagSDN and 

EKO is 5 each, and the number of control animals is 7.  

 

 

Figure 6. Dendritic diameters are altered in MN5 with EKO mediated decreased intrinsic 

excitability.  

Mean dendritic diamters (y-axis) are plotted as a function of branching order. Green bars are 

control and light blue bars represent EKO. Error bars represent standard deviations. Data are 

from 7 control and 5 EKO reconstructions.  

 

 

Figure 7. Genetic manipulations affect flight motor performance.  

(A) Time lapse images of restrained flight behavior show subsequent images of one wing beat 

filmed at 1000 frames per second. (B) shows the percentage of flies responding with flight 

motor behavior after tarsal contact with the substrate is terminated and a wind stimulus is 

applied to the animals head. (C) depicts the median and upper and lower quartiles of the flight 

duration to the first stop (initial flight). (D) shows the median and upper and lower quartiles of 

the total flight duration until the flies stopped responding with flight behavior to three 

consecutive wind stimuli. Green bars are control (n = 37), dark blue bars represent eagSDN (n 

= 38), and light blue bars are EKO (n = 25). Asterisks indicate statistical significance. Mann 

and Whitney U-test, p < 0.05. 
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