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Abstract: Quantitative sediment analyses performed in the laboratory are often used throughout
archaeological excavations to critically reflect on-site stratigraphic delineation. Established methods
are, however, often time-consuming and expensive. Recent studies suggest that systematic image
analysis can objectivise the delineation of stratigraphic layers based on fast quantitative spectral
measurements. The presented study examines how these assumptions prevail when compared to
modern techniques of sediment analysis. We examine an archaeological cross-section at a Bronze
Age burial mound near Seddin (administrative district Prignitz, Brandenburg, Germany), consisting
of several layers of construction-related material. Using detailed on-site descriptions supported
by quantitatively measured sediment properties as a measure of quality, we compare clustering
results of (i) extensive colour measurements conducted with an RGB and a multispectral camera
during fieldwork, as well as (ii) selectively sampled sedimentological data and (iii) visible and near
infrared (VIS-NIR) hyperspectral data, both acquired in the laboratory. Furthermore, the influence
of colour transformation to the CIELAB colour space (Commission Internationale de l’Eclairage)
and the possibilities of predicting soil organic carbon (SOC) based on image data are examined.
Our results indicate that quantitative spectral measurements, while still experimental, can be used to
delineate stratigraphic layers in a similar manner to traditional sedimentological data. The proposed
processing steps further improved our results. Quantitative colour measurements should therefore
be included in the current workflow of archaeological excavations.

Keywords: digital archaeology; image classification; stratigraphy; landscape archaeology; sediment
analysis; spectroscopy; proximal sensing

1. Introduction

Stratigraphic documentation and interpretation are crucial parts of archaeological research.
Since the emergence of the archaeological discipline, researchers have been concerned with the
identification of methods that allow more objectivity in stratigraphic delineation and interpretation.
The fundamental work of, e.g., Harris [1] is meanwhile complemented by a progressing digitisation of
fieldwork (e.g., [2]) and a growing number of on-site measurements and analyses carried out in various
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laboratories in the aftermath of an excavation. These techniques comprise, e.g., the establishment of
soil colour standards (cf. [3,4]), geochemical analyses of sediments (e.g., [5–7]), the analysis of thin
sections (e.g., [8]), or the analysis of pollen [9] and phytoliths [10].

The overall objectivity of stratigraphic interpretation clearly benefits from these techniques.
Nevertheless, the initial on-site delineation of stratigraphic layers (i.e., stratigraphic documentation)
remains partly influenced by the perception of the respective researcher at work. As pointed out by
Zhang and Hartemink [11] and Haburaj et al. [12], statistical analysis of RGB and multispectral images
of soil profiles can be utilised to semi-automatically delineate stratigraphic units. These derived units
are based on the physical measurement of the sediments’ spectral reflectance and allow the respective
researcher to critically face up to his or her delineation.

Building upon these developments, our study further explores the potential of visible and
near-infrared (VIS-NIR, 400–700–2500 nm) spectral data for archaeological fieldwork. Due to its
non-destructive character and the moderate extent of necessary sample preparation, spectroscopy in
general has the potential to save time and costs during fieldwork (e.g., [12–15]). Working with an
archaeological cross-section from a Bronze Age burial mound from Brandenburg, northern Germany,
we investigate how traditional geochemical sediment analyses, selective spectroscopic measurements,
and extensive RGB and multispectral image data can be used to objectivise archaeological field
documentation by quantitatively capturing stratigraphic layers. Using a detailed on-site description
supported by quantitatively measured sediment properties (grain size composition, water content,
and soil organic carbon content) as a measure of quality, we compare clustering results of (i) extensive
colour measurements (i.e., image data) acquired with an RGB and a multispectral camera during
fieldwork, as well as clustering results of selectively sampled (ii) portable energy-dispersive X-ray
fluorescence spectrometer (p-ED-XRF) data and (iii) visible and near infrared (VIS-NIR) hyperspectral
data, both acquired in the laboratory. This experimental approach allows us to illustrate the benefits
and shortcomings of systematic spectral measurements as a complementary or alternative method for
stratigraphic documentation, delineation, and interpretation.

The characteristics of the recorded diffuse reflectance spectra of the sediments are directly linked
to their chemical and physical composition (e.g., [13]). Within the last two decades, an increasing
number of publications were devoted to the prediction of soil properties via VIS-NIR spectroscopy
(e.g., [16–20]). Soriano-Disla et al. [21] deliver an extensive overview on the predictability of multiple
soil properties via visible, near-infrared, and mid-infrared spectral data. We therefore examined
how the conducted image classification performs when using additional input data: We were able
to calibrate a prediction model for soil organic carbon (SOC) based on the recorded spectral signal
and created a raster containing predicted SOC values for the entire profile. Several authors have
argued that the CIELAB colour space (Commission Internationale de l’Eclairage) shows a clear benefit
regarding quantitative analyses (e.g., [22–27]). The CIELAB colour space consists of three values: L* is
the vertical axis and is defined by lightness, while a* and b* represent the chromaticity (a*: Red/green;
b*: Yellow/blue). We examined colour transformation to the CIELAB colour space, as it was found to
be highly effective when analysing soil profiles (e.g., [28]). Hereby, our overarching aim remains the
delineation of stratigraphic layers rather than the quantitative examination of sediment properties.

Our results indicate the importance of quantitatively measuring sediment colours—be it selective
or extensive—as they constitute an additional layer of documentation during an archaeological
excavation, which can be acquired easily and render the on-site archaeological documentation
and interpretation more transparent and reproducible. The study at hand is presented as an
experimental investigation, which allows us to assess the potential of VIS-NIR spectral sensors for
archaeological fieldwork.
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Study Site

The Bronze Age burial mound of Seddin (colloquial: ‘King’s Grave’, German: Königsgrab Seddin),
which was discovered in 1899, is widely known for its tremendous size and the valuable funerary
goods made from bronze, iron, glass, and stone (e.g., [29–31]). It was dated to approximately 800 BC
(period V of the Nordic Bronze Age) and has a central role in the regional cultural landscape, which
today covers the north-west of the federal state of Brandenburg and southern Mecklenburg [32,33].
While past studies found the surroundings of the burial mound to be heavily shaped by human
influence, which occurred during the Bronze Age [31,34], the ‘King’s Grave’ keeps an outstanding
position, both regarding its geographical location and its rich physical characteristics. Estimates
by May [35] see the total height of the mound between eight and ten metres. The burial mound is
separated spatially from smaller groups of burial mounds in the surrounding area. It is located on a
slight spur, surrounded by multiple waterbodies [31]: 900 m east of the burial mound runs the river
Stepenitz, and in the north and south, two of the river’s tributaries delimit the burial mound from its
surroundings (Figure 1). The parent material is dominated by Pleistocene deposits, composed mostly
of fine to coarse glaciofluvial sand with little or no gravel [36]. West and south of the burial mound,
clayey to sandy silt can be found. In the hollows, associated with the two tributaries of the Stepenitz
(Figure 1), muck soil of a sand–humus mixture dominates, which overlies fluvial and periglacial
deposits [36]. The relief of the surrounding landscape is characterised by a smooth, rather levelled
topography that is dissected by depressions and river valleys. Regarding the wider vicinity, several
burial mounds of similar size are known but have mostly been destroyed and lack any archaeological
record [31,37]. Regardless of the nature of these undocumented burial mounds, their sheer amount
reflects the importance of this landscape during the late Bronze Age. Brunke et al. [38] see the ‘King’s
Grave’ of Seddin as the clearest manifestation of an accumulation of wealth and power in this area
around the middle reaches of the Stepenitz.

Figure 1. Location of the study site: (a) Surroundings of the burial mound; (b) location of section
SD17P1. Elevation data: LiDAR-based DEM (1 × 1 m) by Geobasis-DE/LGB 2013 (R. Hesse; modified).

Within this study, we examine section SD17P1 (297601 E, 5891584 N; WGS84; UTM 33N),
which was documented in 2017 during an excavation on the north-western slope of the Bronze
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Age burial mound of Seddin. The investigated section faces north, is approximately 3.2 m high,
and consists mainly of anthropogenic layers: Only the lowermost 20–40 cm are interpreted as the
buried local soil (Figure 2c,E), which was dated by three14C-AMS ages to the ninth century BC [33].
The remaining part of the profile consists of discrete layers, which were piled up during the construction
of the burial mound with alternating layers of stone and sand that were deposited on top of each
other. In addition, there is a horizontally running, thin, dark layer, which crosses the lowest artificial
sand layer (Figure 2c,C). The type of construction with stone layers at hand is congruent with the
findings of Brunke et al. [38], who examined the south-eastern side of the burial mound in 2013.
However, the diagonal segmentation and orientation of sand layers B and D is only present in SD17P1.
The topmost stone layer of SD17P1 most likely represents the Bronze Age surface, which would,
in addition to the prominent position of the mound, emphasise its monumental character (cf. [33]).

All analyses carried out in this study focus on the parts of the profile that lie above the lowest layer
of stones, which is approximately 200 cm below the surface of the burial mound. Layer E (local soil) is
therefore excluded from the processing (Figure 2c).

Figure 2. Archaeological section examined. (a) Location of the sediment samples taken; (b) overview
of the section; (c) drawing of the archaeological section examined. Layers A to D are part of the
anthropogenically created burial mound. Layers B and D consist of numerous diagonal layers, which
are summarised here. Colour and texture of the sediments were documented during fieldwork and
are presented in Figure 5 along with the sedimentological record (Section 3.1). Layer E is interpreted
as the local soil that was buried during the construction of the burial mound [33] and is excluded
from all analyses.

2. Materials and Methods

Our experimental design involves the measurement of selective data based on sediment samples
extracted from the archaeological profile and extensive image data acquired during fieldwork.
The workflow is depicted in Figure 3, and a more detailed documentation of the data processing along
with scripts for the programming language R is given in Online Resources 1–3 (in Supplementary
Materials).



Heritage 2020, 3 532

Figure 3. Schematic depiction of our workflow. Image processing included principle component
analysis (PCA), derivation of slope rasters, colour transformation to CIELAB (Commission
Internationale de l’Eclairage), and the prediction of soil organic carbon (SOC). The standardised centred
log ratio (clr) of the data acquired with the portable energy-dispersive X-ray fluorescence spectrometer
(p-ED-XRF) was used. Spectroscopic measurements of the sampled material were processed using
standard normal variate (SNV) transformation with detrending applied to the first derivative of the
log(1/R) transformed spectrum. This allowed us to create stratigraphic delineations based on extensive
and selective data and to compare the performance of colour and spectral measurements to traditional
p-ED-XRF data.

2.1. Laboratory Sediment Analyses

Analyses were performed using the topmost 31 samples, extracted from the eastern part of the profile
and vertically covering a depth of 6 to 194 cm, thus excluding the natural soil of layer E (Figure 2a). Samples
were extracted and stored in airtight bags to minimise errors when measuring water content. We densely
sampled layers B and D to consequently capture the variability between the single obliquely bedded sand
layers. Stratigraphic (sub)layers were described regarding colour and texture using the Munsell soil colour
chart [39] and the German manual of soil mapping [40] respectively.

Further laboratory analyses of the sediments followed after the determination of the water content
and sample preparation, including crushing of aggregates, separation of coarse components with a
2-mm sieve, and homogenising of the subsamples for carbon and portable energy-dispersive X-ray
fluorescence spectrometer (p-ED-XRF) analyses in a vibrating disc mill.

2.1.1. Water Content

The water content was determined gravimetrically. The moist samples were weighed, heated in a
drying cabinet at 105 ◦C until a constant weight was reached, cooled down to room temperature in a
desiccator, and weighed again. The water content was calculated according to [41] and reported in mass%.

2.1.2. Soil Organic Carbon

The total carbon content of the samples was determined using a TruSpec CHN analyser by Leco
(St. Joseph, Michigan, USA). Additionally, a small portion of the powdered material from all samples
was tested for its carbonate content using 9.9% HCl acid. None of the samples showed signs of
carbonate, which is why the measured total carbon content is interpreted as the total organic carbon
content. During measurement, the samples were dry combusted at 950 ◦C in an oxygen atmosphere,
and carbon fluxes were quantified by infrared spectroscopy. The results were calibrated using certified
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reference material (CRM; Leco 502–309; 12.29 ± 0.37 mass% C; Leco 502–308; 3.6 ± 0.29 mass% C;
reproducibility was <2% RSD) and are reported as soil organic carbon (SOC) in mass%.

2.1.3. pH Value

The pH values of the samples were measured in a 1:2.5 solution of 10 g of dried sediment and
25 mL of 0.01 M KCl using a handheld pH meter (Hanna Instruments, Woonsocket, Rhode Island,
USA) with a resolution of 0.1.

2.1.4. Grain Size

The particle size distribution for the fraction ≤1 mm was determined with a laser diffraction
particle size analyser LS13 320 by Beckman-Coulter (Brea, California, USA). The samples were sieved
with a 1-mm sieve and bi-distilled water together with about 0.5 g Na4P2O7 as an anti-coagulation
agent. The samples were placed in an overhead shaker for 24 h and ultrasonic treated for 5 min
directly before the measurement. The prepared samples were put into a liquid sample divider and two
subsamples were measured with three independent runs each. The six measurements per sample were
averaged to obtain the sample’s grain size distribution [42]. Particle sizes are defined according to [40]
and reported in vol%.

2.1.5. Element Concentrations

Analysis of element concentrations was conducted with a Niton XL3t portable energy-dispersive
X-ray fluorescence spectrometer (p-ED-XRF) by Thermo Scientific (Waltham, Massachusetts, USA).
Internal parameter calibration was set to ‘mining mode’ and all measurements were recorded in %.
Two certified reference materials (CRMs) were used for quality control: GBW07312 (stream sediment;
National Research Center for Certified Reference Materials in China) and NCS DC 73387 (soil; China
National Analysis Center for Iron and Steel). The CRMs were measured repeatedly after every
eight samples. Since this study does not examine any absolute elemental concentrations but, rather,
the overall variability throughout the profile, the CRMs were used only to ensure validity of the
measured data. Recovery values were therefore not examined quantitatively.

Further processing of the p-ED-XRF data was necessary to produce reliable measurement results.
Measurements with a value smaller than or equal to three times the 1-σ error were discarded. Following
Schmidt et al. [43], the remaining results were analysed using a compositional data approach to manage
the consistent sum-constrained model [44] via R [45]. Elements were only processed if the number of
values below the limit of detection did not exceed 10% of the respective measurements. Subsequently,
the data were transformed using centred log-ratio (clr; [44]):

z = clr(x) = [ln(x1/g(x)), ln(x2/g(x)), ..., ln(xD/g(x))], (1)

where g(x) = [x1 × x2 × ... × xD]× 1/D is the geometric mean of all parts of the observation x =

[x1, x2, ..., xD]. This transformation was conducted using the compositions package for R [46]. Prior to
the conducted cluster analysis, the data were additionally standardised using a robust z-transformation.

2.1.6. Visible and Near-Infrared Spectroscopy

Visible and near-infrared reflectance of the sediment samples was captured using an FieldSpec II
spectroradiometer by ASD (Malvern, Worcestershire, UK). Samples were measured before and after
homogenisation. This allowed us to indicate an influence of material, which may be coating quartz
grains and, therefore, over-represented in the unground samples (e.g., fine clay or Fe oxides, see [21]),
and likewise to assess the general influence of grinding and homogenisation on sediment colour [47].
Reflectance was measured between 350 and 2500 nm in 1 nm steps. Measurements were acquired in
a darkroom, where each sample was uniformly illuminated by two halogen lamps to minimise the
casting of shadows. Samples were spread homogeneously on a plate, and the fibre optic cable of the
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spectroradiometer was placed above the samples (Online Resource 3 in Supplementary Materials).
Each spectrum was averaged from 50 single measurements to compensate for uneven sediment texture.
A white reference was captured every 15 min to minimise variation between the measurements and to
acquire normalised reflectance values in the range [0, 1].

The raw spectral information showed a high noise content below 450 nm and above 2300 nm,
as well as several smaller aberrations. The spectra were therefore smoothed using a Savitzky–Golay
filter of second polynomial order with a width of 21 values [48]. This was conducted with the hsdar
package for R [49]. Due to the high amount of noise below 450 nm, the spectral data were limited to
the range between 450 and 2500 nm for further processing (Figure 4).

Several studies recommend analysing spectral absorbance rather than spectral reflectance
(e.g., [23,50]). Spectral reflectance R was therefore transformed into absorbance A = log(1/R),
which allows for a better correlation of the signal with sedimentological data.

As an increase of overall reflectance was observed after homogenisation of the samples, several
processing steps were carried out to compensate for this (Figure 4). Building upon Stenberg et al. [50],
baseline correction was conducted by calculating the first derivative, which eliminated the existing
baseline shift [51]. Furthermore, this step enhanced weak spectral signals. Since this step also introduced
additional noise, the baseline corrected spectra were then smoothed using a Savitzky–Golay filter of
second polynomial order with a width of 21 values. Subsequently, scatter correction was performed by a
standard normal variate (SNV) transformation and de-trending [52]. These pre-processing steps allow
for the direct comparison of the spectra of homogenised and non-homogenised samples as well as an
enhancement of relevant spectral peaks and a reduction of, e.g., overall curvature [50]. A more detailed
documentation of the workflow is delivered in Online Resource 3 (Supplementary Materials).

Figure 4. Exemplary spectral signal (450–2500 nm, sample no. 10) before (a) and after (b) pre-processing.
Standard normal variate (SNV) transformation with detrending was applied to the first derivative of
the log(1/R) transformed spectrum.

2.2. Image Acquisition

Digital RGB photographs of section SD17P1 were taken using a 24.3 MP mirrorless camera with
a 2.8/16 mm lens (Sony ILCE-6000, Sony SEL-16F28, by Sony, Tokyo, Japan). Multispectral imaging
was carried out using a Micro-MCA snapshot camera with six spectral channels (Table 1) by TetraCam
(Chatsworth, California, USA). Central wavelengths and FWHM (full width half maximum) of the Sony
ILCE-6000 RGB camera have been previously published by Haburaj et al. [12] and used throughout
this study.

Using optical measurement systems, the lighting of the profile needs to be controlled and
documented. Images were captured under natural diffuse daylight. Apart from smaller diffuse
shadows in the corners, the section was captured under uniform lighting conditions. The cameras were
placed on a tripod and centred in front of the respective section. Rotation of the cameras was limited
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to a minimum, and black-and-white reference targets were placed in the section, which allowed us to
overlay and merge images manually afterwards while keeping spatial distortions at a minimum.

Table 1. Technical specifications of the camera systems used; central wavelengths of the spectral
channels blue, green, red, red edge, NIR1, and NIR2.

Sony ILCE-6000 TetraCAM MicroMCA-6

B 485 nm 490 nm
G 540 nm 550 nm
R 595 nm 680 nm

red edge - 720 nm
NIR1 - 800 nm
NIR2 - 900 nm

spatial resolution 5696 × 4272 px 1280 × 1024 px

colour depth 8 bit 10 bit

The RGB images were converted into 8-bit TIF format and normalised to the range [0, 1] via
feature-scaling. Six multispectral images were recorded in TetraCam RWS-format (each containing
one spectral channel and stored in three 8-bit layers, labelled red, green, and blue) and, to allow
further processing, converted into six 10-bit TIF-format images using the formula provided by
the manufacturer.

Since the used multispectral camera consists of an array of six separate cameras and the images
were acquired from a distance of approximately five metres, a significant spatial offset between the
spectral channels was present and required manual band alignment. The proprietary processing
software PixelWrench2 contains an option for minimising this offset, which was used successfully
by, e.g., Retzlaff [53]. This solution, however, is more suitable for images acquired during remote
sensing, as they keep a certain minimal distance from the subject, therefore keeping the spatial offset
at acceptable levels. Our ground-based approach, on the contrary, included an offset that was too high
and, therefore, was corrected through the pairwise manual selection of reference points. The resulting
multispectral images were normalised to the range [0, 1] via feature scaling.

2.3. Image Analysis

2.3.1. Image Pre-Processing

To allow for the comparison of the classification results via spatially consistent image data,
the recorded RGB and multispectral images were processed by manually registering 12 reference
points (overlapping geometries and artificial black-and-white targets) for thin plate spline [54]
transformation (TPS) with nearest neighbour resampling, carried out with the Georeferencer plugin in
QGIS (v2.18). This resulted in overlying images, which are necessary to assess the quality of the final
results. All non-sediment objects captured in the images were masked manually. Aside from external
disturbances like grass patches and other vegetation, this included the prehistoric stone layers that
are separating the sediment layers from one another (Figure 2). This step was conducted using the
raster package for R [55]. Minimising the impact of image noise and smaller disturbances within the
profile, the images were filtered spatially using the raster package for R [55]. To keep the geometric
alteration as low as possible and, likewise, to minimise the influence of outliers, we chose a median
filter with a window size of 21 by 21 pixels (multispectral data) and 101 by 101 pixels (RGB data) for
spatial filtering. The window size was scaled according to the respective spatial resolution and set
to quite high values, since our main interest was in the main strata. The sediment layers examined
did not include flakes of, e.g., brick, charcoal, or mortar, which renders the loss of texture detail in the
image data acceptable [12].
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2.3.2. Slope Rasters

Various derivatives of raster data show a positive impact on classification results. According to
Haburaj et al. [12], the spectral slope between red, green, and blue channels—while introducing more
noise—can help to identify organic material in the images. Slope rasters were therefore created for both
the RGB and the multispectral image data, leading to two and five additional raster layers, respectively.

2.3.3. Principal Component Analysis

Additional raster layers were created by performing a principle component analysis
(PCA, conducted via [56]) on the RGB image and the multispectral image. The number of principle
components was set to two, since this delivered an acceptable explained cumulative variance
(Online Resource 1 in Supplementary Materials).

2.3.4. CIELAB

The colour spaces CIELAB, CIE-Yxy, and Munsell are suited for the analysis of iron oxide content
in soils and sediments [57,58]. The CIELAB colour space shows a clear benefit regarding quantitative
analyses and was used throughout the presented study, since CIELAB coordinates are often influenced
by soil and sediment properties: CIELAB lightness L* is often regarded to be related with organic
matter, and CIELAB chromaticity coordinates a* and b* were proven to be related with different iron
oxide concentrations (cf. [27,57,59]). While these relations are measurable, authors generally conclude
that the specific relation is highly dependent on the material examined and often cannot be transferred
between different soil types [27].

The recorded image data were therefore transformed into the CIELAB colour space using the
convertColor() function for R. The CIE standard illuminant D65 was used as reference white, since
its properties are close to real indirect daylight as present during fieldwork. The multispectral data
were modified so that only the red, green, and blue bands were transformed. The produced raster
layers were used as additional input for classification with the intent of adding a rough measurement
of lightness and, more importantly, iron oxide content.

2.3.5. Soil Organic Carbon

Numerous studies have examined the prediction of soil organic carbon (SOC) via the spectral
signal [17–20,60–63]. Most recent publications tend to stress the better accuracy of machine learning
algorithms [13], especially when predicting more complex soil properties. For the prediction of SOC,
however, linear regression models have proven to deliver robust predictions with acceptable accuracy.
Since our study solely aims for the rough delineation of strata and our number of prediction variables
is quite low, ordinary least squares (OLS) regression was chosen as a rather straightforward prediction
model. As already pointed out by Bumgardner et al. [60], the overall reflectance in the visible part
of the spectrum decreases when the organic matter content increases. For this reason, only the first
four image bands of the multispectral image were used as input data for the prediction of SOC (450,
550, 680, and 720 nm). SOC measurement results were assigned to a set of training pixels, which were
extracted from the image bands based on the respective sampling locations. Training pixels comprise
all pixels of the digitised sample location. As the number of pixels is quite small due to the limited
spatial resolution of the images, further processing of the pixel values via, for example, mean values of
random subsets (as suggested for bigger data sets by, e.g., [63]) was not conducted. The fitted model
was used for prediction of SOC based on all image pixels. Model fitting was performed with the stats
package for R [45] and prediction using the raster package for R [55].

2.4. Cluster Analysis

Unsupervised classification of the processed data was conducted to semi-automatically delineate
stratigraphical (sub)units from (i) the image data and their derivatives and (ii) multiple parameters
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of the sedimentological data. This type of classification does not require the definition of training
areas and, thus, assumptions prior to the performance of the classification; it therefore excludes the
researcher’s subjective perception [12]. The on-site delineation by local archaeological experts in
combination with the results of the quantitative sedimentological analyses was used as a reference to
discuss the quality of the results.

2.4.1. Sedimentological Data

Unsupervised classification of the sediment properties examined was used to verify stratigraphic
delineation conducted during fieldwork. The most recent work of Schmidt et al. [43] shows that
hierarchical clustering of element concentrations may be used to classify sediment data for stratigraphic
delineation and interpretation. Building upon their work, we applied cluster analysis of Manhattan
distances performed with Ward’s method (e.g., [64]). Additionally we examined the benefit of
depth-constrained clustering [65] using CONISS [66]. The number of clusters/groups is based on the
layers identified in Figure 2c: Four main layers (A, B, C, D) and two additional layers, representing the
sediment parts within the stone layers. The total number of six clusters was increased to 10 clusters
for depth-constrained clustering, now including transitional layers between the main layers. Both
clustering approaches were conducted for (i) the pre-processed element concentrations (p-ED-XRF),
the pre-processed spectra of the (ii) ground and (iii) unground sediment samples, and (iv) the median
pixel values of the RGB and (v) multispectral images, extracted from the sampling locations.

2.4.2. Image Data

In past studies, k-means clustering was successfully applied for the analysis of soil data
(e.g., [11,12,62]). In this study, clustering was carried out in the spectral domain using the k-means
algorithm proposed by Hartigan and Wong [67]. Partitioning into clusters was performed using a
random sample, consisting of 10% of the pixels of the respective raster stack [45,55] in order to reduce
computational time. The maximum number of iterations allowed was set to 50, and three random sets
were created as seed points. The resulting partition was used for prediction via the clue package for
R [68].

Following Haburaj et al. [12], multiple combinations of the processed image data were used as
input for the k-means clustering: All image derivatives created were combined with one another to
assess the influence of each processing step regarding image noise and cluster quality. All combinations
examined are presented in the supplemental material (Online Resource 1 in Supplementary Materials).

The number of clusters was set to 15, allowing the inclusion of potential disturbances and
transitional layers in comparison to the six clusters of the sedimentological data. This rather high
number of clusters leads to the necessity of subsequent manual grouping of the clusters with respect
to the on-site stratigraphic documentation. This step was conducted in QGIS (v2.18). As argued
by Haburaj et al. [12], manual grouping should be conducted attentively, as it allows for a more
transparent documentation of the where and how of drawing borders between layers.

Evaluation of the image clustering results was carried out manually and by a visual interpretation
of the homogeneity of the resulting clusters, as well as their conformity with the delineation of
stratigraphic layers depicted in Figures 2 and 5.

3. Results

3.1. Sedimentological Record

The measured sediment properties of the section examined allow a detailed description of the
layers depicted in Figure 2. Layer A is characterised by a water content of c. 5%, an average SOC
concentration of around 1%, acidic pH values (top A: < 3.5, basis A: 4.5), and high concentrations of silt
compared to the other layers (Figure 5). At the top of layer B (sublayer 5), a peak of water content is
visible (c. 10%). Layers B and D show strong variation between their individual sublayers, averaging at
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around 5% water content, acidic pH values between 3.5 and 4.5, and low SOC concentrations (<0.2%).
The dark, thin horizontal layer C shows a peak in water content (c. 10%) and a slight increase of silty
material and SOC content compared to the surrounding materials (Figure 5).

Figure 5. Sedimentological record of SD17P1 (layers A, B, C and D). Sediment colour and texture [69]
as documented during fieldwork, location of samples, and respective results of the sediment analyses
performed. Centred log-ratio (clr) transformed contents of relevant elements measured with the
p-ED-XRF device.

During pre-processing of the p-ED-XRF data, we excluded several elements due to their
insignificance or erroneous measurements. The following eight elements showed valid measurements
and were processed: Zr, Zn, Fe, Ti, Ca, K, Si, and Al. Concentrations of these elements are
heterogeneous in the lower parts of the examined profile (layers B, C, D), while layer A repeatedly
shows continuous trends of element concentrations from its top to its bottom (Figure 5).

3.2. Clustering Results—Sedimentological Data

Clustering results (groups) of the p-ED-XRF data are documented in Figure 6. The groups
produced by depth-constrained hierarchical cluster analysis of the transformed element concentrations
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capture the main stratigraphic layers of the profile and, together with the on-site delineation and the
sedimentological record (Figure 5), serve as a reference for the quality of all clustering results: Groups
1 and 2 cover areas of dark material, which are characterised by high water contents and are situated
in layer A and at the top of layer B (sublayer 5, see Figures 5 and 6). Layer C is grouped together with
the surrounding materials of layers B and D in the results of both clustering approaches.

Figure 6. Clustering results (groups) of SD17P1 (layers A, B, C and D). Sediment colour and texture [69]
as documented during fieldwork, location of samples, and respective results of the hierarchical and the
depth-constrained hierarchical cluster analyses of the following data: p-ED-XRF data, selectively measured
spectral data (450–2500 nm), and median pixel values extracted from image data. Colours of samples indicate
groups obtained from the cluster analyses. Six groups (six colours) were obtained from the hierarchical
clustering and ten groups (ten colours) from the depth-constrained hierarchical clustering. Boundaries
discussed in the text are highlighted.

Clustering of the pre-processed spectra of the samples showed a noteworthy influence of grinding.
While layer C is grouped with the topmost layer in the ground data, it is grouped with the darker
part of layer B when samples are not ground (Figure 6). Both ground and not ground samples clearly
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delineate data of layer A from the rest of the data in the clustering results. Layer C is assigned to a
separate group in the ground data only. Compared to the results of the p-ED-XRF data, the groups
produced on the basis of the spectral data are spatially more consistent. Depth-constrained clustering
increases this consistency (Figure 6).

Groups produced by the clustering of both RGB and multispectral pixel data capture layer A
homogeneously. Additionally, the hierarchical clustering assigns darker parts of layers B and D
to groups 1 and 2. The clustering of the RGB data groups layers A and C, while the clustering of
the multispectral data groups layer C with the darker parts of layer B. Both data sets assign the
topmost part of layer B (sublayer 5, see Figure 6) to groups 1 and 2. Including depth-constrained
clustering showed a positive effect on group homogeneity for both RGB and multispectral-based
clustering results; layer A and sublayer 5 are captured as one single group. Both depth-constrained
cluster approaches of the pixel data, however, do not capture layer C, but group it together with the
surrounding materials of layers B and D.

3.3. Clustering Results—Image Data

Multiple band combinations were tested as input for the performed image classification via
k-means clustering. While all combinations have problems capturing the thin horizontal layer C,
the results shown in Figure 7 indicate clear benefits when using specific bands: Using the RGB data,
the most homogeneous classification results were derived from a combination of the raw RGB bands,
two principle components, and two slope rasters (Figure 7b). The summarised groups produced by the
cluster analysis roughly represent the stratigraphic (sub)layers. Clustering the same band combination
of the multispectral data (Figure 7c) produced results of similar quality. Nevertheless, two major
differences have to be pointed out: (1) Multispectral data succeed in separating layer A from the rest
of the profile, and (2) RGB data capture layer C more precisely in the spatial domain. Layer C is
grouped with materials from layer A in the results produced using RGB data, while the multispectral
data clustering results group it together with parts of layers B and D (see Online Resource 1 (in
Supplementary Materials) for all band combinations).

Figure 7. Results of the performed image classification of the upper part of SD17P1; stone layers were
masked manually prior to processing. (a) Profile as perceived during fieldwork with layer borders
(white) according to Figure 2 (layers A, B, C and D). Classification results of (b) an RGB composite
(raw data, slopes, PCA results), (c) a multispectral composite (raw data, slopes, PCA results), (d) a
multispectral composite (slopes, CIELAB), and (e) a multispectral composite (slopes, predicted SOC,
CIELAB chromaticity coordinates a and b). Colour shades represent individual groups produced from
k-means clustering, while summarised groups are indicated by a common hue.
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4. Discussion

4.1. Image Data

Our image classification results of the RGB data are consistent with the results of other studies
(e.g., [11,12,28,70]). The combination of raw RGB bands, two principle components, and two
slope rasters (as proposed by [12]) produced similar results to those of the equally processed
multispectral bands. Furthermore, processing of the multispectral data improved the classification
results significantly, allowing us to minimise the impact of lighting differences successfully.

Transformation to CIELAB coordinates did not deliver any benefit for the RGB data: Neither
replacing the RGB bands with their CIELAB counterparts, nor using the image bands containing
chromaticity coordinates a* and b* separately led to better clustering results (Online Resource 1 in
Supplementary Materials). This is different for the multispectral data, as both the CIELAB data
based on the multispectral data and SOC data show a significant influence on the clustering results
(Figure 7d,e). A combination of slope bands and CIELAB bands eliminates the influence of slightly
shadowed areas on the left and right sides of the profile. This leads to more homogeneous results,
which is mostly visible in layer A and the righthand parts of layers B and D. As a consequence
layer C is—while grouped with the material of layer A—captured more reliably than with the
other multispectral band combinations. Another notable result is the similar performance of (i)
the combination of slope bands with all CIELAB bands (Figure 7d) and (ii) the combination of slope
bands with the CIELAB chromaticity bands a* and b* and the SOC raster (Figure 7e). Classification
results are nearly identical, only showing small differences in the lower part of the profile.

We observed similarities between the clustering results of band combinations including the SOC
raster and, alternatively, the CIELAB lightness raster. Nevertheless, the transferability of these results
to other sites has to be examined critically and individuallyfor each case. The noticed relation between
SOC and lightness rasters is already proposed by other authors (e.g., [27,59]), who examined this
phenomenon in detail and concluded that the relation is highly dependent on the local circumstances.
However, if quantitative examination of SOC as conducted by, e.g., Steffens et al. [62] cannot be
included into the workflow due to technical or financial limitations, we propose CIE lightness to be a
rough indicator of the spatial variance of SOC, while keeping in mind that water content also influences
lightness significantly (e.g., [50,60]). Our results support the strong correlation of CIELAB image bands
and SOC, as observed for high-contrast soil profiles, for example, by Zhang and Hartemink [28].

The initially proposed significance of CIELAB chromaticity coordinates for the examination of
iron oxide concentrations could not be confirmed for our experimental design. The examination
of iron oxides based on CIE a* and b* as proven by, e.g., Vodyanitskii and Kirillova [27] possibly
requires a more sophisticated approach, including the mathematical prediction via, e.g., partial least
squares regression or machine learning algorithms, as applied for other sediment properties by,
e.g., Daniel et al. [71], Viscarra Rossel and Behrens [72], or Morellos et al. [73]. Other factors that could
be responsible for the poor performance of our approach include the limited presence of iron in the
profile examined: Elemental Fe concentration is below 1% (see Online Resource 2 in Supplementary
Materials) throughout the examined samples. This would correspond to a maximum of c. 1.4% Fe2O3,
given that all Fe would result from hematite. A future approach should consider a camera setup with
fewer limitations regarding spectral range and resolution. Using a hyperspectral VIS-NIR device
would allow the examination of Fe in far more detail [13,60,74]. This would also allow the analysis of
further sediment properties, like grain size based on the spectral signal [50,75–77].

More generally speaking, our results support the usage of the CIELAB colour space as a standard
for documentation during archaeological excavations. The observed good performance of the CIELAB
datasets supports the scientific relevance of the CIELAB colour space, which was previously proposed
by other authors [47,78]. For the last decades, this colour space gained popularity in the geosciences
and, meanwhile, is widely used in numerous studies (cf. [14]). Many authors noted the clear advantages
over the RGB or Munsell colour systems (e.g., [22,23,26]): CIELAB is a mathematically defined colour



Heritage 2020, 3 542

space that is free to use and suitable for quantitative analyses. In future studies, the proposed
quantitative examination of colour differences throughout archaeological profiles by transformation to
CIELAB could be complemented by additional colour difference formulas like CIEDE2000 to assess
possible benefits [79].

4.2. Sedimentological Data

By quantitatively analysing sediment properties, we were able to explain several characteristics of
the profile in detail. Clustering results suggest that the topmost parts of layer B (sublayer 5) are related
to layer A or the intermediate stone layer. The observed high values of water content and SOC suggest
sublayer 5 to be either related to construction work (compression by overlying stones) or resembling
(together with the overlying stones) a prehistoric surface, which would have been of similar character
to the topmost stone layer described by May [35]. Similarly to sublayer 5, the colour of layer C seems
to be influenced mainly by a high water content. However, slightly increased SOC may also indicate a
prehistoric surface here. The observed similarities also explain why layer C is often clustered with
layer A or sublayer 5.

The performed hierarchical cluster analysis of the examined sediment properties produced
similar results for the p-ED-XRF data and the recorded VIS-NIR data (Figures 5 and 6). We see
this as an indicator that selective or extensive spectroscopy should be considered a fast and
efficient alternative to laboratory analyses when one is aiming for the delineation of layers or
an objective confirmation of the observed variance in a profile. Spectroscopy in comparison to
laboratory analyses is easy and fast to apply, non-destructive, cost-efficient in the long term, and
also more environmentally friendly. While our study supports the idea of using spectroscopy during
archaeological excavations due to the aforementioned benefits, the methodological approach should
still be considered experimental—currently, clear limitations regarding the ease of use and the on-site
applicability exist.

Throughout our study, depth-constrained clustering generally improved the results, which
supports preferability of this method when clustering layers, as, e.g., Schmidt et al. [43] proposed.
Depth-constrained clustering also improved clustering results of the sampled pixel values significantly
(Figure 6) and—with the exception of layer C—captured overall variability of the profile. Layer C is
generally treated similarly in the image data and the selective data, as it is either clustered with layer
A or darker parts of layers B and D. It is also noteworthy that layer C was captured most accurately by
the spectral data of ground sediment samples, which underlines the potential of VIS-NIR spectroscopy
for stratigraphic analyses. In addition, both the selective pixel-based approach and the extensive
image-based approach distinguish between layer A and the rest of the profile.

4.3. Shortcomings and Benefits of Spectral Measurements

Our study exposes that quantitative colour measurements during fieldwork can help with
stratigraphic delineation and interpretation, be it based on selective or extensive data. Combining these
measurements with semi-automated classification algorithms, we were able to increase objectivity
and transparency of the delineation of stratigraphic (sub)layers in a similar manner to that if using
common sedimentological data. In particular, depth-constrained hierarchical clustering should be
considered a useful tool when analysing stratigraphic sequences quantitatively. Depending on the
respective research question, future studies should consider the measurement of VIS-NIR spectral
data as an alternative to other analytical methods, which are often time-consuming and destructive.
For example, spectral measurements could offer a fast and quantitative way of documentation on
rescue excavations.

We were able to successfully transfer the image analysis workflow proposed by Haburaj et al. [12]
to the archaeological profile SD17P1 from the burial mound of Seddin. Moreover, we want to stress the
significant improvements we could add to this process by adding CIELAB data and SOC information,
both derived from the multispectral data. The observed similarities between the clustering results
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of band combinations, including the SOC raster and, alternatively, the CIE lightness raster, suggest
that time-consuming and expensive SOC prediction can be replaced with a fast transformation of the
image data to the CIELAB colour space. The noticed benefits should especially be kept in mind when
one is working under heterogeneous fieldwork conditions, as CIELAB and slope rasters clearly help to
overcome uneven lighting conditions. If intra- or inter-site comparability of the colour and spectral
measurements is required, image acquisition should include distinct colour calibration [80,81].

The output of the conducted comparisons suggests that the selective spectral information
measured from sediment samples produces similar clustering results to those of the p-ED-XRF data.
Increasing the spectral range and resolution of the image data would therefore clearly improve the
identification of (sub)layers based on image data. This is consistent with the results of laboratory
analyses of, e.g., Steffens et al. [62] or Hobley et al. [63].

Taking the characteristics of the examined profile into account, we consider its stratigraphy
complex: While it consists only of a few major layers, the overall heterogeneity of the profile is quite
high. This complexity renders sediment sampling rather complicated, as one has to decide which and
how many samples to take. At this point, analyses based on image data could fill a gap. This would,
however, require a device that offers an improved spectral range and quality. Spectral imaging devices
are still in a crucial phase of development though. Imaging technology becomes more sophisticated:
Systems become smaller and are more easy to use, as recent studies suggest, using either snapshot
(e.g., [12,82]) or push broom (e.g., [83]) technology. However, the offered devices are still often limited
to wavelengths below 1000 nm (cf. [84]), rendering the examination of many sediment properties
problematic. Established hyperspectral scanners that capture wavelengths beyond 1000 nm are most
often expensive and difficult to use under fieldwork conditions due to their dimensions, weight, and
power consumption. While the limited capabilities of the presented spectral imaging devices render
the extensive analysis of sediment data not yet applicable for most excavations, selective spectral
measurements as performed in this study may constitute an easy-to-apply additional step towards a
more transparent way of field documentation during archaeological excavations.

Keeping in mind the complex stratigraphy of the profile at hand, applicability of the proposed
approach to profiles and plana that include more distinct stratigraphic features (e.g., post-holes,
pits, trenches) appears likely. The good performance of RGB image analysis for the examination
of high-contrast soil and sediment data was lately described by Haburaj et al. [12] and Zhang and
Hartemink [28], indicating a high potential of image classification for archaeological excavations in
general. Our results of the selectively measured colour and spectral data indicate that hyperspectral
measurements (as we measured with a spectroradiometer) could offer supportive information when
analysing more complex or low-contrast stratigraphies (e.g., paleosols).

The sedimentological record obtained in the laboratory is still necessary to describe and interpret
the layers. However, the good clustering results of the image data and the general performance of
the selective spectral data stresses the potential of more advanced spectral image sensors for future
stratigraphic studies. By extrapolating sediment properties from samples to image data, one could
combine the benefits of both worlds: A sedimentological record that is not limited to selected sediment
samples. While several laboratory studies were already able to produce extensive parameter maps
(e.g., [62]), transferability of this approach to on-site recordings still has to be examined.

Based on our results, future studies should either focus on the optimisation of an RGB-camera-based
workflow or the in-depth review of more potent spectral sensors. While RGB images delineate layers in
the presented study, our results show that image data that would involve spectral information of the same
quality as our selective VIS-NIR measurements could prove to be as suitable for assisting stratigraphic
delineation and interpretation as labour-intensive laboratory analyses.
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5. Conclusions

The presented results indicate that quantitative colour measurements and spectral measurements
during fieldwork can support stratigraphic delineation and interpretation of profiles in archaeological
excavations. Depth-constrained hierarchical clustering of spectral data as well as of p-ED-XRF data
should be considered a useful tool when analysing stratigraphic sequences quantitatively.

The discussed benefits of the multispectral image data suggest a huge potential of the spectral
domain for automating stratigraphic delineation and interpretation and, likewise, render this process
more traceable. Observed drawbacks show that we cannot offer a ready-to-use approach yet.
In particular, the limited capabilities of the presented spectral imaging devices render the extensive
analysis of sediment data not yet applicable for most excavations. Rather, additional on-site studies
should be carried out to create standardised workflows. Image data that would involve spectral
information of the same quality as our selective VIS-NIR measurements could prove to be as suitable
for assisting stratigraphic interpretation as labour-intensive laboratory analyses. Quantitative colour
measurements and spectral measurements, as performed in this study, may constitute an easy-to-apply,
non-destructive additional step towards a fast and more traceable way of field documentation during
archaeological excavations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2571-9408/3/2/31/s1,
Online Resource 1 includes the image data used throughout this study along with the R-scripts that were used for
image analyses. Online Resource 2 covers the elemental concentrations of the sediment samples retrieved from a
p-ED-XRF, as well as documentation of the processing workflow of these data. Online Resource 3 comprises the
VIS-NIR spectra of all sediment samples, recorded with a spectroradiometer (350–2500 nm). Additionally, the
documentation of the pre-processing workflow is included.
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Abbreviations

The following abbreviations are used in this manuscript:

VIS-NIR visible and near-infrared
SOC soil organic carbon
p-ED-XRF portable energy-dispersive X-ray fluorescence spectrometer
CRM certified reference material
SNV standard normal variate
clr centred log ratio
TPS thin plate spline
FWHM full width half maximum
PCA principle component analysis
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