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Abstract

Topological phases are quantum phases of matter that appear close to absolute
zero temperature. In contrast to commonly known condensed phases of matter,
such as a magnet or a superconductor, distinct topological phases may have the
same symmetry. Instead, these phases are distinguished by the topology of the
electronic wavefunction. Already the single-particle excitations described by band
theory in an insulator or a metal or by Bogoliubov-de Gennes theory in a super-
conductor may have novel anomalous properties associated to their topology. This
topological band theory is the subject of this thesis. We aim towards identifying
the anomalous boundary and defect states associated to the topology of the band
structure in crystalline insulators and superconductors. Furthermore, we deter-
mine criteria to easily identify the topological phases from the band structure of
a given insulator or superconductor.

In Chapter 2 we show that crystalline topological insulators and supercon-
ductors may host anomalous gapless or in-gap excitations on corners of a two-
dimensional crystal or hinges of a three-dimensional crystal. These topological
phases are called ”second-order” according to the codimension ”2” of their anoma-
lous boundary states. We discuss the precise conditions for their appearance and
when they can be linked to the bulk topology. Our discussion includes mirror,
twofold-rotation and inversion as crystalline symmetries.

In Chapter 3 we discuss the appearance of anomalous gapless or ingap states
at defects in a crystalline insulator or superconductor. In particular, we link
the existence of anomalous states at disclinations – lattice defects that violate a
rotation symmetry only locally – to second-order topological crystalline phases. As
a side product, we identify the possible contributions of other topological phases to
the disclination anomaly. The results of this chapter allow to determine precisely
how the disclination anomaly is linked to the bulk topology.

In Chapter 4 we present how to construct ”symmetry-based indicators” for
topological superconductors that admit a description within the Bogoliubov-de
Gennes framework. Symmetry-based indicators are necessary criteria for a given
Bogoliubov-de Gennes Hamiltonian to realize a topological crystalline phase with
anomalous boundary exitations. These criteria are formulated in terms of data
from a small set of high-symmetry momenta only. Our approach guarantees to
extract the maximal information on the anomalous boundary exitations that can
be extracted from a point-wise evaluation of the Bogoliubov-de Gennes Hamilto-
nian. In the limit of weak superconducting pairing, our criteria can be formulated
in terms of data from the normal-state band structure alone.
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Zusammenfassung

Topologische Phasen sind Quanten-Phasen, welche in Festkörpern nahe dem ab-
soluten Temperatur-Nullpunkt auftreten. Im Gegensatz zu gewöhnlichen Phasen
in Festkörpern, wie einem Magneten oder Supraleiter, können verschiedene topol-
ogische Phasen die gleiche Symmetrie haben. Stattdessen werden diese Phasen
durch die Topologie der elektronischen Wellenfunktion unterschieden. Bereits
Einteilchen-Anregungen, welche durch die Bandstruktur oder eine Bogoliubov-
de Gennes Theorie in Supraleitern beschrieben werden, können aufgrund ihrer
Topologie neue, anomale Eigenschaften haben. Das Ziel dieser Arbeit ist es anoma-
len Zustände an Ränder und Defekten zu identifizieren, welche mit der Topologie
der Einteilchen-Anregungen in kristallinen Isolatoren oder Supraleitern assoziert
sind. Ausserdem wird eine Methode vorgestellt, mit welcher sich einfache Kri-
terien für die Identifizierung der Topologie der zugehörigen Bandstruktur oder
Bogoliubov-de Gennes Theorie aufstellen lassen.

In Kapitel 2 wird gezeigt, dass kristalline topologische Isolatoren und Supraleiter
anomale Zustände an Ecken eines zweidimensionalen Kristalls oder an Kanten
eines dreidimensionalen Kristalls beherbergen können. Diese topologischen Phasen
werden ”zweiter Ordnung” genannt, nach der Kodimension ”2” ihrer anomalen
Randzustände. Es werden die genauen Bedingungen für das Auftreten dieser
anomalen Zustände diskutiert, so wie unter welchen Umständen sie mit der Topolo-
gie der Wellenfunktion im Kristall in Verbindung gebracht werden können. Unsere
Diskussion umfasst Spiegel-, zweifache Rotation-, sowie Inversionssymmetrie.

In Kapitel 3 wird das Auftreten von anomalen Zuständen an Defekten im
Kristall diskutiert. Insbesondere wird gezeigt, dass die Existenz von anomalen
Zuständen an Disklinationen – Gitterdefekte welche eine Rotationssymmetrie nur
lokal verletzen – mit der Präsenz einer topologischen Phase zweiter Ordnung ver-
bunden ist. Ausserdem werden alle möglichen Beiträge von anderen topologischen
Phasen zur Anomalie an der Disklination identifiziert. Mit den Ergebnissen aus
diesem Kapitel lässt sich der genaue Zusammenhang zwischen der Anomalie an
der Disklination und der Topologie des Kristalls bestimmen.

In Kapitel 4 werden ”Symmetrie-basierte Indikatoren” für topologische Supraleiter
vorgestellt, welche sich durch einen Bogoliubov-de Gennes (BdG) Hamiltonians
beschreiben lassen. Symmetrie-basierte Indikatoren sind notwendige Kriterien
damit ein gegebener Einteilchen-Hamiltonian eine topologische Phase mit anoma-
len Randzuständen realisiert. Für diese Kriterien ist die Kenntnis des BdG Hamil-
tonian an einer kleinen Menge von Hochsymmetrie-Impulsen ausreichend. Unsere
Methode garantiert, dass die maximale Information über die anomalen Randzustände
des topologischen Supraleiters gewonnen wird, welche sich aus einer punktweisen
Evaluation des BdG Hamiltonians extrahieren lässt.

vi



INTRODUCTION

Topology is the mathematical study of global properties of objects that remain
invariant under continuous deformations. An illustrative example is the topology
of shapes of two-dimensional surfaces in three-dimensional space. Here, roughly
speaking, a deformation of a shape is continuous as long as one does not rip
or punch holes in the shape. With these rules, one can continuously deform a
cup into a bagel. However, the bagel can not be deformed into a ball. This is
because both the bagel and a cup have a single hole while the ball does not – and
punching holes is forbidden by our rules for continuous deformations. Thus, one
says that the cup and the bagel are topologically equivalent, where the equivalence
relation is provided by the continuous deformation. One approach to identify the
distinct topological equivalence classes of objects is to find and define a quantity
that distinguishes the equivalence classes. These quantities are called topological
invariants. In our example of shapes, such a quantity is the number of holes in
the shape.

The idea of classifying objects can be applied to condensed matter physics,
where the physical systems are described by a Hamiltonian. Here, one considers
gapped Hamiltonians and equivalence is defined with respect to continuous defor-
mations for which all excitations remain gapped, i.e. require a finite energy cost

(a) (b)

' '

Fig. 0.1: (a) A mug can be continuously deformed into a bagel. However, it can
not be deformed into a ball, depicted in (b). Figures were created with Wolfram
Mathematica and Ref. 1.



at all times during the deformation. The most famous example where distinct
topological equivalence classes appear is a two-dimensional electron gas with an
applied perpendicular magnetic field. At low enough temperatures, this setup
exhibits a quantized Hall conductivity [2]. A quantized Hall conductivity of the
form σxy = ν e

2

h
with ν integer can already be explained with a single-particle

Hamiltonian [3]. In fact, it can be shown that the quantized Hall conductivity
is a topological invariant for single-particle Hamiltonians [4]. A quantized Hall
conductivity at fractional values of ν has also been observed [5] which requires an
explanation in terms of a stongly interaction theory [6].

The different topological equivalence classes of Hamiltonians have been called
topological phases of matter [7] due to their similarity to ”conventional” phases
of matter. A phase transition between topological phases of matter at absolute
zero temperature is accompanied by the closure of the energy gap for extended
excitations, leading to similar phenomenology as in conventional phase transitions
[8]. However, topological phase transitions do not involve symmetry breaking, for
which they lie outside the conventional Landau theory of phase transitions [9].

Many novel phenomena are associated to the topology of the Hamiltonian.
For single-particle Hamiltonians, these most prominently include the appearance
of gapless or in-gap anomalous states at boundaries or at defects of the sample.
In the integer quantum Hall effect, the quantized Hall conductivity is carried by a
number of one-dimensional chiral states (perfectly conducting channels in which
current may flow only in a single direction) that are located on the sample bound-
ary [10]. Topological phases in strongly interacting systems may furthermore host
novel, fractional quasiparicles whose exchange statistics may be distinct from the
exchange statistics of the relevant elementary particles composing the solid ma-
terial [11, 12]. In the fractional quantum Hall effect, the measured quantized
conductance plateaus at fractions of e2

h
have been identified as a signature of

quasiparticles with fractional electronic charge [13, 14, 15].

When studying topology in condensed matter, it is natural to include symme-
tries in the topological classification. On the one side, symmetries may prohibit
some topological phases. For example, time reversal symmetry requires the Hall
conductivity to vanish. On the other side, symmetries also constrain the allowed
deformations, which gives rise to new, symmetry protected topological phases.
Here, the prime examples are the quantum spin Hall effect [16, 17, 18] and the
three-dimensional topological insulator[19] protected by time reversal symmetry
which were experimentally verified [20, 21]. The topological properties of all of
these examples have been described with a single-particle Hamiltonian. The study
of the topology of single-particle Hamiltonian has been called topological band the-
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ory.

Superconductors, too, can be described with an effective single-particle Hamil-
tonian, if the superconducting correlations are captured by an appropriate mean-
field theory. Then, the elementary excitations in the superconductors behave
as free fermionic particles and can be described by the Bogoliubov-de Gennes
equation [22]. The corresponding Bogoliubov-de Gennes Hamiltonian is a single-
particle Hamiltonian with an additional constraint that captures its inherent
particle-hole symmetry. In superconductors, it has been suggested that frac-
tional quasiparticles with non-abelian exchange statistics with the property of
a self-conjugate ”Majorana” fermion appear in connection with the topology of
its Bogoliubov-de Gennes Hamiltonian [23, 24, 25].

In the presence of crystalline symmetries, the problem of classifying topological
phases of matter, determining their phenomenology and finding criteria to identify
the topological phases in a given material acquires a new level of complexity due
to the large number of crystalline symmetry groups. To answer these questions
within the framework of topological band theory is the central subject of this
thesis.

The correspondence between the topology of Hamiltonian and the appearance
of anomalous states on the sample boundary has been termed bulk-boundary cor-
respondence [26]. The conditions under which this correspondence holds and how
bulk topology and boundary anomaly are precisely related are well-established
for topological phases protected by internal (i.e. non-crystalline) symmetries. In
Chapter 2, we discuss the bulk-boundary correspondence in systems with a single
crystalline symmetry of order two, such as mirror, twofold rotation or inversion
symmetry. Furthermore, in Chapter 3, we discuss how the bulk topology is related
to the occurrence of anomalous states at defects in crystalline systems.

Chapter 4 presents a constructive method to define symmetry-based indicators
to identify crystalline topological phases in topological superconductors. Symmetry-
based indicators are easy-to-compute topological invariants for topological crys-
talline phases whose original works [27, 28] contributed significantly to the dis-
covery of new topologically insulating materials [29, 30, 31, 32, 33, 34, 35]. The
presented approach contains the provably complete topological information that
can be extracted from the Bogoliubov-de Gennes Hamiltonian evaluated at high-
symmetry momenta in the Brillouin zone.

Not only do these invariants indicate the existence of isolated Majorana bound
states or other gapless anomalous boundary excitations, but one can also identify
its precise nature by comparing to a complete classification of topological crys-
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talline phases up to an inherent ambiguity of this approach. While a few illustra-
tive examples are discussed, the presented approach is algorithmic and can readily
be applied to superconductors with any symmorphic space group. Assuming that
the order parameter is small compared to typical energy scales of the normal-state
Hamiltonian, all information required to compute our symmetry-based indicators
can be extracted from the normal-state single-particle Hamiltonian and the sym-
metry of the superconducting order parameter.

Chapter 1 contains a technical introduction. It presents the topological clas-
sification of topological insulators and superconductors in terms of topological K-
theory. Much of the unified understanding of topological insulators and super-
conductors is gained from this method. This method is applied in the following
Chapters. From this perspective, we will introduce the bulk-boundary correspon-
dence as a basic phenomenology of topological insulators and superconductors
from a heuristic argument and an explicit calculation. We will discuss how these
arguments need to be adapted in the presence of crystalline symmetries. This
serves as a suggested starting point to study the bulk-boundary correspondence in
crystalline topological insulators and superconductors which is part of Chapter 2.
The following Chapter 3 shows how the bulk-boundary correspondence is related
to a bulk-defect correspondence, where a topological bulk requires the existence
of anomalous states at defects such as vortices, dislocations or disclinations.

Chapter 1 will show that the topological phases of the single-particle Hamil-
tonians of insulators and superconductors can be described with the same math-
ematical theory. However, in section 1.4 we discuss some aspects of topological
superconductors that are uniquely associated to the superconducting correlations
and do not have a direct analogue for insulators. This is particularly relevant
for Chapter 4 in which we extend the theory of symmetry-based indicators from
insulators to superconductors.

The introduction in Chapter 1 also serves to put the thesis into perspective,
motivate the suggested approaches and provide an overview on relevant literature.
The following principal Chapters 2 to 4 are largely self-contained and can be
read individually. The references of each Chapter are included at its end. The
conclusion summarizes the central results of each Chapter and contains an outlook
on open research questions.
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1. TECHNICAL INTRODUCTION

1.1 Topological classification of single-particle Hamiltonians

An elementary tool that is used throughout this thesis is the topological classifi-
cation of single-particle Hamiltonians within topological K-theory. The restriction
to the topological phases that can be described with single-particle Hamiltonians
implies that we require that the relevant interaction effects have been treated by
an appropriate mean field theory. In the mean-field approximation, the fermionic
many body Hamiltonian is quadratic in the fermionic creation and annihilation
operators. Such a theory is also called a free fermionic theory. We comment briefly
on the effects of interactions on the topological classification in the conclusion.

In this Chapter we formalize the definition of topological equivalence for single-
particle Hamiltonians. Based on this discussion, we motivate and illustrate the
basics of topological K-theory with the goal to obtain a topological classification
of a single-particle Hamiltonian in a given symmetry class.

Statement of the problem. We consider a translation symmetric, d-dimensional
system described by a Bloch-single-particle Hamiltonian H(k) subject to the sym-
metry group G. The symmetry group may contain unitary internal symmetries
such as SU(2) spin rotation symmetry, antiunitary internal symmetries such as
time reversal symmetry T , crystalline symmetries such as inversion I and the
internal particle-hole antisymmetry P inherent to BdG-Hamiltonians. We say a
symmetry element g is crystalline if it acts nontrivially on the real space coordi-
nates r ∈ Rd (∃r ∈ Rd such that gr 6= r). We say g is an internal symmetry if it
act trivally on the real space coordinates (gr = r ∀r ∈ Rd).

Requiring that the Hamiltonian H(k) is symmetric under the symmetry group
G implies that there is a projective representation U(g) for all g ∈ G such that
the Hamiltonian satisfies for g unitary

U(g)H(gk)U †(g) = c(g)H(k) (1.1)



where c(g) = ±1. The element g is said to be a symmetry (antisymmetry) if
c(g) = 1 (c(g) = −1). For antiunitary elements g ∈ G, the Hamiltonian satisfies

U(g)H∗(−gk)U †(g) = c(g)H(k). (1.2)

The representations U(g) define the ”factor system”

{zg,h = U(gh−1)U(g)U(h) = ±1 for g, h ∈ G} (1.3)

of the projective representation. The label ”projective” applies to representations
if there exists a pair g, h ∈ G with zg,h 6= 1. The representations of space group
elements for spinful fermionic systems are projective in general, as a 2π rotation
of a spinful particle shifts the phase of its wavefunction by π, such that zRπ ,Rπ =
U(RπR−1π )U(Rπ)U(Rπ) = U(Rπ)2 = −1.

For physical systems in the absence of superconductivity, the projective repre-
sentation and corresponding factor system is specified by the presence or absence
of SU(2) spin-rotation symmetry. In case SU(2) spin-rotation symmetry is absent,
the fermions transform under the corresponding spinful (double group) represen-
tation. In the presence of SU(2) spin-rotation symmetry, the fermions in each
subspace transform under the spinless representation. In the presence of super-
conductivity, the symmetry of the superconducting order parameter enters the
factor system of the projective representation, as discussed in detail in Section II
of Chapter 4.

The Bloch-Hamiltonian H(k) : T d →M[Gk, zg,h, N ] is defined as a continuous
map from the d-dimensional Brillouin zone torus T d to the space of Hermitian
matrices M[Gk, zg,h, N ] of rank N subject to the symmetry group G with projec-
tive representation zg,h, where Gk ⊆ G is called the little co-group that contains
all elements of G that leave the momentum k invariant, Gk = {g ∈ G|gk = k
mod b}, where b is a reciprocal lattice vector. For example, inversion symmetry
relates k → −k which implies that the inversion symmetric momenta k = −k
mod b have a larger little co-group than the surrounding momenta.

Topological equivalence classes [H(k)] can be defined defined for gapped Hamil-
tonians H(k). Two Hamiltonians H0(k) and H1(k) are said to be homotopy
equivalent H0(k) ' H1(k) if there exists a continuous path H(k; t), t ∈ [0, 1]
with H(k; 0) = H0(k) and H(k; 1) = H1(k) such that H(k; t) is gapped and is
symmetric under G for all t ∈ [0, 1].

We point out that the classification of gapped Bloch-Hamiltonians is equivalent
to the classification of the vector bundle defined as the subspace of the Hilbert
space spanned by the eigenstates with energy below the gap at each k. This

6



Topological classification of single-particle Hamiltonians

connection is established by the projector P (k) onto this subspace which can be
defined either from the Bloch-Hamiltonian or from the respective eigenbasis. The
Bloch-Hamiltonian H(k) can be reconstructed from its projector up to homotopy
equivalence asH(k) is homotopy equivalent to its ”spectral flattened” formQ(k) =
1
2
(1 − P (k)) where all eigenstates below (above) the gap have eigenvalues −1

(+1). This equivalence is useful as it allows to approach the problem frow two
different perspectives. The perspective in terms of vector bundles is common in
the mathematical literature [36].

While homotopy equivalence yields the finest classification of gapped Bloch-
Hamiltonians, the actual computation of the homotopy equivalence classes is very
complex and in general does not follow a regular pattern [36] (see for example
the nth homotopy groups of spheres, i.e. homotopy equivalence classes of maps
Sn → Sm). Furthermore, the classification depends on the number of bands of
H(k), i.e. matrices of different size can not be homotopy equivalent. A reasonable
simplification is to require that the classification should not depend on the number
of bands. Physically, this is motivated as many crystals possess a number of
strongly bound bands far below the Fermi energy which should not influence the
classification. Furthermore, there always exists an infinite number of bands at
high energies above the Fermi energy.

Mathematically, this simplification is incorporated by considering stable homo-
topy equivalence [37, 38, 39, 40]. The central simplification of stable homotopy
equivalence consists of two steps: (i) When checking for stable homotopy equiva-
lence ”∼”, one is allowed to augment the objects by a certain trivial objects Y ,
Y ′ as

H1(k) ∼ H2(k) if H1(k)⊕ Y ' H2(k)⊕ Y ′

where ”⊕” denotes the direct sum of two matrices. In the classification of d ≥ 1
dimensional topological phases, the trivial objects may take the form Y = σ3⊗1N ,
Y ′ = σ3 ⊗ 1M [40] which may be interpret as an flat bands of strongly bound
orbitals. Here ”⊗” denotes the tensor product of matrices. (ii) Stable homotopy
equivalence classes are defined for pairs of Hamiltonians [H(k), H ′(k)] where two
pairs are said to be stably homotopy equivalent

[H1(k), H ′1(k)] ∼ [H2(k), H ′2(k)]

if H1(k) ⊕ H ′2(k) ∼ H2(k) ⊕ H ′1(k) are stable homotopy equivalent. A detailed
and illustrative discussion can be found in Ref. 37. Special care needs to be taken
in the stable classification of matrices (i.e. in case the base space is S0). This case
is discussed in detail in Section III of Chapter 4 and is essential for the discussion
in this Chapter 4.
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The set of stable homotopy equivalence classes {[[H(k), H ′(k)]]} can be pro-
moted to an abelian group K where addition and subtraction is defined using the
direct sum,

[[H1(k), H ′1(k)]] + [[H2(k), H ′2(k)]] := [[H1(k)⊕H2(k), H ′1(k)⊕H ′2(k)]]

[[H1(k), H ′1(k)]]− [[H2(k), H ′2(k)]] := [[H1(k)⊕H ′2(k), H ′1(k)⊕H2(k)]].
(1.4)

This construction is called the Grothendieck group construction [39, 40]. The
abelian group of stable topological equivalence classes is said to be the K-theory
of the vector bundle over the Brillouin zone torus T d with symmetry group G
and projective representation zg,h. Throughout most of the literature it is denoted
by the label K with some additional parameters to specify the dimension and
symmetry class. Throughout this introduction, we use the notation K[G, zg,h, X]
to denote the classifying group K of stable equivalence classes of maps H(k) :
X →M[Gk, zg,h], where we omit the argument N as stable equivalence allows to
compare matrices with different number of bands.

One can define a set of topological invariants νi([H1(k), H ′1(k)]) for the pair as

νi([H1(k), H ′1(k)]) = νi(H1(k))− νi(H ′1(k)) (1.5)

where νi(H(k)) is a quantity defined on non-contractible loops, surfaces etc. of
the Brillouin zone torus. A common example of νi(H(k)) is the Chern num-
ber. The topological invariants identify the stable topological equivalence class
[[H(k), H ′(k)]] ∈ K the given pair corresponds to.

Formulating the topological invariants that identify a given (pair of) Bloch
Hamiltonians to its stable homotopy equivalence class is a complicated task in
general. For all topological phases protected by internal symmetries, a complete
set of topological invariants has be defined [40]. However, these topological invari-
ants are formulated in terms of derivatives of the occupied eigenstates of the Bloch
Hamiltonian. This requires to diagonalize the Bloch-Hamiltonian for a sufficiently
dense grid of momentum values k and choose a continuous gauge over the Brillouin
zone, which is a complicated and numerically expensive procedure. In the presence
of crystalline symmetries, a complete and explicit list of topological invariants does
not exist to our knowledge at the time this thesis is written. Current approach
to define topological invariants for topological crystalline phases are to find ex-
pressions in terms of the symmetry data at a few high symmetry momenta in the
Brillouin zone [41, 42, 39, 43, 44, 45, 27, 28, 46, 47, 48], Wilson loops defined on
one-dimensional lines in the Brillouin zone [49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
or a generalization to higher dimensional manifolds [60].

The former approach, utilizing only the data from a few high symmetry mo-
menta in the Brillouin zone, has been called symmetry-based indicators for band
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Topological classification of single-particle Hamiltonians

topology [28] as it allows to only extract partial information on the topology of
the single-particle Hamiltonian. In particular, the resulting topological invariants
in general are only sufficient criteria for a specific topological phases, but in some
cases may not be necessary. For example, in an inversion symmetric system, only
the parity of the Chern number can be determined from the inversion parities at
the inversion symmetric momenta [42, 39]. The formulation of this approach to
general Bogoliubov-de Gennes Hamiltonians is subject of Chapter 4 of this thesis.

The difference between a classification of systems with internal symmetries
based on homotopy and stable homotopy equivalence has been discussed in Refs. 61,
62, 63, 64. With internal symmetries, early examples where a difference between
the homotopy and the stable homotopy classification is observed are the Hopf
insulator [61, 65, 66] and the Hopf superconductor [66]. More recently, such topo-
logical phases that are non-trivial under a homotopy equivalence, but are trivial
under stable homotopy equivalence have been called fragile topological phases
[67, 68, 56]. They have been shown to occur in the presence of crystalline symme-
tries [69, 70, 57, 71, 72, 73, 58] and in strongly interacting systems [74].

Computation of the classifying groups. One approach to obtain the classifica-
tion of the Bloch-Hamiltonian is to assume a description of the low-energy expan-
sion of the Hamiltonian around a relevant momentum k0 in terms of a massive
Dirac-Hamiltonian [61, 37, 40]

HDirac(k) = k · Γ +mΓ0 (1.6)

where k = (k1, ..., kd) is the momentum relative to k0 and Γ = (Γ1, ...,Γd) are Dirac
matrices that satisfy the Clifford relation ΓiΓj+ΓjΓi = 2δij, i, j = 0, 1, ..., d. Here,
the terms proportional to k are called the kinetic energy terms and the constant
term is called a mass term. The mass term is responsible for the energy gap
in the bulk. If the limiting behavior lim|k|→∞H(k) = H∞ is fixed, then the d-
dimensional Bloch-Hamiltonian describes a map from the d-sphere Sd to the space
of symmetric Hamiltonians M[Gk, zg,h] (where the north pole corresponds to k = 0
and the south pole corresponds to |k| =∞).

The computation of the classifying group K[G, zg,h, S
d] can now be mapped

to the problem of identifying the stable homotopy equivalence classes of the mass
term mΓ0 [37, 40]. This result is based on the mathematical literature on K-theory
[75, 76]. The stable homotopy equivalence classes can be determined from the
classifying space of the mass term mΓ0 [37, 40]. The classifying space is spanned
by all matrices Γ0 subject to all symmetry constraints imposed by U(g), g ∈ G
as well as the Clifford relation with to the kinetic energy terms. The procedure of
identifying the classifying space is as follows.
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The mass term is subject to the symmetry group G that may contain internal
as well as point group symmetries, and must anticommute with all kinetic energy
terms Γi. The kinetic energy terms can therefore be treated as additional unitary
antisymmetries of the mass term M . We denote the group that contains all sym-
metries as well as the constraints from the kinetic energy terms as G⊗ Γ. In the
first step one block-diagonalizes the mass term M under the irreducible represen-
tations of the unitary symmetries of G ⊗ Γ. The remaining antiunitary symme-
tries/antisymmetries and unitary antisymmetries may relate different blocks and
determine the Cartan symmetric space, also called Cartan class, of the individual
blocks. The Cartan class is determined by the presence of antiunitary symme-
tries/antisymmetries or an antisymmetry in the individual block, as summarized
in Table 1.1. Ref. 77 showed that there are in total ten distinct Cartan classes
appearing in single-particle Hamiltonians of fermionic systems (see also Ref. 78
for an extensive discussion). The classifying spaces are determined by the Cartan
classes [40]. The stable homotopy equivalence classes for each Cartan class are
tabulated [37, 40] and shown in in Table 1.1.

K[G,Sd]
Cartan class T P C d = 0 1 2 3 4 5 6 7

A 0 0 0 Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

AI 1 0 0 Z 0 0 0 Z 0 Z2 Z2

BDI 1 1 1 Z2 Z 0 0 0 Z 0 Z2

D 0 1 0 Z2 Z2 Z 0 0 0 Z 0
DIII -1 1 1 0 Z2 Z2 Z 0 0 0 Z

AII -1 0 0 Z 0 Z2 Z2 Z 0 0 0
CII -1 -1 1 0 Z 0 Z2 Z2 Z 0 0
C 0 -1 0 0 0 Z 0 Z2 Z2 Z 0
CI 1 -1 1 0 0 0 Z 0 Z2 Z2 Z

Tab. 1.1: Definition of Cartan classes and periodic table of topological insulators
and superconductors [37]. The first column denotes the Cartan label for the sym-
metry class determined by the antiunitary symmetry T , antiunitary antisymmetry
P and unitary antisymmetry C with T 2 = ±1, P2 = ±1 as indicated in the follow-
ing three columns. The entry ”0” indicates the absence of the respective symmetry
or antisymmetry. It is always possible to choose C2 = 1, if present, by a multipli-
cation of the representations with a phase factor. The remaining columns denote
the classifying group K[G,Sd] of the d-dimensional, massive Dirac Hamiltonian
in the respecitive symmetry class. The column K[G,S0] denotes the number of
distinct stable homotopy equivalence classes of matrices in the respective Cartan
class.
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Topological classification of single-particle Hamiltonians

In the absence of crystalline symmetries, this procedure is nicely illustrated in
section C of Ref. 40. We present an example on how the classification is obtained
in the presence of inversion symmetry in section 1.3 below. This approach lead to
the famous periodic table of topological insulators and superconductors [37] that
summarizes the classifying group K[GCartan, S

d] of d-dimensional massive Dirac
Hamiltonians with symmetry group GCartan of internal symmetries corresponding
to the ten Cartan classes.

The periodicity of the table is related to the Bott periodicity [36, 37, 40] of
the classifying groups of maps from Sd into the Cartan symmetric spaces 1. Fur-
thermore, the periodicity of the classifying groups suggests the existence of a
diagonal map or dimension-raising and lowering map that provides an isomor-
phism between the classifying groups in different dimension and symmetry class.
This isomorphism has first been defined in terms of a map between massive Dirac
Hamiltonians in Ref. 38 and has been discussed in the context of homotopy theory
in Refs. 62, 64. The map has been extended to obtain a classification of crystalline
topological phases in Refs. 79, 80. We will discuss and utilize the dimensional rais-
ing map in Appendix A.4 of Chapter 3. Another formulation of this isomorphism
can be expressed in terms of the scattering matrix of a lead connected to the
boundary of a topological insulator or superconductor [81]. An extension of the
scattering matrix expression for the isomorphism for crystalline topological phases
is discussed in Ref. 82 and in Chapter 2.

This approach has been extended to the symmorphic space group symmetries
[83, 84] by realizing that the classification with space group symmetries is the same
as with a corresponding set of internal symmetries. This crystalline equivalence
principle was first established for interacting bosonic and fermionic symmetry
protected topological phases in Ref. 85.

Notice that a necessary condition for the massive Dirac theory (1.6) to describe
a topologically non-trivial phase is that once the Dirac matrices Γi, i = 0, 1, ..., d
are fixed there exists no additional ’mass term’ m1Γ̃ proportional to the Dirac
matrix Γ̃ that anticommutes with all Γi. If such a mass term m1Γ̃ exists, then the
extension of HDirac(k) + m1Γ̃ onto the sphere Sd is homotopy equivalent to m1Γ̃.
One easily verifies that the anticommutativity of the Dirac matrices guarantees
the homotopy equivalence. A momentum independent Bloch-Hamiltonian H0 in

1 In the mathematics literature [36], Bott periodicity was first established for maps from Sd

into the Cartan symmetric spaces. In this scenario, each point of the sphere maps onto the same
Cartan class. This is different from the setting of Bloch-Hamiltonians, because the antiunitary
symmetries/antisymmetries act as an inversion on the momentum coordinates. Therefore, for
Bloch Hamiltonians the general momentum k 6= −k is in Cartan class A or AIII, depending on
the presence of a unitary antisymmetry.
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d ≥ 1 is topologically trivial as the associated vector bundle is simply a direct
product of the base space Sd or T d with the Hilbert space of the bands below the
gap of H0.

In a band insulator or superconductor, the Bloch-Hamiltonian is defined on
the Brillouin zone torus. On the torus, the classification is further refined as
the Bloch-Hamiltonian along a non-contractible loop, surface etc. may itself be
nontrivial [37]. The topological phases associated to these non-contractible loops,
surfaces rely on the translation symmetry of the band insulator or superconductor
and are called ’weak’ topological phases [19]. In contrast, the topological phases
arising from the d-dimensional manifold are called ’strong’ topological phases. It
has been proven in Ref. 63 that the classification of Bloch-Hamiltonians defined
over the torus T d can be decomposed into the classification over Sd and lower
dimensional spheres corresponding to the non-contractible surfaces, loops etc of
the torus T d.

The labels ’weak’ and ’strong’ describe the stability of the topological phase to-
wards perturbations that break translation symmetry. Weak phases are protected
by translation symmetries and the weak topological invariants can be changed by
a perturbation that breaks the translation symmetries. In contrast, strong phases
do not require translation symmetries and remain invariant under a perturbations
that break the translation symmetry. This is also discussed in more detail in
section 3.4.2 in Chapter 3.

1.2 Bulk-boundary correspondence of topological insulators and
superconductors with internal symmetries

A fundamental phenomenology of topological phases protected by an internal sym-
metry is the appearance of gapless, anomalous modes on the boundary of the crys-
tal. This property directly follows from the Dirac-Hamiltonian description of the
low-energy theory [61, 40]. Below we present a heuristic argument for the occur-
rence of gapless modes at the interface between two distinct topological phases.

Consider a system whose low-energy theory is described by a massive Dirac the-
ory as defined in Eq. (1.6) with internal symmetries G. We introduce a boundary
in the system by letting the mass term m(r)Γ0 be spatially dependent. Further-
more, we assume that the variation of m(r) is slow on any length scale of the
microscopic Dirac Hamiltonian such that at every point r, the low energy excita-
tions are approximately described by a massive Dirac Hamiltonian with constant
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Bulk-boundary correspondence of topological insulators and superconductors
with internal symmetries

mass m = m(r). Next, we require that the system at two points r0 and r1 is
in two distinct topological phases. This implies that the mass terms m(r0) and
m(r1) are not stably homotopy equivalent under the symmetry group of internal
symmetries G. As a consequence, the continuous mass term m(r) must vanish
at some point along any path connecting r0 and r1. The interface between the
two topologically distinct phases is formed by the (d − 1)-dimensional manifold
along which the mass term vanishes. Therefore, the low-energy excitations at the
interface should described by a (d − 1)-dimensional gapless Dirac theory. Notice
that this heuristic argument relied on the result of Ref. 37 that the classification
of topological phases in terms of massive Dirac Hamiltonians can be reduced to
the classificaion of the mass term.

The gapless boundary theory can be explicitly computed in an explicit example
[61]. Consider a system whose low-energy theory is described by a massive Dirac
theory as defined in Eq. (1.6) with internal symmetries G. We introduce a hard
boundary in the system via a spatially dependent mass term sign (x)mΓ0 (see
also Section VI of Chapter 2 for a similar derivation in the presence of crystalline
symmetries). The corresponding Dirac theory reads

HDirac(x,k⊥) = −i~∂xΓ1 + k⊥ · Γ⊥ + sign (x)mΓ0 (1.7)

This Hamiltonian admits a zero-energy solution corresponding to states localized
on the boundary whose spinor wavefunction satisfies

∂xψ(x, k⊥) = − i
~
msign (x)Γ1Γ0ψ(x, k⊥) (1.8)

For anN -dimensional spinor, there areN/2 bounded solutions with a x-independent
spinor structure. The projection operator onto the subspace of N/2 bounded so-
lutions is

Px =
1

2
[iΓ1Γ0 + 1]. (1.9)

By projecting the massive Dirac Hamiltonian onto the subspace of bounded solu-
tions, one obtains the N/2-band boundary Hamiltonian,

Hboundary(k⊥) = PxHDirac(x,k⊥)Px = k⊥ · Γ̃ (1.10)

where Γ̃ = (PxΓ1Px, ..., PxΓdPx) contains the projected Dirac matrices of rank
N/2. The remaining terms of the bulk Dirac Hamiltonian are projected out as is
directly verified from the commutation relations of the Dirac matrices.

The (d− 1)-dimensional surface Dirac Hamiltonian is anomalous in the sense
that it can not be realized by as the low energy theory of a (d − 1)-dimensional
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lattice model. For lattice models, it is clear that this implies that the low-energy
theory can only be realized on the surface of a topological bulk, where the anomaly
is canceled on the opposite surface. Furthermore, these anomalous surface theories
are stable towards symmetric perturbations, i.e. they can not be gapped by per-
turbations that preserve the symmetries of the system [61]. Below, we illustrate
these facts at a few examples.

In d = 1 dimensions, a topological BdG Hamiltonian in symmetry class D
may host isolated zero-energy modes at its boundary. The eigenstates of a BdG
Hamiltonians come in particle-hole symmetric pairs, implying that for each eigen-
state at energy E, there is an eigenstate at energy −E. This implies that if a
non-degenerate zero-energy state exist somewhere in the system, there must be
another zero-energy state in the system such that they can be superposed as a
particle-hole symmetric pair. Furthermore, the particle-hole antisymmetry of the
BdG Hamiltonian pins the energy of an isolated zero-mode to zero energy. These
zero-energy modes describe self-conjugate quasiparticles γ̂ = γ̂† with the prop-
erties of a Majorana fermion. Two Majorana fermions combine to an ordinary
fermion ĉ = 1

2
(γ̂1 + iγ̂2). It can be shown on general grounds that each physical

fermionic state must allow a description in terms of a density matrix composed
out of bilinears of Majorana fermionic operators while single Majorana fermion
operators are forbidden. This fact is a consequence of the conservation of fermion
number parity, which has been formulated as the fermionic superselection rule
[86, 87, 88, 89].

In d = 2 dimensions, consider a topological insulator in class A hosting a single
chiral mode at its surface with low-energy boundary Hamiltonion Hboundary(k) =
k. This low energy theory corresponds to a single channel of fermions prop-
agation only in one direction. A tight-binding model must satisfy periodicity
Hboundary(k) = Hboundary(k + 2π). In order to satisfy periodicity, the dispersion
would need to cross zero energy at another momentum such that the low-energy
theory necessarily would need to consist of right- and left-moving quasiparticles.
Therefore the chiral low-energy boundary Hamiltonian can not be realized in a
one-dimensional lattice model. A local perturbation on the boundary can move,
but not remove the chiral hinge state, because back-scattering in these states is
forbidden. This was first established as the one-dimensional Nielsen-Nimoniya
theorem [90, 91, 92].

In d = 3 dimensions, consider a time-reversal symmetric topological insulator
in class AII hosting a single Dirac cone at its surface with low-energy boundary
HamiltonionHboundary(k) = kxσ1+kyσ2. One easily verifies that the Dirac cone can
not be gapped out as long as time reversal symmetry T = iσ2K is preserved. By
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Bulk-boundary correspondence of crystalline topological insulators and
superconductors

a similar argument as for our two-dimensional example, one verifies that this low-
energy theory can not be realized in a time-reversal symmetric, two-dimensional
lattice model.

1.3 Bulk-boundary correspondence of crystalline topological
insulators and superconductors

The gapless, anomalous boundary states in crystalline topological phases are sub-
ject of Chapter 2 of this thesis. For the purpose of the introduction, we show
how the arguments of the previous section need to be modified in the presence of
crystalline symmetries.

In the previous section, we presented a heuristic argument for the existence of
gapless anomalous states at the interface of two topologically distinct regions by
considering a smooth and slowly varying mass termm(r). By definition, crystalline
symmetry elements g have a non-trivial action on real space gr 6= r. Therefore, if
a massive Dirac Hamiltonian is adiabatically evolved along a path r(t), the terms
appearing in the adiabatic evolution should be constrained only by the crystalline
symmetry elements g that leave the path itself invariant, gr(t) = r(t). As a
consequence, along a path r(t), t ∈ [0, 1] connecting two regions described by
massive Dirac Hamiltonians HDirac(k, r(0)), HDirac(k, r(1)) that are stably homo-
topy inequivalent under the crystalline symmetry group G, a gap closing must
exist only if the path itself is invariant under all crystalline symmetry elements.
In particular, if the massive Dirac Hamiltonians HDirac(k, r(0)), HDirac(k, r(1)) are
stably homotopy equivalent under the symmetry group of the path G[r(t)] :=
{g ∈ G|gr(t) = r(t)} ⊂ G, then an adiabatic evolution between HDirac(k, r(0))
and HDirac(k, r(1)) along the path r(t) exists. This implies that the Hamiltonian
HDirac(k, r(t)) remains gapped and therefore all excitations along the path r(t)
may remain gapped.

In Chapter 2 we will discuss in detail the boundary theory of crystalline topo-
logical phases and its relation to the bulk topology. In particular, crystalline sym-
metries can protect higher-order topological phases, where a topological phase is
said to be of nth-order if the gapless anomalous states are located on codimen-
sion n submanifolds of the boundary, for example a two-dimensional second-order
topological phase has anomalous corner states. The emphasis of Chapter 2 is
on second-order topological phases in systems with an order-two crystalline sym-
metry, such as mirror, twofold rotation or inversion symmetry. This work was
extended in Refs. 93, 94 to higher-order topological phases and general point
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group symmetries. An important connection between massive Dirac theories and
the order of the topological phase was established in Ref. 93: The order of the
topological phase is determined from the number of crystalline symmetry breaking
mass terms Mi, which is the number of Dirac matrices that anticommute with
the massive Dirac Hamiltonian that are allowed if all crystalline symmetry con-
straints are lifted. Furthermore, some crystalline topological phases do not have
anomalous boundary states at all, as we show in the example below.

Furthermore, in Chapter 3 we will show that for crystalline topological phases,
the appearance of gapless, anomalous boundary modes is directly linked to the
appearance of gapless, anomalous modes at topological lattice defects, such as
dislocations and disclinations. First-order topological phases protected by internal
symmetries in certain symmetry classes may host anomalous states at defects
such as vortices in topological superconductors [38]. Chapter 3 contains a general
discussion on the types of defects that host anomalous states in topological phases,
and clarifies the relation between bulk topology, anomalous boundary states and
defect anomaly.

Example: One-dimensional insulator with inversion symmetry. Consider a
one-dimensional insulator in Cartan class A with inversion symmetry. The classi-
fying group of strong topological phases can be obtained by a classification of the
mass term in the massive Dirac Hamiltonian as we show in the following. The mas-
sive Dirac Hamiltonian satisfies inversion symmetry U(I) = σ3 ⊗ 1N , Ik = −k,
where σi are Pauli matrices and ”⊗” denotes the direct product of matrices. The
massive Dirac Hamiltonian for the one-dimensional theory is written as

HDirac(k) = kΓ1 +M. (1.11)

where Γ1 anticommutes with U(I) and M commutes with U(I). Thus, M is
block diagonal in the eigenbasis of inversion symmetry where the two blocks M±
correspond to inversion eigenvalues ±1, respectively. Without loss of generality,
we may choose Γ1 = σ1 ⊗ UN , where UN is a unitary N × N matrix satisfying
U2
N = 1N . The condition that M anticommutes with Γ1 implies that the two

blocks of the mass term are related as M+ = −UNM−U †N . Each block itself is in
Cartan class A. Therefore, the stable topological equivalence classes of the mass
term M are determined by the stable topological equivalence classes of a single
block which is in Cartan class A, such that we have K[Ci, S

1] ' K[C1, S
0]. From

the periodic table of topological insulators and superconductors, Table 1.1, we find
that there are in total K[C1, S

0] ' Z distinct stable homotopy equivalence classes
(see Ref. 40 for an illustrative derivation of the stable homotopy equivalence classes
of matrices in Cartan class A). This result is in agreement with literature [79].
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Bulk-boundary correspondence of crystalline topological insulators and
superconductors

(a) (b)

(c) (d)

x

x
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x

Fig. 1.1: Transformation of the regularized generator Hamiltonian (1.13) of the
obstructed atomic limit in the one-dimensional, inversion symmetric insulator to
a system of orbitals localized on the unit cell boundary. The gray stars denote the
inversion centers. The unit cell is enclosed by the vertical lines. The hopping terms
between orbitals are denoted by dotted lines. (a) Representation of the initial
Hamiltonian (1.13) where filled and empty dots denote orbitals with inversion
eigenvalues ±1. (b) Basis transformation such that inversion symmetry exchanges
the orbitals. The resulting orbitals are denoted by gray dots. (c) Transformation
that moves the orbitals to the unit cell boundary. (d) Basis transformation back
to the eigenbasis of inversion symmetry.

A generator for the classifying group KA[Ci, S
1] can be written in terms of the

minimal massive Dirac theory

HDirac(k) = kσ1 +mσ3. (1.12)

By introducing a boundary between two topologically distinct phases with op-
posite sign of the mass term mσ3, Eq. (1.10) shows that this Dirac Hamiltonian
binds a single, fermionic mode with zero energy at the interface. This zero-mode
is merely an artifact of the simple form of the Dirac Hamiltonian (1.12), which
has many additional accidental symmetries. In particular, the Dirac Hamilto-
nian (1.12) satisfies accidental antisymmetries, which ensure that the mode at the
interface lies accidentally at zero energy. However, if sufficiently many symmetry-
allowed perturbations are included (which break the accidental symmetries), the
bound state may acquire an arbitrary energy or even disappear in the bulk bands.
As inversion symmetry is broken locally at the interface, such a perturbation may
for example be a local chemical potential, or a hybridization m1σ2. In other words,
isolated fermionic modes are not anomalous in the absence of superconductivity
which allows them to acquire an arbitrary energy. An extensive discussion of this
example can also be found in Ref. 94.

It can be seen that the topologically non-trivial phases are obtained by a
hyridization transition [27] between different configuration of atomic orbitals, also
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called atomic limits. The topologically non-trivial atomic limits are also called
obstructed atomic limits. To see this, consider the extension of the minimal massive
Dirac theory onto the one-dimensional Brillouin zone

H(k) = σ1 sin k + σ3 cos k. (1.13)

This model describes a pair of orbitals with opposite inversion parity located
at the center of the unit cell. The orbitals are hybridized with their nearest
neighbors. This system is depicted in Fig. 1.1 (a). A basis transformation U =
eiπσ1/2 switches to a basis in which the orbitals are exchanged under the inversion
symmetry, UU(I)U † = σ2, as depicted in Fig. 1.1 (b). Next, one can move the
orbitals symmetrical to the boundary of the unit cell, which is expressed by the
operator Ux = eikaσ3/2, where a is the lattice spacing, as depicted in Fig. 1.1
(c). Finally, one switches back into the eigenbasis of inversion symmetry, such
that the resulting Hamiltonian reads H ′(k) = σ3 with representation of inversion
symmetry U(I) = σ3e

ika, as depicted in Fig. 1.1 (d). In summary, this shows that
this systems can be deformed to a pair of orbitals located at the boundary of the
unit cell.

The existence of a description in terms of an atomic limit that presenves the
crystalline symmetries and the absence of (d ≥ 1)-dimensional gapless, anomalous
boundary modes are in one-to-one correspondence to each other [27, 28]. As an
atomic limit corresponds to an arrangement of localized orbitals, it can not have
gapless, anomalous boundary modes. Conversely, if d ≥ 1-dimensional gapless
anomalous states exist on the boundary, then in a lattice model, there needs to be
an extended bound state that connects the anomalous states on opposite surfaces.
This is required in order to cancel the anomaly of the surface theories such that a
lattice model can be defined (see our discussion on the anomalous surface states in
the previous subsection). The necessary existence of extended bulk states implies
that the bulk lattice model can not be deformed to an atomic limit (in which
all bulk states can be exponentially localized). The above heuristic argument is
a generalization of the original argument by Halperin in Ref. 10. More formal
proofs have been established for individual cases by determining general criteria
on whether an atomic limit can be constructed in terms of exponentially localized
Wannier functions 2 [96, 97, 98, 99, 95].

2 A Wannier function is a superposition of the Bloch eigenfunctions of a given band (more
generally: set of connected bands) – expressed by the Fourier transformation of the Bloch
wavefunction – such that the resulting superposition is localized in real space [95]. If a set of
exponentially localized Wannier functions that preserves all symmetries of the system can be
found, then it corresponds to an atomic insulator by construction [27]. This is because the
Wannier functions of any atomic insulator are exponentially localized at the position of the
atomic orbitals by definition.
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Aspects of topological superconductors

The connection between the existence of an atomic limit and the appearance
of anomalous boundary modes suggestes an alternative definition of ’topologically
trivial’ insulator: Each Hamiltonian that is adiabatically connected to an atomic
limit is considered topologically trivial. This definition is used in Refs 27, 28 to de-
fine symmetry-based indicators for topological crystalline insulators with gapless,
anomalous boundary states. Notice that, depending on the presence of time-
reverrsal and spin rotation symmetry, insulators may correspond to the Cartan
symmetry classes A, AI or AII. In these Cartan classes, the tenfold-way peri-
odic table 1.1 shows that there exist only d ≥ 1 dimensional anomalous states.
Therefore, the above definition captures all topological insulators with anomalous
boundary states.

All Cartan classes AIII, BDI, D, DIII, CII hosting zero-dimensional anomalous
states may be realized in superconducting systems. In these Cartan classes, the
definition of an atomic limit is more subtle as (i) the above connection between an
absence of exponentially localized bulk states (Wannier functions) could only be
established for topological phases hosting d ≥ 1 dimensional anomalous states. In
Section 1.4 below, we are going to show that for the one-dimensional topological
superconductor in Cartan class D, all bulk states can be exponentially localized.
This shows that exponential localization of the bulk states is not a sufficient crite-
rion to determine the absence of anomalous boundary states in superconductors as
it misses the possibility for isolated anomalous zero-energy states. Furthermore,
(ii) the microscopic length scale associated to superconductors is the supercon-
ducting coherence length, which is typically of the order of 101 to 103 atomic
lattice constants, suggesting a different physical interpretation of an atomic limit
for superconductors [100].

In Chapter 4 we are going to show how an atomic limit for superconductors can
be defined using the Grothendieck construction as used in the definition of stable
homotopy equivalence. This allows to systematically construct all atomic limits for
superconductors. Accordingly, we show how to define symmetry-based indicators
for topological superconductors within the stable homotopy classification that also
detect topological phases hosting anomalous, zero-dimensional zero-energy modes
on the boundary.

1.4 Aspects of topological superconductors

The purpose of this section is to illustrate a few aspects of topological supercon-
ductors at the simplest example of a one-dimensional topological superconductor
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in Cartan class D. We start from a general Bogoliubov-de Gennes Hamiltonian
and show how its ground-state is constructed and give relevant definitions along
the way. We show that the one-dimensional topological superconductor realized
on a ring has an anomalous response with respect to a magnetic flux penetrating
the ring. We show that this implies that its Cooper-pair wavefunction must decay
algebraically in the topological phase. We emphasize which information the defini-
tion of an ’atomic limit’ for a superconductor must contain in order to distinguish
the topological phases of a one-dimensional topological superconductor.

1.4.1 Superconductors in Bogoliubov-de Gennes theory

This work focuses on the classification and phenomenlogy of topological insula-
tors and superconductors in free fermion systems. By definition, free fermionic
systems are desribed by a quadratic fermionic Hamiltonian whose general form in
d dimensions is

Ĥ =
∑

r,r′

∑

i,j

ĉ†r,ihi,j(r, r
′)ĉr′,j +

1

2

(
ĉ†r,i∆i,j(r, r

′)ĉ†r′,j − ĉr,i∆∗i,j(r, r′)ĉr′,j
)

(1.14)

where r, r′ are discrete real space coordinates, ĉ†r,i is a fermionic creation operator
and i = 1, ..., N(r), j = 1, ..., N(r′) enumerates the local degrees of freedom at the
position r, r′ such as a spin or orbital degree of freedom. The matrix hi,j(r, r

′)
is called the normal state Hamiltonian describing hopping of electrons and holes.
The matrix ∆i,j(r, r

′) describes superconducting correlations and is called the su-
perconducting order parameter. The superconducting order parameter is usually
determined from a self-consistency relation involving the electron-electron interac-
tions [22]. In this thesis we do not consider the self-consistency relation. Instead,
we analyze the properties of the single-particle Hamiltonian with a superconduct-
ing order parameter prescribed by symmetry.

Introducing Ψ̂r,j =
(
ĉr,j ĉ†r,j

)T
, the Hamiltonian is written in Bogoliubov-de

Gennes form

Ĥ =
1

2

∑

r,r′

∑

i,j

Ψ̂†r,iH
BdG
i,j (r, r′)Ψ̂r′,j (1.15)

with the Bogoliubov-de Gennes Hamiltonian

HBdG
i,j (r, r′) =

(
hij(r, r

′) ∆ij(r, r
′)

−∆∗ij(r, r
′) −h∗ij(r, r′)

)
.
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Aspects of topological superconductors

We require that both the normal state Hamiltonian hi,j(r, r
′) and the pairing term

∆i,j(r, r
′) satisfy a discrete translation symmetry

hi,j(r, r
′) = hi,j(r + Gα, r

′ + Gα) =: hi,j(R−R′, τ, τ ′)

∆i,j(r, r
′) = ∆i,j(r + Gα, r

′ + Gα) =: ∆i,j(R−R′, τ, τ ′)

with the Bravais lattice vectors Gα, α = 1, ..., d and r = R + τ where R =∑
α nαGα, nα ∈ Z is the position of the unit cell center and τ is the displacement

of the orbital with respect to the unit cell center. Translation symmetric lattice
models are conventionally analysed in Bloch basis which is expressed by a Fourier
transformation with respect to the unit cell center as

ĉR+τl,j =
∑

k∈BZ

e−ikRĉk,τl,j (1.16)

where the sum is performed over all k in the discretized Brillouin zone BZ such
that the resulting Hamiltonian reads

Ĥ =
1

2

∑

k∈BZ

∑

i,j

ĉ†k,iH
BdG
i,j (k)ĉk,j (1.17)

with Ψ̂k,j =
(
ĉk,τ ′(j),j ĉ†−k,τ ′(j),j

)T
and

HBdG
i,j (k) =

(
hi,j(k) ∆ij (k)
−∆∗ij (−k) −h∗i,j(−k)

)

where

hi,j(k) :=
∑

R−R′

eik(R−R
′)hij (R−R′, τ(i), τ ′(j))

∆ij (k) :=
∑

R−R′

eik(R−R
′)∆ij (R−R′, τ(i), τ ′(j)) ,

and where we have redefined the indices i, j = 1, ...,
∑

τ N(τ) to enumerate allN(τ)
local degrees of freedom of all orbitals with position τ within the unit cell. The
BdG Hamiltonian satisfies an antiunitary antisymmetry U(P)(HBdG)∗(−k)U(P)† =
−HBdG(k) due to the fermionic anticommutation relations with U(P) = τ1 with τ
the Pauli matrix in Nambu space. For local Hamiltonians (HBdG

i,j (r, r′) ≤ ae−λ|r−r
′|

for some finite a, λ > 0) the Bloch-BdG-Hamiltonian HBdG(k) is smooth and pe-
riodic with the Brillouin zone.

The Bloch-BdG Hamiltonian is diagonalized as U †(k)HBdG(k)U(k) = E(k)
with

Ui,j(k) =

(
ui,j(k) vi,j(k)
v∗i,j(−k) u∗i,j(−k)

)
=
(
|φi(k)〉j P|φi(k)〉j

)
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composed out of the single-particle eigenstates |φi(k)〉,P|φi(k)〉 = τ1|φi(−k)〉∗
with energyHBdG(k)|φi(k)〉 = Ei(k)|φi(k)〉 andHBdG(k)P|φi(k)〉 = −Ei(k)P|φi(k)〉
such that Ei,j(k) = Ei(k)τ3δi,j. Gapped superconductors have the same number
N of bands with positive and negative energy throughout the Brillouin zone. This
allows to choose by convention that En(k) > 0 such that γ̂†k,n =

∑
j uj,n(k)ĉ†k,j +

v∗j,n(−k)ĉ−k,j for n ≤ N creates a particle with positive energy En(k) > 0 and
momentum k. We focus on gapped superconductors below and apply this conven-
tion.

There is a gauge ambiguity in choosing the diagonalization U(k): In case the
spectrum is non-degenerate, the gauge ambiguity is the common U(1) gauge free-
dom of quantum mechanics: If U(k) diagonalizes H(k), then Ũ(k) = eiD(k)U(k),
with D(k) a diagonal matrix, diagonalizes H(k). For D(k) = d(k)τ3, the gauge
transformed states satisfy P|φj(k)〉 = τ1|φj(−k)〉∗.

In diagonal basis, the Hamiltonian is written as, using Einstein sum convention
and that unitarity of U(k) implies Ui,m(k)U †k,m(k) = δi,k,

Ĥ =
1

2

∑

k∈BZ

Ψ̂†k,iUi,m(k)U †k,m(k)HBdG
k,l (k)Ul,n(k)U †j,n(k)Ψ̂k,j

=
1

2

∑

k∈BZ

Γ̂†k,mE(k)m,nΓ̂k,n

=
1

2

∑

k∈BZ

γ̂†k,nEn(k)δn,mγ̂k,m − γ̂−k,nEn(−k)δn,mγ̂
†
−k,m

=
∑

k∈BZ

γ̂†k,nEn(k)γ̂k,n (1.18)

where Γ̂k,n =
(
γ̂k,n γ̂†−k,n

)T
:= U †j,n(k)Ψ̂k,j such that

γ̂k,n =
∑

j

u∗j,n(k)ĉj,k + vj,n(−k)ĉ†j,−k (1.19)

P γ̂k,n = γ̂†−k,n =
∑

j

v∗j,n(k)ĉj,k + uj,n(−k)ĉ†j,−k (1.20)

Using the commutation relations of fermionic opertors, one shows that [Ĥ, γ̂†k,n] =

En(k)γ̂†k,n. The system in the ground state should not be able to gain energy by
removing particles. Thus, the ground state can be constructed as the state that
is annihilated by all quasiparticle operators that remove a particle with positive
energy,

|GS〉 =
1

N
∏

k

∏

n

γ̂k,n|vac〉 (1.21)
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Aspects of topological superconductors

where the product runs over all n with En(k) > 0, N is a normalization factor,
and |vac〉 is the vacuum of original fermions ĉi,k|vac〉 = 0. For superconductors,
this definition is equivalent to the common description of the ground state as a
coherent state as we illustrate below.

A closer look reveals that for superconductors, the ground state is composed
out of pairs fermions with opposite momentum. For gapped superconductors with
a single, spin-polarized band (N = 1), we can write

|GS〉 =
1

N
∏

k′∈{K}
γ̂k′

∏

k∈BZ/{K}
γ̂k|vac〉

=
1

N
∏

k′∈{K}
γ̂k′

∏

k∈ 1
2
BZ/{K}

γ̂−kγ̂k|vac〉

=
1

N
∏

k′∈{K}
γ̂k′

∏

k∈ 1
2
BZ/{K}

u∗(−k)v(−k)

(
1 +

v(k)

u∗(−k)
ĉ†kĉ
†
−k

)
|vac〉

=
1

Nc
∏

k′∈{K}
γ̂k′ exp

(∑

k

g(k)ĉ†kĉ
†
−k

)
|vac〉 (1.22)

where

g(k) :=
v(k)

u∗(−k)

is conventionally called the Cooper pair wavefunction, Nc is a redefined normaliza-
tion factor, k ∈ {K} are the inversion symmetric momenta in the Brillouin zone
k = −k mod b where b is a reciprocal lattice vector, and k ∈ 1

2
BZ/{K} contains

the momenta of only one half of the Brillouin zone after removing the inversion
symmetric momenta.

These momenta play a special role as their presence in the ground state de-
pends on the flux in the system. In section 1.4.2 we show that the fermion parity
at these momenta and the associated behavior under flux insertion is directly re-
lated to the ground state topology. For single-band superconductivity, unitarity
of U(k) implies that g(k) = −g(−k) is an antisymmetric function as expected
for wavefunctions describing a pair of fermions. A generalized expression can be
derived straightforwardly for multi-band and/or spinful superconductivity.
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1.4.2 A topological superconductor in one dimension

Consider a chain of spin-polarized fermions with nearest neighbor hopping ele-
ments t. In the normal state, the single-particle spectrum of the chain consists
of a single band with band width 2t. The system is metallic if the chemical po-
tential resides within the band. The simplest superconducting pairing that can
be induced in the system couples two neighboring fermions. The corresponding
single-particle Hamiltonian reads

Ĥ =
∑

x

µĉ†xĉx +
t

2
ĉ†x+1ĉx +

t∗

2
ĉ†xĉx+1 +

∆

2
ĉ†x+1ĉ

†
x −

∆∗

2
ĉx+1ĉx. (1.23)

Using Eqs. (1.15) to (1.17), the Hamiltonian is expressed in Bloch-Bogoliubov-de
Gennes form as

Ĥ =
1

2

∑

k∈BZ

Ψ̂†kHBdG(k)Ψ̂k (1.24)

with Ψ̂†k = (c†k, c−k) and

HBdG(k) =

(
µ+ t cos k i∆ sin k
−i∆∗ sin k −µ− t cos k

)
. (1.25)

The spectrum of this Hamiltonian is

E(k) = ±
√

(µ+ t cos k)2 + |∆|2 sin2 k. (1.26)

If |∆| > 0, the Hamiltonian has a gapped excitation spectrum everywhere except
at |µ| = t. In the following we show that this point separates two phases that are
distinguishable by the topology of its ground state. First, we argue that the ground
state within the parameter space |µ| < t is topologically non-trivial in the sense
that it cannot be written as a state composed of a product of localized fermionic
creation operators. We illustrate our conclusions for the parameters µ = 0, ∆ = t
real and argue that they are general properties of the topological phase.

In this limit we have E(k) = t and the Hamiltonian is brought into diagonal
form as in Eq. (1.18),

Ĥ = t
∑

k∈BZ

γ̂†kγ̂k

using the Bogoliubov quasiparticle operators

γ̂k = u∗(k)ĉk + v(−k)ĉ†−k. (1.27)

with the weights u(k) = eik/2eiπ/4 cos k/2 and v(k) = −eik/2eiπ/4 sin k/2.

24



Aspects of topological superconductors

When requiring translational symmetry, we implicitly assume the chain forms
a ring. When connecting the two ends of the chain to form a ring, we can choose
to apply periodic or antiperiodic boundary conditions. The latter corresponds to
including a magnetic flux quantum in the ring. Below we assume that the ring
contains an even number N of lattice sites. Similar conclusions apply also for a
ring with an odd number of lattice sites.

The choice of boundary conditions determines the allowed values of the crystal
momentum k. For N even and for periodic boundary conditions, the allowed
momenta satisfy eikN = 1 and are given by

k ∈
{πn
N
|n = 0,±2, ...,±(N − 2), N

}
.

The ground state therefore is constructed as, using Eq. (1.22),

|GS〉 =
1

N γ̂πγ̂0
∏

0<k<π

γ̂−kγ̂k|vac〉. (1.28)

The Bogoliubov quasiparticle operators at the inversion symmetric momenta have
the form

γ̂0 = e−iπ/4ĉ0, γ̂π = e−iπ/4ĉ†π.

As ĉ0
∏

0<k<π γ̂−kγ̂k|vac〉 = 0, the ground state has to be constructed using only
γ̂π = e−iπ/4ĉ†π. This shows that if the fermion parity of the system is constrained
to be even, the system cannot reach its ground state if the ring encloses an even
number of flux quanta as it can always reduce its energy by accepting an additional
fermion.

For N even and for antiperiodic boundary conditions, the condition eikN = −1
is satisfied by the momenta

k ∈
{πn
N
|n = ±1, ...,±(N − 1)

}
.

In this case the inversion symmetric momenta k = 0 and π are not included in the
construction of the ground state. The ground state

|GS〉 =
1

N
∏

0<k<π

γ̂−kγ̂k|vac〉 (1.29)

therefore has even fermion parity. This consideration shows that if the magnetic
field is allowed to fluctuate, the ground state of the system on a large ring with
even number of fermions encloses an odd number of flux quanta. Other boundary
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conditions than periodic or antiperiodic are not allowed for a superconductor with
a well-defined order parameter and no vector potential.

This response of the system with respect to a magnetic flux directly implies
that the Cooper pair wavefunction is non-local as we show in the following. In
our example, this is seen by rewriting the ground state as a coherent state using
Eq. (1.22) as

|GS〉 =
1

Nc
exp


 ∑

k∈ 1
2
BZ/{K}

v(k)

u∗(−k)
ĉ†kĉ
†
−k


 |vac〉

=
1

Nc
exp

(∑

X 6=X′

g(X −X ′)ĉ†X′ ĉ
†
X

)
|vac〉

using the inverse Fourier transformation to Eq. (1.16) with respect to the Bloch
basis and introducing the real space profile of the Cooper pair wavefunction

g(X−X ′) =
∑

k∈ 1
2
BZ/{K}

eik(X−X
′) v(k)

u∗(−k)
= −i

∑

k∈ 1
2
BZ/{K}

eik(X−X
′) tan(k/2). (1.30)

Numerical evaluation of the sum shows that the Cooper pair wavefunction decays
algebraically at large distances as

lim
|X−X′|→∞

|g(X −X ′)| ∝ |X −X ′|− 1
2 .

In general, the coefficients of a Fourier transformation of a discontinuous function
decay at most algebarically. In fact, the Paley-Wiener theorem implies that the
expansion coefficients decay exponentially only for analytic functions [101]. This
algebraic decay of the Cooper pair wavefunction in the topological phase of a one-
dimensional superconductor has also been shown in Refs. 102, 101. We point out
that also the Cooper pair wavefunction in a two-dimensional px + ipy topological
superconductor [23, 102] as well as a three-dimensional topological superconductor
in class DIII [61] exhibits algebraic decay at large distances .

If the fermion parity at the k = 0 and π differs, the Cooper pair wavefunction
has to be non-local. This follows by considering that unitarity of U(k) for spin
polarized single-band superconductors requires g(k) = −g(−k). If g(k) is continu-
ous and periodic with the Brillouin zone k ∈ (−π, π], then g(0) = g(π) = 0 which
implies u(0) = u(π) = 0. In this case γ̂K ∝ ĉK for K = 0, π and consequently the
fermion parity of the ground state is even and independent of the magnetic flux
through the ring. If u(K) 6= 0 for K = 0, π, then g(k) can not be continuous and
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Aspects of topological superconductors

periodic with the Brillouin zone. In this case the Paley-Wiener theorem guaran-
tees that the expansion coefficients of the Fourier transformation decay at most
algebraically. An extension of this argument to an arbitrary number of bands is
found in Ref. [101].

Description in terms of exponentially localized Bogoliubov-quasiparticles. By
superposition of the extended Bogoliubov quasiparticles γ̂k which are the eigen-
states of the translation symmetric Bogoliubov-de Gennes Hamiltonina, one can
construct a set of localized Bogoliubov quasiparticles using the Fourier transfor-
mation with respect to the Bloch basis as

γ̂†X =
∑

k∈BZ

e−ikX γ̂†k

=
∑

k∈BZ

[
− 1

2i
eikXeiπ/4

(
eik − 1

)
ĉk +

1

2
eikXe−iπ/4

(
eik + 1

)
ĉ†−k

]

=
e−iπ/4

2

(
ĉ†X+1 − ĉX+1 + ĉ†X + ĉX

)

=
e−iπ/4

2

(
âX+1 + b̂X

)

(1.31)

where we introduced âX =
(
ĉ†X + ĉX

)
and b̂X = i

(
ĉ†X − ĉX

)
which satisfy the

Majorana relation â†X = âX , b̂†X = b̂X and combine into the original fermions as
cX = 1

2
(aX + ibX). The operator γ̂†X thus describes a fermion that is composed out

of a pair of Majorana fermions of adjacent sites. The charge center of the fermion
γ̂†X is localized exactly in the center between two adjacent fermions ĉ†X , ĉ†X+1.
This proves that all quasiparticle excitaitons of the one-dimensional topological
superconductor can be exponentially localized. Notice that this is in contrast to
our result for topological phases with d ≥ 1 dimensional anomalous boundary
states, where the boundary anomaly implied the necessary existence of extended
bulk states.

The above calculation shows how the Majorana fermion operators âX , b̂X arise
naturally in the ”dimerized limit” µ = 0, δ = t of the one-dimensional topo-
logical superconductor. By rewriting the Hamiltonian (1.23) with the operators
âX , b̂X , one verifies straightforwardly in the dimerized limit that it realizes iso-
lated Majorana bound states at each end of the chain (see Ref. 102 for a detailed
demonstration). In the original paper by Kitaev discussing the one-dimensional
topological superconductor in Ref. 25, it has been shown that the appearance of
Majorana end states is directly connected to the difference of the fermion parity
at different parity of the number of enclosed magnetic flux quanta.
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For insulators, a sufficient condition for the existence of gapless, anomalous
boundary states is whether one can form a basis of exponentially localized states
by superposition of the bulk eigenstates (Wannier functions) [27, 28], see Sec. 1.3
above. This condition is not sufficient to diagnose topological superconductivity,
as the above example shows that it misses topological superconducting phases
that host isolated Majorana bound states at its boundary. The above example
suggests that one furthermore needs to require that the Cooper pair wavefunction
can be exponentially localized [101]. Alternatively, one can include the position of
the original fermions as additional data and require that the localization position
of Bogoliubov quasiparticles (if exponentially localized) should coincide with the
position of the original fermions. In Chapter 4 we extend the latter idea in order
to define and construct atomic limits for superconductors within the framework
of the stable homotopy classification. It has been suggested to extend the latter
idea to formulate a criterion for higher-order topological superconductivity with
isolated Majorana bound states on the boundary [100].
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2. Second-order topological insulators and superconductors with an order-two
crystalline symmetry

2.1. INTRODUCTION

In comparison to conventional “first-order” topolog-
ical insulators and superconductors, which combine
a gapped bulk with topologically protected gapless
boundary states,[1–3] the protected gapless states in a
second-order topological insulator or superconductor ex-
ist in one dimension lower:[4] A two-dimensional second-
order topological insulator or superconductor has zero-
energy states at corners of the crystal[5–9] and a three-
dimensional topological insulator or superconductor has
gapless modes along crystal edges or “hinges”.[4, 9–14]
Second-order topological insulator and superconductor
phases have been proposed to exist in a (first-order) topo-
logical insulator in three dimensions to which a suitable
time-reversal-breaking perturbation is applied,[10, 11] in
the superfluid 3He-B phase,[12] or in crystals with rota-
tion or mirror symmetries.[4–9, 13, 14]

A complete classification of first-order topological in-
sulators and superconductors has been developed, ac-
counting for the presence or absence of non-spatial sym-
metries (see also Chapter 1).[15–17] The three funda-
mental non-spatial symmetry operations time-reversal
T , particle-hole P, and C = PT , known as “chiral
symmetry”, define the ten Altland-Zirnbauer symmetry
classes,[18] see Table 2.1. For each Altland-Zirnbauer
class, the number and type of protected boundary states
is uniquely rooted in the topology of the bulk band struc-
ture, so that topological classifications of gapped bulk
band structure and gapless boundary states are essen-
tially identical, a feature known as “bulk-boundary cor-
respondence”. Complete classifications for all Altland-
Zirnbauer classes with additional spatial symmetries ex-
ist only for the order-two crystalline symmetries,[19] such
as mirror symmetry,[20–22] order-two rotation symme-
try, inversion symmetry,[23] and non-symmorphic order-
two crystalline symmetries.[24] In parallel, a wealth of
symmetry-based indicators has been identified for topo-
logical phases with other crystalline symmetries (see
also Chapter 4).[25–36] With crystalline symmetries, the
bulk-boundary correspondence — i.e., the one-to-one
correspondence between bulk topology and the number
and type of gapless boundary states — only applies to
boundaries which are invariant with respect to the crys-
talline symmetry operation; non-symmetric boundaries
are generically gapped (see also Section 1.3 of Chapter
1).

In this chapter we consider the classification problem
for second-order topological insulators. We identify the
type and number of zero-energy states at corners or gap-
less modes at hinges and relate this classification of cor-
ner states and hinge modes to the topology of the bulk
band structure. This program is carried out for all ten

a) b)

FIG. 2.1. Schematic picture of an “extrinsic” second-order
topological insulator consisting of a three-dimensional topo-
logical insulator placed in a magnetic field in a generic direc-
tion, as proposed by Sitte et al.[10] (a). Each surface has a
finite flux and there are chiral modes along hinges that touch
two faces with opposite sign of the magnetic flux. The gapless
hinge modes may be removed by exchange-coupling some of
the crystal faces to a two-dimensional ferromagnetic insulator
(b).

Altland-Zirnbauer classes with one additional order-two
spatial symmetry, for which the classification of the bulk
band structure is known.[19]

In contrast to first-order topological insulators, for
which the number and type of protected boundary states
depends on the topology of the bulk band structure only,
the occurrence of zero-energy corner states or gapless
hinge modes may also depend on properties of the bound-
ary, i.e., on the lattice termination. Correspondingly,
the classification of corner states and hinge modes of
second-order topological insulators and superconductors
has to distinguish between termination-dependent and
termination-independent properties of corner states and
hinge modes. This naturally leads to an “intrinsic” topo-
logical classification, in which crystals that differ by a lat-
tice termination only are considered topologically equiva-
lent, and an “extrinsic” classification, which accounts for
termination effects and defines topological equivalence
with respect to continuous transformations that preserve
both bulk and boundary gaps.

An example of an “extrinsic” second-order topologi-
cal insulator is a three-dimensional topological insulator
(without further crystalline symmetries) placed in a mag-
netic field in a generic direction, such that there is a finite
magnetic flux through all surfaces,[10, 11] see Fig. 2.1.
Such a crystal has chiral modes along hinges that con-
nect faces with an inward and outward-pointing magnetic
fluxes. The chiral modes are stable with respect to con-
tinuous transformation of the Hamiltonian that preserve
bulk and surface gaps. They may be removed, however,
upon exchange coupling the crystal faces with an inward
magnetic flux to ferromagnetic insulating films, with a
magnetization direction chosen such that the exchange
field reverses the effect of the applied magnetic field.
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(a) (b)

=

FIG. 2.2. (a) Schematic picture of a generic corner of a two-
dimensional crystal. A generic corner may host a protected
zero-energy state if and only if the corresponding Altland-
Zirnbauer class in d − 1 dimensions is nontrivial. (b) Zero-
energy corner states in a generic corner can always be moved
to a different corner by a suitable change of the lattice ter-
mination. For the example shown here, a one-dimensional
topological insulator or superconductor with two end states
is “glued” to one of the crystal faces adjacent to the top cor-
ner, such that its end state and the original zero-energy cor-
ner state mutually gap out. As a result, the corner state has
moved to the corner on the left.

An “intrinsic” second-order topological insulator or
superconductor, for which the presence of corner or
hinge states does not depend on the lattice termination,
requires the presence of additional crystalline symme-
tries. Examples that have been identified in the lit-
erature include mirror-reflection symmetry,[4, 9] rota-
tion symmetries,[4, 13, 14] or more general point group
symmetries.[6, 7, 36] In these cases corner states con-
tinue to exist under continuous transformations of the
Hamiltonian that close the boundary gap, provided the
bulk gap is not closed and the lattice termination remains
compatible with the crystalline symmetry.

In the presence of a crystalline symmetry, a classifi-
cation of corner states and hinge modes must also dis-
tinguish between corners and hinges that are themselves
invariant with respect to the crystalline symmetry, and
generic non-symmetric corners or hinges. The classifica-
tion of zero-energy states and gapless modes at a generic,
non-symmetric corner or hinge (schematically shown in
Fig. 2.2a) equals that of a generic codimension-one de-
fect, which is the same as the regular classification of
topological phases but with the dimension shifted by
one,[37] see Table 2.1. This simple result also follows
from the observation that the absence of gapless bound-
ary states implies that the bulk is essentially topologi-
cally trivial, so that a corner or hinge may be seen as a
junction between two “stand-alone” topological edges or
surfaces.[9] Note that this classification of corner states
or hinge modes at a generic corner or hinge is an extrin-
sic classification: Any corner state or hinge mode at a
generic corner or hinge can be moved away from that cor-
ner or hinge by a suitable change of the crystal boundary,
without affecting the bulk, see Fig. 2.2b.[4, 36] Hence, the
intrinsic classification of corner states or hinge modes at
a generic corner or hinge is always trivial.

A classification of zero-energy states and gapless
modes at mirror-symmetric corners and hinges is given
in Sec. 2.4. In addition to providing the intrinsic
(termination-independent) and extrinsic (termination-
dependent) classifications, we consider the effect of per-

Cartan (anti)symmetries d = 2 d = 3
A - 0 Z

AIII C Z 0
AI T + 0 0

BDI T +, P+ Z 0
D P+ Z2 Z

DIII T −, P+ Z2 Z2

AII T − 0 Z2

CII T −, P− 2Z 0
C P− 0 2Z
CI T +, P− 0 0

TABLE 2.1. The ten Altland-Zirnbauer classes are defined
according to the presence or absence of time-reversal sym-
metry (T ), particle-hole antisymmetry (P), and chiral an-
tisymmetry (C). The superscript ± indicates the square of
the time-reversal or particle-hole conjugation operation. The
presence of chiral antisymmetry C = PT is automatic for
Altland-Zirnbauer classes with both time-reversal symmetry
and particle-hole antisymmetry. The third and fourth column
give the classification of stable zero-energy states at generic
corners of two-dimensional crystals (d = 2) or hinges of three-
dimensional crystals (d = 3). This is an “extrinsic” classifi-
cation, in the sense that the number of corner states or hinge
modes at a generic corner or hinge is not a bulk property and
can be changed by a change of the lattice termination. Its
topological protection is with respect to all continuous trans-
formations that preserve both bulk and boundary gaps.

turbations that locally break mirror symmetry at cor-
ners and hinges, to account for the experimental real-
ity that corners and hinges are more prone to defects
and disorder than crystal faces. The intrinsic classifica-
tion of zero-energy states and gapless modes at mirror-
symmetric corners and hinges coincides with the clas-
sification of bulk topological crystalline phases in two
and three dimensions,[19–22] respectively, after removal
of the first-order topological phases. This “corner-to-bulk
correspondence” (or “hinge-to-bulk correspondence, for
three-dimensional topological crystalline insulators and
superconductors) not only confirms that every topologi-
cal class of the bulk band structure is associated with a
unique configuration of zero-energy corner states or gap-
less hinge modes, but also that for every possible config-
uration of mirror-symmetric zero-energy corner states or
hinge modes, there is a topological crystalline phase that
produces it.

With rotation or inversion symmetry there are no
symmetry-invariant corners or hinges for two- and three-
dimensional crystals, respectively. Hence, each corner
or hinge in a crystal with rotation symmetry or inversion
symmetry is a “generic” corner or hinge, described by the
extrinsic classification of Table 2.1. Zero-energy corner
states or gapless hinge modes at a given corner or hinge
can always be removed by changing the lattice termina-
tion. Nevertheless, as we show in Sec. 2.5, the role of the
bulk crystalline symmetry, combined with the require-
ment that lattice termination is symmetry-compatible,
is to impose a Z2 sum rule to the total number of corner
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or hinge states, which is an odd multiple of two for the
nontrivial phases and an even multiple of two otherwise.
(For Altland-Zirnbauer classes with a time-reversal or
particle-hole symmetry squaring to −1 one should count
pairs of corner states/hinge modes.)

In Refs. 4 and 9 is the construction of a nontriv-
ial intrinsic second-order phase out of a nontrivial bulk
mirror-reflection-symmetric phase made use of the bulk-
boundary correspondence, according to which a non-
trivial topological crystalline bulk phase implies a gap-
less boundary mode at a boundary that is left invari-
ant under mirror reflection. The existence of protected
corner states or hinge modes was then concluded upon
noting that mass terms that are generated upon tilting
the boundary away from the mirror-invariant direction
have a different sign at mirror-related boundaries, such
that a corner separating mirror-related boundaries rep-
resents a domain wall and, hence, hosts a zero-energy
state or a gapless hinge mode. The same procedure
can be applied to a three-dimensional crystal with a
twofold rotation symmetry, because these, too, allow for
symmetry-invariant faces. It fails, however, for a two-
dimensional crystal with twofold rotation symmetry or a
three-dimensional crystal with inversion symmetry, be-
cause these have no symmetry-invariant surface. To de-
rive the existence of a second-order topological phase
with zero-energy corner states in a two-dimensional crys-
tal with twofold rotation symmetry or of gapless hinge
modes in a three-dimensional crystal with inversion sym-
metry, we employ a dimensional reduction scheme, mak-
ing use of the existence of symmetry-invariant faces for
crystals with the same order-two crystalline symmetry in
one dimension higher. Our results are consistent with
nontrivial second-order topological phases predicted re-
cently by Fang and Fu[14] and by Khalaf et al.[36] for
three-dimensional inversion-symmetric crystals.

This chapter is organized as follows: In Sec. 2.2 we in-
troduce the relevant symmetry classes for an order-two
crystalline symmetry coexisting with time-reversal sym-
metry, particle-hole symmetry, or chiral symmetry and
we review Shiozaki and Sato’s classification of the crys-
talline bulk phases. The dimensional reduction map is
outlined in Sec. 2.3. A classification of mirror-symmetric
corners and hinges follows in Sec. 2.4; Section 2.5 dis-
cusses twofold rotation and inversion symmetry. A few
representative examples of tight-binding models realizing
second-order topological phases are discussed in Sec. 2.6.
We conclude in Sec. 2.7. The appendices contain a de-
tailed discussion of the dimensional reduction scheme as
well as a brief discussion of all relevant crystalline sym-
metry classes that are not considered in the main text.

2.2. SHIOZAKI-SATO SYMMETRY CLASSES

We consider a Hamiltonian Hd(k) in d dimensions,
with k = (k1, k2, . . . , kd). In addition to the crystalline
order-two symmetry, to be discussed in detail below,

the Hamiltonian Hd possibly satisfies a combination of
time-reversal (T ) symmetry, particle-hole (P) antisym-
metry, and/or chiral (C) antisymmetries.1 These take
the form[39]

Hd(k) = U†THd(−k)∗UT ,

Hd(k) = −U†PHd(−k)∗UP , (2.1)

Hd(k) = −U†CHd(k)UC ,

where UT , UP , and UC are k-independent unitary ma-
trices. If time-reversal symmetry and particle-hole sym-
metry are both present, UC = UPU∗T . Further, the uni-
tary matrices UT , UP , and UC satisfy UT U∗T = T 2 and
UPU∗P = P2 and we require that U2

C = C2 = 1 and
UPU∗T = T 2P2UT U∗P . Throughout we use the sym-
bols T ± and P± to refer to a time-reversal symmetry
or particle-hole antisymmetry squaring to one (+) or mi-
nus one (−). The ten Altland-Zirnbauer classes defined
by the presence or absence of three non-spatial symme-
try operations T , P, and C are separated in two “com-
plex” classes, which do not have antiunitary symmetries
or antisymmetries, and eight “real” classes, which have
at least one antiunitary symmetry or antisymmetry. Fol-
lowing common practice in the field, we use Cartan labels
to refer to the ten Altland-Zirnbauer symmetry classes,
see Table 2.1 (see also Chapter 1).

In addition to the non-spatial (anti)symmetries T , P,
and C, the Hamiltonian Hd(k) satisfies an order-two crys-
talline symmetry or antisymmetry. The “spatial type” of
the symmetry operation is determined by number d‖ of
spatial degrees of freedom that are inverted: Mirror re-
flections have d‖ = 1, twofold rotations have d‖ = 2, and
inversion has d‖ = 3. (In two dimensions, the spatial
operations of inversion and twofold rotation are formally
identical. We will refer to this operation as a twofold ro-
tation.) We will use the symbol S to denote a general uni-
tary order-two crystalline symmetry, replacing S by M,
R, or I for considerations that apply specifically to mir-
ror reflection, twofold rotation, or inversion symmetry,
respectively. For a general antiunitary symmetry, antiu-
nitary antisymmetry, and unitary antisymmetry we use
the composite symbols T ±S, P±S and CS, respectively,
again replacing S by M, R, I when appropriate. With-
out loss of generality we may require that the symme-
try operation S squares to one.2 Following Refs. 19–21,
to further characterize the (anti)symmetry operation, we
specify the signs ηT ,P,C indicating whether it commutes
(η = +) or anticommutes (η = −) with time-reversal T ,
particle-hole conjugation P, or the chiral operation C.

1 Although P and and C are commonly referred to as “particle-
hole symmetry” and “chiral symmetry”, we will refer to these as
antisymmetries, because they connect H to −H, see Eq. (2.1).

2 For spin 1/2 electrons often spatial symmetries squaring to −1
are used. Multiplication by i then gives a symmetry operation
squaring to 1. Note, however, that multiplication with i turns
a symmetry that commutes with T or P into a symmetry that
anticommutes with T or P and vice versa.
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AZ class s t symmetry operations representative
A 0 0 +U S
AIII 1 0 αU+ S+
A 0 1 −U CS
AIII 1 1 αU− S−

TABLE 2.2. Shiozaki-Sato equivalence classes of unitary sym-
metry and antisymmetry operations for the Altland-Zirnbauer
classes A and AIII. The symbol σUηC is used to denote unitary
symmetry (σ = +) and antisymmetry (σ = −) operations
that commute (ηC = +) or anticommute (ηC = −) with the
chiral symmetry, if applicable. The last column lists a unitary
crystalline symmetry SηC or the product of a unitary symme-
try operation S and the chiral operation C as a crystalline
symmetry operation representative of the Shiozaki-Sato class
(s, t).

Unitary symmetry and antisymmetry operations S and
CS are represented by unitary matrices US and UCS (with
S being replaced byM, R, or I as needed), respectively,
such that

Hd(k1, . . . , kd‖ , kd‖+1, . . . , kd)

= USHd(−k1, . . . ,−kd‖ , kd‖+1, . . . , kd)U
−1
S , (2.2)

if Hd satisfies a unitary symmetry, and

Hd(k1, . . . , kd‖ , kd‖+1, . . . , kd)

= −UCSHd(−k1, . . . ,−kd‖ , kd‖+1, . . . , kd)U
−1
CS , (2.3)

if Hd satisfies a unitary antisymmetry. The matrices US
and UCS satisfy U2

S,CS = 1, US,CSUT = ηT UT U∗S,CS ,
US,CSUP = ηPUPU∗S,CS , and US,CSUC = ηCUCUS,CS .
Similarly, antiunitary symmetry and antisymmetry op-
erations T ±S and P±S are represented by unitary ma-
trices UT S and UPS , with

Hd(k1, . . . , kd‖ , kd‖+1, . . . , kd)

= UT SHd(k1, . . . , kd‖ ,−kd‖+1, . . . ,−kd)∗U−1
T S , (2.4)

if Hd satisfies an antiunitary symmetry, and

Hd(k1, . . . , kd‖ , kd‖+1, . . . , kd)

= −UPSHd(k1, . . . , kd‖ ,−kd‖+1, . . . ,−kd)∗U−1
PS , (2.5)

if Hd satisfies an antiunitary antisymmetry. The matri-
ces UT S and UPS satisfy the conditions U2

T S,PS = ±1,
UT S,PSU∗T = ηT UT U∗T S,PS , UT S,PSU∗P = ηPUPU∗T S,PS ,
and UT S,PSU∗C = ηCUCUT S,PS .

As pointed out in Ref. 19, the characterization of uni-
tary and antiunitary symmetry and antisymmetry op-
erations by means of the signs ηT ,P,C and the square
(in case of antiunitary symmetries) is partially redun-
dant, because symmetry operations that are character-
ized differently may be mapped onto each other using
non-spatial symmetries of the Hamiltonian Hd. For ex-
ample, if a time-reversal symmetric Hamiltonian Hd sat-
isfies a crystalline unitary symmetry S, then it also sat-
isfies the antiunitary symmetry T S. Using such equiv-
alences, Shiozaki and Sato group the (anti)symmetries

AZ class s symmetry operations representative
A 0 +A

+ T +S
AIII 1 αA

+
+ T +S+

A 2 −A
+ P+S

AIII 3 αA
−α
− T −S−

A 4 +A
− T −S

AIII 5 αA
−
+ T −S+

A 6 −A
− P−S

AIII 7 αA
α
− T +S−

TABLE 2.3. Shiozaki-Sato equivalence classes of antiuni-
tary symmetry and antisymmetry operations for the Altland-
Zirnbauer classes A and AIII. The symbol σA

±
ηC is used to

denote antiunitary symmetry (σ = +) and antisymmetry
(σ = −) operations that commute (ηC = +) or anticommute
(ηC = −) with the chiral symmetry, if applicable, and square
to ±1. The last column lists the product of a unitary crys-
talline symmetry S (SηC for class AIII) and time-reversal T ±
or particle-hole conjugation P± as a crystalline symmetry op-
eration representative of the Shiozaki-Sato class (s, t).

into 44 “equivalence classes”, which, together with the
Altland-Zirnbauer class of Table 2.1, are labeled by one
integer s or by two integers s and t. These equivalence
classes are defined in Tables 2.2–2.4 for the complex
Altland-Zirnbauer classes with unitary symmetries and
antisymmetries, the complex Altland-Zirnbauer classes
with antiunitary symmetries and antisymmetries, and
the real Altland-Zirnbauer classes. For each of these
Shiozaki-Sato classes, the tables also list a representative
(anti)symmetry operation, consisting of a unitary sym-
metry S squaring to one or a product of a unitary sym-
metry and one of the fundamental non-spatial symmetry
operations T , P, or C, with indices ηT ,P,C specifying the
fundamental commutation or anticommutation relations
with the non-spatial symmetries T , P, and C, if present.
We implicitly assume that (anti)symmetry operations T ,
P, and C used for the construction of the representative
(anti)symmetry operation commute with the crystalline
symmetry operation S. With these assumptions, the in-
dicated square of T and P (in Table 2.3) and the com-
mutation relations of S with C (in Tables 2.2 and 2.3) or
with T or P (in Table 2.4) fix the algebraic properties of
the representative (anti)symmetry operations T S, PS,
and CS. 3

Following this scheme, Shiozaki and Sato have clas-
sified all insulators and superconductors with a sin-
gle crystalline order-two unitary or antiunitary symme-
try or antisymmetry.[19] Central to the classification of
Ref. 19 is a set of isomorphisms between the groups
KC(s, t|d‖, d), KC(s|d‖, d), and KR(s, t|d‖, d) classifying
d-dimensional Hamiltonians in the Shiozaki-Sato symme-
try class (s, t) or s and with d‖ inverted spatial dimen-
sions (these isomorphisms are also discussed and utilized

3 The algebraic relations of the symmetry operations define the
factor system as introduced in Section 1.1 of Chapter 1.
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AZ class s t symmetry operation representative
AI 0 0 +U

α
α , +A

+
α S+

BDI 1 0 αU
β
β,β , αA

+
β,β S++

D 2 0 +U
α
α , −A

+
α S+

DIII 3 0 αU
αβ
β,β , αA

−α
β,β S++

AII 4 0 +U
α
α , +A

−
α S+

CII 5 0 αU
β
β,β , αA

−
β,β S++

C 6 0 +U
α
α , −A

−
α S+

CI 7 0 αU
αβ
β,β , αA

α
β,β S++

AI 0 1 −U
α
−α, −A

−
α CS−

BDI 1 1 αU
αβ
β,−β , αA

α
β,−β S+−

D 2 1 −U
α
α , +A

+
α CS+

DIII 3 1 αU
β
−β,β , αA

+
β,−β S−+

AII 4 1 −U
α
−α, −A

+
α CS−

CII 5 1 αU
αβ
β,−β , αA

−α
β,−β S+−

C 6 1 −U
α
α , +A

−
α CS+

CI 7 1 αU
β
−β,β , αA

−
β,−β S−+

AI 0 2 +U
α
−α, +A

−
α S−

BDI 1 2 αU
−β
β,β , αA

−
β,β S−−

D 2 2 +U
α
−α, −A

−
α S−

DIII 3 2 αU
−αβ
β,β , αA

α
β,β S−−

AII 4 2 +U
α
−α, +A

+
α S−

CII 5 2 αU
−β
β,β , αA

+
β,β S−−

C 6 2 +U
α
−α, −A

+
α S−

CI 7 2 αU
−αβ
β,β , αA

−α
β,β S−−

AI 0 3 −U
α
α , −A

+
α CS+

BDI 1 3 αU
αβ
−β,β , αA

−α
−β,β S−+

D 2 3 −U
α
−α, +A

−
α CS−

DIII 3 3 αU
β
β,−β , αA

−
β,−β S+−

AII 4 3 −U
α
α , −A

−
α CS+

CII 5 3 αU
αβ
−β,β , αA

α
−β,β S−+

C 6 3 −U
α
−α, +A

+
α CS−

CI 7 3 αU
β
β,−β , αA

+
β,−β S+−

TABLE 2.4. Shiozaki-Sato equivalence classes of symme-
try and antisymmetry operations for the eight real Altland-
Zirnbauer classes. The symbols σU

±
ηT ,ηP and σA

±
ηT ,ηP are

used to denote unitary symmetry (U, σ = +), unitary anti-
symmetry (U, σ = −), antiunitary symmetry (A, σ = +), and
antiunitary antisymmetry (A, σ = −) operations that square
to ±1 and commute (ηT ,P = +) or anticommute (ηT ,P = −)
with time-reversal and particle-hole conjugation, if applicable.
The last column lists a unitary crystalline symmetry SηT ,ηP
or the product of a unitary crystalline symmetry and the chi-
ral operation C as a representative of the equivalence class.

in Appendix B.1.4). For the complex Altland-Zirnbauer
classes with unitary (anti)symmetry these isomorphisms
are (with d‖ < d)

KC(s, t|d‖, d) = KC(s, t+ 1|d‖ + 1, d)

= KC(s− 1, t|d‖, d− 1), (2.6)

with the integers s and t taken mod 2. For
the complex Altland-Zirnbauer classes with antiunitary

class s t
d = 2
M

d = 2
R

d = 3
M

d = 3
R

d = 3
I

AS 0 0 0 Z2 (Z) Z 0 Z
AIIIS+ 1 0 Z 0 0 Z2 (Z) 0

ACS 0 1 Z2 (Z) 0 0 Z 0
AIIIS− 1 1 0 Z Z2 (Z) 0 Z2 (Z)

TABLE 2.5. Classification of topological crystalline phases
with an order-two crystalline symmetry or antisymmetry for
the complex Altland-Zirnbauer classes, based on Ref. 19. The
symbols M, R, and I refer to mirror reflection (d‖ = 1),
twofold rotation (d‖ = 2), and inversion (d‖ = d = 3),
respectively. The entries in brackets give the purely crys-
talline component K′C(s, t|d‖, d) if different from the full

group KC(s, t|d‖, d).

(anti)symmetry the isomorphisms read

KC(s|d‖, d) = KC(s− 2|d‖ + 1, d)

= KC(s− 1|d‖, d− 1), (2.7)

where the label s is taken mod 8. Finally, the isomor-
phisms for the real Altland-Zirnbauer classes are

KR(s, t|d‖, d) = KR(s, t+ 1|d‖ + 1, d)

= KR(s− 1, t|d‖, d− 1), (2.8)

where the integers s and t are taken mod 8 and mod 4, re-
spectively. When applied repeatedly, these isomorphisms
can be used to relate the classification problem of d-
dimensional Hamiltonians with an order-two crystalline
symmetry to a zero-dimensional classification problem,
which can be solved with elementary methods. The
Shiozaki-Sato classification for two and three dimensional
crystals with a mirror reflection M, twofold rotation R,
or inversion symmetry I is summarized in tables 2.5-2.7.
The corresponding classifying groups for complex and
real Altland-Zirnbauer classes without crystalline sym-
metries are denoted KC(s, d) and KR(s, d), respectively.
Since they are well known[15–17, 42–45] we do not list
them here explicitly; if needed, they can be inferred from
Table 2.1, which lists K(s, d− 1) for d = 2 and d = 3.

Some of the topological crystalline phases remain topo-
logically nontrivial if the crystalline symmetry is broken.
These are strong topological insulators or superconduc-
tors, which have gapless states at all boundaries, not
only at boundaries that are invariant under the sym-
metry operation. The remaining “purely crystalline”
topological phases, which become trivial if the crys-
talline symmetry is broken, are classified by a subgroup
of the classifying groups KC(s, t|d‖, d), KC(s|d‖, d),

and KR(s, t|d‖, d), which we denote K ′C(s, t|d‖, d),

K ′C(s|d‖, d), and K ′R(s, t|d‖, d), respectively. The quo-
tient groups K(s, t|d‖, d)/K ′(s, t|d‖, d), which are sub-
groups of the classifying groups K(s, d) without crys-
talline symmetries, classify the strong topological phases
that are compatible with the crystalline symmetry. Ta-
bles 2.5–2.7 also list the groups K ′C and K ′R between
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class s
d = 2
M

d = 2
R

d = 3
M

d = 3
R

d = 3
I

AT
+S 0 Z (0) Z2 0 Z2 0

AIIIT
+S+ 1 Z2 0 Z (0) Z2 2Z (0)

AP
+S 2 Z2 2Z (0) Z2 0 0

AIIIT
−S− 3 0 0 Z2 2Z (0) 0

AT
−S 4 2Z (0) 0 0 0 0

AIIIT
−S+ 5 0 0 2Z (0) 0 Z (0)

AP
−S 6 0 Z (0) 0 0 Z2

AIIIT
+S− 7 0 Z2 0 Z (0) Z2

TABLE 2.6. Classification of topological crystalline phases
with an order-two antiunitary crystalline symmetry or anti-
symmetry for the complex Altland-Zirnbauer classes, based
on Ref. 19. The symbols M, R, and I refer to mirror re-
flection (d‖ = 1), twofold rotation (d‖ = 2), and inversion
(d‖ = d = 3), respectively. The entries in brackets give the

purely crystalline component K′C(s|d‖, d) if different from the

full group KC(s|d‖, d).

brackets if they are different from the full classifying
groups KC and KR. The “purely crystalline” subgroups
are evaluated in Sec. 2.4 2 and App. A.3.

The Shiozaki-Sato classification of topological crys-
talline insulators and superconductors with an order-two
crystalline symmetry,[19] as well as the preceding com-
plete classifications of mirror-symmetric topological insu-
lators and superconductors,[20, 21] is a “strong” classifi-
cation, in the sense that it addresses topological features
that are robust to a resizing of the unit cell, allowing
the addition of perturbations that break the translation
symmetry of the original (smaller) unit cell, while pre-
serving the crystalline symmetries. Reference 19 argues
that for such a strong classification it is sufficient to clas-
sify Hamiltonians Hd(k) with argument k defined on a
sphere, rather than on a Brillouin zone of a shape de-
termined by the underlying Bravais lattice. The con-
struction and classification of second-order topological
insulators and superconductors that we pursue here also
follows the paradigm of a strong classification scheme.
Since boundaries play an essential role when consider-
ing second-order topological phases, we will not deform
the Brillouin zone into a sphere, as in Ref. 19, but in-
stead use the freedom offered by the possibility to resize
the unit cell to restrict ourselves to rectangular Bravais
lattice with mirror plane and rotation axes aligned with
the coordinate axes. This is consistent with the mathe-
matical form of the symmetry operations given in Eqs.
(2.2)–(2.5) above.

2.3. DIMENSIONAL REDUCTION

The dimension-raising and lowering isomorphisms de-
vised by Shiozaki and Sato apply to Hamiltonians with
argument k defined on a sphere, [19] rather than on a

class s t
d = 2
M

d = 2
R

d = 3
M

d = 3
R

d = 3
I

AIS+ 0 0 0 2Z 0 0 2Z
BDIS++ 1 0 Z 0 0 2Z 0
DS+ 2 0 Z2 Z (0) Z 0 0
DIIIS++ 3 0 Z2 0 Z2 Z (0) 0
AIIS+ 4 0 0 2Z (4Z) Z2 0 Z (2Z)
CIIS++ 5 0 2Z 0 0 2Z (4Z) Z2 (0)
CS+ 6 0 0 Z (0) 2Z 0 Z2

CIS++ 7 0 0 0 0 Z (0) 0

AICS− 0 1 0 0 0 0 0
BDIS+− 1 1 0 Z 0 0 2Z
DCS+ 2 1 Z2 (Z) Z2 0 Z 0
DIIIS−+ 3 1 Z2

2 (Z2) Z2 Z2 (Z) Z2 Z (0)
AIICS− 4 1 Z2

2 (Z2) 0 Z2
2 (Z2) Z2 0

CIIS+− 5 1 0 2Z Z2
2 (Z2) 0 2Z (4Z)

CCS+ 6 1 2Z2 (2Z) 0 0 2Z 0
CIS−+ 7 1 0 0 2Z2 (2Z) 0 Z (0)

AIS− 0 2 0 0 2Z 0 0
BDIS−− 1 2 0 0 0 0 0
DS− 2 2 0 Z2 (Z) 0 0 Z
DIIIS−− 3 2 Z (2Z) Z2

2 (Z2) 0 Z2 (Z) Z2

AIIS− 4 2 Z2 (0) Z2
2 (Z2) Z (2Z) Z2

2 (Z2) Z2

CIIS−− 5 2 Z2 0 Z2 (0) Z2
2 (Z2) 0

CS− 6 2 0 2Z2 (2Z) Z2 0 2Z
CIS−− 7 2 2Z 0 0 2Z2 (2Z) 0

AICS+ 0 3 2Z 0 0 2Z 0
BDIS−+ 1 3 0 0 2Z 0 0
DCS− 2 3 Z (0) 0 0 0 0
DIIIS+− 3 3 0 Z (2Z) Z (0) 0 Z2 (Z)
AIICS+ 4 3 2Z (4Z) Z2 (0) 0 Z (2Z) Z2

2 (Z2)
CIIS−+ 5 3 0 Z2 2Z (4Z) Z2 (0) Z2

2 (Z2)
CCS− 6 3 Z (0) 0 0 Z2 0
CIS+− 7 3 0 2Z Z (0) 0 2Z2 (2Z)

TABLE 2.7. Classification of topological crystalline phases
with an order-two crystalline symmetry or antisymmetry for
the real Altland-Zirnbauer classes, based on Ref. 19. The
symbols M, R, and I refer to mirror reflection (d‖ = 1),
twofold rotation (d‖ = 2), and inversion (d‖ = d = 3),
respectively. The entries in brackets give the purely crys-
talline component K′R(s, t|d‖, d) if different from the full

group KR(s, t|d‖, d).

torus, which complicates a direct application to crys-
tals with boundaries and corners. For that reason, we
here make use of an alternative dimension-lowering map,
which maps a Shiozaki-Sato class with index s in d di-
mensions to a Shiozaki-Sato class with index s − 1 in
d − 1 dimensions, while preserving the second Shiozaki-
Sato index t and the number of inverted dimensions d‖.
Our dimension-lowering map is a generalization of a map
first proposed by Fulga et al. for the standard Altland-
Zirnbauer classes,[46] and recently extended to mirror-
reflection-symmetric models by two of us.[22] Though not
as powerful as the isomorphisms of Ref. 19, which also re-
late symmetry classes with different d‖, this map is suffi-
cient for the purpose of determining the conditions under
which a nontrivial bulk crystalline phase implies the exis-
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ideal lead crystalline insulator

ain

in=rdaaout

ideal lead

FIG. 2.3. Schematic picture of a lattice model for a crys-
talline insulator in a two-terminal scattering geometry. The
reflection matrix rd relates the amplitudes ain and aout of in-
cident and reflected waves as shown in the figure. The ideal
leads are modeled as a grid of parallel one-dimensional chains,
which endows the reflection matrix rd with a real-space struc-
ture.

tence of zero-energy corner states (for a two-dimensional
crystal) or gapless hinge modes (for a three-dimensional
crystal).

The dimension-lowering procedure starts from the cal-
culation of the reflection matrix rd for a d-dimensional
Hamiltonian Hd embedded in a two-terminal scattering
geometry. Following Ref. 46 the reflection matrix is rein-
terpreted as a Hamiltonian Hd−1 in d − 1 dimensions,
but with a symmetry class that is different from that
of the original Hamiltonian Hd. This reinterpretation is
different for Hamiltonians Hd with and without chiral
antisymmetry. If Hd has a chiral antisymmetry, one can
choose a basis of scattering states such that rd is a her-
mitian matrix, allowing the definition of a Hamiltonian
Hd−1 without chiral antisymmetry as

Hd−1 = rd. (2.9)

On the other hand, if Hd has no chiral antisymmetry,
Fulga et al. set

Hd−1 =

(
0 rd
r†d 0

)
, (2.10)

which has a chiral antisymmetry with UC = diag (1,−1).
A more detailed review of the reflection-matrix based di-
mensional reduction scheme is given in App. A.1. In the
appendix we also show that if Hd has a crystalline sym-
metry or antisymmetry of Shiozaki-Sato class (s, t) with
d‖ < d then Hd−1 has a crystalline symmetry of class
(s− 1, t) with the same value of d‖. (This was shown in
Ref. 22 for unitary mirror symmetries and antisymme-
tries with d‖ = 1.)

Although Refs. 22 and 46 apply the reflection-matrix-
based reduction scheme to Hamiltonians with periodic
boundary conditions, the mapping of Eqs. (2.9) and
(2.10) can also be used in a real-space formulation, where
it can be applied to crystals with boundaries. In par-
ticular, the mapping of Eqs. (2.9) and (2.10) maps d′-
dimensional protected boundary modes of Hd to d′ − 1-
dimensional boundary modes of Hd−1 for all 1 ≤ d′ < d,
thus not only providing a link between regular first-order

topological insulators and superconductors in different
dimensions, but also between second-order topological
insulators and superconductors.

To show how this works explicitly, we consider a d-
dimensional crystalline insulator or superconductor, em-
bedded in a two-terminal scattering geometry and of fi-
nite size in the transverse directions, as shown schemat-
ically in Fig. 2.3 for a two-dimensional lattice model.
We then calculate the reflection matrix rd(r⊥, r′⊥) for an
ideal lead consisting of a grid of one-dimensional chains
at discrete coordinates r⊥ in the transverse direction,
see Fig. 2.3, and construct a hermitian lattice Hamilto-
nian Hd−1(r⊥, r′⊥) using the mapping of Eqs. (2.9) and
(2.10). Since it is derived from a reflection matrix rd
for a lead with a finite (d− 1)-dimensional cross section
and open boundary conditions in the transverse direc-
tion, Hd−1 also describes a (d − 1)-dimensional system
of finite size and open boundary conditions. For a crys-
talline insulator or superconductor of finite width, the ex-
istence of gapless modes along the sample boundary im-
plies the existence of perfectly transmitted modes along
sample boundaries (in case of a first-order topological in-
sulator or superconductor) or hinges (for a second-order
topological insulator or superconductor). Since the to-
tal scattering matrix, describing reflection and transmis-
sion, is unitary, any such perfectly transmitted modes
correspond to a zero singular value of the reflection ma-
trix rd(r⊥, r′⊥) and, hence, to a zero-energy eigenstate of
Hd−1. Since these gapless modes derive from transmit-
ted modes proceeding along the sample boundary, their
eigenvectors have support near the lead’s boundaries (if
Hd is a first-order topological insulator) or the intersec-
tion of two of the lead’s boundaries (if Hd is a second-
order topological insulator), so that they represent true
boundary/corner/hinge modes of Hd−1.

As an example, we consider a Chern insulator in two di-
mensions and a second-order Chern insulator in three di-
mensions, shown schematically in Fig. 2.4. In both cases,
the corresponding Altland-Zirnbauer class is Cartan class
A. The two-dimensional Chern insulator has chiral modes
propagating along the sample’s edges, see Fig. 2.4 (left).
When the Chern insulator is embedded in a two-terminal
scattering geometry, the presence of the edge modes leads
to perfectly transmitted modes or, equivalently, to zero
singular values of the reflection matrix rd. The left and
right eigenvectors corresponding to this zero mode, which
build the corresponding eigenvectors of the Hamiltonian
Hd−1 calculated via Eq. (2.10), are localized near the lead
edges. Similarly, a three-dimensional second-order Chern
insulator has chiral hinge modes, as shown schematically
in Fig. 2.4 (right). Again, when embedded in a scat-
tering geometry, the presence of the hinge modes leads
to perfectly transmitted modes and, hence, zero singular
values of the reflection matrix rd. The support of the
corresponding left and right eigenvectors is near the lead
hinges that are connected to the sample hinges carry-
ing the chiral modes. Correspondingly, the Hamiltonian
Hd−1 obtained from the dimensional reduction scheme
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FIG. 2.4. Comparison of the reflection-matrix-based dimen-
sional reduction scheme applied to a two-dimensional Chern
insulator (left) and a three-dimensional second-order Chern
insulator. In each case a lower-dimensional Hamiltonian can
be constructed out of the reflection matrix rd describing scat-
tering from a half-infinite crystal coupled to an ideal lead.
Upon constructing the lower-dimensional Hamiltonian Hd−1,
the chiral edge states (left) and hinge states (right) map to
protected zero-energy eigenstates localized near ends (left) or
corners (right).

a)

c)

b)

d)

0

1.0

-1.0

0

1.0

-1.0

FIG. 2.5. Support of the zero-energy eigenstates (a) and 30
lowest energies of the spectrum (b) of the mapped Hamilto-
nian H1 for a two-dimensional Chern insulator with Hamilto-
nian H2 given in Eq. (2.11), following the reflection-matrix-
based dimensional reduction scheme. Panels (c) and (d)
show the same for the mapped Hamiltonian H2 for the three-
dimensional second-order Chern insulator with Hamiltonian
H3 of Eq. (2.12) with b = 0.4.

has zero-energy eigenstates at sample corners. Hence,
Hd−1 is a second-order topological insulator.

A numerical simulation of this scenario is shown in
Fig. 2.5. The dimensional reduction scheme has been
applied to a two-dimensional lattice model with Hamil-

(b)

(e) (f)

(c)(a)

(d)

FIG. 2.6. Schematic picture of a generic corner (a), a mirror-
symmetric corner with locally broken mirror symmetry (b),
and a mirror-symmetric corner in a crystal with a bulk mirror
symmetry. Panels (d)–(f) represent the possibility to add
zero-energy corner states by changing the lattice termination.
Effectively, this amounts to the addition of one-dimensional
topological insulators or superconductors to the boundaries.
At a generic corner, it is possible to change the termination
of only one boundary, as shown in panel (d). In a symmetric
corner, such a change in termination needs to be applied to
both symmetry-related boundaries, shown schematically in
panels (e) and (f) for a corner with and without a perturbation
that locally breaks the mirror symmetry.

tonian

H = (m+ 2− cos k1 − cos k2)σ1 + sin k1σ2 + sin k2σ3,
(2.11)

which describes a two-dimensional Chern insulator for
−2 < m < 0, and to a lattice model of a three-
dimensional second-order Chern insulator,[4, 9] which
has Hamiltonian

H3 = (m+ 3− cos k1 − cos k2 − cos k3)τ1σ1 (2.12)

+ τ1σ3 sin k1 + τ2 sin k2 + τ3 sin k3 + bτ1

with −2 < m < 0 and b numerically small. In both mod-
els, the σj and τj are Pauli matrices acting on different
spinor degrees of freedom. Figure 2.5 shows the spectra of
the mapped Hamiltonians Hd−1 (Fig. 2.5b and d), calcu-
lated using the Kwant software package,[47] as well as the
support of the zero-energy eigenstates (c and d). Con-
sistent with the scenario laid out above, the spectra are
gapped up to two zero eigenvalues, which have support at
the ends of the mapped one-dimensional chain (Fig. 2.5a)
and at mirror-reflection-symmetric corners (Fig. 2.5c).

2.4. MIRROR REFLECTION-SYMMETRIC
SECOND-ORDER TOPOLOGICAL INSULATORS

AND SUPERCONDUCTORS

2.4.1. Classification of mirror-symmetric
corners and hinges

We now proceed with the classification of zero-energy
states at mirror-symmetric corners and gapless hinge
modes at mirror-symmetric hinges of a mirror-symmetric
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AZ class s t d = 2 d = 3

AM 0 0 - Z,Z2 (Z2,Z)
AIIIM+ 1 0 Z,Z2 (Z2,Z) -

ACM 0 1 Z, 0 (Z, 0) -
AIIIM− 1 1 - Z, 0 (Z, 0)

TABLE 2.8. Classification of mirror-symmetric corners (d =
2) or hinges (d = 3) of second-order topological insula-
tors and superconductors in the complex Altland-Zirnbauer
classes with unitary symmetries or antisymmetries. The first
two entries in the fourth and fifth column give the intrinsic,
termination-independent, classification without and with per-
turbations that locally break mirror symmetry at the corner
or hinge. The entries between brackets give the corresponding
extrinsic, termination-dependent classification. The ordering
is Ki, K̄i(Ke, K̄e).

AZ class s d = 2 d = 3

AT
+M 0 - -

AIIIT
+M+ 1 Z2,Z2 (Z,Z) -

AP
+M 2 Z2, 0 (Z2, 0) Z2,Z2 (Z,Z)

AIIIT
−M− 3 0, 0 (Z2, 0) Z2, 0 (Z2, 0)

AT
−M 4 - 0, 0 (Z2, 0)

AIIIT
−M+ 5 0, 0 (2Z, 2Z) -

AP
−M 6 - 0, 0 (2Z, 2Z)

AIIIT
+M− 7 - -

TABLE 2.9. Classification of mirror-symmetric corners (d =
2) or hinges (d = 3) of second-order topological insulators
and superconductors in the complex Altland-Zirnbauer classes
with antiunitary symmetries or antisymmetries. The ordering
is Ki, K̄i(Ke, K̄e).

crystalline insulator or superconductor. As explained in
the introduction, such a classification depends on the
possible presence of local mirror-symmetry-breaking per-
turbations at corners or hinges, and on whether it is an
“intrinsic” (termination-independent) classification or an
“extrinsic” (termination-dependent) one. We recall that
we term a classification intrinsic if it is invariant under a
change of lattice termination, as long as the mirror sym-
metry of the corner or hinge is preserved, and extrinsic
if it depends on termination. The intrinsic classification
describes properties of the bulk lattice, which is why it
is closely related to the classification of bulk topologi-
cal crystalline phases, as we discuss below. Although
the extrinsic classification is termination dependent, it is
important to point out that the extrinsic classification re-
mains valid in the presence of perturbations that do not
close the boundary gap, such as weak disorder. Figure 2.6
schematically shows the four classification rules that fol-
low from the options discussed above for the case of a
two-dimensional mirror-symmetric crystal, and contrasts
these with the classification of a generic corner discussed
in the Introduction.

We denote the classifying groups for corners according
to the four possible classification rules that arise from

class s t d = 2 d = 3

AIM+ 0 0 - -
BDIM++ 1 0 Z,Z2 (Z2,Z) -
DM+ 2 0 Z2,Z2 (Z2

2,Z2) Z,Z2 (Z2,Z)
DIIIM++ 3 0 Z2,Z2 (Z2

2,Z2) Z2,Z2 (Z2
2,Z2)

AIIM+ 4 0 - Z2,Z2 (Z2
2,Z2)

CIIM++ 5 0 2Z,Z2 (2Z2, 2Z) -
CM+ 6 0 - 2Z,Z2 (2Z2, 2Z)
CIM++ 7 0 - -

AICM− 0 1 - -
BDIM+− 1 1 - -
DCM+ 2 1 Z,Z2 (Z,Z2) -
DIIIM−+ 3 1 Z2,Z2 (Z2,Z2) Z,Z2 (Z,Z2)
AIICM− 4 1 Z2, 0 (Z2, 0) Z2,Z2 (Z2,Z2)
CIIM+− 5 1 - Z2, 0 (Z2, 0)
CCM+ 6 1 2Z, 0 (2Z, 0) -
CIM−+ 7 1 - 2Z, 0 (2Z, 0)

AIM− 0 2 - 2Z, 0 (2Z, 0)
BDIM−− 1 2 0, 0 (2Z, 2Z) -
DM− 2 2 - 0, 0 (2Z, 2Z)
DIIIM−− 3 2 2Z,Z2 (2Z,Z2) -
AIIM− 4 2 - 2Z,Z2 (2Z,Z2)
CIIM−− 5 2 Z2,Z2 (2Z, 2Z) -
CM− 6 2 - Z2,Z2 (2Z, 2Z)
CIM−− 7 2 2Z, 0 (2Z, 0) -

AICM+ 0 3 Z, 0 (Z, 0) -
BDIM−+ 1 3 0, 0 (Z2, 0) Z, 0 (Z, 0)
DCM− 2 3 0, 0 (Z2, 0) 0, 0 (Z2, 0)
DIIIM+− 3 3 - 0, 0 (Z2, 0)
AIICM+ 4 3 2Z, 0 (2Z, 0) -
CIIM−+ 5 3 - 2Z, 0 (2Z, 0)
CCM− 6 3 - -
CIM+− 7 3 - -

TABLE 2.10. Classification of mirror-symmetric corners (d =
2) or hinges (d = 3) of second-order topological insulators and
superconductors in the real Altland-Zirnbauer classes. The
ordering is Ki, K̄i(Ke, K̄e).

the above considerations as Ki(s, t|d‖, d), K̄i(s, t|d‖, d),

Ke(s, t|d‖, d), and K̄e(s, t|d‖, d), where the subscripts i, e
refer to intrinsic (termination-independent) and extrinsic
(termination-dependent) classification and the bar refers
to corners or hinges with locally broken mirror reflec-
tion symmetry. For mirror reflection d‖ = 1 through-
out. (The second argument is omitted for the complex
Altland-Zirnbauer classes with antiunitary symmetries
and antisymmetries.) Tables 2.8-2.10 contain the com-
plete classification results, ordered as Ki, K̄i (Ke, K̄e).

Although we will explain the derivation of each en-
try in the table in detail below and in the appendix,
we first outline the general strategy that results in this
classification. Our first observation is that the extrinsic,
termination-dependent, classification of mirror symmet-
ric corners/hinges is identical to the classification of end
states of (d−1)-dimensional insulators and superconduc-
tors with a crystalline symmetry with d‖−1 = 0 inverted
coordinates, see Fig. 2.7 for d = 2. By the bulk-boundary
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FIG. 2.7. The extrinsic classification of corner states in a
mirror-symmetric corner of a two-dimensional crystal is the
same as that of end states of a one-dimensional crystal with a
transverse mirror symmetry with d‖ = 0. The vertical dashed
line is the mirror axis.

correspondence, this latter classification is identical to
the corresponding bulk crystalline classification, so that
we have

Ke(s, t|d‖ = 1, d) = K(s, t|d‖ = 0, d− 1). (2.13)

The classifying groups K(s, t|d‖ = 0, d − 1) are given in
Ref. 19. They can also be obtained from Tables 2.5–2.7
using the isomorphisms (2.6)–(2.8). Similarly, upon lo-
cally breaking the mirror symmetry, we obtain the equal-
ity

K̄e(s, t|1, d) = K(s, t|0, d− 1)/K ′(s, t|0, d− 1), (2.14)

where K ′(s, t|d‖ = 0, d − 1) is the “purely crystalline”
subgroup of the classifying group K(s, t|d‖ = 0, d − 1),
see the discussion at the end of Sec. 2.2.

The intrinsic, termination-independent, classification
of mirror-symmetric corners or hinges can be obtained
via the homomorphism

K(s, d− 1)
ct→ Ke(s, t|d‖ = 1, d), (2.15)

which embeds the equivalence class of the Hamiltonian
H(k) into corresponding Shiozaki-Sato class of Hamilto-
nian

ct[H(k)] =

(
H(k) 0

0 σSUSH(k)U†S

)
, (2.16)

for US a unitary onsite symmetry (σS = 1) or antisym-
metry (σS = −1) and

ct[H(k)] =

(
H(k) 0

0 σSUSH∗(−k)U†S

)
, (2.17)

for US an antiunitary onsite symmetry or antisymmetry.
For the intrinsic classification corner states or hinge

modes that differ by termination effects are identified.
Such corner states or hinge modes are precisely those in
the image ct[K(s, d− 1)], so that we have

Ki(s, t|1, d) = Ke(s, t|1, d)/ct[K(s, d− 1)]. (2.18)

In other words, the elements of the group Ki(s, t|1, d) can
be viewed as topologically non-trivial d − 1-dimensional

crystalline insulators or superconductors with an onsite
twofold symmetry that cannot be obtained by gluing two
corresponding non-crystalline d− 1-dimensional topolog-
ical insulators or superconductors.

In the next Subsection we demonstrate, by ex-
plicit consideration of all symmetry classes, that the
intrinsic (termination-independent) classification group
Ki(s, t|1, d) of corner or hinge states is identical to the
“pure crystalline” group K ′(s, t|1, d) classifying topolog-
ical crystalline bulk phases that are not at the same time
strong topological phases,

Ki(s, t|1, d) = K ′(s, t|1, d). (2.19)

Equation (2.19) says that a mirror-symmetric topological
crystalline phase is either a strong topological phase, with
gapless modes at all boundaries, or a topological crys-
talline phase which can be uniquely characterized using
protected modes at mirror-symmetric corners (for a two-
dimensional crystal) or hinges (for a three-dimensional
crystal). For such “pure crystalline” topological crys-
talline phases Eq. (2.19) this extends the bulk-boundary
correspondence to a “corner-to-bulk correspondence” or
“hinge-to-bulk correspondence”.

We now discuss the classification table for the com-
plex Altland-Zirnbauer classes with unitary mirror sym-
metries and antisymmetries in detail. The classification
of mirror-symmetric corners of two-dimensional crystals
for the complex Altland-Zirnbauer classes with antiuni-
tary mirror symmetries and antisymmetries and of the
real classes is given in Appendix A.2. mirror-symmetric
hinges for these classes can be obtained from the dimen-
sional reduction scheme of Sec. 2.3 and is not discussed
in detail.

Class AM, (s, t) = (0, 0), d = 2.— This class does not
allow protected zero energy states at corners.

Class AIIIM+ , (s, t) = (1, 0), d = 2.— At a mirror-
symmetric corner zero-energy states can be counted ac-
cording to their parity under mirror reflection M and
the chiral operation C, sinceM and C commute. (Recall
that we use the convention that the mirror operationM
squares to one.) We denote the number of correspond-
ing modes with NσC,M . Since pairs of zero modes with
opposite σC but equal σM can be gapped out by a mirror-
symmetric mass term acting locally at the corner, only
N++−N−+ and N+−−N−− are well defined. This gives
the Z2 extrinsic classification listed in Table 2.8.

By changing the termination, e.g. by adding a suitably
chosen chain of atoms on a crystal face, such that the
global mirror symmetry is preserved, one can add a pair
of zero modes with the same σC , but opposite values of
σM, see Fig. 2.8. (Note that such a procedure involves
closing the boundary gap.) As a result, the difference
N = N++ + N−− − N+− − N−+ is the only remaining
invariant, and one finds a Z intrinsic classification, which
is the same classification as the one arising from the bulk
classification of Refs. 19–22, and 39.

With a mirror-symmetry-breaking local perturbation
at the corner, one may only distinguish corner states by
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L R

FIG. 2.8. Pairs of corner states may be created by “glueing”
one-dimensional topologically nontrivial chain to the crystal
edges. Mirror symmetry requires that the chains added to
mirror-related edges are mirror images of each other.

their parity under C. We use NσC to denote the number
of zero modes with parity σC . Since pairs of zero modes
with opposite σC can be gapped out by a mass term act-
ing locally at the corner, only the difference N+ − N−
is well defined. This gives a Z extrinsic classification
in the presence of a mirror-symmetry-breaking perturba-
tion. Moreover, changes of the termination allow one to
change N+ or N− by an even number, resulting in a Z2

intrinsic classification in that case.

Class ACM, (s, t) = (0, 1), d = 2.— This class allows
corner modes only if the mirror antisymmetry is not bro-
ken locally at the crystal corner. In that case, corner
modes can be counted according to their parity σCM un-
der the mirror antisymmetry CM. (Recall that we use
the convention that CM2 = 1.) The mirror antisym-
metry protects zero modes at the same value of σCM,
but allows pairs of zero modes at opposite mirror par-
ity σCM to gap out. We conclude that the difference
N = N+ − N− is the corresponding topological invari-
ant, giving the Z classification listed in Table 2.8. There
is no difference between an “extrinsic” and an “intrin-
sic” classification because the Altland-Zirnbauer class A
is trivial for d = 1, so that no protected zero modes can
be added by changing the lattice termination. This phase
is trivial if the mirror antisymmetry is broken locally at
the corner.

Class AIIIM− , (s, t) = (1, 1), d = 2.— The bulk crys-
talline phase in this class is trivial. However, since the
Altland-Zirnbauer class AIII is nontrivial in one dimen-
sion, one should consider the possibility that corner states
can arise by suitable decoration at the crystal edges,
see Fig. 2.8. Hereto, consider the addition of two one-
dimensional chains with zero-energy end states, labeled
|L〉 and |R〉. The chains are placed symmetrically, so that
|L〉 = M|R〉. Since M anticommutes with C, the end
states |L〉 and |R〉 have opposite parity under C. Upon
coupling the chains to each other, a term |L〉〈R|+ |R〉〈L|
that gaps the two zero modes out is allowed under C
antisymmetry and mirror reflection symmetry. Hence,
we conclude that no stable corner states can be created
by changing the lattice termination. (Alternatively, one
may note that a mirror reflection operation that anti-
commutes with C can be viewed as a valid term in the
Hamiltonian, which gaps out zero-energy states on the

left and right of the corner.)

We point out that whereas in this symmetry class a
mirror-symmetric corner does not allow for protected
zero-energy states, a generic corner still does. The reason
is that in a generic corner one may separately choose lat-
tice terminations at both edges that meet at that corner,
whereas in a mirror-symmetric corner the lattice termina-
tions at the edges meeting in that corner are symmetry-
related.

Class AM, (s, t) = (0, 0), d = 3.— We use y to denote
the coordinate running along the hinge. Hinge modes
can be characterized by their mirror parity σM and by
their propagation direction in the y direction. Whereas
counterpropagating modes with the same mirror parity
can mutually gap out, counterpropagating hinge modes
constructed with opposite σM are protected by mirror
symmetry. Using NσM± to denote the number of hinge
modes of mirror parity σM propagating in the ±y direc-
tion, the differences N++ − N+− and N−+ − N−− are
two well-defined integer extrinsic topological invariants,
consistent with the Z2 extrinsic classification of gapless
hinge states.

By adding, e.g., integer quantum Hall insulators on
the mirror-related faces adjacent to the hinge, two co-
propagating hinge modes with opposite mirror parity can
be created, leaving N++ − N+− − N−+ + N−− as the
only remaining intrinsic integer topological invariant. If
mirror symmetry is broken locally at the hinge, all coun-
terpropagating modes can in principle be gapped out,
giving rise to Z and Z2 extrinsic and intrinsic topological
invariants, respectively.

Class AIIIM+ , (s, t) = (1, 0), d = 3.— This class does
not allow for topologically protected hinge modes.

Class ACM, (s, t) = (0, 1), d = 3.— The mirror an-
tisymmetry rules out the existence of protected hinge
modes for this class — recall that for a mirror-symmetric
hinge the mirror antisymmetry CM is effectively a lo-
cal operation. Whereas a single dispersing hinge mode
can not be an eigenmode of the antisymmetry CM, two
modes |L〉 and |R〉 = CM|R〉 can be gapped out by
the mirror-antisymmetric perturbation i(|L〉〈R|−|R〉〈L|).
Note that for class ACM a generic hinge may still carry
a protected hinge mode. (Compare with the discussion
of class AIIIM− for d = 2.)

Class AIIIM− , (s, t) = (1, 1), d = 3.— The hinge
modes can be chosen to have a well-defined mirror parity
σM. Since M anticommutes with C, they occur as dou-
blets with opposite σM and opposite propagation direc-
tion. For each doublet the “mixed parity” σ, the product
of propagation direction and mirror parity σM, is well-
defined. The corresponding integer invariant N counts
the difference of the number of such doublets with posi-
tive and negative σ. Since Altland-Zirnbauer class AIII
is trivial in two dimensions, there is no difference be-
tween an extrinsic and intrinsic classifications for this
class. Breaking the mirror symmetry locally at the hinge
removes the protection of the hinge modes.
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FIG. 2.9. A mirror-symmetric edge, with coordinate x run-
ning along the edge (a) can be deformed into a corner joining
two mirror-related edges (b). The situation shown in (a) has
mirror symmetry acting everywhere along the edge; in (b)
mirror symmetry exists only for a mirror reflection axis going
through the corner at x = 0.

2.4.2. From bulk crystalline phase to
second-order phase

The above classification of tables 2.8–2.10 is based on
a classification of zero-energy states localized at corners
and gapless modes at hinges only. To make a connection
with the bulk topology we use the bulk-boundary cor-
respondence for mirror-symmetric topological crystalline
insulators, which uniquely connects the bulk crystalline
phase with the existence of gapless boundary modes at
boundaries that are invariant under the mirror reflection
operation.

In a two-dimensional crystal the edge is one dimen-
sional and we can introduce a coordinate x running along
the edge. If the boundary is tilted slightly away from
the invariant direction, such that a corner connecting to
mirror-related edges emerges at x = 0, as shown schemat-
ically in Fig. 2.9, generically a mass term is generated,
which is odd under the mirror reflection operation M.
Such a mass term gaps out the edge states, but the fact
that it is odd under mirror reflection implies the exis-
tence of a domain wall and an associated zero-energy
state at the corner at x = 0. There is a one-to-one rela-
tionship between the number of topologically protected
edge modes and the number of zero modes obtained in
this way — with the caveats that such zero modes may
be annihilated by local mirror-symmetry breaking per-
turbations at the corner and that additional zero modes
may be generated by a modification of the lattice termi-
nation. In a three-dimensional crystal in principle the
same arguments apply, with the only modification that
in this case the invariant boundary is a surface.

Reference 9 has implemented this construction for all
Shiozaki-Sato classes that have unitary mirror symme-
tries, and for which the mass term is unique. A unique
mass term guarantees that a single corner or hinge mode
cannot be gapped out by a perturbation that breaks
the mirror symmetry locally at the corner. To com-
plete the discussion of the complex Altland-Zirnbauer
classes with a unitary mirror symmetry, we here discus
how the presence of gapless states at a mirror-symmetric
edge or surface gives rise to zero-energy corner states

at mirror-symmetric corners or gapless hinge modes at
mirror-symmetric hinges. Comparing to the analysis of
the previous Subsection, we thus verify that we precisely
recover the zero-energy corner state found by inspection
of the corner alone. Appendix A.3 carries out the same
program for the remaining Shiozaki-Sato classes.

Class AIIIM+ , (s, t) = (1, 0), d = 2.— For concrete-
ness, we use UC = σ3 and UM = σ3τ3 to represent the
commuting operations C and M. The bulk phase has a
Z classification[19–21] with an integer topological invari-
ant N , which counts the difference of counterpropagating
pairs of edge modes with positive and negative mixed par-
ity σMC at zero energy. (Although the productMC is an
antisymmetry of the Hamiltonian, not a symmetry, edge
modes can be chosen to be eigenmodes of MC at zero
energy. Pairs of counterpropagating edge modes can not
mutually gap out if they have the same eigenvalue σMC .)
After a suitable basis transformation and rescaling, the
Hamiltonian of a “minimal” edge, in which all gapless
modes have the same mixed parity σMC , may be written
as

Hedge = −ivσ1∂x11N , (2.20)

where x is the coordinate along the edge, see Fig. 2.9a,
11N the N ×N unit matrix, and v a constant with the di-
mension of velocity. A corner between two mirror-related
edges meeting at x = 0, as shown in Fig. 2.9b, is repre-
sented by a mass term m(x)σ2 with m(x) = −m(−x) a
N ×N hermitian matrix. The eigenvalues of m(x) have
“domain walls” at x = 0, allowing for N zero modes lo-
calized around x = 0. The bulk theory does not specify
the sign of the limiting values of the eigenvalues of the
mass term m(x) at a large distance from the corner. The
two choices for this sign give corner states with differ-
ent parity eigenvalues σC and σM, but the same value of
σMC = σCσM: A domain wall with m(x) > 0 for x � 0
gives a solution with σC = σMCσM = +, whereas a do-
main wall with m(x) < 0 for x� 0 gives a solution with
σC = σMCσM = −. One verifies that if mirror symmetry
is present locally around x = 0, neither perturbations
coupling such zero-energy states with the same value of
σMC = σCσM, nor perturbations coupling zero-energy
states with different values of σM are allowed.

The analysis of corner states of the previous Sub-
section counted their numbers NσC,σM with parities σC
and σM (at zero energy) and found that the differences
N++−N−+ and N+−−N−− are the extrinsic topological
invariants, whereas N = N++ +N−−−N+−−N−+ is the
intrinsic topological invariant. The above analysis pro-
vides a confirmation of the differences N++ − N−+ and
N+− − N−− as extrinsic, termination-dependent invari-
ants, and identifies the intrinsic invariant N describing
the corner states with the bulk topological invariant N .

Class ACM, (s, t) = (0, 1), d = 2.— This phase has
a Z2 bulk classification,[19, 22] with a purely crystalline
classifying group K ′ = Z. The first-order (strong) topo-
logical phase has chiral edge modes. For a second-order
topological phase we restrict ourselves to purely crys-
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(a)

mirror−symmetric cornermirror−related edges

(b)

FIG. 2.10. (a) A two-dimensional crystal with a pair of
mirror-related edges, but without a mirror-symmetric corner.
(b) The crystal may be smoothly deformed into a crystal with
a mirror-symmetric corner. The parity of the number of zero-
energy states between the two mirror-related edges in (a) is
the same as the parity of the number of zero-energy states at
the mirror-symmetric corner in (b).

talline topological phases with equal numbers of coun-
terpropagating modes. The corresponding integer index
N counts the difference of the numbers of pairs of coun-
terpropagating edge modes with positive and negative
parity σCM at zero energy. (One verifies that a pair of
counterpropagating modes can not mutually gap out if
both modes have the same parity under CM, i.e., the
same eigenvalue of UCM.) For a minimal edge, in which
all edge modes have the same parity σCM, we may rep-
resent the mirror antisymmetry with the unit matrix,
UCM = 1. After a suitable rescaling and basis transfor-
mation, the edge Hamiltonian may then be written as

Hedge = −ivσ3∂x11N , (2.21)

where x is the coordinate along the crystal edge, 11N is
the N ×N unit matrix, and σ3 a Pauli matrix acting on
pairs of counterpropagating modes. Although mirror an-
tisymmetry does not allow a uniform mass term, a mass
term m1(x)σ1 +m2(x)σ2 in which m1(x) and m2(x) are
hermitian N ×N matrix-valued antisymmetric functions
of x is allowed if the edge is deformed into two mirror-
related edges meeting in a corner at x = 0. Such a mass
term allows for N zero-energy states localized near x = 0.
No further topology or symmetry related numbers can be
associated with the zero-energy states, consistent with
the integer classification obtained by inspection of cor-
ner states given in the previous Subsection.

Class AM, (s, t) = (0, 0), d = 3.— We use UM = σ2

to represent mirror reflection. This class admits surface
states with dispersion −iv(σ1∂x ± σ2∂y), where the sign
± defines the “mirror chirality” and x and y are coordi-
nates along the surface, such that the mirror reflection
sends x→ −x. The bulk crystalline phase has a Z topo-
logical classification,[19–22] with an integer topological
invariant N equal to the difference of surface states with
positive and negative mirror chirality.[48] For a minimal
surface, all surface states have the same mirror chirality.
With a suitable choice of basis and after rescaling the

corresponding surface Hamiltonian reads

Hsurface = −iv(σ1∂x + σ2∂y)11N , (2.22)

with 11N the N × N identity matrix and x and y coor-
dinates at the invariant surface. The unique mass term
m(x, y)σ3 with m(x, y) = −m(−x, y) an N × N hermi-
tian matrix gaps out the surface states. The fact that
the mass term is odd under mirror reflection guarantees
the existence of gapless hinge modes at mirror-symmetric
hinges.

Considering the surface Hamiltonian (2.22) with a
mass term m(x)σ3 with m(x) = −m(−x), the propa-
gation direction of the hinge states and their mirror par-
ity σM are determined by the signs of the eigenvalues
of m(x) for x � 0, such that a positive eigenvalue cor-
responds to a hinge state with positive σM, moving in
the positive y direction, whereas a negative eigenvalue
corresponds to a hinge state with negative σM, mov-
ing in the negative y direction. (The mirror parity σM
and the propagation direction are opposite if we would
have started from a surface Hamiltonian describing sur-
face states with negative mirror chirality.) Counterprop-
agating hinge modes constructed this way have opposite
σM and are, hence, protected by mirror symmetry. Since
the sign of m depends on the details of the surface ter-
mination, changing the surface termination allows to si-
multaneously switch the propagation direction ± and the
mirror parity σM of the hinge states, consistent with the
intrinsic topological invariant N++−N+−−N−+ +N−−.

Class AIIIM− , (s, t) = (1, 1), d = 3.— We choose
UC = σ3 and UM = σ2 to represent C and M, respec-
tively. This class supports gapless surface states with
dispersion ∝ −iv(σ1∂x ± σ2∂y), which defines the chiral-
ity ±. The crystalline bulk has a Z2 classification,[19–
22] with purely crystalline classifying group K ′ = Z, see
Table 2.5. The strong integer index counts the number
of such surface Dirac cones, weighted by chirality. For
a second-order topological phase we are interested in the
purely crystalline topological phases, in which the surface
carries multiple pairs of Dirac cones of opposite chirality.
Their dispersion is −iv(σ1τ3∂x±σ2τ0∂y), where the sign
± defines the mirror chirality and the τj , j = 0, 1, 2, 3,
are Pauli matrices acting on a different spinor degree of
freedom than the matrices σj , j = 0, 1, 2, 3. The corre-
sponding (second, purely crystalline) integer topological
invariant N counts the number of such pairs of Dirac
cones, weighted by mirror chirality. A minimal surface
with N ≥ 0 has surface Hamiltonian

Hsurface = −iv(σ1τ3∂x + σ2τ0∂y)11N , (2.23)

where 11N is the N × N unit matrix. The mass terms
allowed by chiral symmetry and mirror reflection sym-
metry are m1(x, y)σ1τ1 +m2(x, y)σ1τ2 with m1,2(x, y) =
−m1,2(−x, y) N × N hermitian matrices. This ensures
the presence of gapless hinge modes at mirror-symmetric
hinges. One verifies that the surface Hamiltonian (2.23)
gives N doublets for which the mixed parity, the prod-
uct of mirror parity σM and the propagation direction,
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is positive. Similarly, surface Dirac cones with negative
mirror chirality give hinge doublets of negative mixed
parity, thus allowing one to identify the topological in-
variants derived from counting gapless hinge states and
the (purely crystalline) topological invariant N describ-
ing the bulk crystalline topology.

2.4.3. Mirror-symmetric crystals without
mirror-symmetric corners

In principle, a mirror-symmetric crystal need not have
mirror-symmetric corners. However, as long as the crys-
tal has at least a pair of mirror-related edges (for a
two-dimensional crystal) or a pair of mirror-related faces
(for a three-dimensional crystal), the bulk topology de-
termines the parity of the number of corner or hinge
states between the two mirror-related edges or surfaces.
An example of such a situation is shown in Fig. 2.10.
Since such a crystal without mirror-symmetric corners
or hinges (but with two mirror-related edges or surfaces)
may be smoothly deformed into a crystal with a mirror-
symmetric corner without closing the bulk gap, and since
corner states and hinge modes can only be generated or
annihilated pairwise in such a deformation, one immedi-
ately finds that the parity of corner states or hinge modes
is the same as the parity of corner states or hinge modes
at a mirror-symmetric corner. The corresponding entry
in Tables 2.8–2.10 is the classifying group K̄i.

2.5. CLASSIFICATION OF SECOND-ORDER
TOPOLOGICAL INSULATORS AND

SUPERCONDUCTORS WITH TWOFOLD
ROTATION AND INVERSION SYMMETRY

2.5.1. Twofold rotation symmetry for d = 3

The construction of Sec. 2.4 2, in which the existence of
a protected corner state or hinge mode is derived from a
nontrivial bulk crystalline topology, can be directly ex-
tended to the case of a three-dimensional insulator or
superconductor with a twofold rotation symmetry, pro-
vided a (generic) hinge allows for the existence of a pro-
tected hinge mode, see Table 2.1. In that case, the ar-
gument starts from the existence of a gapless mode on a
surface that is invariant under the twofold rotation op-
eration. We first consider the case that the number of
gapless modes is “minimal”, i.e., we consider a gener-
ator of the topological crystalline phase. Following the
construction of Sec. 2.4 2, one then argues that a unique
mass term is generated upon tilting this surface away
from the invariant direction. The mass term m depends
on the tilt angle θ and the azimuthal angle φ of the tilted
surface, see Fig. 2.11(a), and is odd under the twofold
rotation operation, m(θ, φ) = −m(θ, φ + π), since the
twofold rotation symmetry forbids a mass term for the
rotation-invariant surface. As a consequence, a protected
gapless hinge mode forms at the intersection of surfaces
with masses of different sign, see Fig. 2.11(b). Since the

θ

φ

(b)(a)

FIG. 2.11. (a) A surface perpendicular to the twofold ro-
tation axis hosts a gapless mode in a nontrivial topological
crystalline phase. The surface Hamiltonian acquires a mass
term m(θ, φ) upon tilting the surface away from the normal
direction, which depends on the tilt angle θ and the azimuthal
angle φ. The mass term is odd under the twofold rotation
operation, m(θ, φ) = −m(θ, φ + π) (b) A generic rotation
symmetric surface. Surfaces related by twofold rotation have
opposite mass terms. As a result, a protected gapless hinge
mode (thick black line) forms at the intersection of surfaces
with masses of different sign. The situation shown in the
figure corresponds to sign(m1) = −sign(m2).

number of sign changes of the mass term for 0 ≤ φ < 2π
must be an odd multiple of two, the number of such hinge
modes intersecting a generic cross section of the crystal
is an odd multiple of two.

The above argument guarantees the existence of hinge
modes globally, as long as the lattice termination is con-
sistent with the twofold rotation symmetry, but it does
not address the existence of a hinge mode at a given
hinge. Indeed, generically, single hinges are not mapped
to themselves under the twofold rotation operation; in
this sense, all hinges are “generic” in a crystal with
twofold rotation symmetry. This is a difference with the
mirror-reflection symmetric case, for which a nontrivial
mirror-symmetric topological crystalline phase can guar-
antee the existence of hinge modes at mirror-symmetric
hinges.

All hinges being generic, hinges modes at a given hinge
can also be induced by a suitable manipulation of the
lattice termination. However, a change of lattice termi-
nation that is compatible with the twofold rotation sym-
metry always changes the total number of hinge modes
passing a generic cross section of the crystal by a multiple
of four. Since, as seen above, nontrivial bulk crystalline
topology can also induce a number of hinge modes that
is an odd multiple of two, we conclude that second-order
topological phases protected by a twofold rotation sym-
metry have a Z2 invariant, which is nontrivial if the num-
ber of hinge modes is an odd multiple of two. Generators
of the topological crystalline classes have a nontrivial Z2

index; if the bulk topological crystalline phase has an
integer classification, only the odd topological numbers
map to a nontrivial second-order phase.

It is interesting to point out that for a nontrivial bulk
crystalline phase in a symmetry class that does not allow
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class s t
d = 2
R

d = 3
R

d = 3
I

AS 0 0 0 0 Z2

AIIIS+ 1 0 0 0 0

ACS 0 1 0 Z2 0
AIIIS− 1 1 Z2 0 0

TABLE 2.11. Classification of topological crystalline phases
with an order-two rotation symmetry or an inversion symme-
try for the complex Altland-Zirnbauer classes. The symbols
R and I refer to twofold rotation (d‖ = 2) and inversion
(d‖ = d = 3), respectively.

class s
d = 2
R

d = 3
R

d = 3
I

AT
+S 0 0 Z2 0

AIIIT
+S+ 1 0 0 0

AP
+S 2 0 0 0

AIIIT
−S− 3 0 0 0

AT
−S 4 0 0 0

AIIIT
−S+ 5 0 0 0

AP
−S 6 0 0 Z2

AIIIT
+S− 7 Z2 0 0

TABLE 2.12. Same as table 2.11, but for antiunitary symme-
tries and antisymmetries.

for protected hinge modes, i.e., for which the correspond-
ing Altland-Zirnbauer class in d = 2 dimensions is trivial,
the mass term obtained by tilting the surface away from
the invariant direction is not unique. With two or more
masses m1(θ, φ) and m2(θ, φ), the antisymmetry relation
m1,2(θ, φ) = −m1,2(θ, φ + π) no longer forces the mass
to be zero for certain values of the azimuthal angle φ, so
that no stable gapless modes exist at hinges. This is a key
difference with the case of mirror reflection-symmetric
crystalline insulators, where protected modes are guar-
anteed at mirror-symmetric corners or hinges even in the
presence of multiple mass terms.

The resulting classification is shown in the Tables
2.11–2.13. The nontrivial entries in these tables are
those Shiozaki-Sato symmetry classes, for which both
the purely crystalline classification groups K ′ of Ta-
bles 2.5–2.7 and the corresponding entry Table 2.1 are
both nonzero. Below we give detailed considerations
making this construction explicit for the nontrivial com-
plex Altland-Zirnbauer classes with unitary twofold rota-
tion symmetry or antisymmetry. The complex Altland-
Zirnbauer classes with antiunitary twofold rotation sym-
metry or antisymmetry and the real Altland-Zirnbauer
classes are discussed in App. A.4.

Class AIIIR+ , (s, t) = (1, 0).— The presence of the
chiral antisymmetry with UC = σ3 allows one to assign
a chirality ± to surface modes with Dirac-like disper-
sion ∝ −iσ1∂x ± iσ2∂y, where x and y are the Cartesian
coordinates parameterizing the surface and the twofold

class s t
d = 2
R

d = 3
R

d = 3
I

AIS+ 0 0 0 0 0
BDIS++ 1 0 0 0 0
DS+ 2 0 0 0 0
DIIIS++ 3 0 0 0 0
AIIS+ 4 0 0 0 Z2

CIIS++ 5 0 0 0 0
CS+ 6 0 0 0 Z2

CIS++ 7 0 0 0 0

AICS− 0 1 0 0 0
BDIS+− 1 1 Z2 0 0
DCS+ 2 1 Z2 Z2 0
DIIIS−+ 3 1 Z2 Z2 0
AIICS− 4 1 0 Z2 0
CIIS+− 5 1 Z2 0 0
CCS+ 6 1 0 Z2 0
CIS−+ 7 1 0 0 0

AIS− 0 2 0 0 0
BDIS−− 1 2 0 0 0
DS− 2 2 Z2 0 Z2

DIIIS−− 3 2 Z2 Z2 Z2

AIIS− 4 2 0 Z2 Z2

CIIS−− 5 2 0 0 0
CS− 6 2 0 0 Z2

CIS−− 7 2 0 0 0

AICS+ 0 3 0 0 0
BDIS−+ 1 3 0 0 0
DCS− 2 3 0 0 0
DIIIS+− 3 3 Z2 0 Z2

AIICS+ 4 3 0 Z2 Z2

CIIS−+ 5 3 Z2 0 0
CCS− 6 3 0 Z2 0
CIS+− 7 3 0 0 0

TABLE 2.13. Classification of topological crystalline phases
with an order-two crystalline symmetry or antisymmetry for
the real Altland-Zirnbauer classes. The symbols R and I
refer to twofold rotation (d‖ = 2), and inversion (d‖ = d = 3),
respectively.

rotation operation sends x → −x and y → −y. The
crystalline bulk has a Z2 classification,[19] with purely
crystalline classifying group K ′ = Z, see Table 2.5. For
a second-order topological phase we restrict ourselves
to the purely crystalline topological phases, which have
equal numbers of Dirac cones of both chiralities. Such
Dirac cones can not mutually gap out for a rotation-
invariant surface if they have the same parity under RC.
At a minimal surface, in which all surface modes have
the same parity under RC, the twofold rotation symme-
try may be represented by UR = UC = σ3.

With a suitable choice of basis and after rescaling, the
surface Hamiltonian of a minimal surface may be written
as

Hsurface = −iv(σ1τ3∂x + σ2∂y)11N , (2.24)

where 11N is the N × N unit matrix. The mass
terms allowed by chiral symmetry and rotation symme-
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try are m1(x, y)σ1τ1 + m2(x, y)σ1τ2 with m1,2(x, y) =
−m1,2(−x,−y) N × N hermitian matrices. Although
surfaces related by the twofold rotation operation have
opposite masses, the existence of two mass terms allows
the crystal faces to avoid domain walls and the associated
protected hinge modes.
Class ACR, (s, t) = (0, 1).— The bulk has a Z topolog-

ical classification, with an integer topological invariant N
equal to the difference of surface states with positive and
negative parity σCR at zero energy. For a minimal sur-
face, all surface states have the same value of σCR and
one may effectively represent CR using UCR = 1. With
a suitable choice of basis and after rescaling the corre-
sponding surface Hamiltonian reads

Hsurface = −iv(σ1∂x + σ2∂y)11N , (2.25)

with 11N the N ×N identity matrix and x and y are co-
ordinates at the invariant surface. The unique mass term
m(x, y)σ3 with m(x, y) = −m(−x,−y) an N ×N hermi-
tian matrix gaps out the surface states. If N is odd the
existence of hinge modes at the intersection of surfaces
with opposing signs of detm(x, y) is guaranteed by the
rotation antisymmetry. If N is even one can still con-
struct a mass term which is nonzero everywhere (except
at the origin), corresponding to a state without hinge
modes.

2.5.2. Twofold rotation symmetry for d = 2 and
inversion symmetry

The above construction can not be applied to two-
dimensional crystals with twofold rotation symmetry and
to three-dimensional crystals with inversion symmetry,
because these do not have symmetry-invariant bound-
aries. Instead, we argue for the existence of a second-
order topological phase in this case using the reflection-
matrix based dimensional reduction scheme outlined in
Sec. 2.3. Starting from a second-order topological phase
in d + 1 dimensions in Shiozaki-Sato symmetry class
(s+1, t) (class s+1 for complex Hamiltonians with antiu-
nitary symmetries) and d‖ < d+ 1 inverted coordinates,
the dimensional reduction scheme allows one to construct
a second-order topological insulator or superconductor in
Shiozaki-Sato symmetry class (s, t) (class s for complex
Hamiltonians with antiunitary symmetries) in d dimen-
sions, with the same number d‖ of inverted dimensions.
The real-space version of the reflection-matrix based di-
mensional reduction scheme directly maps hinge states
in a three-dimensional second-order topological insula-
tor or superconductor with twofold rotation symmetry to
corner states in a two-dimensional topological insulator
or superconductor with twofold rotation symmetry, see
Fig. 2.12. Similarly, it maps generalized hinge states of
a four-dimensional second-order topological insulator or
superconductor with an order-two inversion with d‖ = 3
to hinge states of a three-dimensional second-order topo-
logical insulator or superconductor with inversion sym-
metry. The resulting Z2 classification is given in Tables

2d 2nd order topological
insulator with twofold
rotation symmetry

H
3

dimensional 
reduction

r

rotation symmetry

3d 2nd order topological
insulator with twofold

ideal lead

H2

FIG. 2.12. Dimensional reduction scheme from a three-
dimensional second-order topological insulator with twofold
rotation symmetry to a two-dimensional second-order topo-
logical insulator with inversion symmetry. Upon dimensional
reduction, the Altland-Zirnbauer class changes from s to s−1
(modulo 2 for the complex classes, modulo 8 for the real
classes), see the discussion in the main text.

2.11–2.13.

2.6. EXAMPLES

In this section we give various tight-binding model re-
alizations of the second-order topological insulators. The
models we consider all follow the same pattern. We first
describe their general structure and then turn to a de-
scription of specific Shiozaki-Sato symmetry classes. The
model Hamiltonian we consider is of the general form
H(k) = H0(k) +H1, with

H0(k) =

d∑

j=0

dj(k)Γj , H1 =

d∑

j=1

bjBj , (2.26)

where the Γj and the Bj , j = 1, . . . , d, are matrices that
depend on the specific Shiozaki-Sato class and that sat-
isfy Γ2

j = B2
j = 1, the bj are real numbers typically chosen

to be numerically small, and

d0(k) =m+

d∑

j′=1

(1− cos kj′),

dj(k) = sin kj , j = 1, . . . , d. (2.27)

The matrices Γ0 and Γj , j = 1, . . . , d, anticommute mu-
tually, which ensures that for small numbers bj , the
Hamiltonian (2.26) is in a nontrivial topological crys-
talline phase for −2 < m < 0. We further choose the
matrix B1 such that it commutes with Γ1 and Γ0 and
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anticommutes with Γj with j ≥ 1. For the remaining
matrices Bj with j > 1 we set

Bj = ΓjΓ1B1, j = 2, . . . , d, (2.28)

which ensures that Bi commutes with Γi and Γ0 and an-
ticommutes with Γj for j 6= i. Mirror symmetry with
k1 → −k1 requires b2 = b3 = 0; twofold rotation sym-
metry with rotation around the x3 axis requires b3 = 0.
The role of the perturbation H1 is to reduce the symme-
try of the Hamiltonian, while preserving the crystalline
symmetry of interest. Further, as we will show below,
each Bj term gaps the surface that is perpendicular to
the xj direction. When appropriate, we will simplify our
notation by writing the matrices Γj and Bj and the num-
bers bj as vectors, Γ = (Γ1, . . . ,Γd), B = (B1, . . . , Bd),
and b = (b1, . . . , bd).

For all of the examples that we discuss below we ver-
ified the existence of Majorana corner modes or gapless
hinge modes by numerical diagonalization of a finite clus-
ter. (All numerical calculations in this Section were per-
formed using the Kwant software package.[47]) Alterna-
tively, for a Hamiltonian of the form (2.26), with the con-
straints as described above, the existence of zero-energy
corner modes or gapless hinge modes can also be con-
cluded from an explicit solution of the low-energy theory,
modeling the crystal boundaries as interfaces between re-
gions with negative and positive m, with negative m cor-
responding to the interior of the crystal. The low-energy
limit of H0 near a sample boundary has the form

H0 = m(x⊥)Γ0 − i~Γ · ∂r, (2.29)

where x⊥ = n · r is the coordinate transverse to a
boundary with outward-pointing normal n. We require
m(x⊥) > 0 for x⊥ > 0 and m(x⊥) < 0 for x⊥ < 0, so
that the sample interior corresponds to negative x⊥. The
Hamiltonian (2.29) admits a zero-energy boundary mode
with spinor wavefunction ψ(x⊥) satisfying

∂x⊥ψ(x⊥) = − i
~
m(x⊥)(n · Γ)Γ0ψ(x⊥). (2.30)

For 2b-dimensional spinors, this equation has b bounded
solutions with an x⊥-independent spinor structure. The
projection operator to the b-dimensional space of allowed
spinors is

P (n) =
1

2
[i(n · Γ)Γ0 + 1]. (2.31)

The effective b-band surface Hamiltonian is obtained
using the projection operator P (n). To illustrate this
procedure, we consider a family of surfaces with surface
normal n = (cosφ, sinφ) for d = 2 or n = (cosφ, sinφ, 0)
for d = 3. In this case we write the projection operator
as

P (φ) =
1

2
(iΓ1Γ0 cosφ+ iΓ2Γ0 sinφ+ 1)

= eφΓ2Γ1/2P (0)e−φΓ2Γ1/2. (2.32)

The projected Hamiltonian then reads,

P (n)HP (n) = eφΓ2Γ1/2P (0)

× [−i~(Γ2∂x‖ + Γ3∂x3
) +m(φ)B1]

× P (0)e−φΓ2Γ1/2, (2.33)

where m(φ) = b1 cosφ + b2 sinφ and ∂x‖ = cosφ∂x2
−

sinφ∂x1
is the derivative with respect to a coordinate

along the surface. (For d = 2 the terms proportional
to ∂x3

should be omitted from Eq. (2.33) and from Eq.
(2.34) below.) From Eq. (2.33) we derive the effective
boundary Hamiltonian

Hboundary = −i~(Γ′2∂x‖ + Γ′3∂x3
) +m(φ)B′1, (2.34)

where Γ′2 = P (0)Γ2P (0), Γ′3 = P (0)Γ3P (0), and B′1 =
P (0)B1P (0) are effectively b× b matrices because of the
projection operator P (0). (Note that Γ2, Γ3, and B1

commute with P (0).) The boundary Hamiltonian (2.34)
supports boundary modes with a gap |m(φ)|. For d = 2
zero-energy corner states appear between crystal edges
with opposite sign of m(φ); for d = 3 gapless hinge modes
appear between crystal faces with opposite sign of m(φ).

2.6.1. Examples in two dimensions

1. Class D with t = d‖

This example applies to symmetry class DCM+ , (s, t) =
(2, 1) and to symmetry class DR− , (s, t) = (2, 2). We rep-
resent the symmetry operations using UP = σ1, UCM =
σ1, and UR = σ3. The mirror operation sends k1 → −k1.
For the matrices Γj and Bj in the tight-binding Hamil-
tonian (2.26) we choose

Γ0 = σ3, Γ = (τ3σ1, σ2), B = (τ2σ3,−τ1). (2.35)

For class DCM+ , the mirror antisymmetry imposes that
b2 = 0; for class DR− nonzero b1 and b2 are allowed. We
note that for b1 = 0 this example also possesses a mir-
ror symmetry for mirror reflection k2 → −k2, which is
represented by σ2τ3. The mirror-symmetric case hosts
Majorana zero modes at corners that are bisected by
the mirror axis. The rotation-symmetric case also hosts
Majorana modes at corners, but these corners are deter-
mined by the orientation of the vector b (numerical data
not shown).

2. Class D with t = d‖ + 3 mod 4

This example applies to symmetry class DM+ , (s, t) =
(2, 0) and to symmetry class DCR+ , (s, t) = (2, 1). We
represent the symmetry operations using UP = 1, UM =
σ1, and UCR = τ3σ1. For the matrices Γj and Bj in the
tight-binding Hamiltonian (2.26) we choose

Γ0 = τ2, Γ = (τ1σ3, τ3), B = (τ2σ1,−σ2). (2.36)
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a)                          b)                          c)

FIG. 2.13. Support of the zero-energy corner state ob-
tained from exact diagonalization of the two-dimensional
time-reversal invariant superconductor in class DIII with
Hamiltonian (2.26) with m = −1 and Γ and B given by
Eq. (2.37) with b = (0.3, 0) (a), b = (0.3, 0.1) (b), and
b = (0, 0.3) (c).

Again the mirror symmetry imposes that b2 = 0; for class
DCR− nonzero b1 and b2 are allowed. As in the previous
example, the mirror-symmetric case hosts Majorana zero
modes at corners that are bisected by the mirror axis.[9]
The rotation-symmetric case also hosts Majorana zero
modes at corners that are determined by the orientation
of the vector b (numerical date not shown).

3. Class DIII with t = d‖ − 1 mod 4

This example applies to symmetry classes DIIIM++

and DIIIR−+ , which both have a Z2 classification. We
consider an eight-band model, for which we represent the
symmetry operations using UT = σ2, UP = τ1, UM = ρ3,
and UR = σ3, where the ρj , σj , and τj are Pauli matri-
ces acting on different spinor degrees of freedom. For
the matrices Γj and Bj in the tight-binding Hamiltonian
(2.26) we choose

Γ0 = τ3, Γ = (ρ1τ1σ1, ρ3τ1σ1),

B = (ρ3τ3,−ρ1τ3). (2.37)

Mirror symmetry imposes that b2 = 0. The perturbation
b1B1 preserves both mirror and rotation symmetries, but
breaks a mirror symmetry with x2 → −x2, represented
by ρ1. As shown in figure 2.13a, the mirror-symmetric
model with nonzero b1 hosts Majorana Kramers pairs at
its symmetry-invariant corners. The corner states per-
sist if the mirror-symmetry-breaking perturbation b2B2

is switched on, see Fig. 2.13b. In this case, the ratio of
b1 and b2 determines the corner at which the Majorana
Kramers pairs reside, such that they move to the other
corners if b1 = 0, see Fig. 2.13c.

4. Class AII with t = d‖ + 2 mod 4

This example applies to symmetry classes AIICM+ and
AIIR+ . We represent the symmetry operations using
UT = σ2, UCM = τ2σ3, and UR = τ2σ1. This symmetry

class allows a perturbation H1 of the form

H1 =
d∑

j=1

bjBj +
d∑

j=1

cjCj , (2.38)

where the matrices Cj anticommute with the matrices
Bj and otherwise satisfy the same properties, see Eq.
(2.28) and the discussion preceding that equation. For
the matrices Γj , Bj , and Cj we choose

Γ0 = τ2σ1, Γ = (σ3, σ2),

B = (µ2τ3σ3, µ2τ3σ2), C = (µ2τ1σ3, µ2τ1σ2), (2.39)

where the µj , σj , and τj are Pauli matrices acting on
different spinor degrees of freedom. As in the pre-
vious examples the mirror antisymmetry imposes that
b2 = c2 = 0; for class AIIR+ nonzero b1,2 and c1,2 are
allowed. The mirror antisymmetry can protect a zero-
energy Kramers pair at mirror-symmetric corners. How-
ever, if the mirror antisymmetry is broken, the twofold
rotation symmetry alone cannot protect a topologically
protected zero-energy state if both b and c are nonzero
and linearly independent. (If b and c are both nonzero
and linearly dependent, the model specified by Eq. (2.39)
obeys an accidental chiral antisymmetry, effectively plac-
ing it in the Shiozaki-Sato symmetry classes CIIM−− and
CIIR+− , which stabilizes a zero-energy corner mode even
if mirror symmetry is broken.)

Figure 2.14 shows the result of the exact diagonaliza-
tion of this model on a finite-sized lattice. Panel (a)
shows the support of the Kramers pairs for a system with
b2 = c1 = c2 = 0 as well as the spectrum near zero energy.
Upon adding the mirror-antisymmetry-breaking pertur-
bation c2C2 locally near the top corner, the Kramers
pair located there acquires a finite energy, see panel (b).
Both Kramers pairs disappear if the mirror-symmetry-
breaking perturbation is added to both top and bottom
corners, see Fig. 2.14c.

2.6.2. Examples in three dimensions

1. Class A with t = d‖ + 1 mod 4

Langbehn et al.[9] considered this class for the case
of a mirror symmetry with k1 → −k1 represented by
UM = σ1. Here we give an example that also has twofold
rotation antisymmetry, represented by UCR = τ2σ1, and
inversion symmetry, represented by UI = τ1σ1. For the
matrices Γj and Bj in the tight-binding Hamiltonian
(2.26) we choose

Γ0 = τ1σ1, Γ = (τ1σ3, τ2, τ3), B = (τ1, τ2σ3, τ3σ3).
(2.40)

Mirror symmetry imposes that b2 = b3 = 0; twofold ro-
tation antisymmetry imposes that b3 = 0. The mirror-
symmetric model with b2 = b3 = 0 was already consid-
ered in Sec. 2.3. Additionally, the system has a mirror
symmetry sending k2 → −k2 (k3 → −k3) represented

50



Second-order topological insulators and superconductors with an order-two crystalline symmetry

FIG. 2.14. Support of the zero-energy eigenstates (if present,
left) and the lowest 30 eigenvalues (right a, b and c) of the
model discussed in Sec. 2.6 1 4. Panel (a) is for the case that
mirror antisymmetry is present, b = (0.4, 0) and c = (0, 0),
which has a Kramers pair of zero-energy states localized at
the mirror-symmetric top and bottom corners. Breaking the
mirror antisymmetry locally at the top corner removes one
zero-energy Kramers pair, as shown in panel (b). No zero-
energy Kramers pairs remain after removing the mirror anti-
symmetry at both the top and the bottom corner, as shown
in panel (c).

by UM = τ3σ2 (UM = τ2σ2) and a twofold rotation
antisymmetry around x1-axis (x2-axis) represented by
UCR = σ2 (UCR = τ3σ1). The mirror-symmetric case
AM in which only the perturbation b1B1 is present has a
single chiral mode wrapping around the sample hinges. [9]
These modes persist when all three perturbations bjBj
are switched on, where the orientation of the vector b
determines which hinges support the chiral hinge modes.
As an example, Figure 2.15 shows the support of the chi-
ral hinge modes for two different choices of b.

Upon performing the reflection-matrix dimensional re-
duction scheme of Sec. 2.3 the model defined by the
choice (2.40) can be used to generate an eight-band two-
dimensional Hamiltonian in classes AIIIM+ and AIIIR−

with UC = µ3, UM = σ1, and UR = µ1τ2σ1. Figure 2.5
shows the support of the zero-energy corner states of
the two-dimensional Hamiltonian that is obtained this
way. For comparison, we may consider a four-band model

FIG. 2.15. Support of the zero-energy hinge modes for
a three-dimensional crystal with tight-binding Hamiltonian
specified by Eqs. (2.26) and (2.40) for b = (0.8, 0.8, 0.8)/

√
3

(a) and b = (0.8, 0.8, 0)/
√

2 (b). The example shown in panel
(a) has mirror-reflection symmetry, twofold rotation symme-
try, and inversion symmetry; the example in panel (b) has
inversion symmetry only. Panel (c) shows the support of the
zero-energy corner modes obtained for the two-dimensional
tight-binding model specified by Eqs. (2.26) and (2.41) with
b = (0.4, 0).

for a two-dimensional tight-binding Hamiltonian, with
UC = τ3, UM = σ1, and UR = τ1σ1 and Hamiltonian
specified by

Γ0 = τ1σ1, Γ = (τ1σ3, τ2), B = (τ1, τ2σ3). (2.41)

The above model has a mirror symmetry for b2 = 0 and
a twofold rotation symmetry for arbitrary b1, b2. This
model has zero-energy corner states. Figure 2.15c shows
the support of these zero-energy corner states for the pa-
rameter choice b = (0.4, 0).

2. Class AII with s = 4, t = d‖ + 1 mod 4

This example applies to the classes AIIM− , AIICR+ ,
and AIII+ , which all have a Z bulk crystalline classifi-
cation, with purely crystalline component K ′ = 2Z.[19–
23, 49] We use UT = σ2, represent the (spinful) mir-
ror operation by UM = σ3τ3, rotation antisymmetry by
UCR = σ1τ2, and inversion as UI = τ3. The lattice Hamil-
tonian is specified by

Γ0 = τ3, Γ = (σ3τ1, σ2τ1, σ1τ1),

B = (σ3τ0ρ2, σ2τ0ρ2, σ1τ0ρ2), (2.42)

where mirror symmetry forces b2 = b3 = 0 and rota-
tion antisymmetry forces b3 = 0. In addition to the
spatial symmetries mentioned above, the model has a
mirror symmetry with k2 → −k2 if b1 = b3 = 0, rep-
resented by σ2τ3, a mirror symmetry with k3 → −k3 if
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FIG. 2.16. Support of helical hinge modes of the tight-
binding Hamiltonian (2.26) with Γ and B given by Eq. (2.42)
and b = (0.4, 0.4, 0) (a) and b = (0.4, 0.4, 0.4) (b). For the ex-
ample shown in panel (a) the top and bottom surfaces are in-
variant with respect to the twofold rotation symmetry, which
explains the presence of gapless surface modes at the top and
bottom surface. The twofold rotation symmetry is broken in
panel (b), which has inversion symmetry only.

b1 = b2 = 0, represented by σ1τ3, and rotation antisym-
metries around the x1 axis (if b1 = 0) and x2 axis (if
b2 = 0), represented by σ3τ2 and σ2τ2, respectively. The
model with mirror symmetry has a single helical mode
located at the mirror-symmetric sample hinges.[9] The
helical modes persist upon turning on all perturbations
bjBj , j = 1, 2, 3, leaving inversion as the only symme-
try of the model. Figure 2.16 shows the helical hinge
modes for two different choices of b. The existence of
hinge modes in the presence of inversion symmetry is
consistent with Refs. 14 and 36, where the same symme-
try class was considered. The case of a spinful mirror
symmetry was analyzed previously in Refs. 4 and 9.

3. Class AII with s = 4, t = d‖

This example applies to the classes AIICM− , AIIR− ,
and AIICI+ , which all have a Z2

2 bulk crystalline
classification,[19–23, 49] with purely crystalline compo-
nent K ′ = Z2. Here we again represent time-reversal as
UT = σ2, and use UCM = σ1τ3, UR = σ3, and UCI = τ3
to represent the mirror antisymmetry, spinful rotation
symmetry, and inversion antisymmetry. We choose the
matrices of the tight-binding Hamiltonian as

Γ0 = τ1ρ3, Γ = (σ1τ3ρ3, σ2τ3, σ3τ3),

B = (σ0τ2ρ2,−σ3τ2ρ1, σ2τ2ρ1), (2.43)

where mirror antisymmetry forces b2 = b3 = 0 and rota-
tion symmetry forces b3 = 0. The model has additional
mirror antisymmetries with k2 → −k2 (if b1 = b3 = 0)
and k3 → −k3 (if b1 = b2 = 0), represented by σ2τ3 and
σ3τ3, respectively, and rotation symmetries around the
x1 axis (if b1 = 0) and x2 axis (if b2 = 0), represented
by σ1 and σ2, respectively. A numerical diagonalization
gives results that are indistinguishable from those of Fig.
2.16. The existence of hinge modes in the presence of
spinful twofold rotation symmetry is consistent with Ref.
36, where the same symmetry class was considered.

FIG. 2.17. Support of the zero-energy states of the tight-
binding Hamiltonian (2.26) with Γ and B given by Eq. (2.44)
and b = (0.4,−0.4, 0) (a) and b = (0.4,−0.4, 0.4) (b). For
the example shown in panel (a) the top and bottom surfaces
are invariant with respect to the twofold rotation symme-
try, which explains the presence of gapless surface modes at
the top and bottom surface. The twofold rotation symme-
try is broken in panel (b), which only has inversion symme-
try. Panel (c) shows the support of the zero-energy corner

modes of the two-dimensional Hamiltonian in class AIIIT
+R−

obtained by dimensional reduction of the three-dimensional
model, with parameter b = (0.4,−0.4, 0). For comparison,
panel (d) shows the support of the zero-energy corner modes
obtained for the two-dimensional tight-binding model speci-
fied by Eqs. (2.26) and (2.45) with b = (0.4,−0.4).

4. Antiunitary symmetry: Class A with s = 4− 2d‖ mod 8

This example applies to the classes AP
+M, AT

+R,

and AP
−I . We represent the symmetry operations us-

ing UPM = τ3, UT R = σ1, and UPI = σ2 and consider a
tight-binding Hamiltonian of the form (2.26) with

Γ0 = σ2τ0, Γ = (σ1τ1, σ1τ3, σ3τ0),

B = (σ2τ3,−σ2τ1, σ0τ2), (2.44)

where the antiunitary mirror antisymmetry requires that
b2 = b3 = 0 and the twofold antiunitary rotation sym-
metry requires that b3 = 0. Figures 2.17a and b show
the hinge states for two example lattice structures with
m = −1 and b = (0.4,−0.4, 0) and b = (0, 4,−0.4, 0.4),
respectively.

Upon performing the reflection-matrix dimensional re-
duction scheme of Sec. 2.3 the model defined by the
choice (2.44) can be used to generate a two-dimensional

Hamiltonian in classes AIIIT
+M+ and AIIIT

+R− with
UC = ρ3, UTM = σ0τ3, and UT R = σ1ρ1. Figure 2.17d
shows the support of the zero-energy corner states of the
two-dimensional Hamiltonian that is obtained this way.

The model that is obtained using the dimensional re-
duction scheme is an eight-band model. This is not the
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minimal number of bands for which a nontrivial second-
order topological insulator in the classes AIIIT

+M+ and

AIIIT
+R− exists. An example of a minimal model is

given by a two-dimensional tight-binding Hamiltonian of
the form (2.26) with

Γ0 = σ2τ0, Γ = (σ1τ1, σ1τ3), B = (σ2τ3,−σ2τ1),
(2.45)

which has a chiral symmetry UC = σ3, mirror symmetry
UTM = σ3τ3 for b2 = 0 and a twofold rotation sym-
metry UT R = σ1 for arbitrary b1, b2. This model has
zero-energy corner states, as shown in Fig. 2.17d for the
parameter choice m = −1, b = (0.4,−0.4).

2.7. CONCLUSION

In this work we extend the construction scheme intro-
duced by Langbehn et al. [9] for second-order topologi-
cal insulators and superconductors with mirror reflection
symmetry to the larger class of topological insulators and
superconductors stabilized by any order-two crystalline
symmetry or antisymmetry, unitary or antiunitary. The
order-two crystalline symmetries include mirror reflec-
tion, twofold rotation, and inversion.

For the mirror-symmetric topological crystalline insu-
lator and superconductors we showed that a topologically
nontrivial bulk implies that either all boundaries have
gapless modes, in which case the topological crystalline
insulator or superconductor is a strong topological insu-
lator or superconductor which does not rely on the crys-
talline symmetry for its protection, or it is a second-order
topological insulator, with zero-energy states at mirror-
symmetric corners or gapless modes at mirror-symmetric
hinges. Moreover, we showed that there is a “corner-to-
bulk correspondence” or “hinge-to-bulk correspondence”,
according to which the classification of possible protected
corner or hinge states modulo lattice termination effects
is identical to the that of the bulk topology, after removal
of the strong topological phases. On the other hand, no
complete corner-to-bulk correspondence or hinge-to-bulk
correspondence exists for topological crystalline phases
protected by a twofold rotation symmetry or by inver-
sion symmetry, since these symmetries do not allow for
symmetry-invariant corners or hinges in two and three
dimensions. Instead, there is a partial correspondence,
which relates the parity of the number of corner states
or hinge modes to the bulk topology.

For topological crystalline phases in which the num-
ber d‖ of inverted spatial dimensions is smaller than the
spatial dimension d, such as phases protected by mirror
reflection for d ≥ 2 or twofold rotation for d ≥ 3, there
is a bulk-to-boundary correspondence, which uniquely
links the bulk topology with the boundary states on a
symmetry-invariant boundary. The corner-to-bulk cor-
respondence or hinge-to-bulk correspondence for those
phases shows that they may have protected states at
corners or hinges, too, but it does not provide infor-

mation beyond what is already known from consider-
ing symmetry-invariant boundaries. This is different for
topological crystalline phases with d‖ = d, such as two-
fold rotation symmetry for d = 2 or inversion symme-
try for d = 3, for which there are no symmetry-invariant
boundaries and, hence, no (first-order) bulk-to-boundary
correspondence. In this case the Z2 sum rule for the
number of corner states or hinge modes that we derive
here provides a unique boundary signature of a nontrivial
topological crystalline phase for a case in which no other
boundary signatures are known to exist.[14, 36] Corre-
spondingly, the demonstration that a nontrivial topolog-
ical crystalline phase implies the existence of protected
corner states or hinge modes cannot start from a theory
of gapless boundary modes, as it does for d‖ < d,[9] but,
instead, must start from the gapped bulk, as is done in
Ref. 36 and Sec. 2.6 for specific examples, or, as a general
construction, by dimensional reduction from a hypothet-
ical higher-dimensional topological crystalline phase for
which symmetry-invariant boundaries exist. This is the
route we take in Sec. 2.5, using a real-space dimensional
reduction scheme based on the scattering matrix.[22, 46]

It is important to stress that, although crystalline sym-
metries are key to our construction of second-order topo-
logical phases, second-order topological phases are im-
mune to weak perturbations that break the crystalline
symmetry, as long as the boundary gaps are preserved.[9]
In our description, this stability is reflected in the use
of two classification schemes: An extrinsic classification
scheme, which classifies corner states or hinge modes with
respect to continuous transformations of the Hamiltonian
that preserve both bulk and boundary gaps, and an in-
trinsic classification, which allows transformations of the
Hamiltonian in which the boundary gap is closed, as long
as the bulk gap is preserved. The intrinsic classification
depends on the bulk topology only, and is independent
of the lattice termination. On the other hand, it is the
extrinsic classification, with the possible inclusion of lo-
cal symmetry-breaking perturbations, that captures the
robustness of the phenomena associated with a second-
order topological phase to weak symmetry-breaking per-
turbations.

Not all two-dimensional materials with corner states or
all three-dimensional materials with gapless hinge modes
are in a second-order topological phase — just like not
all materials with a gapped bulk and gapless boundary
states are topological. For a second-order topological
phase it is necessary that the corner states or hinge modes
have a topological protection. A classification of the
type that we present here is a key prerequisite to deter-
mine whether a true topological protection can exist, or
whether the existence of corner states or hinge modes in
a given model is merely a matter of coincidence. For ex-
ample, the existence of zero-energy corner modes always
requires that the Hamiltonian satisfy an antisymmetry,
ruling out a second-order phase in a two-dimensional lat-
tice model with symmetries only — in contrast to recent
claims in the literature.[50–52]

53



The phenomenology of a second-order topological
phase — the existence of protected zero-energy corner
states or gapless hinge modes on an otherwise gapped
boundary — is not the only possible manifestation
of a nontrivial bulk topology if the standard bulk-to-
boundary correspondence does not apply. As pointed out
in Refs. 6, 7, 50, 53, and 54, a nontrivial bulk crystalline
topology may also manifest itself through a nontrivial
quantized electric multipole moment or through the ex-
istence of fractional end or corner charges. (Note that a
corner charge is different from a zero-energy corner state:
A zero-energy corner state implies a degeneracy of the
many-body ground state, whereas a corner charge implies
the local accumulation of charge in an otherwise non-
degenerate many-particle ground state.) If the Hamilto-
nian possesses an antisymmetry, as is the case for cer-
tain models considered in the literature,[6, 53] a nontriv-
ial electric multipole moment and protected zero-energy

corner states can exist simultaneously, but this need not
always be case. A counterexample is the “breathing py-
rochlore lattice” of Ref. 50, for which the nontrivial bulk
topology manifests itself through a quantized bulk polar-
ization, whereas the zero-energy corner states of Ref. 50
lack topological protection.

Only few materials have been proposed as realizations
of second-order phases. Examples are strained SnTe[4]
or odd-parity superconducting order in doped nodal-
loop materials[55] both with mirror symmetry, and bis-
muth [56] with inversion symmetry. Simultaneously, the
phenomenology of second-order phases has been repro-
duced experimentally in artificial “materials”, such as
electrical[57] or microwave[58] circuits, or coupled me-
chanical oscillators.[59] We hope that the complete clas-
sification presented here will help to identify new material
candidates for the solid-state realizations of second-order
topological insulators and superconductors.
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3. Bulk-boundary-defect correspondence at disclinations in crystalline topological
insulators and superconductors

3.1. INTRODUCTION

Topological crystalline insulators and superconductors
have an excitation gap in the bulk and feature protected
gapless or zero-energy modes on their boundaries [1–3].
These boundary modes are anomalous in the sense that
they can only be realized in the presence of a topolog-
ical bulk. Crystalline symmetries, such as rotation or
inversion symmetry, may protect higher-order topolog-
ical phases for which anomalous states are located at
corners or hinges of the crystal [4–27] (see also Chapter
2). In particular, a d-dimensional topological crystalline
phase of order n hosts (d−n−1)-dimensional anomalous
states at hinges or corners of the corresponding dimen-
sion. This correspondence between bulk topology and
boundary anomaly is a fundamental aspect of topologi-
cal insulators and superconductors [12, 25, 28–33].

Topological lattice defects violate a crystalline sym-
metry locally while the rest of the lattice remains locally
indistinguishable from a defect-free lattice. They can be
constructed by cutting and gluing symmetry-related sec-
tions of the lattice by means of a Volterra process [19, 34–
36]. Topological lattice defects are characterized by their
holonomy, which is defined as the action on a local coor-
dinate system transported around the defect. Common
examples are dislocations and disclinations. The latter
violate rotation symmetry locally and carry a rotation
holonomy. The association to a holonomy is the property
that distinguishes topological lattice defects from other
lattice defects. For example, atomic defects such as va-
cancies, substitutions, or atoms at interstitial positions
are not associated to a holonomy, and therefore are not
considered topological. For grain boundaries separating
regions of different lattice orientations, it has been sug-
gested that they can be described as arrays of dislocations
[37–39] or disclinations [40–45].

Previous works have shown that dislocations carry
anomalous states in weak topological phases [31, 46–
52]. The label weak indicates that the topological
phase is protected by translation symmetry. The ex-
istence of anomalous states at disclinations in the ab-
sence of weak topological phases has been shown in
Refs. 14, 19, 36, 53–55. Moreover, crystalline topolog-
ical phases generally have a topological response associ-
ated with topological lattice defects [36]. A possible link
between second-order topology and anomalous states at
disclinations has been put forward in Refs. 14 and 19.
Furthermore, a correspondence between a fractional cor-
ner charge in two-dimensional topological crystalline in-
sulators [5, 6, 18, and 56] and a fractional disclination
charge has been shown in Refs. 16 and 20. A correspon-
dence between a topological phase realized on a lattice
with dislocations and a topological phase realized on a

defect-free lattice on a manifold with a larger genus has
been suggested in Refs. 57–59.

In this chapter, we establish a precise relation between
second-order topological phases protected by rotation
symmetry and anomalous states at disclinations. By us-
ing both heuristic arguments and the framework of topo-
logical crystals [22], we work out for all Cartan classes
of spinful fermionic systems the exact conditions under
which this bulk-boundary-defect correspondence holds. In
the cases where it breaks down, the anomaly at the discli-
nation depends on the microscopic properties of the sys-
tem. Under certain conditions, this obstruction manifests
as a domain wall that is connected to the disclination.

The analysis in this chapter covers both topological
phases defined in the long-wavelength limit where the
lattice may be neglected, and topological phases enabled
by the presence of the discrete translation symmetry of a
lattice. The former shows that the bulk-boundary-defect
correspondence does not require an underlying lattice.
The latter identifies weak topological phases associated
with the anomaly at the disclination.

This chapter is organized as follows. Section 3.2 re-
views the construction and the holonomy classification
of disclinations in lattice models of fermionic systems. In
Sec. 3.3, we begin by giving a brief overview of second-
order topological phases and their bulk-boundary cor-
respondence. We determine the existence of anoma-
lous states at disclinations for models defined in the
long-wavelength limit. In the following Sec. 3.4, we
construct real-space representations of second-order and
weak topological phases in the presence of discrete trans-
lation symmetry to deduce the existence of anomalous
disclination states. This section may be skipped at first
reading. In Sec. 3.5, we cumulate our results to show that
each topological property of a disclination, i.e., its trans-
lation and rotation holonomies as well as the presence
of quantized vortices, is linked to a unique bulk topo-
logical invariant determining the existence of anomalous
states at the defect. For all symmetry classes we detail
whether the bulk-disclination correspondence holds and
whether there exist weak and strong first- and second-
order topological phases that may contribute d − 2 di-
mensional anomalous states bound to a disclination. In
Sec. 3.6, we apply our construction to concrete examples
before summarizing our results in Sec. 3.7.

3.2. TOPOLOGICAL LATTICE DEFECTS

3.2.1. Volterra process

A lattice is abstractly defined by its space group G that
contains all crystalline symmetry elements, e.g., transla-
tions, rotations, and inversion symmetry. A topological
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Figure 3.1. Volterra processes to construct two different
π/2 disclinations in a C4-symmetric lattice: (a)-(c) type-0
disclination centered at a 3-vertex ; (d)-(f) type-1 disclination
centered at a triangular cell. The red dashed lines in (c) and
(f) indicate paths encircling the respective disclination.

lattice defect breaks an element of G locally such that
the lattice remains indistinguishable from a defect-free
arrangement everywhere else. These defects are topolog-
ical in the sense that local rearrangements of the lattice
can only move, but not remove the lattice defect. This
implies that there exists a topological quantity, defined
on a closed loop or surface enclosing the defect, that
quantifies the lattice defect. This topological quantity
can be expressed in terms of the holonomy associated
with the defect. For lattice defects with co-dimension 2,
the holonomy is defined as the action on a local coordi-
nate system upon parallel transport along a closed loop
around the defect [54]. Common examples of topological
lattice defects are dislocations and disclinations, which
locally violate translation symmetry and rotation sym-
metry, respectively. In the following, we show how topo-
logical lattice defects are constructed using a Volterra
process [34 and 35] for the example of a square lattice
with C4 symmetry.

We first cut the crystal along two lines, Σ1 and Σ2, in-
tersecting in a point p and related by a rotation about an
angle Ω = π/2 consistent with the lattice symmetry [see
Figs. 3.1(a), and (d)]. We then remove the enclosed seg-
ment [see Figs. 3.1(b), and (e)], deform the crystal such
that the lines Σ1 and Σ2 come together, and finally glue
the lattice back together along the cut [see Figs. 3.1(c)
and (f)]. This procedure may be used to construct dis-
tinct types of π/2 disclinations depending on the num-
ber of additional lattice translations along the direction
of the cut: in Fig. 3.1(c), no extra translation is applied,
thereby forming a disclination centered at a vertex with
three connections. In Fig. 3.1(f), one additional transla-
tion leads to a disclination centered at a triangular cell.
The presence of the disclination strains the lattice close
to the defect.

We point out that instead of cutting and removing a

segment, one can also cut the crystal along a single line
and insert a segment with boundaries related by a Ω ro-
tation. This process constructs a disclination with a neg-
ative Franck angle −Ω (see below).

3.2.2. Holonomy of disclinations

Disclinations are classified by their holonomy, which is
defined as the amount of excess translation and rota-
tion accumulated by parallel transporting a coordinate
system on a closed path around the disclination [54].
Holonomic quantities are path-independent as long as the
starting point is fixed and the path encircles the discli-
nation only once. By considering equivalence classes of
holonomies that can be reached by a change of starting
point, the holonomic quantities become also independent
of the starting point. The rotation holonomy Ω is called
the Franck angle and is, by construction, identical to
the angle Ω in the Volterra process defined above. The
equivalence classes Hol(Ω) of Ω disclinations in 2π/Ω-fold
rotation symmetric lattices are [50 and 54]

Hol(π) = Z2 ⊕ Z2,

Hol(2π/3) = Z3,

Hol(π/2) = Z2,

Hol(π/3) = 0.

(3.1)

For twofold symmetric lattices, there are four types of
π disclinations. They are distinguished by the parity of
the number of translations along the x and y direction of
the crystal (see Fig. 3.2). Threefold rotation-symmetric
lattices may host three distinct types of 2π/3 disclina-
tions distinguished by their rotation holonomy modulo
three, which is illustrated in Fig. 3.2. For fourfold sym-
metric lattices, there are two types of π/2 disclinations
corresponding to whether an even (type 0) or odd (type
1) number of translations by primitive Bravais lattice vec-
tors is required to move around the disclination This is
illustrated in Figs. 3.1(c) and (f), respectively. Finally,
sixfold symmetric lattices allow for only a single type of
π
3 disclination (see Fig. 3.2).

Notice that a local rearrangement of the lattice allows
to split a topological lattice defect into its elemental com-
ponents, and vice versa. For example, a π/2 disclination
of type 1 can be split into a π/2 disclination of type 0
and a dislocation with odd translation holonomy.

3.2.3. Screw disclinations in three dimensions

In three dimensions, a disclination can also carry a
translation holonomy Tz in the direction of the rotation
axis. These disclinations can be constructed through a
Volterra process by translating one of the cut surfaces, Σ1

or Σ2, along the z direction before they are reconnected.
A disclination that carries such a translation holonomy
is called a screw disclination.
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π (0,0) (0,1) (1,0) (1,1)

2π
3

(0) (±1) π
3

Figure 3.2. Disclinations in twofold-, threefold-, and sixfold-
symmetric lattices: π disclinations in twofold-symmetric lat-
tices come in four types (Tx mod 2, Ty mod 2) distinguished by
the parity of their translation holonomy Ti (i = x, y). The
translation holonomy is indicated by the dashed lines, where
red (blue) lines are translations in the x (y) direction of the
local coordinate system. The unit cells of three- and sixfold-
symmetric lattice are parallelograms composed of two equilat-
eral triangles (see Fig. 3.5). For a threefold-symmetric lattice,
there are three types of 2π/3-disclinations. Different three-
fold rotation centers within the unit cell are denoted by filled
and hollow dots. The two types (±1) of 2π/3-disclinations
differ by exchanging the filled-dot rotation centers with the
hollow-dot rotation centers. Finally, in sixfold-symmetric lat-
tices there is only a single type of π

3
disclinations, which is

centered at a five-sided cell.

3.2.4. Decorating a lattice with disclination

A physical system is constructed by decorating the ab-
stract lattice, defined by its symmetry group G, with
local orbitals in space while respecting the symmetries.
The physical properties of the local degrees of freedom
on the lattice are then described by the Hamiltonian H.
Below, we discuss how to construct a Hamiltonian H on a
lattice with disclination from a defect-free Hamiltonian,
such that H is locally indistinguishable from the defect-
free system everywhere except at the disclination.

For our construction, we consider the lattice contain-
ing the disclination as the result of a Volterra process
[see again Fig. 3.1(b) and (c)] with the real space posi-
tions ~r and RΩ~r along the cut lines identified, where RΩ

denotes a rotation by the angle Ω. In this picture, both
the coordinate system and the local degrees of freedom
of two adjacent unit cells across the cut lines are rotated
with respect to each other by the Franck angle Ω. A par-
ticle hopping across this branch cut has to respect this
local change of basis. Hence, its wavefunction |ψ(~r−δ~r)〉
has to transform to U(RΩ)|ψ(RΩ~r + δ~r)〉 when moving
from ~r − δ~r to RΩ~r + δ~r across the branch cut. Here,
U(RΩ) is the representation of rotation symmetry acting
on the local degrees of freedom within a unit cell and δ~r
is a finite but small integer mulitple of the lattice vec-
tors. As mentioned above, the points ~r and RΩ~r are

identified. This implies that all hopping terms crossing
the branch cut have to incorporate the basis transforma-
tion. Requiring that the hopping across the branch cut
be indistinguishable from the corresponding hopping in
the bulk, the hopping terms Hcut

~r,~r+~an
, in mathematically

positive direction with respect to the Franck angle Ω of
the disclination, can be expressed as

Hcut
~r,~r+~an

= U(RΩ)H~ri,~ri+~an (3.2)

where H~ri,~ri+~an is a corresponding hopping element be-
tween unit cells at ~ri and ~ri + ~an in the bulk.

The hopping terms across the branch cut in Eq. (3.2)
have to respect all internal symmetries g ∈ Gint of the
crystal, where g denotes the symmetry element and Gint

is the group of internal symmetries. Internal symme-
tries are global onsite symmetries that act trivially on
the real space coordinates. Examples are time-reversal
symmetry T , particle-hole antisymmetry P, chiral an-
tisymmetry C = PT , and SU(2) spin rotation symme-
try S. The onsite action of each (crystalline or inter-
nal) symmetry element g ∈ G×Gint on the Hamiltonian
H is expressed by its representation U(g). For general
hopping elements H~ri,~ri+~an , the internal unitary symme-
tries/antisymmetries U = S, C require

U(U)Hcut
~ri,~ri+~an

U(U)† = ±Hcut
~ri,~ri+~an

. (3.3)

This condition can only be fulfilled if the representation
of the unitary rotation symmetry commutes with all in-
ternal symmetries/antisymmetries of the crystal. If rota-
tion and internal symmetries do not commute, any finite
hopping across the branch cut that respects the inter-
nal symmetries/antisymmetries necessarily breaks rota-
tion symmetry locally along the branch cut. In this case,
the algebraic relations between the symmetry operators
obstruct the choice of a hopping across the branch cut
that is locally indistinguishable from the bulk hopping.
As such, the branch cut can be regarded as a physical
domain wall separating regions that are distinguishable
by a local order parameter that relates to the local ar-
rangement of the orbitals in the unit cell (see Appendix
B.1.1 for an in-depth discussion).

We point out that this domain wall may become lo-
cally unobservable if the sample as a whole breaks at
least one of the internal symmetries, or if the transla-
tion holonomy of the disclination involves a translation
holonomy by a fractional lattice vector, see Appendix
B.1.1. Throughout this chapter we aim to make general
statements for the topological properties in each sym-
metry class, and omit model specific details. Therefore,
we assume throughout the chapter that (i) the sample
as a whole obeys all internal symmetries and (ii) that
the translation holonomy of the disclination is restricted
to integer multiples of the lattice vectors. The latter
condition is fulfilled by the topological lattice defects as
constructed in this section, because this construction pro-
vides a global definition of the unit cell even in the pres-
ence of a disclination.
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The internal antiunitary symmetries/antisymmetries
A = T ,P give the constraint

U(A)
(
Hcut
~ri,~ri+~an

)∗
U(A)† = ±Hcut

~ri,~ri+~an
. (3.4)

Note that there is generally a U(1) phase ambiguity in
choosing the representation of rotation symmetry: the
Hamiltonian is symmetric under eiφU(RΩ) for all phases
φ. The value of φ enters in the commutation relations
of eiφU(RΩ) with antiunitary time-reversal symmetry
T and particle-hole antisymmetry P as U(RΩ)U(A) =
e−2iφU(A)U(RΩ)∗. The condition in Eq. (3.4) therefore
fixes the phase factor eiφ up to a sign, but does not oth-
erwise obstruct the formation of disclinations which are
indistinguishable away from their core.

If a system is symmetric under the combined action
of rotation and time-reversal symmetry RT , but neither
under the action of rotation nor time-reversal symme-
try separately, the system is said to have magnetic rota-
tion symmetry. When constructing a 2π/n disclination
in a lattice with an n-fold magnetic rotation axis using
a Volterra process, we have to connect two parts of the
lattice that are mapped onto each other under magnetic
rotation symmetry. Since the disclination cannot involve
the time-reversal operation, any finite hopping across the
branch cut necessarily breaks magnetic rotation symme-
try. Thus, the branch cut forms a domain wall separating
regions distinguishable by a local order parameter that is
odd under time reversal symmetry, see Appendix B.1.3
for an explicit example.

In summary, a necessary condition for the application
of a bulk-equivalent hopping across the branch cut [see
Eq. (3.2)] is a unitary rotation symmetry that commutes
with all unitary internal symmetries and antisymmetries
of the system. In the absence of additional crystalline
symmetries, this condition is also sufficient. If this con-
dition is violated, the Volterra process leads to a domain
wall emanating from the disclination.

3.2.5. Rotation holonomy for spinful fermions

Rotating a particle with half-integer spin by 2π shifts
the phase of its wavefunction by π. As a consequence,
it seems as if the rotation holonomy of disclinations for
particles with half-integer spin should be defined mod-
ulo 4π [54]. However, when transporting a half-integer
spinful particle around a 2π disclination 1, there are two
effects contributing a π phase to its wavefunction: (i) the
rotation of the real space coordinate system and (ii) the
basis rotation of the local degrees of freedom. The total
phase acquired is thus π + π = 2π.

The geometric phase shift α obtained upon parallel
transport of a particle along a closed loop can be quan-
tized to multiples of π by two different mechanisms: a

1 A 2π disclination may also be formed through a Volterra process,
for example by inserting a segment.

quantized magnetic flux or a fluxoid quantization in su-
perconductors [60]. In the presence of time-reversal sym-
metry, the magnetic flux enclosed by a closed loop is
quantized to multiples of the magnetic flux quantum
φ0 = hc/2e. Parallel transporting a charged particle
around a magnetic flux quantum leads to a π phase shift
of its wavefunction. Throughout the chapter we say a
defect carries a π-flux if the geometric phase shift α is
equal to π mod 2π.

As by the above argument parallel transporting a half-
integer spin particle around a 2π disclination does not
cause a π phase shift, we distinguish between disclina-
tions on the one hand and point defects binding magnetic
flux quanta on the other hand. Throughout the chapter,
we therefore assume that a disclination does not bind a
magnetic flux quantum unless otherwise stated.

3.3. SECOND-ORDER TOPOLOGY AND
DISCLINATIONS

In this section we identify the minimal set of assump-
tions required to show that a strong, rotation symmetry-
protected second-order topological phase hosts anoma-
lous disclination states. We first describe general proper-
ties of rotation-symmetry protected topological phases
and then derive the existence of anomalous states at
disclinations from those properties.

3.3.1. Strong rotation-symmetry protected
second-order topological phases

A strong topological phase remains unaffected when
translation symmetries are broken. This allows to coarse-
grain the lattice and perform any deformation that
breaks the translation symmetries while preserving in-
ternal and rotation symmetries. For strong topological
phases, we only need to require that the topological prop-
erties are realized when the system size is much larger
than any microscopic length scale associated with the
Hamiltonian. Consequently, during a Volterra process of
a topological crystalline phase we can assume that also
the cut-out part is in the same topological phase.

A second-order topological phase protected by rotation
symmetry has (d − 2) dimensional anomalous boundary
states, for example isolated Majorana bound states at
the corners of a two-dimensional crystal or chiral/helical
modes at the hinges of a three-dimensional crystal (see
also Chapter 2 for an in-depth discussion). This is il-
lustrated in Figs. 3.3(a) and (b). We require that the
anomalous boundary excitations are intrinsic [11, 12, and
25], i.e., we allow any changes of the crystal termination
consistent with the rotation symmetry, for instance a dec-
oration of the boundary with lower-dimensional topolog-
ical phases. This property ensures that the anomalous
boundary excitations are truly attributed to the topol-
ogy of the d-dimensional bulk. Furthermore, throughout
this chapter we focus on tenfold-way anomalous bound-
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(a) (b) (c)

≃

Figure 3.3. Examples of strong topological phases protected
by a fourfold rotation symmetry: (a) with Majorana corner
states in two dimensions, and (b) with helical hinge modes
in three dimensions. In (c), a three-dimensional insulator
with chiral hinge modes consistent with a magnetic rotation
symmetry C4T is depicted. A symmetry-allowed decoration
as indicated changes the propagation direction of the chiral
modes after hybridization.

ary states appearing in systems described by quadratic
fermionic Hamiltonians.

3.3.2. Topological charge

The topological charge associated with an anomalous
boundary state quantifies the anomaly. For topologi-
cal insulators, helical hinge modes are characterized by
a Z2 topological charge Q ∈ {0, 1} measuring their ex-
istence. Chiral hinge modes are quantified by a Z topo-
logical charge Q = n+ − n− defined as the difference of
the number of forward-propagating (n+) and backward-
propagating (n−) chiral modes. The Abelian groups Z2

and Z determine how the anomalous boundary states
hybridize (fusion rules). For topological superconduc-
tors, Majorana corner modes and helical Majorana hinge
modes have a Z2 topological charge, while chiral Majo-
rana modes have a Z topological charge. Zero-energy
eigenstates in Cartan classes AIII, BDI and CII are si-
multaneous eigenstates of the unitary chiral antisymme-
try C = PT with eigenvalue c = ±1. This symmetry
prohibits to hybridize and gap out zero-modes with the
same eigenvalue c. Therefore, a Z topological charge is
obtained by counting the number of zero-energy eigen-
states weighted with their eigenvalue c.

Anomalous states always appear in pairs with cancel-
ing anomaly at the boundary or at defects of a topological
bulk [31]. Consequently, in a closed system, isolated Ma-
jorana bound states, or Kramers pairs thereof, always
come in pairs. The zero-dimensional anomalous states
with Z topological charge occur in pairs with opposite
eigenvalue under chiral antisymmetry. One-dimensional
anomalous states form closed loops at the boundary or
along defect lines of a topological bulk. For a three-
dimensional system with anomalous hinge states, the
number of inward and outward propagating modes in-
tersecting any closed (or infinite open) surface needs to
be equal and the associated topological charge needs to
cancel.

In summary, for anomalous states with Z2 topological
charge Qi the total topological charge Qtot needs to be

even

Qtot =
∑

i

Qi mod 2 = 0, (3.5)

where for zero-dimensional anomalous states we sum
over all anomalous states in the system, and for one-
dimensional anomalous states we sum over all states in-
tersecting an arbitrary closed (or infinite open) surface.
Similarly, for zero- and one-dimensional anomalous states
with Z topological charge Qi, the total topological charge
Qtot must vanish

Qtot =
∑

i

Qi = 0. (3.6)

3.3.3. Boundary-signature constraints from
rotation symmetry

A rotation-symmetric sample can be divided into asym-
metric sections. An asymmetric section is the maximal
volume such that no two points in the volume are re-
lated by rotation symmetry. The rotation symmetry then
relates the topological charge in symmetry-related sec-
tions. Because anomalous states always come in pairs
(Qtot = 0), asymmetric sections with non-zero topolog-
ical charge can only exist in systems with even order of
rotation symmetry, i.e., C2, C4 and C6. The anomalous
boundary signatures in rotation symmetric topological
phases have also been discussed in Refs. 4–6, 8, 9, 11–
27, and 55 and in chapter 2.

For asymmetric sections exhibiting a non-zero Z topo-
logical charge, the internal action of rotation must invert
the topological charge of the anomalous states to sat-
isfy the anomaly cancellation criterion in Eq. (3.6). In
particular, a rotation-symmetry protected second-order
topological phase hosting anomalous zero-energy corner
states in Cartan classes AIII, BDI and CII can exist only
if the representation of rotation symmetry anticommutes
with chiral antisymmetry. In this case, the chiral eigen-
value c = ±1 of states related by rotation symmetry
alternates. Similarly, a second-order topological phase
with chiral (Majorana) hinge modes may exist only in
the presence of magnetic rotation symmetry. The reason
is that the time-reversal operation is required to invert
the propagation direction of modes related by symmetry.

For second-order anomalous states with Z topologi-
cal charge protected by rotation symmetry, only a Z2

factor can be attributed to the bulk topology as an in-
trinsic boundary signature [4, 11, 12, and 25] (see also
Section 2.5 of Chapter 2). This factor merely measures
the existence of anomalous states but not their number.
To illustrate this, consider a cubic crystal with chiral
hinge modes, as depicted in Fig. 3.3(c), as an example of
a second-order topological phase protected by magnetic
fourfold rotation symmetry C4T . A symmetry-allowed
decoration with Chern insulators reverses the propaga-
tion direction of the chiral hinge modes, thereby changing
their Z topological charge by an even number.
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Figure 3.4. Volterra processes to construct disclinations in
systems with second-order topology and different rotation
symmetries: (a) twofold symmetry in two dimensions, (b)
four-fold symmetry in two dimensions, (c) four-fold symme-
try in three dimensions, (d) sixfold symmetry in two dimen-
sions. Red dots and red lines indicate anomalous corner and
hinge modes, respectively. In (d), adjacent triangles in red
and purple are related by a sixfold rotation.

3.3.4. Volterra process with a second-order
topological bulk

In the following, we establish the existence of anoma-
lous disclination states in a given second-order topologi-
cal phase by performing a Volterra process. Recall that
we consider strong topological phases that do not rely
on the presence of translation symmetries. Therefore, we
allow to coarse-grain the lattice or break the translation
symmetries. In this case, disclinations are characterized
only by their Franck angle Ω. We lay out our arguments
for two-dimensional systems in particular. Nevertheless,
they are generalized straightforwardly to d > 2 dimen-
sions by considering a symmetric-pillar geometry. In this
case, we apply the anomaly cancellation criterion to the
(d− 2)-dimensional hinge modes with respect to a plane
perpendicular to the rotation axis.

A unique correspondence between bulk topology and
disclination anomaly exists only if the system can be
made locally indistinguishable from the bulk everywhere
away from the disclination as a result of the Volterra

process. This requires us to connect the lines/surfaces at
the branch cut using the appropriate hybridization terms
given by the conditions imposed by Eq. (3.2). Below,
we establish the correspondence for symmetry classes in
which these conditions can be fulfilled.

In some symmetry classes, however, these conditions
can not be satisfied. For instance, we showed above
that second-order topological phases with zero-energy
states of Z topological charge exist only if rotation sym-
metry anticommutes with chiral antisymmetry. How-
ever, a chiral antisymmetry anticommuting with rotation
symmetry forbids to construct bulk-equivalent hopping
terms across the branch cut in the Volterra process (see
Sec. 3.2 4). Similarly, second-order topological phases
hosting one-dimensional chiral hinge states require mag-
netic rotation symmetry, for which bulk-equivalent hop-
ping terms across the branch cut are also not allowed.
These arguments can be generalized to second-order
topological phases protected by rotation symmetry with
Z anomalous boundary states in any dimension d ≥ 2
(see Appendix B.1.4).

A detailed discussion on other symmetry classes where
the branch-cut hopping condition in Eq. (3.2) cannot be
satisified is provided in Appendix B.1.

Twofold rotation symmetry

Twofold rotation-symmetry protected second-order
topological phases host anomalous states on symmetry-
related points of their boundary. The Volterra process
to construct a π disclination is illustrated in Fig. 3.4(a).
The first step is to cut the sample into two symmetric
halves. We require that the cutting process preserve the
bulk and surface Hamiltonians except for the breaking
of bonds along the cut. Therefore, the two symmetric
halves host anomalous boundary states at corners with
the same orientation as the original sample. Note that
this requires the energy gap to close and reopen along
the cut. Upon deforming the sample and hybridizing the
bonds across the cut to complete the Volterra process,
the two upper corners connect to form a smooth bound-
ary. In the resulting sample, the bulk and all boundaries
are gapped by construction. Consequently, the anoma-
lous state formerly located at one of the upper corners
moves to the disclination in the process. An equivalent
way to see this is to note that, upon gluing the surface,
the boundary gap closes and reopens in the same way as
when cutting the sample.

Fourfold rotation symmetry

In Fig. 3.4(b), we show the Volterra process for a four-
fold rotation-symmetric system in two dimensions along
with its boundary signatures. The removed segment in
this process is itself fourfold symmetric and has, by the
anomaly cancellation criterion, second-order boundary
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signatures at its corners. After deforming and gluing
the other part, the resulting lattice has four singular
points that may host zero-dimensional anomalous states:
the three corners and the disclination. As the three
corners remain unaffected during the deformation, the
disclination has to host an anomalous state to satisfy
the anomaly cancellation criterion. Fig. 3.4(c) shows the
same process for a three dimensional system.

Sixfold rotation symmetry

We consider a sixfold symmetric sample in the shape
of a hexagon. It can be divided into six equilateral trian-
gles as demonstrated in Fig. 3.4(d). A two-dimensional
second-order topological phase protected by sixfold ro-
tation symmetry hosts anomalous boundary states on
symmetry-related corners of a hexagonal sample. Since
each triangle has only threefold rotation symmetry, there
are two types of triangles related by a sixfold rota-
tion. The anomaly cancellation criterion together with
threefold rotation symmetry requires that the topolog-
ical charge at each corner of the triangle must cancel,
i.e., the topological charge at each corner, if present,
must be even. In order for the hexagonal sample to ex-
hibit its anomalous corner states, hybridizing two trian-
gles along a shared boundary needs to close and reopen
the excitation gap to create a pair of anomalous states
[see Fig. 3.4(d)]. Conversely, breaking the bonds between
two triangles closes and reopens the gap along the shared
boundary, thereby removing the anomalous corner states.
Putting all triangles together results in six anomalous
states at the center of the hexagon, which gap out upon
hybridization.

In the first step of the Volterra process, we remove
a triangle from the hexagon. This requires to break the
bonds between adjacent triangles of opposite orientation.
By the arguments above, the excitation gap closes and
reopens along both of the cut lines, thereby removing the
anomalous corner states. In the second step, we deform
one triangle adjacent to the cut to glue the sample back
together. This process rotates the part of the deformed
triangle close to the cut by π/3. As the type of triangle
is determined by the orientation of the triangle in space,
the deformation smoothly interpolates between the two
types as defined above. Thus, hybridizing the deformed
sample across the cut creates a pair of anomalous bound-
ary states, one at the disclination and one at the corner.
The disclination state appears because the gap closes and
reopens an odd number of times during the Volterra pro-
cess: once along each of the two cut lines when removing
a triangle, and once when gluing the edges back together.

3.4. TOPOLOGICAL CRYSTALS

Our considerations thus far were independent of trans-
lation symmetries. In this section, we extend our argu-
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Figure 3.5. Cell decompositions of unit cells in space group G
in dimensions d = 2, 3: Pink stars, red triangles, green squares
and blue stars denote inequivalent twofold, threefold, fourfold
and sixfold rotation axes, respectively. Colored areas and bold
lines denote inequivalent 2-cells and 1-cells, respectively. In
two dimensions, the 2-cell is the asymmetric unit. The 0-
cells coincide with the rotation axis. In three dimensions,
the asymmetric unit is a 3-cell whose hinges are denoted by
dotted lines. The 0-cells lie at the end of the rotation axes.
We use the standard labels for Wyckoff positions.

ments to lattice models with discrete translation symme-
tries. As discussed in Sec. 3.2, disclinations in lattices are
classified into topological equivalence classes according
to their rotation and translation holonomy. Real-space
representations of topological crystalline phases naturally
including translation symmetries can be constructed us-
ing the framework of topological crystals [22]. Below,
we briefly review and discuss the essential steps of the
topological-crystal construction applied to lattices with
rotation symmetries. Moreover, we extend the recipe de-
veloped in Ref. 22 by showing how to relate the con-
structed real-space representation to weak and higher-
order topological phases obtained from other classifica-
tion schemes [12, 25, and 61]. Finally, we apply the
topological-crystal construction to determine the exis-
tence of anomalous states at disclinations of all types.

3.4.1. Cell decomposition

Consider a d-dimensional space Rd subject to the sym-
metry group G × Gint. As only topological crystalline
phases protected by translation and/or rotation sym-
metry can contribute to the anomaly at a disclination
(see Sec. 3.5 2 below), we focus on the (magnetic) space
groups G = pn (G = pn′) generated by n-fold (magnetic)
rotation symmetry and translations. Further note that
only (n ∈ {2, 3, 4, 6})-fold rotations are compatible with
translation symmetry. First, one defines an asymmetric
unit (AU) as the interior of the largest region in Rd such
that no two distinct points in this region are related by
a crystalline symmetry g ∈ G. A cell complex structure
is generated by copying the AU throughout Rd using all
elements of the space group G. Next, one places cells
of dimension (d− 1) on faces where adjacent AUs meet.
Throughout the following, cells of spatial dimension db
are denoted as db-cells. These cells are chosen as large
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as possible, such that no two distinct points in the same
cell are related by a crystalline symmetry. Furthermore,
cells are not allowed to extend over corners or hinges of
the AUs. In the same way, one continues iteratively by
placing (d−n− 1)-cells on faces where (d−n)-cells coin-
cide. We present the resulting cell complex structures for
p2, p3, p4 and p6 in two and three dimensions in Fig. 3.5
(see Appendix B.2.1 for more details).

3.4.2. Decoration with topological phases

The considered space is filled with matter by decorating
the db-cells with db-dimensional topological phases. The
topological phases have to satisfy all internal symmetries
of the cell. Furthermore, a cell located on a mirror plane
or on a rotation axis can only be decorated with topo-
logical phases satisfying the crystalline symmetries that
leave the cell invariant. As one aims to construct only
phases with an excitation gap in the bulk, one also re-
quires that gapless modes on adjacent faces or edges of
the decorated cells gap out mutually.

The tenfold-way topological phases have an Abelian
group structure where the group operation is the direct
sum “⊕” of two Hamiltonians [1, 3, and 31]. Topologi-
cal crystals constructed as decorations with tenfold-way
topological phases inherit this Abelian group structure.
This allows to choose a set of generators from which all
topological crystals can be constructed using the direct
sum and symmetry-allowed deformations of the generat-
ing topological crystals.

The labels weak and strong for topological crystalline
phases refer to the behavior of the topological crystalline
phase under breaking of translation symmetry. A topo-
logical crystalline phase is called weak if its topological
invariant can be changed by a redefinition of the unit cell,
thereby breaking the translation symmetry of the original
crystal. If this is not possible, the topological crystalline
phase is termed strong. For a topological crystal, we de-
termine whether it is weak or strong using the following
procedure: we first double the unit cell by combining
two adjacent unit cells of the original crystal. After this
redefinition we allow for symmetric deformations to ex-
press the result in terms of generating topological crys-
tals. A topological crystal that remains invariant during
this procedure corresponds to a strong topological crys-
talline phase.

Furthermore, we identify the order of the topologi-
cal crystal from its boundary signature. A topological
crystal corresponding to a decoration of db cells has a
(db−1)-dimensional boundary signature. This is because
its anomalous boundary states are inherited from the dec-
oration. Hence, it represents a topological phase of order
(d− db − 1).

3.4.3. Decorations of lattices with rotation
symmetry

Without specifying the set of internal symmetries, we
first work out for each space group the set of generat-

(a) p2, weak in x (b) p2, weak in y (c) p2, 2nd order

(d) p4, weak (e) p4, 2nd order (f) p6, 2nd order

Figure 3.6. Generating sets of valid 1-cell decorations (cross
sections of 2-cell decorations parallel to the rotation axis) of
two (three) dimensional lattices with twofold, fourfold, and
sixfold rotation axes. Black lines denote one (two) dimen-
sional topological phases with anomalous boundary states de-
picted as dots: for Z topological phases, the red and blue
dots distinguish between topological charges q = +1 and
q = −1, respectively. For Z2 topological phases with topolog-
ical charges q mod 2, the two colors are equivalent.

ing topological crystal decorations. For these generators,
we then check whether they describe a weak or a strong
topological phase, and finally determine the order of this
phase. The group of internal symmetries together with
the space group and the algebraic relations of their repre-
sentations finally decides whether the decoration is valid.
In other words, we determine whether the d-dimensional
topological phases required to decorate the d-cells of the
system exist for a given set of internal symmetries, and
whether the anomalous states at the cell interfaces can be
gapped out. In particular, to decide whether the asym-
metric unit can be decorated with a topological phase, we
have to ensure that all boundaries, corners, and hinges
are gapped at the rotation axis.

For three-dimensional systems we omit decorations of
1-cells parallel to the rotation axis as they cannot give
rise to anomalous states with the same dimension as
the disclination line. Moreover, the plane perpendicu-
lar to the rotation axis corresponds to a two-dimensional
rotation-symmetric system. The decorations in this
plane acquire the label weak because their topological
invariant can be changed by a redefinition of the unit
cell in the z direction.

We defer the detailed derivation of the generating 1-
cell (2-cell) decorations for rotation-symmetric lattices
in two (three) dimensions to Appendix B.2.2. Below, we
present the generating sets together with their properties
for decorations with Z topological phases. The results
for decorations with Z2 phases are straightforwardly ob-
tained by taking the topological charge of the decorations
modulo two.
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Twofold rotation symmetry. With twofold rotation
symmetry, there exist two distinct weak topological
phases and one strong second-order topological phase,
which we depict in Figs. 3.6(a)-(c).

Threefold rotation symmetry. For threefold symme-
try, there is no valid 1-cell decoration (2-cell decoration
parallel to the rotation axis). The reason is that each
1-cell (2-cell) ends at a threefold rotation axis at which
the anomaly cancellation criteria (3.5) and (3.6) cannot
be satisfied locally. Thus, there are neither weak nor
second-order topological phases with threefold rotation
symmetry.

Fourfold rotation symmetry. In a two (three) dimen-
sional lattice with fourfold rotation symmetry, all 1-cell
decorations (2-cell decorations parallel to the rotation
axis) are generated from one weak and one strong second-
order topological phase, which we show in Figs. 3.6(d)
and (e). The weak phase exists only for 1-cell (2-cell)
decorations with Z2 topological phases.

Sixfold rotation symmetry. With sixfold rotation sym-
metry, the only valid 1-cell decoration (2-cell decora-
tion parallel to the rotation axis), which we depict in
Fig. 3.6(f), corresponds to a strong second-order topo-
logical phase.

Furthermore, in a symmetry class in which the (d−2)-
dimensional anomalous states have Z topological charge,
one can show that the direct sum of a strong second or-
der topological phase with itself can be adiabatically de-
formed such that no (d−2)-dimensional anomalous states
remain in the system (see Appendix B.2.2). This holds
for all (n = 2, 4, 6)-fold symmetric systems. It confirms
our statement from Sec. 3.3 that only a Z2 factor of the
topological charge of anomalous boundary states in these
systems is an intrinsic property of the topological bulk.

3.4.4. Disclinations with weak and
second-order topological phases

In the following, we determine for each generator of
weak and second-order topological phases (see Fig. 3.6)
whether it hosts topological disclination states. We real-
ize this by decorating a lattice with disclination, as con-
structed through a Volterra process, with its topological-
crystal limit. The disclination breaks rotation symmetry
locally, thus only internal symmetries constrain the hy-
bridization of disclination states.

We require that the system is locally indistinguishable
from the bulk along the branch cut. As we have shown
in Sec. 3.3 4, this is not possible in symmetry classes that
host rotation-symmetry protected second-order topolog-
ical phases with Z topological charge. In fact, in these
symmetry classes a decoration with weak or second-order
topological phases represents an obstruction to forming a
lattice with an isolated disclination (see Appendix B.2.3).
We therefore restrict our discussion to symmetry classes
whose d− 2 dimensional anomalous states have Z2 topo-
logical charge.

We show the corresponding decorations for twofold,
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Figure 3.7. Decorations of twofold rotation-symmetric lat-
tices with π disclinations of all types as defined in Fig. 3.2:
decorations with second-order topological phases protected
by twofold rotation symmetry and decorations with weak
topological phases as stacks in the x and y directions. Red
dots represent d − 2 dimensional anomalous states with Z2

topological charge. Dashed blue lines indicate the branch
cut in the Volterra process across which anomalous states
hybridize. Green circles denote locations where unpaired
anomalous states remain.

fourfold, and sixfold symmetric lattices in Figs. 3.7, 3.8,
and 3.9. The decoration pattern is unique up to an arbi-
trary decoration at the disclination itself, which cannot
change the total topological disclination charge due to
the anomaly cancellation criterion of Sec. 3.3 2. There-
fore, the unique bulk decoration pattern determines the
existence of anomalous states at the topological lattice
defect.

In three dimensions, also screw disclinations with a
translation holonomy Tz along the rotation axis may oc-
cur. However, by a local rearrangement of the lattice
a screw disclination can be separated into a disclination
with trivial translation holonomy Tz = 0 and a screw
dislocation carrying the translation holonomy Tz. The
topological charge bound to the topological lattice de-
fects depends only on its holonomies defined on a loop
enclosing the defects. These defects can be pulled apart
arbitrarily. Hence, the topological charge at a defect with
multiple non-trivial holonomies can be determined from
the sum of the topological charge at the individual de-
fects with a single non-trivial holonomy.

The arguments of Ref. 46 show that the weak topo-
logical phases obtained by stacking 2D first-order phases
along the rotation axis contribute (d − 2)-dimensional
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Figure 3.8. Decorations of fourfold-symmetric lattices with
π/2 disclinations of both types: decorations with second-
order topological phases and decorations with weak topolog-
ical phases. The left column depicts the corresponding topo-
logical crystals. For simplicity, anomalous bound states hy-
bridizing within a unit cell are not shown. We use the same
symbols and colors as in Fig. 3.7.
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Figure 3.9. Unique decoration patterns of a sixfold rota-
tion symmetric lattice without disclination (Ω = 0) and with
disclination of Franck angle Ω 6= 0: decorations with second-
order topological phases of Z2 topological charge. Symbols
and colors are as in Fig. 3.7.

anomalous states to screw dislocations with odd trans-
lation holonomy Tz. While Ref. 46 considered explicitly
weak topological insulators in class AII, their arguments
generalize straightforwardly to other symmetry classes as
well 2 [47].

In summary, we deduce that the contributions of weak
and second-order topological phases with topological in-

variants ~Gν = (νx, νy, νz)
T

and ν2π/n, respectively, to the

number of (d− 2)-dimensional anomalous states θdisc
n at

a disclination with rotation holonomy Ω and translation

2 In particular, Ref. 46 considers a finite sample with screw disloca-
tion. The screw dislocation is the termination of two step edges
on the two opposite surfaces perpendicular to the screw disloca-
tion. In a corresponding weak topological phase, these step edges
host one-dimensional anomalous states. As the one-dimensional
anomalous state cannot terminate at the screw dislocation, it
must continue along the screw disclination and connect to the
opposite surface. This argument holds for all symmetry classes
hosting one-dimensional anomalous states.

holonomy ~T are

θdisc
2 =

Ω

2π
νπ + ~T · ~Gν mod 2 (3.7)

θdisc
3 = Tzνz (3.8)

θdisc
4 =

Ω

2π
νπ/2 + ~T · ~Gν mod 2 (3.9)

θdisc
6 =

Ω

2π
νπ/3 + Tzνz mod 2. (3.10)

In two dimensions, the dimension spanned by the z di-
rection is absent such that Tz and νz are absent.

3.5. BULK-BOUNDARY-DEFECT
CORRESPONDENCE

The bulk-boundary correspondence and the bulk-
defect correspondence link the bulk topological invari-
ant of a sample to the existence of anomalous states at
its boundaries and its defects, respectively. Cumulat-
ing our results from previous sections, we now determine
the precise relationship between the topological charge at
point defects and bulk topological invariants in rotation-
symmetric systems.

3.5.1. Topological charge at disclinations

In Sec. 3.2, we argued that the rotation and transla-
tion holonomies of disclinations on the one hand and
bound magnetic flux quanta on the other hand are dis-
tinct topological properties of point defects. In the previ-
ous Sec. 3.4, we worked out the contributions of weak and
second-order topological phases to the topological charge
at a disclination. Conversely, to determine the bulk topo-
logical invariants from the topological charge at the lat-
tice defect, we first need to investigate under which con-
ditions a first-order topological phase hosts anomalous
states at a point defect.

As a result, we find that tenfold-way (first-order) topo-
logical phases, which are independent of crystalline or
internal unitary symmetries for their protection, host
anomalous states at disclinations only if bound to a geo-
metric π-flux quantum (see Appendix B.3 for the proof).
Our general result is in agreement with case studies in the
literature indicating that these phases may bind (d− 2)-
dimensional anomalous states to point and line defects
with geometric π-flux quanta [31, 47, 48, 62–65] if al-
lowed in the respective symmetry class. Furthermore, we
find that this statement can be generalized to all dimen-
sions d ≥ 2 (see Appendix B.3.2). As a consequence, a
tenfold-way topological phase in a symmetry class that
allows for (d − 2)-dimensional anomalous defect states
hosts an anomalous state at a disclination if and only if
the disclination also binds a geometric π-flux quantum.

Hence, we can express the total number of (d − 2)-
dimensional anomalous state θn at a disclination in an n-
fold rotation-symmetric system, in the presence of a uni-
tary rotation symmetry whose representation commutes
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with all internal unitary symmetries and antisymmetries
(see Sec. 3.2 4), as

θn mod 2 = θdisc
n +

α

π
ν1, (3.11)

where θdisc
n is defined as in Eqs. (3.7)–(3.10), α = lπ,

l ∈ Z, is the geometric phase obtained by parallel trans-
porting a particle around the defect, and ν1 is the tenfold-
way strong first-order topological invariant of the sys-
tem’s bulk Hamiltonian. In the presence of time-reversal
symmetry, the geometric phase α = φ

φ0
is given by the

quantized magnetic flux φ = lφ0 bound to the defect,
where φ0 = hc

2e is the magnetic flux quantum.
One can determine the second-order topological in-

variant ν2π/n and the weak topological invariants ~Gν =
(νx, νy, νz) by probing disclinations with different trans-
lation holonomies. The parity of the first-order topo-
logical invariant is determined from the existence of an
anomalous state at a π-flux point defect. For phases of
matter that obey rotation symmetry but no translation
symmetry, Eqs. (3.7)–(3.11) apply with trivial transla-

tion holonomy ~T = ~0, in agreement with our arguments
in Sec. 3.3. Equations (3.7)–(3.11) are the central result
of this chapter.

If the representation of the unitary rotation symme-
try does not commute with all internal unitary symme-
tries and antisymmetries, or if the symmetry group does
not contain a unitary rotation symmetry, the cut in the
Volterra process remains distinguishable from the bulk
(see Sec 3.2 4). In these cases, the disclination must be
the end point of a domain wall between regions distin-
guishable by their local arrangements of orbitals in the
unit cell (see Appendix B.1.1 for details). Moreover, the
hopping across the domain wall is not restricted to a
unique pattern. Thus, we cannot determine the topo-
logical charge at the disclination from the bulk and the
lattice topology alone. We can only make a statement
about the parity of the topological charge along the do-
main wall, for which we refer the interested reader to
Appendix B.1.2. A few remarks and implications related
to our central results are in order.

Eqs. (3.7) to (3.11) are derived for symmetry classes
whose (d−2)-dimensional anomalous states have Z2 topo-
logical charge. Nevertheless, also for symmetry classes
with Z topological charges we can make a couple of state-
ments. For this purpose, we note that these symmetry
classes can be divided into two subsets (which are con-
tained in Tables 3.1 and 3.2 below): (i) in symmetry
classes that, at the same time, allow for strong, rotation-
symmetry protected second-order topological phases, our
arguments from Sec. 3.3 show that the anomaly at the
disclination depends on the microscopic properties of the
system. This situation gives again rise to the appearance
of a domain wall, as discussed in detail in Appendix B.1.
(ii) In the remaining subset of symmetry classes where
strong, rotation-symmetry protected second-order topo-
logical phases are forbidden, the anomaly at the discli-
nation may still be determined from the bulk topology

alone. In particular, in three-dimensions these symmetry
classes may allow for two-dimensional first-order topolog-
ical phases stacked along the rotation axis. Their con-
tribution to the number of one-dimensional anomalous
states at a disclination or dislocation is θ = νzTz. This is
in fact the only contribution, as both first-order topologi-
cal phases as well as weak topological phases obtained by
stacking two-dimensional first-order topological phases in
the x- or y-direction are forbidden in these symmetry
classes. The former statement follows from the structure
of the tenfold-way classification. The latter is a conse-
quence of the topological crystal construction (see App.
B.2). Tables 3.1 and 3.2 below contain a list of the corre-
sponding symmetry classes in two and three dimensions,
respectively.

In three dimensions, a disclination may also host a one-
dimensional stack of zero-dimensional anomalous states
whose pairwise annihilation is prohibited by transla-
tion symmetry along the lattice defect. These states
exist in the presence of weak topological phases ob-
tained by stacking two-dimensional topological phases
along the defect direction. The contributions of stacks
of two-dimensional first-order, second-order and weak
topological phases are determined by similar equa-
tions as Eqs. (3.7) to (3.11), where the topological
invariants {ν1, ν2π/n, νx, νy, νz} must be replaced by
{νz, ν2π/n,z, νx,z, νy,z, 0} measuring the presence of weak
topological phases obtained by a stack of two-dimensional
strong first-order (νz), second-order (ν2π/n,z) and two-
dimensional weak topological phases (νx,z, νy,z) along the
defect direction. There are no contributions proportional
to the translation holonomy Tz. Therefore, νz can be re-
placed by 0.

Putting our results into perspective, for lattices with
rotation symmetry we have shown: (i) as any anomaly
at a disclination has to be canceled somewhere else in
the system, any crystalline topological phase with an
anomalous state at a disclination also hosts anomalous
boundary states. This provides a sufficient condition for
the existence of anomalous boundary states based on the
topological properties of the lattice defect alone. (ii)
Each crystalline-symmetry protected topological phase
contributes anomalous states only to defects that carry
a holonomy of the protecting crystalline symmetry. As
summarized in Eqs. (3.7) to (3.10), the rotation holon-
omy only contributes to disclination states in the pres-
ence of a nontrivial second-order topological invariant,
whereas the translation holonomy only contributes if
there are nonzero weak topological invariants. This es-
tablishes a bridge between two distinct phenomenolo-
gies of topological crystalline phases: their higher-order
bulk-boundary correspondence on the one hand and their
topological response with respect to topological lattice
defects [36] on the other hand.
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3.5.2. Presence of additional symmetries

Disclinations may exist in all space groups with rota-
tion symmetry. For space groups with additional symme-
try elements other than translations and rotations, our
findings apply as follows: a strong crystalline topolog-
ical phase hosts anomalous disclination states if it re-
alizes a strong second-order topological phase after lift-
ing all symmetry constraints except for rotation symme-
tries. This statement holds because we have shown the
existence of anomalous disclination states for all Hamil-
tonians realizing second-order topological phases, which
may also satisfy additional symmetries. This allows us
to identify the anomaly at disclinations by considering
only topological crystalline phases with translation, ro-
tation and internal symmetries. Note, however, that we
also have to respect any additional crystalline symmetries
when we construct the hopping terms across the branch
cut of the Volterra process, as defined in Eq. (3.2).

Furthermore, the presence of additional internal uni-
tary symmetries U may protect anomalous states at
points with U-symmetry flux in first-order topological
phases (see Appendix B.3.3).

3.5.3. Application to all Cartan classes

To complete our discussion, we summarize our results
in Tables 3.1 and 3.2. We present a classification of
first-order, second-order, and weak topological crystalline
phases with real-space limits as in Fig. 3.6 for all Car-
tan classes describing spinful fermions with magnetic and
non-magnetic rotation symmetry in two and three dimen-
sions. Those cover all topological phases that give rise to
d − 2 dimensional anomalous states at disclinations in
rotation-symmetric lattices. For each symmetry class we
determine whether the disclinations have to be connected
to a domain wall as discussed in section 3.2 4. This cri-
terion determines whether the bulk-boundary-defect cor-
respondence holds (the disclination is not associated to a
domain wall), or whether it does not hold (domain wall
necessarily exists).

A few remarks are in order. For spinful fermions, ro-
tation symmetry satisfies U(R2π/n)n = −1 and com-
mutes with time-reversal symmetry U(R2π/n)U(T )K =
U(T )U(R2π/n)∗K, where K denotes complex conju-
gation. Spin-rotation symmetry, if present, can be
combined with rotation symmetry such that the rep-
resentation of rotation symmetry within a spin sub-
space satisfies U(R2π/n)n = 1. For superconductors,
our discussion covers all possible pairing symmetries for

which u(R2π/n)∆(R2π/n
~k)u†(R2π/n) = eiφ∆(~k), where

u(R2π/n) is the representation of n-fold rotation sym-
metry acting on the normal-state Hamiltonian (see Ap-
pendix B.5.1 for details). We interpret Cartan class AIII
as a time-reversal symmetric superconductor with U(1)
spin-rotation symmetry. Cartan classes BDI and CII can
be realized in superconductors of spinful fermions only
with an emergent time-reversal symmetry which we as-
sume to commute with the crystalline symmetry. We

Cartan
class

Q G φ
Weak

in x / y
2nd

order
1st

order
BBDC

D Z2 p2 0 Z
2
2 Z2 Z X

π - - 2Z X
p4 0, π Z2 Z2 Z X

π
2
, 3π

2
- - 2Z X

p6 0, 2π
3
, 4π

3
- Z2 Z X

π, π
3
, 5π

3
- - 2Z X

p2′
Z

2
2 Z2 - -

p4′
Z2 Z2 - -

p6′ - Z2 - -

DIII Z2 p2 0 Z
2
2 Z2 Z2 X

π Z
2
2 Z2 - -

p4 0 Z2 Z2 Z2 X
π Z2 Z2 - -

p6 0 - Z2 Z2 X
π - Z2 - -

AIII,
BDI,
CII

Z p2 0 - - - X
π Z

2
Z2 - -

p4 0 - - - X
π - Z2 - -

p6 0 - - - X
π - Z2 - -

Table 3.1. Classification of two-dimenional n-fold rotation-
symmetric weak, second-order, and first-order topological su-
perconductors that give rise to anomalous boundary states. Q
indicates the topological charge of zero-dimensional anoma-
lous states in the given Cartan class. G denotes the space
group pn (pn′) with n-fold unitary (magnetic) rotation sym-
metry. φ is the U(1) phase determining the superconduct-
ing pairing symmetry. The three central columns show the
structure of the topological invariants. For systems with
first-order invariant 2Z, the rotation symmetry constrains the
Chern number to be even. The last column indicates whether
the bulk-boundary-defect correspondence (BBDC) holds at
a disclination (X). The remaining (non-superconducting)
Cartan classes do not allow for zero-dimensional anomalous
states, i.e., they have Q = 0.

present the detailed results for each symmetry class of
our classification in Appendix B.5.

Finally, we point out that our results for anomalies at
disclinations respect the Abelian group structure of topo-
logical crystalline phases with respect to their direct sum.
In particular, in symmetry classes for which the bulk-
boundary-defect correspondence holds, the direct sum of
a first-order topological phase with itself cannot lead to
a second-order topological phase. In symmetry classes in
which a disclination is connected to a domain wall, mean-
ing that the bulk-boundary-defect classification does not
hold, the direct sum of a first-order topological phase
with itself may result in a second-order topological phase.
The latter scenario is absent for all cases discussed here.
Our classification results are consistent with correspond-
ing results from Refs. 12, 61, and 66.
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Cartan
class

Q G φ
Weak

in x / y
Weak
in z

2nd

order
1st

order
BBDC

A Z p2 - Z - - X
p4 - Z - - X
p6 - Z - - X
p2′

Z
2 - Z2 - -

p4′ - - Z2 - -

p6′ - - Z2 - -

D Z p2 0 - Z - - X
π - 2Z - - X

p4 0, π - Z - - X
π
2
, 3π

2
- 2Z - - X

p6 0, 2π
3
, 4π

3
- Z - - X

π, π
3
, 5π

3
- 2Z - - X

p2′
Z

2 - Z2 - -

p4′ - - Z2 - -

p6′ - - Z2 - -

DIII Z2 p2 0 Z
2
2 Z2 Z2 Z X

π Z
2
2 - Z2 - -

p4 0 Z2 Z2 Z2 Z X
π Z2 - Z2 - -

p6 0 - Z2 Z2 Z X
π - - Z2 - -

AII Z2 p2 Z2 Z
2
2 Z2 Z2 Z2 X

p4 Z2 Z2 Z2 Z2 Z2 X
p6 Z2 - Z2 Z2 Z2 X

C Z p2 0 - 2Z - - X
π - 2Z - - X

p4 0, π - 2Z - - X
π
2
, 3π

2
- 2Z - - X

p6 0, 2π
3
, 4π

3
- 2Z - - X

π, π
3
, 5π

3
- 2Z - - X

p2′ - Z
2 - Z2 - -

p4′ - - Z2 - -

p6′ - - Z2 - -

Table 3.2. Classification of three-dimenional n-fold rotation-
symmetric weak, second-order, and first-order topologi-
cal insulators and superconductors that give rise to one-
dimensional anomalous defect states. We use the same nota-
tions as in Table 3.1. Here, Q denotes the topological charge
of the one-dimensional anomalous states in the given symme-
try class. Since non-magnetic rotation symmetry preserves
the propagation direction of chiral modes, there are neither
weak nor higher-order phases in Cartan classes A, D, and C
with non-magnetic rotation symmetry.

3.6. EXAMPLES

Having laid out the general theory, we now turn
to demonstrating our statements for specific models of
second-order topological phases. In particular, we il-
lustrate how to carry out the Volterra process explic-

second-order TSC Ch = 1 Ch = −1
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Figure 3.10. Model of a 2D second-order topological phase in
class D protected by twofold rotation symmetry, as defined in
Eq. (3.12), on a lattice with one and two disclinations: real-
space weights for the wavefunctions of the two lowest eigen-
states with E ≥ 0. Darker colors denote larger weights. The
boundary conditions forming the disclinations are indicated
by black and gray arrows: sites along corresponding lines of
arrows are connected respecting the arrow orientation. The
model is based on a two-layer stack of Chern superconductors
with opposite Chern numbers Ch = ±1. The model parame-
ters are m = −1 and b1 = b2 = 0.4. The first column shows
the full model with both layers coupled. The second and third
columns correspond to the individual, decoupled layers when
we set b1 = b2 = 0. In (e), we plot four instead of two low-
est eigenstates to also indicate the presence of the chiral edge
modes.

itly and how anomalous disclination states arise in these
phases. Throughout this section, we use τi, ρi, ηi, σi,
i ∈ {0, 1, 2, 3}, to denote Pauli matrices acting in dif-
ferent subspaces.

3.6.1. Class D in two dimensions

Cartan class D allows for topological phases in one and
two dimensions. In one dimension, this phase corre-
sponds to a Kitaev chain with zero-energy Majorana
end states. In two dimensions, it is a superconductor
with nontrivial Chern number and chiral Majorana edge
states. We consider superconductors whose supercon-
ducting order parameter is even under rotation (φ = 0
as in Table 3.1). In this case the representation of n-
fold rotation symmetry satisfies U(R2π/n)n = −1 and
commutes with particle-hole antisymmetry.

Using symmetry-based indicators, we derive in Ap-
pendix B.4 an explicit expression for the number of Majo-
rana bound states at a disclination in terms of the Chern
number and rotation invariants. This specific result for
class D is in agreement with previous literature [54].
Moreover, our method is applicable to other symmetry
classes as well.
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1. Twofold rotation symmetry

A model for a second-order topological superconductor
protected by twofold rotation symmetry is

HD,2(~k) = τ2ρ3(m+ 2− cos kx − cos ky) (3.12)

+τ3ρ3 sin kx + τ1ρ3 sin ky + b1τ1ρ2 + b2τ3ρ2

with particle-hole symmetry P = K in the Majorana ba-
sis and rotation symmetry U(Rπ) = iτ2ρ3. The 4 × 4
matrices τiρj are Kronecker products of Pauli matrices
acting on the four sublattice degrees of freedom. For
−2 < m < 0 and b1 = b2 = 0, this model corresponds to
a stack of two Chern superconductors in the τ subspace
with opposite Chern numbers hosting counterpropagat-
ing chiral edge modes. The terms proportional to b1 and
b2 hybridize the two layers. The hybridization gaps the
counterpropagating chiral edge modes such that a pair
of Majorana bound states appears on corners related by
twofold rotation.

Exact diagonalization of the Hamiltonian on a lattice
with disclination shows that the model hosts one Majo-
rana bound state at the disclination [see Fig. 3.10(a)].
This is in agreement with our general results from
Eqs. (3.7) and (3.11) where, in this case, only the nontriv-
ial second-order invariant contributes to the topological
charge at the disclination. We observe that the Majo-
rana bound state persists upon decoupling the layers by
setting b1 = b2 = 0. As there is only a single Majorana at
the disclination, our general results suggest that one of
the two decoupled Chern superconductors must therefore
bind a π-flux to the disclination. This is indeed the case
as we confirm by investigating the hybridization across
the branch cut in the two layers. According to Eq. (3.2),
the nearest-neighbor hopping along the surface normal
~n is constructed from the bulk hopping H~r,~r+~n in the
direction of ~n as Hcut

~r,~r+~n = U(Rπ)H~r,~r+~n. As the repre-
sentation of twofold rotation differs by a π phase between
the subspaces of the two layers, the disclination binds a
π-flux in only one of the layers. We confirm this picture
by exactly diagonalizing the two layers in the decoupled
limit separately, as shown in Figs. 3.10(b) and (c).

We also construct a lattice with two π disclinations by
connecting the surfaces as shown in Fig. 3.10(d). The ex-
act diagonalization results confirm that the second-order
topological phase hosts one anomalous state at each of
the two disclinations. Moreover, recall that the total
phase shift of a particle after transporting it around a
2π disclination is 2π (see Sec. 3.2). As a consequence,
each of the two decoupled layers of Chern superconduc-
tors hosts an even number of Majorana bound states, zero
or two in this case, distributed over the two disclinations
[see Figs. 3.10(e) and (f)].

2. Fourfold rotation symmetry

To construct a model for a second-order topological
superconductor protected by fourfold rotation symmetry

a b

c d

it2
-it2

it1
-it1

it1 it2
π

it2
-it2

Figure 3.11. Model of a 2D second-order topological super-
conductor in class D protected by fourfold rotation symmetry
as defined in Eq. (3.13): (a) depiction of the model Hamilto-
nian with t1,2 = t± δt. Majoranas hopping along red arrows
pick up an additional π phase giving rise to a total magnetic
flux of φ0 per lattice plaquette. The red square denotes the
unit cell of the model. (b) Illustration of how to connect sites
across the cuts in the Volterra process for the fully dimerized
limit (t1 = 0), which leads to a π/2 disclination at the cen-
ter of the lattice. Finally, on a lattice with π/2 disclination
and model parameters δt = −0.5t we show in (c) the spec-
trum close to E = 0 and in (d) the real-space weights of the
zero modes. In (c), the four zero modes in the spectrum are
highlighted in red.

[5 and 67], we consider a square lattice in the xy plane
and place at each lattice site a Majorana mode γi =

γ†i . We add imaginary nearest-neighbor hopping between
the Majorana modes, which we dimerize in the x and
in the y direction. Finally, we thread a magnetic flux
quantum through each lattice plaquette. The model is
illustrated in Fig. 3.11(a). It can be viewed as an array
of alternatingly coupled Kitaev chains in the presence of
a gauge field. The Bloch Hamiltonian of the model reads

HD,4(k) = (t+ δt) [τ3ρ2 + τ2ρ0]

−(t− δt) [cos(kx)τ3ρ2 + sin(kx)τ3ρ1]

−(t− δt) [cos(ky)τ2ρ0 + sin(ky)τ1ρ0],(3.13)

with the real hopping parameters t and δt. The model
is written in the Majorana basis {γa,~k, γb,~k, γc,~k, γd,~k}, as

indicated in Fig. 3.11(a). It satisfies particle-hole anti-

symmetry H∗(−~k) = −H(~k) and fourfold rotation sym-

metry Uπ
2
H(ky,−kx)U†π

2
= H(~k). The representation of

fourfold rotation Uπ
2

describes a couterclockwise rotation
of the Majorana particles in the unit cell including a sign
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Figure 3.12. Model of a 2D second-order topological super-
conductor in class D protected by sixfold rotation symmetry:
(a), (b) depiction of the model in the two fully dimerized
limits, where (a) describes the trivial phase Htriv and (b)
the second-order topological phase Htopo. The unit cell (red
hexagon) consists of six Majorana fermions depicted by dif-
ferent colors. For a lattice with π/3 disclination and model
parameters t1 = 1.5 and t2 = 0.5, we show in (c) the spec-
trum close to E = 0 and in (d) the real-space weights of the
six zero modes. In our model, there is another pair of in-
gap modes localized at the disclination. These modes are not
anomalous and can be pushed into the bulk spectrum by a
local deformation at the disclination.

change γa → −γc.
For δt < 0, the model realizes a second-order topolog-

ical superconductor with Majorana corner states. Fig-
ure 3.11(b) shows explicitly for the fully dimerized limit
(δt = −t) how unit cells are connected across the cuts in
the Volterra process to form a π/2 disclination. In this
limit, it is apparent that unpaired Majorana bound states
occur only at the three corners and at the disclination.
Nevertheless, exact diagonalization of the model con-
firms that the Majorana bound states persist also away
from the completely dimerized limit [see Fig. 3.11(c)
and (d)]. This is in agreement with our general results
from Eqs. (3.9) and (3.11) with only the second-order
invariant contributing to the topological charge at the
disclination.

3. Sixfold rotation symmetry

A model Hamiltonian for a second-order topological
superconductor protected by sixfold rotation symmetry
can similarly be constructed from a sixfold-symmetric ar-

Figure 3.13. Model of a 2D second-order topological super-
conductor in class DIII on a square lattice with disclination as
defined in Eq. (3.15): the model parameters are δt = −0.5t,
λ = 0.5t. (a) Low-energy spectrum with four Kramers pairs
of Majorana zero modes highlighted in red. (b) Real-space
weights of the Majorana zero modes.

rangement of Majorana fermions in the unit cell [54]. Our
model is composed of two hybridization patterns thereby
interpolating between trivial and topological phase,

HD,6 = t1Htriv + t2Htopo. (3.14)

Htriv describes the trivial phase [see Fig. 3.12(a)] as
all Majorana fermions are recombined within the unit
cell. Htopo, on the other hand, corresponds to a second-
order topological phase [see Fig. 3.12(b)] where Majorana
bound states hybridize across unit cells. A Bloch Hamil-
tonian for the topological phase is given in Ref. 54.

In the topological phase, the model features a Majo-
rana zero mode bound to a π/3 disclination, as illustrated
in Figs. 3.12(c) and (d), in accordance with the general
result for the topological charge at a disclination pre-
sented in Eq. (3.10).

3.6.2. Class DIII in two dimensions

Cartan class DIII describes time-reversal symmetric su-
perconductors in the absence of spin-rotation symmetry.
As before, we assume a pairing symmetry of the form

U(R)∆(R~k)U†(R) = ∆(~k). We can straight-forwardly
construct a class-DIII second-order topological supercon-
ductor from a corresponding model HD(k) in class D by
augmenting it with its time-reversed copy H∗D(−k). We
do this explicitly for the fourfold-symmetric model de-
fined in Eq. (3.13) Note that models for the other rota-
tion symmetries can be constructed in the same way.

The resulting model HD(k)⊕H∗D(−k) is time-reversal
symmetric with the anitunitary operator T = iτ0ρ0σ2K
and k → −k, where σi are Pauli matrices acting on the
pseudo-spin degree of freedom. The model is particle-
hole symmetric with the antiunitary operator P = K,
k → −k. The representation of fourfold rotation sym-
metry is R̃π

2
= Uπ

2
σ0, (kx, ky)→ (ky,−kx), where Uπ

2
is

the same as for the class-D model. In our model we al-
low for symmetry-preserving nearest-neighbour coupling
between the pseudo-spins. The Bloch Hamiltonian takes
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the form,

HDIII,4(k) =

(
HD,4(kx, ky) λA(kx, ky)

λA(kx, ky) H∗D,4(−kx,−ky)

)
(3.15)

with the term

A(k) = [1− cos(kx)]τ3ρ2 − sin(kx)τ3ρ1

+ [1− cos(ky)]τ2ρ0 − sin(ky)τ1ρ0,

coupling the two pseudo-spin subblocks.
In the second-order topological phase, this system fea-

tures one Majorana Kramers pair at each of the four
corners of a square-shaped sample. After carrying out
the Volterra process, the resulting π/2 disclination binds
one Majorana Kramers pair, as illustrated in Fig. 3.13.
This again confirms our general results from Eqs. (3.9)
and (3.11).

3.6.3. Class DIII in three dimensions

In Cartan class DIII, second-order topological supercon-
ductors exist both in two and three dimensions. In three
dimensions, those come in two different variants: First,
a strong second-order topological phase is constructed
from a corresponding two-dimensional model in class D
by using the dimensional raising map [47, 68, and 69].
Alternatively, since class DIII already features second-
order topological phases in 2D, these nontrivial class-DIII
models can be stacked along the rotation axis to produce
a weak second-order topological superconductor. In the
following, we demonstrate these two cases explicitly for
fourfold symmetric systems, but the same procedures are
applicable also to models with other rotation symmetries.

1. Strong second-order topological superconductor

Applying the dimensional raising map to the Hamilto-
nian HD,4(k) from Eq. (3.13) (see Appendix B.5.3) re-
sults in the following Bloch Hamiltonian,

Hst
DIII(k) = HD,4[kx, ky; δt→ δt cos(kz)]σ3

+ sin(kz)τ0ρ0σ1, (3.16)

where we replace δt in the definition of HD,4(k) by
δt cos(kz). The model is defined on a cubic lattice and has
particle-hole, time-reversal, and fourfold rotation sym-
metry around an axis parallel to the z axis. The re-
spective operators have the same structure as for the
two-dimensional model in class DIII discussed at the end
of the previous section: P = K, T = iτ0ρ0σ2K, and
R̃π

2
= Uπ

2
σ0 with the C4 operator Uπ

2
of the underlying

model in class D.
We consider this model in a pillar geometry, infinite

along the z direction and having a finite, square-shaped
cross section with open boundary conditions in the x and
y directions. We carry out a Volterra process, as de-
picted in Fig. 3.4(c), resulting in an infinitely long π/2

Figure 3.14. Bandstructures of 3D second-order topological
superconductors in class DIII protected by fourfold symmetry:
(a) strong topological phase and (b) weak topological phase,
with model Hamiltonians as defined in Eqs. (3.16) and (3.17),
respectively. The corresponding models are realized in a pillar
geometry with a line disclination parallel to the z axis. The
insets show the real-space weights of the zero-energy states at
the respective momenta.

line disclination parallel to the z axis. The bandstructure
shows that the disclination binds one helical Majorana
mode. We observe the same features at the three hinges
of the lattice [see Fig. 3.14(a)]. This strong topological
phase is robust against translation symmetry breaking.

2. Weak second-order topological superconductor

A stack of the two-dimensional systems HDIII(kx, ky)
as defined in Eq. (3.15) is described by a Hamiltonian of
the form

Hw
DIII(kx, ky, kz) = HDIII(kx, ky) + tz sin(kz)τ0ρ0σz,

(3.17)
where we have included a symmetry-allowed hybridiza-
tion between adjacent layers proportional to tz. The
symmetries of this system and their representations are
identical to the two-dimensional class-DIII model.

We consider this model in the same pillar geometry
as for the strong second-order phase above and apply the
Volterra process accordingly. We show the bandstructure
of the lattice with disclination in Fig. 3.14(b). For each
of the three hinges and for the disclination line, there is
a pair of particle-hole symmetric bands within the bulk
energy gap. Most notably, these bands are detached from
the bulk continuum but pinned to the momenta kz = 0
and π at E = 0 by symmetry. The hinge and disclina-
tion spectra correspond to chains of Majorana Kramers
pairs. This is a weak topological phase because it can be
trivialized by breaking translation symmetry such that
states at k = 0 and π hybridize.
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Figure 3.15. Bandstructure of a 3D second-order topological
insulator in class AII protected by fourfold symmetry as de-
fined in Eq. (3.18): the model is realized in a pillar geometry
with a line disclination parallel to the z axis. The inset shows
the real-space weight of the electronic in-gap states at kz = 0.

3.6.4. Class AII in three dimensions.

A class-AII model can formally be constructed from a
Hamiltonian Hst

DIII in class DIII [see Eq. (3.16)] by break-
ing its particle-hole antisymmetry while preserving time-
reversal and rotation symmetry. In addition, this re-
quires that the corresponding single-particle Hamiltonian

is defined in terms of electronic operators d†kaσ instead of
Majorana operators γkaσ, where a and σ denote the sub-
lattice and pseudo-spin degrees of freedom, respectively.

With the above transformation, a suitable model in
class AII is given by

HAII(k) = Hst
DIII(k) + tb cos(kz)τ0ρ0σ0 (3.18)

where the term proportional to tb breaks particle-hole an-
tisymmetry. The symmetry operators are T = iτ0ρ0σ2K
with T 2 = −1, and R̃π

2
= Uπ

2
σ0 with (Ũπ

2
)4 = −1.

The spectrum for the same pillar geometry with discli-
nation as above reveals the presence of helical electronic
states running along the line disclination (see Fig. 3.15).
The energy bands corresponding to the helical states tra-
verse the bulk-energy gap. As opposed to the model in
class DIII, the crossing point of the helical bands is no
longer at zero energy due to the absence of particle-hole
antisymmetry.

We point out that models for second-order topological
insulators in class AII protected by twofold or sixfold
rotation symmetries can be constructed in the same way.

3.7. CONCLUSION

We have shown that disclinations in second-order topo-
logical insulators may host anomalous states such as
Majorana bound states or helical modes. More con-
cretely, we have determined the precise relation between
bulk topology and the number of anomalous disclination
states. Our result, as summarized in Eqs. (3.7) to (3.11),

shows that topological phases protected by a crystalline
symmetry contribute anomalous states only at lattice de-
fects that carry a holonomy of the protecting crystalline
symmetry. In contrast, tenfold-way first order topolog-
ical phases contribute anomalous states only at defects
that bind a π-flux.

Furthermore, we have identified the set of symmetry
classes in which the disclination as construced from the
Volterra process is the edge of a domain wall. The do-
main wall is present in the absence of a unitary rotation
symmetry that commutes with all internal unitary sym-
metries and antisymmetries of the system’s Hamiltonian.
In case the disclination is connected to a domain wall, the
anomaly at the disclination depends on the microscopic
properties of the domain wall. Therefore, in these sym-
metry classes the presence of the domain wall prohibits
a unique determination of the disclination anomaly from
the bulk topology. We note that the domain wall may be-
come locally unobservable if the disclination breaks some
internal symmetries otherwise present in the bulk, or if
the disclination involves a translation holonomy by a frac-
tional lattice vector.

Due to the large elastic stress associated with a discli-
nation in ordered media, disclinations typically appear in
pairs with canceling Franck angle or at the edges of grain
boundaries [35]. More specifically, in the disclination
model of grain boundaries, they come in bound pairs [40
and 44]. Therefore, anomalous disclination states along a
grain boundary may gap out pairwise through hybridiza-
tion. On the contrary, isolated disclinations may be re-
alized at the center of nanowires.

Possible platforms for the study of anomalous disclina-
tion states are SnTe and antiperovskite materials. These
materials classes have been put forward as candidates for
second-order topological insulators protected by rotation
symmetry [4 and 15]. Our findings suggest that disclina-
tions in these materials may bind helical modes. More-
over, SnTe nanowires with a pentagonal crossection have
been succesfully fabricated [70]. Their unusual shape
hints at the presence of an isolated disclination at their
core, rendering them a promising experimental platform
for the study of anomalous disclination states.

On the other hand, second-order topological supercon-
ductors protected by rotation symmetry may be real-
ized in the superconducting phases of certain topologi-
cal crystalline insulators [26] or in iron-based supercon-
ductors [71]. In these materials, disclinations may bind
helical Majorana modes.

Disclinations can also appear in mesomorphic
phases [35, 72–74]. Our arguments of Sec. 3.3 show
that the bulk-boundary-disclination correspondence also
holds for these partially ordered phases. Furthermore,
a bulk-disclination correspondence has been observed in
photonic crystals [75].

Going beyond our results in this work, we conjecture
that relations similar to Eqs. (3.7)–(3.10), relating the
topological charge at a defect to the higher-order topol-
ogy of the bulk also exist for crystalline symmetries other
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than rotations. Topological lattice defects can be de-
fined for all space-group symmetries and it has been
shown that crystalline topological phases generally ex-
hibit a topological response with respect to a correspond-
ing topological lattice defect [36]. Hence, we expect that
higher-order topological phases host anomalous states at
topological lattice defects whose holonomy corresponds
to an action of the protecting crystalline symmetry.

Our results have extended the higher-order bulk-

boundary correspondence of topological crystalline
phases to disclinations in rotation-symmetric systems.
We have thereby established a link to the topological
response theory for defects familiar from the study of in-
teracting symmetry-protected topological phases [36 and
76].

All files and data used in this study are available in
the repository at Ref. 77.
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B. A. Bernevig, and T. Neupert, Nature Physics 14, 918
(2018).

[11] M. Geier, L. Trifunovic, M. Hoskam, and P. W. Brouwer,
Phys. Rev. B 97, 205135 (2018).

[12] L. Trifunovic and P. W. Brouwer, Phys. Rev. X 9, 011012
(2019).

[13] E. Khalaf, H. C. Po, A. Vishwanath, and H. Watanabe,
Phys. Rev. X 8, 031070 (2018).

[14] Y. You, T. Devakul, F. J. Burnell, and T. Neupert, Phys.
Rev. B 98, 235102 (2018).

[15] C. Fang and L. Fu, Science Advances 5 (2019),
10.1126/sciadv.aat2374.

[16] W. A. Benalcazar, T. Li, and T. L. Hughes, Phys. Rev.
B 99, 245151 (2019).

[17] J. Ahn, S. Park, D. Kim, Y. Kim, and B.-J. Yang, Chi-
nese Physics B 28, 117101 (2019).

[18] J. Ahn, S. Park, and B.-J. Yang, Phys. Rev. X 9, 021013
(2019).
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4. Symmetry-based indicators for topological Bogoliubov-de Gennes Hamiltonians

4.1. INTRODUCTION

Although topological phases of matter have been
known for four decades now, starting with the discovery
of the quantized Hall effect, [1] the study of topological
phases and phase transitions became central to quantum
condensed matter physics only in the early 2000s, after
the theoretical proposals for topological superconducting
phases [2, 3] and the quantum spin Hall effect [4, 5] and
the subsequent experimental observation of these phases
of matter. [6, 7] These theoretical and experimental de-
velopments paved the way for the complete classifica-
tion of all possible topological phases of single-particle
systems, protected by either time-reversal, particle-hole
or sublattice symmetries — the so-called “tenfold way
classification”[8] —, which, reflecting its periodicity as a
function of dimensionality and honoring its fundamen-
tal importance to the field, was coined “periodic table of
topological phases”. [9, 10]

In addition to the presence or absence of the funda-
mental non-spatial symmetries that define the tenfold-
way classes, real materials have crystalline symmetries.
The combination of topology and crystalline symmetries
leads to an exceedingly rich set of “topological crystalline
phases”. [11] Unlike non-crystalline tenfold-way topolog-
ical phases, for which a nontrivial topology of the bulk
is always associated with a unique anomalous boundary
signature, topological crystalline phases may come with
a variety of possible boundary signatures. These include
the protected existence of anomalous boundary states on
all boundaries — a “first-order” topological phase, for
which the crystalline symmetry is not essential for the
protection of the nontrivial topology —, the appearance
of higher-order boundary states on hinges or corners of a
crystal (see also Chapter 2), [12–26] or even the complete
absence of protected boundary states. The latter scenario
applies to “atomic-limit phases”, in which the electronic
states can be continuously deformed to a collection of lo-
calized orbitals, while preserving all relevant symmetries
as discussed by Po et al. [27] and Bradlyn et al. [28].
In such cases, the presence of the crystalline symmetry
may form an “obstruction” that prevents from different
arrangements of localized orbitals to be continuously con-
nected to each other, 1 allowing for the existence of mul-
tiple topologically-distinct atomic-limit phases. [29–35]

Although the classification of topological crystalline
phases can be considered largely under control [36–43]
(for initial partial classifications results, see Refs. 44–
56) the explicit computation of topological invariants for

1 Although atomic-limit phases have no protected boundary states,
they may have protected fractional charges at ends or corners,
see, e.g., Refs. 29–31.

a given band structure is often computationally expen-
sive. Explicit expressions for the invariants need not al-
ways be readily available, since a full classification does
not always come with explicit expressions for topolog-
ical invariants. A practical — but partial — solution
to this problem is the use of a set of easy-to-compute
“symmetry-based indicators”, which, when nonzero, are
a sufficient indicator of a nontrivial topology of the bulk
band structure. [27] The Fu-Kane criterion, which links
the existence of a strong 2 topological insulator phase
in an inversion-symmetric crystal to the parity of the
number of occupied bands with odd-inversion-parity at
the high-symmetry momenta, is an example of such a
symmetry-based indicator. [57] For normal-state insulat-
ing phases, symmetry-based indicators were constructed
for the complete set of point group symmetries in two
and three dimensions, [27, 28, 58, 59] taking into account
the order of the boundary states. [24, 60] Like the classi-
fying groups of topological phases, symmetry-based indi-
cators of topological phases have a group structure, the
group operation being the direct sum “⊕” of representa-
tive Hamiltonians. 3

The general strategy underlying the construction of
symmetry-based indicators for a Hamiltonian h(k) is to
replace the topological classification of the matrix-valued
function h(k) by the simpler problem of the topologi-
cal characterization of the hermitian matrices h(ks) at
a selected set of “high-symmetry” points {ks} in the
Brillouin zone. [27] The topological characterization of
the hermitian matrices h(ks) may be considered a set of
“topological band labels”, the calculation of which is con-
siderably easier to obtain than the topological classifica-
tion of the full functions h(k). The group SI of symmetry-
based indicators then follows by “dividing out” all com-

2 In this work, the term “strong topological phase” is reserved for
a phase that remains topologically non-trivial after the transla-
tional symmetry is broken. Topological crystalline phases that
do not rely on the crystalline symmetry for their protection will
be referred to as “first-order”, corresponding to the dimension of
their boundary signature.

3 Although Refs. 27 and 28 have equivalent definitions of “atomic-
limit phases”, Bradlyn et al. [28] consider band labels that lack
the full group structure — one can perform addition of the band
labels, but not their subtraction. Subsequent careful comparison
revealed that some phases without protected boundary states are
topologically equivalent to a “difference” of atomic-limit phases,
i.e., they can only be deformed to an atomic-limit phase after ad-
dition of topologically trivial bands, see H. C. Po, H. Watanabe,
and A. Vishwanath, Phys. Rev. Lett. 121, 126402 (2018). Such
phases were called “fragile topological insulators”. They are triv-
ial in the classifying scheme of Po et al. [27], while Bradlyn et
al. [28] label them as non-trivial. The extension of the defini-
tion of atomic-limit insulators to superconductors discussed in
the present work allows one to define “fragile topological super-
conductors” in analogous way, although this analogy is not being
pursued here.
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binations of topological band labels that correspond to
atomic phases and imposing a set of compatibility con-
straints derived from the topological classification of the
matrices h(k) at lower-symmetry points in the Brillouin
zone.[27, 28] This procedure ensures that only topolog-
ical phases with a nontrivial boundary signature have
nontrivial symmetry-based indicators.

Despite their enormous computational advantage,[28]
symmetry-based indicators are not guaranteed to give
complete classification information: There exist topolog-
ically nontrivial phases with protected anomalous bound-
ary signatures, but trivial symmetry-based indicators.
An example is the quantized Hall effect in the absence
of any crystalline symmetries, for which no symmetry-
based indicators exist (i.e., the group SI is trivial), in
spite of the existence of topological phases with nonzero
Chern number.

In this chapter, we extend the construction of
symmetry-based indicators to superconductors, which,
on the mean-field level, are described by Hamiltonians
H(k) of Bogoliubov-de Gennes (BdG) type. [61, 62] We
explicitly construct the topological band labels and the
symmetry-based indicators for selected point groups us-
ing the complete topological classification of the BdG
Hamiltonian H(ks) at high-symmetry momenta ks and
compare the symmetry-based indicators with a full clas-
sification of topological phases with nontrivial boundary
signature. Such a comparison gives information to what
extent the symmetry-based indicators can be used as a
proxy for a complete classification. Depending on the
crystalline symmetries considered, we find that certain
aspects of the wealth of boundary signatures available to
superconducting phases — Majorana modes at surfaces
or hinges, zero-energy Majorana bound states at corners
— are reflected in the symmetry-based indicators, but
not all.

Recently, a number of articles appeared in the liter-
ature that also consider the construction of symmetry-
based indicators for superconducting phases. Based
on a general analysis of the principles underlying the
construction of symmetry-based indicators, Ono and
Watanabe [63] arrive at the conclusion that the sets of
symmetry-based indicators that describe superconduct-
ing phases and the underlying normal-state phases are
essentially the same. Our construction of symmetry-
based indicators, which is based on the full classification
of “zero-dimensional” Hamiltonians at high-symmetry
momenta,[64] shows that this statement needs to be cor-
rected to the extent that we successfully put to use a
topological band label based on the Pfaffian of a BdG-
type Hamiltonian H(ks) at high-symmetry momenta ks,
which has no counterpart in the normal state. A dif-
ferent approach to the problem of symmetry-based in-
dicators in superconductors was taken in a later article
by these authors, together with Yanase, [65] as well as
by Skurativska, Neupert, and Fischer, [66] who consider
the “weak-pairing limit” (superconducting order param-
eter ∆ much smaller than energy scales typical for the

normal-state band structure) and derive a classification
of superconducting phases that is based on the topolog-
ical classification of the normal state and the symmetry
of the superconducting order parameter. An approach
that uses the normal-state Hamiltonian as its sole input
has the practical advantage that the symmetry-based in-
dicators can be calculated from the vast body of band-
structure knowledge available for normal phases. Fur-
thermore, we show that there exists a consistent defini-
tion of an “atomic-limit superconductor”as an “array”
of zero-dimensional superconductors [39]. Our definition
is consistent with the definition in the published version
of Skurativska et al. [66]. In the weak-pairing limit,
the symmetry-based indicators derived here can be ex-
pressed in terms of the normal part of the Hamiltonian
only, so that in that limit our approach offers the same
computational advantages as the approaches that rely on
the weak-pairing limit at the outset. Very recently, an
article by Ono, Po, and Watanabe appeared,[67] which
bases its symmetry indicators on the full BdG Hamilto-
nian, be it without the Pfaffian band labels, and has a
definition of an atomic limit that is consistent with ours.
A recent article by Shiozaki also reports the construction
of symmetry-based indicators for Hamiltonians of BdG-
type and which has results very similar to ours. [68]

The remaining part of this chapter is organized as fol-
lows: In Sec. 4.2 we discuss the symmetry of the su-
perconducting order parameter and the set of data that
needs to be specified in order to define a “topologi-
cal class” for a crystalline superconductor. In Sec. 4.3
we discuss the classification and topological invariants
of zero-dimensional Hamiltonians. This discussion is
the cornerstone for defining topological invariants at
high-symmetry momenta in Brillouin zone. We present
our main result, a method to construct and calcu-
late symmetry-based indicators for superconductors, in
Sec. 4.4. Sections 4.5–4.7 contain examples for various
crystalline symmetries compatible with a square or cu-
bic lattice structure, for which we present a detailed
calculation of symmetry-based indicators and relate this
to higher-order boundary phenomenology. We conclude
in Sec. 4.8. The appendices contain additional exam-
ples as well as fully worked-out classifications of anoma-
lous boundary states for crystalline symmetry groups not
readily available in the literature.

4.2. SUPERCONDUCTORS WITH
CRYSTALLINE SYMMETRIES

The mean-field theory of superconductors uses an ef-
fective non-interacting description with a Hamiltonian of
the Bogoliubov-de Gennes (BdG) form [61, 62]

H(k) =

(
h(k) ∆(k)

∆†(k) −h∗(−k)

)
, (4.1)

where the normal-state Hamiltonian h(k) is hermi-
tian and the superconducting order parameter ∆(k) =
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−∆(−k)T is antisymmetric. The 2 × 2 block structure
describes particle and hole degrees of freedom. The spe-
cial choice of the blocks in Eq. (4.1) is equivalent to im-
posing that H(k) is antisymmetric under particle-hole
conjugation P = τ1K,

H(k) = −τ1H(−k)∗τ1, (4.2)

where τ1 is a Pauli matrix acting within particle-hole
space and K is complex conjugation. (Note that k→ −k
under complex conjugation.) In addition to the BdG
structure, we assume that the system obeys translation
invariance — which is what allows us to use the Fourier
language in Eqs. (4.1) and (4.2) in the first place — and
that it has additional symmetries described by the point
group G. We restrict ourselves to symmorphic symme-
tries, for which the unit cell can be chosen in such a way
that it is left invariant under G. For the initial discussion
we focus on systems without time-reversal symmetry or
other antiunitary symmetries.

Requiring that the normal part h(k) be symmetric un-
der G implies that there exists a projective representation
u(g) for g ∈ G such that

h(k) = u(g)h(gk)u†(g). (4.3)

Note that the unitary matrix u(g) does not depend on
k, as the symmetry group G acts within the unit cell.
The representation u(g) is projective, because the trans-
formation rule (4.3) determines u(g) up to a phase factor
only. In general, a consistent choice of these phase fac-
tors is possible up to a sign only, the sign ambiguities
being captured by the “factor system”

{zg,h = u(gh)−1u(g)u(h) = ±1 for g, h ∈ G} (4.4)

of the projective representation. Two realizations u1(g)
and u2(g) that have the same factor system may still
differ by a one-dimensional representation Θ(g) of G
with trivial factor system. Although the mathematical
structure of the theory allows many non-equivalent fac-
tor groups for the representation u(g), for physical sys-
tems only two factor groups are relevant: The trivial one,
which applies to spinless particles, and the nontrivial fac-
tor system associated with the spinful particles. The rep-
resentation Θ(g), which describes the difference between
two representations with the same factor system, always
has the trivial factor group.

The canonical form for the representation u(g) is

u(g) = diag [r1(g)⊗ 11N1
, . . . , rn(g)⊗ 11Nn ], (4.5)

where the rα(g) are irreducible representations (”irreps”)
of G (with the appropriate factor system) and 11Nα the
Nα × Nα unit matrix. The dimension of h(k), corre-
sponding to the total number of orbitals in the unit cell,
is
∑
α dαNα, where dα is the dimension of the irreducible

presentation α. For notational simplicity, we choose to
set N1 = N2 = . . . = Nn ≡ N .

The general symmetry constraint for the full BdG
Hamiltonian H(k) is obtained by allowing different re-
alizations u1,2(g) of the transformation matrices for the
particle and hole degrees of freedom. Such a symmetry
constraint is compatible with the group operation of G
if u1(g) and u2(g) have the same factor system, i.e., if
there exists a one-dimensional representation Θ(g) of the
symmetry group G with trivial factor system such that

u1(g) ≡ u(g) = u2(g)Θ(g). (4.6)

For the BdG Hamiltonian H(k) one then finds the gen-
eral symmetry constraint

H(k) = U(g)H(gk)U(g)†, (4.7)

with

U(g) =

(
u(g) 0

0 u(g)∗Θ(g)

)
. (4.8)

For the superconducting order parameter ∆(k), Eqs.
(4.7) and (4.8) imply that

∆(k) = u(g)∆(gk)u(g)TΘ(g)∗, (4.9)

i.e., ∆(k) transforms under a one-dimensional represen-
tation of the group G.[69] Whereas the projective rep-
resentation u(g) is a property of the normal phase, the
additional phase factor Θ(g) exists by virtue of the su-
perconducting order only. Together, the representation
u and the one-dimensional representation Θ fully deter-
mine the symmetry class of the Bogoliubov-de Gennes
Hamiltonian (4.1).

Alternatively, Eqs. (4.7) and (4.8) may be recast in the
form of an algebraic relation between the elements g of
the symmetry group G and the particle-hole conjugation
operation P,

gP = Θ(g)Pg. (4.10)

This is the formulation used in Refs. 36, 38, 39, 46, 48,
and 70, which considered the full classification of BdG
Hamiltonians in the presence of a single order-two spa-
tial symmetry S and discriminated between the cases in
which S commutes or anticommutes with the Fermi con-
straint P.

The presence of time-reversal symmetry and/or spin-
rotation symmetry does not change the above considera-
tions, provided these commute with the crystalline sym-
metries. Time-reversal symmetry imposes the additional
constraints[8]

h(k) = σ2h(−k)∗σ2, ∆(k) = σ2∆(−k)∗σ2, (4.11)

where σ2 is a Pauli matrix that acts in spin space. With
time-reversal symmetry, the one-dimensional representa-
tion Θ(g) of G that characterizes the superconducting
state must be real. In the presence of spin rotation sym-
metry, one arrives at an effective description in terms
of a BdG-type Hamiltonian of the form (4.1), but with
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Γ 1 Iπ
r+ Ag 1 1
r− Au 1 -1

TABLE 4.1. Irreducible representations of the point group
Ci. The second column lists the standard crystallographic
notation for the representations, the first column gives the
notation used in the text.

a symmetric order parameter ∆(k) = ∆(−k)T, so that
H(k) is antisymmetric under the antiunitary operation
τ2K, which plays the role of an effective particle-hole
symmetry. If time-reversal symmetry is present addi-
tionally, H(k) is symmetric under complex conjugation
K, which plays the role of an effective time-reversal op-
eration. Note that while P and T square to 1 and −1,
respectively, in the spinful case, the effective particle-hole
conjugation and time-reversal operations square to −1
and 1, respectively, if spin-rotation symmetry is present.
Similarly, in the presence of spin-rotation symmetry, the
effective representation of crystalline symmetry opera-
tions is changed into the corresponding “spinless” type.

The general framework described here is best illus-
trated using examples. As a first example, we consider a
system with inversion symmetry. In this case the group
G = Ci = {1, I}, where 1 is the identity and I is the
inversion operation. Choosing a basis that has a well-
defined parity under inversion, one finds that one may
represent G by

u(g) = diag [r+(g), r−(g)], (4.12)

where r±(g) are the two irreducible representations of G,
see Table 4.1, which are both one-dimensional. Specifi-
cally, Eq. (4.12) reads

u(1) = ρ0, u(I) = ρ3, (4.13)

where ρ3 is a Pauli matrix that acts in the space of
even/odd-parity states and ρ0 is the 2 × 2 unit matrix.
From the two one-dimensional representations of G we
also find two possibilities for the representation U(g) for
the BdG Hamiltonian H(k). Choosing the trivial one-
dimensional representation Θ(g) = r+(g) in Eq. (4.7)
(the Ag representation, see Table 4.1), we find that the
BdG Hamiltonian H(k) obeys the symmetry constraint

H(k) = (ρ3τ0)H(−k)(ρ3τ0), (4.14)

where τ0 is the identity matrix in particle-hole space and
ρ3 is a Pauli matrix that acts in the space of even/odd-
parity states. For the blocks h(k) and ∆(k) this implies

h(k) = ρ3h(−k)ρ3, ∆(k) = ρ3∆(−k)ρ3, (4.15)

i.e., the order parameter is even under inversion. Alter-
natively, choosing the nontrivial one-dimensional repre-
sentation Θ(g) = u−(g) in Eq. (4.7) (the Au representa-
tion), we find that the BdG Hamiltonian H(k) satisfies

Γ 1 Rπ/2 R2
π/2 R3

π/2

r0 A 1 1 1 1
rπ/2

2E 1 i −1 −i
rπ B 1 −1 1 −1
r3π/2

1E 1 −i −1 i

rπ/4
1E1 1 eiπ/4 i e3πi/4

r3π/4
2E2 1 e3πi/4 −i eiπ/4

r5π/4
1E2 1 e5πi/4 i e7πi/4

r7π/4
2E1 1 e7πi/4 −i e5πi/4

TABLE 4.2. Spinless representations (top four rows) and one-
dimensional spinful representations (bottom four rows) of the
point group C4. The second column lists the standard crys-
tallographic notation for the representations, the first column
gives the notation used in the text.

H(k) = (ρ3τ3)H(−k)(ρ3τ3). (4.16)

In this case the blocks h(k) and ∆(k) satisfy the con-
straint

h(k) = ρ3h(−k)ρ3, ∆(k) = −ρ3∆(−k)ρ3, (4.17)

so that the order parameter is odd under inversion. The
two different transformation rules of the order parameter
∆(k) under inversion imply two different algebraic re-
lations between the inversion operation I and the Fermi
constraint P: If ∆(k) is even under I, I and P commute,
whereas I and P anticommute if ∆(k) is odd under in-
version.

As a second example, we consider a fourfold rotation
around a fixed axis for a system of spinful particles. We
write G = C4 = {1,Rπ/2,R2

π/2,R3
π/2}, where the gen-

erator Rπ/2 ≡ R denotes a clockwise rotation by π/2.

In this case one has R4 = −1, which corresponds to the
factor system

zRk,Rl =

{
1 if 0 ≤ k + l < 4,
−1 if 4 ≤ k + l < 8.

(4.18)

Choosing basis states with well-defined angular momen-
tum j = 1

2 , 3
2 , 5

2 , and 7
2 (defined modulo 4), we find the

spinful representation

u(g) = diag [rπ/4(g), r3π/4(g), r5π/4(g), r7π/4(g)], (4.19)

see Table 4.2.
The transformation rule for the BdG Hamiltonian

H(k) requires the choice of a a one-dimensional spin-
less representation Θ of G. There are four of those, and
we denote these as rθ with θ = 0, π/2, π, and 3π/2,
see Table 4.2. Proceeding as before, we find four possi-
ble transformation rules for the BdG Hamiltonian H(k)
under a π/2 rotation R,

H(k) = Uθ(R)H(Rk)Uθ(R)†, (4.20)
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with

Uθ(R) =

(
u(R) 0

0 u(R)∗eiθ

)
. (4.21)

Alternatively, the transformation rules for the blocks
h(k) and ∆(k) are

h(k) =u(R)h(Rk)u(R)†,

∆(k) = eiθu(R)∆(Rk)u(R)T, (4.22)

which corresponds to a superconducting order parameter
with finite angular momentum.

The time-reversal symmetry operation is represented
by U(T )K, where the definition of U(T ) in the angular
momentum basis is

U(T ) =




0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0


 . (4.23)

Time-reversal commutes with P and satisfies the prop-
erty T 2 = −1. Time-reversal symmetry imposes the ad-
ditional conditions (4.11) on the blocks h(k) and ∆(k).
One easily verifies that these additional conditions allow
for a nonzero superconducting order parameter ∆(k) for
the real one-dimensional representations corresponding
to θ = 0 or θ = π only.

As a third example, we consider spinful fermions in
a system with two perpendicular mirror symmetries,
G = C2v. We write the point group elements as G =
{1,Mx,My,Rπ}, where Mx and Mx are mirror reflec-
tions in planes perpendicular to the x and y axis, re-
spectively, and Rπ = MyMx is a rotation around the
z axis by π. For spinful particles the factor system is
nontrivial with M2

x = M2
y = R2

π = −1. In that case
there is only one (projective) representation u of G (up to
unitary transformations), which is two dimensional, see
Table 4.3. Superconducting phases are characterized by
one-dimensional representations of G with a trivial factor
system. There are four of these, denoted rσx,σy (g), with
σx,y = ±1, see Table 4.3. Each of the one-dimensional
representations of G corresponds to a distinct symmetry
of the superconducting order parameter ∆. For example,
for the one-dimensional representation r−−, the order pa-
rameter is odd under mirror reflections in the yz and xz
planes and even under a twofold rotation around the z
axis.

4.3. CLASSIFICATION OF
ZERO-DIMENSIONAL HAMILTONIANS

The cornerstone of the construction of symmetry-based
indicators is the classification of zero-dimensional Hamil-
tonians with additional unitary symmetries. Concretely,
the classification problem is that of a Hamiltonian H
with or without time-reversal symmetry, particle-hole an-
tisymmetry, or chiral antisymmetry, and with additional

Γ 1 Rπ Mx My

r++ A1 1 1 1 1
r−− A2 1 1 -1 -1
r−+ B1 1 -1 1 -1
r+− B2 1 -1 -1 1
u E σ0 iσ3 iσ1 iσ2

TABLE 4.3. Spinful representation (bottom row) and one-
dimensional spinless representations (top four rows) of the
point group C2v. The representation u is unique up to uni-
tary transformations. The second column lists the standard
crystallographic notation for the representations, the first col-
umn gives the notation used in the text.

η = (ηT , ηP , ηC) Cartan K[0] ν
(0, 0, 0) A Z N
(0, 0, 1) AIII 0 -
(1, 0, 0) AI Z N
(1, 1, 1) BDI Z2 p
(0, 1, 0) D Z2 p

(−1, 1, 1) DIII 0 -
(−1, 0, 0) AII Z N

(−1,−1, 1) CII 0 -
(0,−1, 0) C 0 -
(1,−1, 1) CI 0 -

TABLE 4.4. The tenfold-way symmetry classes are defined
by the absence or presence time-reversal symmetry, particle-
hole antisymmetry, or chiral antisymmetry. The triple η =
(ηT , ηP , ηC) (left column) indicates the presence or absence of
these symmetries as well as the square of the symmetry opera-
tion if it is present. The second column gives the Cartan label
for the symmetry class; the third column lists the correspond-
ing classifying group Kη[0] for zero-dimensional Hamiltonians.
The rightmost column lists the topological invariant ν, where
N is the number of eigenstates (Kramers pairs in class AII)
with negative energy and p is the Pfaffian invariant as defined
in Eq. (4.40).

unitary symmetries specified by the group G. The pres-
ence or absence of time-reversal symmetry, particle-hole
antisymmetry, and chiral antisymmetry determines the
tenfold-way (Altland-Zirnbauer) class and is indicated by
the triple[8]

η = (ηT , ηP , ηC). (4.24)

Here ηT = T 2 = ±1 if time-reversal symmetry is present
and ηT = 0 if time-reversal symmetry is absent. Simi-
larly, ηP = P2 = ±1 or 0 if particle-hole antisymmetry is
present or absent and ηC = C2 = 1 or 0 in the presence or
absence of chiral antisymmetry, respectively. Table 4.4
summarizes the tenfold way classification and lists both
the notation using the triple (ηT , ηP , ηC) and the Cartan
labeling. If the context allows, we will use the Cartan
label instead of the triple η = (ηT , ηP , ηC).

For physically relevant systems, the crystalline symme-
try group G commutes with the time-reversal operation
T , which is what we assume throughout. The algebraic
relation between G and the particle-hole conjugation op-
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eration P or the chiral operation C = PT is character-
ized by a one-dimensional representation Θ(g) of G, as
discussed in Sec. 4.2.

With a suitable choice of basis, the (projective) repre-
sentation U(g) for a Bogoliubov-de Gennes Hamiltonian
H can be brought into a canonical form analogous to
Eq. (4.5),

U(g) = diag [r1(g)⊗ 112N1
, . . . , rn(g)⊗ 112Nn ], (4.25)

where the rα(g) are irreducible representations of G. To
keep the notation simple, we make the choice N1 = N2 =
. . . = Nn = N . The Bogoliubov-de Gennes Hamiltonian
H is then brought into a block-diagonal form,

H = diag (11d1 ⊗H1, . . . , 11dn ⊗Hn), (4.26)

where dα is the dimension of the irreducible represen-
tation rα. The diagonal blocks Hα have dimension 2N
and are no longer subject to additional unitary symme-
tries. However, because of the basis change involved in
representing U in the canonical form (4.25), the action of
the fundamental symmetry operations T , P, and/or C on
these blocks need not be the same as their action on the
original Hamiltonian H and different blocks may be re-
lated to each other by T , P and/or C. Hence, additional
considerations are needed to determine which blocks are
independent and to what tenfold-way class they belong,
which we now discuss.

Time-reversal operation T .— If the irreducible repre-
sentations rα and r∗α are the same (up to a unitary trans-
formation), the time-reversal operation T acts within the
diagonal block corresponding to rα and takes the form
of an effective time-reversal operation for Hα, but with
a square WT (α) that may differ from ηT . If the irre-
ducible representations rα and r∗α are different, T inter-
changes the diagonal blocks corresponding to rα and r∗α.
In most examples, which of these cases applies can eas-
ily be found by inspection, although one may also obtain
the answer from the “Wigner test” by calculating the
quantity[27, 64, 71]

WT (α) = ηT
〈
zg,gχα(g2)

〉
G
, (4.27)

where 〈. . .〉G denotes an average over all g ∈ G, zg,g is an
element of the factor system, see Eq. (4.4), and χα(g) =
tr rα(g) is the character of the irreducible representation.
The quantity WT (α) can take the values WT (α) = ±1
or 0, corresponding to the two cases discussed above.

Particle-hole conjugation P.— Similarly, if the irre-
ducible representations rα and Θr∗α are the same, P acts
as an effective particle-hole conjugation operator for Hα

with square WP(α) = ±1, whereas if rα and Θr∗α are
different irreducible representations of G, P interchanges
the corresponding diagonal blocks. Again, one may find
out which of the three cases applies by calculating

WP(α) = ηP
〈
Θ(g)∗zg,gχα(g2)

〉
G
, (4.28)

which takes the values ±1 or 0, respectively, for the two
cases described above.

Chiral operation C.— Finally, for the chiral operation
C = PT one only needs to distinguish two cases: If rα
and Θrα are the same irreducible representation of G, C
acts as an effective antisymmetry of Hα, whereas C inter-
changes the diagonal blocks corresponding to rα and Θrα
if they are different. This defines the quantity WC(α),
which takes the values 0 or 1.

We denote the full classifying group for zero-
dimensional Hamiltonians with the additional symme-
try group G as Kη[G,Θ], where the multiindex η indi-
cates the tenfold-way class, see Table 4.4, and Θ is the
one-dimensional representation of G that characterizes
the superconducting order parameter. The classifying
group also depends on the factor system of G, but we
do not write this dependence explicitly. The argument
Θ is omitted for non-superconducting phases. The above
considerations then lead to the result

Kη[G,Θ] =
∏

rα irrep ofG

KW (α)[0], (4.29)

where the multiindex W (α) = (WT (α),WP(α),WC(α))
and the product is over the irreducible representations
rα of G, where only one representative appears in the
product if multiple irreps are linked by the fundamental
symmetries T , P, or C. The classifying groups Kη[0],
which apply to tenfold-way classes without additional
crystalline symmetries,[9, 72] can be found in Table 4.4.
We remark that the classification approach described
here also works for d-dimensional Hamiltonians H(k),
as long as G contains only onsite (i.e. non-spatial, k-
independent) crystalline symmetries.

Examples.— We illustrate this general procedure using
the three examples already discussed in the previous Sec-
tion. The classification results for these three examples
as well as for other relevant point groups are summarized
in Tables 4.5–4.8.

We first consider a zero-dimensional superconductor
with inversion symmetry. The symmetry group G =
Ci = {1, I} and the two one-dimensional representations
Θ of G that characterize the superconducting phase are
the two irreducible representations r± of G, see Table 4.1.
If the superconducting order is even under inversion, cor-
responding to Θ = r+ (the “Ag” representation), Eqs.
(4.5) and (4.8) give

U(1) = ρ0τ0, U(I) = ρ3τ0,

where ρ3 is the Pauli matrix in parity space. Correspond-
ingly, the BdG Hamiltonian H = diag (H+, H−) is the
diagonal sum of blocks with even and odd parity un-
der inversion. Since U is real and does not involve the
particle-hole degree of freedom, the particle-hole conjuga-
tion operation P commutes with G, so that it acts within
each parity subblock. Its square is WP = ηP , i.e., the
same as for the full Hamiltonian H. We conclude that

Kη[Ci, Ag] = Kη[0]2 (4.30)

for all tenfold-way symmetry classes η. The groups Kη[0]
are listed in Table 4.4. This conclusion is consistent with
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G Θ (rα)WP (α) KD[G,Θ]

C1 A 1 (A)ηP Z2

Ci Ag r+ (Ag)ηP , (Au)ηP Z
2
2

Au r− (Ag, Au)0 Z

Cs A′ r+ (1Ē,2 Ē)0 Z

A′′ r− (1Ē)ηP , (
2Ē)ηP Z

2
2

C2 A r+ (1Ē,2 Ē)0 Z

B r− (1Ē)ηP , (
2Ē)ηP Z

2
2

C3 A1 r0 ĒηP , (
1Ē,2 Ē)0 Z× Z2

2E r2π/3
2ĒηP , (Ē,

1 Ē)0 Z× Z2
1E r4π/3

1ĒηP , (Ē,
2 Ē)0 Z× Z2

C4 A r0 (1Ē1,
2 Ē1)0, (

1Ē2,
2 Ē2)0 Z

2

B rπ (1Ē1,
2 Ē2)0, (

1Ē2,
2 Ē1)0 Z

2

2E rπ/2 (1Ē1)ηP , (
1Ē2)ηP , (

2Ē1,
2 Ē2)0 Z× Z2

2
1E r3π/2 (2Ē1)ηP , (

2Ē2)ηP , (
1Ē1,

1 Ē2)0 Z× Z2
2

C6 A r0 (1Ē1,
2 Ē1)0, (

1Ē2,
2 Ē2)0, (

1Ē3,
2 Ē3)0 Z

3

B rπ (1Ē1)ηP , (
2Ē1)ηP , (

1Ē3,
2 Ē2)0, (

2Ē3,
1 Ē2)0 Z

2 × Z2
2

2E1 r4π/3 (1Ē1,
2 Ē3)0, (

2Ē1,
1 Ē2)0, (

2Ē2,
1 Ē3)0 Z

3

2E2 rπ/3 (1Ē3)ηP , (
2Ē2)ηP , (

2Ē1,
2 Ē3)0, (

1Ē1,
1 Ē2)0 Z

2 × Z2
2

1E1 r2π/3 (1Ē1,
2 Ē2)0, (

2Ē1,
1 Ē3)0, (

2Ē3,
1 Ē2)0 Z

3

1E2 r−π/3 (1Ē2)ηP , (
2Ē3)ηP , (

1Ē1,
1 Ē3)0, (

2Ē1,
2 Ē2)0 Z

2 × Z2
2

C2v A1 r++ (Ē)−ηP 0
A2 r−− (Ē)ηP Z2

B1 r−+ (Ē)ηP Z2

B2 r+− (Ē)ηP Z2

C3v A1 (1Ē,2 Ē)0, (Ē1)−ηP Z

A2 (1Ē)ηP , (
2Ē)ηP , (Ē1)ηP Z

3
2

C4v A1 (Ē1)−ηP , (Ē2)−ηP 0
A2 (Ē1)ηP , (Ē2)ηP Z

2
2

B1 (Ē1, Ē2)0 Z

B2 (Ē1, Ē2)0 Z

C6v A1 (Ē1)−ηP , (Ē2)−ηP , (Ē3)−ηP 0
A2 (Ē1)ηP , (Ē2)ηP , (Ē3)ηP Z

3
2

B1 (Ē3)1, (Ē1, Ē2)0 Z× Z2

B2 (Ē3)1, (Ē1, Ē2)0 Z× Z2

TABLE 4.5. Classification of zero-dimensional BdG Hamiltonians with point group G and one-dimensional representation Θ
describing the symmetry of the superconducting order parameter in the absence of time-reversal symmetry and spin-rotation
symmetry, corresponding to tenfold-way class D, ηP = 1. The second and third columns list the one-dimensional representation
Θ using the standard crystallographic notation and the notation used in the examples in the main text, respectively. The fourth
column lists the set (rα)WP (α) of irreps rα together with the result of the Wigner test WP(α). In case irreps rα and Θr∗α are
paired by particle-hole antisymmetry (WP(α) = 0), the paired representations are appear in brackets. From this information
one can read off the classification, invariants, generators and representations using Table 4.10. For convenience we list the
result for the classifying group KD[G,Θ] in the last column.

the Wigner test, which gives WP(r±) = 1. If, on the
other hand, ∆ is odd under inversion, which corresponds
to the one-dimensional representation Θ = r− for the su-
perconducting phase (the “Au representation, see Table
4.1), the representation of G for the full BdG Hamilto-
nian is

U(1) = ρ0τ0, U(I) = ρ3τ3,

see Eq. (4.14). The block-diagonal structure of H now in-
volves one block with even-parity particle-like states and
odd-parity hole-like states and one block with odd-parity
particle-like states and even-parity hole-like states. The
two blocks are interchanged by particle-hole conjugation.
One arrives at the same conclusion by observing that r+

and Θr+ = r− are different irreducible representations of
G. For the classifying group Kη[G,Au] we thus find

K(ηT ,ηP ,ηC)[Ci, Au] = K(ηT ,0,0)[0]. (4.31)

Again, this conclusion is compatible with the Wigner
test, which gives WP(r±) = 0.

The second example deals with a spinful system with
a fourfold rotation symmetry, G = C4. The one-
dimensional representation Θ ≡ rθ of G that character-
izes the superconducting phase is labeled by an angle θ
which can take the values 0, π/2, π, or 3π/2, see Table
4.2. The representation (4.21) of the rotation generator
Rπ/2 implies that H has a block-diagonal structure in

which particle-like states with angular momentum j = 1
2 ,
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G Θ (rα)WP (α) KC[G,Θ]

C1 A 1 (A)ηP 0
Ci Ag r+ (Ag)ηP , (Au)ηP 0

Au r− (Ag, Au)0 Z

Cs A′ r+ (A′)ηP , (A
′′)ηP 0

A′′ r− (A′, A′′)0 Z

C2 A r+ (A)ηP , (B)ηP 0
B r− (A,B)0 Z

C3 A1 r0 (A1)ηP , (
1E,2 E)0 Z

2E r2π/3 (1E)ηP , (A1,
1 E)0 Z

1E r4π/3 (2E)ηP , (A1,
2 E)0 Z

C4 A r0 AηP , BηP , (
1E,2 E)0 Z

B rπ (1E)ηP , (
2E)ηP , (A,B)0 Z

2E rπ/2 (A,2 E)0, (B,
1 E)0 Z

2

1E r3π/2 (A,1 E)0, (B,
2 E)0 Z

2

C6 A r0 AηP , BηP , (
1E1,

2 E1)0, (
1E2,

2 E2)0 Z
2

B rπ (A,B)0, (
1E1,

2 E2)0, (
1E2,

2 E1)0 Z
3

2E1 r4π/3 (1E1)ηP , (
1E2)ηP , (A,

2 E1)0, (B,
2 E2)0 Z

2

2E2 rπ/3 (A,2 E2)0, (B,
2 E1)0, (

1E1,
1E2)0 Z

3

1E1 r2π/3 (2E1)ηP , (
2E2)ηP , (A,

1 E1)0, (B,
1 E2)0 Z

2

1E2 r−π/3 (A,1 E2)0, (B,
1 E1)0, (

2E1,
2E2)0 Z

3

C2v A1 r++ (A1)ηP , (A2)ηP , (B1)ηP , (A2)ηP 0
A2 r−− (A1, A2)0, (B1, B2)0 Z

2

B1 r−+ (A1, B1)0, (A2, B2)0 Z
2

B2 r+− (A1, B2)0, (B1, A2)0 Z
2

C3v A1 (A1)ηP , (A2)ηP , (E)ηP Z
3
2

A2 (A1, A2)0, (E)−ηP Z

C4v A1 (A1)ηP , (A2)ηP , (B1)ηP , (B2)ηP , EηP 0
A2 (A1, A2)0, (B1, B2)0, E−ηP Z

2 × Z2

B1 (A1, B1)0, (A2, B1)0, EηP Z
2

B2 (A1, B2)0, (B1, A2)0, EηP Z
2

C6v A1 (A1)ηP , (A2)ηP , (B1)ηP , (B2)ηP , (E1)ηP , (E2)ηP 0
A2 (A1, A2)0, (B1, B2)0, (E1)−ηP , (E2)−ηP Z

2 × Z2
2

B1 (A1, B1)0, (A2, B1)0, (E1, E2)0 Z
3

B2 (A1, B1)0, (A2, B1)0, (E1, E2)0 Z
3

TABLE 4.6. Same as Table 4.5, but in the presence of spin-rotation symmetry, i.e. for spinless representations of the
crystalline symmetry group. BdG Hamiltonians with spin-rotation symmetry and without time-reversal symmetry correspond
to tenfold-way class C, ηP = −1.

3
2 , 5

2 , or 7
2 are combined with hole-like states of angular

momentum −j + 2θ/π mod 4. In the following discus-
sion, we use the angular momentum j of the particle-like
states to label the blocks. If θ = 0 (the “A” representa-
tion), particle-hole conjugation P interchanges the blocks
with j = 1

2 and 7
2 , as well as the blocks with j = 3

2 and
5
2 . If θ = π/2 (the “2E” representation), P interchanges

the blocks with j = 3
2 and 7

2 , but acts within the blocks

with j = 1
2 or 5

2 , squaring to one. If θ = π (the “A” rep-

resentation), P interchanges the blocks with j = 1
2 and

3
2 , as well as the blocks with j = 5

2 and j = 7
2 . Finally, if

θ = 3π/2 (the “1E” representation), P interchanges the
blocks with j = 1

2 and 5
2 , but acts within the blocks with

j = 3
2 and 7

2 , again squaring to one. We conclude that

KD[C4, A] = KD[C4, B]

= KA[0]2,

= Z
2 (4.32)

and

KD[C4,
1,2E] = KA[0]× KD[0]2

= Z× Z2
2. (4.33)

The same conclusions can be obtained by performing the
Wigner test.

In the presence of time-reversal symmetry only the real
one-dimensional representations A and B are relevant
(corresponding to θ = 0, π, respectively). In both cases
the time-reversal operation T interchanges the blocks
with angular momentum j and angular momentum −j
mod 4. For the A representation, P and T give the same
pairing of diagonal blocks of H and the combined oper-
ation C = PT leaves the diagonal blocks invariant. It
follows that

KDIII[C4, A] = KA[0]2

= 0. (4.34)
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G Θ (rα)WP (α) KDIII[G,Θ] KBDI[G,Θ]

C1 A 1 (A)(ηT ,ηP ,1) 0 Z2

Ci Ag r+ (Ag)(ηT ,ηP ,1), (Au)(ηT ,ηP ,1) 0 Z
2
2

Au r− (Ag, Au)(ηT ,0,0) Z Z

Cs A′ r+ (1Ē,2 Ē)(0,0,1) 0 0
A′′ r− (1Ē,2 Ē)(0,ηP ,0) Z2 Z2

C2 A r+ (1Ē,2 Ē)(0,0,1) 0 0
B r− (1Ē,2 Ē)(0,ηP ,0) Z2 Z2

C3 A1 r0 Ē(ηT ,ηP ,1), (
1Ē,2 Ē)(0,0,1) 0 Z2

C4 A r0 (1Ē1,
2 Ē1)(0,0,1), (

1Ē2,
2 Ē2)(0,0,1) 0 0

B rπ (1Ē1,
2Ē1,

2 Ē2,
1 Ē2)(0,0,0) Z Z

C6 A r0 (1Ē1,
2 Ē1)(0,0,1), (

1Ē2,
2 Ē2)(0,0,1), (

1Ē3,
2 Ē3)(0,0,1) 0 0

B rπ (1Ē1,
2Ē1)(0,ηP ,0), (

1Ē2,
2 Ē2,

2Ē3,
1 Ē3)(0,0,0) Z× Z2 Z× Z2

C2v A1 r++ (Ē)(−ηT ,−ηP ,1) 0 0
A2 r−− (Ē)(−ηT ,ηP ,1) Z2 0
B1 r−+ (Ē)(−ηT ,ηP ,1) Z2 0
B2 r+− (Ē)(−ηT ,ηP ,1) Z2 0

C3v A1 (1Ē,2 Ē)(0,0,1), (Ē1)(−ηT ,−ηP ,1) 0 0
A2 (1Ē, 2Ē)(0,ηP ,0), (Ē1)(−ηT ,ηP ,1) Z

2
2 Z2

C4v A1 (Ē1)(−ηT ,−ηP ,1), (Ē2)(−ηT ,−ηP ,1) 0 0
A2 (Ē1)(−ηT ,ηP ,1), (Ē2)(−ηT ,ηP ,1) Z

2
2 0

B1 (Ē1, Ē2)(−ηT ,0,0) Z Z

B2 (Ē1, Ē2)(−ηT ,0,0) Z Z

C6v A1 (Ē1)(−ηT ,−ηP ,1), (Ē2)(−ηT ,−ηP ,1), (Ē3)(−ηT ,−ηP ,1) 0 0
A2 (Ē1)(−ηT ,ηP ,1), (Ē2)(−ηT ,ηP ,1), (Ē3)(−ηT ,ηP ,1) Z

3
2 0

B1 (Ē3)(−ηT ,ηP ,1), (Ē1, Ē2)(−ηT ,0,0) Z× Z2 Z

B2 (Ē3)(−ηT ,ηP ,1), (Ē1, Ē2)(−ηT ,0,0) Z× Z2 Z

TABLE 4.7. Classification of zero-dimensional BdG Hamiltonians with point group G and one-dimensional representation Θ
describing the symmetry of the superconducting order parameter with time-reversal symmetry without spin-rotation symmetry,
corresponding to tenfold-way classes DIII, η = (−1, 1, 1). We also include systems with emergent time-reversal symmetry,
corresponding to class BDI, η = (1, 1, 1). The second and third columns list the one-dimensional representation using the
standard crystallographic notation and in the notation used in the examples in the main text, respectively. The fourth column
lists the set (rα)WP (α) of irreps rα, together with the result of the Wigner tests W (α). Irreps that are connected by application
of the fundamental symmetry operations T , P, or C are shown together, using brackets. If two of the three Wigner tests
WT (α), WC(α), and WC(α) are zero, the irreps form a pair and the single symmetry operation that leave the irrep invariant
is the one with the nonzero Wigner label W (α). If all three Wigner tests are zero, WT (α) = WP(α) = WC(α) = 0, the irreps
form a quartet. In that case the order of the four irreps between brackets is such, that the first two and last two irreps are
interchanged by T and the first and third, and second and fourth irreps are interchanged by P. From this information one can
read off the classification, invariants, generators and representations using Table 4.9. For convenience we list the result for the
classifying group Kη[G,Θ] in the last two columns.

On the other hand, for the B representation, P, T , and
their product C = PT map all four diagonal blocks of H
to each other and one has

KDIII[C4, B] = KA[0]

= Z. (4.35)

The third example is that of spinful particles with sym-
metry group G = C2v. We refer to Table 4.3 for the ir-
reducible representations with nontrivial and trivial fac-
tor system. Since there is only one (two-dimensional)
irreducible representation u — the “E” representation,
see Table 4.3 —, it follows automatically that u∗ and
rσxσyu

∗ are the same representations of G. Indeed, one
easily verifies that u∗ and rσx,σyu

∗ are equal to u up to
a unitary transformation. To find the square of the ef-
fective time-reversal and particle-hole conjugation oper-
ations, we consider the case of the one-dimensional irre-

ducible representation Θ = r++ (the A1 representation)
in detail and summarize results for the remaining three
one-dimensional representations r+−, r−+, and r−− (the
B2, B1, and A2 representations, respectively).

For Θ = r++ (“A1” representation, see Table 4.3), and
choosing the representation of Table 4.3 for the represen-
tation of the generatorsMx andMy for the normal-state
block h, we find that their representation for the full BdG
Hamiltonian H are U(Mx) = iσ1τ3 and U(My) = iσ2τ0.
To bring the representation matrices to the canonical
form (4.25) we have to perform the basis transformation

H →
(

1 0
0 iσ2

)
H

(
1 0
0 −iσ2

)
.

After this basis transformation, Mx and My are repre-
sented as iσ1τ0 and iσ2τ0, respectively, consistent with
Eq. (4.25). The particle-hole conjugation operation P,
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G Θ (rα)WP(α)
KCI[G,Θ] KCII[G,Θ]

C1 A 1 (A)(ηT ,ηP ,1) 0 0
Ci Ag r+ (Ag)(ηT ,ηP ,1), (Au)(ηT ,ηP ,1) 0 0

Au r− (Ag, Au)(ηT ,0,0) Z Z

Cs A′ r+ (A′)(ηT ,ηP ,1), (A
′′)(ηT ,ηP ,1) 0 0

A′′ r− (A′, A′′)(ηT ,0,0) Z Z

C2 A r+ (A)(ηT ,ηP ,1), (B)(ηT ,ηP ,1) 0 0
B r− (A,B)(ηT ,0,0) Z Z

C3 A1 r0 (A1)(ηT ,ηP ,1), (
1E,2 E)(0,0,1) 0 0

C4 A r0 A(ηT ,ηP ,1), B(ηT ,ηP ,1), (
1E,2 E)(0,0,1) 0 0

B rπ (1E,2 E)(0,ηP ,0), (A,B)(ηT ,0,0) Z Z

C6 A r0 A(ηT ,ηP ,1), B(ηT ,ηP ,1), (
1E1,

2 E1)(0,0,1), (
1E2,

2 E2)(0,0,1) 0 0
B rπ (A,B)(ηT ,0,0), (

1E1,
2 E1,

2E2,
1 E2)(0,0,0) Z

2
Z

2

C2v A1 r++ (A1)(ηT ,ηP ,1), (A2)(ηT ,ηP ,1), (B1)(ηT ,ηP ,1), (A2)(ηT ,ηP ,1) 0 0
A2 r−− (A1, A2)(ηT ,0,0), (B1, B2)(ηT ,0,0) Z

2
Z

2

B1 r−+ (A1, B1)(ηT ,0,0), (A2, B2)(ηT ,0,0) Z
2

Z
2

B2 r+− (A1, B2)(ηT ,0,0), (B1, A2)(ηT ,0,0) Z
2

Z
2

C3v A1 (A1)(ηT ,ηP ,1), (A2)(ηT ,ηP ,1), (E)(ηT ,ηP ,1) 0 0
A2 (A1, A2)(ηT ,0,0), (E)(ηT ,−ηP ,1) Z× Z2 Z

C4v A1 (A1)(ηT ,ηP ,1), (A2)(ηT ,ηP ,1), (B1)(ηT ,ηP ,1), (A2)(ηT ,ηP ,1), E(ηT ,ηP ,1) 0 0
A2 (A1, A2)(ηT ,0,0), (B1, B2)(ηT ,0,0), E(ηT ,−ηP ,1) Z

2 × Z2 Z
2

B1 (A1, B1)(ηT ,0,0), (A2, B1)(ηT ,0,0), E(ηT ,ηP ,1) Z
2

Z
2

B2 (A1, B2)(ηT ,0,0), (B1, A2)(ηT ,0,0), E(ηT ,ηP ,1) Z
2

Z
2

C6v A1 (A1)(ηT ,ηP ,1), (A2)(ηT ,ηP ,1), (B1)(ηT ,ηP ,1), (A2)(ηT ,ηP ,1), (E1)(ηT ,ηP ,1), (E2)(ηT ,ηP ,1) 0 0
A2 (A1, A2)(ηT ,0,0), (B1, B2)(ηT ,0,0), (E1)(ηT ,−ηP ,1), (E2)(ηT ,−ηP ,1) Z

2 × Z2
2 Z

2

B1 (A1, B1)(ηT ,0,0), (A2, B1)(ηT ,0,0), (E1, E2)(ηT ,0,0) Z
3

Z
3

B2 (A1, B1)(ηT ,0,0), (A2, B1)(ηT ,0,0), (E1, E2)(ηT ,0,0) Z
3

Z
3

TABLE 4.8. Same as Table 4.7, but in the presence of spin-rotation symmetry, i.e. for spinless representations of the crystalline
symmetry group. Time-reversal symmetric BdG Hamiltonians with spin-rotation symmetry correspond to tenfold-way class
CI, η = (1,−1, 1). We also include systems with emergent time-reversal symmetry, corresponding to class CII, η = (−1,−1, 1).

WP(α) Cartan K(0,WP (α),0)[0] ν Hgen Href P U
1 D Z2 pα −τ3 ⊗ 1d τ3 ⊗ 1d τ1K rα ⊗ τ0
-1 C 0 − - τ3 ⊗ 1d τ2K rα ⊗ τ0

0 A Z

{
Nα

−NΘα∗
−τ3 ⊗ 1d τ3 ⊗ 1d τ1,2K

(
rα 0
0 Θr∗α

)

τ

TABLE 4.9. Classifying groups KWP (α)[0] and topological invariants ν for the tenfold-way classes D and C, η = (0,±1, 0) (third
and fourth columns). These depend on the irrep rα through the outcome of the Wigner test WP(α) only, which is listed in
the first column. The second column lists the effective tenfold-way class corresponding to WP(α). The fifth and sixth columns
list a generating Hamiltonian Hgen and a reference Hamiltonian Href, respectively. The seventh and eighth columns give the
representations of particle-hole conjugation P and the representation U of the elements of the crystalline symmetry group G.
The dimension of the irreducible representation rα is denoted dα.

which was represented by σ0τ1K before the basis change,
now reads σ2τ2K. Since the C2v symmetry enforces that
H is of the form σ0HE , compare with Eq. (4.26), the
factor σ2 must be dropped from the representation of P,
since it does not affect HE , and one arrives at the effec-
tive particle-hole conjugation operator τ2K: The effec-
tive particle-hole conjugation operator squares to minus
one. The time-reversal operation T , which was given by
σ2τ0K in the original basis, is unchanged by the basis
transformation. Again omitting the factor σ2, one finds
that the effective time-reversal operation is τ0K. It fol-
lows that

K(ηT ,1,ηC)[C2v, A1] = K(−ηT ,−1,ηC)[0]. (4.36)

The same result is found if one performs the Wigner test,
see Eqs. (4.27) and (4.28).

For Θ = r+− (the “B2” representation) one finds that
the representation u of Table 4.3 for the normal-state
block h gives the representations U(Mx) = iσ1τ0 and
U(My) = iσ2τ0 for the full BdG Hamiltonian H, which
is already in the canonical form (4.25). It then immedi-
ately follows that the effective particle-hole conjugation
operation is τ1K and the effective time-reversal opera-
tion is τ0K. For the remaining two cases r−+, and r−−
(the “B1” and “A2” representations), one may proceed
as described above for the A1 representation, by per-
forming a suitable basis transformation, or use an alter-
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native normal-state representation with u(Mx) = iσ2,
u(My) = iσ3 for B1 and u(Mx) = iσ3, u(My) = iσ1

for A2, to which the canonical form (4.25) applies with-
out the need for a basis transformation. Either way, we
find that both the effective time-reversal operation and
the effective particle-hole conjugation operation square
to unity, WT = −ηT = 1 and WP = ηP = 1. As a result,
we have

K(ηT ,1,ηC)[C2v, B1,2] = K(ηT ,1,ηC)[C2v, A2]

= K(−ηT ,1,ηC)[0]. (4.37)

A remark on classifying groups.— We close this sec-
tion by making a few remarks regarding the group struc-
ture of topological classification within K-theory. For-
mally, the group structure within K-theory is given by
the Grothendieck construction,[32, 73] where the group
elements are represented by ordered pairs (H1, H2) of
hermitian matrix-valued functions H1,2(k) of equal di-
mension. The two pairs (H1, H2) and (H ′1, H

′
2) are topo-

logically equivalent if H1⊕H ′2 is continuously deformable
to H ′1 ⊕H2. Loosely speaking the ordered pair (H1, H2)
represents the “difference” of the two Hamiltonians H1

and H2.
For gapped phases with dimension d > 0, a meaningful

concept of “topologically nontrivial” Hamiltonians can be
obtained by defining a reference atomic-limit Hamitonian
Href(k) as a “topologically trivial phase”. (A precise def-
inition of “atomic-limit Hamiltonians” will be given in
the next Section.) Such a strategy results in a unique
and well-defined topological classification that is inde-
pendent of the choice of the precise reference Hamilto-
nian Href(k) if one considers Hamiltonians that differ by
an atomic-limit Hamiltonian to be in the same topologi-
cal class. It is this classification principle that underlies
the classifying groups Kη[G,Θ] used throughout the re-
mainder of this chapter for Hamiltonians of dimension
d ≥ 1. On other hand, for zero-dimensional Hamiltoni-
ans, there is no natural choice for the trivial phase and
it is important to adhere to the notion that a topologi-
cal classification classifies pairs of Hamiltonians only. It
is this stricter notion of topological classification that is
used for the definition of the classifying groups Kη[G,Θ]
of zero-dimensional Hamiltonians, which play a key role
in the construction of symmetry-based indicators in the
next Section.

Generators and invariants for the classifying groups
Kη[G,Θ].— The classifying groups Kη[G,Θ] of zero-
dimensional Hamiltonians with additional point group G
and with one-dimensional representation Θ governing the
pairing term Θ are determined by the effective Cartan
class of diagonal blocks corresponding to the irreducible
representation α or by pairs or quadruples of such blocks,
as discussed above. We tabulate the classification Kη[0],
the invariants ν, generators H and representations U(g)
of all symmetry elements g, T and P for all cases in Ta-
bles 4.9, 4.10. The zero-dimensional invariants can be
given as the number Nα of negative energy eigenstates
(Kramers pairs in case the block Hα is invariant under

an antiunitary symmetry UK with (UK)2 = −1, i. e. in
Cartan class AII) with representation α or the Pfaffian
invariant pα of the block Hα belonging to the irreducible
representation rα. In case there are multiple blocks re-
lated by T or P we present all equivalent invariants.

For the calculation the zero-dimensional invariants
να = Nα or να = pα it may be helpful to use the projec-
tor [74] onto a subspace spanned by irreducible represen-
tation α

Pα = dα〈χ∗α(g)U(g)〉G, (4.38)

where 〈. . .〉G denotes the average over all elements g ∈ G
and χα(g) is the character. Choosing a basis in which
the projector Pα is block diagonal — which can be done
for all irreps rα simultaneously, although this is not nec-
essary for the calculation to succeed —, the projected
Hamiltonian PαHPα takes the form diag(Hα, 0N−Nα),
and the topological invariant can be computed as

να(H) ≡ ν(Hα). (4.39)

The Pfaffian invariant pα of a subblock Hα invariant un-
der an (effective) antiunitary antisymmetry with repre-
sentation U with (UK)2 = 1 is defined as

(−1)pα = sign Pf (HαU). (4.40)

4.4. SYMMETRY-BASED INDICATORS OF
BAND TOPOLOGY

Whereas a full topological classification of a gapped
Hamiltonians in d dimensions — as described by the clas-
sifying group Kη[G,Θ] — requires the analysis of matrix-
valued functions H(k) with the momentum k taken on
the full Brillouin zone, partial information on the topo-
logical phase can be already obtained by inspection of
the topological class of matrices H(ks) at a discrete set
of high-symmetry momenta ks. Such an approach has
been developed by Po et al. for non-superconducting
insulators[27] (see also Refs. 28 and 59.) We here present
this approach in such a way that it can immediately
be generalized to Hamiltonians of Bogoliubov-de Gennes
type.

We consider a band structure defined by the Hamilto-
nian H(k), with k an element of the Brillouin zone of a d-
dimensional crystal with (discrete) translation invariance
and with symmorphic crystalline symmetry described by
the point group G. In addition, there may be nonspatial
symmetries such as time-reversal symmetry, particle-hole
antisymmetry, or chiral antisymmetry, which determine
the tenfold-way symmetry class. These nonspatial sym-
metries are characterized by the triple η = (ηT , ηP , ηC),
as explained in the previous Section. For superconduc-
tors, i.e. for Hamiltonians of BdG type, one further needs
to specify a one-dimensional representation Θ ofG, which
characterizes the superconducting phase, see the discus-
sion in Sec. 4.2.
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W (α) Cartan KW (α)[0] ν Hgen Href T P U

(0,0,0) A Z





Nα

Nα∗

−NΘα∗

−NΘα

−σ0τ3 ⊗ 1dα σ0τ3 ⊗ 1dα σ1,2K τ1,2K




(
r 0
0 r∗α

)

σ

0

0 Θ

(
rα 0
0 r∗α

)∗

σ



τ

(0,0,1) AIII 0 - - σ0τ3 ⊗ 1dα σ1,2K σ1,2τ1K

(
rα 0
0 r∗α

)

σ

⊗ τ0

(1,0,0) AI Z

{
Nα

−NΘα∗
−τ3 ⊗ 1dα τ3 ⊗ 1dα K τ1,2K

(
rα 0
0 Θr∗α

)

τ

(1,1,1) BDI Z2 pα −τ3 ⊗ 1dα τ3 ⊗ 1dα K τ1K rα ⊗ τ0

(0,1,0) D Z2

{
pα

pα∗
−σ0τ3 ⊗ 1dα σ0τ3 ⊗ 1dα σ1,2K τ1K

(
rα 0
0 r∗α

)

σ

⊗ τ0

(-1,1,1) DIII 0 - - σ0τ3 ⊗ 1dα σ2K τ1K rα ⊗ σ0τ0

(-1,0,0) AII Z

{
Nα

−NΘα∗
−σ0τ3 ⊗ 1dα σ0τ3 ⊗ 1dα σ2K τ1,2K

(
rα 0
0 Θr∗α

)

τ

⊗ σ0

(-1,-1,1) CII 0 - - σ0τ3 ⊗ 1dα σ2K τ2K rα ⊗ σ0τ0

(0,-1,0) C 0 - - σ0τ3 ⊗ 1dα σ1,2K τ2K

(
rα 0
0 r∗α

)

σ

⊗ τ0
(1,-1,1) CI 0 - - τ3 ⊗ 1dα K τ2K rα ⊗ τ0

TABLE 4.10. Classifying groups KWP (α)[0] and topological invariants ν for the tenfold-way classes with time-reversal symmetry
(third and fourth columns). These depend on the irrep rα through the outcome of the Wigner test WP(α) only, which is listed
in the first column. The second column lists the effective tenfold-way class corresponding to WP(α). The fifth and sixth
columns list a generating Hamiltonian Hgen and a reference Hamiltonian Href, respectively. The seventh, eighth, and ninth
columns give the representations of time-reversal T , particle-hole conjugation P, and the representation U of the elements of
the crystalline symmetry group G. The dimension of the irreducible representation rα is denoted dα.

4.4.1. Construction of a reference set of
high-symmetry momenta

To define a representative set of high-symmetry mo-
menta, we consider the group G̃ of automorphisms of
the Brillouin zone that are induced by elements of G
and by the operations T and P, if present. (The ele-
ment g ∈ G induces an automorphism of the Brillouin
zone by sending k → gk, whereas T and P send k to
−k, in both cases identifying wavevectors that differ by
a reciprocal lattice vector.) For each momentum k we

define the “little group” G̃k as the subgroup of elements
g̃ ∈ G̃ such that g̃k = k. Two momenta k1 and k2 are
considered equivalent for classification purposes if there
exists an element g̃ ∈ G̃ and a continuous path between
k1 and g̃k2 along which the little group G̃k does not
change. (In particular, this implies that k1 and k2 are
equivalent if k1 = g̃k2 and that equivalent momenta have
the same little group.) A set of equivalent momenta is
called of “high-symmetry” if it does not border to an-
other set of equivalent momenta with a strictly larger lit-
tle group. The representative set {ks} of high-symmetry
momenta is then constructed by arbitrarily selecting one
momentum from each set of equivalent high-symmetry
momenta.

4.4.2. Definition of the groups “BS” and “SI”

To each high-symmetry momentum ks we may asso-
ciate a subgroup Gks

⊂ G of crystalline symmetry

operations that leave ks invariant and a triple ηks
=

(ηT ,ks
, ηP,ks

, ηC) that indicate whether ks is invariant
under the operations T and P, if present. The group
Gks

, the symmetry indices ηks
, and the one-dimensional

representation Θ of G (suitably restricted to Gks
) de-

termine the symmetry of the Hamiltonian H(ks) at the
high-symmetry momentum ks. The group of “band la-
bels” BL is defined as the combined set of topological
invariants that can be obtained from the topological in-
formation at these high-symmetry momenta alone, [64]

BLη[G,Θ] =
∏

ks

Kηks
[Gks

,Θ]. (4.41)

The classifying group Kηk [Gk,Θ] describes zero-
dimensional topological phases protected by the on-
site symmetry group Gk and can be calculated from
Eq. (4.29).

Although this procedure associates a well-defined topo-
logical invariant with each Hamiltonian H(k), there are
three reasons why BLη[G,Θ] is different from the classi-
fying group Kη[G,Θ] of topological phases with tenfold-
way symmetries η, point group G, and a superconducting
phase with symmetry described by Θ: (i) Not every ele-
ment in BL represents the band labels of a gapped Hamil-
tonian H(k), (ii) there may exist d-dimensional Hamil-
tonians H(k) without topologically protected anomalous
boundary states for which the band labels are nontrivial
nevertheless, and (iii) there may be Hamiltonians H(k)
with topologically protected anomalous boundary states
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for which the band labels are trivial.
Problem (i) is addressed by the introduction of “com-

patibility relations”, constraints on the band labels,
which follow from the fact that H(k) is not only gapped
at the high-symmetry momenta ks — which is what al-
lows the band labels to be defined in the first place —,
but also in the remainder of the Brillouin zone.[27, 28, 56]
These constraints appear, in the first place, because for
a gapped Hamiltonian H(k) any band labels that can
be defined for lower-symmetry momenta k /∈ {ks} re-
main well-defined and continuous if k approaches a high-
symmetry momentum ks. Since band labels are essen-
tially zero-dimensional topological invariants, see the dis-
cussion above, we call these compatibility relations of
“zero-dimensional” (“0d”) type. Po et al. use these “0d
compatibility relations” to define the subgroup BS ⊂ BL
of “topological band labels”,

BS = BL|0d compatibility relations . (4.42)

We use B[H(k)] to denote the element of BS associated
with the gapped Hamiltonian H(k).

Whereas the group BL of band labels in principle de-
pends on the choice of the set of high-symmetry momenta
{ks}, the group BS is independent of this choice, as long
as sufficiently many momenta included. To see this, we
note that the inclusion of additional momenta beyond
those appearing in the set {ks} of high-symmetry mo-
menta of Sec. 4.4 1 adds band labels to BL, but not to
BS, as band labels at lower-symmetry-momenta are fully
determined by the 0d compatibility relations.

Additional constraints on topological band labels of
gapped Hamiltonians — compatibility relations of “one-
dimensional” (“1d”) or “two-dimensional” (“2d”) type —
may also appear because of the existence of topological
invariants on families of higher-dimensional subspaces of
the Brillouin zone,[32, 58] as we discuss below in more
detail. Elements in BL or BS that violate the compati-
bility constraints describe “representation-enforced” gap-
less phases. [27, 58, 63] Depending on the dimension of
the lower-symmetry region in reciprocal space and the
type of constraint imposed on it, these representation-
enforced gapless phases may have nodal points, nodal
lines, or nodal planes.

Problem (ii) can be remedied by passing to the quo-
tient group[27]

SI = BS/AI, (4.43)

the group of “symmetry-based indicators”. Here AI ⊂
BS is the subgroup generated by the image under B of all
Hamiltonians H(k) without boundary signature. A gen-
erating set of Hamiltonians without boundary states con-
sists of the “atomic-limit” Hamiltonians, d-dimensional
Hamiltonians that correspond to the arrangement of
zero-dimensional Hamiltonians on a suitably defined lat-
tice. After dividing out AI, a gapped Hamiltonian H(k)
is associated with a nontrivial element of SI only if it
has topologically protected anomalous boundary states.

Po et al. use the notation XBS to refer to the group of
symmetry-based indicators.

There is no general solution to address problem (iii),
however. This is why the group SI is said to contain
“indicators” of the topology, not a full classification. [27]

Although the topological invariants of zero-
dimensional Hamiltonians are only defined for pairs
of Hamiltonians, the symmetry-based indicators are
expressed in terms of the band labels of a general
Hamiltonian H(k) with k-independent symmetry
representation, without comparing to a reference
Hamiltonian.

4.4.3. Construction of the subgroup AI ⊂ BS

Following Po et al. [27] and Bradlyn et al. [28], the con-
struction of the subgroup AI proceeds in three steps: (1)
One first selects a representative collection W of high-
symmetry Wyckoff positions in the unit cell. Hereto, one
defines the site symmetry group Gx for a position x in
the unit cell as the subgroup of G that leaves x invari-
ant, possibly up to lattice translations, and arranges lat-
tice positions with the same site symmetry group which
are related by a continuous path and/or by an element
of G into equivalence classes (“Wyckoff positions”). A
representative collection of positions W in the unit cell
is then obtained by choosing a position from each equiv-
alence class that does not border on an equivalence class
with a larger site symmetry group. (2) For each po-
sition x ∈ W the “orbit” of x is defined as the set
{gx + t| g ∈ G} for t in Bravais lattice. The orbit de-
fines a G-symmetric Bravais lattice. We label the lat-
tice sites within the unit cell by Ox = {xσ}σ=1,2,..., with
the convention x1 ≡ x. (3) For each Wyckoff position
x and each pair (α,Θ) of an irreducible representation
of the site symmetry group Gx and the associated one-
dimensional representation Θ describing the symmetry
of the superconducting order parameter, we construct

a pair of atomic-limit Hamiltonians H
(α,Θ)
x,ref and H

(α,Θ)
x,gen

by placing the zero-dimensional reference and generating
Hamiltonians Href and Hgen of Kη[Gx,Θ] on the posi-
tions xσ of the orbit of x. One verifies that invariance

of the zero-dimensional Hamiltonians H
(α,Θ)
x,ref and H

(α,Θ)
x,gen

under the site symmetry group Gx ensures that such a
procedure yields well-defined G-symmetric, translation-

ally invariant, Hamiltonians H
(α,Θ)
x,ref (k) and H

(α,Θ)
x,gen (k) on

a d-dimensional lattice. The subgroup AI ⊂ BS is gen-

erated by the differences B[H
(α,Θ)
x,gen (k)]−B[H

(α,Θ)
x,ref (k)] of

the images of the Hamiltonians obtained in this manner.
The procedure of taking differences of images under

B is necessary for the construction of AI, because, al-
though the reference Hamiltonians Href in Tables 4.9 and
4.10 have been chosen such that they map to the trivial
element under B, the band labels need not be trivial
for atomic-limit Hamiltonian obtained by placing copies
of Href on nontrivial Wyckoff positions. The nontriv-
ial band labels for the reference Hamiltonian have their
origin in the k-dependence of the representation of the
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point group G, which is unavoidable if minimal 0d su-
perconductors are placed at nontrivial Wyckoff positions.
Such a k dependence of the representation is not compat-
ible with our construction of the topological band labels
B[H(k)], which assume a k-independent representation
of G. (The simplest example where this is the case is a
one-dimensional superconductor with inversion symme-
try and odd-parity superconducting order, see Sec. 4.5 2).

One can resolve this issue either by adding multiple
copies of the “trivial” 0d Hamiltonian Href at the same
Wyckoff position, which eventually allows one to con-
struct a k-independent representation of G. We here
prefer to take an equivalent, but computationally more
efficiently approach, in which we remedy this situation
by comparing atomic-limit Hamiltonians with the same
number of orbitals (per representation pair (α,Θ)) at
each Wyckoff position only. We construct a “trivial” ref-
erence atomic-limit Hamiltonian for this case, and define
the band labels of each other atomic-limit Hamiltonian
as the difference of the band labels with the reference
atomic-limit Hamiltonian. The trivial reference atomic-
limit Hamiltonian is chosen such that all Wyckoff posi-
tions and all representation pairs (α,Θ) are represented:
It is the direct sum of 0d reference Hamiltonians Href

from Tables 4.9 and 4.10 for all pairs (α,Θ), placed at
all Wyckoff positions. Generator atomic-limit Hamilto-

nians H
(α,Θ)
x,gen (k) are obtained by replacing a 0d reference

Hamiltonian in this direct sum by a generator from Ta-
bles 4.9 and 4.10 for the orbit Ox and representation pair
(α,Θ) only. Since the map B is additive under the taking
of direct sums, taking the difference of the band labels
of this generator Hamiltonian and the reference atomic-
limit Hamiltonian is the same as taking the difference

B[H
(α,Θ)
x,gen (k)] − B[H

(α,Θ)
x,ref (k)] for atomic-limit Hamilto-

nians involving a single Wyckoff position x and repre-
sentation pair (α,Θ) only, which justifies the procedure
outlined step (iii) above.

Each reference Hamiltonian or generator Hamiltonian
is compactly expressed as[27, 28, 71]

H(α,Θ)
x (k) = 1|Ox|×|Ox| ⊗H(α,Θ)

x , (4.44)

where |Ox| is the number of sites in the orbit of x. The
representation of g ∈ G is

[Ux,α(g,k)]σ′j,σi = δ′xσ′ ,gxσe
−ik·(gxσ−xσ′ ) (4.45)

× zg,gσ
zgσ′ ,g

−1

σ′ ggσ

[uαx(g−1
σ′ txσ′−xσggσ)]ji,

where the indices σ and σ′ label the positions xσ in the
orbit of x and the indices i and j the degree of free-

dom of H
(α,Θ)
x . Further, a choice {gσ}σ=1,...,|Ox| from G

was made in such a way that gσ=1 is the identity and
gσx = xσ for σ = 2, . . . , |Ox|. Each group element is
decomposed as g = tRgσh with h ∈ Gx, tR ∈ T and
R = gxσ − xσ′ . The Kronecker symbol δ′x1,x2

is non-
zero and equal to one only when x1 = x2 + R for some
R in Bravais lattice. The representation uα is given in
Tables 4.9 and 4.10.

In this construction it is important that time-reversal
T and particle-hole conjugation P are local operations.
If P is not a local operation, an arrangement of discon-
nected onsite Hamiltonians can acquire a spurious non-
locality, in spite of the absence of inter-site matrix ele-
ments.

4.4.4. Compatibility relations

In the examples that we consider in the next Sections,
we find that it is sufficient to use compatibility relations
for gapped hermitian matrices H(k) based on local-in-
k symmetries only. These compatibility relations may
be applied to the entire matrix H(k) or to a diagonal
block, if H(k) has a block structure that is preserved
throughout a part of the Brillouin zone. The compati-
bility relations involve topological invariants of H(k) de-
fined using information about H(k) away from the high-
symmetry points ks. Depending on the dimensionality of
the subspace required to define these topological invari-
ants, we distinguish between compatibility relations of 0d
type (which are used to define the group BS of topologi-
cal band labels) and of 1d or 2d type.[64] We now discuss
the construction of 0d, 1d, and 2d compatibility relations
in detail.

0a.— The number of negative eigenvalues of a her-
mitian matrix H(k) with a gapped spectrum does not
change if k is changed continuously. This gives a com-
patibility constraint if k can be changed continuously be-
tween high-symmetry points ks,1 and ks,2, while preserv-
ing Hermiticity of (a subblock of) the Hamiltonian, and
if the number of negative eigenvalues can be related to
the band labels at ks,1 and ks,2.

0b.— The sign of the Pfaffian of a gapped, antisym-
metric matrix UH(k), with U an appropriately chosen
unitary operator, does not change if k is changed con-
tinuously. This results in a compatibility constraint for
topological band labels if k can be changed continuously
between high-symmetry points ks,1 and ks,2, while pre-
serving the antisymmetry of (a subblock of) the matrix
UH(k), and if the sign of the Pfaffian can be related to
the band labels at ks,1 and ks,2.

1.— The topological invariant of a one-dimensional
HamiltonianH(k), obtained by restrictingH(k) to a one-
dimensional closed contour in reciprocal space, does not
change if this contour is continuously deformed. Such a
topological invariant can be a winding number, if H(k)
has a chiral antisymmetry, but it may also be a Z2 invari-
ant (the first Stiefel-Whitney number [75, 76]), if H(k) or
a diagonal block of it satisfy local-in-k symmetries that
place it effectively in tenfold-way classes AI or BDI. This
gives an additional compatibility relation if the topologi-
cal invariant can be related to the topological band labels
of H(ks) at high-symmetry points ks on the contour and
if the contour can be deformed so that it can be made to
pass through different sets of high-symmetry momenta,
while preserving local-in-k symmetries of H(k). An ex-
ample of such a 1d compatibility relation is given in the
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example discussed in Sec. 4.7 4 (tenfold-way class CI with
inversion symmetry).

2.— The topological invariant of a gapped hermitian
matrix H(k1, k2), which is defined on a two-dimensional
plane cutting through the Brillouin zone, does not change
if the position of the plane is shifted continuously. The
topological invariant is a Chern number if the local-in-k
crystalline symmetries are such that H(k1, k2) or a diag-
onal block of it are effectively in tenfold-way classes A,
D, or C, or it may be a Z2 invariant (the second Stiefel-
Whitney number [75, 76]), if H(k1, k2) is effectively in
tenfold-way classes CI or AI. This yields an additional
compatibility relation if the topological invariant can be
related to the band labels of H(ks) at high-symmetry
points ks on the plane and if the plane can be shifted con-
tinuously, such that it can be made to pass through dif-
ferent sets of high-symmetry momenta while preserving
the hermiticity of (the relevant subblock of) H(k). This
“2d compatibility relation” is used in Ref. 27 to iden-
tify representation-enforced nodal semimetals (see also
Ref. 32 and 58). It also appears, e.g., in the example dis-
cussed in Sec. 4.7 1 (tenfold-way class D with inversion
symmetry).

Unlike the construction of the groups BS and AI, we
are not aware of a method that allows one to implement
the compatibility relations based on higher-dimensional
topological invariants in an algorithmic way. The “bot-
tleneck” is the relation between the n-dimensional topo-
logical invariant used to construct the compatibility re-
lation and the topological band labels of H(k) at high-
symmetry momenta ks, which requires knowledge of
the full classification of n-dimensional crystalline phases.
This is not a problem if the symmetry-based indicators
are used to determine the topological phase of a given
BdG Hamiltonian with a gapped spectrum, but it does
affect the use of SI as a proxy for the full boundary clas-
sification group K.

Generalizing the definition of BS, see Eq. (4.42), we
may define the subgroup series

BS(2) ⊂ BS(1) ⊂ BS(0) ≡ BS, (4.46)

where BS(n) is the subgroup of BL obtained by imposing
all compatibility constraints involving topological invari-
ants of dimension ≤ n. Correspondingly, we may define

the group SI(n) ⊂ SI of symmetry-based indicators as

SI(2) ⊂ SI(1) ⊂ SI(0) ≡ SI, (4.47)

with

SI(n) = BS(n)/AI (4.48)

and SI(0) = SI. For the examples we consider, we find

that SI(d−1) contains no gapless phases, implying that
the compatibility relations based on local-in-k symme-
tries are sufficient for these cases.

4.4.5. Weak-pairing limit

In the weak-pairing limit — superconducting order pa-
rameter ∆ much smaller than energy scales typical for
the normal-state band structure — the band labels Nks

α

and pks
α of the BdG Hamiltonian H(ks) at the high-

symmetry momentum ks can be expressed in terms of
zero-dimensional topological invariants of the normal-
state Hamiltonians h(ks) and h(−ks). For Nks

α one
has [65, 67, 68]

Nks
α = nks

α |occ + n−ks

Θα∗ |unocc (4.49)

= nks
α |occ − n−ks

Θα∗ |occ + n−ks

Θα∗

where nks
α , nks

α |occ and nks
α |unocc are the total number, the

number of occupied, and the number of unoccupied bands
of the subblock hα(ks) of the normal-state Hamiltonian,
respectively. Similarly, the Pfaffian invariant pks

α can be
expressed as [68]

pks
α = nks

α |occ mod 2. (4.50)

4.5. EXAMPLES: ONE DIMENSION

We now discuss symmetry-based indicators for
Bogoliubov-de Gennes-type Hamiltonians for a selected
set of point groups G and tenfold-way classes.

4.5.1. Trivial point group G = C1, class D

Without crystalline symmetries, the Hamiltonian H(k) is
particle-hole antisymmetric at both high-symmetry mo-
menta k = 0 and k = π. In the absence of time-
reversal symmetry and spin-rotation symmetry (class D),
this gives a Z2-classification for H(0) and H(π), so that
BL = Z

2
2. There are no compatibility relations, hence

BS = Z
2
2. (4.51)

The corresponding topological invariants are (−1)p
(0)

=

sign Pf [H(0)τ1] and (−1)p
(π)

= sign Pf [H(π)τ1], giving

B[H(k)] = {p(0), p(π)}. (4.52)

Without crystalline symmetries there is only one Wyck-
off position in a one-dimensional crystal. Placing zero-
dimensional Hamiltonians on the generic Wyckoff posi-
tion, one obtains two topologically different classes of
atomic-limit Hamiltonians,

AI = Z2.

As a subgroup of BS, AI corresponds to the pairs
(p(0), p(π)) with p(0) = p(π). The group SI = BS/AI = Z2

is identical to the full classification group

SID[C1] = KD[C1] = Z2, (4.53)

the nontrivial element of which describes one-dimensional
topological superconductors (the “Kitaev chain”). The

91



symmetry-based indicator for the topological supercon-
ductor phase is

z1 =
∑

ks

p(ks) mod 2. (4.54)

In the weak pairing limit, the indicator (4.54) gives the
parity of the number of Fermi level crossings between
k = 0 and k = π. [77, 78] The same expression for the
full BdG Hamiltonian was obtained in Ref. 68.

4.5.2. Inversion symmetry Ci, class D

Representation Θ = Ag.— For a superconducting or-
der parameter that transforms according to the repre-
sentation Ag, inversion may be represented as ρ3τ0, the
Pauli matrices ρ3 and τ0 acting in parity and particle-
hole space, respectively, see Sec. 4.2. At the high sym-
metry momenta ks = (0), (π), the Hamiltonian H(ks) =
diag (H+(ks), H−(ks)) is the diagonal sum of blocks act-
ing within the even and odd parity subspaces, where
the blocks correspond to the irreducible representations
Ag and Au of Ci. The preceding discussion of a one-
dimensional Hamiltonian H(k) without crystalline sym-
metries applies to the two blocks separately. In particu-
lar, it follows that BL = Z

4
2.

To find the compatibility constraints for gapped
Hamiltonians, we note that the combination of inversion
and particle-hole conjugation gives an antiunitary anti-
symmetry local in momentum space,

H(k) = −ρ3τ1H(k)∗ρ3τ1.

As a result, H(k)ρ3τ1 is antisymmetric for all k, so that
sign Pf [H(k)ρ3τ1] is well-defined and k-independent if
H(k) is gapped. Considering that at the high-symmetry
momenta k = 0 and k = π one has sign Pf [H(k)ρ3τ1] =

(−1)p
(k)
+ +p

(k)
− , one finds the compatibility constraint

p
(0)
+ + p

(0)
− = p

(π)
+ + p

(π)
− mod 2 (4.55)

for gapped Hamiltonians, where we use the subscripts +
and − for the representations Ag and Au, respectively.

Using the compatibility relation (4.55) to eliminate p
(π)
−

as an independent band label, we find

BS = Z
3
2, B[H(k)] = {p(0)

+ , p
(π)
+ , p

(0)
− }, (4.56)

With inversion symmetry there are two inequivalent
Wyckoff positions, labeled x = 0 and x = 1

2 . A gen-
erating set of atomic-limit Hamiltonians is obtained by
placing zero-dimensional inversion-symmetric Hamiltoni-
ans at each of the Wyckoff positions. Placing a generator
of KD[0] with topological invariant p = 1 and irreducible
representation Ag or Au at position x = 0 we obtain a
k-independent Hamiltonian for which inversion is repre-
sented as by τ0 or −τ0, respectively, and particle-hole
conjugation by τ1K. Under the map B, these Hamilto-
nians are mapped to {1, 0, 1} and {0, 1, 0} for the Ag and

Band labels of 
atomic-limit Hamiltonian

at Wyckoff position              
=

B
Hgen Hgen Hgen

Href Href Href

0 1

0 1
−B

FIG. 4.1. Topological band labels associated with an atomic-
limit superconductor are calculated as the difference of band
labels of arrays with the 0d generator Hamiltonian Hgen and
with the 0d reference Hamiltonian Href at Wyckoff position x.
The figure shows this schematically for the Wyckoff position
x = 1

2
.

Au representations, respectively. Placing a generator of
KD[0] with topological invariant p = 1 and irreducible
representation Ag or Au at the Wyckoff position x = 1

2 ,
one obtains a k-independent Hamiltonian for which in-
version is represented by τ0e

ik or −τ0eik for Ag and Au,
respectively. At k = π the irreducible representations
are interchanged, so that under B such a Hamiltonian is
mapped to {1, 0, 0} and {0, 1, 1} for the irreducible repre-
sentations Ag and Au, respectively. The images of these
four generating atomic-limit Hamiltonians under B span
the whole group AI = BS. The quotient group

SID[Ci, Ag] = 0. (4.57)

The conclusion that SI contains no nontrivial gapped
phases is consistent with the triviality of the classifying
group

KD[Ci, Ag] = 0 (4.58)

for this symmetry class. [39]
Representation Au.— For the representation Au the

inversion operation for the BdG Hamiltonian is repre-
sented as ρ3τ3, see Sec. 4.2. The Hamiltonian H(k) =
diag (H+(k), H−(k)) is block diagonal with respect to
the eigenvalues ± of ρ3τ3, corresponding to the funda-
mental representations Ag,u of Ci. At k = 0 and k = π
the two blocks are minus the particle-hole conjugate of
each other. The topological invariants of H(0) and H(π)

are N
(0)
+ and N

(π)
+ , where N

(k)
± is the number of posi-

tive eigenvalues of H±(k). (Note that the topological

invariants involve the numbers N
(k)
+ for k = 0, π only;

Particle-hole antisymmetry implies that N
(k)
+ = −N(k)

−
at k = 0, π.) Accordingly, BL = Z

2.
The combination of inversion and particle-hole conju-

gation gives an antiunitary antisymmetry of H(k) that
is local in momentum space and squares to −1, thus
H(k) belongs to class C with trivial classification in zero-
dimension. We conclude that there are no compatibility

constraints for N
(0)
+ and N

(π)
+ , so that

BS = Z
2, B[H(k)] = {N(0)

+ ,N
(π)
+ }. (4.59)

To construct the subgroup AI ⊂ BS we place zero-
dimensional generator Hamiltonians at the Wyckoff po-
sitions x = 0 or x = 1

2 , which gives the k-independent
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Hamiltonian H = diag (−1, 1) = −τ3, with representa-
tion τ1K for particle-hole conjugation. For the Wyckoff
position x = 0 inversion is represented by τ3, so that
the corresponding atomic-limit Hamiltonian maps to the
element {1, 1} of BS. For the Wyckoff position x = 1

2

inversion is represented by τ3e
ik. The Ag and Au blocks

are interchanged at k = π and the corresponding atomic-
limit Hamiltonian maps to {1,−1}, where the −1 origi-
nates from the difference with an atomic-limit supercon-
ductor obtained by placing the reference Hamiltonian at
the same Wyckoff position, see Fig. 4.1 for a schematic
picture. The subgroup AI = Z × 2Z thus consists of all

elements {N(0)
+ ,N

(π)
+ } for which N

(0)
+ −N

(π)
+ is even. The

quotient SI = BS/AI = Z2 contains the symmetry-based
indicator

z1 =
∑

ks

Nks
+ mod 2. (4.60)

The conclusion that

SID[Ci, Au] = Z2 (4.61)

is consistent with the classifying group

KD[Ci, Au] = Z2 (4.62)

for this symmetry class, [39] which describes a topological
superconductor phase with a single zero-energy Majorana
bound state at each end. An example of a nontrivial
Hamiltonian in this symmetry class is

H(k) = diag (τ3(1−m− cos k) + τ1 sin k, τ3)

with 0 < m < 2.
The weak-pairing limit (4.49) of the symmetry-based

indicator z1 agrees Refs. 66–68. The symmetry-based
indicator z1 for the full BdG Hamiltonian agrees with
the forms defined in Refs. 67 and 68.

4.6. EXAMPLES: TWO DIMENSIONS

4.6.1. Two mirror symmetries C2v, class D

The four high-symmetry momenta are ks = (0, 0), (0, π),
(π, 0), and (π, π). Each of these four momenta is in-
variant under the full group C2v and under particle-hole
conjugation, so that the Hamiltonian H(k) has the sym-
metries corresponding to a zero-dimensional Hamiltonian
of tenfold-way class D and with symmetry group C2v. As
discussed in Sec. 4.3, such Hamiltonians are topologically
trivial if the superconducting phase transforms according
to the A1 representation of C2v, whereas there is a Z2 in-
variant p for the representations A2, B1, and B2. Hence,
we find that

BL =

{
0 for Θ = A1,
Z

4
2 for Θ = A2, B1, or B2.

Representation Θ = A1.— For the case Θ = A1 the
group of symmetry-based indicators is

SID[C2v, A1] = 0, (4.63)

consistent with the triviality

KD[C2v, A1] = 0 (4.64)

of the full classifying group, see App. C.2.4.
Representation Θ = B2.— For this representation we

have MxP = −PMx, MyP = PMy and M2
x =M2

y =
−1. For ky = 0 one has the effective “particle-hole anti-
symmetry” PMx with (PMx)2 = 1, which is local in
momentum space. The mirror operation iMy is also
local in momentum space if ky = 0, squares to one,
and commutes with the effective particle-hole symmetry,
(PMx)(iMy) = (iMy)(PMx). We conclude that for
each 0 < kx < π the Hamiltonian H(kx, 0) satisfies an
onsite “inversion symmetry” with Θ = Ag, so that it has
a nontrivial topological classification given by the clas-
sifying group KD(Ci, Ag) = Z

2
2. Upon taking the limits

kx → 0, π, the classification of H(kx, 0) for generic kx can
be related to the classification at the high-symmetry mo-
menta kx = 0, π, which is given by the topological band
labels p(0,0) and p(π,0). Explicit calculation gives that
only the diagonal elements (p, p) of KD(Ci, Ag) = Z

2
2 are

allowed, with p = p(0,0) = p(π,0). It follows that one has
the compatibility constraint

p(0,0) = p(π,0). (4.65)

In the same way one finds

p(0,π) = p(π,π). (4.66)

One may obtain the same compatibility relations using
the explicit representations P = ρ0τ1K, U(Mx) = iρ1τ0,
U(My) = iρ2τ0 used in Sec. 4.3, so that H(k) satisfies

H(kx, ky) = ρ1τ0H(−kx, ky)ρ1τ0

= ρ2τ0H(kx,−ky)ρ2τ0

= −ρ0τ1H(−kx,−ky)∗ρ0τ1.

For ky = 0 these constraints imply that H(kx, 0) =
−ρ1τ1H(kx, 0)∗ρ1τ1 = ρ2τ0H(kx, 0)ρ2τ0, so that we may
write H(kx, 0) = ρ0h0 + ρ2h2 with h0τ1 and h2τ1 anti-
symmetric. Further, h0±h2 is gapped for all 0 ≤ kx ≤ π,
so that the Pfaffian of τ1(h0 ± h2) is nonzero and cannot
change sign for 0 ≤ kx ≤ π. Since h2 = 0 for kx = 0, π,
the compatibility relations (4.65) and (4.66) follow im-
mediately. It follows that

BS = Z
2
2, B[H(k)] = {p(π, 0), p(π, π)}. (4.67)

To construct AI, we place generators at one of the four
Wyckoff positions. The Wyckoff positions are (x, y) =
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(0, 0), (0, 1
2 ), ( 1

2 , 0), and ( 1
2 ,

1
2 ). From the onsite repre-

sentations U(Mx) = iρ1τ0, U(My) = iρ2τ0 we derive
the k-dependent representations

Ux(Mx,k) = iρ1τ0e
2ikxx,

Ux(My,k) = iρ2τ0e
2ikyy

for a zero-dimensional Hamiltonian placed at Wyckoff
position x = (x, y). The k-dependent factors appear,
because for the Wyckoff positions other than (0, 0) the
operations Mx and/or My correspond to an onsite op-
eration followed by a translation by a lattice vector. As
these induced representations differ from the onsite repre-
sentations by a sign for half of the elements of the symme-
try group, which is a change that can be accommodated
by a basis transformation, the induced representation is
the same at all high-symmetry momenta. After verifying
that placing the trivial reference Hamiltonian Href at the
same Wyckoff positions produces the trivial element in
BS, we conclude that the subgroup AI ⊂ BS consists of
the elements with p(0,0) = p(0,π). We conclude that

SID[C2v, B2] = Z2, (4.68)

corresponding to the symmetry-based indicator

z1;x =
∑

ks|ks,x=π

pks mod 2. (4.69)

This symmetry-based indicator describes a weak phase
of one-dimensional C2v-symmetric topological supercon-
ductors in the y direction, stacked in the x direction,

KD[C2v, B2] = Z2, (4.70)

see App. C.2.4. An example of a generator Hamiltonian
is

H(1;x) = ρ0τ3(1−m− cos ky) + ρ1τ2 sin ky,

with 0 < m < 2.
Representation Θ = B1.— The discussion for the B1

representation is similar to the discussion above. One
finds

SID[C2v, B1] =Z2, (4.71)

KD[C2v, B1] =Z2. (4.72)

The only topologically nontrivial gapped phase is a weak
phase of one-dimensional C2v-symmetric topological su-
perconductors in the x direction, stacked in the y direc-
tion, for which z1;y = p(0,0) + p(π,0) mod 2 is the associ-
ated symmetry-based indicator.

Representation Θ = A2.— The discussion of this rep-
resentation is easiest if we choose the representation
U(Mx) = iρ3τ0, U(My) = iρ1τ0, see the discussion in
Sec. 4.3. With this choice of representation, one finds
that H(kx, ky) = h0ρ0 at the high-symmetry momenta
(kx, ky) = (0, 0), (0, π), (π, 0), and (π, π). The matrix
τ1h0 is antisymmetric and the sign (−1)p of its Pfaffian

is used as the topological invariant of H(kx, ky). In con-
trast to the B1 and B2 representations, there are no com-
patibility constraints for the A2 representation, hence

BS = Z
4
2,

B[H(k)] = {p(0, 0), p(π, 0), p(0, π), p(π, π)}. (4.73)

The subgroup AI for the A2 representation consists of the
elements with p(0,0) = p(0,π) = p(π,0) = p(π,π), so that

SID[C2v, A2] = Z
3
2. (4.74)

The classifying group K for the A2 representation is

KD[C2v, A2] = Z
4
2, (4.75)

see App. C.2.4. Two factors Z2 correspond to weak
phases stacked in the x and y directions, with labels
“1;x” and “1; y”, symmetry-based indicators

z1;j =
∑

ks|ks,j=π
pks mod 2, j = x, y, (4.76)

The corresponding generating Hamiltonians are

H(1;x) = ρ0τ3(1−m− cos ky) + ρ3τ1 sin ky,

and

H(1;y) = ρ0τ3(1−m− cos kx) + ρ1τ1 sin kx,

with 0 < m < 2, respectively. The remaining two factors
Z2 in the classifying group K and the single remaining
factor Z2 in SI correspond to strong second-order phases.
These have generator Hamiltonians

H ′(2,±) =ρ0τ3(2−m− cos kx − cos ky)

± ρ1τ1 sin kx + ρ3τ1 sin ky,

with 0 < m < 2, but only a single associated symmetry-
based indicator

z2 =
∑

ks

pks mod 2. (4.77)

As discussed in App. C.2.4, the generator Hamiltoni-
ans H(2;±) describe a second-order phase with a single
Majorana corner state at each mirror-symmetric corner,
whereas the direct sum H(2;+)⊕H(2;−), which is mapped
to the trivial element in SI, has pairs of even and odd par-
ity Majorana corner states at the corners bisected by one
mirror axis, but no corner states at the corners bisected
by the other mirror axis.

The results are summarized in Table 4.11. Following
the notation of Ref. 39, we list a full boundary-signature-
resolved subgroup series for each singly-generated group
Ki contributing to the full classification group K =∏
iKi that admits topological phases with a higher-order

boundary signature. The subgroup K′i ⊂ Ki is the sub-
set of all topological phases with boundary signature of
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BS SI

K′i ⊆ Ki Phase p(0,0) p(π,0) p(0,π) p(π,π)
Z

3
2

x = (0, 0) 1 1 1 1 0
x = ( 1

2
, 0) 1 1 1 1 0

x = (0, 1
2
) 1 1 1 1 0

x = ( 1
2
, 1

2
) 1 1 1 1 0

Z2 (1;x) 1 1 0 0 e
(2)
1;x

Z2 (1; y) 1 0 1 0 e
(2)
1;y

Z2 ⊆ Z2 (2; +)′ 1 0 0 0 e
(2)
2

Z2 ⊆ Z2 (2;−)′ 1 0 0 0 e
(2)
2

∓

∓
x

y
∓

∓
+

−

+−

+

+

−

−

(1;x) (1; y) (2; +)′ (2;−)′

z1;x = 1 z1;y = 1 z2 = 1 z2 = 1

TABLE 4.11. Band labels and symmetry-based indicators for
atomic-limit Hamiltonians obtained by placing 0d generators
at Wyckoff position x (upper four rows) and for the genera-
tors H(1;x), H(1;y), H

′
(2,+), H

′
(2,−) of the weak and second-

order phases for the symmetry group C2v and representa-
tion Θ = A2 in two dimensions, class D. The weak phases
(1;x) and (1; y) can be constructed from one dimensional
topological superconductors with Majorana bound states, as
schematically indicated below (red dots with indicated mir-
ror parity ±), stacked in the x or y direction, respectively. A
possible boundary signature of the generators of second-order
phases consists of Majorana bound states at mirror symmetric
corners with indicated mirror parity. The first column con-
tains the boundary-signature-resolved subgroup sequence for
each of the factor groups contributing to the full classification
group K =

∏
iKi.

order larger than one. Weak topological phases in two di-
mensions, which are essentially stacks of one-dimensional
phases, do not have a higher-order boundary signature,
so that we do not give a subgroup sequence for factors
Ki representing a weak phase.

Table 4.11 also lists the topological band labels for the
four Hamiltonians generating the classifying group K, as
well as their image in the quotient group SI. Here we use
the symbol ej

(n) to denote the jth generator of SI. The

superscript n indicates its order, i.e., nej
(n) = 0.

4.6.2. Fourfold rotation symmetry C4, class D

General considerations.— There are three non-equivalent
high-symmetry momenta, {ks} = {(0, 0), (0, π), (π, π)}.
All three non-equivalent high symmetry momenta are in-
variant under particle-hole conjugation. In addition, the
momenta (0, 0) and (π, π) are invariant under fourfold
rotation, while (0, π) is invariant under twofold rotation
only.

On a square lattice we can choose the set
W of representative Wyckoff positions as W =
{(0, 0), ( 1

2 ,
1
2 ), ( 1

2 , 0)}. The two Wyckoff positions x =

(0, 0) and x = ( 1
2 ,

1
2 ) are invariant under fourfold rota-

tions; the Wyckoff position x = ( 1
2 , 0) is invariant under

twofold rotations only. This Wyckoff position has a non-
trivial orbit consisting of the positions ( 1

2 , 0) and (0, 1
2 ),

generated by fourfold rotation. The induced representa-
tions Ux,α(g,k) of orbitals located at x can be written
in terms of the onsite (i.e., zero-dimensional) representa-
tions Uα(g) using

U (0,0),α(Rπ/2,k) = Uα(Rπ/2),

U ( 1
2 ,

1
2 ),α(Rπ/2,k) = Uα(Rπ/2)eikx , (4.78)

U ( 1
2 ,0),α(Rπ/2,k) = Uα(Rπ/2)⊗

(
0 1
eiky 0

)
,

where Rπ/2 is a rotation by π/2 and the matrices for

the Wyckoff position ( 1
2 , 0) act in the space of orbitals

contained in its orbit. As in Sec. 4.2 we use the half-
integer angular momentum j to denote the irreps α of the
rotation symmetry. The angular momentum j is defined
modulo 4 for fourfold rotation and modulo 2 for twofold
rotation.

The computation of the band labels can be performed
with the help of the projector Pj(ks) of Eq. (4.38), which
projects the Hamiltonian H(ks) at the high-symmetry
momentum ks onto its diagonal block with irreducible
representation α = j. In addition to using Eq. (4.38) to
project on the angular momentum j subspace, a unitary
basis transformation Vj must be implemented to ensure

that VjPj(ks)V
†
j is block diagonal. (The unitary matrix

Vj depends on ks, but we suppress this dependence to
keep the notation simple.) In the present case, all irreps
are one-dimensional and the characters χj of Eq. (4.38)
are given by

χj(Rnπ/2) = rnj (Rπ/2) = einjπ/2.

We may then choose the unitary matrix V ≡ Vj in-
dependent of j by requiring that V U(g,ks)V

† be di-
agonal as in Eq. (4.19), with U(g) = diagα[Uα(g,ks)]
and Uα(g,ks) given in Eq. (4.78). Indeed, one ver-
ifies that with this choice V Pj(ks)V

† is a diago-
nal matrix with unit entries for each band n with
(V U(Rπ/2)V †)nn = rj(Rπ/2) and zeroes otherwise. The

transformed Hamiltonian V H(ks)V
† is block diagonal

and all zero-dimensional invariants can be computed
from the block V Pj(ks)H(ks)Pj(ks)V

†. In case the block
is characterized by a Pfaffian invariant pj(ks), the trans-
formed representation of the corresponding antiunitary
antisymmetry V U(P)V T acts within the block such that
(−1)pj (ks) = sign Pf(V Pj(ks)H(ks)U(P)V TV Pj(ks)V

†)
is well defined.

Representations Θ = A and Θ = B.— These two rep-
resentations have the same algebraic structure, so that
it is sufficient to discuss the case Θ = A only. (To see
this, one considers iRπ/2 as the generator of C4 for the
B representation and verifies that iRπ/2 commutes with
particle-hole conjugation P.)
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The Hamiltonian has fourfold rotation symmetry at
the high-symmetry momenta (0, 0) and (π, π). As dis-
cussed in Sec. 4.3, for zero-dimensional BdG Hamiltoni-
ans with additional symmetry group C4 and representa-
tion Θ = A, particle-hole conjugation pairs the eigen-
sectors corresponding to the irreducible representations
j = 1

2 and j = 7
2 (mod 4), as well as j = 3

2 and

j = 5
2 (mod 4). The classifying group KD[C4, A] = Z

2

and the topological invariants are N 1
2

and N 5
2
. At the

high-symmetry momentum (0, π) there is twofold rota-
tion symmetry only. In this case, particle-hole conjuga-
tion pairs the angular momenta j = 1

2 and j = 3
2 (mod

2) and one has the classification group KD[C2, A] = Z

and topological invariant N 1
2
. A general momentum k is

invariant under RπP with (RπP)2 = −1 such that the
corresponding zero-dimensional Hamiltonians are in class
C with trivial classification. Hence, there are no compat-
ibility relations in this symmetry class. We conclude that

BS = Z
5, (4.79)

B[H(k)] = {N(0,0)
1
2

,N
(0,0)
5
2

,N
(π,0)
1
2

,N
(π,π)
1
2

,N
(π,π)
5
2

}.

The reference and generating Hamiltonians for all
Wyckoff positions and (paired) irreducible representa-
tions labeled by the angular momentum j, as well as
the onsite representations of the symmetry group, can
be taken directly from Table 4.9. In particular, we note
that

U j,4−j(Rπ/2) = diag (eijπ/2, ei(4−j)π/2)τ , (4.80)

for j = 1
2 and 5

2 , where we recall that particle-hole con-

jugation pairs j = 1
2 with j = 7

2 and j = 3
2 with j = 5

2 .
From the induced representation (4.78) one can then di-
rectly compute the band labels of the reference Hamilto-
nian as well as all generators, see Table C.1 in Appendix
C.4 for the result. Upon computing the quotient BS/AI,
one finds that the group of symmetry indicators is

SID[C4, A] = SID[C4, B] = Z2 × Z8. (4.81)

To interpret the symmetry-based indicators for this
representation, we note that this symmetry class has a
classifying group [49, 50]

KD[C4, A] = KD[C4, B] = Z× Z2
2. (4.82)

The factor Z in the above group corresponds to a Chern
superconductor phase, for which the generating Hamil-
tonian is

H(2)(k) = τ3(2−m−cos kx−cos ky)+τ1 sin kx+τ2 sin ky

with 0 < m < 2 and with (standard) representations
U(P) = τ1, U(Rπ/2) = e−iπτ3/4. Chern superconductors
with even Chern numbers Ch can be deformed such that
they have a BdG Hamiltonian with zero pairing-potential
∆ and normal part h corresponding to a Chern insulator
with Chern number Ch/2.

Z2 0 ⊆ Z Z2 ⊆ Z2

z1;x,y = 1 z2 = 1 z2 = 4

x

y

FIG. 4.2. Topological phases of a two-dimensional supercon-
ductor in tenfold-way class D and with additional C4 sym-
metry with one-dimensional representation Θ = A, B. For
each boundary signature, the boundary subgroup sequence
(top row) and the nonzero symmetry-based indicators for a
generator of that phase are given (middle row).

Next, one of the factors Z2 of the group (4.82) cor-
respond to a weak phase, consisting of two “layers” of
C2-symmetric Kitaev chains related by a fourfold rota-
tion. (Note that KD[C2, A] = Z2 in one dimension, see
Refs. 36 and 39.) The generator Hamiltonian is

H(1;x,y)(k) = [τ3(1−m− cos kx) + τ1 sin kx]

⊕µ [τ3(1−m− cos ky)− τ2 sin ky] (4.83)

with 0 < m < 2, where ⊕µ denotes that the direct sum
acts in “layer space” with Pauli matrices µα. The repre-
sentations are U(P) = µ0τ1, U(Rπ/2) = µ1e

iπτ3/4. The
second factor Z2 corresponds to a second-order phase
with four Majorana corner states. The generating Hamil-
tonian is the direct sum of a twofold symmetric second-
order topological superconductor [70] and a copy related
by a fourfold rotation,

H ′(2)(k) = [ρ0τ3(2−m− cos kx − cos ky)

+ ρ3τ1 sin kx + ρ0τ2 sin ky]

⊕µ [ρ0τ3(2−m− cos kx − cos ky)

+ ρ0τ1 sin kx + ρ3τ2 sin ky] (4.84)

with 0 < m < 2, and representations U(P) = µ0ρ0τ1,
U(Rπ/2) = µ1ρ0e

iπτ3/4.
One verifies that the weak phase generates the factor

Z2 of SI and has the symmetry-based indicator

z1;x,y = N
(π,0)
1
2

+ N
(π,π)
1
2

+ N
(π,π)
5
2

mod 2. (4.85)

The factor Z8, with the symmetry-based indicator

z2 = −N
(0,0)
1
2

+ 3N
(0,0)
5
2

− 2N
(π,0)
1
2

+ 3N
(π,π)
1
2

−N
(π,π)
5
2

mod 8, (4.86)

is generated by the band labels of the Chern supercon-
ductor. The element “z2 = 4” of the factor Z8 of SI is
ambiguous, as it corresponds to the second-order phase
or the Chern superconductor with four Majorana modes,
see Fig. 4.2. These classification results and symmetry-
based indicators agree with the results from Refs. 49 and
50.
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0 ⊆ Z
z2 = 1

x

y

FIG. 4.3. The only topological phase with nontrivial
boundary signature for a two-dimensional superconductor in
tenfold-way class D and with additional C4 symmetry with
one-dimensional representation Θ = Θ = 1,2E is a Chern su-
perconductor with an even number of chiral Majorana bound-
ary modes. The boundary subgroup sequence for this phase
is given in the top row; the symmetry-based indicator for a
generator of the phase is given in the middle row.

Representations Θ = 1E and Θ = 2E.— Here we con-
sider the case Θ = 1E only and note that the case Θ = 2E
is analogous. In Sec. 4.3 we found that the particle-hole
conjugation P with Θ = 1E relates the eigensectors with
angular momentum j = 3

2 and j = 7
2 , while P acts within

the j = 1
2 and j = 5

2 eigensectors. The eigensectors j = 1
2

and j = 3
2 of twofold rotation symmetry are left invari-

ant by particle-hole conjugation. From Table 4.5 we con-
clude that at each of the high-symmetry momenta (0, 0)
and (π, π) with fourfold rotation symmetry we obtain a
KD[C4,

1E] = Z × Z
2
2 classification of the band labels,

with invariants N 3
2
, p 1

2
, and p 5

2
, whereas for the momen-

tum (0, π) with twofold rotation symmetry the classifying
group is KD[C2, B] = Z

2
2, with invariants p 1

2
and p 3

2
. It

follows that BL = Z
2 × Z6

2.
The combination of twofold rotation and particle-

hole conjugation provides an antiunitary antisymme-
try operation that is local in momentum space and
squares to one. For gapped Hamiltonians, the quantity
(−1)p(RπP) = sign Pf[H(k)U(RπP)] is well-defined and
constant throughout the Brillouin zone, from which one
derives the (0d) compatibility constraints

p
(0,π)
1
2

+ p
(0,π)
3
2

(4.87)

= p
(0,0)
1
2

+ p
(0,0)
5
2

+ N
(0,0)
3
2

= p
(π,π)
1
2

+ p
(π,π)
5
2

+ N
(π,π)
3
2

mod 2.

We therefore conclude that

BS = Z
2 × Z4

2, (4.88)

B[H(k)] = {p(0,0)
1
2

, p
(0,0)
5
2

,N
(0,0)
3
2

, p
(π,0)
3
2

, p
(π,π)
5
2

,N
(π,π)
3
2

}.

As before, we take the onsite reference Hamiltonian
and generating Hamiltonians as well as the onsite rep-
resentations from Table 4.9. For the angular momenta
j = 3

2 and j = 7
2 , which are paired by particle-hole con-

jugation, one has the representation

U
3
2 ,

7
2 (Rπ/2) = diag (e3πi/4, e7πi/4)τ . (4.89)

With the help of the induced representation Eq. (4.78)
the band labels of the atomic-limit Hamiltonians then
easily follow, see Table C.2 in Appendix C.4 for the re-
sult. By taking the quotient group, one arrives at

SID[C4,
1E] = SID[C4,

2E] = Z4. (4.90)

The group is generated by a Chern superconductor with
Chern number 2,

H(2)(k) = ρ0τ3(2−m− cos kx − cos ky)

+ ρ1τ2 sin kx + ρ1τ1 sin ky, (4.91)

with 0 < m < 2, and representations

U(P) = ρ0τ1, U(Rπ/2) = τ3e
−iπ/4 ⊕ρ τ0eiπ/4.

The symmetry-based indicator is

z2 = −N
(0,0)
3
2

−N
(π,π)
3
2

+ 2p
(0,0)
5
2

+ 2p
(π,0)
3
2

+ 2p
(π,π)
5
2

mod 4. (4.92)

A Hamiltonian with Chern number 1 is not compatible
with the constrains given by the algebraic relations be-
tween the representations in this symmetry class.

For comparison, we note that the classifying group is

KD[C4,
1E] = KD[C4,

2E] = Z, (4.93)

which is generated by the even-Chern-number supercon-
ductors, see Fig. 4.3. There are no weak or second-order
phases in this symmetry class. This observation is com-
patible with the absence of weak or second-order phases
for a twofold rotation symmetry with B pairing symme-
try. [36, 39, 70] We note that the Chern superconductor
with even Chern number Ch is topologically equivalent
to a BdG Hamiltonian (4.1) with zero pairing-potential,
corresponding to a non-superconducting Chern insulator
with the Chern number Ch/2.

4.7. EXAMPLES: THREE DIMENSIONS

4.7.1. Inversion symmetry, class D

There are eight high-symmetry momenta ks with ks,x,
ks,y, ks,z ∈ {0, π}. With the classifying group
Kη[Ci, Ag] = Kη[0]2 = Z

2
2 and Kη[Ci, Au] = K(0,0,0)[0] =

Z the group of the band labels is

BL =

{
Z

16
2 for Θ = Ag,

Z
8 for Θ = Au.

(4.94)

The band labels are given by the sets of topological in-
variants {p±(ks)} or {N+(ks)} for all high-symmetry mo-
menta ks for Θ = Ag and Θ = Au, respectively.

In an inversion-symmetric cubic lattice the set of rep-
resentative Wyckoff positions W consists of elements
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(x, y, z) with x, y, z ∈ {0, 1
2}. The induced represensta-

tion Ux,α(I,k) can be written in terms of the onsite rep-
resentations Uα(I) as

Ux,α(I,k) = Uα(I)e2ik·x. (4.95)

Representation Θ = Ag.— The Hamiltonian H(k) sat-
isfies the antiunitary antisymmetry IP with (IP)2 = 1,
which is local in momentum space. As a result, the quan-
tity (−1)p(IP) = sign Pf[H(k)U(IP)] is well-defined and
constant throughout the Brillouin zone, which gives the
compatibility relations

pks
+ + pks

− = p0+ + p0− mod 2 (4.96)

for the high-symmetry momenta ks. It follows that

BS = Z
9
2 (4.97)

B[H(k)] =
{
p

(0,0,0)
+ , p

(0,0,0)
− , p

(π,0,0)
+ , p

(0,π,0)
+ , p

(π,π,0)
+ ,

p
(0,0,π)
+ , p

(π,0,π)
+ , p

(0,π,π)
+ , p

(π,π,π)
+

}
.

Further, for a gapped Hamiltonian H(k) a Chern num-
ber Chi can be defined on planes with fixed ki with i = x,
y, or z. For the representation Θ = Ag the combination
of particle-hole and inversion symmetry allows for even
Chern numbers Chi only. At high-symmetry planes with
ki = 0 or π, the Chern number Chi is related to the band
labels as

Chi = 2


 ∑

ks|ks,i=0

pks
+


 mod 4

= 2


 ∑

ks|ks,i=π
pks

+


 mod 4, (4.98)

where we used Eq. (4.96) to arbitrarily select the invari-

ant pks
+ in the even inversion parity subspace. Imposing

this 2d compatibility relation further reduces the group

of band labels to BS(2) = Z
8
2, the independent band la-

bels (4.97) with the exception of p
(π,π,π)
+ .

The band labels of atomic insulators, which span the
subgroup AI ⊂ BS, can be directly computed using the
induced representation (4.95), see table C.4 in Appendix
C.4 for the result. Computing the quotient, we find that

SID[Ci, Ag] = Z
4
2, SI

(2)
D [Ci, Ag] = Z

3
2, (4.99)

where the four generators of SI are related to the
symmetry-based indicators

z2;i =
∑

ks|ks,i=π
pks

+ mod 2, i = x, y, z,

z3 =
∑

ks

pks
+ mod 2. (4.100)

0 ⊆ Z 0 ⊆ Z 0 ⊆ Z
z2;z = 1 z2;y = 1 z2;x = 1

x

z
y

FIG. 4.4. Topological phases of a three-dimensional super-
conductor in tenfold-way class D and with additional Ci sym-
metry with one-dimensional representation Θ = Ag. For each
boundary signature, the boundary subgroup sequence (top
row) and the nonzero symmetry-based indicators for a gener-
ator of that phase are given (middle row).

(The three generators of SI(2) have symmetry-based indi-
cators z2;i, i = x, y, z.) The Z2 indicator z3 corresponds
to a representation-enforced nodal superconductor with
different Chern numbers at parallel planes in the Bril-
louin zone, see Eq. (4.98), and a nodal point at a generic
position in the Brillouin zone. The three Z2 indicators
z2;i, i = x, y, z, correspond to weak Chern supercon-
ductors with even Chern number in stacking planes, see
Fig. 4.4. Generator Hamiltonians are

H(2;l)(k) = ρ0τ3(2−m− cos ki − cos kj)

+ ρ1τ1 sin ki + ρ1τ2 sin kj , (4.101)

with (ki, kj) = (ky, kz), (kz, kx), or (kx, ky) for l = x, y,
or z, respectively. For all three cases, the representations
are

U(P) = ρ0τ1, U(I) = ρ3τ0. (4.102)

For comparison, we note that this symmetry class has
a classifying group

KD[Ci, Ag] = Z
3, (4.103)

which contains the weak phases with even Chern num-
bers in the three stacking planes. Generators for these
weak phases are shown schematically in Fig. 4.4. Since
each factor Z in K describes a weak topological phase,
which is obtained by stacking two-dimensional supercon-
ductors, only second-order boundary signatures are al-
lowed in principle, which is why the subgroup sequences
listed in Fig. 4.4 contains one subgroup only. The three
weak Chern superconductors with even Chern numbers
Ch per layer can be continuously deformed to normal-
state weak Chern insulators with vanishing supercon-
ducting correlations and Chern number Ch/2 per layer.

For comparison, we note that Ref. 67 found no
symmetry-based indicators due to the absence of Pfaf-
fian band labels in their construction.

Representation Θ = Au.— For the case of the Au rep-
resentation, there are no compatibility relations of 0d
type, so that

BSD[Ci, Au] = BLD[Ci, Au] = Z
8. (4.104)
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There is a compatibility relation of 2d type, however,
which follows from the existence of Chern numbers Chi
along planes at constant ki, i = x, y, z, [32]

Chi =
∑

ks|ks,i=0

Nks
+

=
∑

ks|ks,i=π
Nks

+ mod 2, (4.105)

with i = x, y, z. Computing the quotient SI = BS/AI,
we find that the group of symmetry-based indicators is

SID[Ci, Au] = Z
3
2 × Z3

4 × Z8. (4.106)

Here the three factors Z2 with symmetry-based indicators

z1;i,j =
∑

ks|ks,i=ks,j=π
Nks

+ mod 2, (4.107)

for (i, j) = (x, y), (z, x), and (y, z) correspond to weak
phases consisting of stacks of one-dimensional topological
superconductors, see Fig. 4.5. Generator Hamiltonians
are

H(1;x,y)(k) = τ3(1−m−cos kz)+τ1 sin kz, cycl., (4.108)

with the representations

U(P) = τ1, U(I) = τ3. (4.109)

The three factors Z4, which have indicators

z2;l = −
∑

ks|ks,l=π
Nks

+ (−1)(ks,x+ks,y+ks,z)/π mod 4,

(4.110)

for l = x, y, z, correspond to weak Chern superconduc-
tors, see Fig. 4.5. Generator Hamiltonians are

H(2,x)(k) = τ3(2−m− cos ky − cos kz)

+ τ1 sin ky + τ2 sin kz, cycl. (4.111)

with 0 < m < 2, and the same representations as
above. Similar to previous examples, we find that the
weak even-Chern-number superconductors are continu-
ously deformable to weak normal-state Chern insulators.
The symmetry-based indicators z2,l = 2 are ambiguous
as they may also correspond to a weak second-order topo-
logical superconductor,

H ′(2,x)(k) = ρ0τ3(2−m− cos ky − cos kz)

+ ρ3τ1 sin ky + ρ0τ2 sin kz, cycl. (4.112)

with 0 < m < 2, and the representations

U(P) = ρ0τ1, U(I) = ρ0τ3. (4.113)

Finally, the factor Z8 with indicator

z3 =
∑

ks

Nks
+ (−1)(ks,x+ks,y+ks,z)/π mod 8 (4.114)

is generated by a representation-enforced nodal supercon-
ductor with different Chern number at parallel planes.
The direct sum of two representation enforced-nodal su-
perconductors may produce a strong second-order topo-
logical superconductor with chiral Majorana hinge states
and generator Hamiltonian

H ′(3)(k) = ρ3τ3(3−m− cos kx − cos ky − cos kz)

+ ρ0τ1 sin kx + ρ0τ2 sin ky + ρ2τ3 sin kz
(4.115)

with 0 < m < 2, and with representations

U(P) = ρ0τ1, U(I) = ρ3τ3. (4.116)

The direct sum of two strong second-order topological
superconductors in this symmetry class, corresponding
to z3 = 4, generates a third-order topological supercon-
ductor. [25, 39] This identifies z3 = 2 and z3 = 6 as
indicators of strong second-order phases, whereas z3 = 4
indicates a third-order phase, see Fig. 4.5.

For comparison, we note that the classifying group for
this case is

KD[Ci, Au] = Z
6
2 × Z4 × Z3, (4.117)

where three factors Z2 correspond to weak phases con-
sisting of stacks of one-dimensional topological super-
conductors, the other three factors Z2 correspond to
stacks of second-order two-dimensional topological su-
perconductors, the three factors Z correspond to weak
phases consisting of stacks of two-dimensional Chern su-
perconductors, whereas the factor Z4 consists of (strong)
second- and third-order topological superconductors, as
described above. Following the notation of Ref. 39,
Fig 4.5 lists the appropriate boundary-resolved subgroup
sequence K′′i ⊂ K′i ⊂ K for each of the factors Ki con-
tained in the full classification group K =

∏
iKi, where

K′i and K′′i are the subgroups of K containing topologi-
cal phases with boundary signature of order larger than
one or two, respectively. Weak phases have a shorter
subgroup sequence, because they do not admit boundary
states of order larger than one or two for stacks of one-
dimensional topological phases or two-dimensional topo-
logical phases, respectively.

Symmetry-based indicators corresponding to the class
considered in this example were previously considered in
Refs. 65–67. The explicit expression for z3 in Ref. 66 in
the weak pairing limit differs from our Eqs. (4.110) and
(4.114) by the absence of the sign factors in these refer-
ences. (Reference 67 contains no explicit expression for
the symmetry-based indicators; Reference 65 defines a Z2

invariant only, for which the sign factors are not impor-
tant.) This difference affects the assignment of a strong
(higher-order) topological index z3 to weak phases, such
as those described by the Hamiltonian H(2,x)(k) of Eq.
(4.111). The assignment of a strong index to these weak
phases is ambiguous, as the presence of gapless surfaces
in the weak phases makes it impossible to uniquely asso-
ciate a boundary signature with a nonzero value of the
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Z2 Z2 Z2

z1;y,z = 1 z1;x,z = 1 z1;x,y = 1

0 ⊆ Z 0 ⊆ Z 0 ⊆ Z
z2;z = 1 z2;y = 1 z2;x = 1

Z2 ⊆ Z2 Z2 ⊆ Z2 Z2 ⊆ Z2

z2;z = 2 z2;y = 2 z2;x = 2

Z2 ⊆ Z4 ⊆ Z4

z3 = 2, 6 z3 = 4

x

z
y

FIG. 4.5. Topological phases of a three-dimensional supercon-
ductor in tenfold-way class D, with additional Ci symmetry
and one-dimensional representation Θ = Au. For each bound-
ary signature, the subgroup sequence and the symmetry-
based indicators of the generators of that phase are given.
The third-order topological superconductor with z3 = 4 can
be constructed as the direct sum of two second-order topo-
logical superconductors with z3 = 2.

strong indicator in a weak phase. We here follow the
convention of Refs. 32 and 79, according to which weak
phases are constructed as stack of layers containing the
unit cell center, i.e. with momentum independent repre-
sentations.

4.7.2. Inversion symmetry, class DIII

Representation Θ = Ag. — Bogoliubov-de Gennes-type
Hamiltonians in tenfold-way class DIII with inversion
symmetry and with a superconducting order parameter
transforming according to the Ag representation have a
trivial classifying group KDIII[Ci, Ag] = KDIII[0]2 = 0
at the high-symmetry momenta, so that no topological
band labels can be defined. Also, the boundary classify-
ing group of topological phases K = 0 is trivial in this
symmetry class in three dimensions. [39]

Representation Θ = Au. — For the Au representation
we have the classifying group of inversion symmetric mo-
menta and Wyckoff positions KDIII[Ci, Au] = KAII[0] =

Z. The results for class DIII can be constructed from the
class D results by taking the direct sum

HDIII(k) = H(k)⊕σ H(−k)∗, (4.118)

where H(k) is a class-D Hamiltonian satisfying particle-
hole antisymmetry and inversion symmetry with rep-
resentation Θ = Au. Time-reversal is represented as
T = σ2K; Particle-hole conjugation and inversion are di-
agonal with respect to the σ degree of freedom, where it
is important that the representation for inversion be real.
With the relation (4.118) the construction of symmetry-
based indicators is the same as in class D, with the excep-
tion of the 2d compabitility relation (4.105), which does
not apply to class DIII since no Chern numbers can be
defined at two-dimensional planes in the Brillouin zone.

The boundary classifying group for class DIII is

KDIII[Ci, Au] = Z
3
2 × Z4

4 × Z. (4.119)

With the exception of the one factor Z, the interpreta-
tion of these factors and their relation to the topologi-
cal band labels is the same as for class D. In particular,
the construction (4.118) takes an inversion-symmetric
Kitaev chain to its time-reversed couterpart and each
Chern superconductor with odd Chern number to a
two-dimensional topological superconductor with heli-
cal Majorana edge states. Both the even-Chern num-
ber superconductor and the two-dimensional second-
order topological superconductor in class D map to the
two-dimensional second-order topological superconduc-
tor in class DIII. Upon adding weak odd-parity super-
conducting correlation to an inversion-symmetric quan-
tum spin Hall insulator or three-dimensional strong topo-
logical insulator in class AII, the edge states gap and
create a second-order topological superconductor with
a Kramers pair of Majorana corner states or helical
Majorana hinge states, respectively. Correspondingly,
the inversion-symmetry-protected second-order topolog-
ical insulator in class AII turns into an odd-parity third-
order topological superconductor. For the remaining fac-
tor Z, we observe that the construction (4.118) maps the
representation-induced nodal superconductor in class D,
which has difference in Chern numbers for parallel planes
cutting through the Brillouin zone, to the generator of
the three-dimensional (gapped) time-reversal symmetric
topological superconductors, which has indicator z3 = 1.
The classification results together with the subgroup se-
quences are illustrated in Figure 4.6.

The generator of the first-order time-reversal symmet-
ric topological superconductor is

HDIII
(3) (k) =σ2τ2(3−m− cos kx − cos ky − cos kz)

+ σ1τ0 sin kx + σ2τ3 sin ky

+ σ3τ0 sin kz,

with 0 < m < 2 where we used the representations

U(P) = σ0τ1, U(I) = σ2τ2, U(T ) = σ2τ0.
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Direct summation of this phase generates the free (Z)
group of first-order topological superconducting phases.
Direct summation of the two generators as HDIII

(3) ⊗ µ3,

with inversion represented as U(I) ⊗ µ3, constructs the
generator of the factor Z4 in Eq. (4.119), a second-order
TSC that becomes a third-order topological supercon-
ductor upon taking the direct sum with itself. Conse-
quently, all “even” symmetry-based indicators belonging
to the factor Z8 are ambiguous: The elements z3 = 2
or 6 and z3 = 4 may correspond to two or four copies
of the strong three dimensional first-order TSC or to the
strong second or third-order topological superconductor,
respectively.

The group of symmetry indicators SI = Z
3
2 × Z

3
4 × Z8

that we obtain agrees with results from Refs. 67 and
68. Reference 65 finds a subgroup Z

3
2 ⊗ Z4 ⊆ SI con-

sisting of the “even” elements only. The explicit expres-
sions for the symmetry-based indicators differ from those
in Refs. 65–67 by the presence of the sign factors, see
the discussion at the end of Sec. 4.7 1.4 The expression
for the symmetry-based indicator for strong phases z3 in
Eq. (4.114) agrees with the corresponding expression in
Ref. 68. However, in Ref. 68 the symmetry-based indi-
cators for the weak phases are defined on planes or lines
with kl = km = 0, while our symmetry-based indica-
tors z1;l,m and z2;l are defined on planes or lines with
kl = km = π. This definition ensures that no spuri-
ous weak indices are assigned to other weak phases or
to strong phases. In the weak-pairing limit, the criterion
z3 = 1 mod 2 for the three-dimensional first-order topo-
logical superconductor agrees with the well-known con-
dition that there must be an odd number of Fermi level
crossings between high-symmetry momenta, see Refs. 77
and 78.

Very recently, the possibility of hybrid higher-order
topology was discussed in the literature. [80] We note
that for such “hybrid” of first- and second-order topol-
ogy, it is sufficient to consider inversion symmetric su-
perconductor as the current example shows: A “hybrid”
phase can be identified as a direct sum of a first-order
phase (last row, first column in Fig. 4.6) and one of the
weak phases from the third row of Fig. 4.6.

4.7.3. Inversion symmetry, class C

General considerations. With spin-rotation symmetry,
the Hamiltonian is of the form H(k) = HC(k)⊗σ0 where
HC(k) satisfies an effective particle-hole antisymmetry

4 For symmetry class DIII, the gapless surface states of the weak
phases can be removed by breaking translation symmetry. If
inversion symmetry is maintained, a strong higher-order phase
can result, which has helical Majorana modes along hinges. Such
breaking of translation symmetry requires a doubling of the unit
cell. Our convention that Hamiltonians such as Eq. (4.111) have
no strong index requires that the inversion center is shifted by
half a unit cell upon doubling the unit cell, see, e.g., the discus-
sion in Ref. 79.

Z2 Z2 Z2

z1;y,z = 1 z1;x,z = 1 z1;x,y = 1

Z2 ⊆ Z4 Z2 ⊆ Z4 Z2 ⊆ Z4

z2;z = 1 z2;y = 1 z2;x = 1

z2;z = 2 z2;y = 2 z2;x = 2

0 ⊆ 0 ⊆ Z Z2 ⊆ Z4 ⊆ Z4

z3 = 1 z3 = 2, 6 z3 = 4

x

z
y

FIG. 4.6. Topological phases of a three-dimensional supercon-
ductor in tenfold-way class DIII, with additional Ci symmetry
and one-dimensional representation Θ = Au. For each bound-
ary signature, the subgroup sequence and the symmetry-
based indicators of the generators of that phase are given.
The two-dimensional second-order topological superconduc-
tor with z2;l = 2 can be constructed as the direct sum of two
two-dimensional first-order topological superconductors with
z2;l = 1, l = x, y, z. Similarly, the three dimensional third-
order topological superconductor with z3 = 4 can be con-
structed as the direct sum of two three dimensional second-
order topological superconductors with z3 = 2.

P = τ2K squaring to −1. This is the tenfold-way class
C.

Representation Θ = Ag. — With the Ag representa-
tion for the transformation behavior of the superconduct-
ing order parameter, the classifying group of the Hamil-
tonian at each of the high-symmetry momenta is trivial,
KC[Ci, Ag] = KC[0]2 = 0, so that no topological band
labels can be defined. The classifying group is

KC[Ci, Ag] = Z
3 × Z2, (4.120)

see Ref. 39. It contains a factor Z3 corresponding to weak
Chern superconductors in all three stacking directions
and a factor Z2 corresponding to a strong second-order
TSC with chiral hinge states. None of those phases can
be detected by symmetry-based indicators. The bound-
ary signatures of all topological phases in this class are
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0 ⊆ Z2 ⊆ Z2 0 ⊆ Z 0 ⊆ Z 0 ⊆ Z
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x

z
y

FIG. 4.7. Topological phases of a three-dimensional supercon-
ductor in tenfold-way class C, with additional Ci symmetry
and one-dimensional representation Θ = Au. For each bound-
ary signature, the subgroup sequence and the symmetry-
based indicators of the generators of that phase are given.

pairs of chiral Majorana modes. In the limit of vanishing
superconducting correlations, they can be adiabatically
deformed to corresponding normal-state topological insu-
lators with chiral fermionic modes on their boundaries.
Our results for the Θ = Ag representation are consistent
with the results of Ref. 67.

Representation Θ = Au. — The discussion in class C
with the one-dimensional representation Θ = Au of in-
version symmetry is analogous to the discussion in class
D. Each of the high-symmetry momenta and each of the
Wyckoff positions comes with the classification group
KC[Ci, Au] = KA[0] = Z. Compatibility relations of 0d
type follow from the observation that the product IP
acts as an effective particle-hole symmetry that is local
in reciprocal space and squares to one. As a result, one
may define a Pfaffian invariant p(IP) for H(k) at generic

k. Relating p(IP) to the integer invariants Nks
+ at the

eight high-symmetry momenta ks, we obtain the seven
compatibility relations

Nks
+ = N

(π,π,π)
+ mod 2 (4.121)

for ks 6= (π, π, π). Defining the integer band labels

nks
+ = (Nks

+ −N
(π,π,π)
+ )/2, (4.122)

we arrive at

BS = Z
8, (4.123)

B[H(k)] =
{
n

(0,0,0)
+ , n

(π,0,0)
+ , n

(0,π,0)
+ , n

(π,π,0)
+ ,

n
(0,0,π)
+ , n

(π,0,π)
+ , n

(0,π,π)
+ ,N

(π,π,π)
+

}
.

The group SI of symmetry-based indicators is

SIC[Ci, Au] = Z
3
2 × Z4. (4.124)

An additional compatibility relation of 2d type follows
by noting that for a gapped Hamiltonian a Chern number
can be defined on planes with fixed kl with l = x, y, or
z and that this Chern number is always even. At high-
symmetry planes with kl = 0 or π the Chern number Chl

is related to the topological band labels as

1

2
Chl =

∑

ks|ks,l=0

nks
+ mod 2

=
∑

ks 6=(π,π,π)|ks,l=π
nks

+ mod 2. (4.125)

One verifies that the generator of the factor Z4 in
Eq. (4.124), which has symmetry-based indicator

z3 =
∑

ks 6=(π,π,π)

nks
+ (−1)(ks,x+ks,y+ks,z)/π mod 4,

(4.126)
is a representation-enforced nodal superconductor, which
violates the compatibility relation (4.125). The three fac-
tors Z2 with indicators

z2;i =
∑

ks 6=(π,π,π)|ks,i=π
nks

+ mod 2, i = x, y, z, (4.127)

correspond to weak Chern superconductor phases, see
Fig. 4.7.

For comparison, we note that the boundary classifica-
tion group is [39]

KC[Ci, Au] = Z
3 × Z2. (4.128)

Here the three factors Z correspond to weak Chern su-
perconductors with generator Hamiltonians

HC
(2,x)(k) =µ0τ3(2−m− cos ky − cos kz)

+ µ1τ1 sin ky + µ1τ2 sin kz, cycl.

with 0 < m < 2. The corresponding representations are

U(P) = µ3τ2, U(I) = µ0τ3.

The Hamiltonians HC
(2,l) have Chern number Chl = 2

and generate the elements “1” in the three factors Z2

of SI, see Eq. (4.124). The remaining factor Z2 of SI is
generated by a second-order topological superconductor
with chiral hinge states

H ′C(3)(k) =µ0ρ3τ3(3−m− cos kx − cos ky − cos kz)

(4.129)

+ µ1ρ0τ1 sin kx + µ1ρ0τ2 sin ky + µ1ρ1τ3 sin kz

with 0 < m < 2, where we used the representations

U(P) = µ3ρ0τ2, U(I) = µ0ρ3τ3.

The above phase has symmetry-based indicator z3 = 2,
see Fig. 4.7. As for the Ag representation, the bound-
ary signatures of all topological phases in this class are
pairs of chiral Majorana modes. They can be adiabati-
cally deformed to corresponding normal-state topological
insulators with chiral fermionic boundary modes.

Our result (4.124) for the group of symmetry-based in-
dicators is more constrained than the corresponding re-
sult from Ref. 67, which finds SI = Z

3
2 × Z

3
4 × Z8. The

origin of the difference is that we include the 0d com-
patibility constraint arising from the conservation of the
Pfaffian invariant.
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0 ⊆ Z
z3 = 2

x

z
y

FIG. 4.8. In tenfold-way class CI with additional Ci symme-
try and one-dimensional representation Θ = Au, there is a
single topological phase with first order boundary signature
consisting of pairs of Majorana Dirac cones. The subgroup
sequence and the symmetry-based indicator of the generator
of this phase is given.

4.7.4. Inversion symmetry, class CI

Representation Θ = Ag. — Here the discussion is the
same as for class C. Both the group SI of symmetry-based
indicators and the classifying group K = 0 are trivial. [39]

Representation Θ = Au. — In the presence of spin-
rotation symmetry, time-reversal symmetry can be rep-
resented as T = K. Class CI has the same topological
band labels as class C, and the generators of atomic limits
in classes C and CI have the same band labels, too. The
0d compatibility relations (4.121) continue to be valid.
Thus, it follows that the group SI of symmetry-based in-
dicators is again given by Eq. (4.124).

The higher-dimensional compatibility relations differ
from those in class C. On the one hand, there is no Chern
number for two-dimensional cuts of the Brillouin zone.
On the other hand, H(k) is subject to the chiral antisym-
metry PT and a local-in-k antiunitary symmetry IT for
generic k, which effectively places it in tenfold-way class
BDI. For a one-parameter family of gapped Hamiltonian
that are (effectively) in class BDI for each k, there ex-
ists a Z2 topological invariant, the first Stiefel-Whitney
number [75, 76]. [81] Considering this Z2 invariant along
one-dimensional cuts through the Brillouin zone and us-
ing its relation to the band labels at high-symmetry mo-
menta, one finds four compatibility relations of 1d type
(see App. C.3),

nks
+ − nks+πel

+ = n
(π,π,π)−πel
+ mod 2, (4.130)

for ks,l = 0, ks + πel 6= (π, π, π) where el is the unit
vector in the l-direction, l = x, y, z. These 1d compati-
bility relations impose the conditions z2;l = 0 and z3 = 0
mod 2 for gapped phases. Phases violating these con-
ditions, corresponding to the elements “1” in the three
factors Z2 and the elements “1” and “3” in the factor
Z4 are representation-enforced nodal-line superconduc-
tors. The group of symmetry-based indicators for phases
satifying all compatibility relations is, hence,

SI
(2)
CI [Ci, Au] = Z2. (4.131)

For comparison, we note that the boundary classifica-
tion group is

KCI[Ci, Au] = Z. (4.132)

It is generated by a strong first-order phase in three
dimension whose boundary signature is illustrated in
Fig. 4.8. Its generator Hamiltonian can be written as

HCI
(3)(k) =µ0ρ0τ3(3−m− cos kx − cos ky − cos kz)

(4.133)

+ µ2ρ1τ1 sin kx + µ0ρ2τ1 sin ky + µ2ρ3τ1 sin kz

with 0 < m < 2. Here we used the representations

U(P) = µ0ρ0τ2, U(I) = µ0ρ0τ3, U(T ) = µ0ρ0τ0.

It has band labels n0+ = 2, N
(π,π,π)
+ = 0, and nks

+ = 0
for ks 6= (0, 0, 0), (π, π, π). Its band labels generate the
element “2” in the factor Z4 of SI and the element “1”
in the factor Z2 of SI(2), see Eq. (4.131).

Similar to the previous section, our group (4.124) of
symmetry-based indicators is more constrained than the
corresponding result from Ref. 67, as we include the com-
patibility relation due to the conservation of the Pfaffian
invariant. As discussed above, one finds an even smaller
group of symmetry-based indicators if 1d compatibility
relations based on the Stiefel-Whitney number are in-
cluded as well.

4.8. CONCLUSION

Symmetry-based indicators have proven to be a prag-
matic substitute for a full classification of topological in-
sulator phases using a complete set of topological invari-
ants. [27, 28, 56, 58, 59] Their main advantage is that
symmetry-based indicators are easier to calculate than
other types of topological invariants, since they require
local information in reciprocal space only. On the other
hand, a nonzero value of a symmetry-based indicators is
sufficient to establish that a phase has nontrivial topol-
ogy and may, in addition, contain information of the type
of anomalous boundary states. [24, 60]

In this work, we extend the concept of symmetry-based
indicators to Hamiltonians of Bogoliubov-de Gennes
(BdG) type, which appear in the mean-field theory su-
perconducting phases. Hamiltonians of BdG type are
antisymmetric with respect to particle-hole conjugation.
Additionally, for Hamiltonians of BdG type, a crystalline
symmetry class is defined by the presence or absence of
time-reversal and spin-rotation symmetry, by the point
group G, and by a one-dimensional representation Θ of G
that describes how the superconducting order parameter
∆ transforms under the crystalline symmetry. [69]

Like the symmetry-based indicators for non-
superconducting insulating phases, [27, 28, 58, 59]
the symmetry-based indicators for BdG Hamiltonians
can be constructed in a fully algorithmic manner.
Input for our construction are “band labels”, which
are the complete set of “zero-dimensional” topological
invariants of the BdG Hamiltonian H(ks) evaluated at
high-symmetry points ks in Brillouin zone. Such band
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labels were first considered by Shiozaki, Sato, and Gomi
in Ref. 64. Unlike previous works on the symmetry-based
indicators for topological superconductors, [63, 65–67]
the set of zero-dimensional topological invariants con-
sidered by us (and by Ref. 64) is provably complete —
it is not possible to resolve more boundary signatures
through the prism of zero-dimensional bulk topological
invariants. In particular, the set of topological invariants
considered in this work includes not only integer topo-
logical invariants of the type used in the construction
of symmetry-based indicators for non-superconducting
Hamiltonians — counting the number of occupied bands
corresponding to a certain symmetry representation of
the crystalline symmetry —, but also Z2 topological
invariants constructed using Pfaffians, which do not
appear in Refs. 63, 65–67. Pfaffians play a role not only
as useful topological band labels, but they also give rise
to additional compatibility relations,[64] even in cases
in which there are symmetry-based indicators of integer
type only. The latter point is well illustrated by the
example of tenfold-way classes C and CI with inversion
symmetry and Θ = Au, discussed in Secs. 4.7 3 and
4.7 4.

In the weak-pairing limit (superconducting gap ∆
small in comparison to characteristic energy scales of the
normal-state band structure), the band labels of the BdG
Hamiltonian can be expressed in terms of conventional
integer band labels of the normal-state Hamiltonian, pro-
vided the symmetry of the superconducting order param-
eter is known.[67, 68] This applies both to the integer
invariant and to the Z2 Pfaffian invariant. This means
that in the weak-pairing the symmetry-based indicators
constructed here can be calculated using the vast amount
of known band structure data in the normal state.

The main difference between zero-dimensional band
labels and symmetry-based indicators [27] is that the
latter are designed to “see” only the topological phases
with non-trivial boundary signatures. Topologically non-
trivial superconductors without gapless boundary states
are deformable to atomic-limit phases. In this work
we combine the complete set of zero-dimensional band
labels [64] and the definition of atomic-limit supercon-
ductors as an “array” of zero-dimensional superconduc-
tors, [39] to arrive at an extension of symmetry-based
indicators [27] to Hamiltonians of Bogoliubov-de Gennes
type. Our definition of atomic-limit superconductors
agrees with the definitions of Refs. 67 and 68. Since
Pfaffian invariants do not appear in Refs. 65–67, the
symmetry-based indicators we obtain may be expected
to be consistent with these references once all topologi-
cal band labels and all compatibility relations associated
with Pfaffian invariants are omitted from our construc-
tion. (For inversion-symmetric superconductors, how-
ever, our concrete expressions for the symmetry-based
indicators differ from those of Refs. 65–67. This is dis-
cussed in detail in Sec. 4.7.) Reference 68 contains results
closely related to and consistent with ours.

If the symmetry-based indicators are used as a substi-

d G Cartan Θ SI SI(d−1) K
1 C1 D A Z2 Z2 Z2

DIII A 0 0 Z2

C A 0 0 0
CI A 0 0 0

1 Ci D Ag 0 0 0
Au Z2 Z2 Z2

2 C1 D A Z
3
2 Z

3
2 Z

2
2 × Z

DIII A 0 0 Z
3
2

C A 0 0 Z

CI A 0 0 0
2 Ci D Ag Z2 Z2 Z

Au Z
2
2 × Z4 Z

2
2 × Z4 Z

3
2 × Z

2 Cs D A′ Z2 Z2 Z2

A′′ Z
3
2 Z

3
2 Z

3
2

2 C2 D A Z
2
2 × Z4 Z

2
2 × Z4 Z

3
2 × Z

B Z2 Z2 Z

2C2v D A1 0 0 0
A2 Z

3
2 Z

3
2 Z

4
2

B1 Z2 Z2 Z2

B2 Z2 Z2 Z2

2 C4 D A,B Z2 × Z8 Z2 × Z8 Z
2
2 × Z

1,2E Z4 Z4 Z

3 C1 D A Z
7
2 Z

6
2 Z

3
2 × Z3

DIII A 0 0 Z
6
2 × Z

C A 0 0 Z
3

CI A 0 0 Z

3 Ci D Ag Z
4
2 Z

3
2 Z

3

Au Z
3
2 × Z3

4 × Z8 Z
3
2 × Z4

4 Z
6
2 × Z4 × Z3

DIII Ag 0 0 0
Au Z

3
2 × Z3

4 × Z8 Z
3
2 × Z3

4 × Z8 Z
3
2 × Z4

4 × Z
C Ag 0 0 Z

3 × Z2

Au Z
3
2 × Z4 Z

4
2 Z

3 × Z2

CI Ag 0 0 0
Au Z

3
2 × Z4 Z2 Z

3 Cs D A′ Z2 Z2 Z2 × Z
A′′ Z

9
2 Z

9
2 Z

7
2 × Z2

3 C2 D A Z
2
2 × Z4 Z

2
2 × Z4 Z

3
2 × Z

B Z
6
2 Z

5
2 Z

4
2 × Z

3C2v D A1 0 0 0
A2 Z

7
2 Z

7
2 Z

5
2 × Z4

B1 Z
3
2 Z

3
2 Z

3
2 × Z2

B2 Z
3
2 Z

3
2 Z

3
2 × Z2

3 C4 D A,B Z2 × Z8 Z2 × Z8 Z
2
2 × Z

1,2E Z
4
2 × Z4 Z

3
2 × Z4 Z

3
2 × Z

TABLE 4.12. The group of symmetry-based indicators SI ob-
tained by including compatiblity relations of 0d type only, the
group SI(d−1) obtained by including compatibility relations of
n-dimensional type, with n < d, and the full boundary classi-
fication group K for the combinations of tenfold-way classes,
dimension d, and point group G considered in this work.

tute for a full classification, ideally, one wants symmetry-
based indicators to detect gapped phases only. The
algorithmic construction defined in this work partially
meets this goal: It only guarantees that no indicator cor-
responds to gapless topological superconductor phases
with its gapless points on high-symmetry lines in Bril-
louin zone that connect the high-symmetry points. Nev-
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ertheless, for the examples considered in this work, we
were able to explicitly relate all gapless phases, includ-
ing gapless phases with gapless points occurring on high-
symmetry planes and in the bulk of the Brillouin zone, to
symmetry-based indicators by invoking additional com-
patibility relations that involve winding numbers, Chern
numbers, as well as first and second Stiefel-Whitney num-
bers. These compatibility relations are defined on one-
dimensional and two-dimensional cuts through the Bril-
louin zone, respectively, involve local-in-k properties of
H(k) only, and generalize the compatibility relations that
make use of the continuity of zero-dimensional invariants
in the Brillouin zone. [27, 28, 56] Formally, the inclu-
sion of higher (up to n)-dimensional compatibility rela-

tions allows one to define a smaller group SI(n) ⊂ SI
of symmetry-based indicators. The relevant (smallest)

groups SI(d−1) are listed in Table 4.12 for the examples
considered. For the examples we considered, we find

that all phases indexed by SI(d−1) are gapped. It would
be interesting to find out, whether this feature holds in
general, i.e., whether the inclusion of these two “higher
dimensional” compatibility relations involving local-in-
k symmetries of H(k) only is sufficient to identify all
symmetry-based indicators that correspond to enforced
gapless phases.

To see to what extent symmetry-based indicators of-

fer a faithful representation of all (crystalline) topological
phases we compared the symmetry-based indicators with
the complete classification information for selected exam-
ples. To this end, we used the classifying group K, which
classifies all topological phases with protected boundary
states. (This excludes atomic-limit phases with nontriv-
ial topology from the topological classification, which is
consistent with the fact that symmetry-based indicators
of atomic-limit phases are defined to be zero.[27, 28])
A summary of this comparison is shown in Table 4.12.
Only for a small number of the examples we consider
— such as tenfold-way class D in three dimensions with
symmetry groups Cs or C2v and representations Θ = A′

and Θ = B2, respectively —, entire classes of topologi-
cal phases are missed by the symmetry-based indicators,
whereas for some crystalline symmetry classes the full
classifying group K and the group SI of symmetry-based
indicators are identical. In most cases, all generators of
topological phases are detectable by symmetry-based in-
dicators, although there may be ambiguities preventing
a unique identification of the precise nature of the topo-
logical phase. Although these examples clearly show that
symmetry-based indicators are not equivalent to a com-
plete classification, it remains an interesting observation
that zero-dimensional invariants alone perform so well at
this task.

[1] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev.
Lett. 45, 494 (1980).

[2] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[3] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[4] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802

(2005).
[5] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801

(2005).
[6] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P.

A. M. Bakkers, and L. P. Kouwenhoven, Science 336,
1003 (2012).
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5. CONCLUSION AND OUTLOOK

In Chapters 2 and 3 we have established a link between the bulk topology and
the appearance of gapless or ingap anomalous states at boundaries and defects in
crystalline topological insulators and superconductors. In particular, in Chapter
2, we have shown that crystalline topological phases may exhibit a higher-order
bulk boundary correspondence, i.e. they may harbor anomalous states on lower-
dimensional manifolds of the boundary such as corners or hinges. An important
step in this work was the identification of which configuration of gapless, anoma-
lous boundary states (called the boundary signature) can be related to the bulk
topology. We showed that one can distinguish intrinsic anomalous boundary sig-
natures that necessitate the presence of a topological bulk, and extrinsic anoma-
lous boundary signatures that may result from the presence on lower-dimensional
topological phases on the surface of the crystal. The latter have later been dis-
cussed also under the name of boundary-obstructed topological phases [1]. The
work of Chapter 2 has been extended in follow-up projects to general higher-order
boundary signatures [2] and general point groups [3].

In Chapter 3 we have discussed in detail the relation between bulk topology
and the appearance of anomalous states at disclinations. We have linked which
type of topological phase hosts anomalous states at which type of defect, in the
following sense: (i) Second-order topological phases protected by rotation symme-
try may contribute anomalous states at disclinations. (ii) Weak topological phases
protected by rotation symmetry may contribute anomalous states at dislocations
or disclinations with a nontrivial translation holonomy. (iii) Tenfold-way topolog-
ical phases may contribute anomalous states of codimension 2 at defects binding
a π-flux, which is the quantized geometric phase acquired by parallel transport of
an eigenstate around the defect. (iv) First-order topological phases protected by
an unitary internal symmetry U may contribute anomalous states of codimension
2 at defects binding a U -symmetry flux, which is present if an eigenstate paral-
lel transported around the defect acquires an action of the internal symmetry U .
Furthermore, we have found that in some symmetry classes, a prediction of the
the anomaly at the disclination solely in terms of the bulk topology is impossible.



This obstruction manifested in terms of a domain wall connected to the discli-
nation, whose microscopic properties may influence the disclination anomaly. In
conclusion, this work establishes a link between the characterization of topolog-
ical phases in terms of their boundary signatures familiar from the K-theoretic
classification of topological phases in quadratic fermionic Hamiltonians [4], and
the characterization of topological phases in terms of their bulk excitations and
response to defects [5, 6].

In Chapter 4 we have shown how to construct symmetry-based indicators for
topological Bogoliubov-de Gennes Hamiltonians. The construction consists out of
the five steps:

• (i) Topological band labels BL. Define the topological band labels in terms of
the full classifying group K(ks) of the matrix-valued Bogoliubov-de Gennes
Hamiltonian H(ks) at the high symmetry momenta ks. The classifying group
is defined using a full stable homotopy equivalence classification of the ma-
trices H(ks). By using the full classifying group, we ensure to extract the
maximal information on the topology of the matrix valued function H(k)
that can be extract from evaluation at a set of high symmetry momenta ks.

• (ii) Compatibility relations C. By identifying the full classifying groupK(k, d)
of all general points, lines and planes in the Brillouin zone connecting dis-
tinct (sets of) high symmetry momenta, we identify the subgroup of topolog-
ical band labels that corresponds to gapped Hamiltonians. By omitting the
”higher-dimensional” compatibility relations derived from lines and planes,
one can derive symmetry-based indicators for topological semimetals and
nodal superconductors.

• (iii) Atomic limits AI. We construct all atomic limits by using the full clas-
sifying group of all high symmetry positions in the unit cell and identify the
subgroup of the topological band labels that is spanned by the atomic lim-
its. An atomic limit for superconductors is defined using the Grothendieck
construction of pairs of Hamiltonians.

• (iv) Symmetry-based indicators SI = BL ∩ C/AI. By taking the quotient
of the topological band labels consistent with the compatibility relations
with the atomic limits, one identifies the band labels that correspond to
gapped topological phases that do not correspond to any atomic limit. These
topological phases host anomalous boundary states (see Sec. 1.3 of Chapter
1).
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• (v) Identification. By comparing to a complete classification of topological
phases with anomalous boundary states in the given symmetry class, the
elements of SI can be identified and topological invariants for the individual
topological phases can be formulated.

Steps (i) to (iv) are expected to be implementable in an algorithm as they are
an extension of the algorithmic solution in Refs. 7, 8. Step (v) would require
an algorithmic classification of topological crystalline phases that at the same
time characterizes the corresponding anomalous boundary states in terms of their
codimension and protecting crystalline symmetries. Such an algorithm does not
yet exist to the knowledge of the author. However, partial algorithmic solutions
have been suggested:

Ref. 9 contains an algorithmic construction of time-reversal symmetric topo-
logical crystalline insulators in Cartan class AII. Within a reasonable assumption
on the entanglement properties of the crystalline topological phase, this construc-
tion is expected to be complete. In Chapter 3 we utilized this construction, and
suggested how to identify a set of generating phases, the order of the boundary
states and the whether the crystalline topological phase is protected by translation
symmetry. However, it is not yet clear whether an algorithmic extension of this
approach to all Cartan classes is possible, because the solution of Ref. 9 utilized
some simplifications that are unique to Cartan class AII. In particular, the exis-
tence of zero-dimensional anomalous states in Cartan classes AIII, BDI, D, DIII
and CII poses a significant challenge for an algorithmic construction.

Furthermore, Ref. 10 contains an extensive classification of strong topological
crystalline insulators and superconductors in general magnetic point groups. This
approach is an extension of the methods discussed in the introduction of this
thesis. The extension discussed in Ref. 10 is capable of identifying the subgroup of
atomic limits as well as the first-order topological phases in the classifying group.
However, this approach does not yet incorporate topological phases protected
by translational symmetries, but the author of Ref. 10 suggests how this could
be approached. Furthermore, it remains to distinguish topological phases with
second- and third-order anomalous states on the surface.

Symmetry-based indicators offer a significant reduction in complexity for di-
agnosing topological phases of matter. The expressions of the resulting criteria in
the weak-pairing limit allow to formulate easily accessible criteria for topological
superconductivity. The simplest example is the one-dimensional topological su-
perconductor in Cartan class D. In Section V.A. of Chapter 4 we derived that the
topological invariant for the Z2 topological phase can be expressed as the sum of
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the Pfaffian invariant at k = 0 and k = π modulu 2, in agreement with Ref. 11. In
the weak pairing limit, see Sec. IV.E of Chapter 4, this invariant is expressed as
the difference of the number of occupied bands of the normal-state Hamiltonian
at k = 0 and k = π modulu 2. Therefore, if a normal-state Hamiltonian with an
odd number of band crossings between k = 0 and k = π opens a gap by introduc-
ing superconductivity, it turns into a one-dimensional topological superconductor.
This criterion reproduces the familiar result for topological superconductivity in
multichannel nanowires [12]. Similar lines of argumentation can be employed to
reproduce the criteria for topological superconductivity in inversion and time re-
versal symmetric metals [13, 14, 15].

Outlook

In the following we list open research questions that relate to the results presented
in this thesis.

Non-symmorphic symmetries. A symmetry-group is said to be non-symmorphic
if it contains point group operations (such as mirror or rotation) only in combina-
tion with a translations, but not individually 1 [16]. Open reasearch questions for
non-symmorphic space groups that related to the work presented in this thesis are
(i) how to obtain a complete classification for all Cartan classes, (ii) how to iden-
tify the boundary signatures of non-symmorphic symmetry protected topological
phases, (iii) how to extend symmetry-based indicators for Bogoliubov-de Gennes
Hamiltonians with non-symmorphic symmetries. A general answer to these ques-
tions has been approached for insulators in two and three dimensions, for which
a selection of relevant literature is summarized below. To the knowledge of the
author of this thesis, a general solution of these problems for superconductors has
not been approached.

An extensive K-theoretic classification exists only for crystalline insulators in
Cartan class A [17] which contains also a list of topological invariants. For time-
reversal symmetric insulators in Cartan class AII, the crystalline topological phases
have been constructed using the topological crystal approach in Ref. 9 from which
the order of the boundary signatures can be inferred, see Section IV of Chapter
3. The anomalous boundary signatures of non-symmorphic crystalline symmetry
protected topological phases have further been discussed in Refs. 18, 19, 20, 21,
22, 23, 24, 25, 26. Symmetry-based indicators have been formulated for insulators

1 For example, a non-symmorphic rotation symmetry is composed out of a rotation and a
translation along the rotation axis. In contrast, in a symmorphic space group, all symmetry
operations except translations have a common fixed point.
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for all space groups in Refs. 7, 8 and their corresponding anomalous boundary
states have been identified [27, 28].

Topological semimetals and nodal superconductors. Topological invariants de-
fined on closed, lower-dimensional manifolds of the Brillouin zone torus may pro-
tect nodal points, lines and surfaces in single-particle Hamiltonian [29]. These
nodal points and lines may come with associated Fermi arc surface states. The
prime example is the Weyl semimetal [30, 31, 32, 33]. Also crystalline symmetries
may allow a topological invariant to be defined on a submanifold of the Brillouin
zone which may protect nodal points and lines (see our discussion on compatibil-
ity relations in Chapter 4). Recently, it has been suggested that these crystalline
topological semimetals and nodal superconductors may host higher-order Fermi
arcs at hinges of the crystal [34, 35], but an exhaustive discussion of the anomalous
surface theories in general Cartan classes has not been done yet. Furthermore, an
exhaustive classification of nodal semimetals does not exist yet for general space
groups. Ref. 36 contains a discussion on nodal points protected by general wall-
paper group symmetries. We note that, our symmetry-based indicators can also
be formulated to indicate topological semimetals and nodal superconductors.

Topological phases in the presence of electron-electron interactions. The clas-
sification of topological insulators and superconductors in terms of K-theory [4]
assumes that the system is described by a free fermionic theory where all electron-
electron interactions are captured by an appropriate mean-field theory. An impor-
tant question in how this classification changes once interactions beyond mean-field
theory are taken into account [37, 38]. In many case studies, it was shown that
the classification of free fermionic theory with Z distinct topological phases col-
lapses to a finite abelian group Zn [37, 39, 40, 41, 42, 43, 44, 45, 38, 46]. This
phenomenon has also been called symmetric mass generation [47, 48, 49]. Fur-
thermore, the presence of interactions may allow new topological phases that do
not occur in the absence of strong interactions [39, 42, 38, 50], where the most
famous example is the fractional quantum Hall effect [51]. General approaches
to classifying interacting symmetry-protected topological phases have been devel-
oped [6, 52, 5]. Identifying the phenomenology of these strongly interaction phases
of matter and finding ways to diagnose them in a given system remains a challenge
in current research. Furthermore, even for topological phases that do not require
strong interactions, it remains a challenge to find topological invariants that can
be efficiently evaluated for a strongly interacting system.

Identification and verification of new topological insulators and superconduc-
tors. The final frontier of each theory in the natural sciences is its experimental
verification. The tools and concepts that this thesis has refined have been utilized
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in many instances to suggest new material realizations of topological insulators
which have been subsequently experimentally verified. The search for new topo-
logical insulators and topological superconductors is an ongoing quest in current
research.

The experimentally verified topological insulators include HgTe/CdTe quan-
tum well structures realizing a quantum spin Hall insulator [53], three dimensional,
time reversal symmetric topological insulators in B1−xSex [54], B2Se3 [55], B2Te3
[56], higher-order topological insulating states in SnTe [57] and Bismuth [58] as
well as antiferromagnetic topological insulators in MnBi2Te4 [59].

The identification of topological superconductors poses additional challenges.
On the theoretical side, one needs to understand the nature of the supercon-
ducting pairing mechanism. For superconductors that admit a description within
the Bogoliubov-de Gennes framework, the topology of the Bogoliubov-de Gennes
Hamiltonian depends on the superconducting pairing. Furthermore, it is chal-
lenging to identify unambiguous signatures of topological superconductors [60].
Signatures consistent with topological superconductivity have been observed in
InSb [61, 62, 63] and InAs [64] nanowires proximitized to a s-wave superconduc-
tor, a chain of ferromagnetic adatoms on a s-wave superconductor [65], in the
doped topological insulators CuxBi2Se3 [66, 14, 67] and Sn1−xInxTe [68, 67], in
the spin-triplet superconductor Sr2RuO4 [69] and on the surface of Fe-based su-
perconductors [70].
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A. Appendix to ”Second-order topological insulators and superconductors with an
order-two crystalline symmetry

A.1. REFLECTION-MATRIX-BASED
DIMENSIONAL REDUCTION SCHEME

In this appendix we describe details of the reflection-
matrix based dimensional reduction scheme. We first re-
view how this method works in the absence of crystalline
symmetry, following the original article by Fulga et al.,[1]
and then show how to include order-two crystalline sym-
metries with d‖ < d, generalizing the analysis of Ref.
2. The reflection-matrix based dimensional reduction
scheme leaves d‖ unchanged, so that the minimal dimen-
sion it can achieve is d = d‖. The main text discusses
how the reflection-matrix based dimensional reduction
scheme can also be applied to second-order topological
insulators and superconductors.

A.1.1. Altland-Zirnbauer classes without
crystalline symmetries

The key step in the method of Ref. 1 is the construction
of a (d − 1)-dimensional gapped Hamiltonian Hd−1 for
each d dimensional gapped Hamiltonian Hd. The Hamil-
tonians Hd and Hd−1 have different symmetries, but the
same (strong) topological invariants. Fulga et al. show
how the Hamiltonian Hd−1 can be constructed from the
reflection matrix rd if a gapped system with Hamiltonian
Hd is attached to an ideal lead with a (d−1)-dimensional
cross section.

To be specific, following Ref. 1 we consider a d-
dimensional gapped insulator with Hamiltonian Hd(k) =
Hd(k⊥, kd), occupying the half space xd > 0 and peri-
odic boundary conditions in the transverse directions, see
Fig. A.1. The half space xd < 0 consists of an ideal lead
with transverse modes labeled by the d − 1 dimensional
wavevector k⊥. The amplitudes aout(k⊥) and ain(k⊥) of
outgoing and incoming modes are related by the reflec-
tion matrix rd(k⊥),

aout(k⊥) = rd(k⊥)ain(k⊥). (A.1)

Since Hd is gapped, rd(k⊥) is unitary. Time-reversal
symmetry, particle-hole antisymmetry, or chiral antisym-
metry pose additional constraints on rd(k⊥). These fol-
low from the action of these symmetries on the ampli-
tudes ain and aout,

T ain(k⊥) = QT a
∗
out(−k⊥),

T aout(k⊥) = VT a
∗
in(−k⊥), (A.2)

Pain(k⊥) = VP a
∗
in(−k⊥),

Paout(k⊥) = QP a
∗
out(−k⊥), (A.3)

Cain(k⊥) = QC aout(k⊥),

Caout(k⊥) = VC ain(k⊥), (A.4)

a

aout

in

crystalline insulatorideal lead
x

d0

FIG. A.1. Schematic picture of a d-dimensional gapped crys-
talline insulator occupying the half space xd > 0, with peri-
odic boundary conditions applied along the remaining (d−1)-
dimension, coupled to an ideal lead with a (d−1)-dimensional
cross section. The reflection matrix rd(k⊥) relates the ampli-
tudes aout(k⊥) and ain(k⊥) of outgoing and incoming modes
in the lead.

where VT , QT , VP , QP , VC , and QC are k⊥-independent
unitary matrices that satisfy VTQ∗T = QT V ∗T = T 2,
VPV ∗P = QPQ∗P = P2, and QCVC = C2 = 1. Systems
with both time-reversal symmetry and particle-hole an-
tisymmetry also have a chiral antisymmetry, with QC =
VPQ∗T = T 2P2QTQ∗P and VC = QPV ∗T = T 2P2VT V ∗P .
For the reflection matrix rd(k⊥) the presence of time-
reversal symmetry, particle-hole antisymmetry, and/or
chiral antisymmetry leads to the constraints

rd(k⊥) = QT
T rd(−k⊥)TV ∗T , (A.5)

rd(k⊥) = QT
Prd(−k⊥)∗V ∗P , (A.6)

rd(k⊥) = Q†Crd(k⊥)†VC . (A.7)

The effective Hamiltonian Hd−1 is constructed out of
rd(k⊥) in different ways, depending on the presence or
absence of chiral symmetry. With chiral symmetry one
sets

Hd−1(k) ≡ QCrd(k), (A.8)

using Eq. (A.7) to verify that Hd−1 is indeed hermitian.

(Recall that VC = Q†C since QCVC = C2 = 1.) Equation
(A.8) simplifies to Eq. (2.9) of the main text if the basis
of scattering states is chosen such that QC = VC = 1.
Without chiral symmetry one defines Hd−1 as

Hd−1(k) =

(
0 rd(k)

r†d(k) 0

)
, (A.9)

which is manifestly hermitian and satisfies a chiral sym-
metry with UC = σ3 = diag (1,−1). Hence, for the com-
plex classes the dimensional reduction procedure Hd →
Hd−1 maps a Hamiltonian with chiral symmetry to one
without, and vice versa, corresponding to the period-two
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sequence

A
d−1−−→ AIII

d−1−−→ A.

Bulk-boundary correspondence implies that the bulk,
which is described by the Hamiltonian Hd(k), and the
boundary, which determines the reflection matrix rd(k⊥),
have the same topological classification. Since rd(k⊥)
is in one-to-one correspondence with the Hamiltonian
Hd−1(k⊥), this implies that Hd and Hd−1 have the same
topological classification.

Central point in the construction of Ref. 1 is that if the
Hamiltonian Hd possesses an additional antiunitary sym-
metry and/or antisymmetry, placing it in one of the real
Altland-Zirnbauer classes labeled s = 0, 1, . . . , 7, then
Hd−1 possesses an antiunitary symmetry and/or anti-
symmetry, too, such that it is in Altland Zirnbauer class
s− 1.[1, 2] Hence, for the real Altland-Zirnbauer classes,
the reflection-matrix based dimensional reduction scheme
generates the period-eight sequence

CI
d−1−−→ C

d−1−−→ CII
d−1−−→ AII

d−1−−→ DIII

d−1−−→ D
d−1−−→ BDI

d−1−−→ AI
d−1−−→ CI, (A.10)

which is the well-known period-eight Bott periodicity
known from the classification of topological insulators
and superconductors.[3–8]

A.1.2. With order-two crystalline symmetries

Bulk-boundary correspondence continues to exist in the
presence of an order-two crystalline symmetry with d‖ <
d, if the sample surface is left invariant under the sym-
metry operation. (For d‖ = d there are no such invariant
surfaces.) Correspondingly, the reflection-matrix based
dimensional reduction scheme may be used in the pres-
ence of such crystalline symmetries, too, as was shown
for the case of reflection symmetry by two of us in Ref.
2.

Labeling the coordinates as in Sec. 2.2 the coordinate
xd is left invariant by the crystalline symmetry opera-
tion S if d‖ < d. Hence, taking the same geometry as
above, the lead and the lead-crystal interface are mapped
to themselves under S. We now discuss the four cases
of unitary symmetry, unitary antisymmetry, antiunitary
symmetry, and antiunitary antisymmetry separately.

Unitary symmetry.— As with the non-spatial symme-
tries, the action of a unitary symmetry operation S on the
amplitudes ain and aout of incoming and outgoing states
in the leads involves multiplication with k⊥-independent
unitary matrices,

Sain(k⊥) = VS ain(Sk⊥),

Saout(k⊥) = QSaout(Sk⊥), (A.11)

where Sk⊥ = (−k1, . . . ,−kd‖ , kd‖+1, . . . , kd−1) denotes
the action of the symmetry operation on the mode vector
k and the matrices VS andQS satisfy V 2

S = Q2
S = S2 = 1.

The presence of the order-two crystalline symmetry leads
to a constraint on the reflection matrix,

rd(k⊥) = Q†Srd(Sk⊥)VS . (A.12)

The algebraic relations involving the matrices QS , VS
depend on whether the symmetry operation S commutes
or anticommutes with the non-spatial symmetry opera-
tions T , P, and C, QTQ∗S = ηT VSQT , VT V ∗S = ηTQSVT ,
VPV ∗S = ηPVSVP , QPQ∗S = ηPQSQP , QCQS = ηCVSQC ,
and VCVS = ηCQSVC .

Unitary antisymmetry.— An order-two unitary an-
tisymmetry CS also exchanges incoming and outgoing
modes, such that one has

CSain(k⊥) = QCS aout(Sk⊥),

CSaout(k⊥) = VCSain(Sk⊥), (A.13)

with Sk⊥ defined a above. For an antisymmetry oper-
ation CS the matrices VCS and QCS satisfy VCSQCS =
QSCVCS = (CS)2 = 1. The presence of the crystalline
unitary antisymmetry CS implies that the reflection ma-
trix satisfies

rd(k⊥) = Q†CSrd(Sk⊥)†VCS , (A.14)

and the matrices QCS and VCS satisfy the algebraic
relations QT V ∗CS = ηTQCSVT , VTQ∗CS = ηT VCSQT ,
VPQ∗CS = ηPQCSQP , QPV ∗CS = ηPVCSVP , QCSVC =
ηCQCVCS , VCSQC = ηCVCQCS .

Antiunitary symmetry.— The action of an order-two
antiunitary symmetry T ±S on the scattering amplitudes
is represented by unitary matrices VT S and QT S ,

T Sain(k⊥) = QT S a
∗
out(−Sk⊥),

T Saout(k⊥) = VT Sa
∗
in(−Sk⊥), (A.15)

with VT SQ∗T S = QT SV ∗T S = (T S)2 = ±1. The presence
of the order-two crystalline antiunitary symmetry leads
to a constraint on the reflection matrix,

rd(k⊥) = QT
T Srd(−Sk⊥)TV ∗T S , (A.16)

and the matrices QT S and VT S satisfy the algebraic
relations QT V ∗T S = ηTQT SV ∗T , VTQ∗T S = ηT VT SQ∗T ,
VPQ∗T S = ηPQT SQ∗P , QPV ∗T S = ηPVT SV ∗P , QT SV ∗C =
ηCQCVT S , VT SQ∗C = ηCVCQT S .

Antiunitary antisymmetry.— Finally, for an antiuni-
tary antisymmetry P±S one has

PSain(k⊥) = VPS a
∗
in(−Sk⊥),

PSaout(k⊥) = QPSa
∗
out(−Sk⊥), (A.17)

with VPSV ∗PS = QPSQ∗PS = (PS)2 = ±1. The reflection
matrix satisfies

rd(k⊥) = QT
PSrd(−Sk⊥)∗V ∗PS (A.18)

and the algebraic relations involving the matrices QPS
and VPS are QTQ∗PS = ηT VPSQ∗T , VT V ∗PS = ηTQPSV ∗T ,
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Appendix to: ”Second-order topological insulators and superconductors with an order-two crystalline symmetry”

VPV ∗PS = ηPVPSV ∗P , QPQ∗PS = ηPQPSQ∗P , QCQPS =
ηCVPSQ∗C , and VCVPS = ηCQPSV ∗C .

To see how the presence of an order-two crystalline
symmetry or antisymmetry affects the dimensional re-
duction scheme we first consider the complex classes A
and AIII. We start from a Hamiltonian in Shiozaki-Sato
symmetry class AS , (s, t) = (0, 0), which is represented
by a Hamiltonian Hd in symmetry class A with a uni-
tary symmetry S. Constructing a Hamiltonian Hd−1 in
class AIII as described above, we find that the unitary
symmetry S imposes the additional constraint

Hd−1(k⊥) = U†SHd−1(Sk⊥)US , (A.19)

on Hd−1, with

US =

(
QS 0
0 VS

)
. (A.20)

Since US commutes with σ3 and U2
S = 1, we conclude

that dimensional reduction maps the class AS to class
AIIIS+ . In the classification of Shiozaki and Sato this
class is labeled (s, t) = (1, 0). Similarly, if Hd is a
Hamiltonian in Shiozaki class (s, t) = (0, 1), which is
represented by a unitary antisymmetry CS, the mapped
Hamiltonian Hd−1 satisfies the additional symmetry

U†CSHd−1(Sk⊥)UCS (A.21)

with

UCS =

(
0 VCS

QCS 0

)
. (A.22)

This is a unitary symmetry operation that anticommutes
with the chiral operation σ3, so that the mapped Hamil-
tonian is in Shiozaki-Sato class AIIIS− , (s, t) = (1, 1).
Finally, starting with a Hamiltonian with symmetry of
type (s, t) = (1, t), represented by a class AIII Hamil-
tonian with an order-two crystalline symmetry S com-
muting (ηC = 1) or anticommuting (ηC = −1) with C for
t = 0, 1, respectively, the mapped Hamiltonian satisfies
the constraint

Hd−1(k⊥) = ηCV
†
SHd−1(Sk⊥)VS , (A.23)

which is a symmetry of Shiozaki-Sato type (s, t) = (0, t),
t = 0, 1. (It is a unitary symmetry for ηC = 1 and an
antisymmetry for ηC = −1.)

A similar procedure can be applied to the remaining
complex Shiozaki-Sato classes, which are labeled by a
single integer s = 0, 1, . . . , 7. Starting with a Hamilto-

nian of Shiozaki classes s = 0 and s = 4 (classes AT
+S

and AT
−S , antiunitary symmetry T S squaring to 1 and

−1, respectively), we find that the mapped Hamiltonian
Hd−1 satisfies the constraint

Hd−1(k⊥) = U†T SHd−1(−Sk⊥)∗UT S (A.24)

with

UT S =

(
0 V ∗T S

Q∗T S 0

)
. (A.25)

Hence, Hd−1 satisfies an antiunitary symmetry that anti-
commutes with the chiral operation C and squares to 1 or
−1, so that the mapped Hamiltonian is in Shiozaki classes
s = 7 and s = 3, respectively. Similarly, for symmetry
classes s = 2 and s = 6, corresponding to an antiunitary
antisymmetry squaring to 1 or −1, respectively, we find
that Hd−1 satisfies the constraint

Hd−1(k⊥) = U†PSHd−1(−Sk⊥)∗UPS (A.26)

with

UPS =

(
Q∗PS 0

0 V ∗PS

)
. (A.27)

This is an antiunitary symmetry that commutes with the
chiral operation and squares to 1 or −1, corresponding to
symmetry classes s = 1 and s = 5, respectively. Finally,
for the remaining symmetry classes we may start from
an antiunitary symmetry squaring to ±1 and find that
the mapped Hamiltonian satisfies

Hd−1(k⊥) = ηC(QCVT S)†Hd−1(−Sk⊥)∗(QCVT S),
(A.28)

which is an antiunitary symmetry (for ηC = 1) or anti-
symmetry (for ηC = −1) that squares to ±ηC , so that
under dimensional reduction the class s = 1, 3, 5, 7 is
mapped to s = 0, 2, 4, and 6, respectively.

For the real classes we may proceed in the same way.
One finds that under dimensional reduction the Shiozaki-
Sato symmetry class (s, t) is mapped to (s − 1, t), with
s modulo 8. The derivation is identical to that given in
Ref. 2 for the case of mirror reflection symmetry.

A.2. CLASSIFICATION OF
MIRROR-SYMMETRIC CORNERS OF

TWO-DIMENSIONAL CRYSTALS

In this Appendix we explain the origin of the entries in
Tables 2.8 – 2.10. Throughout we will use the convention
that the chiral operation C squares to one.

A.2.1. Complex classes with antiunitary
symmetries and antisymmetries

Class AT
+M, s = 0.— The topological crystalline phases

coincide with the strong topological phases of Altland-
Zirnbauer class A. No protected zero-energy corner states
can persist in the trivial strong phase.

Class AIIIT
+M+ , s = 1.— Since the antiunitary mir-

ror reflection operation TM commutes with the chiral
operation C, corner state have a well-defined parity σC
under C and can be chosen to be mapped to themselves
under the antiunitary mirror reflection operation TM.
Two corner states with opposite σC can be gapped out
by a reflection-symmetric mass term, so that we may use
the (extrinsic) integer topological index N = N+ − N−
to characterize the zero-energy states at a corner.
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A decoration of the edges by a topologically nontriv-
ial one-dimensional chain leads to the addition of two
zero-energy states |L〉 and |R〉 = TM|L〉 placed sym-
metrically around the corner as in Fig. 2.8. Since TM
commutes with C, these corner states have the same value
of σC . Moreover, the linear combinations |L〉 + |R〉 and
i(|L〉 − |R〉) map to themselves under TM, so that they
meet the classification criteria for corner states formu-
lated above. Hence, by changing the lattice termination
we may change N+ or N− and, hence, N , by two. The
parity of N remains unchanged under such a change of
termination, which corresponds to an intrinsic Z2 topo-
logical index.

If the antiunitary mirror reflection symmetry is broken
locally near the corner these conclusions do not change.
We may still define N = N+ − N− as a topological in-
variant, which can not change without closing a boundary
gap or the bulk gap, and by changing the lattice termi-
nation one may still change add pairs of zero modes to
the corner, so that N mod 2 is the appropriate invari-
ant if topological equivalence is defined with respect to
transformations that possibly close boundary gaps.

Class AP
+M, s = 2.— In this symmetry class the

antiunitary reflection antisymmetry PM may protect a
single zero-energy state at a mirror-symmetric corner. A
pair of zero-energy states can, however, be gapped out by
a mirror-antisymmetric perturbation. To see this, con-
sider two zero modes |1〉 and |2〉, for which we may as-
sume that they are both invariant under PM. Then
i(|1〉〈2| − |2〉〈1|) is a local perturbation that obeys the
mirror reflection antisymmetry and gaps out the states
|1〉 and |2〉. We conclude that a mirror-symmetric corner
is described by a Z2 index.

Class AIIIT
−M− , s = 3.— The bulk phase is al-

ways topologically trivial.[9] However, a single pair of
corner states can be obtained by symmetrically deco-
rating mirror-related edges with topologically nontrivial
one-dimensional chains, as in Fig. 2.8. To see this, de-
note states |L〉 and |R〉 = TM|L〉, as in Fig. 2.8. Since
(TM)2 = −1 the states |L〉 and |R〉 form a Kramers
pair under the antiunitary mirror reflection operation,
|L〉 = −TM|R〉. A single such pair of zero-energy states
can not be gapped out by a perturbation that respects
the antiunitary mirror reflection symmetry.

Class AT
−M, s = 4.— The nontrivial topological crys-

talline insulator phases in this symmetry class are also
strong topological phases, i.e., they have protected edge
modes on all edges, not only on mirror-symmetric edges.
A second-order topological insulator phase with gapped
edges and protected corner states does not exist for this
symmetry class.

Class AIIIT
−M+ , s = 5.— The bulk phase is topo-

logically trivial.[9] However, (multiple) pairs of cor-
ner states can be obtained by symmetrically decorating
mirror-related edges with topologically nontrivial one-
dimensional chains, as in Fig. 2.8. To see this, denote
states |L〉 and |R〉 = TM|L〉, as in Fig. 2.8. The states
|L〉 and |R〉 have the same parity under the chiral oper-

ation C, since the antiunitary mirror reflection operation
TM commutes with C. Antisymmetry of the Hamilto-
nian under C protects corner states of equal parity, cor-
responding to a 2Z topological index.

Class AP
−M, s = 6.— In this symmetry class the

bulk phase is topologically trivial. Alternatively, one
can see that no protected zero-energy corner states can
be consistent with the existence of an antiunitary mir-
ror reflection antisymmetry PM with (PM)2 = −1:
Such corner states would have to appear in pairs |0〉,
PM|0〉, which can be gapped out by the mass term
|0〉〈0|PM + PM|0〉〈0|, which obeys the required anti-
symmetry under PM.

Class AIIIT
+M− , s = 7.— This symmetry class

is topologically trivial as a bulk phase and no cor-
ner states can be obtained by symmetrically decorating
mirror-related edges with topologically nontrivial one-
dimensional chains. To see, we again denote these end
states |L〉 and |R〉 = TM|L〉, as in Fig. 2.8. The
states |L〉 and |R〉 have opposite parity under the chi-
ral operation C, since the antiunitary mirror reflection
operation TM anticommutes with C. The Hamiltonian
|R〉〈L| + |L〉〈R| anticommutes with C, commutes with
TM, and gaps out the zero modes |L〉 and |R〉.

A.2.2. Real classes

We represent the Shiozaki-Sato classes using unitary
mirror reflection symmetries M or antisymmetries CM
squaring to one.
Class AIM+ , (s, t) = (0, 0).— This class has a topolog-

ically trivial bulk phase and does not allow for protected
corner modes.
Class BDIM++ , (s, t) = (1, 0).— In a mirror-

symmetric corner, corner states can be chosen to have
well-defined parities σC and σM with respect to the chi-
ral operation C and mirror reflectionM. We use NσCσM
to denote the number of corner states with the corre-
sponding parities. No mass terms can be added that gap
out states with the same parity σC . Local mass terms
may gap out pairs of corner states with different σC , but
only if they have the same value of σM; corner states with
different σC and different σM are protected. As a result,
N++−N−+ and N+−−N−− are two independent topo-
logical invariants describing a mirror-symmetric corner.
This gives rise to an extrinsic Z2 topological index.

Upon changing the lattice termination while preserv-
ing the global mirror reflection symmetry, e.g., by “glue-
ing” a topologically nontrivial one-dimensional chain to
the crystal edges as in Fig. 2.8, a pair of corner states
with the same parity σC and opposite parities σM can be
added to a corner. Such changes of the lattice termina-
tion change the invariants N++−N−+ and N+−−N−−,
but leaves their difference N++−N−+−N+−+N−− unaf-
fected. Hence, if crystals that differ only by lattice termi-
nation are considered equivalent, the relevant topological
invariant is N++−N−+−N+−+N−−, corresponding to
an intrinsic Z topological index.
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If mirror reflection symmetry is broken locally at the
corner, corner states can be characterized by their parity
σC only. Using NσC to denote the number of corner states
with parity σC , N+ − N− is a topological invariant —
corresponding to an extrinsic Z classification —, which
is defined modulo 2 only if crystals that differ only lattice
termination are considered equivalent.

Class DM+ , (s, t) = (2, 0).— In this class zero-energy
corner states can be chosen to be particle-hole symmetric
(i.e., they are Majorana states) and with well-defined
parity σM under mirror reflection M. We use NσM to
denote the number of corner states at parity σM. The
numbers N+ and N− are defined modulo two only, since
two zero modes of the same parity can be gapped out by
a mirror-symmetric mass term. This gives an extrinsic
Z2
2 topological classification of mirror-symmetric corners.

A change of lattice termination, e.g., by the addition of
topologically nontrivial one-dimensional superconductors
on mirror-related edges, adds two zero modes of opposite
mirror parity to the corner. This reduces the extrinsic
Z2
2 classification to an intrinsic Z2 classification in case

that crystals differ only by their lattice termination are
considered equivalent. Without local mirror reflection
symmetry at the corner, any pair of Majorana zero modes
can gap out, corresponding to a Z2 classification.

Class DIIIM++ , (s, t) = (3, 0).— Since particle-hole
conjugation P and time-reversal T anticommute with the
chiral operation C — recall that we require that C2 = 1
— zero-energy corner states always appear in Kramers
pairs |0〉 and T |0〉, which have opposite parities under
C. Since both states of such a Kramers pair have the
same mirror parity σM, we may characterize the cor-
ner states with the help of the number NσM of Kramers
pairs of corner states of mirror parity σM. Mirror reflec-
tion symmetry forbids the gapping out of Kramers pairs
at opposite mirror parity σM, but allows two Kramers
pairs at same σM to annihilate. As a result, both N+

and N− are defined modulo two only, giving rise to a Z2
2

topological classification.

A change of lattice termination, e.g., by the addition of
topologically nontrivial one-dimensional superconductors
on mirror-related edges, adds two Kramers pairs of zero-
energy states of opposite mirror parity to the corner, thus
reducing the extrinsic Z2

2 classification to an intrinsic Z2

classification. Without local mirror reflection symmetry
at the corner, any two Kramers pairs of Majorana zero
modes can gap out, corresponding to a Z2 classification.

Class AIIM+ , (s, t) = (4, 0).— This class has a topo-
logically trivial bulk phase and does not allow for pro-
tected corner modes.

Class CIIM++ , (s, t) = (5, 0).— For Altland-Zirnbauer
class CII the chiral operation C commutes with particle-
conjugation P and time reversal T , so that a corner hosts
Kramers pairs of zero modes at the same parity σC under
the chiral operation C. Both states in such a Kramers
pair have the same mirror parity σM, which allows us
to count the number NσC,σM of Kramers pairs with the
corresponding parities σC and σM. Two Kramers pairs

with opposite σC but the same σM may be gapped by
a local mirror reflection-symmetric perturbation to the
Hamiltonian, giving rise to integer topological invariants
N++−N−+ and N+−−N−−. This corresponds to a 2Z2

extrinsic topological classification.

A change of lattice termination, e.g., by the addi-
tion of topologically nontrivial one-dimensional chains
on mirror-related edges, adds two Kramers pairs of zero
modes of opposite parity σM to the corner. This leaves
N++−N−+−N+−+N−− as the only integer invariant,
corresponding to a 2Z classification.

Without local mirror reflection symmetry at the cor-
ner, Kramers pairs corner states are characterized by
their parity σC only. The difference N+ − N− of the
number of zero-energy Kramers doublets with the corre-
sponding parities σC is an integer topological invariant.
If crystals that differ only lattice termination are con-
sidered equivalent, this difference is defined modulo two
only, leading to a Z2 topological invariant.

Classes CM+ , (s, t) = (6, 0), and CIM++ , (s, t) =
(7, 0).— These classes have a topologically trivial bulk
phase and do not allow for protected corner modes.

Class AICM− , (s, t) = (0, 1).— This class has a topo-
logically trivial bulk phase and does not allow for pro-
tected corner modes. This conclusion holds despite the
presence of a mirror reflection antisymmetry CM. Since
CM anticommutes with the time-reversal operation, cor-
ner modes can not be simultaneously eigenstates of CM
and of the time-reversal operation T . Hence, corner
modes appear as pairs, which can be chosen such that
the two states |±〉 in the pair are invariant under T
and CM|±〉 = ±i|∓〉. Then the local perturbation
|+〉〈−|+|−〉〈+| satisfies time-reversal symmetry and mir-
ror reflection antisymmetry and gaps out these two cor-
ner states.

Class BDIM+− , (s, t) = (1, 1).— This class has a topo-
logically trivial bulk phase. To see whether stable cor-
ner states may be induced by a suitably chosen lattice
termination, we consider adding two topologically non-
trivial one-dimensional chains in a symmetric fashion to
two symmetry-related crystal edges, as in Fig. 2.8. The
chains have zero energy end states |L〉 and |R〉 =M|L〉,
which may be chosen to be invariant under time rever-
sal. Since the mirror reflection operation M anticom-
mutes with C, the states |L〉 and |R〉 have opposite par-
ity under C. The Hamiltonian |L〉〈R| + |R〉〈L| is mirror
reflection symmetric, satisfies the symmetry constraints
of class BDI and gaps out the states |L〉 and |R〉. We
conclude that no stable corner states may be induced on
top of an otherwise trivial bulk by suitably adapting the
lattice termination.

Class DCM+ , (s, t) = (2, 1).— Particle-hole symmet-
ric (i.e., Majorana) corner states can be counted accord-
ing to their parity σCM under the mirror reflection an-
tisymmetry. Since a pair of corner states |±〉 with op-
posite parity σCM can be gapped by the local perturba-
tion i(|+〉〈−|−|−〉〈+|), whereas corner states with equal
parity σCM are protected by the mirror reflection anti-
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symmetry, the difference N+ − N− of the numbers NσC
of corner states with parity σC is a well-defined topolog-
ical invariant. This number remains unchanged if one-
dimensional topological superconductors are “glued” to
mirror-related edges, since this procedure adds a pair of
zero-energy states with opposite σCM. We conclude that
there is a Z topological classification.

If the mirror reflection symmetry is broken locally at
the corner, any pair of Majorana states can be gapped
out by a local perturbation, and one arrives at a Z2 topo-
logical classification.

Class DIIIM−+ , (s, t) = (3, 1).— Since time-reversal
T anticommutes with C, zero-energy corner states ap-
pear as Kramers pairs with opposite parity with respect
to the chiral operation C. We denote such a Kramers
pair as |+〉 and |−〉 = T |+〉, where the sign ± refers
to the C-eigenvalue. Since mirror reflection M anticom-
mutes with C, these states can not be chosen to simul-
taneously beM-eigenstates. However, multiple Kramers
pairs of zero modes can always be organized in such a
way that M acts within a single Kramers pair. Since
M anticommutes with C and M2 = 1, one has M|±〉 =
e±iφ|∓〉, where we may fix the phases of the basis kets
|±〉 such that φ = 0. Whereas a single such Kramers
pair is topologically protected, two Kramers pairs |±, 1〉
and |±, 2〉 can be gapped out by the local perturbation
i(|+, 1〉〈−, 2| − |−, 2〉〈+, 1| − |+, 2〉〈−, 1| + |−, 1〉〈+, 2|),
which obeys all relevant symmetries. We conclude that
the only invariant is the parity of the number of zero-
energy Kramers pairs, which gives a Z2 topological clas-
sification.

Class AIICM− , (s, t) = (4, 1).— A corner may host
Kramers pairs of zero modes, which may also be chosen
to have a well-defined parity under the mirror reflection
antisymmetry CM. Since CM anticommutes with time-
reversal T , the two states in the Kramers pair have oppo-
site CM-parity. Denoting the two members of a Kramers
pair by |±〉, time-reversal symmetry forbids perturba-
tions that have a nonzero matrix element between the
states |+〉 and |−〉, whereas mirror reflection antisymme-
try forbids perturbations that have nonzero matrix ele-
ments between |+〉 and |+〉 and between |−〉 and |−〉. We
conclude that a single such Kramers pair is protected by
the combination of time-reversal symmetry and mirror
reflection antisymmetry. A pair of such Kramers pairs
can, however, be gapped out: Denoting the states in the
two Kramers pairs by |±, 1〉 and |±, 2〉, such a pair of
Kramers pairs is gapped out by the local perturbation
i(|+, 1〉〈−, 2| − |−, 2〉〈+, 1| − |+, 2〉〈−, 1| + |−, 1〉〈+, 2|).
As a result, we find that this class has a Z2 topological
index. If mirror reflection (anti)symmetry is locally bro-
ken at the crystal corner, a Kramers pair can obtain a
finite energy and no protected zero-energy corner states
exist.

Class CIIM+− , (s, t) = (5, 1).— This class has a topo-
logically trivial bulk phase and does not admit corner
states. To see this, note that a mirror reflection opera-
tor with M2 = 1 represents a hermitian operator which

satisfies all symmetry requirements for this class: It com-
mutes with time-reversal T and itself, and anticommutes
with particle-hole conjugation P. Hence M is a valid
term in the Hamiltonian, which gaps out any mirror-
symmetric configuration of corner states.

Class CCM+ , (s, t) = (6, 1).— Corner states appear as
pairs related by particle-hole conjugation P. Since the
mirror reflection antisymmetry CM commutes with P,
the two states in the Kramers pair have the same mir-
ror eigenvalue σCM. Multiple Kramers pairs with the
same σCM can not be gapped out by a mirror reflection-
antisymmetric Hamiltonian, but Kramers pairs of oppo-
site parity σCM may be mutually gapped out by a lo-
cal mirror reflection-antisymmetric Hamiltonian. (For
example, in a representation in which P = σ2K and
CM = τ3, τ2 gaps out two pairs of Kramers pairs at
opposite CM-parity.) We conclude that the difference
N = N+ − N− between the numbers of Kramers pairs
with CM-parity σCM is a well-defined topological invari-
ant, giving a Z topological classification. Since Altland-
Zirnbauer class C does not allow one-dimensional chains
with protected zero-energy end states, this conclusion
does not depend on whether freedom of lattice termi-
nation plays a role in the topological classification. No
corner states can be stabilized in the absence of mirror
reflection antisymmetry.

Classes CIM−+ , (s, t) = (7, 1), and AIM− , (s, t) =
(0, 2).— These classes have a topologically trivial bulk
phase and do not allow for protected corner modes.

Class BDIM−− , (s, t) = (1, 2).— This class has a topo-
logically trivial bulk phase. To see whether stable cor-
ner states may be induced by a suitably chosen lattice
termination, we consider adding two topologically non-
trivial one-dimensional chains in a symmetric fashion to
two symmetry-related crystal edges, as in Fig. 2.8. The
chains have zero energy end states |L〉 and |R〉 =M|L〉,
which may be chosen to be invariant under time reversal
and particle-hole conjugation. Since the mirror reflec-
tion operation M commutes with C, the states |L〉 and
|R〉 have equal parity σC under C. Taking symmetric
and antisymmetric linear combinations of the states |L〉
and |R〉, one obtains a corner state doublet with opposite
parity under M, but equal σC . Multiple doublets of this
type with the same σC cannot be gapped out by a lo-
cal perturbation, whereas two corner state doublets with
opposite σC can. Hence, N+−N− is a valid integer topo-
logical invariant, where NσC is the number of zero-energy
doublets of C-parity σC .
Class DM− , (s, t) = (2, 2).— This class has a topo-

logically trivial bulk phase. No zero-energy corner states
can be induced by a suitably chosen lattice termination.
To see this, we consider a mirror reflection symmetryM
that squares to one, so thatM is represented by a hermi-
tian operator. SinceM anticommutes with particle-hole
conjugation P, M is itself a valid perturbation to the
Hamiltonian which gaps out any set of corner states.

Class DIIIM−− , (s, t) = (3, 2).— Since T 2 = −1 and T
anticommutes with C, corner modes consist of Kramers
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Majorana pairs of opposite parity under the chiral op-
eration C. Since the product MC commutes with the
time-reversal operation T and with the chiral operation
C, both states in a Kramers pair have the same “mixed
parity” σMC under MC. Two Kramers pairs of equal
mixed parity σMC can not be gapped out by a mirror-
symmetric perturbation, since MC anticommutes with
the Hamiltonian. Two Kramers pairs of opposite mixed
parity σMC can be gapped out by a local perturbation
satisfying T and M symmetries and C antisymmetry.
(For example, the two Kramers pairs |σMC , σC〉 with σMC
and σC = ± and |σMC ,−〉 = T |σMC ,+〉, are gapped
out by the perturbation |+,+〉〈−,−| + |−,−〉〈+,+| −
|+,−〉〈−,+| − |−,+〉|+,−〉.) Denoting the number of
zero-energy Kramers pairs with mixed parity σMC by
NσMC , we thus find that N+−N− is a valid integer topo-
logical invariant. This invariant can not be changed by
changing the lattice termination, since addition of two
one-dimensional topological superconductors on mirror-
related crystal edges as in Fig. 2.8 leads to the addition
of two Kramers doublets with opposite mixed parities
σMC . If the mirror symmetry is broken locally at the
corner, any pair of Majorana Kramers doublets can gap
out, and the Z topological classification is reduced to a
Z2 classification.

Class AIIM− , (s, t) = (4, 2).— The bulk crystalline
phase is a strong topological phase, and no stable zero-
energy states can be induced by a suitably chosen lattice
termination in the trivial bulk phase.

Class CIIM−− , (s, t) = (5, 2).— Corners allow
Kramers doublets with equal C parity σC but opposite
M parity σM. Two doublets at the same C-parity σC
can not be gapped out, but two doublets with opposite
C can. (For example, the two Kramers doublets |σC , σM〉
with σC and σM = ± and |σC ,−〉 = T |σC,+〉, are gapped
out by the perturbation |+,+〉〈−,+| + |−,+〉〈+,+| +
|−,−〉〈+,−| + |+,−〉|−,−〉.) Denoting the number of
Kramers pairs with C-parity σC by NσC , we thus find that
N+ −N− is a well-defined integer topological invariant.

A change of lattice termination, e.g., by the addi-
tion of topologically nontrivial one-dimensional chains
on mirror-related edges, adds two Kramers pairs of zero
modes of the same parity σC to the corner. Taking sym-
metric and antisymmetric linear combinations these can
be reorganized into two Kramers pairs |σC ,±〉 of the type
discussed above. Since changing the lattice termination
allows one to change N+ − N− by an even number, it
is only the modulo two part if this invariant which is
determined by the bulk band structure. The above anal-
ysis does not change if the mirror reflection symmetry is
broken locally at the corner.

Class CM− , (s, t) = (6, 2).— This class has a topolog-
ically trivial bulk phase and does not allow for protected
corner modes.

Class CIM−− , (s, t) = (7, 2).— Corner states ap-
pear in doublets related by particle-hole conjugation P.
Such doublets have opposite parity under the chiral op-
eration, since P and the chiral operation C anticom-

mute for this class. The product MC commutes with
P and C, so that both states in a doublet have the
same mixed parity σMC under MC. Two doublets of
equal mixed parity σMC can not be gapped out by a
mirror-symmetric perturbation, sinceMC anticommutes
with the Hamiltonian. Two doublets of opposite mixed
parity σMC can be gapped out by a local perturbation
satisfying M symmetry and P and C antisymmetries.
(For example, the two doublets |σMC , σC〉 with σMC
and σC = ± and |σMC ,−〉 = P|σMC ,+〉, are gapped
out by the perturbation |+,+〉〈−,−| + |−,−〉〈+,+| +
|+,−〉〈−,+| + |−,+〉|+,−〉.) Denoting the number of
zero-energy Kramers pairs with mixed parity σMC by
NσMC , we thus find that N+ − N− is a valid inte-
ger topological invariant. This invariant can not by
changed by changing the lattice termination, since the
Altland-Zirnbauer class CI does not allow a nontrivial
one-dimensional phase with protected end states.

Class AICM+ , (s, t) = (0, 3).— The mirror reflection
antisymmetry CM allows for the protection of corner
states at a mirror-symmetric corner. Corner states can
be chosen to be real and with well-defined parity σCM
under mirror reflection. Corner states of equal parity
can not be gapped out because of the mirror reflection
antisymmetry; corner states with opposite parity can be
gapped out. Hence N = N+−N− is an appropriate topo-
logical invariant, with NσCM the number of corner states
with CM-parity σCM.

Class BDIM−+ , (s, t) = (1, 3).— This class has a
trivial bulk phase. To see whether stable corner states
may be induced by a suitably chosen lattice termina-
tion, we consider adding two topologically nontrivial
one-dimensional chains in a symmetric fashion to two
symmetry-related crystal edges, as in Fig. 2.8. The
chains have zero energy end states |L〉 and |R〉 =M|L〉,
which may be chosen to be invariant under particle-
hole conjugation since the mirror reflection operationM
commutes with particle-hole conjugation P. A pair of
zero-energy states |L,R〉 is protected by the combina-
tion of P antisymmetry and M symmetry. Two such
doublets |L,R, 1〉 and |L,R, 2〉, however, can be gapped
out by the local perturbation i(|L, 1〉〈R, 2|−|R, 2〉〈L, 1|−
|L, 2〉〈R, 1|+ |R, 1〉〈L, 2|), which obeys P and C antisym-
metries and M symmetry. We conclude that the only
invariant is the parity of the number of such zero-energy
doublets, which gives a Z2 topological classification. If
mirror reflection symmetry is broken locally at the cor-
ner, the M-induced protection of a single doublet dis-
appears, and even a single doublet of zero-energy corner
states can be gapped out.

Class DCM− , (s, t) = (2, 3).— This class is a strong
topological phase, which has doublets of chiral Majorana
modes at edges. A single chiral Majorana mode is not
compatible with the symmetries, since such mode would
have to be invariant under P and CM, which is not pos-
sible since P and CM anticommute. Nevertheless, by
a suitable choice of lattice termination, a protected pair
of Majorana zero modes can be localized at a mirror-
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symmetric corner in the topologically trivial bulk phase.
To see this we consider adding two one-dimensional su-
perconductors with Majorana end states |L〉 and |R〉 to
mirror-related crystal edges of an otherwise topologically
trivial bulk crystal, as in Fig. 2.8. The end states |L,R〉
are chosen invariant under particle-hole conjugation P.
Since CM anticommutes with P we have |R〉 = iCM|L〉.
A zero-energy doublet |L,R〉 is then protected by the
combination of CM and P antisymmetries. Two such
doublets, however, can be gapped out by a local pertur-
bation, which results in a Z2 topological classification.
Class DIIIM+− , (s, t) = (3, 3).— This class has a triv-

ial bulk phase and cannot host protected corner states.
(In a representation in which M2 = 1 the mirror reflec-
tion operation M is represented by a hermitian oper-
ator, which satisfies P antisymmetry and T symmetry
and gaps out any set of zero-energy states localized at
the corner.)
Class AIICM+ , (s, t) = (4, 3).— This class allows

mirror-protected zero-energy Kramers pairs at corners.
Since the mirror reflection antisymmetry CM commutes
with the time-reversal operator T , such Kramers pairs
have the same parity σCM under mirror reflection.
Reflection antisymmetry protects zero-energy Kramers
pairs with equal parity σCM, but allows the mutual gap-
ping out of Kramers pairs with opposite σCM. Hence,
N = N+ − N− is a valid integer topological index for
this class, with NσCM the number of zero-energy corner
states with CM parity σCM.
Class CIIM−+ , (s, t) = (5, 3).— This class has a topo-

logically trivial bulk phase, and does not allow protected
zero-energy states at corners. To see this, we consider the
addition of two topologically nontrivial one-dimensional
chains in a symmetric fashion to two symmetry-related
crystal edges, as in Fig. 2.8. We denote the dou-
blets at the two chains by |L〉, |L′〉 = P|L〉, |R〉 =
M|L〉 and |R′〉 = P|R〉 = PM|L〉. Since M anticom-
mutes with C, doublets at the ends of the left and right
chains have opposite parity under the chiral operation C.
These four states can be gapped out by the perturbation
i(|L〉〈R′| − |R′〉〈L|+ |R〉〈L′| − |L′〉〈R|).
Class CCM− , (s, t) = (6, 3).— This class is a strong

topological phase, which has chiral modes at edges. No
corner modes can be constructed in the trivial bulk phase,
because the Altland-Zirnbauer class C is topologically
trivial in one dimension.
Class CIM+− , (s, t) = (7, 3).— This class is topologi-

cally trivial and does not allow for protected zero-energy
corner states.

A.3. EDGE-TO-CORNER CORRESPONDENCE
FOR TWO-DIMENSIONAL

MIRROR-SYMMETRIC CRYSTALS

A nontrivial mirror-symmetric topological crystalline
bulk phase implies the existence of protected gapless
states on mirror-symmetric edges. If the topological crys-

talline insulator or superconductor is not in a strong
topological phase, these edge states can be gapped out
for edges that are not invariant under the mirror op-
eration. In that case protected zero-energy states re-
main at mirror-symmetric corners. The main text dis-
cusses this scenario in detail for the complex Altland-
Zirnbauer classes with unitary mirror symmetries and
antisymmetries. In this appendix we give details for
the complex classes with antiunitary mirror symmetries
and antisymmetries and for the real Altland-Zirnbauer
classes. For completeness, we repeat the discussion of
those mirror-symmetric topological phases that were al-
ready contained in Ref. 10.

Throughout this appendix we will use x as a coordinate
along a mirror-symmetric edge, see Fig. 2.9a, or along
an edge that is symmetrically deformed from a mirror-
symmetric edge, with a mirror-symmetric corner located
at x = 0, see Fig. 2.9b, Further, v is a constant with the
dimension of velocity, and we use σj , τj , j = 0, 1, 2, 3 to
refer to Pauli matrices acting on different spinor degrees
of freedom, and 11N to denote the N × N unit matrix.
Edge Hamiltonians are always given in the simplest pos-
sible form, after a suitable basis transformation and after
rescaling of energies and coordinates.

A.3.1. Complex Altland-Zirnbauer classes with
antiunitary symmetries and antisymmetries

Class AT
+M, s = 0.— Representing TM by complex

conjugation K, this phase allows chiral edge modes with
Hamiltonian Hedge = −iv11N∂x. This is a strong topo-
logical phase, which does not allow localized zero-energy
states at corners.
Class AIIIT

+M+ , s = 1.— We represent the chi-
ral operation C using UC = σ3 and the antiunitary
mirror reflection operation using UTM = 1, so that
the bulk Hamiltonian H(kx, ky) satisfies the constraints
H(kx, ky) = −σ3H(kx, ky)σ3 = H∗(kx, ky). A nontrivial
mirror-symmetric edge is described by the edge Hamilto-
nian

Hedge = −ivσ1∂x. (A.29)

This edge allows a unique mass term mσ2, which is odd
under TM. The intersection of two mirror-related edges
represents a domain wall with respect to such a mass
term and hosts a protected zero-energy mode. The chiral
parity σC of such a corner state depends on the sign of m
far away from the corner, such that σC is negative if m(x)
is positive for x→∞. The Z (extrinsic) classification of
corner states follows from the observation that corner
states at equal parity σC can not mutually gap out.

Class AP
+M, s = 2.— We represent the antiunitary

mirror antisymmetry PM by complex conjugation K, so
that H(kx, ky) = −H∗(kx,−ky). The edge Hamiltonian
at a mirror-symmetric edge is

Hedge = −ivσ2∂x. (A.30)
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Upon deforming the edge away symmetrically around a
corner at x = 0, two mass terms m1(x)σ1 +m2(x)σ3 are
allowed, with m1,2(x) = −m1,2(−x). Such a Hamiltonian
hosts a zero mode symmetrically located around the cor-
ner at x = 0. A mirror-symmetry-breaking perturbation
near x = 0 can however push this state away from zero
energy.

Class AT
−M, s = 2.— We represent TM by σ2K,

where K is complex conjugation. A mirror-symmetric
edge can host multiple Kramers pairs of chiral modes,
described by the edge Hamiltonian Hedge = −ivσ011N∂x.
This is a strong topological phase which does not allow
for localized states at corners.

A.3.2. Real classes

Class BDIM++ , (s, t) = (1, 0).— We use UT = 1,
UP = σ3, UC = σ3, and UM = σ3τ3 to represent time-
reversal, particle-hole conjugation, chiral operation, and
mirror reflection. The integer topological invariant N
for class BDIM++ counts the difference of the number of
helical edge states with positive and negative mixed par-
ity σMC at zero energy. For a minimal mirror-invariant
edge with N ≥ 0, all edge states have the same (positive)
mixed parity, so that effectively we may set UM = σ3.
With a suitable choice of basis and after rescaling the
edge Hamiltonian takes the form

Hedge = −ivσ211N∂x. (A.31)

The unique mass term mσ1, with m a N × N hermi-
tian matrix, is odd under reflection. The intersection of
two mirror-related edges represents a domain wall with
respect to such a mass term and hosts N protected zero-
energy modes. The parity σC of these modes depends on
the sign of the eigenvalues of the matrix m(x) away from
the corner at x = 0, such that a positive eigenvalue for
x → ∞ corresponds to a corner state with positive σC .
This reproduces the Z2 (extrinsic) classification of corner
states derived in App. A.2.
Class DM+ , (s, t) = (2, 0).— We choose the unitary

matrices UP = 1 and UM = σ1 to represent particle-hole
conjugation and mirror reflection. The bulk topological
crystalline phase has a Z2 classification, for which the
nontrivial phase has counterpropagating edge modes at
a mirror-symmetric edge described by the edge Hamil-
tonian Hedge = −ivσ3∂x. This edge Hamiltonian has a
unique mass term mσ2. The intersection between two
mirror-related edges represents a domain wall and hosts
a localized zero-energy state. The mirror parity σM de-
pends on the sign of m far away from the corner at x = 0,
such that a positive value of m for x → ∞ corresponds
to a positive mirror parity σM. Since no matrix elements
may exist between two corner state with opposite mirror
parity σM, this reproduces the Z2

2 (extrinsic) classifica-
tion of corner states derived in App. A.2.
Class DIIIM++ , (s, t) = (3, 0).— We set UT = σ2,

UP = 1, and UM = σ2τ2. With a suitable choice of

basis, a mirror-invariant edge in the nontrivial topolog-
ical crystalline phase has a pair of counter-propagating
Majorana modes with Hamiltonian

Hedge = −ivσ3τ0∂x. (A.32)

The unique mass term mσ1τ2 is odd under M. As a re-
sult, intersection between two mirror-related edges rep-
resents a domain wall and hosts a Kramers pair localized
zero-energy states. The mirror parity σM depends on
the sign of m far away from the corner at x = 0. The Z2

2

(extrinsic) classification of corner states derived in App.
A.2 follows upon noting that no matrix elements may ex-
ist between two corner state with opposite mirror parity
σM.
Class CIIM++ , (s, t) = (5, 0).— We set UT = σ2,
UP = σ2τ3, so that UC = τ3. The 2Z bulk classifica-
tion of this symmetry class counts the difference N of
“edge quartets” with positive and negative “mixed par-
ity” σCM. For a minimal edge all edge modes have the
same mixed parity, so that effectively M may be repre-
sented by UM = τ3. A minimal edge has Hamiltonian

Hedge = −iv∂xσ0τ211N . (A.33)

The unique mass term gapping out such edge modes is
mτ1, with m a real symmetric N ×N matrix. This mass
term is odd under mirror reflection, ensuring the exis-
tence of N Kramers pairs of corner states at the inter-
section between two mirror-related edges. Both states in
such a Kramers pair have the same parity σC , which is
determined by the sign of the eigenvalues of m far away
from the corner at x = 0. This corresponds to the 2Z2

(extrinsic) classification of corner states derived in Sec.
A.2.
Class DCM+ , (s, t) = (2, 1).— We represent particle-

hole conjugation P by complex conjugation and the mir-
ror antisymmetry CM by UCM = σ3. We use NLσCM
and NRσCM to denote the numbers of left-moving and
right-moving edge modes with mirror parity σM at zero
energy, respectively. Since edge modes moving in oppo-
site directions and with opposite mirror parity can mutu-
ally gap out, the differences NR+−NL− and NR−−NL+

are topological invariants, giving a Z2 classification of
edge states. The sum NR+ − NL− + NR− − NL+ is a
strong topological invariant. For a second-order topolog-
ical superconductor phase, we are interested in the case
NR+ − NL− + NR− − NR+ = 0, a minimal realization
of which has NL− = NR− = 0 and N = NR+ = NL+.
With a suitable choice of basis and after rescaling, the
corresponding edge Hamiltonian reads

Hedge = −ivτ311N∂x, (A.34)

where τ3 is a Pauli matrix in the left mover–right mover
basis. The unique mass term mτ2 is odd under the mir-
ror antisymmetry, so that the intersection between two
mirror-related edges hosts N Majorana corner states. All
N corner states have the same mirror parity, so that no
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further classification is possible. This is consistent with
the Z (extrinsic) classification derived in App. A.2.
Class DIIIM−+ , (s, t) = (3, 1).— Here we choose the

representations UT = σ2 and UP = σ1, so that UC = σ3.
Although in the most general case the representation of
M requires the introduction of additional spinor degrees
of freedom, the generators for the nontrivial topological
phases can be constructed using the simpler represen-
tation UM = σ1. The two generators of the Z2

2 topo-
logical crystalline classification have edge Hamiltonians
Hedge,1 = −ivσ2∂x and Hedge,2 = −ivσ2τ3∂x. The for-
mer edge Hamiltonian represents a strong topological
phase and is not compatible with a second-order topo-
logical phase. The latter edge Hamiltonian has a unique
mass term mσ2τ2, which is odd under mirror reflection.
As a result, the intersection of two mirror-related edges
hosts a Kramers pair of Majorana zero modes.
Class AIICM− , (s, t) = (4, 1).— We represent T by

σ2K and CM by σ3. The two generators of the Z2
2 topo-

logical crystalline classification have edge Hamiltonians
Hedge,1 = −ivσ3∂x and Hedge,2 = −ivτ2σ0∂x, where x
is the coordinate along the mirror-symmetric edge and
the Pauli matrix τ2 acts on a separate spinor degree of
freedom. The former edge Hamiltonian Hedge,1 describes
a strong phase in which the edge state is protected by
time-reversal symmetry alone and can not be gapped
out. The latter Hamiltonian Hedge,2 has two mass terms
m1τ1σ0+m2τ3σ0, which are both odd under mirror reflec-
tion. Such a Hamiltonian hosts a zero mode symmetri-
cally located around a mirror-symmetric corner at x = 0.
A local perturbation near the corner at x = 0 that breaks
the mirror symmetry can move this state away from zero
energy.

Class CCM+ , (s, t) = (6, 1).— We set UP = σ2. This
phase allows a strong topological phase with doublets
of particle-hole conjugated co-propagating chiral edge
modes. Pairs of counterpropagating doublets are pre-
vented from mutually gapping out if they have the same
parity under CM. Hence, within the relevant subspace
we may represent CM by the identity, UCM = 1. The
edge Hamiltonian for N such pairs of counterpropagating
doublets reads

Hedge = −ivσ1τ2∂x11N , (A.35)

where τ2 is a Pauli matrix acting on a different spinor
degree of freedom than the σ matrices. Upon deforming
the edge away symmetrically around a corner at x = 0,
four mass terms m1(x)ρ0σ2 +m2(x)ρ0σ3 +m3(x)σ1ρ1 +
m4(x)σ1ρ3 are allowed under a global reflection symme-
try, with mj(x) = −mj(−x), j = 1, 2, 3, 4. Such a Hamil-
tonian hosts N doublets of zero modes symmetrically lo-
cated around the corner at x = 0.

Class DIIIM−− , (s, t) = (3, 2).— We choose the repre-
sentations UT = σ2 and UP = σ1, so that UC = σ3. The
Z bulk topological invariant N is the difference of the
numbers of helical edge doublets with positive and neg-
ative “mixed parity” σMC . For a “minimal” edge with
N ≥ 0 all modes have the same (positive) mixed par-

ity and we may represent UM = σ3. Only topological
crystalline phases with an even number N of pairs of he-
lical modes can be used for the construction of a second-
order topological insulator, since a single helical Majo-
rana mode corresponds to a strong topological phase.
With a suitable rescaling and basis choice, an edge with
N pairs of helical modes is described by the edge Hamil-
tonian

Hedge = −ivσ1τ311N/2∂x. (A.36)

This edge Hamiltonian has the unique mass term mτ2σ1,
where m is a real symmetric N/2 × N/2 matrix. The
mass term is odd under mirror reflection, ensuring the
existence of N/2 Majorana Kramers pairs at a mirror-
symmetric corner.

Class AIIM− , (s, t) = (4, 2).— We represent time-
reversal and mirror symmetry using UT = σ2 and UM =
σ3, respectively. The bulk has a Z2 topological crystalline
classification, the generator of which has edge Hamilto-
nian Hedge = −ivσ3∂x, with x a coordinate along a mir-
ror symmetric edge. This is a strong topological phase.

Class CIIM−− , (s, t) = (5, 2).— We choose UT = σ2,
UP = σ2τ3, and UM = σ3. With a suitable choice of ba-
sis, the nontrivial topological crystalline phase has edge
Hamiltonian

Hedge = −ivσ1τ1∂x. (A.37)

The unique mass term mσ1τ2 for this Hamiltonian is
odd under mirror reflection, ensuring the existence of a
Kramers pair of zero-energy states at a mirror-symmetric
corner. A pair of corner states has a well defined parity
σC with respect to the chiral operation C, which depends
on the asymptotic sign of the mass m far away from the
corner. Multiple corner doublets with the same σC can-
not gap out, consistent with the 2Z (extrinsic) classifica-
tion of corner states derived in App. A.2.

Class CIM−− , (s, t) = (7, 2).— We represent T by
σ1K, P by σ2K, so that UC = σ3. An edge allows mul-
tiple pairs of counterpropagating states with support on
orbitals with the same parity under the product MC, so
one may represent M by UM = σ3 on a minimal edge.
With a suitable basis transformation and after rescaling,
an edge with N such pairs of counterpropagating modes
is described by the edge Hamiltonian

Hedge = −ivσ1τ2∂x11N , (A.38)

where τ2 is a Pauli matrix acting on an additional spinor
degree of freedom. Upon deforming the edge away sym-
metrically around a corner at x = 0, three mass terms
m1(x)σ1τ1 + m2(x)σ2 + m3(x)σ1τ3 are allowed under a
global reflection symmetry, with mi real symmetric ma-
trices satisfying mi(x) = −mi(−x), i = 1, 2, 3. Such a
Hamiltonian hosts 2N zero-energy Majorana states sym-
metrically located around the corner at x = 0.

Class AICM+ , (s, t) = (0, 3).— We represent T by
complex conjugation K. An edge allows multiple pairs of
counterpropagating states with support on orbitals with
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the same mirror parity, so that we may represent the
mirror antisymmetry CM using UCM = 1 for a minimal
edge. The corresponding edge Hamiltonian reads

Hedge = −ivτ2∂x11N , (A.39)

where τ2 is a Pauli matrix acting on an additional spinor
degree of freedom. Upon deforming the edge away sym-
metrically around a corner at x = 0, two mass terms
m1(x)τ1 +m2(x)τ3 are allowed under a global reflection
symmetry, with m1 and m2 real symmetric matrices sat-
isfying m1(x) = −m1(−x) and m2(x) = −m2(−x). Such
a Hamiltonian hosts N zero modes symmetrically located
around the corner at x = 0.
Class DCM− , (s, t) = (2, 3).— We choose UP = 1 and

UCM = σ2. These symmetries allow a chiral edge Hamil-
tonian Hedge = −ivσ011N∂x, with x a coordinate along
the edge and 11N the N × N identity matrix. Such an
edge represents a strong topological phase.
Class AIICM+ , (s, t) = (4, 3).— We represent T by

σ2K. An edge allows multiple pairs of helical modes with
support on orbitals with the same CM parity, so that we
may represent CM using UCM = 1 for a minimal model.
An insulator with an odd number of such helical edge
modes is a strong topological insulator. With a suitable
choice of basis, a “minimal” edge with an even number
N of helical modes is described by the edge Hamiltonian

Hedge = −ivσ1τ0∂x11N/2, (A.40)

where τ0 the 2 × 2 identity matrix acting an additional
spinor degrees of freedom. Upon deforming the edge
away symmetrically around a corner at x = 0, two
mass terms m1(x)τ2σ2 + m2(x)τ2σ3 are allowed under
a global reflection symmetry, with m1 and m2 real sym-
metric N/2×N/2 matrices satisfying m1(x) = −m1(−x)
and m2(x) = −m2(−x). Such a Hamiltonian hosts
N/2 Kramers pairs of zero modes symmetrically located
around the corner at x = 0.

Class CCM− , (s, t) = (6, 3).— We set UP = σ2 and
UCM = σ3. An edge allows multiple pairs of chiral modes,
described by the edge Hamiltonian Hedge = −ivσ111N∂x,
where x is a coordinate along the edge and 11N the N×N
identity matrix. This is a strong topological phase.

A.4. SURFACE-TO-HINGE
CORRESPONDENCE WITH TWOFOLD

ROTATION SYMMETRY

In this appendix we give details for the surface-to-hinge
correspondence for topological crystalline insulators and
superconductors with twofold rotation symmetry or an-
tisymmetry and with mirror symmetry or antisymmetry,
starting from a symmetry characterization of the gapless
surface states on symmetry-invariant surfaces. The gen-
eral idea underlying the surface-to-hinge correspondence
is the same as for edge-to-corner correspondence with

mirror-symmetric edges and corners, see Sec. 2.4.2 and
App. A.3. The low-energy theory of the surface states
is given in terms of one or multiple Dirac cones that are
compatible with the non-spatial and spatial symmetries
of the corresponding Shiozaki-Sato class.[9] Tilting the
surface away from the invariant direction, as in Fig. 2.11,
allows for mass terms which must be odd under twofold
rotation or mirror reflection — because otherwise they
would be allowed for the symmetry-invariant surface ori-
entation. If the mass term is unique, the intersection of
surfaces with opposite sign of the mass constitutes a do-
main wall, hosting a gapless hinge state. If the mass term
is not unique, a mirror-symmetric hinge will still host a
gapless mode, but there is no protection for gapless hinge
modes in the rotation-symmetric case.

Throughout this appendix, x and y are coordinates
on a (eventually tilted) rotation-invariant or mirror-
symmetric surface, where the mirror reflections sends
x → −x, 11N is the N × N unit matrix, and σi, τi, ρi,
and µi, i = 0, 1, 2, 3, are Pauli matrices acting on different
spinor degrees of freedom. We will restrict our discussion
to symmetry classes with a nontrivial bulk topological
crystalline phase, see Ref. 9 and Tables 2.6 and 2.7.

A.4.1. Complex classes with antiunitary
symmetries and antisymmetries

Classes AT
+R, s = 0, and AP

+M, s = 2.— We choose
UT R = σ1 and UPM = σ3 to represent the magnetic
point group symmetry T R and mirror antisymmetry
PM, respectively. These symmetries can protect a sin-
gle gapless surface state with a Dirac-like dispersion
Hsurface = −iv(σ1∂x + σ2∂y) (with a suitable choice of
basis). The unique mass term mσ3 is odd under T R and
PM. A hinge at the intersection of crystal surfaces with
opposite signs of m host a gapless hinge mode.

Classes AIIIT
+R+ , s = 1, and AIIIT

−M− , s = 3.—
We choose UC = σ3, UT R = 1, UTM = σ2τ3. The non-
trivial phase hosts a pair of Dirac cones with dispersion
Hsurface = −ivσ1(τ1∂x + τ3∂y) (with a suitable choice of
basis). There are two mass terms that may gap the Dirac
cones if the surface is tilted away from the invariant di-
rection, m1σ2τ0 +m2σ1τ2, where both m1 and m2 must
change sign upon shifting to the rotated/mirror-reflected
tilt direction. With two mass terms, there is a protected
hinge mode at a mirror-symmetric hinge, but not gener-
ically in the presence of the twofold rotation symmetry
T R.
Classes AIIIT

−R− , s = 3 and AIIIT
−M+ , s = 5.—

We use UC = σ3, UT R = σ2, UTM = σ3τ2 to repre-
sent the operations C, T R, and TM, respectively. The
twofold rotation symmetry is compatible with pairs of
Dirac cones with dispersion ∝ −ivτ2(σ1∂x±σ2∂y), which
defines the chirality ±. The 2Z bulk topological crys-
talline index for this symmetry class counts the difference
N = N+ − N− of such Dirac cones with positive and
negative chirality. For a “minimal” surface all surface
Dirac cones have the same chirality, so that after rescal-

127



ing and with suitable choice of basis the surface Hamil-
tonian reads Hsurface = −ivτ2(σ1∂x + σ2∂y)11N . Since
such surface states are protected by chiral antisymmetry
alone, this represents a strong topological phase.

Classes AIIIT
+R− , s = 7, and AIIIT

+M+ , s = 1.—
Like the previous case, this is a strong phase, with gap-
less surface states on all surfaces. We choose UC = σ3,
UT R = σ1 and UM = 1. The integer bulk topological
crystalline index counts the difference N = N+ −N− of
surface Dirac cones with dispersion ∝ −iv(∂xσ1± ∂yσ2).
For a “minimal” surface all surface Dirac cones have the
same chirality, so that after rescaling and with suitable
choice of basis the surface Hamiltonian reads Hsurface =
−iv(∂xσ1 + ∂yσ2)11N . Such surface states are protected
by chiral antisymmetry alone.

A.4.2. Real classes

Classes BDIR++ , (s, t) = (1, 0), and BDIM−+ , (s, t) =
(1, 3).— We represent time-reversal and particle-hole
conjugation using UT = σ0, UP = σ3, UC = σ3,
UR = σ3ρ3, and UM = σ2. A symmetry-invariant sur-
face may host multiple pairs of Dirac cones with disper-
sion ∝ −iv(σ1τ2∂x ± σ2τ0∂y), which defines the “mirror
chirality” ± for class BDIM−+ . The integer invariant N
counts the number of such pairs of Dirac cones, weighted
by the parity under RC (for class BDIR++) or by mirror
chirality (for class BDIM−+). A minimal surface with
N ≥ 0 has pairs of Dirac cones of the same mirror chi-
rality or the same RC-parity, so that effectively we may
use UR = σ3 to represent R. The corresponding surface
Hamiltonian is

Hsurface = −iv(σ1τ2∂x + σ2τ0∂y)11N . (A.41)

Two mass terms m1σ1τ1 +m2σ1τ3, with m1 and m2 N ×
N real symmetric matrices, are allowed upon tilting the
surface away from the symmetry-invariant orientation.
These mass terms are odd under R and M. Since there
are two such mass terms, there are no protected hinge
modes for the rotation-symmetric case. However, there
are protected hinge modes at mirror-symmetric hinges in
the mirror-symmetric case.

Classes DIIIR++ , (s, t) = (3, 0), and DIIIM+− , (s, t) =
(3, 3).— We set UT = σ2, UP = σ1, UM = σ1τ2,
and UR = τ3. Without rotation or mirror symme-
try, there are protected surface states with dispersion
−iv(σ1∂x± σ2∂y), which defines the chirality ±. The in-
teger topological invariant N counts the number of such
surface Dirac cones, weighted by the chirality. One such
Dirac cone is not compatible with R orM symmetry on
a symmetry-invariant surface, but two Dirac cones with
the same chirality are, the dispersion for a pair of Dirac
cones being −ivτ1(σ1∂x ± σ2∂y). Since they have the
same chirality, such a pair of Dirac cones is protected by
T and P alone. A phase with multiple such pairs of Dirac
cones is a strong topological phase with gapless surface
states for surfaces of arbitrary orientation.

Classes CIIR++ , (s, t) = (5, 0), and CIIM−+ , (s, t) =
(5, 3).— We let time-reversal be represented by UT = iσ2
and particle-hole by UP = iσ2τ3, so that UC = τ3. We
further set UM = τ3 and UR = τ3ρ3. A symmetry-
invariant surface admits pairs of gapless surface states
with Dirac-like dispersion ∝ −i(σ0τ2∂x ± σ1τ1∂y), which
defines the mirror chirality ± for class CIIM−+ . The
integer invariant N counts the number of such pairs of
Dirac cones, weighted by the parity under RC (for class
CIIR++) or by mirror chirality (for class CIIM−+). A
minimal surface with N ≥ 0 has pairs of Dirac cones of
the same mirror chirality or the same RC-parity, so that
effectively we may use UR = τ3 to represent R. A single
pair of Dirac cones is protected by T and P symmetry
alone, corresponding to a strong topological phase with
gapless surface states on all surfaces. A purely crystalline
phase requires an even number N of pairs of surface Dirac
cones, so that the corresponding surface Hamiltonian is

Hsurface = −iv(τ1σ1∂x + τ2σ0∂y)µ011N/2. (A.42)

Such a Hamiltonian admits two mass terms m1τ1σ2µ2 +
m2τ1σ3µ2, where m1 and m2 are N/2 × N/2 real sym-
metric matrices, which change sign under mirror re-
flection and twofold rotation. Since there are two
mass terms, the rotation-symmetric class CIIR++ does
not have protected hinge modes, whereas the mirror-
symmetric class CIIM−+ has protected gapless modes at
mirror-symmetric hinges.

Classes CIR++ , (s, t) = (7, 0), and CIM+− , (s, t) =
(7, 3).— We set UT = σ1 and UP = σ2, so that UC = σ3.
We further set UR = τ3 and UM = σ1τ3. A symmetry-
invariant surface admits surface states with dispersion
−iτ2(σ1∂x ± σ2∂y), where ± defines the chirality. The
integer invariant counts the number of such pairs of sur-
face Dirac cones, weighted by chirality. Since such pairs
of surface Dirac cones do not rely on crystalline symme-
tries for their protection this is a strong phase, which has
gapless surface states on surfaces of arbitrary orientation.

Classes DCR+ , (s, t) = (2, 2), and DM+ , (s, t) =
(2, 1).— We set UP = 1, UCR = τ3, and UM = σ3.
A symmetry-invariant surface admits surface states with
dispersion ∝ −i(σ1∂x ± σ3∂y), which defines the mirror
chirality ± (for class DM+). This class has an integer
topological invariant N , which counts the differences of
the number of Dirac cones with positive and negative
CR-parity at zero energy or mirror chirality, as appro-
priate. On a minimal surface with N ≥ 0 all surface
Dirac cones have the same mirror chirality or CR-parity,
so that we may effectively represent CR by UCR = 1.
The corresponding surface Hamiltonian reads

Hsurface = −iv(σ1∂x + σ3∂y)11N . (A.43)

Such a surface admits a unique mass term σ2m, with m
an N×N real symmetric matrix, which changes sign un-
der mirror reflection or under the rotation antisymmetry.
Correspondingly, a mirror-symmetric hinge admits gap-
less modes. With twofold rotation antisymmetry, gapless
hinge modes are guaranteed to exist if N is odd.
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Classes DIIIR−+ , (s, t) = (3, 1), and DIIIM++ ,
(s, t) = (3, 0).— We set UT = σ2 and UP = σ1, so
that UC = σ3, UR = σ1τ3, UM = τ3. The crystalline
bulk phase has a Z2 topological classification, for which
the nontrivial phase has a surface state with Hamiltonian

Hsurface = −iv(σ1τ1∂x + σ2τ0∂y) (A.44)

at a symmetry-invariant surface. There is a unique mass
term mσ1τ2, which is odd under twofold rotation and
under mirror reflection. We conclude that the conditions
for the existence of gapless hinge modes are met.
Classes AIICR− , (s, t) = (4, 1) and AIIM+ , (s, t) =

(4, 0).— For a minimal model we choose UT = σ2, UCR =
σ1, and UM = τ3. The crystalline bulk phase has a Z2

topological classification, for which the nontrivial phase
has a surface state with Hamiltonian

Hsurface = −ivσ1(τ1∂x + τ3∂y) (A.45)

The model admits a unique mass term mσ1τ2, which
changes sign under the twofold rotation antisymmetry
operation and under mirror reflection. Correspondingly,
this model admits a helical gapless hinge mode.

Classes CCR+ , (s, t) = (6, 1) and CM+ , (s, t) =
(6, 0).— We set UP = σ2, UCR = ρ3, and UM = τ2σ3.
The surface admits pairs of surface states with a disper-
sion −ivτ2(σ1∂x ± σ3∂y), which defines the mirror chi-
rality (for class CM+). The integer topological invariant
N for class CCR+ counts the difference of the number of
surface Dirac cones with CR-eigenvalue 1 and −1 on a
symmetry-invariant surface, and we may use UCR = 1 to
represent CR on a minimal surface with N ≥ 0. With
mirror symmetry, N counts the number of pairs of sur-
face Dirac cones weighted by mirror chirality. In both
cases a minimal surface with N ≥ 0 has Hamiltonian

Hsurface = −ivτ2(σ1∂x + σ3∂y)11N . (A.46)

Such a surface has a unique mass term mτ2σ2, with m
a real symmetric N ×N matrix which is odd under CR
and M. Correspondingly, this mirror-symmetric model
admits helical gapless hinge modes at a mirror-symmetric
hinge for all N , whereas the rotation-antisymmetric
model has gapless hinge modes if N is odd.

Classes DIIIR−− , (s, t) = (3, 2) and DIIIM−+ , (s, t) =
(3, 1).— We set UT = σ2, UP = σ1, UC = σ3, UR = σ3τ3,
and UM = σ1. These classes admit surface states with
Dirac dispersion −iv(σ2∂x±σ1∂y), which defines the chi-
rality ±. Such a surface state is compatible with R
and M symmetries, but protected by chiral antisym-
metry C alone. The corresponding strong integer in-
dex counts their number, weighted by chirality. A pair
of surface states of opposite chirality, with dispersion
−iv(σ2ρ3∂x±σ1ρ0∂y), where the sign ± defines the mir-
ror chirality for class DIIIM−+ , is protected by rotation
or mirror symmetry. The associated integer topological
index N counts the number of such pairs of surface Dirac
cones, weighted by RC-parity (for class DIIIR−−) or by

mirror chirality (for class DIIIM−+). This allows one to
effectively set UR = σ3 for a minimal surface with N ≥ 0.
The corresponding surface Hamiltonian reads

Hsurface = −iv(σ2ρ3∂x + σ1ρ0∂y)11N . (A.47)

The surface Hamiltonian admits a unique mass term
mσ2ρ2, with m a real symmetric N × N matrix which
changes sign under the twofold rotation antisymmetry
operation and under mirror reflection. Correspondingly,
this mirror-symmetric model admits helical gapless hinge
modes at a mirror-symmetric hinge for all N , whereas the
rotation-antisymmetric model has gapless hinge modes if
N is odd.
Classes AIIR− , (s, t) = (4, 2), and AIICM− , (s, t) =

(4, 1) We set UT = σ2, UR = σ3, and UCM = σ1. These
classes have a Z2

2 classification, with purely crystalline
part Z2. A generator for the strong phase has a surface
state with Dirac dispersion −iv(σ1∂x + σ2∂y), which is
protected by time-reversal symmetry alone. The genera-
tor for the purely crystalline topological phase has a pair
of surface Dirac cones with surface Hamiltonian

Hsurface = −iv(σ1τ0∂x + σ2τ3∂y). (A.48)

This surface Hamiltonian has a unique mass term mσ2τ2,
which is odd under R or M. We conclude that these
classes admits a protected hinge mode.

Classes CIIR−− , (s, t) = (5, 2) and CIIM+− , (s, t) =
(5, 1).— We set UT = σ2, UP = σ2τ3, UC = τ3, UR = σ3
and UM = σ2τ2. These classes have a Z2

2 classification,
with purely crystalline part Z2. On a symmetry-invariant
surface, the generator for the strong phase has a pair of
surface Dirac cones with dispersion −ivτ1(σ2∂x + σ1∂y),
which is compatible with R andM symmetries, but does
not rely on those symmetry for its protection. The non-
trivial purely crystalline phase has two pairs of surface
Dirac cones with Hamiltonian

Hsurface = −ivτ1(σ1ρ0∂x + σ2ρ3∂y). (A.49)

This surface Hamiltonian admits two mass terms
m1σ2τ1ρ2 + m2σ1τ2ρ1, which is odd under R or M.
We conclude that class CIIM+− admits a protected
hinge mode along mirror-symmetric hinges, whereas class
CIIR−− does not allow protected hinge modes.

Classes CIR−− , (s, t) = (7, 2), and CIM−+ , (s, t) =
(7, 1).— We choose UT = σ1, UP = σ2, UC = σ3,
UR = σ3ρ3, UM = σ2τ2. These classes admit pairs of
surface states with dispersion −ivτ2(σ1∂x±σ2∂y), which
defines the chirality ±. Such a surface state is compati-
ble with R and M symmetries, but protected by chiral
antisymmetry C alone. The corresponding strong integer
index counts their number, weighted by chirality. Two
pairs of surface states of opposite chirality, with disper-
sion −ivτ2(σ1µ3∂x ± σ2µ0∂y), where the sign ± defines
the mirror chirality for class CIM−+ , are protected by ro-
tation or mirror symmetry. The associated integer topo-
logical index N counts the number of such pairs of surface
Dirac cones, weighted by RC-parity (for class CIR−−) or
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by mirror chirality (for class CIM−+). This allows one to
effectively set UR = σ3 for a minimal surface with N ≥ 0.
The corresponding surface Hamiltonian reads

Hsurface = −ivτ2(σ1µ3∂x + σ2µ0∂y)11N . (A.50)

The surface Hamiltonian admits four mass terms
m1σ1τ2µ2 +m2σ2τ1µ1 +m3σ2τ3µ1 +m4σ1τ0µ1, with m1,
m2, m3, and m4 real symmetric N × N matrices which
change sign under the twofold rotation antisymmetry op-
eration and under mirror reflection. Correspondingly,
this mirror-symmetric model admits helical gapless hinge
modes at a mirror-symmetric hinge for all N , but the
rotation-symmetric model has no protected hinge states.
Classes AICR+ , (s, t) = (0, 3), and AIM− , (s, t) =

(0, 2).— We choose UT = 1, UCR = ρ3, and UM = σ2τ3
to represent time reversal, twofold rotation antisymme-
try, and mirror reflection symmetry, respectively. A
symmetry-invariant surface admits pairs of surface states
with a dispersion −ivσ2(τ1∂x ± τ3∂y), which defines the
mirror chirality (for class AIM−). The integer topological
invariant N counts the number of such pairs of surface
Dirac cones, weighted by CR-parity or by mirror chiral-
ity, as appropriate. On a minimal surface with N ≥ 0 we
may use UCR = 1 to represent CR. The corresponding
surface Hamiltonian reads

Hsurface = −ivσ2(τ1∂x + τ3∂y)11N . (A.51)

Such a surface has three mass terms m1σ1τ1 +m2σ2τ2 +
m3σ3τ0, with m1, m2, and m3 real symmetric N × N
matrices. Correspondingly, this mirror-symmetric model
admits helical gapless hinge modes at a mirror-symmetric
hinge for all N , but the rotation-antisymmetric model
has no protected hinge states.

Classes AIICR+ , (s, t) = (4, 3) and AIIM− , (s, t) =
(4, 2).— We set UT = σ2, UCR = τ3, and UM = σ2. This
phase allows surface Dirac cones on symmetry-invariant

surfaces with dispersion −iv(σ1∂x±σ2∂y), which defines
the mirror chirality for class AIIM− . The integer invari-
ant N counts the number of such surface Dirac cones,
weighted by CR-parity or mirror chirality, as appropri-
ate. Odd values of N correspond to strong phases, which
have gapless surface states irrespective of the surface ori-
entation. For even N one has a purely crystalline phase.
For a minimal model with N ≥ 0 one may effectively use
UR = 1 to represent twofold rotation. The corresponding
surface Hamiltonian is

Hsurface = −ivρ0(σ1∂x + σ2∂y)11N/2. (A.52)

There is a unique mass termmσ3ρ2, withm anN/2×N/2
matrix, which is odd under CR orM. Correspondingly, a
mirror-symmetric hinge has N/2 protected helical modes,
whereas there are protected hinge modes in the presence
of twofold rotation antisymmetry if N/2 is odd.

Classes CIIR−+ , (s, t) = (5, 3), and CIIM−− , (s, t) =
(5, 2).— We set UT = σ2, UP = σ2τ3, UC = τ3,
UR = σ3τ1, and UM = σ1. These classes have a Z2

classification, for which the nontrivial phase has a pair
of Dirac cones with dispersion −iτ1(σ1∂x + σ2∂y) on a
symmetry-invariant surface. Such a pair of Dirac cones
is protected by time-reversal symmetry and particle-hole
antisymmetry alone, so that this is a strong topological
phase, which has gapless modes on all surfaces.

Classes CCR− , (s, t) = (6, 3), and CM− , (s, t) =
(6, 2).— We choose UP = τ2, UCR = τ3, and UM = τ3σ3.
These classes have a Z2 classification, for which the non-
trivial phase has a pair of Dirac cones with dispersion
−iτ0(σ1∂x+σ3∂y) on a symmetry-invariant surface. Such
a surface admits a unique mass term mσ2τ0, which is
odd under CR and M. We conclude that the conditions
for gapless hinge modes on a mirror-symmetric hinge or
with rotation-symmetric crystal termination at surfaces
are met.
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B. Appendix to: ”Bulk-boundary-defect correspondence at disclinations in crystalline
topological insulators and superconductors”

The Appendix is organized as follows. Appendix B.1
contains a detailed discussion on the occurrence of do-
main walls bound to disclinations in certain certain sym-
metry classes. In Appendix B.2, we provide supplemen-
tary information on the derivation of the topological crys-
tal construction and on the presence of the domain wall
as an obstruction to a symmetric decoration in the topo-
logical crystal construction. In Appendix B.3, we present
an argument that the contribution of first-order topolog-
ical phases to the number of anomalous states at discli-
nations is independent of their rotation holonomy, but
only depends on the presence of π-fluxes for tenfold-way
topological phases. Appendix B.4 contains an example
on how to apply symmetry-based indicators to determine
the presence of anomalous states at a disclination. Fi-
nally, Appendix B.5 presents the details on how to derive
the classification of anomalous disclination states in all
symmetry classes in two and three dimensions as sum-
marized in Tables 3.1 and 3.2 of the main text.

B.1. SYMMETRY CLASSES HOSTING
DISCLINATIONS BINDING DOMAIN WALLS

We argued in Sec. 3.2.4 of the main text that in cer-
tain symmetry classes it is impossible to apply the bulk
hopping across the cut during the Volterra process with-
out breaking some internal symmetries. In Sec. B.1 1
below, we illustrate that for these symmetry classes the
Volterra process leads to a domain wall bound to the
disclination. The domain wall separates regions that are
distinguishable by the local arrangement of orbitals in
the unit cell. In particular, the presence of a domain
wall implies that there is no unique hybridization pat-
tern across the cut line. As a consequence, the topologi-
cal charge at the disclination is not uniquely determined
from rotation and translation holonomies and bulk topo-
logical invariants alone. However, we show in Sec. B.1 2
that the parity of the topological charge along the cut
line can be related to the bulk topology. These facts
are illustrated with an example of a magnetic topolog-
ical insulator in Sec. B.1 3. Furthermore, we argue in
Sec. B.1 4 that for all symmetry classes with d − 2 di-
mensional anomalous states with Z topological charge
and (n ∈ 2, 3, 4, 6)-fold rotation symmetry the following
holds: either (i) no strong second-order or weak topo-
logical phase with topological crystal limit as shown in
Fig. 3.6 of the main text exists, or (ii) their symmetry
group does not contain a unitary rotation symmetry, i.e.,
it contains only an antiunitary rotation symmetry or a
rotation antisymmetry. This provides a no-go theorem
for a unique correspondence between strong bulk topol-
ogy and (d−2) dimensional disclination anomaly in these
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Figure B.1. An internal unitary symmetry or antisymmetry
U with U2 = 1 allows to label the physical degrees of freedom
in the unit cell, indicated by the signs ± on the orbitals de-
picted by yellow circles. In (a), we show a fourfold rotation
symmetric lattice in which the representation of fourfold rota-
tion symmetry has to anticommute with the internal unitary
symmetry or antisymmetry because the rotation permutes the
labels. In (b), we show a disclination that is connected to a
domain wall (blue dashed line) between two regions related
by a permutation of the labels.

symmetry classes.

B.1.1. Domain wall interpretation

In Sec. 3.2.4 of the main text, we showed that in cer-
tain symmetry classes the disclination necessarily con-
nects to a line along which some symmetries are broken.
These are precisely those symmetry classes that either do
not contain a unitary rotation symmetry (for instance in
magnetic space groups) or whose unitary rotation sym-
metry anticommutes with some internal unitary symme-
tries or antisymmetries. Here, we show that in these cases
one can define labels or an order parameter that allow to
distinguish the two regions bordered by the line. This
shows that the line is in fact a domain wall.

Internal unitary symmetries or antisymmetries provide
labels for the physical degrees of freedom on the lat-
tice. These labels are defined in the diagonal basis of
the internal unitary symmetry/antisymmetry. The rep-
resentation of unitary rotation symmetry describes the
action on the physical degrees of freedom that needs to
be performed such that the system is invariant under
the rotation. In case the representation of unitary ro-
tation symmetry anticommutes with an internal unitary
symmetry or antisymmetry, the rotation symmetry per-
mutes the labelled degrees of freedom, as illustrated for a
fourfold rotation symmetric sample in Fig. B.1(a). Thus,
two patches that are rotated with respected to each other
without applying the representation of internal symme-
try are distinguishable by their configuration of labels. In
this case, a disclination is therefore the end of a domain
wall bordering two regions with permuted labelling, see
Fig. B.1(b).

For magnetic space groups, where only the product of
rotation and time reversal is preserved but not individ-
ually, one can define a vectorial order parameter, such
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as a local magnetization, that is odd under time rever-
sal. A disclination with Franck angle corresponding to
the magnetic rotation symmetry is thus the end point
of a domain wall separating regions that are related by
time-reversal symmetry. This is further illustrated with
an example in Sec. B.1 3 below.

In the presence of translation symmetry, the local order
parameter can be expressed in terms of the labels under
the unitary internal symmetry or antisymmetry U2 = ±1
(or the local magnetization for magnetic rotation sym-
metry) in the asymmetric unit within the unit cell, see
Fig. 3.5 in the main text. The unit cell then consists of
asymmetric sections with labels related by rotation sym-
metry. In case rotation symmetry anticommutes with
the unitary internal symmetry or antisymmetry (in case
of magnetic rotation symmetry), the labels (local mag-
netization) in symmetry related asymmetric sections are
opposite. Here, despite rotations, a translation by half
a lattice vector may interchange the labels. Therefore,
the domain wall may become locally unobservable if the
disclination contains a translation holonomy by a fraction
of a lattice vector. Notice that in this case, the sample
does not allow for a global and consistent definition of the
unit cell. Throughout the paper, we restrict ourselves to
lattice defects with a translation holonomy that is an in-
teger multiple of the lattice vectors. These lattice defects
can be constructed and analyzed with the methods from
Sec. B.2 in the main text. By construction, the lattice
with the defect contains a consistent definition of the unit
cell. The interplay of topological phases and screw dis-
locations with fractional translation holonomy has been
investigated in Ref. 1.

Furthermore, we point out that if the sample with
disclination as a whole does not respect all internal sym-
metries of the bulk system, then the domain wall may
become unobservable. In particular, this may be the case
when constructing nearest-neighbor lattice models with
an artificial ’sublattice’ antisymmetry Γ2 = 1 which in-
dicates the absence of hopping terms between different
sublattices and the equality of the chemical potential on
both sublattices. In case n-fold rotation symmetry an-
ticommutes with the sublattice antisymmetry, the sub-
lattices are interchanged at adjacent unit cells across the
branch cut attached to a disclination with Franck angle
Ω equal to an odd integer multiple of 2π/n. If the sublat-
tices are indistinguishable up to their label, then apply-
ing the same nearest-neighbor hopping across the branch
cut yields a branch cut indistinguishable from the bulk
lattice. This breaks the sublattice antisymmetry along
the branch cut as sites with same sublattice label are
connected by a hopping term. As a consequence, also
the disclination breaks the sublattice antisymmetry and
a potentially bound state may acquire a finite energy and
is not anomalous. For consistency, we assume throughout
the paper that the sample with disclination as a whole
respects the internal symmetries of the bulk system.

Ω = − π/2 Ω = π/2

Figure B.2. A disclination dipole consisting of two discli-
nations with opposite Franck angle Ω = ±π/2 can be con-
structed in a fourfold rotation symmetric lattice by removing
a square from the sample and connecting the boundaries as
indicated by the blue dashed and green dotted lines. The
blue dashed lines indicate boundary conditions that involve
a rotation by π/2. The green dotted lines indicate boundary
conditions that do not involve any rotation. A path around
the disclination with Franck angle Ω = π/2 (Ω = −π/2) is in-
dicated by the red (orange) bold line. For clarity, the sample
boundary is highlighted by the black bold line.

B.1.2. Topological charge at the domain wall
and a disclination dipole

In case the cut line forms a domain wall and connects to
the boundary, the intersection of the line with the bound-
ary forms another point defect. Then, the parity of the
total topological charge along the domain wall is deter-
mined by identical expressions as in Eqs. (3.7) to (3.11)
in the main text. This is because of the anomaly cancel-
lation criterion: anomalous boundary states associated
to the domain wall can only be created pairwise.

A disclination dipole consists of two disclinations with
opposite Franck angle that are connected by a cut line, as
depicted in Fig. B.2. In case none of the two disclinations
involves a translation holonomy, the topological charge
at the pair cancels. Thus, the topological charge at the
disclinations cannot be predicted from the bulk topology
if the cut line forms a domain wall.

B.1.3. Example: Magnetic topological insulator

A magnetic topological insulator breaks time-reversal
symmetry, but preserves the product of time-reversal
symmetry and a crystalline symmetry operation. In
the following, we consider a three-dimensional magnetic
topological insulator where the product of fourfold ro-
tation and time-reversal symmetry is preserved. In this
case, there is only a strong second-order phase. Weak
phases corresponding to arrangements of Chern insula-
tors parallel to the rotation axis are forbidden as the co-
propagating chiral modes at twofold rotation symmetric
momenta in this decoration cannot gap out. Furthermore
Chern insulators are not compatible with a perpendicular
magnetic rotation axis.

A model for a second-order topological insulator with
magnetic fourfold rotation symmetry can be constructed
similar to the class D model in Eq. (3.13) of the main
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text. The Hamiltonian of our model is given by

HA(~k) = t(1− cos kz) [τ3σ2 − τ2σ0] (B.1)

−t(1 + cos kz) [cos(kx)τ3σ2 + sin(kx)τ3σ1]

+t(1 + cos kz) [cos(ky)τ2σ0 − sin(ky)τ1σ0]

+tz sin kzτ3σ3

As in the previous section, the hopping parameter t is
real, τiσj are four-by-four matrices composed of Pauli
matrices acting on the four degrees of freedom in the unit
cell. Here, our basis consists of four fermionic operators
c~k,a, c~k,b, c~k,c, c~k,d arranged as depicted in Fig. B.3(a).

Magnetic fourfold rotation exchanges the fermions in the
unit cell counter-clockwise including a phase c~k,a → −c~k,c
and a time-reversal operation implemented by complex
conjugation. This model can be adiabatically deformed
to the chiral higher-order topological insulator of Ref. 2.

To understand the topology of this model, consider an
expansion in small kz around kz = 0 and kz = π sepa-
rately. Both cases around kz = 0 and kz = π correspond
to a lattice of chiral modes whose chirality is determined
by the term tz sin kzτ3σ3. Around kz = 0 and for posi-
tive tz the “a” and “d” (“b” and “c”) lattice sites have
positive (negative) chirality. The chiral modes are hy-
bridized across unit cells such that there is a chiral mode
remaining at each corner, as depicted by the dashed lines
in Fig. B.3. Around the kz = π plane the chiralities are
reversed and all chiral modes are hybridized within the
unit cells such that no corner modes are remaining, as
depicted by the full lines in Fig. B.3. The Hamiltonian
interpolates between the two hybridizations and remains
gapped for every kz. As a consequence, the model realizes
chiral hinge states in agreement with fourfold magnetic
rotation symmetry.

In the Volterra process we need to determine the fate
of the hybridizations of the chiral modes around kz = 0
across the cut. As depicted in Fig. B.3 there are two
choices realizing completely dimerized limits along the
cut line. Both limits require a breaking of fourfold mag-
netic rotation symmetry along the cut line, in agreement
with our results from Sec. 3.4 of the main text. The
configuration in Fig. B.3(a) can be realized without clos-
ing the excitation gap along the cut line. It realizes a
chiral disclination mode propagating into the plane and
two chiral modes propagating out of the plane at the
end of the cut line. In order to obtain the configura-
tion in Fig. B.3(b) one needs to change the hybridization
pattern along both cut lines which requires a closure of
the excitation gap along these lines. This configuration
has a disclination mode propagating out of the plane
and gapped boundaries. Finally, Fig. B.3(c) depicts a
hybridization pattern where the excitation gap needs to
close only on one of the two cut lines. This pattern hosts
no anomalous disclination state, but a single chiral mode
at the end of the cut line.
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Figure B.3. Depiction of the model Hamiltonian for the mag-
netic second-order topological insulator defined in Eq. (B.2).
Crosses and dots denote chiral modes with opposite chiral-
ity as defined from an expansion of the Hamiltonian around
kz = 0 and kz = π. Full (dashed) lines denote the hybridiza-
tion at kz = 0 (kz = π). Red lines include a π phase. The
unit cell is highlighted by a red square. In (a)–(c), we show
three different possibilities of connecting the hybridizations
at kz = 0 across the cut in the Volterra process to construct
a π

2
disclination.

Domain wall interpretation

For an antiferromagnetic insulator with magnetic space
group p4′, one can define a vectorial order parameter as
the magnetization within a quarter of the unit cell. Thus,
with a consistent definition of a unit cell as provided by
the Volterra process in Sec. 3.2 of the main text, the
order parameter distinguishes regions that are rotated
by π/2 with respect to each other. A disclination with
Franck angle Ω = π/2 is thus the edge of a domain wall.

B.1.4. No-go theorem in symmetry classes
whose d− 2 dimensional anomalous states have Z

topological charge

The purpose of this section is to show that for symmetry
classes whose d − 2 dimensional anomalous states have
Z topological charge, either (i) no strong second-order
topological phase exists, or (ii) the symmetry group does
not contain a unitary rotation symmetry that commutes
with all internal unitary symmetries or antisymmetries.
We presented an argument that shows the correctness of
this statement in two and three dimensions in Sec. 3.3.4
of the main text. Here, we show that the argument can be
generalized to any dimension d ≥ 2 using the dimensional
raising map [3–5].
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The dimensional raising map provides an isomorphism
between the classifying groups of the strong topological
phases in different symmetry classes and dimensions. It
has been extended to be applied in the presence of crys-
talline symmetries [4 and 5]. Here, we apply the dimen-
sional raising map such that rotation symmetry acts triv-
ially in the added dimensions. Below we are going to
review how the Hamiltonians and symmetry operators
are mapped under the dimensional raising maps follow-
ing Ref. 5. We refer to Ref. 5 for the derivation of the
expressions and proof of the isomorphism property. The
classification using the dimensional raising map has also
been reviewed in Section 2.2 of Chapter 2.

First, we introduce the γ-matrices used in the expres-
sions of the images of the Hamiltonian and representa-
tions under the dimensional raising map,

γ
(k)
2n−1 =

(
n−1⊗

σ0

)
⊗ σ2 ⊗

(
k−n⊗

σ3

)
(B.2)

γ
(k)
2n =

(
n−1⊗

σ0

)
⊗−σ1 ⊗

(
k−n⊗

σ3

)
(B.3)

for 1 ≤ n ≤ k and γ
(k)
2k+1 =

⊗k
σ3, γ

(0)
1 = 1 where⊗n

σj = σj ⊗ ... ⊗ σj describes the n-fold Kronecker
product of the Pauli matrix σj . The γ-matrices satisfy

{γ(k)
i , γ

(j)
i } = 2δi,j . We furthermore define

�
(+)
j = 1⊗ γ(r)

2j

�
(−)
j = 1⊗ iγ(r)

2j−1

. (B.4)

1. Dimensional raising from a symmetry class with chiral
antisymmetry

The dimensional raising map is expressed in terms of

a map of a representative Hamiltonian H(~k) defined on

the base space ~k ∈ X and representations U(g) of the
symmetry operators g ∈ G × C. Here, G is the magnetic
space group that includes all unitary or antiunitary sym-
metries of system, such as time-reversal and crystalline
symmetry operations. The chiral antisymmetry C plays a
special role in the construction of the dimensional raising
map. In particular, one defines the subgroup GC ⊂ G ×C
compatible with chiral antisymmetry C that consist of all
elements g ∈ G × C that satisfy

U(g)H(g~k)U†(g) = c(g)H(~k)

U(g)U(C)U†(g) = c(g)U(C)
(B.5)

for g unitary and

U(g)H∗(−g~k)U†(g) = c(g)H(~k)

U(g)U∗(C)U†(g) = c(g)U(C)
(B.6)

for g antiunitary with the same value c(g) ∈ {−1, 1}. For
c(g) = 1 (c(g) = −1) the element g ∈ GC is a symmetry

(antisymmetry). Notice that GC is a normal subgroup of
G × C and GC ×C = G × C. The elements of GC are going
to be used to construct the symmetry elements in the
image of the dimensional raising map.

To define the dimensional raising map for a represen-

tative Hamiltonian H1(~k) of a given (nontrivial) topo-
logical equivalence class, one considers a parameter fam-

ily of Hamiltonians H10(~k,m) with m ∈ [m0,m1] such

that H(~k,m0) = H0(~k) is a representative Hamiltonian

of a trivial topological equivalence class and H(~k,m1) =

H1(~k). As H0(~k) and H1(~k) are in distinct topological
equivalence classes, the gap needs to close for some finite
value of the parameter m.

For two-dimensional n-fold rotation symmetry pro-
tected second-order topological superconductors in a
Cartan class with chiral antisymmetry, the symmetry
group G is generated by rotations R2π/n and, if present,
time-reversal symmetry T = PC. In the presence of
spin-rotation symmetry (or other internal unitary sym-
metries), the Hamiltonian is block-diagonal such that the
analysis can be restricted to separate blocks.

Raising by an odd number of dimensions – First, we
show how to construct a Hamiltonian in dimension d =
2+2r+1 from a second-order topological phase in d = 2.

Without loss of generality, we assume that H10(~k,m) in-
terpolates between the second-order topological phase for
−2 < m < 0 and a trivial phase for m > 0. We denote
the momentum directions of the two dimensional second-
order topological phase by ~k = (kx, ky)T and the newly

added momentum directions by ~k⊥. The dimensional
raising map is given by defining the (d = 2 + 2r + 1)-

dimensional Hamiltonian H(~k,~k⊥) inheriting its topolog-
ical invariants from the family of two-dimensional Hamil-

tonians H10(~k,m) as

H(~k,~k⊥) = H10(~k,m(~k⊥))

+
r∑

j=1

(i�
(−)
j sin k⊥,j + �

(+)
j sin k⊥,r+j)

+ �C sin k⊥,2r+1

(B.7)

with H10(~k,m(~k⊥)) = H10(~k,m(~k⊥)) ⊗ γ
(r)
2r+1, �C =

U(C)⊗γ(r)
2r+1 and m(~k⊥) = −1+

∑2r+1
j (1−cos k⊥,j). To

express the corresponding representations of the symme-

try elements U(g,~k,~k⊥) we first introduce

U(g,~k) =

{
U(g,~k)⊗ 1 for c(g) = 1

U(g,~k)⊗ γ(r)
2r+1 for c(g) = −1.

(B.8)

This allows us to express U(g,~k,~k⊥) for g ∈ GC unitary
as

U(g,~k,~k⊥) = U(g,~k) (B.9)
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and for g ∈ GC antiunitary as

U(g,~k,~k⊥) =




r∏

j=1

�
(+)
j


�CU(g,~k). (B.10)

The mapped Hamiltonian (B.7) satisfies for g ∈ GC uni-
tary

U(g,~k,~k⊥)H(g~k,~k⊥)U†(g,~k,~k⊥) = c(g)H(~k,~k⊥)
(B.11)

and for g ∈ GC antiunitary

U(g,~k,~k⊥)H∗(−g~k,−~k⊥)U†(g,~k,~k⊥)

= (−1)r+1c(g)H(~k,~k⊥).
(B.12)

Raising by an even number of dimensions– Under the
dimensional raising map a d = 2+2r dimensional Hamil-
tonian inheriting its topological invariants from the fam-

ily of two-dimensional Hamiltonians H10(~k,m) is con-
structed as

H(~k,~k⊥) = H10(~k,m(~k⊥))

+
r−1∑

j=1

(i�
(−)
j sin k⊥,j + �

(+)
j sin k⊥,r+j)

+ �
(−)
r sin k⊥,r + �C sin k⊥,2r

(B.13)

where the representations U(g,~k,~k⊥) are given for g ∈ GC
unitary as

U(g,~k,~k⊥) = U(g,~k) (B.14)

and for g ∈ GC antiunitary as

U(g,~k,~k⊥) =



r−1∏

j=1

�
(+)
j


�CU(g,~k). (B.15)

In addition, the Hamiltonian (B.13) satisfies the unitary

antisymmetry U(C,~k,~k⊥) = �
(+)
r ,

�
(+)
r H(~k,~k⊥)�(+)

r = −H(~k,~k⊥). (B.16)

The mapped Hamiltonian (B.13) satisfies for g ∈ GC uni-
tary

U(g,~k,~k⊥)H(g~k,~k⊥)U†(g,~k,~k⊥) = c(g)H(~k,~k⊥)
(B.17)

and for g ∈ GC antiunitary

U(g,~k,~k⊥)H∗(−g~k,−~k⊥)U†(g,~k,~k⊥)

= (−1)rc(g)H(~k,~k⊥).
(B.18)

The same commutation relations hold for the representa-
tions of the symmetry elements and the chiral antisym-

metry U(C,~k,~k⊥) = �
(+)
r . In particular, they are for

g ∈ GC unitary

U(g,~k,~k⊥)U(C,~k,~k⊥)U†(g,~k,~k⊥) = c(g)U(C,~k,~k⊥)
(B.19)

and for g ∈ GC antiunitary

U(g,~k,~k⊥)U∗(C,~k,~k⊥)U†(g,~k,~k⊥)

= (−1)rc(g)U(C,~k,~k⊥).
(B.20)

2. No-go theorem

Two-dimensional n-fold rotation symmetry protected
second-order topological phases in Cartan classes AIII,
BDI and CII (whose 0-dimensional anomalous states have
Z topological charge) require that the representations of
chiral antisymmetry U(C) and n-fold rotation symme-
try U(R2π/n) anticommute. In this case, the conditions
(B.5), (B.6) imply that the group of symmetry elements
compatible with chiral antisymmetry GC is generated by
a rotation antisymmetry R2π/nC and, depending on the
Cartan class, either time-reversal symmetry or particle-
hole antisymmetry. Thus GC does not contain any unitary
rotation symmetries.

Upon raising the dimension by an odd number,
Eqs. (B.11) and (B.12) also show that the rotation el-
ements in the image of the dimensional raising map can-
not be both unitary and commute with the Hamilto-
nian. Upon raising the dimension by an even number,
Eq. (B.19) shows that the anticommutation of the chiral
antisymmetry with the representation of (unitary) rota-
tion symmetry remains preserved. Antiunitary symme-
try elements remain antiunitary under the dimensional
raising map.

Finally, any d > 2 dimensional rotation symmetry pro-
tected second-order topological phase can be constructed
from a d = 2 dimensional second-order topological phase
where the corresponding model can be found by using
the inverse dimensional reduction map of the isomor-
phism. The dimensional reduction map can be explicitly
expressed in terms of a continuous deformation of the
Hamiltonian [3] or in terms of the scattering matrix of a
symmetric boundary [6 and 7] (see Section 2.3 of Chapter
2).

Therefore, the criterion from Sec. 3.2.4 of the main
text for the application of the unique bulk hybridization
as defined in Eq. (3.2) is violated for all symmetry classes
and dimensions d ≥ 2 that host n-fold rotation symmetry
protected topological phases with Z anomalous boundary
states. This proves the absence of a unique correspon-
dence between (d− 2) dimensional disclination anomaly
and strong bulk topology in these symmetry classes.

B.2. DETAILS ON THE TOPOLOGICAL
CRYSTAL CONSTRUCTION

We present additional details on the topological crys-
tal construction. Section B.2 1 shows in detail how to
perform the cell decomposition with space group p2. Sec-
tion B.2 2 contains details on how to determine the valid
decorations as well as their properties in terms of weak
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and strong topological phases as well as their Abelian
group property. Finally, in Sec. B.2 3 we show that an
obstruction exists to decorate the d − 1 cells of lattices
with disclination with Z topological phases.

B.2.1. Cell decomposition with space group p2

The cell decomposition of a cubic lattice with space
group p2 in two and three dimensions is shown in Fig.
3.5 in the main text.

Two dimensions. In two dimensions, we choose the
asymmetric unit to be bounded by the lines (x, 0) with
x ∈ [0, a2 ], (0, y) and (a2 , y) with y ∈ [0, a]. This choice
is made such that a corner of the asymmetric unit lies
at the unit cell center and its edges are parallel to the
lattices vectors.

There are three symmetry inequivalent 1-cells which
together cover the complete boundary of the 2-cell upon
translating the them with the crystalline symmetries.
They are given by the lines: i) (x, 0) with x ∈ [0, a2 ],
ii) (0, y) with y ∈ [0, a2 ], and iii) (a2 , y) with y ∈ [0, a2 ].

The symmetry-inequivalent 0-cells are the boundaries
of the 1-cells. They coincide with maximal Wyckoff
positions, which are labeled in standard notation as 1a
at ~x = (0, 0), 1b at ~x = (a2 , 0), 1c at ~x = (0, a2 ) and 1d
at ~x = (a2 ,

a
2 ).

Three dimensions. In three dimensions, see Fig. 3.5 in
the main text, the asymmetric unit is a cuboid where ev-
ery x-y plane cut reproduces the two-dimensional asym-
metric unit. Without loss of generality and for simplicity,
we set the boundaries of the cube at the planes z = ±a2 .

There are four symmetry-inequivalent 2-cells:

• (red) the x-y plane bounded between the lines
(x, 0, a2 ) with x ∈ [0, a2 ], (0, y, a2 ) and (a2 , y,

a
2 ) with

y ∈ [0, a],

• (blue) an x-z plane bounded between the lines
(x, 0,±a2 ) with x ∈ [0, a2 ], (0, 0, z) (Wyckoff posi-
tion 1a) and (a2 , 0, z) (Wyckoff position 1b) with
z ∈ [−a2 , a2 ],

• (yellow) a y-z plane bounded by the lines (0, y,±a2 )
with y ∈ [0, a2 ], (0, 0, z) (Wyckoff position 1a) and
(0, a2 , z) (Wyckoff position 1c) with z ∈ [−a2 , a2 ] and

• (green) another y-z plane bounded by the lines
(a2 , y,±a2 ) with y ∈ [0, a2 ], (a2 , 0, z) (Wyckoff po-
sition 1b) and (a2 ,

a
2 , z) (Wyckoff position 1d) with

z ∈ [−a2 , a2 ].

There are seven symmetry inequivalent 1-cells, three in
the x-y-plane similar to the two dimensional cell decom-
position, and four at the four maximal Wyckoff positions
1a at ~x = (0, 0, z), 1b at ~x = (a2 , 0, z), 1c at ~x = (0, a2 , z)
and 1d at ~x = (a2 ,

a
2 , z), z ∈ [−a2 , a2 ].

Finally, there are four symmetry inequivalent 0-cells
at ~x = (0, 0, a2 ), ~x = (a2 , 0,

a
2 ), ~x = (0, a2 ,

a
2 ) and ~x =

(a2 ,
a
2 ,

a
2 ).

(a) (b) (c)

(e) (f) (g) (h)

(d)

1a 1b

1c 1d

Figure B.4. Panels (a), (b) and (c) repeat for conve-
nience the generating set of valid 1-cell decorations for two
dimensional twofold rotation symmetric lattices with topo-
logical invariants as in Fig. 3.6 in the main text. In panel
(a) we included the labels of the maximal Wyckoff posi-
tions at the twofold rotation axes denoted by the violet stars.
The decorations (a), (b), (c) have the topological invariants
~ν = (ν1a|1b, ν1a|1c, ν1b|1d) = (0, 1, 0), (1, 0, 0) and (0, 1,−1)
as defined in the text, respectively. Figure (d) shows that
a topological crystal ~ν = (0, 2, 0) can be adiabatically and
symmetrically deformed to a topological crystal ~ν = (0, 0, 2)
up to additional d− 2 dimensional topological phases at and
parallel to the rotation axis (black dots) by deforming the
hybridization of the anomalous edge states (green bars) such
that it allows a symmetric and adiabatic movement of the
decoration. (e), (f) Doubling of the unit cell in y, x-direction
with a decoration with the topological crystal shown in (a).
The topological crystal shown in (a) is invariant under a dou-
bling of the unit cell in y direction after hybridization of the
anomalous edge states. A doubling of the unit cell in x di-
rection takes the Hamiltonian H describing the topological
crystal shown in (a) to H ⊕H after a movement of the sym-
metry related pairs of 1-cells as shown in (f). In contrast,
the topological crystal shown in (c) is invariant under a dou-
bling of the unit cell in y, x direction shown in (g), (h) using
hybridization and symmetry allowed deformations.

B.2.2. Decorations of topological crystals with
rotation symmetry

In this section we present in detail the decoration of the
1-cells (2-cells parallel to the rotation axis) in two (three)
dimensional rotation symmetric lattices with Z topolog-
ical phases and the properties of the resulting decora-
tions in terms of weak, strong and higher-order topolog-
ical phases. The results for decorations with topological
phases with Z2 anomalous edge states can be straightfor-
wardly obtained by taking the fusion rules modulo two.
Below we present the derivation for two dimensional lat-
tices and comment on the straightforward extension to
three dimensions. At the end of the section we show some
criteria that simplify the determination of the existence
of a decoration.

Twofold rotation symmetry in two dimensions. With
twofold rotation symmetry, the unit cell and cell decom-
position is shown in Fig. 3.5 in the main text.

The asymmetric unit is a 2-cell that can be decorated
with a two dimensional topological phase. The decora-

136



Appendix to: ”Bulk-boundary-defect correspondence at disclinations in crystalline topological insulators and
superconductors”

tion describes a gapped topological phase if the anoma-
lous state along its boundaries can be gapped by hy-
bridization with anomalous boundary states of adjacent
decorated 2-cells. Notice that the hybridization of edge
states along the 1-cells may create anomalous states at
the twofold rotation axis.

There are in total Z3 topological crystals that can be
constructed from decorations of the three distinct 1-cells
with Z topological phases. A given 1-cell decoration
can be identified by the vector ~ν = (ν1a|1b, ν1a|1c, ν1b|1d)
where νi|j is the topological invariant characterizing the
topological phase occupying the 1-cell between Wyckoff
positions i and j where i, j ∈ {1a, 1b, 1c, 1d}. As we
show in Fig. B.4 (d) some topological crystals are topo-
logically equivalent in the sense that they can be adia-
batically deformed into each other: A topological crystal
describing the element (0, 2, 0) can be written as a direct
sum H(0,2,0) = H(0,1,0) ⊕µ H(0,1,0) where H~ν is a Hamil-
tonian describing the topological crystal with topological
invariants ~ν and the subscript µ indicates that Pauli ma-
trices denoted by µj act in the space of the two systems.
A simple check directly shows that if H(0,1,0) describes a
gapped system whose anomalous edge states at the maxi-
mal Wyckoff positions hybridize and whose hybridization
is given by h, then h ⊗ µ1 is a possible hybridization of
H(0,2,0). This hybridization is shown by the green bars
in Figs B.4 (d) and allows to symmetrically move the
decoration to the 1-cell pointing from 1b to 1d.

Notice that in order to adiabatically deform the
hybridization h ⊗ µ0 obtained from the direct sum
H(0,1,0) ⊕µ H(0,1,0) to the required h⊗ µ1 one may need
to add extra gapped degrees of freedom at the rotation
axis. In two dimensions, these additional degrees of free-
dom are a 0-cell describing a gapped orbital. In higher
dimensions, the additional degrees of freedom can be a
d − 2-dimensional topological phase that decorates the
d − 2-cell that coincides with the rotation center. The
additional degrees of freedom remain as d − 1-cells are
moved. As in this chapter we restrict the analysis to
the properties of the topological crystals obtained from
d− 2-cells, we do not discuss under which conditions the
addition of gapped degrees of freedoms is necessary, nor
the properties of the resulting topological crystals.

This shows that the element (0, 2, 0) is equivalent to
the element (0, 0, 2) up to an atomic limit or decorated
d − 2 cells parallel to the rotation axis. Notice that
a similar deformation is not allowed for a decoration
(0, 1, 0) as this would require either a hybridization of
non-overlapping anomalous edge states of the 1-cells or
an absence of a hybridization of the anomalous edge
states which corresponds to a bulk gap closure.

A complete set of 1-cell decorations from which all
topological crystals can be constructed using the direct
sum operation is given by ~ν = (0, 1, 0), (1, 0, 0) and
(0, 1,−1) shown in Fig. B.4 (a), (b) and (c), respec-
tively. In order for the decorations to be valid, i.e., to
describe a gapped topological phase, all anomalous edge
states of the decorations need to gap out with overlapping

anomalous states at the same location. Each 1-cell ends
at a twofold rotation axis and thus has a partner under
twofold rotation. A sufficient criterion for the validity of
all decorations ~ν = (0, 1, 0), (1, 0, 0) and (0, 1,−1) is that
the anomalous states at the rotation axis gap out with
their partner under twofold rotation. This requires that
the topological charge at each rotation axis is balanced.
For this space group, this criterion is also necessary as
Wyckoff positions 1c and 1d border only to a twofold
rotation symmetry related pairs of 1-cells.

The topological crystals shown in Fig. B.4 (a), (b) are
real space limits of weak topological phases correspond-
ing to stacks of twofold rotation symmetric one dimen-
sional topological phases. Figure B.4 (f) shows that the
topological crystal shown in Fig. B.4 (a) can be trivial-
ized by a doubling of the unit cell in x direction. How-
ever, it is invariant under a doubling of the unit cell in
y direction as shown in Figure B.4 (e). A similar argu-
ment holds for the topological crystal shown in Fig. B.4
(b). The topological crystal shown in Fig. B.4 (d) is the
real space limit of a strong second-order topological su-
perconductor. It is invariant under a redefinition of the
unit cell in both x and y direction, as seen in Fig. B.4
(g) and (h), respectively. Due to the equivalence rela-
tion, the strong second-order topological phase has Z2

character, i.e. the topological crystal with topological
invariants (0, 2,−2) can be adiabatically deformed to the
trivial crystal (0, 0, 0) up to an atomic limit or decorated
d−2 cells parallel to the rotation axis. In case decorated
d − 2 cells remain, the resulting topological crystal may
be a strong third order topological phase, as expected
from the K-theoretic results from Ref. 8.

Fourfold rotation symmetry, two dimensions. With
fourfold rotation symmetry, the unit cell and cell decom-
position is shown in Fig. 3.5 in the main text. The
decoration of the 2-cell with a two dimensional topologi-
cal phase is valid if all 1-cells and 0-cells of its boundaries
gap out upon hybridizing the anomalous edge states of
adjacent 2-cells.

There are two distinct 1-cell decorations shown in Fig.
3.6 (d) and (e) in the main text. Similar arguments as
for twofold rotatation symmetry show that (a) is a weak
topological phase and (b) is a strong topological second-
order topological phase with Z2 character due to an
equivalence relation invovling an adiabatic and symmet-
ric deformation moving the 1-cell decorations between
the two 1-cells. By construction, every fourfold rota-
tion symmetric Wyckoff position is the edge of four 1-
cell decorations and therefore hosts four zero-dimensional
anomalous edge states of the 1-cells. As every fourfold ro-
tation symmetric Wyckoff position also satisfies twofold
rotation symmetry, gapping of twofold rotation symme-
try related pairs of anomalous edge modes of 1-cells is
a sufficient criterion for the existence of both 1-cell dec-
orations. This criterion is also necessary for the weak
topological phase shown in Fig. 3.6 (d) in the main text
as the twofold rotation symmetric Wyckoff position 2c
border only to a twofold rotation symmetry related pair

137



of 1-cells. However, this criterion is not necessary for
the strong second-order topological phase shown in Fig.
3.6 (e) in the main text. In fact, the 1-cells of the weak
topological crystal cannot be decorated with Z topolog-
ical phases as the anomaly cancellation criterion cannot
be satisfied both at twofold and fourfold rotation axis:
In order to gap the anomalous states at fourfold rotation
axis, fourfold rotation needs to invert the Z topologi-
cal charge. As the action of twofold rotation is given
by a double action of fourfold rotation, twofold rotation
leaves the topological charge invariant. As in the weak
phase, the twofold rotation axes are occupied only by two
anomalous states related by twofold rotation, their topo-
logical charge needs to be equal. This prohibits anoma-
lous states with Z topological charge to gap at the twofold
rotation axis of the weak topological crystal. An example
where the weak topological phase is forbidden while the
strong second-order topological phase exists is a magnetic
topological insulator as discussed in Sec. B.1 3.

Sixfold rotation symmetry, two dimensions. With six-
fold rotation symmetry, the unit cell and cell decompo-
sition is shown in Fig. 3.5. As before, the decoration
of the 2-cell with a two dimensional topological phase is
valid if all 1-cells and 0-cells of its boundaries gap out
upon hybridizing the anomalous edge states of adjacent
2-cells. There is only a single decoration of 1-cells shown
in Fig. 3.6 (f) that is consistent with the anomaly can-
cellation criterion at each rotation axis. A decoration of
1-cells ending at a threefold rotation symmetric momen-
tum cannot be consistent with the anomaly cancellation
criterion for tenfold-way topological insulators and su-
perconductors. The valid 1-cell decoration is a strong
second-order topological phase. As every sixfold rotation
symmetric Wyckoff position also satisfies twofold rota-
tion symmetry and Wyckoff position 3c borders only to a
twofold rotation symmetry related pair of 1-cells, gapping
of twofold rotation symmetry related pairs of anomalous
edge modes of 1-cells is a sufficient and necessary crite-
rion for the existence of both 1-cell decorations.

Extension to three dimensions. In three dimensions,
the cell decompositions for space groups p2, p4 and p6
are shown in figures Fig. 3.5 in the main text. For the
three dimensional asymmetric unit, all 2-cells and the
1-cells perpendicular to the rotation axis similar argu-
ments as in two dimensions apply. Decorations of the
1-cells parallel to the rotation axis would give rise to
a weak topological phase and a third order topological
phase hosting an anomalous state at a rotation symmet-
ric corner of the crystal. As in this chapter we focus on
topological crytalline phases that may host second-order
anomalous states at disclinations, we omit the construc-
tion of topological crystals corresponding to decorations
of 1-cells parallel to the rotation axis.

A necessary criterion on a strong first order topologi-
cal phase for fourfold and sixfold rotation symmetry. A
first order topological phase in a given topological crystal
exists if the decoration of the asymmetric unit with the
first order topological phase is valid. As both the fourfold

and sixfold rotation symmetric lattices contain a sepa-
rate twofold rotation axis, the decoration with the first
order topological phase in fourfold and sixfold rotation
symmetric lattices is possible only if the corresponding
decoration is possible in the twofold rotation symmetric
lattice.

Connection to K-theoretic classification schemes. The
existence of a mass term gapping anomalous states re-
lated by n-fold rotation symmetry can be determined
from the existence of a strong second-order phase pro-
tected by n-fold rotation symmetry in the respective
symmetry class and dimension as determined from K-
theoretic methods (see Refs. 7–10). This follows as it has
been shown in these articles that a strong second-order
topological phase can be deformed into symmetry related
d − 1 dimensional building blocks decorated with d − 1
dimensional first order topological phases. This limit is
identical to the topological crystal limit locally around
a rotation axis. This draws a one-to-one correspondence
between the existence of mass terms hybridizing symme-
try related d− 2 dimensional anomalous states at a rota-
tion axis and the existence of a second-order topological
phase protected by the same rotation symmetry.

B.2.3. Obstruction to decorate a lattice with
disclination with Z topological phases

We show that the topological crystal limit of second-order
or weak topological phases in symmetry classes with Z

anomalous boundary modes reveals an obstruction to re-
alize these phases on a lattice with disclination such that
the system is locally indistinguishable from the bulk ev-
erywhere except at the disclination.

Upon forming a 2π/n disclination by folding the lat-
tice, the unit cells are rotated by 2π

n in real space with-
out applying any interal action on the degrees of freedom
within the unit cell. For (d−1)-cell decorations with edge
states with Z topological charge, the onsite action is re-
sposible for inverting the topological charge of symmetry
related anomalous states within the unit cell. Due to the
absence of the interal action in the rotation of the lattice
during the Volterra process, unit cells whose configura-
tion of anomalous states is rotated by 2π/n are brought
next to each other. These unit cells form a continuous
line connecting the disclination to the boundary or to
another disclination. At each point along the line, the
Hamiltonian is locally distinguishable from the bulk. Lo-
cal rotations of unit cells can move, but not remove this
line.

Fourfold rotation symmetry. For example, consider the
fourfold rotation symmetric lattice with π/2 disclination
depicted in the left column of Fig. B.5. The cut line over
which the system was folded is visible as the decorations
of adjacent unit cells are rotated with respect to each
other. Along this line, the overlapping anomalous states
are located in a way that is inconsistent with fourfold
rotation symmetry as it is defined in the translation-
invariant bulk. It is impossible to apply the same hy-
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Figure B.5. Decoration of a fourfold symmetric lattice with
π/2 disclinations of both types with strong second-order topo-
logical phases with Z anomalous boundary state. The first
row shows the corresponding topological crystals. For sim-
plicity, the anomalous bound states that hybridize within the
unit cell are not shown.
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Figure B.6. Sixfold rotation symmetric lattice with discli-
nation with Franck angle Ω decorated with a second-order
topological phase whose d − 2 dimensional anomalous states
have Z topological charge. Notice for the lattice with π/3 or π
disclination that it is impossible to choose a decoration along
the cut line that preserve the sixfold rotation symmetry. In
these cases we omit the decoration of the (d − 1)-cells along
the cut line. For the 2π/3 disclination the unique decoration
pattern of the second-order topological phase is shown.

bridization term as in the bulk.
Sixfold rotation symmetry. With sixfold rotation sym-

metry, the topological crystal construction of the second-
order topological phase dictates that every line connect-
ing nearest sixfold rotation centers is decorated with a
topological phase. The corresponding decorations on
a lattice with π/3, 2π/3 or π disclination is shown in
Fig. B.6. For a lattice with π/3 or π disclination, a dec-
oration of the cut line with Z topological phases that
respects the sixfold rotation symmetry all along the cut
line is not possible. A symmetric decoration of a lat-
tice with 2π/3 disclination is possible. In this case the
disclination does not host an anomalous state.

Twofold rotation symmetry. The generators of d − 2
cell decorations of a twofold rotation symmetric lattice
with π disclinations of all types are shown in Fig. B.7.
As before, rotation symmetry is broken along the cut line.
For weak topological phases, if the disclination is created
by folding the gapless surface then there is an array of
anomalous states with the same topological charge along
the cut line which cannot be gapped. If the disclination is
created by folding the gapped surfaces then the cut line
in the folded lattice with π disclination is gapped. In
this case the weak topological phase that corresponds to
a stack of lower dimensional topological phases in the x,
y direction hosts anomalous disclination states at discli-

Ω π π π π

type (0,0) (1,0) (0,1) (1,1)

2
n
d

o
rd

er
w

ea
k

in
x

w
ea

k
in
y

Figure B.7. Decorations of a twofold rotation symmetric lat-
tice with π disclinations of all types with second-order topo-
logical phases protected by twofold rotation symmetry and
weak phase as a stack in x, y direction. Red and blue dots
denote d−2 dimensional anomalous states with Z topological
charge ±1. The red dashed lines denote a possible hybridiza-
tion of the anomalous states on the surface. The green dashed
line denotes the cut line.

nation of type (1,0), (0,1), respectively. The anomalous
states at the boundary switch their topological charge at
the intersection of the cut line with the boundary.

1. Relation to the no-go theorem from Sec. B.1 4

In two dimensions, the local configuration of Z topo-
logical charges is expressed by the representation of chiral
antisymmetry. In case the representations of chiral an-
tisymmetry and rotation symmetry R2π/n anticommute,
a 2π/n rotation without applying the internal action of
rotation symmetry exchanges the topological charges in
the system. This implies that the pattern of Z topological
charges in two unit cells adjacent over the cut line con-
nected to a 2π/n disclination needs to be distinguishable
from the pattern in the bulk, which is the obstruction
found from the topological crystal decoration of lattices
with disclination as shown in Figs. B.5, B.6, B.7.

The anticommutativity between the representations of
chiral antisymmetry and rotation symmetry is necessary
for the existence of the second-order and weak topological
crystal as the anomaly cancellation criterion (3.6) needs
to be satisfied at each rotation axis in the unit cell. This
shows that the obstruction to decorating a lattice with
disclination such that it is locally indistinguishable from
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the bulk everywhere except at the disclination is related
to the obstruction of applying the bulk hopping term
due to the algebraic relations of the symmetry elements
as discussed in Appendix B.1 4.

B.3. FIRST ORDER TOPOLOGY AND POINT
OR LINE DEFECTS

Strong first order topological phases are classified in
the tenfold way [11 and 12] and do not require any crys-
talline symmetries for their protection. They may be re-
alized in systems without a lattice structure where the di-
mensionality is only enforced by the locality of the Hamil-
tonian. Crystalline symmetries however may prohibit the
existence of first order topological phases. A typical ex-
ample is that the presence of a mirror symmetry requires
the Chern number in a plane perpendicular to the mirror
plane to vanish.

In Sec. B.3 1 below we show that the independence
on any type of underlying lattice of strong first order
topological phases implies that there can be no term ∝
Ω · ν1 linking the rotation holonomy Ω of disclinations
with the first order topological invariant ν1 contributing
to the number of anomalous disclination states. However,
tenfold-way first order topological phases respond to π-
fluxes, which may be bound to point or line defects. In
Sec. B.3 2 we list the cases in which they host anomalous
states at point or line defects binding π-fluxes.

B.3.1. First order topology and disclinations

In two dimensional space without an underlying lattice
one can define disclinations with arbitrary Franck angle
Ω as point defects such that any coordinate system that is
parallel transported in a closed loop enclosing the discli-
nation (and no additional disclinations) is rotated by Ω.
The rotation holonomy Ωtot of a coordinate system paral-
lel transported around several disclinations j is given by
the sum of their Franck angles Ωtot =

∑
j Ωj . Now sup-

pose that a disclination with Franck angle Ω0 would host
an anomalous disclination state in the strong first order
topological phase. As the existence of disclination states
in a topological phase has to be a property of the topolog-
ical bulk, their existence may only depend on the rotation
holonomy of a closed loop that may be deformed to be
arbitrarily far away from the disclination (as long as the
deformation of the loop does not cross any other discli-
nations). Thus a disclination with Franck angle 2Ω0 can
be constructed by moving two disclinations with Franck
angle Ω0 to the same point in space. As a consequence,
the topological charge at a disclination with Franck an-
gle 2Ω0 is twice the topological charge of a disclination
with Franck angle Ω0. Furthermore, if a disclination with
Franck angle Ω0 hosts an anomalous state with topologi-
cal charge Q = 1, the topological charge at a disclination
with Franck angle Ω0/2 has to depend on microscopic de-
tails of the disclination and cannot be a property of the

topological bulk as the topological charge is quantized to
integers.

As first order topological phases do not require any
rotation symmetry for their topological protection that
would single out a specific Franck angle Ω0, all discli-
nations independent on their Franck angle should have
the same properties under topological deformations per-
seving the bulk gap of the first order topological phase.
This is only possible if first order topological phases do
not host anomalous states at disclinations.

These general arguments can be confirmed by combin-
ing the exact diagonalization results from Ref. 13 with
the classification and corresponding topological invari-
ants from Ref. 9 for twofold and fourfold rotation sym-
metric systems. In Ref. 13 models for topological super-
conductors with odd Chern number and trivial and non-
trival weak invariants have been defined and systemati-
cally exactly diagonalized on lattices with disclinations.
Applying the topological invariants from Ref. 9 to their
corresponding models with twofold and fourfold rotation
symmetry shows that these models are not simultane-
ously in a second-order topological phase. Thus the ab-
sence of Majorana bound states at disclinations of the
odd Chern number model with trivial weak invariants
confirms our general arguments from this section.

B.3.2. First-order topological phases and
π-fluxes

In this section we show that first order topological phases
in symmetry classes and dimension d that allow for d −
2 dimensional anomalous states host anomalous states
at d − 2 dimensional defects with the property that the
geometric phase α acquired by parallel transport around
a closed a loop around the defect is π.

In two dimensions, this property corresponds to the fa-
miliar statement that p-wave superconductors with odd
Chern number host Majorana bound states at vortex
cores [14 and 15]. By augmenting such a Chern supercon-
ductor with its time reversed copy by applying the same
procedure as in Section 3.6.2, one constructs a two di-
mensional topological superconductor in class DIII. This
procedure defines a homomorphism hT : KD(d = 2) →
KDIII(d = 2) from the classifying group KD(d = 2) ' Z

of two dimensional topological superconconducts in class
D to the classifying group two dimensional topological
superconductors in class DIII KDIII(d = 2) ' Z2. Un-
der this homomorphism, the Majorana bound state at a
vortex is mapped to a Kramers pair of Majorana bound
states at a vortex. This procedure shows that the two
dimensional superconductor in class DIII hosts Kramers
pairs of Majorana bound states at vortices, in agreement
with Ref. 16.

By applying the dimensional raising maps from
Refs. 3–5 to the two dimensional first order topological
superconductors in class D and class DIII, one shows that
d − 2 dimensional defects binding a π-flux in all related
symmetry classes and dimensions host d− 2 dimensional
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anomalous states. The dimensional raising maps starting
from Cartan classes with a chiral antisymmetry were re-
viewed and applied in Appendix B.1 4. The dimensional
raising map preserves the existence of d− 2 dimensional
states at point defects as long as all crystalline symme-
tries, if present, act trivially in the newly added dimen-
sions. This was exemplified in Sec. 3.6.3 and was shown
using a dimensional reduction scheme based on the scat-
tering matrix in Section 2.3 of Chapter 2 [7] .

B.3.3. Presence of internal unitary symmetries

First-order topological phases protected by an internal
unitary symmetry U may also host anomalous states at
a U-symmetry flux defect [17]. These defects are defined
as the end of a branch cut upon which a crossing particle
is acted upon by the symmetry U . The presence of the
symmetry flux thus is another property of point defects in
addition to the Z2 geometric π-flux and the rotation and
translation holonomies that needs to be specified when
constructing a disclination. The construction of a lat-
tice with U-symmetry flux is similar as discussed in Sec.
3.2.4. Therefore, similar conditions hold for the algebraic
relations on the symmetry elements in order to ensure the
absence of a domain wall that allows a unique prediction
of the existence of anomalous states at the U-symmetry
flux defect.

Furthermore, the classification of first-order topolog-
ical phases in the presence of additional unitary sym-
metries follows by block diagonalizing the Hamiltonian
under the irreducible representations of the unitary sym-
metries and identifying the Cartan class and relations
between each block [18 and 19].

An example is a two-dimensional topological supercon-
ductor in Cartan class D with a Z2 unitary internal sym-
metry U with U2 = 1 that commutes with particle-hole
conjugation. In this case the Hamiltonian can be block-
diagonalized with respect to the two eigenvalues ±1 of
U and the two blocks individually are in Cartan class D
and can be characterized by a Chern number Ch± where
the subscript ± denotes the block. One can identify a
generator of a Z2 symmetry enriched topological phase
as a Hamiltonian with Ch+ = 1 and Ch− = 0 and a gen-
erator of the Z2-symmetry protected topological phase
as a Hamiltonian with Ch− = −Ch+ = 1.

In this example, one can distinguish a geometric π-flux
from a U-symmetry flux: the geometric π-flux is defined
by introducing a branch cut through the system such
that each particle crossing the branch cut acquires a π
phase shift. In contrast, the U-symmetry flux is defined
by introducing a branch cut such that each particle cross-
ing it is acted upon by U . The geometric π-flux defect
hosts a number of Majorana fermions that is given by
the parity of the total Chern number θflux = Ch+ + Ch−
mod 2. The U-symmetry flux hosts a number of Majo-
rana fermions θU = Ch− mod 2 given by the parity of
the Chern number in the −1 block only. This can be seen
as in the block-diagonal basis of U , the U-symmetry flux

contributes a π phase shift only in the −1 subspace while
it acts trivially in the +1 subspace.

As for our crystalline examples, each property of the
defect is associated with exactly one generator of the
topological phases that contributes anomalous states to
the defect: only the generator of the symmetry-enriched
topological phase with Ch+ = 1 and Ch− = 0 contributes
a Majorana bound state to the geometric π-flux defect,
and only the generator of the Z2 internal-symmetry pro-
tected topological phase with Ch− = −Ch+ = 1 con-
tributes a Majorana bound state to the U-symmetry flux
defect.

B.4. SYMMETRY-BASED INDICATORS FOR
TWO DIMENSIONAL SUPERCONDUCTORS IN

CLASS D

Symmetry-based indicators are easy-to-compute topo-
logical invariants for topological crystalline insulators
and superconductors that are expressed using the matrix-

valued single-particle Hamiltonian H(~ks) at a certain set

of high-symmetry momenta ~ks. The symmetry-based
indicators for a Cartan class D superconductor with
twofold and fourfold rotation symmetry have been de-
rived in Section 4.6.2 of Chapter 4 and Appendix C.1.3
[9]. The symmetry-based indicators of Chapter 4 [9] are
in one-to-one correspondence to the rotation invariants
of Ref. 13. Here, we show how the symmetry-based in-
dicators can be used to formulate a criterion on the ex-
istence of anomalous disclination states in terms of the
bulk topological invariants.

Fourfold rotation symmetry. Anomalous states
at point defects exist only for pairing symmetries

u(Rπ/2)∆(Rπ/2~k)u†(Rπ/2) = ±∆(~k). For the other pair-
ing symmetries, there are no topological phases that can
host zero-dimensional Majorana defect states (see Table
3.1 and Appendix B.5 2). Below we present the result

for even pairing symmetry u(Rπ/2)∆(Rπ/2~k)u†(Rπ/2) =

∆(~k). There are two symmetry-based indicators,

z1;x,y = N
(π,0)
1
2

+ N
(π,π)
1
2

+ N
(π,π)
5
2

mod 2 (B.21)

and

z2 =−N
(0,0)
1
2

+ 3N
(0,0)
5
2

− 2N
(π,0)
1
2

(B.22)

+ 3N
(π,π)
1
2

−N
(π,π)
5
2

mod 8.

Here, N
~ks
j is the number of eigenstates with negative

eigenenergy and eigenvalues eij2π/n under rotation sym-

metry of the Hamiltonian H(~ks) at the high symme-

try momentum ~ks with n-fold rotation symmetry. The
symmetry-based indicator z1;x,y detects the weak topo-
logical superconductor. The elements z2 mod 8 corre-
spond to a Chern superconductor. The element “4” ∈ Z8
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is ambiguous and may either correspond to the second-
order topological superconductor or to a Chern super-
conductor with Chern number Ch = 4.

Due to the ambiguity of the second-order topologi-
cal superconductor with the Chern superconductor, it
is impossible to define a necessary criterion on the exis-
tence of Majorana bound states at a disclination purely
in terms of topological band labels. However, a crite-
rion can be formulated assuming the Chern number Ch
can be explicitly determined. The number of Majorana
bound states at a disclination with Franck angle Ω and

translation holonomy ~T is

θ =
Ω

2π
(z2 − Ch) + ~T · ~Gν mod 2 (B.23)

where ~Gν = (z1;x,y, z1;x,y)T is the weak invariant and ~T
is the translation holonomy of the disclination.

Twofold rotation symmetry. Anomalous states at
point defects exist only for even pairing symmetry

u(Rπ)∆(Rπ~k)u†(Rπ) = ∆(~k), see Table 3.1 and Ap-
pendix B.5 2. There are three symmetry-based indica-
tors. The first two,

z1;x = N
(π,0)
1
2

+ N
(π,π)
1
2

mod 2, (B.24)

z1;y = N
(0,π)
1
2

+ N
(π,π)
1
2

mod 2 (B.25)

correspond to weak topological superconductors with
topological crystal limits shown in Fig. 3.6 (a), (b)
in the main text, respectively. Furthermore, there is a
symmetry-based indicator

z2 = N
(0,0)
1
2

−N
(0,π)
1
2

−N
(π,0)
1
2

+ N
(π,π)
1
2

mod 4 (B.26)

whose odd elements detect the parity of the Chern num-
ber and the value z2 = 2 is ambiguous between a Chern
superconductor with even Chern number and a second-
order topological superconductor. The number of Majo-
rana bound states at a disclination with Franck angle Ω

and translation holonomy ~T can be determined as

θ =
Ω

2π
(z2 − Ch) + ~T · ~Gν mod 2 (B.27)

where ~Gν = (z1;x, z1;y)T is the weak invariant.

B.5. DERIVATION OF TABLES 3.1 AND 3.2

This section shows how the classification of strong first
order, strong rotation symmetry protected second-order,
and weak topological phases summarized in tables 3.1
and 3.2 can be obtained using our results from B.2 2 and
similar arguments as in the examples Sec. 3.6. In ad-
dition, we briefly review the symmetry classification of
superconducting order parameters in Sec. B.5 1 as it de-
termines the topological classification (see also Section

4.2 of Chapter 4 for a more detailed discussion). A com-
plete discussion can be found in Ref. 9.

In Appendix B.2 2, we derived simple criteria for the
existence of rotation symmetry protected second-order
and weak topological phases. In particlar, we showed
that a sufficient criterion for the existence of a second-
order topological phase with fourfold and sixfold rotation
symmetry is the existence of a second-order topological
phase with twofold rotation symmetry with representa-
tion U(Rπ) = U(Rπ/2)2 and U(Rπ) = U(Rπ/3)3, respec-
tively. For sixfold symmetric second-order topological
phases on a lattice and for weak topological phases in
fourfold symmetric lattices this criterion is also neces-
sary. All entries have been verified by checking that i)
the required hybridization terms to gap out the anoma-
lous states in the topological crystal construction exist or
ii) a tight binding model realizing the topological crys-
talline phase in question can be explicitly defined.

B.5.1. Symmetry of the superconducting order
parameter

The classification of topological crystalline superconduc-
tors depends on the symmetry of superconducting order
parameter, as the explicit examples in sections B.5 2 and
B.5 3 below show. The following is a brief summary of
the extensive discussion in Section 4.2 of Chapter 4 [9].

The BdG Hamiltonian describing superconducting sys-
tems is of the form

HBdG(~k) =

(
h(~k) ∆(~k)

∆(~k)† −h∗(−~k)

)
(B.28)

where ∆(~k) = −∆T (−~k) is the superconducting order

parameter and h(~k) is the normal state single particle
Hamiltonian. The BdG Hamiltonian satisfies a particle-

hole antisymmetry HBdG(~k) = −τ1HBdG(−~k)∗τ1 where
τ are Pauli matrices in particle-hole space. The symme-

try of the superconducting order parameter ∆(~k) can be
characterized by a one-dimensional representation Θ of
the point group [9 and 20] as

∆(~k) = u(g)∆(g~k)u†(g)Θ∗(g) (B.29)

where u(g) is the representation of the point group ele-

ment g on the normal-state Hamiltonian h(~k). The cor-
responding representation on the Bogoliubov-de Gennes
Hamiltonian is

U(g) =

(
u(g) 0

0 u∗(g)Θ(g)

)
. (B.30)

With this representation one finds directly the commu-
tation relation between particle-hole antisymmetry and
the point group elements

gP = Θ(g)Pg. (B.31)
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For point groups generated by a single n-fold rotation
symmetry the one dimensional representation θ(g) is en-
tirely specified by the phase φ of the generating element
eiφ = θ(R2π/n).

B.5.2. Two dimensions

1. Class D

Twofold rotation. The existence of the mass term guar-
anteeing the existence of weak and second-order topolog-
ical phases for both pairing symmetries characterized by
the phase φ = 0 and π follows from results of Refs. 7
and 8, as detailed in the last paragraph of Sec. B.2 2.
For concreteness, for φ = 0 we may choose the repre-
sentations U(Rπ) = iτ2, P = K where the mass term
that gaps a pair of symmetry related Majorana bound
states is τ2. For φ = π we may choose the representa-
tions U(Rπ) = iτ2, P = τ3K where no mass term exists.
Refs. 7 and 8 also show that a Chern superconductor with
odd Chern number exists only for φ = 0 while for φ = π,
the Chern number is constrained to be even.

Fourfold rotation. The topological classification of su-
perconductors with pairing symmetry characterized by
the phase φ = 0 and π (φ = π/2 and 3π/2) are identical
as they are related by a multiplication of the representa-
tion of rotation symmetry with a phase [9]. For φ = 0, π,
the weak and second-order phases exist as the Majorana
bound states at the rotation axes gap out in twofold ro-
tation symmetry related pairs. For φ = π/2, 3π/2 Ref. 9
has shown that no strong second-order topological phase
and no weak phase exists and the Chern number is con-
strained to be even.

Sixfold rotation. Similar as for fourfold rotation, the
topological classification of superconductors with pairing
symmetry characterized by the phase φ = 0, 2π/3 and
4π/3 (φ = π, π/3 and 5π/3) are identical. A second-
order topological phase exists only for φ = 0, 2π/3 and
4π/3. For φ = 0, a superconductor with Chern number
Ch = 1 is given by the px + ipy superconductor [13],

H(~k) =
3∑

i=1

sin(~k · ~a1)~a1 · ~τ + cos(~k · ~a1)τ3 (B.32)

with ~τ = (τx, τy)T and a1 = (1, 0), a2 = (− 1
2 ,
√

3
2 ) and

a3 = (− 1
2 ,−

√
3

2 ) and representation of sixfold rotation

symmetry U(Rπ/3) = eiπτ3/6 and particle-hole antisym-
metry P = τ1K. For φ = π a superconductor with odd
Chern number does not exist. In this symmetry class, a
model for a superconductor with Chern number Ch = 2
can be defined as

H(~k) =
3∑

i=1

sin(~k · ~a1)~a1 · ~τρ0 + cos(~k · ~a1)τ3ρ0 (B.33)

with ~τ = (τx, τy)T and a1 = (1, 0), a2 = (− 1
2 ,
√

3
2 ) and

a3 = (− 1
2 ,−

√
3

2 ) and representation of sixfold rotation

symmetry U(Rπ/3) = eiπτ3/6ρ3 and particle-hole anti-
symmetry P = τ1ρ1K.

Magnetic twofold rotation. A magnetic rotation sym-
metry consists of the combined action of rotation and
time-reversal symmetry. For spinful fermions, these op-
erators commute. Thus, for magnetic twofold rotation
symmetry we have (U(RπT )K)

2
= 1. A pair of Ma-

jorana bound states related by RπT with U(RπT ) = τ1
gaps upon hybridization with the mass term τ2. As a con-
sequence, the second-order and weak topological phase
exist. Twofold magnetic rotation symmetry requires the
Chern number to vanish [].

Magnetic fourfold rotation. For magnetic fourfold

rotation symmetry, the operator
(
U(Rπ/2T )K

)2
is a

unitary twofold rotation operator that commutes with
particle-hole antisymmetry. Furthermore, we have(
U(Rπ/2T )K

)4
= −1 for spinful fermions. Here, Majo-

rana bound states hybridize in twofold rotation symme-
try related pairs. Thus a weak and second-order topologi-
cal phase exists. Furthermore, magnetic fourfold rotation
prohibits the existence of a Chern number.

Magnetix sixfold rotation. A system with magnetic six-
fold rotation symmetry also satisfies magnetic twofold
rotation symmetry. We have shown that for the lat-
ter, Majorana bound states hybridize in pairs and the
Chern number needs to vanish. Thus only the second-
order topological phase exists.

2. Class DIII

Pairing symmetry φ = 0. Superconductors in class
DIII with φ = 0 can be constructed from the class D
superconductors with φ = 0 by taking two time reversed
copies as shown in Sec. 3.6.2. This construction shows
the existence of weak and strong first and second-order
topological phases for twofold, fourfold and sixfold rota-
tion symmetry.

Pairing symmetry φ = π. For this pairing symmetry,
Kramers pairs of Majorana bound states at rotation axes
with representations T = iσ2τ0K, P = σ0τ3K hybridize
in partners related by twofold rotation U(Rπ) = iσ3τ1 as
the mass term σ1τ2 exists. In systems with fourfold rota-
tion symmetry with φ = π, the representation of twofold
rotation symmetry commutes with particle-hole symme-
try. With the results from the previous paragraph on the
pairing symmetry φ = 0, also at fourfold rotation axes
the Kramers pairs of Majorana bound states hybridize
in partners related by twofold rotation symmetry. Thus,
weak and second-order phases exist with twofold, fourfold
and sixfold rotation symmetry. The first order topologi-
cal phase is prohibited by n-fold rotation symmetry with
pairing symmetry φ = π.

Furthermore, with φ = π rotation symmetry anticom-
mutes with particle-hole antisymmetry. As argued in Sec.
3.2.4, in this case it is impossible to construct a finite
hopping across the cut that preserves all symmetries and
is locally indistinguishable from the bulk. This implies
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that there is in general no bulk-defect correspondence at
disclinations for pairing symmetry φ = π.

3. Classes AIII and BDI

In class AIII, the zero dimensional anomalous states
have Z topological charge as zero-energy states with the
same eigenvalue under chiral antisymmetry Γ do not gap
out in pairs. Therefore, a set of symmetry related zero-
energy states can only gap out if the rotation symmetry
anticommutes with chiral antisymmetry such that the
eigenvalue of chiral antisymmetry of symmetry related
zero-energy states is opposite. In this case, twofold rota-
tion symmetry related states gap out with a mass term
τ2 with representations U(Rπ) = iτ2 and Γ = τ3. As
a consequence, second-order topological phases exist for
twofold, fourfold and sixfold rotation symmetric lattices.
Weak topological phases exist in twofold rotation sym-
metric lattices. There does not exist a first order topo-
logical phase in class AIII in two dimensions.

The same result holds for class BDI in two dimensions
as the mass term also satisfies the antiunitary symmetry
T = τ3K.

4. Class CII

Class CII has time-reversal symmetry T 2 = −1 and
particle-hole antisymmetry P2 = −1. Similar argu-
ments as in class AIII hold here, except that the zero-
energy states appear in Kramers pairs. Here, a mass
term gapping twofold rotation symmetry related partners
can be chosen as σ3τ2 with representations T = iσ2τ0K,
P = σ0τ2K and U(Rπ) = σ3τ2.

B.5.3. Three dimensions

In three dimensions, the d − 1 dimensional anomalous
states with Z topological charge are chiral states. Their
topological charge (i.e. their propagation direction) is
only inverted by magnetic rotation symmetry. As a con-
sequence, there are no weak or second-order topological
phases in classes A, D, C with non-magnetic rotation
symmetry. Furthermore, these Cartan classes also do
not host first order topological phases.

1. Classes A and D

In class A, chiral modes related by twofold magnetic
rotation symmetry gap out in pairs, as the mass term τ2
for two chiral modes related by twofold magnetic rota-
tion symmetry RπT = τ1K described by the low energy
Hamiltonian vkzτ3 exists. For fourfold magnetic rotation
symmetry, it has been shown in Sec. B.1 3 that the mass
term τ3σ2 − τ2σ0 describing a ring hybridization of ro-
tation symmetry related chiral modes with low energy

Hamiltonian vkzτ3σ3 creates a gap in the spectrum. As
a consequence, second-order topological phases exist in
lattices with twofold, fourfold and sixfold magnetic rota-
tion symmetry. The weak topological phases as shown
in Fig. 3.6 in the main text exist only in lattices with
twofold rotation symmetry.

The mass terms and low energy Hamiltonians also sat-
isfy particle-hole antisymmetry P = K. Thus the results
apply also to class D.

The weak phases corresponding to stacks of Chern in-
sulators with stacking direction parallel to the rotation
axis exist in class A with non-magnetic rotation symme-
try as the Chern number is consistent with rotation sym-
metry. Magnetic rotation symmetry requires the Chern
number to vanish. In class D, the results from section
B.5 2 apply.

2. Class C

We regard physical systems in class C as superconduc-
tors in the presence of spin rotation symmetry. In this
case, magnetic twofold rotation symmetry still satisfies
(RπT )2 = 1. With RπT = τ0ρ1K and P = τ2ρ0K,
the mass term τ0ρ2 gaps out the low energy Hamilto-
nian vkzτ0ρ3 describing the minimal number of chiral
modes related by magnetic twofold rotation symmetry.
In class C, fourfold magnetic rotation symmetry satisfies
(Rπ/2T )4 = 1. Here a ring hybridization with real hop-
ping elements gaps symmetry related chiral modes. This
shows the existence of the weak and second-order topo-
logical phases as shown in Fig. 3.6 in the main text in
lattices with twofold, fourfold and sixfold magnetic rota-
tion symmetry in Cartan class C.

Two dimensional superconductors in class C allow for
an even Chern number. The weak phases correspond-
ing to stacks of Chern superconductors with even Chern
number with stacking direction parallel to the rotation
axis exist with non-magnetic rotation symmetry for any
pairing symmetry.

3. Class DIII

Pairing symmetry φ = 0. Three dimensional super-
conductors in class DIII with φ = 0 can be constructed
from two dimensional class D superconductors with φ = 0
using the dimensional raising map as we also used in
Appendix B.1 4. It has been shown using the reflec-
tion matrix dimension reduction scheme in Section 2.3
of Chapter 2 [7] that the dimensional raising map pre-
serves anomalous states at defects.

Below we illustrate the usage of the dimensional raising
map to define a model Hamiltonian for the second-order
topological superconductor in class DIII in three dimen-
sions.

In the model described by the Hamiltonian HD in
Eq. (3.13) the dimerization parameter (or mass) δt can
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be used to tune between the trivial and the topologi-
cal phase. In particular, the system undergoes a topo-
logical phase transition at δt = 0, where the bulk gap
closes. The dimensional raising map requires to replace
δt→ δt cos kz, such that the model interpolated between
the trivial and the topological phase as a function of
the additional momentum parameter kz. In order to
ensure that the system remains gapped for all kz one
adds another term tz sin kzγz to the Hamiltonian, re-
quiring that γz anticommutes with the Hamiltonian at
kz = 0, π. Starting from a model without chiral antisym-
metry one needs to introduce a new degree of freedom de-
scribed by Pauli matrices σ by taking the original model
HD → HDs3. Then we may choose γz = σ3. Now the
model satisfies an additional chiral antisymmetry Γ = σ2

and, in combination with particle-hole antisymmetry, a
time-reversal symmetry T = iσ2K. Thus we may inter-
pret the σ3 degree of freedom as spin.

These arguments are collected in the dimensional rais-
ing map, which is expressed as

HD(kx, ky; δt) → HD(kx, ky; δt cos[kz])σ3

+ tz sin[kz]τ0ρ0σ1.

This lifts our two-dimensional model in class D to a three-
dimensional model in class DIII realizing a strong second-
order topological phase.

Pairing symmetry φ = π. Similar to two dimensional
class DIII superconductors with pairing symmetry φ = π,
helical Majorana modes vkzσ3τ0 related by twofold ro-
tation U(Rπ) = iσ3τ1 and representations T = iσ2τ0T ,

P = σ0τ3K hybridize as the mass term σ1τ2 exists. Weak
and second-order phases exist with twofold, fourfold and
sixfold rotation symmetry. The first order topological
phase is prohibited by n-fold rotation symmetry with
pairing symmetry φ = π. These results are consistent
with Ref. [19].

The existence of weak phases corresponding to stacks
of two-dimensional first order topological superconduc-
tors with stacking direction parallel to the rotation axis
follows from the results of section B.5 2.

4. Class AII

The classification of time reversal symmetric insula-
tors in class AII is related to class DIII by lifting the
particle-hole antisymmetry constraint of class DIII. This
construction maps the first order topological phases in
d = 2, 3 and corresponding anomalous states of class DIII
to the corresponding first order topological phases and
anomalous states in class AII [12]. Applying this con-
struction to class DIII topological superconductors with
pairing symmetry φ = 0 shows the existence of first-
order, second-order and weak topological phases in class
AII.

Weak phases corresponding to stacks of two-
dimensional first order topological insulators with stack-
ing direction parallel to the rotation axis exist with
twofold rotation symmetry.
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C. Appendix to ”Symmetry-based indicators for topological Bogoliubov-de Gennes
Hamiltonians”

C.1. MORE EXAMPLES IN THREE
DIMENSIONS

We discuss the classifying group Kη[G,Θ], band labels,
compatibility relations and symmetry-based indicators of
the topological phases with nontrivial boundary signa-
tures for a selection of point groups not covered in the
main text.

C.1.1. The trivial point group C1, classes D,
DIII, C, CI

In the absence of crystalline symmetries (other than
translation), for classes DIII, C and CI there are no
topological band labels, as the classification of the in-
version symmetric momenta Kη[C1, A] is trivial for those
classes. The classifying groups are KDIII[C1, A] = Z

6
2×Z,

with three factors Z2 for weak phases corresponding to
stacks of one-dimensional time-reversal symmetric topo-
logical superconductors, three factors Z2 for stacks of
two-dimensional time-reversal symmetric topological su-
perconductors, and one factor Z for a three-dimensional
strong first-order superconductor phase , KC[C1, A] =
Z

3, the three factors Z describing weak phases corre-
sponding to stacks of two-dimensional Chern supercon-
ductors with even Chern number, which can be adiabat-
ically deformed to normal-state Chern insulators, and
KCI[C1, A] = Z, corresponding to a three-dimensional
strong phase. None of these phases can be detected using
symmetry-based indicators. The symmetry-based indica-
tors for tenfold-way class D are nontrivial, as we discuss
below.
Classifying group. The boundary classifying group for

tenfold-way class D is

KD[C1, A] = Z
3
2 × Z3.

The factor Z3
2 corresponds to Kitaev chains stacked in the

y and z, x and z or x and y directions (labels (1; y, z),
(1;x, z), and (1;x, y)) and the factor Z3 corresponds to
Chern superconductors stacked in the z, y, or x direc-
tion (labels (2; z), (2; y), and (2;x)). The even-Chern-
number superconductors can be deformed to Chern in-
sulators with vanishing superconducting order parame-
ter. The topological phases generate a Z

6
2 subgroup of

SID[C1, A] = Z
7
2. The boundary signatures of the topo-

logical phases together with their symmetry-based indi-
cators are shown in Fig. C.1.
Band labels. There are BL ' Z

8
2 topological band

labels given by the Pfaffian invariant pks at all high-
symmetry momenta ks.

Compatibility relations. There are no 0d compatibility
relations. Hence BL ' BS and

B[H(k)] = {pks}.

Z2 Z2 Z2

z1;y,z = 1 z1;x,z = 1 z1;x,y = 1

0 ⊆ Z 0 ⊆ Z 0 ⊆ Z
z2;z = 1 z2;y = 1 z2;x = 1

x

z
y

FIG. C.1. Topological phases of a three-dimensional super-
conductor in tenfold-way class D and with translation sym-
metry only (point group C1). For each boundary signature,
the boundary subgroup sequence (top row) and the nonzero
symmetry-based indicators for a generator of that phase are
given (middle row).

There is a 2d compability relation required by the con-
servation of the Chern number between parallel planes,

∑

ks|ks,i=0

pks =
∑

ks|ks,i=π
pks mod 2, i = x, y, z.

The violation of this compatibility relation signals a gap-
less phase with nodal points.

Symmetry-based indicators. The group of symmetry-
based indicators

SID[C1, A] = BS/AI ' Z7
2

contains a factor Z6
2 corresponding to stacks of one and

two dimensional topological superconductors,

z1;i,j =
∑

ks|ks,i=ks,j=π
pks mod 2,

z2;j =
∑

ks|ks,j=π
pks mod 2,

with i 6= j = x, y, z. The remaining factor Z2 corre-
sponds to a nodal superconductor detected by the vio-
lation of the 2d compatibility relation with symmetry-
based indicator

z3 =
∑

ks

pks mod 2.
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Z2 0 ⊆ Z
z1;y,z = 1 −

x

z
y

FIG. C.2. Topological phases of a three-dimensional super-
conductor in tenfold-way class D with point group Cs and
representation Θ = A′.

C.1.2. Point group Cs, class D

1. Representation Θ = A′

Classifying group:

KD[Cs, A
′] = Z2 × Z.

The factor Z2 corresponds to a stack of mirror sym-
metric Kitaev chains in the y and z directions (label
(1; y, z)) and the factor Z corresponds to a stack of
two-dimensional Chern superconductors with even Chern
number within the mirror plane (label (2;x)). The latter
phase can not be detected by symmetry-based indicators.
It can be adiabatically deformed to a Chern insulator
that is robust to the introduction of odd-parity super-
conducting correlations. The boundary signatures of the
topological phases together with their symmetry-based
indicators are displayed in Fig. C.2.
Band labels. There are BL = Z

8 topological band la-
bels given by the invariants Nks

+ at all high-symmetry
momenta ks.
Compatibility relations. Within a mirror plane

kx = 0, π the invariant Nk
+ is preserved for a gapped

phase, which leads to the 0d compatibility relations

N
(0,0,0)
+ =N

(0,π,0)
+ = N

(0,0,π)
+ = N

(0,π,π)
+ ,

N
(π,0,0)
+ =N

(π,π,0)
+ = N

(π,0,π)
+ = N

(π,π,π)
+ ,

which identifies a factor Z6 of the group of topological
band labels BL as representation enforced gapless nodal-
line superconductors such that we have BS ' Z2 and

B[H(k)] = {N(0,π,π)
+ ,N

(π,π,π)
+ }.

Symmetry-based indicators. The group of symmetry-
based indicators

SID[Cs, A
′] ' Z2 (C.1)

contains a single factor corresponding to the stack of Ki-
taev chains with indicator

z1;y,z = N
(π,π,π)
+ + N

(0,π,π)
+ mod 2.

Our result (C.1) for the group of symmetry-based indi-
cators agrees with the corresponding result from 1.

2. Representation Θ = A′′

Classifying group:

KD[Cs, A
′′] = Z

7
2 × Z2.

A factor Z4
2 corresponds to one-dimensional supercon-

ductors in the y or z directions, stacked in the x and z
or x and y directions, respectively, and with Mx pari-
ties ± (labels (1,±;x, z) and (1,±;x, y)). The factor Z2

corresponds to two-dimensional Chern superconductors
in the yz plane with even or odd Mx parity, stacked
in the x direction (labels (2,±;x)). Systems with an
even Chern number in either mirror plane can be adi-
abatically deformed to Chern insulator with vanishing
superconducting order parameter. A factor Z

2
2 corre-

sponds to two-dimensional second-order topological su-
perconductors stacked in the z or y direction (labels (2; z)
and (2; y)). The remaining factor Z2 corresponds to a
three dimensional second-order topological superconduc-
tor (label (3)). The boundary signatures of the topologi-
cal phases together with their symmetry-based indicators
are displayed in Fig. C.3.
Band labels. There are BL ' Z

16
2 topological band

labels given by the Pfaffian invariants pks
± in both even

and odd mirror parity subspaces at all high-symmetry
momenta ks.
Compatibility relations. From the fact that PM is a

local antisymmetry along lines in reciprocal space one
deduces the compatibility relations

∑

s=±
p

(0,k′y,k
′
z)

s =
∑

s=±
p

(π,k′y,k
′
z)

s , for k′y, k′z = 0, π.

The compatibility relations identify a factor Z4
2 of BL

as representation enforced gapless superconductors with
nodal points on high-symmetry lines in the Brillouin zone
such that we have BS ' Z12

2 and

B[H(k)] = {p(0,0,0)
− , p

(0,0,π)
− , p

(0,π,0)
− , p

(0,π,π)
−

p
(π,0,0)
+ , p

(π,0,π)
+ , p

(π,π,0)
+ , p

(π,π,π)
+

p
(π,0,0)
− , p

(π,0,π)
− , p

(π,π,0)
− , p

(π,π,π)
− }.

Symmetry-based indicators. The group of symmetry-
based indicators is

SID[Cs, A
′′] ' Z9

2, (C.2)

where each factor corresponds to a different topological
phase. For the stacks of Kitaev chains we have

z1,±;x,z = p
(π,π,π)
± + p

(π,0,π)
± mod 2,

z1,±;x,y = p
(π,π,π)
± + p

(π,π,0)
± mod 2,

for the Chern superconductors within the mirror plane
with even or odd mirror parity

z2,±;x =
∑

ks|ks,x=π

pks
± mod 2,
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Z2 Z2 0 ⊆ Z2 ⊆ Z2

z1,±;x,z = 1 z1,±;x,y = 1 z3 = 1

0 ⊆ Z Z2 ⊆ Z2 Z2 ⊆ Z2

z2,±;x = 1 z2;y = 1 z2;z = 1

x

z
y

FIG. C.3. Topological phases of a three-dimensional super-
conductor in tenfold-way class D with point group Cs and
representation Θ = A′′.

for two-dimensional second-order topological supercon-
ductors stacked in the l = z or y direction,

z2;l =
∑

ks|ks,l=π
pks

+ =
∑

ks|ks,l=π
pks
− mod 2,

where the equality follows from the compatibility con-
straint, and for the three dimensional second-order topo-
logical superconductor we have

z3 =
∑

ks

pks
+ =

∑

ks

pks
− mod 2.

The group (C.2) of symmetry-based indicators differs
from the result obtained in Ref. 1, where no symmetry-
based indicators are found due to the absence of Pfaffian
band labels.

C.1.3. Point group C2, class D

1. Representation Θ = A

Classifying group:

KD[C2, A] = Z
3
2 × Z.

A factor Z
2
2 corresponds to Kitaev chains perpendic-

ular to the rotation axis (z) and stacked in the in
the x and z or y and z directions (labels (1; y, z) and
(1;x, z)). The remaining factors Z2 and Z correspond
to two-dimensional topological superconductors stacked
perpendicular to the rotation axis (labels (2, z)’ and
(2, z), respectively), where the factor Z2 describes a two-
dimensional second-order phase and the factor Z a Chern
superconductor. Even-Chern number superconductors
can be adiabatically deformed to normal-state Chern in-
sulators. The weak second-order phase and the stack
of Chern superconductors with Chern number two have
identical band labels. The boundary signatures of the

Z2 Z2 0 ⊆ Z Z2 ⊆ Z2

z1;y,z = 1 z1;x,z = 1 z2,z = 1 z2;z = 2

x

z
y

FIG. C.4. Topological phases of a three-dimensional super-
conductor in tenfold-way class D with point group C2 and
representation Θ = A.

topological phases together with their symmetry-based
indicators are displayed in Fig. C.4.

Band labels. There are BL ' Z
8 topological band la-

bels given by the invariants Nks
+ at all high-symmetry

momenta ks.
Compatibility relations. For gapped phases, the in-

variant N+(k) is preserved along high-symmetry lines in
reciprocal space parallel to the rotation axis, which gives
the compatibility relation

N
(k′x,k

′
y,0)

+ = N
(k′x,k

′
y,π)

+ , for k′x, k′y = 0, π.

This compatibility relation identifies a factor Z4 of BL
as representation-enforced gapless superconductors with
nodal points such that we have BS ' Z4 and

B[H(k)] = {N(0,0,π)
+ ,N

(π,0,π)
+ ,N

(0,π,π)
+ ,N

(π,π,π)
+ }.

Symmetry-based indicators. The group of symmetry-
based indicators is

SID[C2, A] ' Z2
2 × Z4. (C.3)

The factor Z2
2 correspond to stacks of Kitaev chains with

indicators

z1;y,z = N
(0,π,π)
+ + N

(π,π,π)
+ mod 2,

z1;x,z = N
(π,0,π)
+ + N

(π,π,π)
+ mod 2

and the factor Z4 corresponds to stacks of two dimen-
sional topological superconductors in the z direction with
indicator

z2;z =
∑

ks|ks,z=π
Nks

+ (−1)(ks,x+ks,y)/π mod 4.

The value z2;z = 2 is ambiguous, since it may either corre-
spond to a stack of first-order two-dimensional supercon-
ductors with Chern number two or to a stack of second-
order two-dimensional superconductors, see Fig. C.4.
Our result (C.3) for the group of symmetry-based in-
dicators agrees with the corresponding result from 1.

2. Representation Θ = B

Classifying group:

KD[C2, B] = Z
4
2 × Z.
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A factor Z2
2 corresponds to one-dimensional supercon-

ductors parallel to the rotation (z) axis, stacked in the
x and y directions, and with rotation parities ± (labels
(1,±;x, y)). A factor Z2

2 corresponds to two-dimensional
second-order topological superconductors stacked in the
x or y directions (labels (2;x)’ and (2; y)’). The remain-
ing factor Z describes a two-dimensional even-Chern-
number superconductor stacked in the z direction with
label (2; z). They can be adiabatically deformed to
normal-state Chern insulators. The boundary signatures
of the topological phases together with their symmetry-
based indicators are displayed in Fig. C.5.
Band labels. There are BL ' Z

16
2 topological band

labels given by the Pfaffian invariants pks
± in both even

and odd rotation parity subspaces at all high-symmetry
momenta ks.
Compatibility relations. From the fact that RπP is

a local symmetry in reciprocal space in high-symmetry
planes, we derive the compatibility relation

∑

s=±
p(0,0,kz)
s =

∑

s=±
p(π,0,kz)
s

=
∑

s=±
p(0,π,kz)
s

=
∑

s=±
p(π,π,kz)
s for kz = 0, π.

The compatibility relations identify a factor Z6
2 of BL as

representation-enforced gapless nodal-line superconduc-
tors such that BS ' Z10

2 and

B[H(k)] = {p(0,0,0)
− , p

(π,0,0)
− , p

(0,π,0)
− , p

(π,π,0)
+ , p

(π,π,0)
−

p
(0,0,π)
− , p

(π,0,π)
− , p

(0,π,π)
− , p

(π,π,π)
+ , p

(π,π,π)
− }.

A second compatibility relation for gapped phases, iden-
tical to Eq. (4.98) in the main text, follows by consider-
ing Chern numbers at two-dimensional cuts through the
Brillouin zone.
Symmetry-based indicators. The group of symmetry-

based indicators is

SID[C2, B] ' Z6
2, (C.4)

out of which a factor Z5
2 corresponds to gapped topologi-

cal phases. For phases corresponding to stacks of Kitaev
chains we have

z1,±;x,y = p
(π,π,π)
± + p

(π,π,0)
± mod 2

and for phases corresponding to stacks of two dimensional
superconductors in the l = x, y, z direction we have

z(2;l) =
∑

ks|ks,l=π
pks

+ =
∑

ks|ks,l=π
pks
− mod 2,

where the equality follows from the 0d compatibility
relation. The remaining factor Z2 corresponds to a
symmetry-based indicator for a nodal superconductor

Z2 Z2 ⊆ Z2 Z2 ⊆ Z2 0 ⊆ Z
z1,±;x,y = 1 z2;x = 1 z2,y = 1 z2;z = 1

x

z
y

FIG. C.5. Topological phases of a three-dimensional super-
conductor in tenfold-way class D with point group C2 and
representation Θ = B.

with different Chern number parity detected by the band
labels,

z3 =
∑

ks

pks
+ =

∑

ks

pks
− mod 2.

The group (C.4) of symmetry-based indicators differs
from the result obtained in Ref. 1, where no symmetry-
based indicators are found due to the absence of Pfaffian
band labels.

C.1.4. Point group C4, class D

1. Representation Θ = A or Θ = B

Classifying group:

KD[C4, A] = KD[C4, B] = Z
2
2 × Z.

A factor Z2 corresponds to Kitaev chains aligned per-
pendicular to the rotation axis and to each other and
stacked in all three spatial directions (label (1;x, y, z)).
The remaining factor Z2 × Z corresponds to topologi-
cal superconductors stacked perpendicular to the rota-
tion axis (label (2, z)), where the factor Z2 describes a
second-order phase and the factor Z a Chern supercon-
ductor. Even-Chern number superconductors can be adi-
abatically deformed to Chern insulators with vanishing
superconducting correlations. The boundary signatures
of the topological phases together with their symmetry-
based indicators are displayed in Fig. C.6.

Band labels. There are BL ' Z
10 topological band

labels given by the invariants Nks
j with j = 1

2 ,
5
2 at high-

symmetry momenta ks with fourfold rotation symmetry
and j = 1

2 at high-symmetry momenta ks with twofold
rotation symmetry.

Compatibility relations. For high-symmetry lines par-
allel to the rotation axis the invariant Nk

j is preserved for
gapped phases, which gives the compatibility relation

N
(k′x,k

′
y,0)

j = N
(k′x,k

′
y,π)

j , for k′x, k′y = 0, π.

This identifies a factor Z
5 of BL as representation-

enforced gapless superconductors with nodal points on
high-symmetry lines in the Brillouin zone. We find that
BS ' Z5 and choose the independent band labels as

B[H(k)] = {N(0,0,π)
1
2

,N
(0,0,π)
5
2

,N
(π,0,π)
1
2

,N
(π,π,π)
1
2

,N
(π,π,π)
5
2

}.
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Z2 0 ⊆ Z Z2 ⊆ Z2

z1;x,y,z = 1 z2;z = 1 z2,z = 4

x

z
y

FIG. C.6. Topological phases of a three-dimensional super-
conductor in tenfold-way class D with point group C4 and
representation Θ = A or Θ = B.

Symmetry-based indicators. The group of symmetry-
based indicators is

SID[C4, A] = SID[C4, B] ' Z2 × Z8, (C.5)

isomorphic to the result of the two dimensional plane
discussed in Sec. 4.6.2. The symmetry-based indicators
for the stack of Kitaev chains z1;x,y,z, two dimensional
second-order and Chern superconductors z2;z are identi-
cal to the symmetry-based indicators of the two dimen-
sional plane, Eqs. (4.85) and (4.86), respectively. As in
the two-dimensional case, the weak second-order phase
and the weak phase with Chern number 4 have identical
band labels. In three dimensions, the symmetry-based
indicators are expressed as

z1;x,y,z =N
(0,0,π)
1
2

+ N
(0,0,π)
5
2

+ N
(π,0,π)
1
2

mod 2,

z2;z = −N
(0,0,π)
1
2

+ 3N
(0,0,π)
5
2

− 2N
(π,0,π)
1
2

+ 3N
(π,π,π)
1
2

−N
(π,π,π)
5
2

mod 8.

The group of symmetry-based indicators (C.5) is identi-
cal with the result from 1.

2. Representation Θ = 1E or Θ = 2E

Classifying group:

KD[C4,
2E] = KD[C4,

1E] = Z
3
2 × Z.

A factor Z
2
2 corresponds to one-dimensional topolog-

ical superconductors parallel to the rotation axis (z)
in the angular momentum subspaces j = 1

2 ,
5
2 (labels

(1, j;x, y)). A factor Z corresponds to Chern supercon-
ductors with even Chern number stacked perpendicular
to the rotation axis (label (2, z)). These phases can be
adiabatically deformed to Chern insulators with vanish-
ing superconducting correlations. The remaining factor
Z2 corresponds to a pair of two-dimensional second-order
topological superconductors parallel to the rotation axis,
exchanged by fourfold rotation and stacked in both x and
y directions (label (2;x, y)). The boundary signatures
of the topological phases together with their symmetry-
based indicators are displayed in Fig. C.7.
Band labels. There are BL ' Z

12
2 × Z

4 topologi-

cal band labels given by the invariants Nks

3/2, pks

1/2, pks

5/2

at fourfold rotation-symmetric high-symmetry momenta
ks = (0, 0, 0), (0, 0, π), (π, π, 0), and (π, π, π), and pks

1/2,

pks

3/2 at twofold rotation symmetric high-symmetry mo-

menta ks = (0, π, 0) and (0, π, π).
Compatibility relations. From the fact that RπP is a

local symmetry for high-symmetry planes in the Brillouin
zone one derives the compatibility relation (4.87) of the
main text. From the fact that Nj is conserved along the
fourfold symmetric lines in the Brillouin zone parallel to
the rotation axis for j = 3

2 ,
7
2 one derives the further

compatibility relations

N
(k′x,k

′
y,0)

3
2

=N
(k′x,k

′
y,π)

3
2

,

for (k′x, k
′
y) = (0, 0), (π, π). The above compatibil-

ity relations associate factors Z
4
2 and Z

2 in BL with
as representation-enforced gapless superconductors with
nodal-line and nodal points, respectively. Hence we have
BS ' Z8

2 × Z2 with

B[H(k)] = {p(0,0,0)
1
2

, p
(0,0,0)
5
2

, p
(π,0,0)
3
2

, p
(π,π,0)
5
2

, p
(0,0,π)
1
2

,

p
(0,0,π)
5
2

,N
(0,0,π)
3
2

, p
(π,0,π)
3
2

, p
(π,π,π)
5
2

,N
(π,π,π)
3
2

}.

A third compatibility relation for gapped phases follows
by considering Chern numbers at two-dimensional cuts
through the Brillouin zone.

−N
(0,0,0)
3
2

−N
(π,π,0)
3
2

+ 2p
(0,0,0)
5
2

+ 2p
(π,0,0)
3
2

+ 2p
(π,π,0)
5
2

=

−N
(0,0,π)
3
2

−N
(π,π,π)
3
2

+ 2p
(0,0,π)
5
2

+ 2p
(π,0,π)
3
2

+ 2p
(π,π,π)
5
2

mod 4.

Symmetry-based indicators. The group of symmetry-
based indicators is

SID[C4,
1E] = SID[C4,

2E] ' Z4
2 × Z4, (C.6)

out of which two factors Z2 correspond to stacks of Kitaev
chains with indicator

z1,j;x,y = p
(π,π,0)
j + p

(π,π,π)
j mod 2

for j = 1
2 ,

5
2 , the factor Z4 corresponds to a stack of Chern

superconductors perpendicular to the rotation axis z2;z

with indicator given by

z2;z = −N
(0,0,π)
3
2

−N
(π,π,π)
3
2

+ 2p
(0,0,π)
5
2

+ 2p
(π,0,π)
3
2

+ 2p
(π,π,π)
5
2

mod 4,

and a factor Z2 corresponds to a stack of second-order
Chern superconductors parallel to the rotation axis with
symmetry-based indicator

z2;x,y = p
(π,0,0)
3
2

+ p
(π,0,π)
3
2

mod 2.
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FIG. C.7. Topological phases of a three-dimensional super-
conductor in tenfold-way class D with point group C4 and
representation Θ = 1E or Θ = 2E.

The remaining factor Z2 corresponds to a nodal super-
conductor the Chern number of which changes by 4n+ 2
between parallel planes, with the difference detected by
the band labels as

z3 =
∑

kz=0,π

2p
(0,0,kz)
5
2

+ 2p
(π,0,kz)
3
2

+ 2p
(π,π,kz)
5
2

mod 4.

Note that a change of the Chern number by an odd num-
ber is prohibited by the zero dimensional compatibility
constraint along rotation lines.

Reference 1 finds the group SI = Z2. Upon omitting
band labels corresponding to Pfaffians in our discussion,
this single factor Z2 is identified as the parity of z2;z, the
Chern number of a stack of two dimensional topological
superconductors in parallel to the rotation axis.

C.1.5. Point group C2v, class D

The classification and symmetry labels are trivial for rep-
resentation Θ = A1. The B1 representation is analogous
to the B2 representation by exchanging the labels x, y.

For the A1 representation, our results agree with those
of Ref. 1. For the other representations A2, B1, B2, the
band labels are defined exclusively in terms of Pfaffians.
Correspondingly, in Ref. 1, no symmetry-based indicators
are found due to the absence of Pfaffian band labels in
their construction.

1. Representation Θ = A2

Classifying group:

KD[C2v, A2] = Z
5
2 × Z4,

see App. C.2 6 for a derivation and for the definition of
the labels. The boundary signatures of the topological
phases together with their symmetry-based indicators are
displayed in Fig. C.8.
Band labels. There are BL ' Z

8
2 topological band

labels given by the Pfaffian invariant pks at all high-
symmetry momenta ks.
Compatibility relations. There are no compatibility

relations restricting the symmetry-based indicators for
gapped phases. Thus BS = BL and

B[H(k)] = {pks}.

Z2 Z2 Z2

z1;y,z = 1 z1;x,z = 1 z1;x,y = 1

∓
∓

∓

∓
∓

∓
Z2 ⊆ Z2 Z2 ⊆ Z2 0 ⊆ Z 0 ⊆ Z
z2;z = 1 z2;z = 1 z2;y = 1 z2;x = 1+

+

−

−
+

+

−

− +

−

+

−

0 ⊆ Z ⊆ Z 0 ⊆ Z ⊆ Z
z3 = 1 z3 = 1

+
+
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y
−

−
+
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−
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FIG. C.8. Topological phases of a three-dimensional super-
conductor in tenfold-way class D with point group C2v and
representation Θ = A2. The parity of the gapless states under
corresponding mirror symmetry are denoted by ±.

Symmetry-based indicators. The group of symmetry-
based indicators is

SID[C2v, A2] ' Z7
2.

The symmetry-based indicators of the stacks of one di-
mensional topological superconductors with stacking di-
rections (i, j) = (y, z), (x, z), (x, y) are

z1;i,j =
∑

ks|ks,i=ks,j=π
pks mod 2,

and for the stacks of two dimensional topological super-
conductors with stacking directions l = x, y, z they are

z2,l =
∑

ks|ks,l=π
pks mod 2

and for the three dimensional second-order topological
superconductors the symmetry-based indicator is

z3 =
∑

ks

pks mod 2.

2. Representation Θ = B2

Classifying group:

KD[C2v, B2] = Z
3
2 × Z2,

see App. C.2 6 for a derivation and for the definition of
the labels. The boundary signatures of the topological
phases together with their symmetry-based indicators are
displayed in Fig. C.9.
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Z2 Z2

z1;x,z = 1 z1;x,y = 1

∓

∓
∓

∓
Z2 ⊆ Z2 0 ⊆ Z 0 ⊆ Z ⊆ Z
− z2;x = 1 −
∓

∓
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z
y

+

−

∓

∓

FIG. C.9. Topological phases of a three-dimensional super-
conductor in tenfold-way class D with point group C2v and
representation Θ = B2. The parity of the gapless states under
corresponding mirror symmetry are denoted by ±.

Band labels. There are BL ' Z
8
2 topological band

labels given by the Pfaffian invariant pks at all high-
symmetry momenta ks.
Compatibility relations. From the fact that PMx acts

locally on high-symmetry lines in reciprocal space we de-
rive the compatibility relation

p(0,k′y,k
′
z) = p(π,k′y,k

′
z), for k′y, k′z = 0, π.

The compatibility relations identify a factor Z4
2 of BL

as representation-enforced gapless superconductors with
nodal points such that BS ' Z4

2 and

B[H(k)] = {pks|kx=π}.

Symmetry-based indicators. The group of symmetry-
based indicators is

SID[C2v, B2] ' Z3
2.

The symmetry-based indicators of the stacks of one di-
mensional topological superconductors with stacking di-
rections (i, j) = (x, z), (x, y) are

z1;i,j =
∑

ks|ks,i=ks,j=π
pks mod 2,

and for the stacks of two dimensional topological super-
conductors with stacking direction x it is

z2,x =
∑

ks|ks,x=π

pks mod 2.

The two dimensional second-order topological supercon-
ductor stacked in the y direction and the three dimen-
sional second-order topological superconductor can not
be detected from symmetry-based indicators.

C.2. BOUNDARY CLASSIFICATION GROUPS K

For tenfold-way classes in d dimensions the classifica-
tion groups K follow from the “periodic table of topo-
logical phases”. [2, 3] They are the direct product of
groups classifying strong phases and groups classifying
weak phases obtained by stacking topological phases in
dimension d− n, n = 1, . . . , d− 1.

In the presence of an additional order-two crystalline
symmetry, such as inversion, mirror, or twofold rotation,
the classifying group K can be obtained using the known
classifications of strong phases given in Ref. 4 and 5
(see also Refs. 6–8), again accounting for weak phases
by taking direct products of the appropriate classifica-
tion groups in lower dimensions. [4] It is important to
point out that the classification group K we consider in
this chapter classifies topological phases with nontrivial
boundary signature only — see the discussion at the end
of Sec. 4.3. These “boundary classification groups” K are
obtained from the groups K classifying the bulk band
structure by dividing out the classifying group K(d) of
atomic-limit phases.[5]

Classifications of strong tenfold-way phases with other
additional crystalline symmetry groups can be found in
the literature. [9, 10] We here give classification results for
the examples discussed in the main text and in App. C.1.
These classifications are derived from the enumeration of
the possible anomalous boundary states compatible with
the symmetries defining the topological class. Boundary
states that can be removed by a change of lattice termi-
nation are removed from the classification, because they
are not a consequence of the topology of the bulk band
structure. (Such boundary states are called “extrinsic”
in Refs. 5 and 11.)

Below we compute the classifying groups
Kη[G|GO,Θ, d] of d dimensional topological phases
with point group G, where its normal subgroup GO is
assumed to act as onsite symmetry. For each factor of
Kη[G|GO,Θ, d] we present an interpretation in terms of
higher order topological phases or stacks of lower dimen-
sional topological (weak) phases and generators from
which the band labels can be computed. We not only
consider the dimensions d corresponding to the examples
used in the main text, but also lower dimensions, since
the classification results for lower dimensions d provides
information on weak and higher-order phases.

C.2.1. One dimension, class D, C2v|Cs
We consider a one dimensional system extended in the x
direction, such that it lies within the mirror plane ofMy.
Hence My is an onsite symmetry, wheres Mx acts non-
locally. For spinful fermions there is a single irreducible
representation α = Ē with dimension dĒ = 2.
Representation Θ = A1.— For the representation Θ =

A1, Mx and My commute with particle-hole conjuga-
tion P. The parallel mirror plane My with M2

y = −1
forbids a topological superconducting phase, as it effec-
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tively turns the one-dimensional system into class AP
−M

with trivial classification, see the notation of Ref. 5. We
conclude that

KD[C2v|Cs, A1, d = 1] = 0. (C.7)

Representation Θ = A2.— In this case Mx and My

anticommute with P. The parallel mirror plane allows to
block diagonalize the system into two blocks according to
My-parity ±. Particle-hole conjugation acts within the
blocks, whereas the perpendicular mirror plane Mx in-
terchanges the two blocks. The system is thus completely
specified by a single block in tenfold-way class D, which
allows a Kitaev-chain topological phase. A generator of
the nontrivial phase is

H(1)(kx) = ρ0τ3(1−m− cos kx) + ρ1τ1 sin kx,

with 0 < m < 2 and representations P = ρ0τ1K,
U(Rπ) = iρ2τ0, U(Mx) = iρ3τ0, U(My) = iρ1τ0.

Representation Θ = B1.— In this case Mx commutes
with P, whereas My anticommutes with P. The discus-
sion can be mapped to that of the case Θ = A2 by noting
thatRπ anticommutes with P, so that the arguments put
forward for Θ = A1 can be applied to the case Θ = B2

by exchanging the roles of Mx and Rπ. It follows that

KD[C2v|Cs, B1, d = 1] = Z2. (C.8)

Representation Θ = B2.— The parallel mirror plane
My with M2

y = −1 forbids a topological superconduct-
ing phase, as it effectively turns the one-dimensional sys-

tem into class AP
+M with trivial classification, [5] so that

KD[C2v|Cs, B2, d = 1] = 0. (C.9)

C.2.2. One dimension, class D, C2v|C2v

This case applies to a one-dimensional system along the z
direction, such that it lies in the intersection of the mirror
planesMx,My and the full crystalline symmetry group
C2v acts onsite. As shown in Table 4.5 and discussed in
Sec. 4.3, for spinful fermions there is a single irreducible
representation α = Ē with dimension dĒ = 2, which ef-
fectively changes the tenfold-way symmetries from those
of class D to those of class C for the case Θ = A1, but
leaves them unchanged for Θ = A2, B1, and B2. It fol-
lows for d = 1 that

KD[C2v|C2v, A1, d = 1] = 0 (C.10)

KD[C2v|C2v,Θ, d = 1] =Z2, Θ = A2, B1, B2. (C.11)

A generator for the nontrivial phases is

H(1)(kz) = ρ0τ3(1−m− cos kz) + ρ1τ1 sin kz,

with 0 < m < 2 and accordingly chosen representations.

C.2.3. Two dimensions, class D, C2v|Cs
This case applies to a two-dimensional system in the xz
plane, such that My acts as an onsite symmetry. A sys-
tem with boundaries parallel to the coordinate axes has
two Mx-symmetric boundaries and two boundaries that
are mapped to each other by Mx.
Representation Θ = A1.— From an analysis of the

reflection symmetric boundary, we find that there is no
first-order topological superconducting phase. (The non-
trivial first-order phase in class D has a chiral edge mode,
which is not compatible with a mirror symmetry.) There
are also no second-order or weak phases in this represen-
tation,

KD[C2v|Cs, A1, d = 2] = 0. (C.12)

This follows from the triviality of the classifying groups
KD[C2v|Cs, A1, d] and KD[C2v|C2v, A1, d] for d = 1, into
which an eventual higher-order phase can be deformed
or which could be stacked to form a weak phase, see the
discussions in Apps. C.2 1 and C.2 2.
Representation Θ = A2.— A Mx-symmetric bound-

ary allows counter-propagating chiral Majorana modes in
opposite My-parity subspaces. They are the first-order
boundary signature of a pair of Chern superconductors
related to each other byMx. Superconductors with even
Chern number in a mirror plane can be adiabatically de-
formed to Chern insulators with vanishing superconduct-
ing correlations. From the nontriviality of the classifying
groups KD[C2v|Cs, A2, d] = KD[C2v|C2v, A2, d] = Z2 for
d = 1 we conclude that two types of weak phases are pos-
sible, obtained by stacking one-dimensional superconduc-
tors in the x and z direction. There is no second-order
phase, despite the fact that pairs of even and odd-My-
parity Majorana zero-energy bound states are allowed at
corners. Such states are protected against local perturba-
tions at corners, but they can be removed by a change of
termination along the crystal edges. (Formally, this fol-
lows because the group KD[C2v/C2v, A2] classifyingMx-
symmetric corner states is “separable” in the language of
Ref. 5.) We thus conclude that

KD[C2v|Cs, A2, d = 2] = Z
2
2 × Z. (C.13)

The same result can be obtained by arguing that the
onsite symmetry My commutes with P, so that the
Hamiltonian can be written as the diagonal sum of My-
even and My-odd blocks that each satisfy particle-hole
symmetry. The mirror symmetry Mx interchanges the
two blocks. Hence, the topological classification is the
same as of a two-dimensional Hamiltonian in tenfold-way
class D without crystalline symmetries, which also gives
Eq. (C.13).

Representation Θ = B1.— This case can be mapped to
Θ = A2 by interchanging the roles of Mx and Rπ. One
thus finds

KD[C2v|Cs, B1, d = 2] = Z
2
2 × Z. (C.14)
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Representation Θ = B2.— In this case no first-order
boundary signatures are allowed on a Mx-symmetric
boundary, because they are incompatible with the Mx

symmetry. To check for the existence of second-order or
weak phases, we note that one-dimensional superconduc-
tors in the z direction (i.e., perpendicular to the mirror
plane of Mx) have classifying group KD[C2v|Cs, B2, d =
1], which is trivial, see App. C.2 1. Also, one-dimensional
superconductors in the z direction, i.e., in the inter-
section of both mirror planes, have classifying group
KD[C2v|C2v, B2, d = 1] = Z2, as shown in App. C.2 2.
This has two consequences: (i) A second-order bound-
ary signature corresponding to a pair of Majorana bound
states at the Mx-symmetric corner is possible. The in-
plane mirror symmetry My with MyP = PMy forbids
one-dimensional topological phases within the mirrorMy

plane that do not satisfy Mx mirror symmetry. Hence
the boundary signature can not be removed by a decora-
tion of the crystal boundary and there is a second-order
topological superconducting phase. A generator for this
phase is

H ′2(k) =µ0ρ0τ3(cos kx + cos kz +m)

+ µ1ρ0τ1 sin kx + µ2ρ2τ1 sin kz,

with 0 < m < 2 and representations P = µ0ρ0τ1K,
U(Rπ) = iµ0ρ3τ3, U(Mx) = iµ3ρ3τ0, U(My) = iµ3ρ0τ3.
Alternatively, the parallel mirror plane allows to block
diagonalize the system into two blocks according toMy-
parity ±. Particle-hole conjugation interchanges the two

blocks, and each block belongs to class AP
+M with

0 ⊆ Z2 ⊆ Z2 bulk subgroup sequence for d = 2. [5] (ii)
There is a weak phase corresponding to one-dimensional
topological superconductors in the z direction, which are
stacked in the x direction. We thus conclude that

KD[C2v|Cs, B2, d = 2] = Z
2
2. (C.15)

C.2.4. Two dimensions, class D, C2v

We now derive the boundary classification for the exam-
ple discussed in Sec. 4.6.1 of the main text. The two
mirror symmetries forbid a phase with a nonzero Chern
number. Hence, there are no first-order phases for all
representations of the pairing term Θ.

Representation Θ = A1.— For this representation,
both Mx and My with M2

x = M2
y = −1 commute

with P, ruling out the existence of zero-energy Majorana
bound states at mirror-symmetric corners. There are no
weak phases as the classifying group KD[C2v|Cs, A1, d =
1] = 0 is trivial. We conclude that

KD[C2v, A1, d = 2] = 0. (C.16)

Representation Θ = A2.— In this case, bothMx andMy

anticommute with P. We first investigate the possibility
of second-order phases with non-degenerate zero-energy
Majorana corner states at mirror-symmetric corners of a
C2v-symmetric crystal. Since the edges of such a crys-
tal are gapped, it may be deformed into a “cross” shape

a) b) +     − 

+

−

−

+

x

z

− +
FIG. C.10. a) A C2v-symmetric two-dimensional crystal with
two perpendicular mirror symmetries with gapped edges may
be deformed into a four one-dimensional chains in a cross-
like arrangement. Corner states of the two-dimensional crys-
tal are in one-to-one correspondence with end states of the
one-dimensional structure. b) A C2v-symmetric crystal may
be decorated symmetrically with Kitaev chains, resulting in
the appearance of extrinsic pairs of corner states at all four
mirror-symmetric corners.

consisting of four one-dimensional chains, see Fig. C.10a.
Each chain has a parallel mirror plane, which effectively
acts as a local symmetry. Perpendicular mirror planes
connect chains on opposite sides of the cross, but no
longer act inside a chain. The parallel mirror planes al-
low the Hamiltonian to be block-diagonalized into blocks
with odd and even mirror parity. Each of these blocks is
in tenfold-way class D, thus in principle allowing for the
existence of up to two zero-energy Majorana end states,
which turn into corner states if the system is deformed
back to a C2v-symmetric two-dimensional crystal. The
presence of the perpendicular mirror planes and the con-
dition that the center of the cross be gapped restrict the
possible configurations of corner states: Opposite cor-
ners must have Majorana states of opposite mirror par-
ities, since the two mirror operations anticommute, and
the total number of Majorana modes must be a multi-
ple of four. This leaves a Z

3
2 extrinsic classification of

allowed Majorana corner modes. To obtain the classi-
fication of intrinsic second-order phases, we must divide
out configurations of corner states that differ by a change
of termination. Hereto we note that the four edges of
a C2v-symmetric crystal allow a “decoration” with Ki-
taev chains, which yield opposite-parity pairs of Majo-
rana states at all four corners of the crystal, see Fig.
C.10b, so that a Z

2
2 classifying group of second-order

phases remains. The generators of the two distinct Z2

second-order phases can be given as configurations with
single zero-energy Majorana bound states at all corners
of a C2v symmetric sample with mirror parities as indi-
cated in Table 4.11.

Furthermore there are two weak phases as the classi-
fying group KD[C2v|Cs, A2, d = 1] = Z2 (see App. C.2 1)
allows stacking of one dimensional topological supercon-
ductors both in x and y directions. Combining every-
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a) b)

FIG. C.11. a) Support of Majorana bound states for the
Hamiltonians H ′2,± of Eq. (C.18). A symmetry-preserving
next-nearest neighbor termm1ρ2τ1 sin kx sin ky withm1 = 0.4
is added to remove a spurious gapless edge mode. b) Sup-
port of Majorana bound states for H ′2,+ ⊕H ′2,−, after adding
an additional weak symmetry-preserving hybridization term
m2ρ0τ1µ2 with strength m2 = 0.1. The corner modes may
appear at the other pair of corners if a different hybridization
term is chosen.

thing, we have the classifying group

KD[C2v, A2, d = 2] =Z
4
2. (C.17)

Generators of the second-order phases are

H ′2,±(k) = ρ0τ3(2−m− cos kx − cos ky)

± ρ1τ1 sin kx + ρ3τ1 sin ky (C.18)

with 0 < m < 2 and representations P = τ1K, U(Rπ) =
iρ2τ0, U(Mx) = iρ3τ0, U(My) = iρ1τ0. To verify
that these are indeed second-order phases with the de-
sired properties, one may either count the number crys-
talline symmetry breaking mass terms,[5] or simply verify
that these model Hamiltonians have the correct corner-
state structure. Results of such a calculation, using the
kwant software,[12] are shown in Fig. C.11a. As shown
in Fig. C.11b, taking the direct sum of and hybridizing
the two generating Hamiltonians H ′2,± yields a pair of
Majorana bound states with opposite mirror parity at a
single pair corners within a single mirror plane only.
Representations Θ = B1,2.— The discussions for the

cases Θ = B1 and Θ = B2 are analogous, as they are
related by a π/2 rotation of the system. In the following
we focus on the B2 case, for which Mx anticommutes
with P and My commutes with P. As before, we first
consider the possibility of second-order phases with zero-
energy Majorana corner states. Only corners bisected by
the mirror planeMx can host Majorana bound states, as
corners bisected byMy are effectively in class A. Hence,
the system can be deformed to a one dimensional system
within the mirror plane Mx. This one-dimensional sys-
tem has classifying group is KD[C2v|Cs, B1, d = 1] = Z2,
as discussed in App. C.2 1. However, the correspond-
ing configuration of boundary states, a pair of Majorana
bound states in both mirror parity sectors at both cor-
ners bisected by the mirror Mx plane, can be removed
by a decoration with Kitaev chains on each surface of a

symmetric sample. We thus conclude that there are no
intrinsic second-order phases for Θ = B1 or Θ = B2

Weak phases can be obtained by stacking one-
dimensional chains in the y direction. Since Mx is
an onsite symmetry for such chains, their classifica-
tion is given by the one-dimensional classifying group
KD[C2v|Cs, B1, d = 1] = Z2, see App. C.2 1. (Note that
for this stacking direction Mx and My are exchanged
in comparison to the discussion in App. C.2 1.) Super-
conductors in the perpendicular stacking direction x are
trivial since KD[C2v|Cs, B2, d = 1] = 0, as shown in
Sec. C.2 1. We conclude that

KD[C2v, B1,2, d = 2] = Z2. (C.19)

C.2.5. Two dimensions, class D, C4

Representations Θ = A,B. The representations Θ = A
and Θ = B have the same algebraic structure, so that
we may limit the discussion to the case Θ = A. This
case allows a strong first-order phase with a single chiral
Majorana mode, corresponding to a Z topological clas-
sification. To check for higher-order phases with four
Majorana bound states, we smoothly deform the two-
dimensional system to four one-dimensional chains ar-
ranged in a C4-symmetric cross-like shape, as in Fig.
C.12. Each chain may harbor a zero-energy Majorana
bound state at its end. The end states at the four chains
are related to each other by C4 symmetry. Since classi-
fication of zero-energy Majorana modes protected by C4

is trivial for A and B superconducting pairing, see dis-
cussion in Sec. 4.3, the four Majorana states that would
appear at the center of the cross can gap out, so that one
obtains a true second-order phase with a Z2 classifica-
tion. Finally, a weak phase may be obtained by stacking
one-dimensional C2-symmetric x lines (with representa-
tion Θ = A) in the y direction and superimposing the
same stack, rotated by π/2. The one-dimensional su-
perconductors that are the building blocks of this phase
have zero-energy Majorana states at their ends and a Z2

classification. We conclude that

KD[C4, A, d = 2] =KD[C4, B, d = 2]

=Z
2
2 × Z. (C.20)

Representations Θ = 1,2E.— The representations Θ =
1E and Θ = 2E allow a strong first-order phase with
an even number of chiral Majorana modes. One veri-
fies that a single Majorana mode is not allowed for this
representation, since there is no one-dimensional repre-
sentation of Rπ and P meeting the conditions that (i)
iRπ squares to one and (ii) iRπ anticommutes with P.
An even number of Majorana modes is allowed, since
there are two-dimensional representations meeting these
requirements. One also verifies that the constructions
of a second-order phase and a weak phase used for the
representations Θ = A,B discussed above do not work
for the case Θ = 1,2E. For the second-order phase, the
reason is that at the center cross, where C4 is a local
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x

z

FIG. C.12. A C4-symmetric two-dimensional crystal may
be deformed into a four one-dimensional chains in a cross-like
arrangement. Corner states of the two-dimensional crystal
are in one-to-one correspondence with end states of the one-
dimensional structure.

symmetry, one now ends up with states at all four al-
lowed angular momenta j = 1

2 , 3
2 , 5

2 , and 7
2 , which can

not gap out because particle-hole conjugation acts within
two of the angular momentum sectors, see the discussion
in Sec. 4.3. For the weak phases, this follows because
the underlying C2-symmetric one-dimensional building
blocks have the representation Θ = B, which does not
allow for a topological phase. We thus conclude that

KD[C4,
1,2E, d = 2] = Z. (C.21)

C.2.6. Three dimensions, class D, C2v

In class D, there are no three dimensional strong first-
order topological phases without crystalline symmetries,
so that no first-order phase is possible. To determine
whether a strong phase is possible, with protected gap-
less Majorana modes along mirror-symmetric hinges, we
deform the three-dimensional crystal into a “cross” of
four two-dimensional planes, as shown schematically in
Fig. C.13a and determine below for each representation
Θ, whether a phase with chiral hinge states is possible
and whether it is intrinsic or extrinsic (i.e., whether it
can be removed with a decoration of the surface). In-
trinisic second-order boundary signatures are possible in
representations Θ = A2, B1, B2 as we show below. To de-
termine whether a third-order TSC is possible, we note
that a protected corner state can exist only for a corner
on the intersection of the two mirror planes. We find that
pairs of corner states are allowed for the representations
Θ = A2, B1, and B2, but not for Θ = A1. However, the
corner state for Θ = A2, B1, or B2 is extrinsic, as they
can be removed by the decoration of a pair of hinges in a
mirror plane with one-dimensional topological supercon-
ductors.
Representation Θ = A1.— For the representation A1

there are no intrinsic second-order boundary signatures:
Although the edges of the planes in the deformed struc-
ture of Fig. C.13a not allow for pairs of co-propagating
chiral Majorana modes, one for each mirror parity, such
configurations of hinge modes can be removed by dec-
orating the four symmetry-related crystal faces by two-
dimensional quantum Hall phases, as shown schemati-
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FIG. C.13. a) A C2v-symmetric three-dimensional crystal
with two perpendicular mirror symmetries may be deformed
into a four two-dimensional planes in a cross-like arrangement.
Hinge states of the two-dimensional crystal are in one-to-one
correspondence with edge states of the two-dimensional struc-
ture. b) A C2v-symmetric crystal may be decorated symmet-
rically with quantum Hall planes, resulting in the appearance
of extrinsic configurations of chiral hinge modes at all four
mirror-symmetric hinges.

cally in Fig. C.13b. Further, all lower-dimensional build-
ing blocks that can be used for stacking are trivial, which
rules out the existence of weak phases. We conclude that

KD[C2v, A1, d = 3] = 0. (C.22)

Representation Θ = A2.— We note that for each of the
planes in the deformed structure of Fig. C.13a one of the
mirror symmetries acts as an onsite symmetry, whereas
the other mirror symmetry maps planes on opposite sides
of the central “cross” onto each other. For representa-
tion A2, each of the planes in the deformed structure of
Fig. C.13a allows for chiral Majorana modes in both par-
ity sectors of the onsite mirror symmetry. These Majo-
rana modes turn into hinge modes upon deforming back
to the full three-dimensional structure. The perpendic-
ular mirror symmetry imposes the condition that oppo-
site hinges have Majorana modes with the same propa-
gation direction, but with opposite mirror parity. The
condition that the center of the cross be gapped imposes
the requirement that the net number of chiral modes,
weighed with propagation direction, is zero. Hence, there
is an extrinsic Z3 classification of C2v-compatible hinge
modes. To obtain the intrinsic second-order phases, con-
figurations of hinge modes that differ by a change of sur-
face termination must be divided out. Noting that the
four surfaces of a C2v-symmetric crystal admits a “dec-
oration” with quantum Hall phases, which gives a pair
of co-propagating opposite-parity hinge modes at each
mirror-symmetric hinge, see Fig. C.13b, we find that a
classifying group Z

2 of intrinsic second-order phases re-
mains. Generator Hamiltonians for these second-order
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phases are

H ′(3,±) = ρ0τ3(3−m−
∑

i=x,y,z

cos ki)

± ρ1τ1 sin kx + ρ3τ1 sin ky + ρ0τ2 sin kz

with 0 < m < 2 and representations U(Mx) = iρ3τ0,
U(My) = iρ1τ0, P = ρ0τ1K.

The weak phases in this symmetry class can be con-
structed as stacks of one or two-dimensional topological
phases. We find the following possibilities:

• Stack of two-dimensional C2v-symmetric xy planes
in the z direction with second-order topology. Such
planes have a Z

2
2 classification, see App. C.2 4.

These phases are labeled “(2; z)” in Fig. C.8.

• Stack of two-dimensional “C2v|Cs”-symmetric yz
or xz planes in the x or y direction, respectively.
These planes have a Z classification, correspond-
ing to a first-order two-dimensional topological su-
perconductor with counterpropagating Majorana
modes in opposite in-plane mirror eigensectors, as
shown in App. C.2 3. These phases are labeled
“(2;x)” and “(2; y)” in Fig. C.8. Superconduc-
tors with even Chern number in a mirror plane can
be adiabatically deformed to Chern insulators with
vanishing superconducting correlations.

• Stacks of one-dimensional “C2v|C2v”-symmetric z
lines in the x and y directions. These have a Z2

classification, corresponding to a one-dimensional
topological superconductor with a pair of Majorana
bound states at each end as shown in App. C.2 1.
These phases are labeled “(1;x; y)” in Fig. C.8.

• Stacks of one-dimensional “C2v|Cs”-symmetric y or
x lines in the x and z and in the y and z directions,
respectively. These, too, have a Z2 classification,
corresponding to a one-dimensional topological su-
perconductor with a pair of Majorana bound states
at each end as shown in App. C.2 1. These phases
are labeled “(1;x; z)” and “(1; y; z)′ in Fig. C.8.

The complete classifying group is hence

KD[C2v, A2, d = 3] = Z
5
2 × Z4. (C.23)

Representations Θ = B1,2.— The representations B1

and B2 are related by a rotation. For concreteness, we
discuss the B2 case in the following. In this phase, only
one pair of mirror-symmetric hinges allows for intrin-
sic chiral Majorana modes, whereas any hinge modes
appearing at the other pair of mirror-symmetric hinges
can always be removed by adding a suitable decoration
to the four mirror-related surfaces, as shown schemati-
cally in Fig. C.13b. As a result, for the discussion of
second-order phases, the three-dimensional crystal may
be deformed to a two-dimensional one with C2v|Cs sym-
metry. As shown in App. C.2 3, there exists a strong

two-dimensional phase with counterpropagating Majo-
rana edge modes with opposite mirror parity. This
phase corresponds to a second-order phase of the three-
dimensional crystal. One verifies that this second-order
phase is intrinsic, since a surface decoration with quan-
tum Hall planes is forbidden by the perpendicular mirror
symmetry. A generator for the strong second-order phase
is

H ′(3)(k) =µ0ρ0τ3(3−m− cos kx − cos ky − cos kz)

+ µ3ρ0τ1 sin ky + µ0ρ0τ2 sin kz + µ2ρ2τ1 sin kx

with 0 < m < 2 and the representations U(Mx) =
iµ3ρ0τ0, U(My) = iµ2ρ0τ0, P = µ0ρ0τ1K. Second order
topological superconductors with a pairs of counterprop-
agating Majorana modes within in a mirror plane can
be adiabatically deformed to normal-state second-order
topological insulators with chiral hinge mode.

The weak phases in this symmetry class can be con-
structed as stacks of one- or two-dimensional topological
phases:

• A stack of two-dimensional xy planes with C2v

symmetry in the z direction is not possible, since
there are no strong phases with C2v symmetry and
Θ = B2 in two dimensions, see App. C.2 4.

• A stack of two-dimensional xz planes with
“C2v|Cs” symmetry in the y direction. These
planes have a Z2 classification, corresponding to
a second-order topological superconducting phase
with a pair of Majorana bound states at a cor-
ner bisected by the mirror Mx plane, as shown in
App. C.2 3. These phases are labeled “(2; y)” in
Fig. C.9.

• A stack of two-dimensional yz planes with
“C2v|Cs” symmetry in the x directions. These
planes have a Z classification, corresponding to a
first-order topological superconducting phase with
counterpropagating Majorana modes in opposite
in-plane mirror eigensectors, as shown in Sec. C.2 3.
These phases are labeled “(2;x)” in Fig. C.9. Su-
perconductors with even Chern number in a mir-
ror plane can be adiabatically deformed to normal-
state Chern insulators.

• A stack of one-dimensional z lines with “C2v|C2v”
symmetry in the x and y directions. These lines
have a Z2 classification, corresponding to a one-
dimensional topological superconductor with a pair
of Majorana bound states at each end, as shown in
Sec. C.2 2. These phases are labeled “(1;x, y)” in
Fig. C.9.

• A stack of one-dimensional x lines with “C2v|Cs”
symmetry in the y and z directions does not give a
weak phase, since there are no appropriate strong
phases in one dimension, see App. C.2 1.
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• A stack of one-dimensional y lines with “C2v|Cs”
symmetry in the x and z directions. These lines
have a Z2 classification, corresponding to a one di-
mensional topological superconducting phase with
a pair of Majorana bound states at each end, as
shown in App. C.2 1. These phases are labeled
“(1;x, z)” in Fig. C.9.

The complete classifying group is hence

KD[C2v, B1,2, d = 3] = Z
3
2 × Z2. (C.24)

C.2.7. Three dimensions, class D, C4

Three dimensional, fourfold rotation-symmetric topolog-
ical superconductors can not have a first-order boundary
signatures, as there are no first-order topological phases
in three dimensions for class D. A strong second-order
boundary signature is also forbidden as i) a rotation-
symmetric chiral Majorana mode in a plane perpendic-
ular to the rotation axis can be shrunk to a point and
ii) planes parallel to the rotation axis satisfy a (x, z) →
(−x, z) symmetry, which forbids a chiral mode.

In the following we determine whether a third-order
boundary signature may exist at the rotation axis.
Representations Θ = A and Θ = B.— For Θ = A or

Θ = B the irreducible representations of fourfold rotation
are exchanged under particle-hole conjugation as shown
in Table 4.5. Each pair is effectively in class A, forbid-
ding a one dimensional topological phase with boundary
signature along rotation axis. Hence there are no third-
order boundary signatures in these representations. Ac-
counting for weak phases stacked in the z direction (par-
allel to the rotation axis), we thus find that

KD[C4, A, d = 3] =KD[C4, B, d = 3]

=Z
2
2 × Z, (C.25)

where we used the classification results for two-
dimensional phases obtained in App. C.2 5.
Representations Θ = 1E and Θ = 2E.— As in the

main text, the discussion for the two representations
Θ = 1E or Θ = 2E are analogous. We focus on the
Θ = 1E representation in the following. As shown in Ta-
ble 4.5, the j = 1

2 and j = 5
2 rotation eigenspaces are in-

variant under particle-hole conjugation while the j = 3
2 ,

7
2

eigenspaces are exchanged in this symmetry class. The
j = 1

2 and j = 5
2 eigenspaces belong to class D allowing

stable zero-dimensional gapless Majorana states. How-
ever, below we show that a three-dimensional supercon-
ductor with a single Majorana fermion on the fourfold
rotation axis is an extrinsic (non-anomalous) third-order
phase.

We consider two kinds of decorations, [5] see Fig. C.14.
The first kind consists of four copies of one-dimensional
Kitaev chains placed on the crystal surface and begin-
ning and ending on the rotation axis. The four Kitaev
chains are related to each other by a fourfold rotation,

a)

b)

two Majorana fermions
with angular momentum

and

single Majorana fermions
with angular momentum

or

FIG. C.14. a) Decoration consisting of four copies of one-
dimensional Kitaev chain. This decoration results in two Ma-
jorana fermions with angular momentum j = 1

2
and j = 5

2
.

b) Decoration consisting of four copies of two-dimensional p-
wave superconductors, resulting in single Majorana fermion
with angular momentum either j = 1

2
or j = 5

2
.

which results in four Majorana end states, all with dif-
ferent angular momentum j. Majorana end states with
j = 3

2 and j = 7
2 are not stable and can be gapped out,

while Majorana stats with j = 1
2 and j = 5

2 remain. The
second type of decoration consists of covering the crystal
surface by four copies of a two-dimensional topological
superconductor, such that the four two-dimensional su-
perconductors are mapped onto each other by C4 sym-
metry. Majorana modes running along the surface can be
gapped out, Fig. C.14b. Since Θ = 1E or Θ = 2E repre-
sentations correspond to an odd-parity superconductor,
the resulting C4-symmetric spinful superconductor needs
to have a vortex at the rotation axis. [5] We therefore con-
clude that this type of decoration gives rise to a single
Majorana bound state at the rotation axis, which needs
to have angular momentum either j = 1

2 or j = 5
2 . The

combination of the two types of decorations described
here can account for all configurations of Majorana cor-
ner states compatible with the C4 rotation symmetry. We
conclude that there are no intrinsic third-order anoma-
lous boundary states in this class.

We conclude that the only possible topological phases
in three dimensions are weak phases:

• A stack of xy planes with C4 symmetry in the z
direction allows for a Chern superconductor with
even Chern number, see App. C.2 5. This phase is
labeled “(2; z)” in Fig. C.7.

• A stack of xz and yz planes related by fourfold
rotation symmetry stacked in both x and y di-
rection. As the rotation axis lies in the intersec-
tion of the two planes, their classifying group is
K(0,1,0)[Cs, A

′′, d = 2] = Z2 allowing a second-order
topological superconductor. The configuration has
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pairs of Majorana bound states at the rotation axis.
This phase is labeled “(2;x, y)” in Fig. C.7.

• There is no stack of one dimensional superconduc-
tors pointing in the x and y direction, related by
fourfold rotation symmetry, as the corresponding
classifying group K(0,1,0)[Cs, A

′′, d = 1] = 0 is triv-
ial.

• A stack of one dimensional z lines within the ro-
tation axis in the x and y direction. These lines
have a classifying groupK(0,1,0)[C4,

1E, d = 1] = Z
2
2

corresponding to one dimensional TSC with Majo-
rana bound states in the class D rotation subspaces
j = 1

2 ,
5
2 . The phases are labeled “(1, j;x, y)” in

Fig. C.7.

The complete classifying group is hence

KD[C4,
1,2E, d = 3] = Z

3
2 × Z. (C.26)

C.3. 1d COMPATIBILITY RELATION FOR
CLASS CI WITH INVERSION SYMMETRY

We here discuss how to obtain the compatibility rela-
tion (4.130) of Sec. 4.7.4. For definiteness, we choose the
representations

T = ρ0τ0K, P = ρ0τ2K, I = ρ0τ3. (C.27)

The following combinations of symmetries are local in k:

IT = ρ0τ3K, IP = ρ0τ1K, (C.28)

as well as their product, which is a chiral antisymmetry.
To construct the compatibility relation (4.130) we con-
sider the one-parameter family of one-dimensinal Hamil-
tonians Ht(k), defined by restricting H(k) to the line
kx = 0, ky = t, kz = k. For t = 0 and t = π, the
one-dimensional Hamiltonian Ht(k) is a one-dimensional
Hamiltonian in class CI with inversion symmetry and the
Au representation. The topological invariants at high-
symmetry momenta for this one-dimensional Hamilto-
nian coincide with the corresponding band labels defined
for the full three-dimensional Hamiltonian H(k) and sat-
isfy the same 0d compatibility relations, see Secs. 4.7.3
and 4.7.4. For generic 0 < t < π, Ht(k) is a one-
dimensional Hamiltonian that has the local-in-k symme-
tries IT and IP only. Such a one-parameter family has
a strong Z2 invariant, [13] which we call S. We can
construct a compatibility relation by relating S to the
topological band labels of Ht(k) at t = 0 and t = π. We
find that this can be accomplished without knowledge of
a general expression for the strong invariant S.

Before we can construct such a compatibility rela-
tion, it is necessary to obtain the full classification of
the inversion-symmetric Hamiltonians Ht(k) at t = 0
and t = π, including topologically nontrivial atomic-limit

states. We recall that the topological band labels for this

case are {n(0,t,0)
+ ,N

(0,t,π)
+ }, where

2n
(0,t,0)
+ = N

(0,t,0)
+ −N

(0,t,π)
+ t = 0, π, (C.29)

see the discussion in Sec. 4.7.3. It follows that the group
of topological band labels is Z× 2Z, where we use 2Z to

indicate the integers spanned by the label n
(0,t,π)
+ . Inter-

preting the topological band labels in terms of a topo-
logical classification, we note that the factor Z corre-
sponds to weak phases, whereas the factor 2Z describes
strong one-dimensional atomic-limit phases. [5] We use
Kt|t=0,π ' 2Z, to denote the strong phases of the model
at t = 0 and t = π and note that the topological band la-

bel 2n
(0,t,0)
+ can be used as the corresponding topological

invariant.
To obtain the compatibility relation, we have to deter-

mine, what values of n
(0,t,0)
+ are compatible with a given

value of S. Such a problem requires understanding the
homomorphism

Kt|t=0,π → Kt|0<t<π ,

where Kt|0<t<π ' Z2 is the group classifying strong
phases of Ht(k) for generic t. To construct this homo-
morphism, we notice that

H(k) = ρ0τ3(1−m− cos k) + ρ2τ1 sin k (C.30)

with 0 < m < 2 is an example of a Hamiltonian that
satisfies T , P, and I symmetries and that is nontrivial if
only the local-in-k symmetries IT and IP are kept, i.e.,
it has invariant S = 1. (Although no general expression
for S is available, S can be calculated as the parity of a
winding number if H(k) is a 4×4 matrix.) It follows that
the mapping Kt|t=0,π → Kt|0<t<π must be surjective.

One verifies that the Hamiltonian (C.30) has topological

band label n
(0)
+ = 1. Since the trivial phase has n

(0)
+ = 0

and since S has a Z2 group structure, it directly follows
that

S = n
(0,0,0)
+ mod 2

= n
(0,π,0)
+ mod 2. (C.31)

This is one of the compatibility relations of Eq. (4.130).
The other relations follow in analogous manner by
considering other appropriately chosen families of one-
dimensional Hamiltonians Ht(k).
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C.4. ADDITIONAL TABLES

BL SI

K′i ⊆ Ki Phase N
(0,0)
1
2

N
(0,0)
5
2

N
(π,0)
1
2

N
(π,π)
1
2

N
(π,π)
5
2

Z2 ⊗ Z8

- x = (0, 0), j = 1
2

1 0 1 1 0 0
- x = (0, 0), j = 5

2
0 1 1 0 1 0

- x = ( 1
2
, 1
2
), j = 1

2
1 0 -1 0 1 0

- x = ( 1
2
, 1
2
), j = 5

2
0 1 -1 1 0 0

- x = ( 1
2
, 0), j = 1

2
1 1 0 -1 -1 0

Z2 (1;x, y) 1 1 1 0 0 e
(2)
1;x,y

0 ⊆ Z (2) 0 0 1 1 0 e
(8)
2

Z2 ⊆ Z2 (2)’ 2 2 0 0 0 4e
(8)
2

TABLE C.1. Band labels and symmetry-based indicators for atomic-limit Hamiltonians obtained by placing 0d generators for
representation j at Wyckoff position x for the symmetry group C4 in two dimensions, class D with representation Θ = A or
Θ = B (upper five rows) and band labels for the generators of the weak, Chern and second-order phases (lower three rows).

BL SI

K′i ⊆ Ki Phase p
(0,0)
1
2

p
(0,0)
5
2

N
(0,0)
3
2

p
(π,0)
1
2

p
(π,0)
3
2

p
(π,π)
1
2

p
(π,π)
5
2

N
(π,π)
3
2

Z4

- x = (0, 0), j = 1
2

1 0 0 1 0 1 0 0 0
- x = (0, 0), j = 5

2
0 1 0 1 0 0 1 0 0

- x = (0, 0), j = 3
2

0 0 1 0 1 0 0 1 0
- x = ( 1

2
, 1
2
), j = 1

2
1 0 0 0 1 0 1 0 0

- x = ( 1
2
, 1
2
), j = 5

2
0 1 0 0 1 1 0 0 0

- x = ( 1
2
, 1
2
), j = 3

2
0 0 1 1 0 0 0 -1 0

- x = ( 1
2
, 0), j = 1

2
1 1 0 1 1 0 0 0 0

- x = ( 1
2
, 0), j = 3

2
0 0 0 1 1 1 1 0 0

0 ⊆ Z (2) 0 0 0 1 1 1 0 1 e
(4)
2

TABLE C.2. Band labels and symmetry-based indicators for atomic-limit Hamiltonians obtained by placing 0d generators for
representation j at Wyckoff position x for the symmetry group C4 in two dimensions, class D with representation Θ = 1E or
Θ = 2E (upper eight rows) and band labels for the generator of the Chern phase (lowest row).

BL SI

K′′i ⊆ K′i ⊆ Ki Phase p(0,0,0) p(π,0,0) p(0,π,0) p(π,π,0) p(0,0,π) p(π,0,π) p(0,π,π) p(π,π,π) Z
7
2

- x = (0, 0, 0) 1 1 1 1 1 1 1 1 0

Z2 (1; y, z) 1 0 1 0 1 0 1 0 e
(2)
1;y,z

Z2 (1;x, z) 1 1 0 0 1 1 0 0 e
(2)
1;x,z

Z2 (1;x, y) 1 1 1 1 0 0 0 0 e
(2)
1;x,y

0 ⊆ Z (2; z) 1 0 0 0 1 0 0 0 e
(2)
2;z

0 ⊆ Z (2; y) 1 0 1 0 0 0 0 0 e
(2)
2;y

0 ⊆ Z (2;x) 1 1 0 0 0 0 0 0 e
(2)
2;x

TABLE C.3. Topological band labels of three-dimensional superconductors in tenfold-way class D with translation symmetry
only (point group C1).

161



BS SI

K′′i ⊆ K′i ⊆ Ki Phase p
(0,0,0)

(+,−) p
(π,0,0)

(+,−) p
(0,π,0)

(+,−) p
(π,π,0)

(+,−) p
(0,0,π)

(+,−) p
(π,0,π)

(+,−) p
(0,π,π)

(+,−) p
(π,π,π)

(+,−) Z
4
2

- x = (0, 0, 0), α =

{
+

−
(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

0
0

- x = ( 1
2
, 0, 0), α =

{
+

−
(1, 0)
(0, 1)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

0
0

- x = (0, 1
2
, 0), α =

{
+

−
(1, 0)
(0, 1)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

(0, 1)
(1, 0)

0
0

- x = ( 1
2
, 1
2
, 0), α =

{
+

−
(1, 0)
(0, 1)

(0, 1)
(1, 0)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

0
0

- x = (0, 0, 1
2
), α =

{
+

−
(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

(0, 1)
(1, 0)

(0, 1)
(1, 0)

(0, 1)
(1, 0)

0
0

- x = ( 1
2
, 0, 1

2
), α =

{
+

−
(1, 0)
(0, 1)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

0
0

- x = (0, 1
2
, 1
2
), α =

{
+

−
(1, 0)
(0, 1)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

(0, 1)
(1, 0)

(0, 1)
(1, 0)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

0
0

- x = ( 1
2
, 1
2
, 1
2
), α =

{
+

−
(1, 0)
(0, 1)

(0, 1)
(1, 0)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

0
0

0 ⊆ Z (2; z) (1, 1) (0, 0) (0, 0) (0, 0) (1, 1) (0, 0) (0, 0) (0, 0) e
(2)
2;z

0 ⊆ Z (2; y) (1, 1) (0, 0) (1, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) e
(2)
2;y

0 ⊆ Z (2;x) (1, 1) (1, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) e
(2)
2;x

TABLE C.4. Topological band labels of three-dimensional superconductors in tenfold-way class D with point group Ci and
representation Θ = Ag.

BS SI

K′′i ⊆ K′i ⊆ Ki Phase N
(0,0,0)
+ N

(π,0,0)
+ N

(0,π,0)
+ N

(π,π,0)
+ N

(0,0,π)
+ N

(π,0,π)
+ N

(0,π,π)
+ N

(π,π,π)
+ Z

3
2 ⊗ Z3

4 ⊗ Z8

- x = (0, 0, 0) 1 1 1 1 1 1 1 1 0
- x = ( 1

2
, 0, 0) 1 -1 1 -1 1 -1 1 -1 0

- x = (0, 1
2
, 0) 1 1 -1 -1 1 1 -1 -1 0

- x = ( 1
2
, 1
2
, 0) 1 -1 -1 1 1 -1 -1 1 0

- x = (0, 0, 1
2
) 1 1 1 1 -1 -1 -1 -1 0

- x = ( 1
2
, 0, 1

2
) 1 -1 1 -1 -1 1 -1 1 0

- x = (0, 1
2
, 1
2
) 1 1 -1 -1 -1 -1 1 1 0

- x = ( 1
2
, 1
2
, 1
2
) 1 -1 -1 1 -1 1 1 -1 0

Z2 (1; y, z) 1 0 1 0 1 0 1 0 e
(2)
1;y,z

Z2 (1;x, z) 1 1 0 0 1 1 0 0 e
(2)
1;x,z

Z2 (1;x, y) 1 1 1 1 0 0 0 0 e
(2)
1;x,y

0 ⊆ Z (2; z) 1 0 0 0 1 0 0 0 e
(4)
2;z

0 ⊆ Z (2; y) 1 0 1 0 0 0 0 0 e
(4)
2;y

0 ⊆ Z (2;x) 1 1 0 0 0 0 0 0 e
(4)
2;x

Z2 ⊆ Z2 (2; z)′ 2 0 0 0 2 0 0 0 2e
(4)
2;z

Z2 ⊆ Z2 (2; y)′ 2 0 2 0 0 0 0 0 2e
(4)
2;y

Z2 ⊆ Z2 (2;x)′ 2 2 0 0 0 0 0 0 2e
(4)
2;x

Z2 ⊆ Z4 ⊆ Z4 (3)′ 2 0 0 0 0 0 0 0 2e
(8)
3

TABLE C.5. Topological band labels of three-dimensional superconductors in tenfold-way class D with point group Ci and
representation Θ = Au.
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BS SI

K′′i ⊆ K′i ⊆ Ki Phase N
(0,0,0)
+ N

(π,0,0)
+ N

(0,π,0)
+ N

(π,π,0)
+ N

(0,0,π)
+ N

(π,0,π)
+ N

(0,π,π)
+ N

(π,π,π)
+ Z

3
2 ⊗ Z3

4 ⊗ Z8

- x = (0, 0, 0) 1 1 1 1 1 1 1 1 0
- x = ( 1

2
, 0, 0) 1 -1 1 -1 1 -1 1 -1 0

- x = (0, 1
2
, 0) 1 1 -1 -1 1 1 -1 -1 0

- x = ( 1
2
, 1
2
, 0) 1 -1 -1 1 1 -1 -1 1 0

- x = (0, 0, 1
2
) 1 1 1 1 -1 -1 -1 -1 0

- x = ( 1
2
, 0, 1

2
) 1 -1 1 -1 -1 1 -1 1 0

- x = (0, 1
2
, 1
2
) 1 1 -1 -1 -1 -1 1 1 0

- x = ( 1
2
, 1
2
, 1
2
) 1 -1 -1 1 -1 1 1 -1 0

Z2 (1; y, z) 1 0 1 0 1 0 1 0 e
(2)
1;y,z

Z2 (1;x, z) 1 1 0 0 1 1 0 0 e
(2)
1;x,z

Z2 (1;x, y) 1 1 1 1 0 0 0 0 e
(2)
1;x,y

Z2 ⊆ Z4 (2; z) 1 0 0 0 1 0 0 0 e
(4)
2;z

Z2 ⊆ Z4 (2; y) 1 0 1 0 0 0 0 0 e
(4)
2;y

Z2 ⊆ Z4 (2;x) 1 1 0 0 0 0 0 0 e
(4)
2;x

0 ⊆ 0 ⊆ Z (3) 1 0 0 0 0 0 0 0 e
(8)
3

Z2 ⊆ Z4 ⊆ Z4 (3)′ 2 0 0 0 0 0 0 0 2e
(8)
3

TABLE C.6. Topological band labels of three-dimensional superconductors in tenfold-way class DIII with point group Ci and
representation Θ = Au.

BS SI

K′′i ⊆ K′i ⊆ Ki Phase N
(0,0,0)
+ N

(π,0,0)
+ N

(0,π,0)
+ N

(π,π,0)
+ N

(0,0,π)
+ N

(π,0,π)
+ N

(0,π,π)
+ N

(π,π,π)
+ Z

3
2 ⊗ Z4

- x = (0, 0, 0) 1 1 1 1 1 1 1 1 0
- x = ( 1

2
, 0, 0) 1 -1 1 -1 1 -1 1 -1 0

- x = (0, 1
2
, 0) 1 1 -1 -1 1 1 -1 -1 0

- x = ( 1
2
, 1
2
, 0) 1 -1 -1 1 1 -1 -1 1 0

- x = (0, 0, 1
2
) 1 1 1 1 -1 -1 -1 -1 0

- x = ( 1
2
, 0, 1

2
) 1 -1 1 -1 -1 1 -1 1 0

- x = (0, 1
2
, 1
2
) 1 1 -1 -1 -1 -1 1 1 0

- x = ( 1
2
, 1
2
, 1
2
) 1 -1 -1 1 -1 1 1 -1 0

0 ⊆ Z (2; z) 2 0 0 0 2 0 0 0 e
(2)
2;z

0 ⊆ Z (2; y) 2 0 2 0 0 0 0 0 e
(2)
2;y

0 ⊆ Z (2;x) 2 2 0 0 0 0 0 0 e
(2)
2;x

0 ⊆ Z2 ⊆ Z2 (3)′ 4 0 0 0 0 0 0 0 2e
(4)
3

TABLE C.7. Topological band labels of three-dimensional superconductors in tenfold-way class C with point group Ci and
representation Θ = Au.

BS SI

K′′i ⊆ K′i ⊆ Ki Phase N
(0,0,0)
+ N

(π,0,0)
+ N

(0,π,0)
+ N

(π,π,0)
+ N

(0,0,π)
+ N

(π,0,π)
+ N

(0,π,π)
+ N

(π,π,π)
+ Z

3
2 ⊗ Z4

- x = (0, 0, 0) 1 1 1 1 1 1 1 1 0
- x = ( 1

2
, 0, 0) 1 -1 1 -1 1 -1 1 -1 0

- x = (0, 1
2
, 0) 1 1 -1 -1 1 1 -1 -1 0

- x = ( 1
2
, 1
2
, 0) 1 -1 -1 1 1 -1 -1 1 0

- x = (0, 0, 1
2
) 1 1 1 1 -1 -1 -1 -1 0

- x = ( 1
2
, 0, 1

2
) 1 -1 1 -1 -1 1 -1 1 0

- x = (0, 1
2
, 1
2
) 1 1 -1 -1 -1 -1 1 1 0

- x = ( 1
2
, 1
2
, 1
2
) 1 -1 -1 1 -1 1 1 -1 0

0 ⊆ 0 ⊆ Z (3) 4 0 0 0 0 0 0 0 2e
(4)
3

TABLE C.8. Topological band labels of three-dimensional superconductors in tenfold-way class CI with point group Ci and
representation Θ = Au.
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BL SI

K′′i ⊆ K′i ⊆ Ki Phase N
(0,0,0)
+ N

(π,0,0)
+ N

(0,π,0)
+ N

(π,π,0)
+ N

(0,0,π)
+ N

(π,0,π)
+ N

(0,π,π)
+ N

(π,π,π)
+ Z2

- x = (0, 0, 0) 1 1 1 1 1 1 1 1 0
- x = ( 1

2
, 0, 0) 1 -1 1 -1 1 -1 1 -1 0

Z2 (1; y, z) 1 0 1 0 1 0 1 0 e
(2)
1;y,z

0 ⊆ Z (2;x) 0 0 0 0 0 0 0 0 0

TABLE C.9. Topological band labels of three-dimensional superconductors in tenfold-way class D with point group Cs and
representation Θ = A′.

BL SI

K′′i ⊆ K′i ⊆ Ki Phase p
(0,0,0)

(+,−) p
(π,0,0)

(+,−) p
(0,π,0)

(+,−) p
(π,π,0)

(+,−) p
(0,0,π)

(+,−) p
(π,0,π)

(+,−) p
(0,π,π)

(+,−) p
(π,π,π)

(+,−) Z
9
2

- x = (0, 0, 0), α =

{
+

−
(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

0
0

- x = ( 1
2
, 0, 0), α =

{
+

−
(1, 0)
(0, 1)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

0
0

Z2 (1,+;x, z) (1, 0) (1, 0) (0, 0) (0, 0) (1, 0) (1, 0) (0, 0) (0, 0) e
(2)
1,+;x,z

Z2 (1,−;x, z) (0, 1) (0, 1) (0, 0) (0, 0) (0, 1) (0, 1) (0, 0) (0, 0) e
(2)
1,−;x,z

Z2 (1,+;x, y) (1, 0) (1, 0) (1, 0) (1, 0) (0, 0) (0, 0) (0, 0) (0, 0) e
(2)
1,+;x,y

Z2 (1,−;x, y) (0, 1) (0, 1) (0, 1) (0, 1) (0, 0) (0, 0) (0, 0) (0, 0) e
(2)
1,−;x,y

0 ⊆ Z (2,+;x) (1, 0) (1, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) e
(2)
2,+;x

0 ⊆ Z (2,−;x) (0, 1) (0, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) e
(2)
2,−;x

Z2 ⊆ Z2 (2; z)′ (1, 1) (0, 0) (0, 0) (0, 0) (1, 1) (0, 0) (0, 0) (0, 0) e
(2)
2;z

Z2 ⊆ Z2 (2; y)′ (1, 1) (0, 0) (1, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) e
(2)
2;y

0 ⊆ Z2 ⊆ Z2 (3)′ (1, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) e
(2)
3

TABLE C.10. Topological band labels of three-dimensional superconductors in tenfold-way class D with point group Cs and
representation Θ = A′′.

BL SI

K′′i ⊆ K′i ⊆ Ki Phase N
(0,0,0)
+ N

(π,0,0)
+ N

(0,π,0)
+ N

(π,π,0)
+ N

(0,0,π)
+ N

(π,0,π)
+ N

(0,π,π)
+ N

(π,π,π)
+ Z

2
2 × Z4

- x = (0, 0, 0) 1 1 1 1 1 1 1 1 0
- x = ( 1

2
, 0, 0) 1 -1 1 -1 1 -1 1 -1 0

- x = (0, 1
2
, 0) 1 1 -1 -1 1 1 -1 -1 0

- x = ( 1
2
, 1
2
, 0) 1 -1 -1 1 1 -1 -1 1 0

Z2 (1; y, z) 1 0 1 0 1 0 1 0 e
(2)
1;y,z

Z2 (1;x, z) 1 1 0 0 1 1 0 0 e
(2)
1;x,z

Z2 ⊆ Z2 (2; z)’ 2 0 0 0 2 0 0 0 2e
(4)
2;z

0 ⊆ Z (2; z) 1 0 0 0 1 0 0 0 e
(4)
2;z

TABLE C.11. Topological band labels of three-dimensional superconductors in tenfold-way class D with point group C2 and
representation Θ = A.
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BL SI

K′′i ⊆ K′i ⊆ Ki Phase p
(0,0,0)

(+,−) p
(π,0,0)

(+,−) p
(0,π,0)

(+,−) p
(π,π,0)

(+,−) p
(0,0,π)

(+,−) p
(π,0,π)

(+,−) p
(0,π,π)

(+,−) p
(π,π,π)

(+,−) Z
6
2

- x = (0, 0, 0), α =

{
+

−
(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

0
0

- x = ( 1
2
, 0, 0), α =

{
+

−
(1, 0)
(0, 1)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

0
0

- x = (0, 1
2
, 0), α =

{
+

−
(1, 0)
(0, 1)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

(0, 1)
(1, 0)

0
0

- x = ( 1
2
, 1
2
, 0), α =

{
+

−
(1, 0)
(0, 1)

(0, 1)
(1, 0)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

(1, 0)
(0, 1)

(0, 1)
(1, 0)

(0, 1)
(1, 0)

(1, 0)
(0, 1)

0
0

Z2 (1,+;x, y) (1, 0) (1, 0) (1, 0) (1, 0) (0, 0) (0, 0) (0, 0) (0, 0) e
(2)
1,+;x,y

Z2 (1,−;x, y) (0, 1) (0, 1) (0, 1) (0, 1) (0, 0) (0, 0) (0, 0) (0, 0) e
(2)
1,−;x,y

Z2 ⊆ Z2 (2;x)’ (1, 1) (1, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) e
(2)
2;x

Z2 ⊆ Z2 (2; y)’ (1, 1) (0, 0) (1, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) e
(2)
2;y

0 ⊆ Z (2; z) (1, 1) (0, 0) (0, 0) (0, 0) (1, 1) (0, 0) (0, 0) (0, 0) e
(2)
2;z

TABLE C.12. Topological band labels of three-dimensional superconductors in tenfold-way class D with point group C2 and
representation Θ = B.

BL SI
(0, 0, 0) (π, 0, 0) (π, π, 0) (0, 0, π) (π, 0, π) (π, π, π)

K′′i ⊆ K′i ⊆ Ki Phase N 1
2

N 5
2

N 1
2

N 1
2

N 5
2

N 1
2

N 5
2

N 1
2

N 1
2

N 5
2
Z2 × Z8

- x = (0, 0), j = 1
2

1 0 1 1 0 1 0 1 1 0 0
- x = (0, 0), j = 5

2
0 1 1 0 1 0 1 1 0 1 0

- x = ( 1
2
, 1
2
), j = 1

2
1 0 -1 0 1 1 0 -1 0 1 0

- x = ( 1
2
, 1
2
), j = 5

2
0 1 -1 1 0 0 1 -1 1 0 0

- x = ( 1
2
, 0), j = 1

2
1 1 0 -1 -1 1 1 0 -1 -1 0

Z2 (1;x, y, z) 1 1 1 0 0 1 1 1 0 0 e
(2)
1;x,y,z

0 ⊆ Z (2; z) 0 0 1 1 0 0 0 1 1 0 e
(8)
2;z

Z2 ⊆ Z2 (2; z)′ 2 2 0 0 0 2 2 0 0 0 4e
(8)
2;z

TABLE C.13. Band labels of three-dimensional superconductors in tenfold-way class D with point group C4 and representations
Θ = A or Θ = B.

BL SI
(0, 0, 0) (π, 0, 0) (π, π, 0) (0, 0, π) (π, 0, π) (π, π, π)

K′′i ⊆ K′i ⊆ Ki Phase p 1
2

p 5
2

N 3
2

p 1
2

p 3
2

p 1
2

p 5
2

N 3
2

p 1
2

p 5
2

N 3
2

p 1
2

p 3
2

p 1
2

p 5
2

N 3
2
Z

4
2 × Z4

- x = (0, 0), j = 1
2

1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0
- x = (0, 0), j = 5

2
0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0

- x = (0, 0), j = 3
2

0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0
- x = ( 1

2
, 1
2
), j = 1

2
1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0

- x = ( 1
2
, 1
2
), j = 5

2
0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0

- x = ( 1
2
, 1
2
), j = 3

2
0 0 1 1 0 0 0 -1 0 0 1 1 0 0 0 -1 0

- x = ( 1
2
, 0), j = 1

2
1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0

- x = ( 1
2
, 0), j = 3

2
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

Z2 (1, 1
2
;x, y) 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 e

(2)

1, 1
2
;x,y

Z2 (1, 5
2
;x, y) 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 e

(2)

1, 5
2
;x,y

0 ⊆ Z (2; z) 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 e
(4)
2;z

Z2 ⊆ Z2 (2;x, y)′ 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 e
(2)
2;x,y

TABLE C.14. Topological band labels of three-dimensional superconductors in tenfold-way class D with point group C4 and
representation Θ =1 E or Θ =2 E.
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BL SI

K′′i ⊆ K′i ⊆ Ki Phase p(0,0,0) p(π,0,0) p(0,π,0) p(π,π,0) p(0,0,π) p(π,0,π) p(0,π,π) p(π,π,π) Z
7
2

x = (0, 0, 0) 1 1 1 1 1 1 1 1 0
x = ( 1

2
, 0, 0) 1 1 1 1 1 1 1 1 0

x = (0, 1
2
, 0) 1 1 1 1 1 1 1 1 0

x = ( 1
2
, 1
2
, 0) 1 1 1 1 1 1 1 1 0

Z2 (1; y, z) 1 0 1 0 1 0 1 0 e
(2)
1;y,z

Z2 (1;x, z) 1 1 0 0 1 1 0 0 e
(2)
1;x,z

Z2 (1;x, y) 1 1 1 1 0 0 0 0 e
(2)
1;x,y

Z2 ⊆ Z2 (2,+; z)′ 1 0 0 0 1 0 0 0 e
(2)
2;z

Z2 ⊆ Z2 (2,−; z)′ 1 0 0 0 1 0 0 0 e
(2)
2;z

0 ⊆ Z (2; y) 1 0 1 0 0 0 0 0 e
(2)
2;y

0 ⊆ Z (2;x) 1 1 0 0 0 0 0 0 e
(2)
2;x

0 ⊆ Z ⊆ Z (3,+)′ 1 0 0 0 0 0 0 0 e
(2)
3

0 ⊆ Z ⊆ Z (3,−)′ 1 0 0 0 0 0 0 0 e
(2)
3

TABLE C.15. Topological band labels and symmetry-based indicators for three-dimensional superconductors in tenfold-way
class D with point group C2v and representation Θ = A2.

BL SI

K′′i ⊆ K′i ⊆ Ki Phase p(0,0,0) p(π,0,0) p(0,π,0) p(π,π,0) p(0,0,π) p(π,0,π) p(0,π,π) p(π,π,π) Z
3
2

x = (0, 0, 0) 1 1 1 1 1 1 1 1 0
x = ( 1

2
, 0, 0) 1 1 1 1 1 1 1 1 0

x = (0, 1
2
, 0) 1 1 1 1 1 1 1 1 0

x = ( 1
2
, 1
2
, 0) 1 1 1 1 1 1 1 1 0

Z2 (1;x, z) 1 1 0 0 1 1 0 0 e
(2)
1;x,z

Z2 (1;x, y) 1 1 1 1 0 0 0 0 e
(2)
1;x,y

Z2 ⊆ Z2 (2; y)′ 0 0 0 0 0 0 0 0 0

0 ⊆ Z (2;x) 1 1 0 0 0 0 0 0 e
(2)
2;x

0 ⊆ Z ⊆ Z (3)′ 0 0 0 0 0 0 0 0 0

TABLE C.16. Topological band labels of three-dimensional superconductors in tenfold-way class D with point group C2v and
representation Θ = B2.
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