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taught me coding in SAGE and to always look on the bright side. Moritz Firsching provided the

code for the Koebe-Andreev-Thurston realization of the polyhedra. Elke Pose helped organize

my funding and encouraged me in situations of doubt. Hannah Schäfer Sjöberg, Sophia Elia and
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4.4.1 Dürer Invents the Edge Unfolding . . . . . . . . . . . . . . . . . . . . . . 115

4.4.2 Shephard’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
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Introduction

The project Polytopia– Adopt a Polyhedron is the focal point of this thesis. It was developed

in a science public relations context and is associated with the Collaborative Research Center

Discretization in Geometry and Dynamics. The experimental character of the project is aimed

at exploring the possibilities of a contemporary science communication project in mathematics.

The outcome of this experiment is documented here. The central idea of the project is to put up

polyhedra for adoption. One by one the geometrical objects would be chosen by the participants

who then give them a name and build models of them. This idea originated from our goal

to create a representation of mathematics in a unique way that is open to participation by

incorporating aspects of citizen science.

The first chapter lays the groundwork for the classification of the project in the realm of

science communication. First, we briefly overview the development within the science of science

communication with a shift from focussing onto knowledge, through affection, to the discourse

about trust in science, which we currently see. This progress resulted in an alteration of the

practice of science communication as well. Whereas traditional formats focused on educating

the public in a downwards manner, more modern ways of science communication are aiming at

fostering a dialogue or transfer of knowledge on even ground.

In the second part of the first chapter, we focus on mathematical science communication and

start this with looking into the sparse literature about it. In the book: “Raising the Public

Awareness of Mathematics” by Behrends et al. [19], we determine that the deficit model was still

prevailing in the discourse in 2012. This is documented in the authors’ repeated attributions of

a lack of knowledge about and affection towards mathematics in the public, as well as in the

ascribed superiority of mathematics among the sciences. A further component of this second

part is the definition of some notions to invigorate the discourse and prompt the development of
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more dialogical forms of mathematical science communication. It would be nice to say that these

theoretical considerations lead the way in the development of our own project, but in fact it was

the other way around. In classifying the objectives, motivations and methods of Polytopia, the

lack of a framework became apparent. After a short digression into mathematical citizen science,

the chapter closes with an agenda for future development of mathematical science communication.

The second chapter is dedicated to thoroughly describing the project. First, we classify its

motivation, objectives and methods with regard to the terms developed in Chapter 1. Then,

we introduce the preliminary considerations that lead to the development of the design and

functionality of its website. Its development is documented by screenshots and descriptions.

Furthermore, we give some detail on the technical implementation. Next up is the evaluation

of the survey, which was filled out by the users of the website. The collected data measures

demographics as well as user experience. The primary target group of students aged 7 to 13

years makes up about a quarter of the users. The chapter concludes with some reflections of the

execution of the project and discusses future possibilities of including methods for evaluation

into mathematical science communication projects.

In order to reach the primary target group of pupils through the math class, we developed

school materials that can be implemented by the teachers. The third chapter starts by outlining

the didactical principles that guided the conception of the school materials. Project teaching,

inquiry based learning, and dialogical learning all have in common that they put the student in

the position to guide the learning process and the teacher to assist it. We introduce the school

materials and illustrate how their use put the didactical principles into practice. At the end of

this chapter, we show how these principles were not just guiding the development of the school

materials, but also how the underlaying ideas guided the overall design of the project.

The last chapter deals with the mathematical background of the project. The term polyhedron

is not universally defined and holds different meanings in various mathematical contexts. First,

we trace back the applications of the term polyhedron. The next part of the chapter is dedicated to

rigorously defining the mathematical concepts that build the scientific backdrop for the project.

Here, we also describe the data generation for the website. The last part of the chapter reproduces

the progress made on an open problem that is closely related to our project and the polyhedral

nets we used for building the models: Dürer’s conjecture. It states the question whether every

polyhedron possesses an overlap free edge-unfolding. While the painter and mathematician Dürer
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invented the edge-unfolding, the question itself can be attributed to Shephard [144], who posed

it in 1975. A recent result by Ghomi [56] proved that at least for every combinatorial type of

polyhedra Dürer’s conjecture can be settled with a positive answer.

The conclusion reflects upon this thesis and its objective to closely knit together the four parts

of the project that are covered in a chapter each: the theoretical framework and place within the

discourse of (mathematical) science communication, the practice of implementing a mathematical

science communication project, the relation to mathematics education and the contemporary

guiding principles of its didactics, and finally, the mathematics itself that is displayed in the

project Polytopia – Adopt a Polyhedron.
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Chapter 1

Mathematical Science

Communication

1.1 Science Communication

Claude Shannon introduced a mathematical model of communication in the 1940s [143]. His

simplified model describes the process of transporting a message from one entity to another.

On the left hand side is the information source, which puts the message into a transmitter that

alters the message into a signal which can be sent through the channel towards the receiver. En

route this signal might be disturbed by noise. This signal is then obtained by the receiver which

transforms it back into a message delivered to the destination [143].

Information-
source

Transmitter Receiver Destination

Noise-
source

Channel

Message Signal Received Message

Signal

Figure 1.1: Communication model according to Shannon [143].
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This communication model was developed for technical communication situations and is still

applicable today for acts of communication like sending a text message, or broadcasting a radio

show. Information theory investigates the impact of the noise source and tries to find ways to

minimize it and ensure the message comes across mostly undisturbed.

As there are more subtleties, nuances and directions in human communication, we will later

expand this model. But for now, this model of communication suffices to describe many instances

of science communication like classical science journalism in a newspaper, public lectures given at

the long night of science, and popular science books written by experts in their fields addressing

an interested lay audience.

Example of Science Communication

We consider as an example, a scientist giving a public lecture on their latest work. The

scientist themself is the information source. They may think of ways to transform

the message in such a way that non-experts can understand it. The scientist uses non-

technical language and finds meaningful metaphors to transport the essence without

completely omitting the scientific rigor. These adjustments, together with the physical

act of speaking, are the transmitter.

They are giving their lecture to an audience in a lecture hall. Of course the air in

this hall, transporting the sound-waves, is part of the channel. But, more interestingly

though, is the fact that every single visitor made the individual choice of being in it.

Chatting seat neighbors may disturb the attendee. But noise can also take on other

forms, as the visitor might be distracted by their itching foot or the question why the

boss made a snide comment during today’s meeting.

But even if we assume that the individual in the audience gets every word of the talk,

they do not necessarily get the message in the same way as the lecturer intended. Their

receiver is their preconceptions and prior knowledge about the subject in which they

establish the new information (destination). A person more familiar with the subject

might have picked up on other details of the talk than someone who is hearing about

it for the first time.

The unidirectional transfer of knowledge has also been a characteristic of (science) education.

Historically, education was at the heart of the objectives of science communication. The Urania in

20



Berlin is an illustrative example. It was founded in 1888 in the intellectual legacy of Alexander

von Humboldt with the goal to educate the general public, especially the working class with

scientific knowledge [155,168]. It still has not lost its significance and looking at today’s program

of the institution, one can see the successful combination of education and entertainment, which

together form the portmanteau edutainment, is still widely offered [155].

1.1.1 The Role of Education in Science Communication

The initial mandate of science communication, education, is arguably still applicable to modern

science communication. In education, as well as engagement and entertainment, science com-

munication shares common goals with science education [14]. Even though the emphasis on

education, entertainment, and engagement is allocated differently, their common goal is to foster

scientific literacy in the public. While formal science education puts weight on the teaching of

factual scientific knowledge, as science communication did in its beginnings, the latter now pro-

motes the idea that “science not only has applications but implications” [14]. More on scientific

literacy can be found in Section 1.1.3.2.

Learning happens through formal education in institutions of primary, secondary, and tertiary

education, as well as informal education. Liu [93] and Baram-Tsabari et al. [14] argue that formal

and informal education shall join forces better. Liu’s argument is that as free-choice learning

opportunities, as offered by television programs, science museums, or national parks, are widely

used, informal learning makes up a major part of the lifelong learning journey anyways. “Given

the ubiquity of free-choice science education, it is necessary to bridge formal and informal science

education and consider them as a continuum [93].” Baram-Tsabari et al. put their focus on the

scholarships in both fields. Given their similarities in goals and methods, they have surprisingly

little common ground. In the editorial “Bridging science education and science communication

research,” they warn against reinventing the wheel, which they feel happened in the shift from

the deficit model to the dialogue model, much like what occurred in formal education 20 years

prior [14].

In formal education we often see a hierarchy between the teacher and the pupil, the professor

and the student, or expert and layperson. This is due to different levels of knowledge and

experience that lead to an imbalance in status and power. The correlation between knowledge

and power is strong. Hence, the dicta “Knowledge is power”. It is the ideal for contemporary
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science communication to establish forms of knowledge-transfer that operate on equal power,

regardless of differences in knowledge.

1.1.2 Motivations of Science Communication

The differentiation between motivations and objectives for science communication is as follows:

motivations are the reasons on the side of the sender to engage in science communication, while

objectives are the effects that the sender intends to evoke on the receiving end of such practices.

We now discuss some common motivations of science communication.

Science is Part of Culture Science plays a defining role in our culture and as such, it is

intrinsically interesting to the members of this culture, similar to sports or politics [39].

Science is Publicly Funded As recipients of public funds, scientists and scientific institutions

have a duty of transparency towards the citizens regarding the use of the tax money. Since the

public is (ideally) also involved in debates of the further directions and developments of research

that thorough information about the matters at hand should be shared, is a given.

Economy Rests upon Science and Innovation The economy in Germany and many other

countries is based on technology and innovation and thus ultimately on science. The transfer of

knowledge accumulated in scientific institutions is important for further progress in these areas.

Competition among Scientific Institutions Funding for research projects is increasingly

based upon economical principles of competition among the applicants for certain grants. Thus,

communicating and promoting their success is becoming a matter of course in the attention

economy.

1.1.3 Objectives for Science Communication

As science communication developed and became a professional science and practice itself, differ-

ent terms to describe the objectives were also developed. In the following, we want to introduce

some of the guiding notions, as well as sum up the points that have been criticized by others,

which led to the introduction of new terminology.
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1.1.3.1 Public Understanding of Science

Public understanding of science still is an umbrella term used synonymously with science com-

munication. The public is everybody who does not belong to the realm of science. Even scientists

are members of the public, when facing different areas outside of their own field of study [29].

In a British study Durant et al. [39] evaluated the public understanding of science against

self-claimed interest in science. The interest was measured by indication of whether a news

article with a certain headline is likely to be read by the individual.

The term understanding is not easily defined. Durant defined the two dimensions of public

understanding of science to be knowledge of elementary findings of science and the process of

scientific inquiry. Knowledge was evaluated by asking factual science questions, like: “Antibiotics

kill viruses as well as bacteria”, “Diamonds are made of carbon”, or “The centre of the earth is

very hot” with which the participants could either agree, disagree or state that they don’t know.

The access to process of science was measured by questions about methodology such as basic

statistical methods, the utilization of control groups in medical tests, and other procedures of

establishing scientific knowledge [39].

The major finding was that (self-declared) interest in science is high in Britain but it does

not correlate significantly with the two dimensions of understanding. High interest in scientific

headlines was not an indicator for good results in the quiz. Therefore, a high interest in science

does not necessarily mean high factual knowledge about science. However, the inverse correlation

was “reasonably strong” [39]. Individuals who scored high in the public understanding of science

also ranked high in interest.

Measures of knowledge and understanding the process of science, which constitute under-

standing of science in general, score “not much” [39] in British society. Durant et al. chose an

illustration which depicts four people, three of them have a question mark on their head, which

might represent their poor scores in the quiz. The planets drawn on one person’s forehead may

symbolize their understanding of science, see Fig. 1.2.

In the United States, Miller [109] conducted studies to measure the factual knowledge of

certain scientific facts and certified a lack of general ignorance1 similar to Durant et al..

1In [39] we find the quote: “If modern science is our greatest cultural achievement, then it is one of which
most members of our culture are very largely ignorant.” Surprisingly, the conclusion reads: “[...] although the
public is largely uninformed, it is also largely interested in science”.

23



Figure 1.2: Illustration from Durant et al. [39]

In short, the term public understanding of science is emphasizing the factual and proce-

dural knowledge of science. It has close links to school education, where the roots of science

communication lie.

1.1.3.2 Scientific Literacy

While public understanding of science and scientific literacy were historically used synonymously,

their meaning differs today. In contrast to public understanding of science, which centers around

science and is looking at the public as the “other”, scientific literacy is a term used to describe

the situation from the perspective of the individual. It is no longer an undefined particle of the

public mass but a unique person with skills, needs and (social) conditions. Thus, using the term

scientific literacy implies a change in the point of view. The question: “What does an individual

need to know, to not appear ignorant in the eyes of the better educated?” is replaced by: “What

does the individual need from science in their private, public and political life?”

Scientific literacy used to describe the ability to apply scientific knowledge in a way that

serves the individual in their practical lives. Examples are: reading the supplement facts on the

package of a granola bar, deciding which heating system for the home is the best in terms of

costs, efficiency, and carbon emission, or deciding whether to take a certain medical examination
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and how to interpret the results2. Today, the concept of scientific literacy has broadened and

this aspect is now called practical scientific literacy [29].

Zooming out from the private sphere to the social sphere, scientific literacy is an important

skill to participate in political discourses. When we talk about this public dimension of scientific

literacy, we cannot neglect to take a closer look at the political system in which the individual

finds themselves. The literature on science communication is usually based on the assumption

that an individual is a citizen within a democracy and therefore asks what skills and knowledge a

citizen in a democracy needs to have in order to be able to actively participate in the democratic

process. It is normative consensus that political decisions should be based on deliberation. The

explicit demand for a more deliberative democracy can often be found, see the quote below.

Thus, we briefly want to explain the concept. It was established by philosopher and sociologist

Jürgen Habermas. The legitimation of a deliberative democracy is established by the discursive

structure of opinion-forming and decision-making. Citizens can and should directly participate

in the debates and discussions concerning political questions. The most critical variable for these

public discourses to be fruitful is their quality [68].

In a declaration about the relationship between the public, the media, and the democratic

state, made jointly by the three German academies of science3, we read the following statement:

The problem of the alienation of a large part of the public from participation in political

decisions has for some time contributed to a disenchantment with politics, as well as

to demands for more participation and deliberative or even direct democracy, and has

become a topic of public discussion. The problem thus described is equally relevant to

science and science policy [36].4

A high level of quality is necessary for political discourses, and this applies to debates about

science as well. One of the guiding questions in the discourse of science communication is the

question: “What skillset an individual must possess in order to participate in such a high quality

discourse?”

2In the latter case, a whole area of research that investigates the individuals handling of statistics, exists which
goes by the notion of risk literacy, see 1.2.2

3Leopoldina, acatech, and Union der deutschen Akademien der Wissenschaften
4original: Das Problem der Entfremdung eines großen Teils der Öffentlichkeit von der Teilhabe an politis-

chen Entscheidungen hat seit einiger Zeit zu einer Politikverdrossenheit sowie nach Forderungen nach mehr
Partizipation und deliberativer oder auch direkter Demokratie beigetragen und ist zum Thema der öffentlichen
Diskussion geworden. Das damit beschriebene Problem ist gleichermaßen in Bezug auf die Wissenschaft und die
Wissenschaftspolitik relevant. Translated by the author.
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Miller [110] defines this skill set as civic scientific literacy. He expands the two-dimensional

model for measuring factual and methodological knowledge by a third dimension that measures

an “understanding of the impact of science and technology on individuals and society” [110].

Here we see that the burden to demonstrate a qualification to competently participate in the

discourse still lies on the individual.

1.1.3.3 Deficit Model

The paper “Public Understanding of Science” by Wynne [166] is often cited when the “old

way” of doing science communication is referred to as the deficit model. Wynne claims that the

underlaying assumption is that the public is the main cause for social conflict about science. The

public lack of understanding needs to be filled by education about scientific facts and methods

in order to make the public agree with the experts’ opinions of the matters at hand [114].

According to Wynne, social implications have been neglected. The public is problematized

by their limited cognitive processes and capabilities, and the scientific knowledge, practices, and

institutions are rendered unproblematic. Thus, “scientific knowledge is seen as encoding taken-

for-granted norms, commitments, and assumptions that, when deployed in public, inevitably

take on a social-prescripticve role [166].” The superior role of science leads to the paternalistic

attitude of many science communication endeavors and neglects the circumstances in which

individuals neglect scientific information which could be a shortage of social opportunity, power,

or resources [166].

The second assumption of the deficit model is the amalgamation of the rational perception

of and affection towards science. Wynne writes: “In many dominant formulations (e.g. Royal

Society, 1985), PUS is equated with the public appreciation and support of science, [...] Thus,

when publics resist or ignore a program advanced in the name of science , the cause is assumed

to be their misunderstanding of the science [166].”

Two assumptions undergird the deficit model. The first is the belief that the public’s lack

of knowledge is responsible for resistance against science and thus, a lack of separation between

understanding and appreciation and support for science. The second assumption is that experts’

knowledge is always superior to other forms of knowledge.

This universal superiority was empirically proven wrong, for example in [165] and the im-

plication that more understanding (i.e. factual and methodological knowledge) leads to more
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support also does not hold. Peters et al. found evidence that the relationship between knowledge

about genetic engineering in food and support of such practices can be described by an U -shape.

Individuals who are strongly opposed to food engineering and supporters measured higher in

awareness and knowledge than persons who showed a more neutral attitude towards it [119].

This cannot be generalized, because generic food engineering is a highly emotionally charged

debate but it is a counterexample.

Bauer shows that the assumption that more knowledge leads to more appreciation cannot

completely be dismissed: socio-economic contexts also matters. In a study comparing knowledge

and perception in India and the UK, it shows that the correlation between the two is much

stronger in an India, while in the UK “ ‘familiarity might breed (some) contempt‘(or at least a

skeptical loyalty).” [17]

1.1.3.4 Public Awareness of Science

The deficit model attributed a lack or deficit to the public. This is a more rationalist view which

assumes that more information and understanding must lead to support of science. When this

view is omitted, we are left with the pure emotional response to science. Convincing the public

to be more appreciative of science is then taking on the form of marketing and advertising. Bauer

has pointed out that some form of a void is present in both cases and has shifted from a lack of

knowledge towards a lack of attitude in the 1990s [17]. In Durant et al. [39] and Miller [109] we

see examples for how the public is attributed with ignorance and uninformedness. Knowledge was

replaced by awareness in the more recent discussions. Awareness denotes the public’s affectional

and emotional reactions towards science and its displays in form of support or appreciation.

Burns et al. [29] made an effort to collect contemporary definitions of science communication

in 2003 and based the notion of public awareness of science on the work of Gilbert et al. [59] 5:

Gilbert, Stocklmayer, and Garnett (1999) defined the public awareness of science

(PAS) as a set of positive attitudes towards science (and technology) that are ev-

idenced by a series of skills and behavioral intentions. [...] On occasion the term

“public awareness of science” has been used as a synonym for “public understanding

of science.” Their aims are similar and their boundaries do overlap, bus PAS is pre-

5Unfortunately we could not get a hold of the original paper, so we need to rely on secondary quotation here.
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dominantly about attitudes toward science. PAS may be regarded as a prerequisite –

in fact, a fundamental component – of PUS and scientific literacy.

1.1.3.5 Trust – the New Variable in the Discourse

Without going into any detail about the philosophy of science and its hermeneutics, we see

that the communication of science is in predicament. Science in general and its disciplines in

particular, have agreed upon certain procedures of truth determination. Science communication

leaves that scientific realm and cannot claim the right to define the truth in the same way

science can within. In order to eliminate a paternalistic tone it is necessary to abandon the

unidirectional communication model and search for dialogical forms of science communication6

[74]. These formats can, for example, take on the form of citizen forums that are organized

around governmental plans to build a new research centre in the neighborhood wherein the local

residents directly discuss with the scientists. Active participation of the individuals, for example

as we find it in science centers, plays a major role [94]. In citizen science, the active participation

of citizens in the scientific research process culminates. Citizen science is a scientific process that

actively involves non-experts into the research process [24]7.

The attempt to provide all citizens with enough knowledge about science to answer every

pressing question will fail. An illustrative example can be found in Baram-Tsabari et al. [14]:

When the Large Hadron Collider at the CERN was put into operation, the question whether

it could accidentally produce a black hole that would swallow the earth arose. A local french

framer could not judge the truth of such claims without digging deep into atomic physics. In

this scenario the crucial question for the farmer is: “Whom to trust?”.

According to Fiske and Dupree [48] the identification of whom to trust follows systematic

principles and is based around the perception of intent (warmth, being on ones side, friendliness)

and capabilities (competence). They argue that a communicator needs both to be successful.

Scientists have shown to be competent, but their credibility rests on a perception of impartiality

and trustworthy intentions. Being able to identify the intent of a person and ‘whose side they

are on’ is necessary to form stable interpersonal relationships. After deciding on the intent, the

public estimated the capabilities to perform according to this intent is estimated. According

6As we will see in chapter 3 this is quite ‘old news’ in (science) education, where the shift from frontal teaching
to more interactive forms has (theoretically) happened 20 years ago [14].

7For more on this topic and how it can be applied in the field of mathematics, see Section 1.2.2.1

28



to [48] competence and expertise is just the secondary dimension of trust. Friendliness, warmth

and trustworthy intentions are the primary prerequisite. The authors then give advice to show

“concern for humanity and the environment. Rather than persuading, we and our audience are

better served by discussing, teaching and sharing information, to convey trustworthy intentions”

[48].

Critical Science Literacy Priest [122] offers another perspective on trust in the scientific

practice. In the paper “Critical Science Literacy: What Citizens and Journalists Need to Know

to Make Sense of Science” she interprets science as a culture. Each culture contains a certain set

of rules and knowledge about “how things work” that is crucial to orient oneself in this culture.

The general aim of science communication is to make that culture a part of everyday culture. In

order to do that, she asks: “What knowledge about science is of most central value to citizens in

a contemporary democracy, in which many personal and policy decisions have some relationship

to science or technology and most of the facts, observations, and conclusions of science (and

pseudoscience) are available to us on computer screens.” [122]

Priest criticizes the measurement of scientific literacy by the knowledge of a collection of

important scientific facts as shortsighted and claims that people need skills to evaluate scientific

claims. This includes knowledge about handling uncertainty and the ability to recognize the

social dimension of the scientific process and how trust is distributed in this process. Following

up on the above example, if a professor of physics at a renown university claims that the fear

of the earth being swallowed by a black whole lacks any substance, a critically scientific literate

person would not go to the professor and ask to see their CV and certificates in original. They

simply trust that the institution who employed the professor has done so, and has chosen a

capable candidate, who knows enough about physics to be an authority. Here, trust comes from

familiarity with the scientific system [122].

A key ingredient to this kind of trust is the underlying concept of scientific ethos. The ethics

of science are well established in society. Though fraud may occur, the fact that it is heavily

punished within the scientific community and the medial echo as a scientist is found guilty,

manifests the prevailing ethics further [122].
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1.1.3.6 What about the Trust in Science in Germany?

We can note that the general public trust in science is quite high. The organization Wissenschaft

im Dialog surveyed the attitudes of the German population towards science and research in the

study Science Barometer [162]. Figure 1.3a shows that more that 50 % of the respondents

expressed confidence in science and research. The main reason for this trust are expertise,

standard procedures, and commitment to the public interest, see Figure 1.3b. These findings

resonate with the Bungee Jump model of Bauer. The model describes a scientist as being located

on some high base, from which they sometimes jump down into the public discourse and loose

some audiences over discussions about vaccination, evolution, or climate change [104]. The

general high trust in science seems to dwindle when other interests come into play. These may

be of an economic, or personal nature, see Figure 1.3c. But still, like a bungee jumper, the link

to the high base is tight and besides some ruffled hair, not much damage is done.

Recent Trends on Trust in Science The recent pandemic crisis may have affected the

general trust in science. Accurate assertions can be made once the immediate consequences

have subsided. The initial effects are already apparent, for example, in the study by Allensbach

commissioned by the Frankfurter Allgemeine Zeitung [120]. It showed a clear increase in trust

in scientists and professors. The question “Who do you trust to tell the truth”8 showed an

increase from 30 to 43 percent among scientists and from 23 to 33 percent among professors.

These increases were measured between 2015 and 2020. A even bigger effect was measured in the

“Corona-Special” of the Science Barometer conducted again by Wissenschaft im Dialog [159].

The question “How much do you trust in science and research?” was asked in summer 2018,

summer 2019, and in April, and May 2020. Initially, 54 % of the respondents answered with “trust

completely” or “trust somewhat”. This number dropped to 46% in 2019 but then significantly

rose to 73% in April 2020 and slowly decreased to 71% in May. This change in the numbers can

be explained by the drastic experience of the pandemic that caused major shifts in the every day

life of nearly everyone. Scientists had a strong presence in the media coverage about the virus

and their specific recommendations guided the political decisions addressing it. Time and the

further development of the situation will show if this drastic experience will have long lasting

effects.

8Bei wem vertrauen Sie darauf, dass er die Wahrheit sagt?
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(a) Trust in science and research [162]

(b) Reasons for trust in scientists [161]

(c) Reasons for distrust in scientists [160]

Figure 1.3: All Figures are taken from Science Barometer / Emnid [160–162].



1.1.3.7 Skepticism as an Opportunity.

As the discussion has shifted towards trust, this can be seen as the third incarnation of the deficit

model. First a lack of knowledge, then of appreciation, and now it is the trust in science that

the public lacks.

The difference is that trust – in contrast to knowledge and appreciation – requires mutuality.

The public has not been trusted but is portrayed as deficient. Since trust is a two way street, the

exchange is interrupted. Additionally, various crisis in the 1990s such as the mad cow disease

scandal, and discussions over genetically modified food were diametral to trust building [17].

Bauer goes one step further and does not buy into the narrative that the public is lacking

trust, but notes that the public does good in holding trust back in some cases:

I do not consider a skeptical public as a problem, rather as a resource that needs

to be maintained and invested in. This is particularly important as science becomes

a greater part of the private sector, operating with a commercial logic. [17]

Knowledge societies base their economic wellbeing on developments in science and technology.

The funding for these innovations stems from the private sector. Thus, science is increasingly

financed by economically motivated companies. A growing number of actors near to the scientific

institutions are communicating the results and innovative technologies to the public in order to

attract sponsors or enhance the public status of the institution [18].

1.1.3.8 Untangling Science Journalism and Public Relations

At this point, it becomes necessary to talk about the different actors in science communication.

On the one hand there is a direct communication of science from the scientific institutions and

the people affiliated to them. An increase of competitive elements in the distribution of funding

may lead to communication practices that promote the interest of the respective institutions. A

statement by the German academies of science [36] reads:

On the part of science and its institutions there is [...] a trend to mix science

journalism and science PR. For this reason, and from a normative perspective, a

tendency to equate science PR and science journalism with regard to the public with
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information that is as independent as possible must be regarded as a serious quality

deficit [36].9

Not only is the service of independent science journalism needed now more than ever, the

media landscape has rapidly changed in the last two decades, which deprived the livelihood and

power of the fourth estate [18, 36]. To compensate for the increasingly institutionalized science

communication it is crucial to encourage and support science journalism.

In addition to the necessary promotion of independent science journalism, there are also

efforts within the realm of science public relations that call for for candid communication10 [36].

This claim was taken up by Siggener Kreis, a group of German science communicators, scientists

and science journalists. They published guidelines for Good Science PR in 2016 [145]. These

include respect for the point of view of all parties involved, strengthening the understanding

of the scientific methods, but also takes the questions, needs, and attitudes of the public into

account. Filtering out and promoting the information that is relevant for the public and not act

on self-interest are guiding principles for candid communication [145].

Science PR should be devoted to science instead of scientific institutions [163]. When it is

understood as part of science and not an intermediate, it is subject to the same standards as the

research it reports on, which ensures impartiality [164].

9Seitens der Wissenschaft und ihren Institutionen ist [...] ein Trend zur Vermischung von Wissenschaftsjournal-
ismus und Wissenschafts-PR zu beobachten. Aus diesem Grund sowie aus normativer Perspektive ist eine Tendenz
zur Gleichsetzung von Wissenschafts-PR und Wissenschaftsjournalismus im Hinblick auf die Öffentlichkeit mit
möglichst unabhängigen Informationen als gravierendes Qualitätsdefizit anzusehen.

10redliche Kommunikation
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1.2 Mathematical Science Communication

This thesis is building bridges that are not just between mathematical science and the public, or

mathematics, education, and science communication. During the process of writing, it became

increasingly evident that the practices of communicating mathematics to the public and the

science of science communication are missing crucial links. There is hardly any literature about

mathematical science communication. In fact, we could only find one article [43] and one book

[19]. This sparsity stands in stark contrast to the great number of projects and efforts being

made to “bring mathematics to the public”. There is a lack of terminology for mathematical

science communication. For instance, there is no concise term for “bringing mathematics to the

public”. This section has two parts. First we examine the current state of the way we talk about

mathematical science communication by analyzing the chapters of the more current book [19]

and demonstrating that the deficit model is still predominant. A little detour takes us into a

short discussion on the empirical evidence for the image of mathematics. In the second part of

the section, the concepts from the previous section that address science communication in general

are narrowed down to mathematics. The definitions are chosen in a way that steps away from

the deficit model and creates space for new formats of more dialogical science communication.

1.2.1 Literature Review

The volume “Raising the Public Awareness of Mathematics” [19] is edited by Behrends, Crato

and Rodrigues. It resulted from a workshop of the “Raising the Public Awareness” committee

of the European Mathematical Society at a conference in Óbidos, Portugal in 2010, which had

the goal to “[...]provide a forum for a general reflection with an international mix of experts

on building the image of mathematics, ten years after the World Mathematical Year in 2000

(WMY2000).” Nowhere throughout the book do we find a reflection on what is actually meant

by awareness of mathematics. A hint of its meaning can be found in the following quote from

the introduction:

This book aims to encourage and inspire action to raise the public awareness of

the importance of mathematical sciences for contemporary society through a cultural

and historical perspective, and to provide mathematical societies, in Europe and the

world, with ideas and details of concerted actions with other national or international
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organizations and societies with regards to raising the public awareness of science

and technology and other important areas of society that have a strong mathematical

component [19].

The emphasis on the national mathematical societies can also be found in the structure of the

book. The first part is dedicated to depicting the national experiences of mathematical science

communication. We will take a closer look into it. Initiatives in the United Kingdom, France,

Germany, the United States of America, Portugal, and Spain are described by authors from the

respective countries who are directly involved into the activities.

The other three parts are Exhibitions and Mathematical Museums, Popularization Activities

and Popularization – Why and How.

1.2.1.1 The Deficit Model – Presumed Dead yet Omnipresent

Recalling the structure of the deficit model, it is composed of two assumptions. One is that a

lack of knowledge is responsible for a lack of appreciation. The other is the assumption that the

experts’ knowledge is superior to other forms of knowledge.

As we shall demonstrate below, we find both guiding motifs of the deficit model in the

first part of the book: National Experiences of Mathematical Science Communication. Many

authors describes a lack of appreciation for mathematics or the enhancement of the image of

mathematics as the driving motivation. A lack of knowledge is also frequently mentioned. The

public is repeatedly portrayed to be deficient in appreciation and knowledge about mathematics.

Yet there is no evidence in current literature that a lack in abilities is responsible for a lack in

appreciation for the science.

Another theme that presents itself throughout the articles is superiority. Mathematics is

written about as being superior to the other sciences. Furthermore, it is expressed that mathe-

maticians are the only ones capable of sharing the ideas of their work.

Deficit of Appreciation The public is attributed with a deficit. This deficit is twofold: more

apparent in the lack of appreciation and less obvious in the lack of knowledge. The former is

explicitly mentioned twice, once by Barrow and Wilson [15]:

It [the Millenium Mathematics Project, author’s note] was set up in response to

a perceived drop in the standards of teaching and learning of mathematics in the UK
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and a perceived lack of appreciation of the role that mathematics plays in science,

business and everyday life [15, p.7].

Laubenbacher [90] mentions it in what they perceive to be the influence of politics in the

United States of America:

In the United States, there used to be a broad political consensus that mathemat-

ics and science are key to the prosperity and security of the country. As this chapter

is being written this consensus has eroded and funding for mathematics and science

research and education is being threatened seriously in the effort to cut budgets and

reduce the role of government. There is no doubt that in some part a lack of appre-

ciation of the role of mathematics and science in our lives among the general public

and, by extension, their elected representatives, is to blame. [90, p.53]

The Spanish report by Torres [152] leads with the assumption of a negative image of mathe-

matics in his opening paragraph:

Despite the social and cultural importance of mathematics, and also in education,

their image and that of mathematicians is negative [152, p.67].

Later they state the motivations of the outreach efforts in the World Mathematical Year 2000

(WMY 2000) as:

But in the WMY 2000, the mathematical community, in an extraordinary way, turned

to work to improve the social image of mathematics, to disseminate mathematical

culture to society so that society became aware that mathematics is a fundamental

part of our society, our daily life, our culture, and that the economics, scientific, and

technological development of a country would be impossible without them [152, p.67].

As the social image of mathematics needs improvement, we can deduce that it is assumed to

be lacking in the eye of the author. Torres explicates in the list of motivations for the commission

of the Royal Spanish Mathematical Society:

(i) to change the negative attitudes of people towards mathematics; [152, p.68],

and also in
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(vi) to increase the appreciation of the mathematics in our surroundings by learning

to watch reality with mathematical eyes; [152, p.68].

The idea that the “public’s deficit” must be remedied can also be found in other articles

in the book. An example occurs in the motivations to engage in more active outreach of the

Portuguese Mathematical Society by Ramalho and Crato [124]:

We argue that some of the approaches adopted can result in better public un-

derstanding of science role and in larger public support for math education and re-

search [124, p.57].

The initiators of the German Year of Mathematics in 2008, decided to lead with a positive

image. With their decision to omit the negative image, unfortunately they reminded the reader

of its prevalence.

So we did not complain about the negative image that our subject might have in the

eyes of the public and in some of the media, but proclaimed that mathematics is an

exciting subject, [...] [171, p.38]

Throughout the first part of the book, we find a multiplicity of occasions that mention

popularization of mathematics as a term to describe the outreach practices. The choice of this

notion fits well with the implicit meaning of awareness of mathematics that is used as an umbrella

term for affectional and emotional responses towards mathematics, compare Section 1.1.3.4.

Deficit of Knowledge Next up is the assumption of a lack of mathematical knowledge in the

public that can be found explicitly in the abstract of the first chapter by Barrow and Wilson [15]:

The United Kingdom has a track record of events to raise the public awareness of

mathematics, although mathematics still remains a closed book to the vast majority of

UK citizens, and prominent figures are quite happy to admit to their lack of knowledge

of mathematics [...] [15, p.3]

The school activities of the German year of Mathematics stood under the motto:

“Du kannst mehr Mathe, als du denkst!” (“You know more math than you think!”)

[171, p.39],
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While the message is formulated positively, it implies that the students may think that they do

not know a lot of mathematics.

Superiority The leitmotif of superiority presents itself in a twofold manner. On the one hand,

it is apparent in the assumed dominance of mathematics among the sciences and on the other

hand, in the mathematicians’ unparalleled ability to advocate for their subject.

The last part of the book takes on a more fundamental view. Brusse [27] opens up his opinion

piece by establishing that mathematics is too hard for almost everybody, except for a select few,

including himself as a professional mathematician.

[...] mathematics is at least one step too far away for almost everybody, and this

step is a big jump because mathematics is hard for almost everybody. This is why

mathematics has a problem [27, p.306].

This fantasy of grandiosity is even further increased by Greuel [61]:

In an overall sense, mathematical thinking is, after speech, the most important hu-

man faculty. It was this skill especially that helped the human species in the struggle

for survival and improved the competitive abilities of societies. I believe that mathe-

matics has a special place in evolution [61, p.367].

Hansen [70] harshly criticizes science writers for the quality of their work and only sees the

prominent mathematician as capable of spreading the word.

Keeping the awareness of mathematics alive is a great challenge. The themes

within mathematics of immediate appeal to the great public tend to be quickly written

about by professional science writers without a proper mathematical background. Very

often you feel there is a lack of authenticity in such writing, which seldom catches

the essentials of the mathematics and in most cases fails to show that mathematics

is one of the most creative areas of human thinking.

Fortunately there are an increasing number of prominent mathematicians who care

about disseminating the pearls of both classical and contemporary mathematics to a

wider audience [70, p.395].
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format number

exhibition(s) 321
workshop(s) 118
article(s) 96
lecture(s) 73
activity(s) 36
hands-on 18
participation 8
dialogue 4

Table 1.1: Total number of words describ-
ing the communication formats.

target number

visitor(s) 96
audience 79
general public 61
participant(s) 25
viewer(s) 9
listener(s) 8
guest(s) 4

Table 1.2: Total number of words describ-
ing the targets of the communication for-
mats.

Laubenbacher’s article [90] leads to an interesting observation. In Laubenbacher’s writing

about the efforts made in the United States of America, they say the practice of mathematical

science communication is an unpleasant necessity.

The burden of this outreach falls on all of us, [...]. While this takes us away from

the things we love, whether it is teaching students or proving theorems, the continued

health and prosperity of the profession demands that we all become engaged. And we

need to leverage other stakeholders in a strong mathematics culture, such as industry

and high-tech companies, as well as governments [90, p.54].

1.2.1.2 Formats of Mathematical Science Communication

Science communication can take on many different formats [43]. We conducted a brief concor-

dance analysis on the formats of science communication and words that were used to describe

the recipients of the formats described in the first three parts of [19]. In Table 1.2 we see that

by far the most used word is exhibition, which can be explained by the second part of the book

being devoted to exhibitions and museums. The second most mentioned format is workshop.

The word article takes rank three and is followed by lecture.

Three of the four top used words put the recipient in a passive role, as a visitor of an

exhibition, reader of an article, or being in the audience of a lecture. In a workshop, a direct

contact between the facilitator and the participant is more likely. A lot of the exhibitions have a

participatory element in the form of hands-on exhibits or interactive displays. Words that link

to more dialogical and engaging formats like activity, hands-on, or dialogue are lagging behind.
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word number

woman/women 3
gender 1
diversity 0
female 0
male 1

Table 1.3: Frequency of words, concerning gender and diversity issues.

The choice of words to describe the target groups of the communication formats shows a

similar picture. The top two words here are visitor(s) and audience, which again assigns a

passive role. When referred to as audience, the individual member of the target group is getting

lost in the crowd. The target group in many cases is addressed as the general public, mentioned

a total of 61 times.

1.2.1.3 Gender and Diversity

Given the quite manageable quantity of occasions in Behrends et al. [19] that mention issues con-

cerning gender, see Table 1.3, we quote them all. Diversity is not addressed explicitly throughout

the volume.

The first instance is aiming at enhancing the visibility of women in the history of mathematics

in an exhibition, by Torres [152]. Note that the mathematicians are sorted by gender. Explicitly

stating the female but not the male gender, effectively “others”11 the former.

The featured mathematicians are: Pythagoras, Euclid, Archimedes, Apollonius,

Al-Khwarizmi, Fibonacci, Cardano and Tartaglia, Fermat, Descartes, Newton, La-

grange, Cauchy, Galois, Abel, Leibniz, Euler, Gauss, Riemann, Hilbert, and Poincaré.

But also some women: Hypatia, Madame du Châtelet, Sophie Germain, Sonia Ko-

valeskaia, and Emmy Noether [152, p.77].

Brueckler [26] describes an activity that includes the participation of a volunteer and recom-

mends choosing a male, reinforcing the stereotype that women are concerned about revealing

their age.

11Different authors used and coined their definition of ’othering’, however we work with Beauvoir’s [34] concept
of it .
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Note that if performing it with an adult it is better to choose a male spectator

since the person’s age is disclosed to the public [26, p.209, footnote].

The following example shows an awareness of matters of gender and diversity in a school flyer

for the Year of Mathematics in 2000:

[...] but also a variety of professions with different levels of maths qualifications

and illustrating these, paying the necessary attention to different kinds of consider-

ation such as gender, regional balance and also not limiting this to well developed

countries [30, p.225].

In a book, distributed at schools in Denmark we find the issue of women and mathematics

well hidden in a plethora of other topics:

In the book you can find exciting mathematical unfoldings (with exercises) of

similar phenomena under headlines such as: “Mathematics through the millennia”;

“Mathematics and evolution”; “Fire!”; “How a vending machine actually works”;

“Wavelets”; “Secret codes made public”; “Math in medicine”; “Tour de France math-

ematics”; “ Women and mathematics”; “Error correcting codes”; “Beer and flat

screens”; “Mathematics in the computer and vice versa”; “The science of the bet-

ter”; “Artificial intelligence”; “Mathematical modeling of climate and energy”; “The

Mars mission”; “The mathematics of shape [103, p.257].”

And in a last one, Greuel [61] refers to the love of a beautiful women as an object to be

wanted :

One way to put the dichotomy in a more philosophical or literary framework is to

say that algebra is to the geometer what you might call the ‘Faustian offer’. As you

know, Faust in Goethe’s story was offered whatever he wanted (in his case the love

of a beautiful woman), by the devil, in return for selling his soul [61, p.384].

1.2.1.4 Digression: The Image of Mathematics

The pervasive accentuation of emotions is an interesting contrast to mathematics guiding princi-

ples of logic and rationality. It is also noticeable that the authors present no empirical evidence

for the recurring assumption of public lack of appreciation.
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In didactics and education efforts to understand the attitudes towards mathematics has been

undertaken under the umbrella of beliefs and epistemological worldviews of students and math

teachers, see [63,151].

Empirical inquiry of the image of mathematics is sparse, see Sam [130] and Mendick [105].

Sam conducted a study in Britain in 1996. Its quantitative part surveyed 548 adults in an op-

portunity sample and conceptualized the term image of mathematics by eleven components like:

stated attitudes, feelings, metaphors for mathematics, beliefs about the nature of mathemat-

ics, etc. Here we want to just focus on attitudes and feelings. About 44% of the respondents

expressed an affectional response towards mathematics. The three mostly expressed emotional

states were “difficult”12, “boring”, and “anxiety” with 70, 58, and 44 total mentions respectively.

On rank four to six, we find more positive emotional descriptions; “enjoyable”, “necessary”, and

“interesting”, with 38, 40, and 35 mentions. An interesting point is that when the respondents

were asked about mathematics in general, most of them related it to their experience of learning

mathematics in school [130]. For an analysis of the impact of popular culture and its depiction

of mathematics and mathematicians, see Mendick [105].

At this point we don’t want to reproduce the results of the study any further, but go back

one step further and, again, look at the ideas and concepts that lead the inquiries and the

expected results. The design of the questionnaires as well as formulations in the articles about

the studies provide hints. Sam et al. start their paper with an outcry in quotation marks: “Oh

Gosh! Maths?”. Another negative reaction by a respondent is described. Besides their study

finding positively labelled emotions towards mathematics in a non neglectable number of people,

no positive reaction is explicated in the beginning. Here, as well as in Ernest [43], we find the

recurring motif of mathematical myths. This term describes false beliefs about mathematics.

Without going into detail, this begs the question of who is sovereign in the interpretation of

what is an accurate image of mathematics?

There is a need to close the empirical gap of the public perception of mathematics, but

before approaching the practicalities of a survey it is necessary to reflect upon the underlaying

assumptions. How does the image of mathematics compare to other subjects, like physics, or

comparative literature? Even if the public image of mathematics is not inherently positive, how

much public admiration would be enough to fill the void?

12The classification of “difficult”, and “necessary” as emotional states was taken from the original.
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1.2.2 Conceptualizing the Objectives of Mathematical Science Com-

munication

The results of the analysis of the existing literature on mathematical science communication

summed up in the first part of this chapter, paint rather gloomy picture: The deficit model is

omnipresent, the discourse is vaguely fluttering around affectional responses and inclusion has

been on hardly anyone’s agenda.

In order to enhance the quality of the discourse, in the following we aim to coin terms that

capture the motivations and objectives of mathematical science communication. By no means

do we claim these definitions are complete. The goal is to invigorate the discourse by putting up

a first version for debate and to inspire more contemporary formats of science communication

that move beyond the paternalistic styles of the deficit model and create a dialogue or transfer

of knowledge on eye-level. Additionally, further neglect of gender and inclusion is not acceptable

in considerations of mathematics science communication.

For demarcation purposes we define the old way of doing mathematical science communication

as:

Definition 1.2.1. The Deficit Model of Mathematical Science Communication is char-

acterized by one or more of the following characteristics:

• attributions of a lack of knowledge, or

• attributions of a lack of appreciation in the public,

• assumptions of mathematic’s superiority among the sciences, or

• the mathematicians’ unique ability for outreach,

• and, as an extra, ignorance of diversity.

In contrary to the implicit notions of emotion and appreciation we have seen above, we define

the awareness of mathematics as an emotionally neutral consciousness about mathematics. An

example could be to know that there is a lot of mathematics in the hard- and software of

a phone. And even though this object may be charged with positive emotions, they do not

necessarily transfer to the subject of mathematics.
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Definition 1.2.2. Public Awareness of Mathematics is to be conscious about the presence

of mathematics in many aspects of society, technology and everyday life.

A positive emotional response towards mathematics, a better image and an active and even

enjoyable active engagement merits being labeled for what it is.

Definition 1.2.3. Public Appreciation of Mathematics is a positive affectionate reaction

towards mathematical activities and information about mathematics. The admiration for the

beauty of mathematics falls into the same category.

Mathematical Literacy

Literacy in contrast to understanding puts the individual and its needs and desires in the center

of attention. Thus it is crucial to look at the objectives of mathematical science communication

through the eyes of an individual in society and figure what they may need from mathematics

to thrive in their personal, social and political life. The practice of communicating mathematics

can be seen as a service to the individual.

Before we go on and try to define mathematical literacy, we take a look at the definition used

by the OECD (Organization for Economic Co-operation and Development) as a foundation for

the tests of the PISA study in 2003, the year in which a special emphasis was put on mathematical

literacy.

Mathematical literacy is an individual’s capacity to identify and understand the

role that mathematics plays in the world, to make well-founded judgements and to

use and engage with mathematics in ways that meet the needs of that individual’s life

as a constructive, concerned and reflective citizen. [50]

In an accompanying explanation it is further elaborated that using and engaging with math-

ematics “implies a broader personal involvement though communicating, relating to, assessing

and even appreciating and enjoying mathematics. Thus, the definition of mathematical literacy

encompasses the functional use of mathematics in a narrow sense as well as preparedness for

further study, and the aesthetic and recreational elements of mathematics [50].”

Here, enjoyment and appreciation is constituent to literacy. About half a page further down

reads quite the opposite: “Mathematics related attitudes and emotions such as self-confidence,
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curiosity, feelings of interest and relevance, [...], are not components of the definition of mathe-

matical literacy but nevertheless are important contributors to it.” In the following, we aim to

segregate rational abilities and emotional states in the definition.

Definition 1.2.4. Practical Mathematical Literacy is the ability to apply mathematics in

daily life. Identifying a problem as mathematical, choosing an approach to solve it and knowing

how to interpret the outcome are competencies that make up practical mathematical literacy.

Here, the linkage to formal education is strongest, and non-formal educational offerings cannot

substitute years of training in school. Schools do their best to equip students with the necessary

skills they will need in everyday life. The debate on which specific mathematical competencies

and skills make one literate and therefore must be part of the curriculum is subject to debates

over education and didactics that cannot be repeated here. In Section 3.4 we list the learning

standards defined by the German conference of Ministers of Education and Cultural Affairs

that build the framework of the curricula in each of the federal states. Note that practical

mathematical literacy is also referred to as numeracy in the literature [49].

Statistical / Risk Literacy The field of risk literacy has great relevance for the individual

in a private and also in a societal sense. In the private sphere it includes questions like: ‘Shall

I take an umbrella, when the weather forecast predicts a 60% probability of rain? Is it worth

it to take that medical examination, when its false positive rate is 3% and it might cause an

unnecessary health-scare?’ Gigerenzer et al. showed that patients are not sufficiently supported

by physicians in understanding the statistics, since physicians often lack the necessary abilities

themselves [58,76].

Definition 1.2.5. Risk Literacy

Risk Literacy is the individual’s ability to assess the decision-making options and possible

consequences in uncertain situations and ability to decide for one’s personal benefit [125].

Algorithmic Literacy Algorithms make automated decisions from a vast set of data. With

the rise of machine learning the functioning of these algorithms become more and more opaque

not only to the users but to the developers as well. Many decisions that have far reaching conse-

quences for an individual’s life like credit worthiness, or prediction of a perpetrator’s likelihood
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for future offenses are increasingly made by computer programs. Studies have shown that the

outcome of these decisions can be heavily biased. A qualitative study by the Pew Research Cen-

ter interviewed experts in the field of AI on the possible consequences of the development [123].

Many experts’ voices predict a future in which decisions and therefore the negotiation of truth is

more and more made by computers and call on transparency on the side of the developers and

algorithmic literacy on the side of the users. We would like to add the question of how the opacity

of the programs relates to trust in mathematics – the science responsible for the development of

the algorithms that might have increasing power over people’s lifes.

Defining algorithmic literacy can be done by zooming in on the competencies that an in-

dividual needs in order to behave and decide in a way that allows for the realization of the

individual’s personal goals. Given that the parameters and operation of the algorithms are in-

herently opaque, this kind of definition seems almost a bit cynical. Therefore, it is necessary

that regulations concerning the transparency and biases are applied.

Trust and Critical Mathematical Literacy

It was established above that trust has become an important quality when it comes to communi-

cating science. In accordance with Bauer [17] we do support the view that a skeptical public is an

asset for science. In a knowledge society, science can grow by having to prove its trustworthiness

to a skeptical public.

How does trust relate to mathematics – the science of proofs and absolute truths? To our

knowledge the general trust in mathematics in contrast to science in general hasn’t been studied,

yet. Nevertheless, the fact that the empirical sciences base their entire scientific rigor on statistical

methods and thus, mathematics, makes – at least within the scientific realm – arguing for the

trust in mathematics obsolete.

A different aspect of the relationship between trust and mathematics becomes apparent when

it comes to applications, like cryptography and data security in the digital domain. It is an open

question whether typing in one’s data to enter an online banking account, could be interpreted

as an affirmation of trust in the encryption mechanisms behind it.

The trustworthiness of mathematics is most crucial when it concerns areas of the field touching

ethical questions. These can arise in fields like mathematical finance [156,158], biased algorithms,

or possible harm caused by self-driving cars. How does trust relate to artificial intelligence? Can
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citizens put trust into decisions made by algorithms? If computers become able to produce

deep-fakes, what is the effect on trust in media and maybe even our own human senses, when we

cannot trust anymore “what we have seen with our own eyes”? How does this disruption relate

to the science that is responsible for it? The emerging of the field of Explainable AI (XAI) bears

witness that the community is concerned with issues of trust.

Because the individual is eventually overburdened with understanding the many walks of

mathematics behind these issues, it is now necessary to strengthen critical media coverage and

thus, establish mathematical science journalism to serve its watch dog duty.

1.2.2.1 Mathematical Citizen Science13

Citizen science is a tool to engage the public in the scientific process. The method adds a new

dimension of research and possible results due to the utilization of collective intelligence. Many

scientific areas have a long tradition of collaborating with citizen researchers and rely on their

participation. In other disciplines, like mathematics, the process of realizing its possibilities and

thus implementation has just begun.

A Definition of Citizen Science There are many examples for the variety and success of

implementing citizen science. The project Foldit invites participants to solve graphic puzzles in

order to find optimal protein folding [154]. Another example is the German Mückenatlas [52].

Citizens all over the country can catch mosquitos and send them to a lab in which they are

categorized to create map of the biodiversity of mosquitos within Germany.

Citizen science is not a clearly defined term and different interpretations and definitions exist.

This one is based on the Green Paper of Citizen Science Strategy in Germany [24]:

Definition 1.2.6. Citizen science is a scientific practice that satisfies the following character-

istics:

(a) involvement of individuals in the scientific process that are not institutionally bound to

this scientific area,

(b) involvement can range from singular participation to long term investment of the individ-

ual’s leisure time,

13Note that parts of the following section have been published in [72].

47



(c) the individual delves deeply into a scientific topic in collaboration with other scientists and

volunteers,

(d) an academical education of the citizen scientist is not mandatory (but of course is no

obstacle, either),

(e) accurate scientific practice and transparency of methodology and data collection is required,

as well as

(f) public and open discussion of the results.

Mathematical Projects that have Adopted Aspects of Citizen Science. People have

sought to open mathematics and the mathematical process to the public, and as a result involved

citizens in ways which come close to our above established definition of citizen science. In the

following we present projects that have implemented aspects of citizen science in a mathematical

context. Note that each of the projects lack a different characteristic to be fully described as a

citizen science project.

Historic Mass Computation14 Utilizing non-professionals in mathematics is not a novel

idea. In 1938, the Work Projects Administration, an American New Deal agency, established

a computing organization that employed 450 office workers to carry out mass scientific compu-

tations. These computations were done by human computers who had little education other

than the rudiments of arithmetic. They worked in an assembly line arrangement and handed

the worksheets from table to table. Even though during the 1930s more advanced methods for

calculation, like using logarithmic tables and punch cards were already known, the Math Tables

project was formed under the ideals of the New Deal that aimed to counteract the effects of the

depression by improving the situation for the workers and bettering their education [62].

This interesting project, whose success is mostly due to the engagement of its two leaders,

adopts nearly all aspects of citizen science, except for the first and maybe most crucial; the not

academically trained workers who carried out the scientific computations were institutionally

bound, since they were paid for their work and one of the main goals of the project was the

reduction of unemployment. But what still makes this project worth mentioning in the context

14The inclusion of this project in this paper is a good example for the power of the before mentioned forum,
since it was given as an example in a discussion about citizen science and mathematics [80].
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of citizen science is the involvement of a large number of non-academically trained workers. The

project leaders had to find a computation method derived from only simple arithmetic, because

the workers were not trained in mathematics or calculation. Over time these methods became

more and more sophisticated and complex calculations could be tackled [62].

Distributed Computing As computers nowadays can do most of the computations for math-

ematicians and other scientists, collective human computer offices like in the Math Tables project

are no longer necessary. However, there are still some calculations that exceed even the capabil-

ities of the computers mathematicians usually have on hand. The runtime of certain problems

is long and thus expensive. Distributed computing is a way to solve problems that share two

characteristics: their runtime is long and they do not possess an ultimate goal.

The GIMPS project (Great Internet Mersenne Prime Search) was started in 1996 and aims

to find Mersenne prime numbers. These are prime numbers of the form p = 2n − 1. The

Lucas-Lehmer algorithm can efficiently decide whether such a number is prime or not. George

Woltman implemented the algorithm in an assembly language program that users can install

on their computers. The program steadily works in the background and slowly tests a certain

number on its primality. The project can be considered wildly successful. So far, more than

200,000 users have signed up and 17 Mersenne prime numbers have been found [106].

GIMPS is not the only distributed computing project. Wikipedia lists 62 currently running

projects, of which 14 fall into the mathematics category [157]. These projects generally fulfill

most of the requirements of citizen science. The only obstacle is their lack of involvement of the

people and not just their computers. Each project is executed digitally through the internet and

the users are not personally included in this exchange. All they need to do is install the program

and donate their CPU time.

Collective Problem Solving The Polymath Project that was founded by the well-known

mathematician and Fields medalist Timothy Gowers, is one of the most famous and successful

projects that uses collective intelligence by removing logistical and institutionalized obstacles of

participation. In 2009, Gowers asked in his blogpost: “Is massively collaborative mathematics

possible?” [60]. He posted the first problem Polymath1 which was the exploration of a particular

combinatorial approach to the density Hales-Jewett theorem for k = 3 [8]. About a year after
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the proposal of the problem, a paper with the title Density Hales-Jewett and Moser numbers was

published and the authors were referenced as: D.H.J. Polymath 15 [121]. In total 23 collaborators

participated in the project and a “handful” contributed to the solution [112].

The Polymath Project clearly is a very successful example of how digital interconnection can

help to collectively solve involved mathematical problems. It is still ongoing and so far project

number 16 is being tackled. Despite there being no institutional thresholds in participating in

the Polymath Project, the very nature of the problems excludes everyone who is unable to read

the involved notation or does not know the underlying concepts and mathematical definitions.

Collectiveness in Mathematics In mathematics we can observe a strong movement towards

a collectiveness of the scientific practice. The forum mathoverflow [6] is an example of how

mathematics profits from an open forum and discussion in which everybody who is able to

understand and apply the code of conduct can participate. As this code of conduct has a very

high standard, the forum is not designed to be inclusive. In the Polymath Project, a high

threshold of a very involved notation and prior expert knowledge makes participation exclusive.

The superpower of mathematics is its strong scientific practice, which Nielsen [113] identifies

as an indicator and condition for the collectiveness and interconnectedness of scientific processes.

Thus, the very characteristic that opens mathematics within its own community makes it harder

for the public to participate.

15D.H.J. is an acronym for Density Hales-Jewett.
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1.3 What’s Next for Mathematical Science Communica-

tion?

In this chapter we reproduced the most important developmental steps of science communication

and classified the corresponding terms. We then conducted a survey of the existing literature

about mathematical science communication and identified a prevalence of the deficit model that

was characterized by a presumed lack of appreciation and knowledge of math in the public.

In the next step, we introduced definitions to describe the objectives of mathematical science

communication. The goal was not to give an exhaustive list, but to invigorate the discourse. In

these three steps, we laid the foundation to set up a four point agenda for the development of

mathematical science communication.

• Dialogue: In order to overcoming the deficit model once and for all we propose a two step

approach. The first step is to develop and implement formats that are based on a sincere

eye-level dialogue. Goal of the bidirectional communication is to enhance the relationship

and thus trust between science and the public. A good example for this eye-level dialogue

is citizen science. Citizens are actively involved in the research process and in many cases

their contribution is crucial for a research project because it produces fine-meshed data

points or tackles big loads of work. Successfully marrying the method of citizen science

with mathematics would create a room for the co-creation of mathematical knowledge.

• Service: The second step in overcoming the deficit model is the creation of opportunities

that allow for transfer of knowledge without power issues. Obviously, dialogical formats

may transfer knowledge as well. However, unidirectional transfer of knowledge from science

to society is still one of the top priorities of science communication. A shift in the mindset

to understand (mathematical) science communication as a service to the individual can

make a difference in the power dynamic of the communication situation16.

• Mathematical Science Journalism:

Given the progress on digitalization and the algorithmic shift in the generation of knowl-

edge, mathematical literacy is a crucial skill to make sense of the world and make informed

16We will see in chapter 3 that a similar shift has happened in education. In many modern didactical formats
it is the teacher’s role to assist the student to find their own path through subject matter.
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decisions. Since the individual is often overburdened by keeping up with the development,

we can view it as a need that has to be met on societal level. Thus, outsourcing it to

the the forth estate of a democratic society, gives the individuals the possibility to keep

up with the latest development without personally going into too much detail. The third

point on the agenda is the strengthening of mathematical science journalism. First, this

means allocating funds to secure professional journalists positions and second a high quality

exchange between mathematicians and journalists.

• The Science of Mathematical Science Communication

Giving mathematical science communication a seat at the table in the field of mathematics

would lead to a professionalization of both, the discourse and the practice, as well as their

mutual stimulation. A scholarly exchange about the motivations, goals and objectives is

overdue.

Professional evaluation of the many formats and projects of mathematical science com-

munication is as mandatory today as it was in 1996, when it was already requested by

Ernest [43]. Developing appropriate tools and methods is in its infancy.

As we have seen above, and will expand further upon in Chapter 3, the development of

science communication is following education in many ways. The didactics of mathematics,

which form a separate field in the Department of Mathematics, could serve as a model for

the establishment of the field of mathematical science communication as a scientific subject.

The request for sincere communication that was formulated as a guiding principle for good

science public relations would be met by imposing scientific principles on the communica-

tion as well.

The science of communication belongs to the humanities, and so does the science of com-

municating mathematics. Analogous to didactics, science communication builds a bridge

to a place outside of the scientific realm. For its credibility, it needs a strong foundation in

mathematics as a science.
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Chapter 2

POLYTOPIA – Adopt a

Polyhedron

2.1 Motivation, Objectives and Methods

Polytopia – Adopt a Polyhedron is an experimental project to explore the connection

between mathematics, mathematical science communication, and mathematics education. The

bridges built in the project are not just between these fields, but also connect formal and informal

learning of mathematics, combine elements of citizen science with art and show the process,

methodology, and content of scientific mathematical research.

2.1.1 Motivation

The project is associated with the subproject Communication and Presentation in the Collabo-

rative Research Centre SFB 109 Transregio, Discretization in Geometry and Dynamics. Thus,

the motivation behind the project is to enhance the visibility of this collaborative research cen-

ter in the media and to the public. Besides this motivation, which stems from the funding of

the project, its goals are to explore the possibilities of more dialogical forms of mathematical

science communication. Seeing a large number of non-experts actively engage in their scientific

field, shows the public support of their research and thus is a motivation for the mathematical

community, too.
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2.1.2 Objectives

Figure 2.1: Mosaic of polyhedra models.

Dialogical and Participatory Elements The overall narrative of the project is to ask the

public for help in naming the population of Polytopia, the polyhedra. This approach sets the

general tone of the project. A request is usually more successful if it is expressed in a friendly

and humble manner. A dialogical format of science communication requires a two-way street

of communication in which the participants can express themselves. This is accomplished by

naming the polyhedra, building the models, and artistically crafting an individualized version

of a polyhedron. Reporting back the research questions they found, see Section 3.3.2, adds an

additional layer of feedback for the students. With uploading photographs of their models, the
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participants add to a decentralized art project. A first result was exhibited at the art show of

the Bridges Conference in Linz in 2019 [31], see Figure 2.1 for a printed version of the picture

that was on display.

Bridging Formal and Informal Learning The main target group of the project is pupils

in the age-group 7 to 13. Besides media outlets, we address them through their teachers by

providing school materials which are ready to be used in the math class. The main subject

of the project – polyhedra – is not part of the official curriculum. Hence, we linked this topic

closely to content that is included in the curriculum. For more on these linkage points see

Section 3.4. In our general approach of the science communication project, we borrowed from

the didactical principle of inquiry based learning and dialogical learning, see Sections 3.2.2 and

3.2.3, respectively. The core idea to adopt a geometrical object is presented to the participants

as an invitation. No procedural or factual knowledge of mathematics is needed. The process of

adopting and thus approaching mathematics on a relational level may lead to curiosity about

the object which can be satisfied with the information provided on the website in the glossary,

see Appendix.

2.1.3 Methods

The Narrative of the Project

All polyhedra were living happily in the realm of abstraction, when one day they notice

that they are not all the same. Some are different. Very few of them possess a name

and have been built as models in the real world. For example the Cube, the Pyramid or

the Associahedron. The other polyhedra neither have a name, nor have they ever been

realized in a physical model. But since there is an overwhelming amount of polyhedra

– in fact infinitely many – the mathematical community needs the help of the public.

Everyone is invited to adopt a polyhedron, give it a name, build a model, and thus

help it come alive.

Adoption The focal idea of the project is the adoption of a polyhedron. One can adopt a

star [3], a high or low pressure system [82], or even a revolution [2]. The identification of the
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individual participant with an individual object in a one-to-one setting makes the singular impact

graspable and significant.

We applyed this concept as a vehicle of science communication for our project and thus,

put up polyhedra for adoption. The invitation to actively contribute to science in a creative

way by naming polyhedra and building models is offering an affectional and relational access to

mathematics with a very low threshold for participation.

Citizen Science Citizen science is a valid scientific method that also has great potential to

involve the public and raise public awareness, understanding, and literacy of science. It is

a modern vehicle for science communication because it focuses on participation as a central

element. Citizens, and this is everybody who is not institutionally bound to the endeavor at

hand, are actively involved in the research process. As we have seen in Section 1.2.2.1, it is

not easy to combine citizen science with mathematics. Hence, an artistic activity – building the

models – has been added. We coined the term citizen art for this combination of citizen science

and art [71,73].

2.1.4 Classification

In accordance with the claims to transparency of science public relations made in Section 1.1.3.8,

we denote that the project classifies as public relations for the Collaborative Research Center

SFB 109 Transregio Discretization in Geometry and Dynamics. This is where the funding stems

from and thus, its goal is to enhance the visibility of the research, researchers, content and

organization.

Public Awareness of Mathematics The primary target group of the project is pupils.

Obviously, it is not a direct goal to elicit any response towards the collaborative research center

in the students. The publicity effect is more of a secondary nature: the project demonstrates

that the obligation to provide information about the research content that is accessible has been

fulfilled.

The students are invited to get a glimpse into mathematical research that is far beyond the

scope of the school book, and yet is approachable. Polyhedra as objects are good candidates for

such an undertaking because they are relatively familiar, intuitively graspable and yet of interest
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to the professional mathematician. A goal is to raise awareness in the students that there is such

a thing as contemporary mathematical research and that the people behind it are making an

effort to be approachable.

Mathematical Literacy The glossary of the website offers factual knowledge about polyhe-

dra, their history, and research. This knowledge is not forced upon the user, but linked behind

highlighted words. By clicking on a word, the user finds short explanatory articles. We choose

this design to refrain from imposing a paternalistic style of communicating the scientific facts,

and instead let the user decide how much information they want to seek.

In the process of building the model, learning something about that polyhedron and polyhedra

in general is inevitable. The two forms of representation, a two-dimensional net and the emerging

body in space are connected by the process of building the model. Additionally, when the

participant decides to make an individualized polyhedron, they need to examine it thoroughly

and analyze its structure.

Besides this factual knowledge, methodological knowledge is woven into the design. The

users are invited to adopt a polyhedron and name it. By doing that, they are adding something,

which is the crucial point. This possibility represents the openness and incompletion of the

science of mathematics. Since mathematics is a very involved science, it is a long way to get to

the boundary of existing knowledge in mathematics. The combination of mathematics and art

creates a shortcut to this boundary. The representation of the polyhedra in a matrix and their

order by number of vertices hints at classification, which is an important category in mathematical

research.

Practical Mathematical Literacy The content of the school material and its links to the

school curriculum is discussed in more depth in Chapter 3. In terms of practical mathematical

literacy, one might ask whether active knowledge about polyhedra is of any value and applicable

to everyday life. Thus, we would like to argue that learning to build precise models from paper

might not be an activity considered very mathematical, but is a skill that is very handy in many

life situations. The relationship of the different forms of representation of a polyhedron, the

two-dimensional net that can be folded into the three-dimensional model, can be experienced

first hand. The digital representation of the polyhedron in the viewer is on a flat screen and
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only through movement one gets the impression of an object in space. These different states of

representations are described by the EIS model, see Section 3.3.

Algorithmic Literacy Even though the algorithms for the generation of the polyhedra are

not explicit, the description of that process hints at the importance of computers in contemporary

mathematical research. Thus, an awareness of the existence and importance of algorithms can

be gained.

Public Appreciation of Mathematics As Polytopia classifies as a public relations project,

raising public appreciation has to be mentioned, since the affiliated CRC is prominently pre-

sented. The relational approach to mathematics by adopting and thus relating to a mathemati-

cal object is aiming for a positive emotional response which is emphasized by the choice of the

mascots. Ecki and Polly are polyhedra stylized as stick figures with faces reminiscent of emojis.

The combination of mathematics with creativity generates a new access to the subject. It

aims to also attract participants that are more drawn towards the art making process.

Trust As we have discusses in Section 1.1.3.5, forming trust is (at least) a two layered process.

It involves warmth and approachability as well as competence and trustworthiness. We claim

that mathematics does not need to prove its competence in any way. Its rigor is firmly anchored

in its reputation, though it could use a little warmth and approachability. Both are displayed

in the project. The design of the website, with its bright colors and friendly mascots, aims to

create an inviting online environment. The invitation to bring a personal element, both in the

adoption (naming) of a polyhedron and then building a model and uploading a picture, gives

the participants the possibility to be an active part of the project. There is no requirement to

“learn something”. The activities are completely detached from the informative part, which is

accessible in the glossary. The highlighted words in the articles hint at the existence of further

information. The glossary explains the concepts and mathematical background in detail and in

understandable language. As the user can freely choose to access this information, we hope to

eliminate a paternalistic tones while providing expertise.

The link to the collaborative research centre and the project’s nature of public relations is

made explicit in the Behind the Project section which can be accessed through the footer of the

homepage, or by clicking on the highlighted word mathematicians on the landing page.
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2.2 Execution of the Project

In this section, we want to describe the practical issues of the execution of the project Poly-

topia – Adopt a Polyhedron with the website www.polytopia.eu as its mainstay. Polyhedra are

gathered, presented, and the adoption process occurs. The preconsiderations for the web design,

which was transcribed by a professional web designer according to our specifications, are linked

with the final results. We will briefly sum up the implementation of the website and its user

management system, which was required for the adoption process. The structure is represented

in a sitemap. In the following, we describe the content of the website and then close the section

by presenting the timeline of the implementation process.

Webdesign light and clear
multitude of polyhedra
aims at kids
invites adults as well
interactive

Implementation stable
longevity
not much administration
data safety

Content tells a story
no explanations forced upon the user
glossary can easily be found
crafting sheets
elements of gamification

Table 2.1: Preliminary considerations for the website.

2.2.1 Website

The website had to fulfill many requirements concerning the web design, implementation, and

content. The design should align with our general approach of a friendly request for help.

Therefore, the adjectives light and clear guided the development of the wireframes. The guiding

principle for the implementation was its longevity and being low maintenance. Content wise we

focused on the presentation of the narrative. These and other requirements are shown in Table

2.1. In the following we discuss and reflect the specific design decisions that were made in order

to fulfill these goals.
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2.2.1.1 Webdesign

Light and Clear The overall guideline for the web design was light and clear. Thus, we chose

white as the background color, light and dark grey for the font, and blue for highlighting the

links. There are no boxes or bars to bound the elements of the page except for the interactive

visualization of the individual polyhedra. All the design elements are freely floating on the white

background. The mascots add a little pop of color that can be found throughout all the elements

of the project, such as in the header of the website, see Figure 2.2.

Figure 2.2: Screenshot of header of the website polytopia.eu/en.

Multitude of Polyhedra To present the multitude and variety of the many polyhedra in a

non overwhelming way, we chose a representation of a pixelated matrix. The pixels are little

squares where each one stands for a polyhedron. By clicking on the respective pixel, the user

gets to the detail view. The color of the pixel indicates the status of the polyhedron, i.e. whether

it is free (grey), adopted (green), realized (blue), or individualized (yellow).

Aims at Kids and Invites Adults The aim of the design is to be friendly and approachable

by both kids and adults. Clarity is a guiding principle. To avoid a sterile impression, colorful

accents and the mascots Polly and Ecki are added. The mascots are stylized polyhedra with

smiling faces and stick limbs. Polly is green and raises their arms for a friendly hug, while Ecki
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Figure 2.3: Screenshot of matrix of the polyhedra, taken on the February 10th 2020.

is pink, wears nerdy glasses and has accentuated front teeth. The mascots are placed on each

page and are a splash of color in the mostly white and reduced design.

We chose the font Amatic SC for headlines and accentuation, see Figure 2.4. It is a hand-

written font without embellishment or serifs that is a good fit to the clear and friendly design.

The continuous text is written in Lato Regular, a simple, straight and sans serif font, see Figure

2.5.

Figure 2.4: Screenshot of the font style example Amatic SC [4].
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Figure 2.5: Screenshot of the font style example Lato Regular [5].

Interactive By clicking on the pixels in the polyhedra matrix, the detailed view for each

polyhedron is opened. Figure 2.6 shows polyhedron Flensi as an example. The display of the

name and a blue content looking mascot imply that this polyhedron has already been adopted.

Users can explore the polyhedron in the interactive visualization. They can turn the poly-

hedron around, vary its size, and click to show or hide the vertices, edges and faces. The faces

can be colored by choosing from a predefined color set. The two arrows at the top of the frame

allow the user to skip through various polyhedra without having to return to the matrix.

2.2.1.2 Implementation

The main objectives for the implementation of the website were its stableness, longevity and

low-maintenance. Thus, we chose a static implementation, where every feature was coded from

scratch in boilerplate html code. Using a content management system would have saved time in

the implementation process, but would have required regular updates of the system and potential

adaptions to new versions of the system. More than a year after completion of the website we

can conclude that going for the static implementation was the right step, since it requires hardly

any tending to at all.1

Some Technical Remarks Content related variables, like the number of adopted polyhedra,

data base applications, and the registration emails are not seen by the users and run on the

server using PHP. Visual elements like turning the polyhedron in the viewer or the gallery use

Java Script, which is executed on the user’s own device.

1Besides answering the occasional user who does not find the registration email in their spam folder.
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Figure 2.6: Screetshot of the detailed view of polyhedron Flensi [7]

The registration process is implemented in a state of the art double opt-in standard procedure.

The user management system is coded from scratch in boilerplate html.2 The user data is stored

in the database and secured due to EU General Data Protection Regulation. See the Appendix

for a detailed description of the privacy policy.

The viewer for polyhedra visualization is coded in Javascript using the ThreeJS environ-

ment. It bases the visualization on .json files of the polyhedra in which the coordinates of the

vertices and their combinatorial structure is inscribed. Javascript and ThreeJS also build the

framework for the Hamilton game.3

In combination with special cardboard glasses, a smartphone can be transformed into a virtual

reality viewer for the polyhedra. The viewer’s motions are mapped on the polyhedron and it

turns accordingly. Its implementation is based on AFrame [1], which is a web framework for

building virtual reality environments that bases on ThreeJS.

2Stefan Auerbach and Martin Skrodzki implemented the website and user management system.
3The viewer, the virtual reality viewer, and the Hamilton game were implemented by Marie-Charlotte Bran-

denburg.
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Menu

Home

Registration

Login

FAQ

Glossary

Profile

Teachers

Landing page

Matrix

FAQ

Behind

About

Glossary

Detail View

I Model Template

I 3D printer data

I Picture

Registration

Login

Profile

Teachers

I Polly’s Journal

I Class Set

I Discovery Cards

I ...

Figure 2.7: Sitemap of the website Polytopia

Sitemap as Directed Graph Figure 2.7 shows the structure of the website and the con-

nections between the pages. The menu items are represented by rectangular boxes, while the

pages have rounded corners. A link is symbolized by an arrow going from one page to another.

Downloadable material is preceded with a small downwardly pointing arrow.

2.2.1.3 Content

The adoption process and visual presentation of the multitude of polyhedra are in the foreground

of the website and presented on the homepage. No explanations about polyhedra, geometry and

mathematics are on this site. If the users might have a need for explanation, highlighted words

in the text link to the glossary and FAQ, which explain the underlaying mathematical terms in

everyday language.

School material The primary target group of pupils between the ages of 7 to 13 are either

addressed directly or via the math class. Therefore teachers find school material that is provided

on the website in the category teachers. Chapter 3 is dedicated to giving detailed information

about the didactical principles and the materials.
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Hamilton Game The Hamilton game can be played on the graph of each polyhedron. In the

upper right corner of the detail viewer is a small tick icon. In an extra frame, the skeleton of the

polyhedron appears. The goal of the game is to find either a Hamiltonian path or cycle on the

skeleton.

Figure 2.8: A screenshot of the Hamilton game

Pictures of the Polyhedra Models The users can upload one picture each for their realized

model, i.e. a picture of the assembled paper model, and individualized model, i.e. a model built

from a material of their choice. These pictures can either be found in the detail view when

clicking on the respective tabs above the viewer or in the gallery where all polyhedra pictures

are gathered.
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(a) (b)

Figure 2.9: Realized and individualized models of the polyhedron Flensi.

Like Button Every successful homepage in today’s internet needs a function to express ado-

ration. Thus, we implemented a heart-shaped “like”–button which counts the number of times

it has been clicked.

2.2.2 Timeline

2017 2018

07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11

Idea

Concept & Implementation in SAGE

Kick-Off Meeting

Design Website

Implementation Website & 3D Viewer

Schoolmaterial & Hamiltonian Circle

Testing Website

Press Release

Figure 2.10: Timeline of the project’s execution.
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The project took about a year between being developed from idea to finishing the website and

another three month for testing the website and launching it. The timeline, see Figure 2.10,

displays the developmental phases and milestones of the execution process.

The Team

Realizing the many steps of implementing the project into its final form was a team effort.

In the following, the members of the team and their main contributions are listed. Moritz

Firsching provided the code for the Koebe-Andreev-Thurston realization of the polyhedra. His

implementation follows Ziegler’s exposition [170], which is based on the work of Bobenko and

Springborn [23]. Max Pohlenz, a professional web designer is responsible for the appearance of

the website. His brother Bendix created the mascots. Martin Skrodzki and Stefan Auerbach

programmed the website in html boilerplates. Marie-Charlotte Brandenburg implemented the

viewer, the Hamilton-game and the virtual-reality environment. Johanna Steinmeyer typeset the

discovery cards in LaTeX and set many pictures of polyhedra in TikZ. Erin Henning translated

the website and the school material from German to English. She also was in charge of social

media and supported the project in workshops and events. Mara Kortenkamp was the latest

addition to the team and typeset a presentation poster. She is currently working on an update of

the code for the unfolding of the polyhedra. Pauline Linke helped conceptualizing Polly’s Journal

and took care of the typesetting. Brigitte Lutz-Westphal pointed out the importance of linking

the school material to the curriculum and Tine Gärtner introduced me to the EIS-principle. The

mathematics teachers Stefan Korntreff, Gudrun Tisch and Anikó Ramshorn-Bircsak and their

students tested the school material.
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2.3 Results of the Project

2.3.1 Defining Success

We defined the project to be successful when more that a thousand polyhedra were adopted in

the first year after the launch of the website. Since the project was developed to run for a long

time with little to no maintenance, neither technical nor in terms of actively drawing attention,

a second goal was that the adoption process would go on steadily without advertising it in any

form. Thus, if between 20 and 30 polyhedra would be adopted each month on average, we would

consider the project to be effective.

2.3.2 User Numbers

Figure 2.11: The total number of polyhedra that were adopted per month.

As we can see in Figure 2.11, both goals were reached. In the first year after finishing the

website, 1626 requests to adopt a polyhedron were made. The jump that occurred in November

and December 2018 can be traced back to the article that appeared at Zeit Online on the 9th of

November 2018 and was featured on the landing page of the online newspaper [95]. Neglecting
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the immediate effect of this news report, we note in each month between March 2019 and May

2020, an average of 26 attempts (median 23.5 attempts) to adopt a polyhedron were made.

(a) (b) (c)

Figure 2.12: Examples of realized polyhedra: (a) “Guggeli Knubbeleder”, (b) “Anne Elisabet”,
and (c) “Juweloeder”.

The very attentive reader might notice that the numbers in the graph and the total number

of adopted polyhedra on the website are not identical. That is because the graph bases on the

number of requests to adopt a polyhedron. For prevention measures, each to-be-given name has

to be checked by the team and, unfortunately, some had to be declined.

The most impressive, but also rather meaningless number4, is the total amount of clicks on

the website, which is 2, 315, 318. The total amount of adopted polyhedra is 1,812 of which 258

are realized, i.e. a photo of their paper model has been uploaded, see Figure 2.12 for examples.

Figure 2.13 shows four of the 73 individualized polyhedra models. The counter on the website

reports 2961 attempts for registration, of which 2097 (71 %) successfully finished the two step

opt-in process and became active users. About 86 % of the active users adopted a polyhedron.

The heart shaped like-buttons were clicked 2469 times by 959 different users. The most liked

polyhedron is the tetrahedron with 28 likes. This may be due to its prominent location as the

first pixel in the upper left of the matrix. The Hamilton-game was played a total of 681 times

by 283 different users, where three users had quite a pastime and played the game over 50 times

each.

We implemented a counter for the German school materials in the database. Table 2.2 shows

the number of downloads of the particular materials. Unfortunately, no counters for the English

materials were set. Polly’s Journal was the most popular download, followed by the worksheets

4This and all following numbers and statistics are constituted on May 31st 2020.
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(a) (b) (c) (d)

Figure 2.13: Examples of individualized polyhedra and their materials (a) “Puhlyeder” (choco-
late ice cream) (b) “Seems to be Piez” (cardboard, holding a paper umbrella), (c) “Octavius”
(cardboard and string) and (d) “Flori” (soft toy, fabric and filling).

for the class set and the research questions. A total number of 343 downloads of the school

materials can be noticed.

Type number

Polly’s Journal 93
Worksheet Class Set 70
Worksheet Research Questions 65
Discovery Cards 46
Teacher’s manual Polly’s Journal 44
Materials and Ideas 25

Total 343

Table 2.2: Number of downloads of the school materials.

2.3.3 User Survey

A quantative survey was implemented on the website and presented to the users right after they

have completed the adoption process. If they decide to fill it out later it can be found in the

menu on the right hand side. The complete survey5 can be found in the Appendix. A pretest

was run on the first 30 respondents. The data sets of the pretest are not part of the following

evaluation.
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Figure 2.14: Bar diagram of the age groups

2.3.3.1 Demographical Data

In the time frame between October 15th 2018 and May 31st 2020, a total of 355 respondents

took the time to answer the questions. That is 16.9% of the active users.

The primary target group of the project is pupils between 7 and 13 years old. 24.4 % of the

users6 fit into this group. A total of 61.3% of the users are younger that 28 years old. We note

that the numbers of participants decline with higher age. This can be seen as evidence that

the project is well suited for its younger target group. The project’s online character is another

explanation.

Looking at the occupations of the participants, we note that 39.0% of the users are pupils, 10.5

% teachers, and 21.2 % are university students. Professional mathematicians are quite highly

represented with 9.9 %. Looking at the gender of the participants, we note that the number of

females are a little higher (51.2 %) than male. In the design of the survey, we left out a third

gender option, but did not make the answer obligatory.

5For the design of the survey we consulted the statistical consulting FU:STAT at Freie Univerität Berlin.
6In the following we will refer to users who filled out the survey, simply as users.
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(a) Stated gender of the users in % (b) Occupation of the users in %.

Figure 2.15

2.3.3.2 Self-Claimed Interest and Skill

In the survey we asked the respondents about their relationship towards mathematics. One

question measures the self-claimed interest in mathematics and self-claimed practical skills in

mathematics. The first question directly asks if the user is interested in mathematics. The first

two items claim that the respondent is so interested in mathematics that they made it into a

profession or a hobby. Here is the list of all possible items:

• Yes, very, it is actually part of my job.

• Yes, very, it is a hobby.

• Sometimes Mathematics is interesting.

• Rather seldom.

• No, I think Mathematics is boring.

• Other

We find that 25.8% are doing mathematics as a part of their job, and 26.1% enjoy it as

a hobby, see Figure 2.16a. 38% find it sometimes interesting. Less than a total of 10 % find

mathematics seldom interesting or choose the option “boring”. We do not have any comparative

value in the general public, but can say that most of the users demonstrate a portion of interest

in mathematics.
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(a) Interest in mathematics. (b) Self-claimed skill in mathematics.

Figure 2.16

To measure self-claimed mathematical skills, we asked, which of the following statements they

would agree with the most.

• I understand Mathematics fast and it is fun for me to discover connections myself.

• When I have some time to do Mathematics, I manage it quite well.

• As soon as someone explains things to me at my pace, I understand most of it.

• More often than not I find Mathematics to be rather complicated.

The results are depicted in Figure 2.16b. We find that more than half of the participants

have confidence in their mathematical skills and decided for the first item. 30.9 % just need a

little time to do well and 11.4 % might need some external help. About 5.7 % of the respondents

find mathematics rather complicated.

Contingency of Interest and Skill It may be reasonable to assume that self-claimed skill

in mathematics correlates positively with self-claimed interest. Figure 2.17 depicts pie diagrams
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that show the distribution of self-claimed interest for each of the items of the question about

skill. In Figure 2.17a we see that more than three quarters of those that chose the option “I

understand Mathematics fast and its fun for me to discover connections myself.” have also opted

doing mathematics as a hobby or as a part of their job. Moving on to the second item, see

Figure 2.17b, those who need a little time to understand mathematics have less often chosen

mathematics as a hobby or part of their job, but chose “Sometimes Mathematics is interesting”

by majority. Looking at the distributions of the options “Rather seldom” and “Mathematics is

boring” we can find that the corresponding yellow and orange pieces of the pie are increasing

with a decrease of self-claimed skill. Note that also in Figure 2.17d there is a proportion of people

who do mathematics as a part of their job.

(a) I understand Math. fast and it is fun
for me to discover connections myself.

(b) When I have some time to do Mathe-
matics, I manage it quite well.

(c) As soon as someone explains things to
me at my pace, I understand most of it.

(d) More often than not I find Mathemat-
ics to be rather complicated.

Figure 2.17: The contingency between self-claimed skill and interest in mathematics.
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2.3.3.3 Did you Learn Something New about Math here?

The respondents self-assess whether they have learned something about mathematics on the

website. We can see that by far the most chosen answer (42.1 %) was “A tiny bit”, followed by

“An average amount” (21.8%). About 8.2 % of the users claimed to not have learned anything

at all and 11.8 % of the users label themselves as “Poly-professionals”, see Figure 2.18.

Figure 2.18: Did you learn something new about math here?

2.3.3.4 Pathways to the Project

Figure 2.19a illustrates how the users have come across our project in the first place. About a

fifth landed on the page by coincidence and another fifth by targeted search. 12.0% of the total

users have been introduced to the project in a school context. In Figure 2.19b we see that 27.2%

of the pupils were introduced to the project at school.

We added a question to specify how the users heard about the project, see Figure 2.19c. The

majority, 31.0% found it via the internet, while social media, i.e. Facebook make up only 4.3 %.

Media is a big item with another 16.2 %. Family and friends together make up 20.3 % of the

pathways to the project.
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(a) How did you find us? (b) How did you find us? (by pupils)

(c) How have you heard about the project?

Figure 2.19



2.3.3.5 How would you Rate this Page?

We asked the users to rate the page by giving marks between ‘one’ and ‘six’, where ‘one’ is excel-

lent and ‘six’ is not sufficient. The general result is very positive. Over 50% of the respondents

rated it with ‘one’ and about 40 % with ‘two’. 1.4 % of the users found the project not good

and graded it with a mark below ‘three’.

(a) How would you rate this page? (b) What did you like best?

Figure 2.20

What do you like most about our page? The adoption of the polyhedra was what users

by far liked most about the website. As Figure 2.20b shows, 89.1% choose the adoption process

as their favorite part of the site. 7.4 % liked the background materials about mathematics best.
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2.4 Conclusion

Looking at the numbers on the website, we can conclude that our two measurable goals were

fulfilled. Finding a foster parent for over a thousand polyhedra within the first year was exceeded

(1626 adoptions) and a steady rate of on average 26 adoptions (median 23.5) per month fell into

our desired interval of 20 to 30 adoptions per month.

We defined our target group as pupils aged between 7 and 13 years old. About a fourth of

the users fit into this age group. For future projects it would be advisable to specify more precise

goals in numbers or percentages with respect to the target group.

Measuring the success of a science communication project beyond countable items like user

numbers is a field in need of scholarly and practical attention. Defining the goals is a first

step. The second step is the development of an inventory of items to quantify and evaluate the

achievement of these objectives. The survey at hand was deliberately chosen to be brief and

based on self-evaluation and user experience.

The transfer of knowledge was more a welcomed by-product than a central goal of the project.

Mathematical literacy can be measured by the competencies that it comprises of. We wanted to

refrain from quizzing the participants with questions about factual mathematical knowledge and

thus asked them for their perceived increase in mathematical knowledge. This approach puts

the individual and their experience in the center.

In terms of public awareness of mathematics, the positive rating of the project in the survey

allows for the conclusion that the participants enjoyed the project. Especially the idea of “adopt-

ing a polyhedron” was met with approval, as about 9 of 10 users preferred it over other aspects.

If these positive ratings can be interpreted as a positive affectional response that generalizes

towards (scientific) mathematics, is open for further investigation.

Summing up, we can say that the project Polytopia – Adopt a Polyhedron built the backdrop

for our study on mathematical science communication. Successfully putting an idea into practice

will inevitably lead to what is called “experience”. But it takes a second step, the reflection

about it, to make this experience graspable for others. The practice will benefit from more

clearly differentiated terminology to denote the objectives, motivations and methods of a project.

Having a terminology at hand makes it easier to compare projects, learn from others’ experience

and is necessary for the development of evaluation methods.
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Chapter 3

Mathematics Education

3.1 Bridging Formal and Informal Learning

Bridging formal and informal learning combines the efforts of science communication with edu-

cation, takes mathematics out of the classroom and brings into other spheres of life [93]. The

goal of the project Polytopia was to walk this bridge in both directions and bring science

communication into the classroom as well.

Formal learning is structured by curricula in schools. Restrictions on how lesson time is

used are placed on teachers and pupils. It can only sparsely be used for non-curricular subjects.

Hence, in order to be applicable in the math class, the school material in Polytopia contains

mostly contents from the curriculum and weaves in other mathematical aspects very carefully. In

this chapter, we want to discuss the design of the school materials, demonstrate its links to the

curriculum as well as the application of didactical principles in mathematical science education.

The Organization of the Curriculum in Germany and its Federal States The deter-

mination of the contents of the school curriculum is the responsibility of the individual federal

states in Germany but have a common foundation in the decisions of the conference of Minis-

ters of Education and Cultural Affairs1. These define the educational standards for the major

subjects, including mathematics, for the three school degrees obtainable at German secondary

1Kultusministerkonferenz
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schools [87–89]. In mathematics, the competence model 2 is structured by general mathemati-

cal competencies3 which describe the process of doing mathematics [88, p.7] and mathematical

central themes4 which relate to factual knowledge [88, p.9], see Table 3.2.

On the Term Mathematics Education With regard to the design of the school material

and the considerations it is based upon, it should be noted that the term fits strongly into

the tradition of German Mathematikdidaktik. This term is not quite fittingly translated by the

internationally used term mathematics education which denotes the actual teaching and learning

process happening in schools. The direct translation would be didactics of mathematics which is

not commonly used [146]. The way mathematics is taught and is spoken about is strongly linked

to the respective country and the ideas of mathematics education prevailing there. Translations

of of the technical terms of Mathematik Didaktik are given in the footnotes.

Preliminary Considerations for the Design of the School Material The main target

group of Polytopia is students between 7 and 13 years old. Incorporating the project into the

math class at schools was an explicit goal. To ensure the adaptability of a science communication

project into a formal learning environment, it had to meet a set of criteria. Teachers can,

within the official framework of the curriculum, decide about the materials and methods used in

their classrooms. Applying our materials in their classroom should not cost them more time in

preparations but ideally simplify the process of lesson planning. Since the curriculum is densely

packed with content related mathematical central themes and general mathematical competencies,

not much room is left for extra subject matters. Thus, the materials must fit tightly into

the curriculum and allow for a view into scientific mathematical process and contents without

overextending the lesson time and the students’ capabilities.

In accordance with our goals and objectives, we aimed for an eye-level dialogue with the

students as well as the teachers which is reflected in the design. The school materials come in a

package with copy templates for the students and a teachers’ handbook that contains practical

information about the background, organization, and conduct of the project, and classification

in the competence model. Since not every teacher has come across the theory of polyhedra on

2Kompetenzmodell
3allgemeine mathematische Kompetenzen
4mathematische Leitidee
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their own educational path, offering additional information about the subject was necessary. All

school materials as well as the teachers’ handbook can be found in the Appendix.
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3.2 Didactical Concepts behind the School Materials

For the design and development of the school materials, we have employed three didactical

principles: project teaching 5, inquiry based learning 6 and dialogical learning 7. These together

with considerations about the EIS-model that describes the interplay between different modes

of representation build the theoretical framework of the educational material for the project. In

the following a brief introduction to these principles and ideas is followed by a description of the

materials and how they fulfill the didactical principles.

3.2.1 Project Teaching in the Math Class

Project teaching in the math class is a method to incorporate unique experiences in everyday

school life that relate to a special topic or theme. The pupils often associate positive memories

with it [97, p.62]. The framework curriculum should not be omitted during project teaching.

We base our descriptions of project learning on Ludwig [97]. The conception of project teaching

includes five characteristics.

• Subject: The basic requirements for a topic suitable for a project are self-containment,

the possibility of internal differentiation8, and a connection to the learners’ environment.

• Organizational frame: An organizational framework for the project is required. This

includes the composition of the learning group, a time frame, and whether it is a purely

mathematical or cross-curricular project.

• Student activity: Reasonable activity is preferred to “hustle and bustle”. Planning goal

directed actions that lead to new knowledge and ideally new ways of thinking for the

students is crucial.

• Group work Group work as a social form is a central element of project teaching. The

students independently divide the work among each other and, where appropriate, the

groups also exchange information.

5Projektunterricht
6Forschendes Lernen
7Dialogisches Lernen
8Binnendifferenzierung
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• Feedback Feedback denotes the communication among learners and teacher. In one direc-

tion is consultation and evaluation by the teachers, and in the other direction the students

give feedback about the project. The learners also give each other input on the project and

its content.

These five characteristics are introduced in a dome-model, see Figure 3.1. For the stability

of the dome and therefore the success of project teaching, all parts have to be there to stabilize

each other. When one is missing, the dome collapses. Thus, it is crucial that each characteristic

is fulfilled.
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Figure 3.1: Dome model for project teaching, according to Ludwig [97, p.66].

3.2.2 Inquiry Based Learning

The main idea of inquiry based learning is that students are not first passively exposed to the

subject matter and then made to answer questions posed by the teacher, but actively engage

with a new topic and then find their own questions. With the help of the teacher they search for

answers and acquire new content related and procedural knowledge in this self guided learning

process [107]. Since the learners can freely explore the theme at hand and find answers to their

own questions, the motivation to learn is of an intrinsic nature.

To define inquiry based learning, it is necessary to consider what constitutes to the scientific

inquiry process in order to transfer these characteristics to the process of learning. In accordance

with Roth et al. [127], we refer to John Dewey’s characterization of inquiry:
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Inquiry is the controlled or directed transformation of an indeterminate situation

into one that is so determinate in its constituent distinctions and relations as to

convert the elements of the original situation into a unified whole [37].

Thus, the process of inquiry is trying to bring order and connections into a situation that

lacked these properties in the first place. These connections result in a structure that is not

constructed in a straight forward fashion but by a seeking motion. Accordingly inquiry based

learning is a didactical principle that is based on the belief that the curiosity to get to the bottom

of things a can serve as motivation for the learning process [127].

This attitude of a researcher, one of curiosity, the desire to know, approaching the world

with questions and the goal to find answers is what justifies calling this approach inquiry based

learning, when the most the learners can do is reacquire preexisting knowledge. Since it is new to

the students, the structures in their minds are freshly constructed and their attitude is – ideally

– similar to the one of a researcher [107].

goal setting
developing rese-
arch questions

procedure / results

experiments
/ examples

observation / insights

Model of Inquiry Learning

Figure 3.2: Model for inquiry based learning, according to Roth and Wiegand [127].

Structuring and planning are crucial aspect of research. It is not blindly browsing the un-

known, but trying to establish a path that connects the new with preexisting knowledge. Before
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a plan can be set up, a goal in form of a research question9 has to be set up. The development

of these questions is central to the model of inquiry based learning by Roth and Wiegand [127],

see Figure 3.2. It is related to each of the other three elements of the process of inquiry based

learning: experiments and examples, observation and insights, and procedure and results.

The Process of Inquiry Based Learning The process of inquiry based learning begins with

exposing the students with a new phenomenon or subject. The students get some time to pose

questions, i.e. the research questions, about the subject and develop a goal for their research

process. It is structured in a circular fashion around the goal. Experiments and systematic search

for examples launch the first phase of the research process.

The second phase is dedicated to structuring and recording of observations and insights.

Here, already known knowledge and new discoveries are linked together. The third phase is to

reflect on the results and methods and find ways to represent them. The structuring of the newly

acquired knowledge and the connection to previous knowledge form the main learning effect. In

this phase, it may be noticed that the approach was not sufficient and a new question arises.

The three phases are therefore not to be understood as subsequent, but they trigger each other

and can always provide impulses for new research questions and interim goals [128].

Inquiry Based Learning in the Math Class In order to carry out inquiry based learning

in the mathematics class, the special features of this discipline must be taken into account. The

nature of the research process in mathematics differs from the cycle of examining the validity of

a hypothesis by experiments. Instead of straightforwardly planned experimenting, doing math-

ematics can be described by a meandering movement of thought that examines the abstract

objects by imagination [98]. Sketching and scribbling are the major tools to support this pro-

cess. Ludwig et al. transfer inquiry based learning into the math class in consideration with the

mathematical research process and introduce a cycle for inquiry based learning specifically for

the math class [98]. Here, we just want to focus on the first step of this process; finding research

questions.

According to Lutz-Westphal [99], formulating their own questions puts students in an un-

familiar position. Thus, finding interesting questions must be practiced. Encouragement and

9Forschungsfrage
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acceptance towards all questions is an important first step. Next comes the collection and struc-

turing of the questions. Introducing typical question words for mathematical questions can also

prompt the process and lead to more questions of mathematical nature [99].

In mathematics, the generation of new knowledge is very much guided by and closely linked

to already existing results. Thus inserting phases to present mathematical knowledge to the

students is no contradiction to inquiry based learning [98].

3.2.3 Dialogical Learning

Every learner has an individual pace, style, and preexisting knowledge. Dialogical learning is

a didactical principle which aims to enable each student to find and design their own suitable

learning path. The subject matter is not divided and served in small pieces by the teacher, but

the learner and their own perceptions and questions are in the center of the learning process.

According to Gallin and Ruf, it is the eponymous dialogue between the learner and the learning

content where comprehension occurs and learning happens. The moment when the learner reflects

upon the distance travelled and thus puts sense into the context, is when the new connections

are made [55,129].

Similar to inquiry based learning and project teaching, dialogical learning starts with a moment

of momentum, a core idea10 that evokes real questions in the learners. These core ideas may have

the form of a story, a riddle, or an impulse which fuels the learning process. A successful core

idea creates productivity in the learning group because it inspires genuine curiosity. For such

an impulse to have enough drive, its authenticity and a genuine connection to the personality of

the teacher is crucial [55, 129].

Another important tool of dialogical learning is the learning journal11. It is the learner’s

travel log in which they record and reflect upon the learning process in writing. These diaries

are freely created and documentations of the individual’s learning path and results. The freedom

of the design puts the responsibility of the learning process upon the learners. The students

are prompted to write about the content and the process in their own everyday language which

adapts it better to the individual perceptions [55,129].

10Kernidee
11Reisetagebuch
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Reflection on mathematical language gives insights about the process of doing and learning

about mathematics, since language is giving formation to thought. An orientation towards

technical language in the math class is reinforcing a perspective of mathematical learning that

emphasizes rigidity and completeness, because technical terms are not connected to the learner’s

internal understanding [81]. Allowing for an atmosphere in which the learners can constructively

rediscover mathematical phenomena and connect them to their individual prior knowledge in

their own words is associated with a constructivist perspective on mathematics education. Ideally

everyday experience, precision, redundancies and anticipation should be included in the writings

about mathematics [81].

3.2.4 EIS-Principle

In the learning development of a child, according to Bruner which is cited in Zech [167], different

levels of representation are developed . In a first state the child grasps the world mostly in a

direct enactive form. The enactive representation registers an object through active handling

with a concrete material. The next level is iconic representation that relies on pictures and

graphics, independent from activities. Language development heralds the third symbolic level

of representation, when the object itself is no longer needed in a direct or pictured form but

replaced by a word or symbol. The new levels do not replace the preexisting ones but broaden

the possibilities [167].

An integral approach to teaching mathematics is introduced by Heske, who encourages the

use of all three levels of representation. Alternating the enactive, iconic and symbolic levels

of representation prompts learning [75]. The acronym of the first letters prompts the name of

the EIS-principle. The thought processes of transferring between the modes of representation

are depicted and labelled in Figure 3.3. The understanding of the concept by the individual is

deepened by this transfer.

Hole [77] extended the EIS model for the use of computers in the math class and developed

the CEIS model. Using digital versions of the three representation levels adds a new dimension

to the transfer capacity. The enactive layer of activity becomes animation when applied by a

computer. Simulation is the digital extension of iconization, and the language of computers is

even more symbolized than verbal expression. Thus, symbolization is the digital equivalent of

the verbalization and formalization that describe the thought process of entering the third layer.
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Figure 3.3: Model of the three representation levels of the EIS model and the transfer between
them [77].
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Title Age Time Learning Environment

Class Set 7 – 18 90 min all

Research Questions 9 – 18 45 min
all, since the students adapt the
questions their own level of prior knowledge

Polly’s Journal 9 – 13 270 min
regular math class,
suitable for independent work

Discovery Cards 12 – 18 90 min
math clubs, extra work for gifted students,
independent work

Materials 7 – 18 180 min
interdisciplinar teaching
in mathematics and art

Table 3.1: Overview of the school material and their appropriate age groups, time frame and
learning environment.

3.3 School Material

Teachers can choose from different school materials to download on the website that suits different

age groups and learning environments. Table 3.1 shows the items, their suitable age group, time

frame, and learning environment. All materials can be found in the Appendix12. The school

materials combine different aspects of the didactical concepts, mentioned above, according to

the spot-light model [92]. This model utilizes the metaphor of a stage that is lighted by different

spotlights which each symbolize a didactical method. To yield an optimal illumination of a

subject matter multiple light sources, aka. learning methods, are required. In this section,

we will first introduce the teaching materials, and then point out where the mix of didactical

concepts is applied. Although more than one principle is applied in each of the packages, for each

one its guiding didactical principle, or main light source to stay congruent with the metaphor,

will be discussed.

3.3.1 Class Set

To simplify the supplies for students in a learning group, teachers can reserve a set of up to 36

polyhedra and print out all the nets in one go. Each net has an identification number to find

the right polyhedron on the website. The class set, which is the smallest package of the school

12The Appendix contains the school materials in English. Since the website is bilingual, a German version is
available, too.
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material contains a front page with a tutorial for the assembly of the polyhedron, a worksheet

that contains brief information about polyhedra and a reference to the project and its website.

The teacher’s handbook accompanying the class set gives a brief definition of polyhedra and

states the learning objectives of the project. It contains a practical plan for conducting the

project and an overview of the main components of the project as well as a description of its

background. The class set is suitable if the teacher wants to introduce the class to the basic

concept of the project POLYTOPIA.

EIS Principle guides the Process of Adoption The learning effect of partaking in the

project with its different modes of representation of the polyhedra aligns with the (C)EIS-

principle. In the process of manually assembling the net of the polyhedron into a three-dimensional

model, the change of representation is done by the learners themselves. This enactive represen-

tation is the first presented to the students, who get a paper template of the net. With the

number printed on each of these templates they find their personal polyhedra in an interac-

tive, computer-aided, digital representation, i.e. in the iconic representation level. Students can

change the color of their polyhedron or change the perspective by switching the corners, edges

or faces on and off. Besides the students gaining some symbolic knowledge in learning the term

polyhedron, the linguistic level has a certain twist. The students are invited to name their polyhe-

dron themselves. The symbolic representation of a certain polyhedron is therefore chosen by the

students and is not given, as is usual in mathematics and the natural sciences. This symbolizes

the incompleteness of scientific mathematics.

3.3.2 Finding Research Questions

The class set can be accompanied by the worksheet Finding Research Questions. After adopting

a polyhedron and crafting the paper model from the template, the students are invited to look

at the subject of polyhedra with the mind set of a researcher and find research questions about

the topic. The task is to find the most difficult question.

Inquiry Based Learning in Finding Research Questions Inquiry based learning is the

guiding didactical principle in finding research questions. The direct link to the scientists of

the collaborative research centre and the invitation to help them, gives insight to an important
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feature of mathematic as a scientific practice that according to a study by Lutz-Westphal and

Schulte [100] is not apparent to high school students: mathematics as a stand alone scientific

practice.

The small-sized study asked 60 students at a Berlin secondary school about their attitude to-

wards mathematics as a scientific subject and found out that most respondents viewed it merely

as a tool to support the natural sciences and emphasized the application orientation. Mathemat-

ics as a practice which is an end in itself was not recognized by the study participants who also

expressed the belief that the science of mathematics is already “completed” [100]. According to

Lutz-Westphal and Schulte these associations with mathematical research are cosistent with the

beliefs about the subject of mathematics itself found by Grigutsch et al. [63].

Showcasing the science of mathematics as an end in itself and its incompleteness is an objective

of our project Polytopia. The openness of scientific mathematics is showcased in the main

narrative as the majority of polyhedra lack a name. The playful call for help ultimately opens

the door to active participation in the science of mathematics.

According to Lutz-Westphal [99], we give prompts to invigorate mathematical thinking when

it comes to finding suitable research questions. Of course teachers familiar with inquiry based

learning in the math class are welcome to apply its full circle in their lessons, but we focus

on finding the questions. The mascots on the worksheet invite the students to send back their

questions in order to start a dialogue.

3.3.3 Polly’s Journal

The learning journal “Polly’s Journal” is designed as a learning journal according to the concept

of dialogical learning. The successful implementation of the project hinges on the teacher and

the learning group, but the learning journal allows for each of the five characteristics contained

in Ludwig’s model for project teaching.

“Polly’s Journal” is divided into four parts and starts with an introduction of the mascot

Polly. They tell the story behind the project and prompt the students to help finish their family

photo album by adopting a polyhedron, giving it a name, building a model, and taking a picture.

This story is the core idea of the project; it motivates the conduct of the project, sets the frame

and defines a goal. Because the notion of polyhedra is not contained in the formal curriculum the

following pages are dedicated to sizing up the learner’s prior knowledge and building connections
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to the new definitions. In doing so, drawing oblique views and analyzing the nets of cubes and

other bodies is repeated and skills are deepened.

The second part guides the learners through collaboratively building their class polyhedron.

Before assembling, each face is to be enlarged by a factor. The group is separated into smaller

groups that each take care of one face. A possibility for internal differentiation is presented by

choosing faces with more than three vertices. Thus, reconstruction of the magnified faces is more

or less involved, respectively. Teachers can preset the magnification factor, or let the students

discover the quadratic relation between the size of the edges and the area of the face. Once the

class polyhedron is ready, the group votes for a name and adopts the polyhedron on the website.

Subsequently the teacher hands out the paper templates for adopting the single polyhedra.

Each learner gets a worksheet with a distinct polyhedron. The last step of the project invites

the learners to take on the position of a researcher and find research questions. Additionally the

teacher can either implement the discovery cards, see the Appendix, or add an inter-curricular

element by expanding into the art and crafts class and letting the students build individualized

models.

Dialogical Learning guides the Learning Journal As the learning journal “Polly’s jour-

nal” is designed with the didactical concept of dialogical learning in mind, the students are guided

through the project in a way that promotes self-regulating learning and prompts reflection upon

their progress in writing. The core idea to adopt a polyhedron to help Polly get to know all her

family members is not directly connected to the personality of the teacher, as encouraged by Ruf

and Gallin [129], but to the makers of the project that can be personally contacted via email.

The approach of dialogical learning focuses on the use of language in the math class and

emphasizes the importance of informally speaking and writing about mathematics. Using non-

formal language makes it easier for the learners to adapt the newly acquired knowledge to their

individual preexisting knowledge. The creative element of naming their own polyhedron playfully

opens up the realm of technical terms in mathematics and allows the students to add a personal

touch.

The EIS model is a guiding principle for the design of the learning journal as well. Besides

the adoption process, the introduction of convex polyhedra is lead via different geometric repre-
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sentations. The definition of convex polyhedra is done as a perspective view that the learners

are invited to draw out themselves.

3.3.4 Discovery Cards

The discovery cards are a learning opportunity for enthusiastic learners that can be used for

internal differentiation or extracurricular activities. They serve the needs for gifted learners,

since they exceed the regular curriculum and contain selected themes from the subject of Discrete

Geometry that are centered around polyhedra. The cards are suitable for self-regulated learning.

The students examine their polyhedron through the prompts on the learning cards that have

topics ranging from counting the vertices, edges, and faces and assembling them in the f -vector,

over investigating the graph of the polyhedron, to drawing Schlegel diagrams.

3.3.5 Project Teaching as the Backdrop for all Materials

All materials have in common that their application in the math class qualifies as project teach-

ing. Recalling the dome model of this didactical principle, see Figure 3.1, we find the five

characteristics of project learning that together constitute a successful project.

First is the topic that must be self-contained, includes possibilities for internal differentiation

and is related to the surroundings of the learners. Adopting a polyhedron is a process that

can be done in a 90 minute lesson from start to finish and has its standalone quality since it

is not in the curriculum. Internal differentiation can be applied in a minimal form by choosing

the complexity of the polyhedral nets. In “Polly’s Journal” the students are invited to look for

polyhedral shapes in the classroom and their surroundings.

The organizational frame is mostly given by the teacher, but the material is designed for an

organization in a linear fashion that starts with prompting the core idea of adoption, a working

phase and a specific endpoint.

The student activity is guided along the adoption process or the learning journal. Building

the class polyhedron is a collective mathematical action that requires the learners to work tightly

together to finish their geometrical figure. The new impulse of finding research questions turns

the classical math class on its head, since finding the most unanswerable question is an explicit

goal.
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The social form of group work is most prominent in the building of the class polyhedron where

each small group is responsible for one of the faces of the polyhedron that has to be assembled

to a larger one. Only when all groups work sufficiently accurately is this possible. An exchange

between the groups is prompted. Finding the research questions or working with the discovery

cards allows for work in smaller groups as well.

An important possibility for feedback is the dialogue that can occur between the scientists

and the students when they send their questions via email. On a smaller scale, collecting the

learning journals and commenting on the thought processes that the students have expressed is

a chance for teachers and learners alike.

94



Mathematical Competencies Central Themes

(K1) Mathematical Argumentation (L1) Central Theme Numbers
(K2) Mathematical Problem-Solving (L2) Central Theme Measurement
(K3) Mathematical Modelling (L3) Central Theme of Space and Form
(K4) Using Representations (L4) Central Theme Functional Relations
(K5) Dealing with Symbolic, Formal and (L5) Central Theme of Data and Probability

Technical Elements of Mathematics
(K6) Communication

Table 3.2: Guiding principles of the Competence Model in the Framework Curriculum 1-10 [138].

3.4 Linking Points to the Curriculum – Competencies and

Central Themes

3.4.1 Primary Education

The main subject of the project, polyhedra, is not part of the curriculum in Germany as defined

by the Conference of Ministers of Education and Cultural Affairs, which defines the framework

for all federal states [89]. Nevertheless, the mathematical activities of the school materials have

strong links to it. In the following, we specify these linking points to the framework curriculum13

of the federal county Berlin. The skills and abilities are grouped into general mathematical

competencies, which describe the process of doing mathematics, and the content related central

themes, see Table 3.2. These themes range through all educational levels which are denoted with

capital letters A through H. Level A contains the very basic skills of the central theme. The

subject matters then build upon each other. Depending on the type of school, different levels are

assigned to the grades. For internal differentiation teachers can tailor the levels for the individual

skill level of the students.

Central theme (L3) Space and Form is paramount to the content of the school materials. We

find aspects that belong to the levels C, D and E, which, depending on the type of school, accord

to second to ninth grade [138, 140]. In central theme (L2) Dimensions and Measurements14

level E is incorporated in the enlarging of geometrical objects. Table 3.3 shows the mathematical

activities included in the school material and allocates it to the central themes and their levels.

13Rahmenlehrplan
14Note that in the federal county Berlin, the central themes are slightly differently denoted, but the strongly

relate to the guidlined provided by the Conference of Ministers of Education and Cultural Affairs.
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Level Central Theme Mathematical Activity

Dimension and Measurements (L2)

D
Size specifications of surface area, volume,
angles in different units

Measuring angles and using the protractor
in the reconstruction of the faces of the class
polyhedron.

Space and Form (L3)

Geometric objects

C Cube and cuboid nets

Polyhedra nets are introduced
by nets of the cube. In the
extension to general polyhedra
level C is exceeded.

D
Oblique views of cubes
and cuboids

Polyhedra are introduced as
perspective oblique views.

E Construction of triangles
In building the class polyhedron,
each face of the polyhedron must
be reconstructed.

Geometric figures

E
Enlarging and reducing
the size of objects to scale

The faces of the class polyhedron
are reconstructed in a different size.

Table 3.3: Classification of the mathematical activities in accordance with the levels of central
themes (L2) Dimension and Measurements and (L3) Space and Form [138].

Three mathematical competencies get mainly encouraged: (K1) Mathematical argumenta-

tion, (K4) Using representations and (K6) Communication.

Recognition and determination of convex polyhedra on the basis of their three defining prop-

erties (plane side faces, straight edges and outwardly protruding corners) is practiced. The inves-

tigation of geometric bodies according to these criteria fall into the realm of (K1) Mathematical

argumentation.

General mathematical competency Using Representations (K4) is a key element of the project

and its school material. Each polyhedron is presented in seven different representations. These

are: the individual pixel in the matrix (1), the digital visualization in the “viewer” (2), the paper

template of the polyhedral net (3), its emerging physical 3D model (4), the 3D printing model

(5), a VR model (6) and finally, its name chosen by the students (7).

Communication (K6) aligns with the didactical principle of dialogical learning which lead

to the development of “Polly’s Journal”. In the learning journal the students write about their

experiences. Thus, writing about mathematics in a reflecting way is practiced.
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3.4.2 Secondary Education

Although the project aims at younger students, it is also suitable for secondary education. Its

curriculum is structured by the same central themes and mathematical competencies as primary

education. Both encompass more involved subjects and skills respectively [139].

Polyhedra serve well as visual aids and applications for the subject area of analytical geometry

that is involved in the core idea [L3] Space and Form. Their faces are defined as planes spanned

by the coordinates of the vertices. Two neighboring faces intersect in a straight line. These

core concepts of analytical geometry can be derived from the 3D printer data which state the

coordinates of the polyhedra and their incidences. For printing the polyhedra with a 3D printer

each one has to be rotated so that one of the faces is parallel to the xy-plane. This operation can

be executed by methods of analytical geometry, and holding the correctly printed polyhedron in

their hands, the learners have a tangible proof for the accuracy of their calculation, see Figure 3.5.

(a) (b) (c)

Figure 3.5: Photographies of a 3D printed polyhedron.
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3.5 Applying Didactical Principles into the Project Design

In Chapter 1.2 we described the shift that has occurred in science communication from knowledge

over affection towards trust. This has lead to overcome the deficit model and the development

of more dialogical formats of science communication that foster an eye-level encounter between

science and the public. According to Baram-Tsabari and Osborne [14] this shift has happened

in education two decades prior and the didactical principles described in this are fruits of this

development. They have in common that the learner is in the center of the knowledge acquiring

process. The teacher, traditionally in a position of power over the student, is put in a position

to serve the student to find their own path by introducing subjects, offering new ideas and help

organizing the process. Frontal teaching might still be the predominant practice of teaching,

but at least scholarly it is overcome. With the observation in mind that science communica-

tion is in a way following the footsteps of education, we accelerated this process and applied

the guiding ideas of the didactical principles in the overall design of the mathematical science

communication project. The core idea of adoption is the key point of the entire project. A

relationship between a mathematical object and its forster partent is established. This might

lead to interest and thus research questions in the participants. We have already established

above that the (C)EIS-principle is paramount to the modes of representation on the website that

serves an informal educational purpose. And the dialogical elements in the format are not just

coincidentally sharing the adjective with dialogical learning. With linking the science communi-

cation project Polytopia very closely to formal learning environments and borrowing from the

didactical principles in the design of the project, we provide an example of mutual enrichment

of the two practices.
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Chapter 4

Mathematics

4.1 “Adopting a What?”: On the Term Polyhedron

In the subtitle of the project Polytopia – Adopt a polyhedron the participants stumble upon

a mathematical notion that is not necessarily in their active vocabulary. The website gives a

rather intuitive definition:

Polyhedra consist of vertices, straight edges, and flat faces. In our project, we focus on convex

polyhedra. This means that all inner angles between two edges or two faces are less or equal

to 180◦. No cavities, holes or indentations are allowed. The word polyhedron comes from the

combination of Greek words poly- (many) and -hedron (face).

This definition is by no means commonly agreed upon. Mathematicians of all times and walks

of mathematics picture rather different objects when something is called a polyhedron [66]. In

this chapter we will take a closer look at the mathematical objects that are at the center of our

project: polyhedra. We will take on three different perspectives. Firstly, we develop a genealogy

of the terms that are historically used for our three-dimensional, flat faced, straight edged and

convex bodies. Secondly, we rigorously define the term polyhedra as we used it in the project and

introduce the notions and methods of modern mathematics used to visualize the models in the

viewer and to generate the nets for the crafting sheets. However, the existence of such a net is

not given. In fact the question whether every polyhedron possesses an unfolding whose faces do

not overlap is an open problem, named Dürer’s conjecture after the painter Albrecht Dürer, who
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invented the nets of polyhedra. The third part of this chapter gives a survey of this problem,

sums up the development up to now and introduces related problems.

4.2 Genealogy of the Term Polyhedron

The term polyhedron changed its definition and meaning over the course of history. Even today,

it is used to describe different mathematical concepts and objects and each author is inclined to

define it accurately. This summary tells a short history of the term polyhedron. It is guided by

two questions that lead us the way trough history1:

• Who used the term polyhedron, when and for what?

• What were the objects we use in the project and call polyhedra also called and by whom?

Ancient Greek Mathematicians

The first written description of polyhedra appears in Plato’s dialog Timaios. He describes the

construction of what today is called the Platonic Solids and assigns a regular polyhedron to each

element of the universe: fire, water, earth, air and the universe itself. According to Plato every

physical body is a polyhedron, as he writes:

In the first place, that fire and earth and water and air are material bodies is

evident to all. Every form of body has depth: and depth must be bounded by plane

surfaces [11, 53 C].

In this sentences he uses the greek word σώμα ( = soma) which means body in a general

sense and denotes the biological body or corpse of a human or animal, anything with a corporal

substance, as well as a mathematical figure of three dimensions [91, σώμα ]. The expression form

of body translates from the original σώμας εἴδος . In his further descriptions of the construction

of the platonic solids, Plato mostly uses the term εἴδος [11, 54 C - 55 A]. Its English translation

is: “that which is seen: form, shape”, which resonates with a more mathematical application [91,

εἴδος ].

Plato believed that plane surfaces bound every form. This is very close to todays definition

of an H-polyhedron that is a region bounded by half-spaces, see Definition 4.3.5. If we would like

1For a more general approach on the history of polyhedra, see Malkevitch [101].
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to guess whether Plato was aware that polyhedra make up a special class of three-dimensional

geometrical objects, we would have to deny, because it seems that he assigned an angular nature

to all objects in space.

Feeding the search engine of the Thesaurus Linguae Graecae [153], a comprehensive text

collection of ancient greek authors, with the word πολυεδρον (poluedron) results in 45 hits. 34

of them stem from Euclid’s Elements, five from Theon, three from Pappos and one each from

Archimedes, Plutarch and the Oracula Sybillina.

Euclid [44, 149] did not use the word πολυεδρον (poluedron) in the claim and proof that the

list of the Platonic solids is complete, where he refers to the solids as σξημα (sxhma) which

can be translated to shape, form, figure [91, σξημα ]. The word πολυεδρον is used earlier,

in the twelfth book. This book is mostly dedicated to propositions about objects in space,

like pyramids, or prisms, but also cones and cylinders. Only proposition 17 is a statement

about polyhedra in general. Thus, Euclid explicitly distinguished polyhedra from other three-

dimensional geometrical objects.

Albrecht Dürer (1471–1528)

The German artist Albrecht Dürer was also very interested in mathematics. The polyhedron in

his famous copper plate engraving Melencholia I, see Fig. 4.1, is up unto this day uncategorized

and poses a riddle to art historians and mathematicians. The solid in the lower left of the

picture emerges from an elongated combinatorial cube, whose vertices with the sharpest angles

were chopped off and thus results in a shape with eight faces, six pentagons and two triangles, 18

edges, and twelve vertices. Fatumura et al. [54] pose a method for testing theories on the solid

using its cross ratio and come up with their own. They propose the cross ratio of pentagon to

be the golden ratio.

The invention of polyhedral nets is attributed to Dürer, who introduced them in his work

Underweysung der Messung mit dem Zirckel und Richtscheyt in Linien, Ebenen und Gantzen

Corporen [40]. As it can be derived from the title, Dürer denoted the bodies in space by the

Early New High German term Corpus, which sounds similar to the German Körper (body).

Strauss [41] translates it to solid. Amongst all the polyhedral nets, one quite surprisingly finds

an “unfolding” of the sphere in the form of an orange peel. Despite Dürer not commenting on

the fact that this orange peel unfolding will not result in a perfect sphere, he seems to be aware
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Figure 4.1: Albrecht Dürer’s Melencholia I [42].



that there is a difference between “solids with straight surfaces” and ‘̀[s]olids which are rounded

on all sides” [41] as the former have corners and the latter do not. The unfoldings of polyhedra

will be defined and further investigated later in this chapter, see Section 4.4.

Johannes Kepler (1571–1630)

In the second book of the work Harmonice Mundi, Johannes Kepler expands on Euclid’s proof of

the classification of the Platonic Solids. Even though he directly refers back to Euclid and uses

his terminology to denote the Platonic Solids, he does not adopt the term πολυεδρον for general

polyhedra, but uses the latin term solidam figuram (solid figure) instead. The adjective solidum

is used here to distinguish the spacial from the plane figures (Figurarum planarum).

Leonhard Euler (1707–1783)

Euler wrote the articles Elementa Doctrinae Solidorum [46] and Demonstratio nonnullarum

insignium proprietatum, quibus solida hedris planis inclusa sunt praedita [45] in an attempt to

build a fundamental framework for geometry in space, just as Euclid had done for the geometry

in the plane [131]. Euler restricts his elaborations to solids that are enclosed by planes, which

he calls solidorum. Krömer translated this to Körper (solid/body) [85]2. Euler developed a new

way to denote polyhedra depending on the number of vertices and faces. For example, the three-

sided prism is called a pentahedrum hexagonum (five-sided hexagon), or a triangular pyramid is

denoted a tetraedrum tetragonum (four sided, four-gon) [46].

According to Malkevitch [101], Euler pioneered in interpreting polyhedra not just as geometri-

cal, but also as combinatorial objects. Before Euler, Descartes came very close to finding Euler’s

formula, but Descartes’ manuscript was lost for a long time and thus unknown to Euler [47].

Ludwig Schläfli (1814–1895)

According to Manning [102], Möbius [111] was the first mathematician who thought of the

mathematical possibility of the fourth dimension in 1827. Following Manning’s chronology of

the discovery/invention3 of the fourth dimension, it was only Grassmann in 1844 and Cayley

in 1846 who preceded Schläfli in writing about four dimensional geometry. Schläfli, a Swiss

2A direct translations to English is not existent [86].
3Let’s not go there...
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mathematician wrote his treatise Theorie der vielfachen Kontinuität between 1850 and 1852,

but could not find a publisher. When it was published in 1901, six years after his death, others

had independently rediscovered large parts of his work [32] and thus, his groundbreaking work

on higher dimensional geometry is missing in Manning’s genealogy of the fourth dimension.

Schläfli [137] introduced multidimensional geometrical bodies and denoted them Polyscheme.

The origins of this word can be traced back to the greek words πολυ (polu) and σξημα (schma)

which we have already mentioned above. Due to the neglect of his work by the mathematicians

of his time, this notion did not prevail.

Reinhard Hoppe (1816–1900)

The term for higher dimensional generalization of polyhedra that is still in common use is poly-

tope. According to Coxeter [32] the birth of this term can be traced back to Hoppe [78] who

wrote in 1882:

Ebenso kann man die Grenze eines Polytops (Vielraum, so will ich die linear

begrenzte Figur von 4 Dimensionen nennen) auf dem Raume abbilden durch ein

Netz von Polyedern und ein sie alle umfassendes Polyeder als Schlussseite.4

Hoppe describes the composition of a four-dimensional polytope by its three-dimensional

facets. This approach is similar to defining a polyhedron by its bounding faces.

Victor Schlegel (1843–1905)

The math teacher Schlegel chose his own terminology for polyhedra and polytopes. In 1883 he

published Theorie der zusammengesetzten Raumgebilde (Theory of Composed Space-Constructions).

Throughout this work he refers to 2-polytopes as polygons and to their three dimensional anal-

ogous as Raumgebilde (space-construction) [135].

Five years later, he explains the four-dimensional geometrical space in a popular scientific

publication. Schlegel defines and enumerates the regular solids in three dimensional space and

generalizes the definition of a regular solid for higher dimensions. He refers to the three dimen-

sional objects as Körper (body) and their analogues in any dimension as Gebilde (Construc-

tion) [135].

4Likewise, the boundary of a polytope (multi-space, so I will call the linear bounded figure of four dimensions)
can be mapped on space by a net of polyhedra and an enclosing polyhedron as a boundary facet.
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Ernst Steinitz (1871–1928)

Steinitz’ work Vorlesung über die Theorie der Polyeder [147] (Lecture on the Theory of Poly-

hedra) was posthumously published by Rademacher in 1934, who filled in the gaps left by the

original author.

Steinitz refers to Möbius in his definition of polyhedra and follows the approach of seeing

them as a collection of faces that meet in common edges or vertices. The characteristics of the

polygons decide over the characteristic of the polyhedron. An ordinary polyhedron is composed

of ordinary polygons. These are polygons that are simple and plane and whose edges have no

common points other than the vertices. An extraordinary polygon can self-intersect.

This wider definition of polyhedra includes the star polyhedra and self-intersecting polyhedra

that do not partition the space into an exterior and interior. Steinitz notes that the convex

polyhedra form a subgroup of the ordinary polyhedra.

Aleksandr D. Aleksandrov (1912–1999)

The Russian geometer Alexandrov wrote a book about convex polyhedra in 1950 [118]. He

points out explicitly that his definition does not specify whether a polyhedron is a solid that

is bounded by finitely many polygons, or whether it is only a polygonal surface. However, the

polygons that consist of finitely many straight lines, line segments or half-lines might not be

bounded, i.e. are not lying in a circle of finite radius. An unbounded polygon has either at least

two unbounded sides that are either half-lines or lines, or it is bounded by one line. Note that

Alexandrov’s definition of a polyhedron also allows for a collection of polygons that are meeting

only on segments of their bounding edges.

Harold S. M. Coxeter (1907–2003)

Coxeter [32] includes remarks on the history of polyhedra in his work on regular polyhedra. His

definition is very similar to Steinitz’ and also describes the properties of the bounding polygons.

A polyhedron may be defined as a finite, connected set of plane polygons, such

that every side of each polygon belongs also to just one other polygon, with the

proviso that the polygons surrounding each vertex form a single circuit (to exclude

anomalies such as two pyramids with a common apex) [32].
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Grünbaum (1929–2018)

In Grünbaum [67], we find a definition for a polyhedral set, or d-polyhedron:

A set K ∈ Rd is called a polyhedral set provided K is the intersection of a finite

family of closed halfspaces of Rd.

Even though, this definition includes unbounded sets that even in R3 do not look like the poly-

hedra that Plato might have thought of, it is the property of being bounded by plane surfaces5

that makes a set polyhedral.

We end our historical remarks with Grünbaum, as his definition of a polyhedral set is analogue

to what Ziegler [169] will denote as an H-polyhedron, see Definition 4.3.5. This does not mean

that the question “What is a polyhedron?” is settled. For further reading, we refer to Grünbaum

[66].

5Here the concept of a plane surface is generalized to any dimension by using halfspaces.
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4.3 Defining the Term Polyhedron

What we call “a polyhedron” in the project is, in mathematical terms, the representative P of

an equivalence class of combinatorially equivalent, convex 3-polytopes, where P is realized in a

normalized Koebe-Andreev-Thurston representation.

In the following we will successively define these notions and analogously describe the gener-

ation of the data for the project. These definitions and notions are based on the standard work

by Ziegler [169]. For the basic notations, we refer to the Linear Algebra standard by Axler [13].

4.3.1 Convex 3-Polytope

Let Rn be a vector space of dimension n, let x,y and z ∈ Rn be vectors/points and let a, b and

λ be scalars. In this vector space we define two kinds of hulls: affine and convex.

Definition 4.3.1. Let x1,x2, ...,xk be (distinct) points in Rn. The affine hull of these points

is defined to be:

affine(x1,x2, ...,xk) = {x ∈ Rn : x = λ1x1 + ...+ λkxk for λi ∈ R,
k∑
i=1

λi = 1}.

Definition 4.3.2. Let x1,x2, ...,xk be (distinct) points in Rn. The convex hull of these points

is defined to be:

conv(x1,x2, ...,xk) = {x ∈ Rn : x = λ1x1 + ...+ λkxk for λi ∈ R+
0 ,

k∑
i=1

λi = 1}.

Note that in Definition 4.3.1 and Definition 4.3.2, the only minor but critical difference is the

restriction that λ is non-negative. The result is that in the convex hull only the space between

the points is included, whereas in the affine hull, the points spread out and support an entire

affine subspace of Rn.

Definition 4.3.3. A set S ⊂ Rn is convex if for any two points x and y ∈ S the convex hull

conv(x, y), i.e. the connecting line between the points x and y, is also contained in S.

Now we are ready to give the first definition of a polytope.
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(a) A convex set. (b) A non-convex set

Figure 4.2

Definition 4.3.4. A polytope is the convex hull of a finite set of points in Rn. The dimension

d ≤ n of the polytope is the dimension of the affine hull of these points. A d-dimensional polytope

is called a d-polytope.

We say that two polyhedra are geometrically equivalent if they can be mapped into each other

by a rigid motion or alteration of the size, i.e. if they are similar to each other.

Another possibility to define polyhedra is to cut them out of the surrounding space by dividing

it by halfspaces and omitting one half of the space. The emerging object is called an “H-

polyhedron” by Ziegler [169], which is not to be confused with our application of the term

polyhedron.

Definition 4.3.5. Let a ∈ Rd and a0 ∈ R. A halfspace H ⊂ Rd is defined to be

H = {x ∈ Rn | (a,x) ≤ a0},

where (a,x) denotes the scalar product of Rd. The intersection of a finite set of halfspaces is

called an H-polyhedron. A polytope is a bounded H-polyhedron, i.e. an H-polyhedron that does

not contain a ray.

This alternative definition will become handy for defining the faces of the polytopes. A

proof of the equivalence of both notions of d−polytopes can be found in [169]. Interestingly,

this definition of a polytope reminds us of Plato, who when he wrote that every form must be

bounded by plane surfaces, in fact came very close to this modern way of defining a polytope.

Now we have all the necessary notation to define the protagonists of our project:

Definition 4.3.6. A polyhedron is a convex 3-polytope.
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Mentioning that the 3-polytope is convex is redundant, since by our definition a polytope is

defined to be a convex hull and thus, must necessarily be convex. While we have concentrated

on convex polyhedra in the project Polytopia, we will use the non-convex polyhedra later as

examples for the considerations on Dürer’s conjecture, see Section 4.4.

4.3.2 Vertices, Edges and Faces of Polyhedra

Here we want to define the building blocks of a polyhedron that we used in the intuitive definition:

vertices, edges and faces.

Definition 4.3.7. Let P be a polyhedron in R3. A face of P is any set of the form

F = P ∩ {x ∈ R3 | (a,x) = a0}

where a ∈ R3 and a0 ∈ R, and (a,x) ≤ a0 is an inequality that is satisfied for all points x ∈ P .

A k-face is a face of dimension k. The f -vector of P is the vector f(P ) = (f−1, f0, f1, f2, f3),

where fk denotes the number of k-faces of P for k ≥ 0 and f−1 = 1.

The f -vectors give us an option to put a classification upon the crowd of polyhedra. In the

project Polytopia we sorted them by the number of vertices and then grouped them by having

the same f -vector. Two polyhedra having the same f -vector were called “siblings”.

(a) The cube. (b) Not the cube.

Figure 4.3: The cube and its only sibling. Both polyhedra have the f -vector (1, 8, 12, 6).

4.3.3 Combinatorial Equivalence Classes

To identify the members of a combinatorial equivalence class of polyhedra, we need to distinguish

between the geometric realization and the combinatorial type of a polyhedron. From now on, we

focus on three-dimensional polytopes and omit the higher dimensional cases. Since the abstract
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system of edges and vertices of a polyhedron P form an undirected and simple graph G(P ),

combinatorial equivalence becomes an easily graspable concept:

Definition 4.3.8. Two polyhedra P and Q are combinatorially equivalent, if and only if their

graphs are isomorphic.

The two polyhedra in Fig. 4.4 belong to the same equivalence class of combinatorially equiv-

alent polyhedra.

(a) A geometrical and combinatorial
cube (b) A combinatorial cube

Figure 4.4

4.3.4 Steinitz’ Theorem

There is even more to the connection between graphs and polyhedra. Steinitz’ theorem tells us

that from every simple, planar, and 3-connected graph, we can derive a polyhedron.

Theorem 4.3.9 (Steinitz’ Theorem, [169, Theorem 4.1]). A graph G(P ) is the graph of a poly-

hedron if and only if it is planar, 3-connected and simple.

Since two polyhedra are combinatorially equivalent when their graphs are isomorphic, Steinitz’

Theorem states that every 3-connected, simple, and planar graph corresponds to an equivalence

class of combinatorially equivalent polyhedra.

While Steinitz’ original proof that can also be found in Ziegler [169], is constructive, it is

not very straight forward. Since our approach is of practical nature, as we want to generate a

representative for each combinatorial equivalence class, we were looking for constructive proofs

that are easier to implement. One version of the proof bases on Maxwell and Tutte and can be

found in Richter-Gebert [126]: Let us assume that the graph G is planar, simple and 3-connected.

It either contains a triangle, or a vertex with degree three. In the latter case, take the dual of
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the graph that must contain a triangle, proceed, and after constructing a polyhedron, again take

the dual of the polyhedron. The graph is everted in a way that a triangular face is the exterior

of the graph and all other faces are on the inside. The outer triangle is fixed as a frame of the

graph. The interior edges can be imagined as being made from rubber bands that are linked

together at the vertices and thus pull at them with even force. This state of the graph is called

an equilibrium state as the forces level each other out at the vertices. In the next step the vertices

are lifted from the plane such that a three-dimensional polyhedron emerges. Figure 4.5 shows an

example of a polyhedron that was generated with GeoGebra. This simple geometry software is

mostly used for educational purposes and its applicability accounts for the straightforwardness

of the method.

(a) (b)

Figure 4.5: Two different perspectives on a polyhedron that has been lifted from a planar simple
3-connected graphs. Note that the lifting occurs downwards, such that the emerging polyhedron
is below the graph, which hovers above the polyhedron.

The reason we did not choose this method to generate the polyhedra for the project is purely

aesthetical. Since the polyhedron is lifted from a carrier triangle, most of the resulting polyhedra

would look like some sort of triangular turtle shell and (combinatorial) symmetries would be hard

to spot.

4.3.5 Koebe-Andreev-Thurston Generalization of Steinitz’ Theorem

Luckily another constructive proof of Steinitz’ theorem gives us a recipe to generate prettier

polyhedra. The Koebe-Andreev-Thurston theorem is a refinement of Steinitz’ theorem and

states a specific realization of the polyhedron.
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Theorem 4.3.10 (Koebe-Andreev-Thurston Theorem, see [170, Theorem 1.3]). Each 3-connected

planar graph can be realized as a 3-polytope, that has all edges tangent to the unit sphere. More-

over, this realization is unique up to Möbius transformations (projective transformations that fix

the sphere).

Figure 4.6: Polyhedron Flensi with edges tangent to a sphere.

Figure 4.6 shows a polyhedron whose edges are tangent to the unit sphere. We call such a

polyhedron a normalized Koebe-Andreev-Thurston polyhedron. Note that the sphere permeates

each face in an inscribed circle.

These definitions suffice to accurately define the protagonists of the project. Each “polyhe-

dron” in the project Polytopia is a representative of the class of combinatorially equivalent

3-polytopes. This representative is realized as a normalized Koebe-Andreev-Thurston polyhe-

dron.

4.3.6 Putting it into Practice

In the digital representation of the website, each polyhedron is represented by a collection of

data: an id-number, a name, a file for the visualization in the viewer, two crafting sheets to build

the models and two files for the 3D printing. Here we want to touch upon the generation of the

visualization files and the crafting sheets and exemplify the process of data generation along the

polyhedron Flensi.
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4.3.6.1 Visualization Files

We start our construction with the set of the all planar, simple, and 3-connected graphs with

up to nine vertices, see Schaffer [132]. To generate all simple, planar, and 3-connected graphs

with a specific number of vertices, we used the software plantri [25]. The graph that will later

become polyhedron Flensi has the number 1566, see Figure 4.7a.

(a) Screenshot of Flensi ’s simple, planar, and
3-connected graph in SAGE.

(b) The normalized Koebe-Andreev-Thurston
realization of Flensi generated with SAGE.

Figure 4.7: The graph and Koebe-Andreev-Thurston realization of a polyhedron

From this graph a normalized Koebe-Andreev-Thurston realization is generated by an imple-

mentation6 of the constructive proof of the Koebe-Andreev-Thurston theorem. The implementa-

tion follows Ziegler’s exposition [170], which is based on the work of Bobenko and Springborn [23].

Figure 4.7b shows the representation of the normalized Koebe-Andreev-Thurston realization of

Flensi.

From the representation of the polyhedron in SAGE, we derived a .json file that can be read

by the viewer on the website. Each .json file contains the coordinates of the vertices, the edges,

and facets that are denoted by the number of the corresponding vertices, see Figure 4.8 to see

the file of our polyhedron Flensi.

4.3.6.2 Edge Unfoldings and Crafting Sheets

The crafting sheets used on the website are .pdf files that contain the net of the polyhedron with

added tabs for glueing and the identification number of the polyhedron. Two crafting sheets are

6The implementation was done by Moritz Firsching in SAGE [150].
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{

"vertices":

[[1.218763924, -0.03992110173, 0.2283440224],

[-0.02250956707, -1.6999595, -0.4284360003],

[-0.4266654456, 0.8860456128, 0.3778642779],

[-0.7564671372, -0.5217108954, 0.4413478661],

[-0.1438629377, -0.005876334581, 1.504060822],

[-1.31542261, 0.217685123, -0.131576948],

[0.5861189509, -0.1733527814, -0.8305600479],

[0.8330879378, 0.03377811496, -0.5747373192],

[0.3213208619, 1.220735125, -0.8779113015]],

"edges":

[[6, 8], [6, 7], [7, 8], [2, 8], [2, 5], [5, 8], [3, 5], [3, 4], [4, 5],

[2, 4], [1, 4], [1, 3], [1, 5], [1, 6], [0, 4], [0, 1], [0, 8], [0, 7]],

"facets":

[[8, 6, 7], [8, 2, 5], [5, 3, 4], [5, 2, 4], [4, 1, 3], [5, 1, 3],

[8, 5, 1, 6], [4, 0, 1], [8, 0, 7], [2, 8, 0, 4], [7, 0, 1, 6]],

"colors":

[null, null, null, null, null, null, null, null, null, null, null]

}

Figure 4.8: The .json file for polyhedron Flensi.

provided for each polyhedron: a colorful one and a black and white option. Figure 4.9 shows

the two crafting sheets for our example polyhedron. Figure 2.9 shows the emerging paper model

and an individualized version.

(a) (b)

Figure 4.9: The colorful and black and white crafting sheets of polyhedron Flensi.
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Descriptively spoken to derive a net of a (hollow) polyhedron, one has to cut it open along

the edges in a way that allows for all the faces to fold flat upon a plane. To distinguish an

unfolding that emerges from cutting along the edges rather than freely cutting through the

faces, we will call the former an edge unfolding. If an unfolding is not overlapping, we will call it

simple. Whether every polyhedron possesses such a simple net, is an open question that will be

discussed in Section 4.4. Note that we will use the terms net and unfolding synonymously.

Definition 4.3.11 (Spanning Tree). The spanning tree of the vertices of a polyhedron is a

connected subgraph T of the graph G of the polyhedron (the one skeleton) that satisfies the

following conditions:

• V (T ) = V (G), i.e. T and G have the same vertices,

• T has no cycles

Definition 4.3.12 (Cut Tree). The spanning tree that is used for cutting a polyhedron in order

to get an unfolding is called a cut tree. If this unfolding is simple, the cut tree is called a simple

cut tree.

In the following we will describe the algorithm that generates the unfolding of a polyhedron.

Algorithm 4.3.13. Let P be a polyhedron and denote by T the spanning tree of its faces, i.e.

the spanning tree of the vertices of the dual polyhedron. Note that the vertices of the faces must

be sorted in such a way that they are cyclical and positively oriented with respect to the interior

of the polyhedron.

1. Walking along the edges of the spanning tree in a depth-first search, we generate a list L

of pairs [Fi, Fj ] of faces such that Fi is nearer to the root for every edge.

2. Then we rotate and transpose P such that the root face is located at the xy-plane and its

first vertex is at the origin.

3. We take the first (next) pair from the list L.

4. The first face Fi of the pair is already located at the xy-plane. Fj is adjacent to Fi. We

identify their two common vertices v and w at the connecting edge.

115



5. The face Fj is a 2-polytope in R3. By affinely and orthonormally mapping the face into its

ambient space, we get a 2-dimensional representation F̄j of Fj that is preserving the shape

and size of Fj .

6. We now transpose F̄j such that the location of vertices v and w remains identical.

Now repeat Steps 3 to 6 for all the pairs in the list.
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4.4 Dürer’s Conjecture

The crafting sheets for polyhedra that we create for the project Polytopia are visualizations

of the unfoldings of the polyhedra on the plane. They can be cut out and glued together along

the tabs in order to built a three-dimensional model. While doing this, we implicitly assume

that every polyhedron has an unfolding whose faces do not overlap. The algorithm we used for

generating the nets did not test for that7.

The underlying question whether every geometrical type of polyhedron can in be developed

onto the plane without any overlaps of the faces was discussed on many occasions [35, 117,169].

This question remained open for a long time and mainly computational experiments lead the

way to finding evidence for and against the conjecture. It is still open in its general form, but

Ghomi has shown in 2014 that at least for each combinatorial type of polyhedron a realization

with a simple unfolding can be found.

In the following, we will present the main developments that have been made in investigating

Dürer’s conjecture. First, we will introduce the problem and some related questions. Then, we

will look into the computational experiments that have been conducted. Next, we will present

some theoretical work together with Ghomi’s recent result. The section closes with presenting

some progress that has been made on related problems and the higher dimensional generalization

of Dürer’s conjecture.

4.4.1 Dürer Invents the Edge Unfolding

With the discovery of drawing perspective in the end of the fifteenth century, new possibilities

to represent space were assessable. The invention of polyhedral nets, which is attributed to the

painter and mathematician Albrecht Dürer takes this development even further [51]. In his book

Underweysung der Messung, mit dem Zirckel und Richtscheyt, in Linien, Ebenen unnd gantzen

corporen [40] we find illustrations of polyhedra and their nets that date back to the year 1525.

These nets are all simple, i.e. their faces do not overlap each other. Dürer’s choice of words

(e.g. “aufreissen”, “aufthun”, or “zusam leget”) in the description of the nets and the polyhedra,

suggests that he interprets nets as a process of unfolding, i.e. cutting a polyhedron open and

7To ensure all unfoldings on the crafting sheets are simple, we waited for the users to complain about overlap.
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flattening it to the plane, as well as folding, i.e. glueing a net in order to yield a three dimensional

body [51].

Figure 4.10a shows the historic print of an octahedron and its unfolding by Dürer, Figure

4.10b depicts the crafting sheet that we used for Polytopia.

(a) The octahedron and its unfolding by
Dürer [40].

Nr. 600006

(b) The crafting sheet of the octahedron
in Polytopia [142].

Figure 4.10

4.4.2 Shephard’s Problem

The often cited question

(A) Does every 3-polytope possess a simple unfolding?

was formulated only in 1975 by Shephard [144] who was more interested in investigating whether

a polyhedron has a combinatorial equivalent that can be unfolded into a net which is a con-

vex polygon itself, i.e. a convex net. His main result is to name classes of polyhedra, namely

pyramids, bipyramids, prisms, antiprisms, cyclic polytopes and wedges that always have a com-
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binatorial equivalent which is unfoldable into a convex net but he also gives a counterexample

for a polyhedron with 17 vertices that does not satisfy this property.

Shephard also touches upon the question whether a net uniquely results in a specific polyhe-

dron when assembled. This depends on two specifications. If the location of the interior edges

are specified and also a rule for the assembly of the outer edges is given, then the resulting

polyhedron is unique. As Shephard points out, and we will see in Section 4.4.6.4, for a convex

polyhedron the specification of the interior edges is not even necessary. Just a rule for how

to glue the boundary together suffices for uniqueness. Furthermore, Shephard shows that the

specification of the inner folds is not sufficient and presents an example of a net that can be

folded into either an octahedron or into a tetrahedron stacked on two of the triangular faces.

Figure 4.11a shows an octahedron and Figure 4.11b a tetrahedron that is stacked on two of the

triangular faces, where both polyhedra have the same net, see Figure 4.11c.

4.4.3 Grünbaum’s Questions

Motivated by the absence of a counterexample, Grünbaum conjectured a positive answer for

Dürer’s Problem in the special case of convex polyhedra. [65]. His second, weaker conjecture:

(B) Every convex polyhedron is combinatorially equivalent to a polyhedron that

has a net [65].

was recently proven right by Ghomi [56]. We’ll get back to this later in this section. Note that

in Grünbaum’s terminology a net is a simple unfolding.

But Grünbaum also posed a stronger problem:

(C) Does every spanning tree of an arbitrary polyhedron lead to its net [64]?

He directly falsified this claim by giving a counterexample.

In 2011, Horiyama and Shoji showed that the Platonic Solids develop in a simple unfolding

for all possible spanning trees. The exhaustive computational proof calculated and tested the

unfoldings for all 5, 184, 000 spanning trees of the dodecahedron and icosahedron, as well as the

384 for the octahedron and the cube and the 16 possibilities for the tetrahedron [79].

Grünbaum stated that every polyhedron combinatorially equivalent to a 3-sided prism or the

tetrahedron has no overlapping unfoldings [64]. However, both statements do not hold. Namiki
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(a) Octahedron that is a bipyramid on a rect-
angle with a golden ratio. (b) Stacked tetrahedron.

(c) The net of both polyhedra.

Figure 4.11: Both polyhedra were realized by Hafner [69].



namely constructed a tetrahedron as a minimal example for an overlapping unfolding, see Figure

4.12a. The overlapping triangular prism is taken from Ghomi [57], see Figure 4.12b.

(a) Self-intersecting net of a tetrahedron. (b) Self-intersecting net of a prism.

Figure 4.12

4.4.4 Computational Experiments

Approaching the problem empirically by computer suggests itself since the problem has a very

hands-on and illustrative nature. As the spanning tree determines the edge unfolding of a

polyhedron, getting a grip on Dürer’s conjecture became a quest for finding a suitable spanning

tree that results in an overlap free unfolding.

4.4.4.1 Random Unfoldings – Schevon

In 1989, Schevon [134] conducted statistical experiments on randomly generated spherical and

cubical polyhedra and unfolded them by also randomly generated spanning trees. It turned out

that with a growing number of vertices the probability of overlap quickly approached 1. She

concluded from her experiment that while each polyhedron may have a simple unfolding, most

unfoldings of a polyhedron do overlap.
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4.4.4.2 Attempts to Characterize the Simple Cut Tree – Fukuda

According to Schevon’s experiments, applying randomly chosen spanning trees seemed to be an

unfruitful approach. Thus, the next guess was that a certain type of spanning trees would result

in a simple unfolding. Since the number of spanning trees grows rapidly when increasing the

number of vertices, the desired spanning tree that would result in a simple unfolding does not

carry enough weight in the random experiment.

There are various ways to compute a spanning tree for a graph. Here we present two such

method that were suspected to always yield a simple unfolding.

Algorithm 4.4.1. To generate a minimal length tree for the graph of a polyhedron P repeat

the following step as often as possible: Among the edges of G not yet chosen, choose the shortest

edge, with respect to the length l(e) :=|| e || which does not form any loops with those edges

already chosen [84].

Fukuda suggested that for all polyhedra, even those that do not contain a spanning-star, the

minimal-length spanning tree would result in a simple unfolding. In 1997 he presented Dürer’s

conjecture in a workshop in Dagstuhl and suggested that each minimal length tree results in a

simple unfolding. Rote however, found a counterexample to this conjecture [53,83].

Lemma 4.4.2 (Spanning Star Lemma, [133]). If the 1-skeleton [i.e. the graph] of a polyhedron

contains a spanning star, i.e. one vertex is adjacent to all the others, then the unfolding using

the spanning star as the cut tree is always simple.

Fukuda proceeded to conjecture that creating an unfolding by cutting along a shortest-path

spanning tree always results in a simple unfolding [53, 83]. This might be understood as a

generalization of Schevon’s spanning star lemma.

Algorithm 4.4.3. Let v ∈ V (P ) be the root vertex of a shortest path tree of a polyhedron

P . For every other vertex w ∈ V (P )\v find a shortest possible path with respect to the length

l(e) :=|| e || for every e ∈ E(P ), traveling only along the edges E(P ).

4.4.4.3 Systematic Approach – Schlickenrieder

Fukuda’s second conjecture also did not stand for long. In the same year Schlickenrieder in-

vestigated the relation between a selection of spanning trees and their resulting unfoldings in
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a systematic computational experiment. He implemented 34 different rules to compute a cut

tree and tested each of these rules on about 10.000 polyhedra of various types. Among the 34

spanning tree rules was also the shortest-path rule, which Fukuda conjectured to always result in

a simple cut tree. Schlickenrieder implemented eight variations of this rule which chose different

roots and weights to compute the shortest path tree. All eight versions failed to deliver simple

unfoldings for all the tested polyhedra. The results of non-simple unfoldings varied between 2.1%

and 19.2% for the versions of the shortest-path rule [136].

None of the 34 tested spanning tree rules was successful for every polyhedron in the test

sample. Nevertheless, for each of the tested polyhedra, the experiment could find at least one

spanning tree rule that resulted in a simple unfolding.

However, the most promising spanning tree rule was the steepest-edge unfolding. It is mo-

tivated by the intuition of peeling an orange and thus, cutting as straight as possible starting

from a base. “Straightness” is translated to “steepness” with respect to a direction c ∈ R3. The

direction c must lie in general position with respect to P , i.e. the height funtion h(·) = 〈·, c〉 has

a unique minimizer vmin and maximizer vmax in V (P ). To construct a steepest edge tree, for

each v ∈ V (P ) one has to find the steepest possible ascending path to the maximizer vmax.

Only a small percentage of the polyhedra from the sample, namely 1.2%, had no simple

unfolding for a fixed direction c. This number remained relatively stable when choosing a different

vector c. For each polyhedron of the sample, a vector c could be found, such that the steepest-

edge rule with respect to the vector c yields a simple cut tree. Hence, Schlickenrieder conjectured

that for every polyhedron a direction c ∈ R3 exists, such that the spanning tree that results from

the steepest edge algorithm yields a simple unfolding.

4.4.4.4 Finding more Counterexamples – Lucier

A counterexample to Schlickenrieder’s conjecture was presented by Lucier in 2007. Even though

the construction is based on theoretical argument and not computation, we put it in this section,

because it directly refers to the above claims and additionally gives another counterexample to

Fukuda’s conjecture for the non-overlapping unfoldings stemming from a shortest-path cut tree.

Lucier scrutinized possible overlaps that may occur in a non-simple unfolding in a local

environment, which can be embedded into the faces of a polyhedron. Using locality, Lucier
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proves that a polyhedron can be constructed such that it results in an overlapping unfolding for

possible steepest-edge unfoldings with respect to any possible direction c ∈ R3 [96].

Lucier claims that the class of normal order cut trees form a generalization of the steepest

order cut trees and proves that even for this class of spanning trees, a counterexample can be

constructed. The motivation for the normal order cut trees, reads: “As an informal intuition,

the success of these [steepest-edge] unfoldings appears to derive from their tendency to ‘expand

outward’ from a central point. It seems natural [...] that such unfoldings would have a high

probability of being simple. [...] A motivation for the research presented in this paper was

whether a simple normal order unfolding exists for every polyhedron. Unfortunately, despite our

intuition, we shall now prove that this is not the case.” [96]

4.4.5 Theoretical Work

Up to now we dealt with computational experiments in order to approach Dürer’s conjecture.

In this section we want to take a look at the theoretical progress that has been made. The first

step was made by an undergraduate student who proved the existence of simple edge unfoldings

for all simplicial polyhedra with up to six vertices by a studious case discrimination.

4.4.5.1 First Steps – DiBiase

A first theoretical approach at investigating Shephard’s question was undertaken by DiBiase. The

work proves that all simplicial polyhedra with up to six vertices have a simple edge unfolding.

The case discrimination considers all possible planar maps of the combinatorial types of simplicial

polyhedra with four, five, or six vertices and examines each case in detail. Since the method

of case discrimination is becoming more and more complex as the number of vertices increase,

it is not promising to try and generalize DiBiase’s approach for polyhedra with more that six

vertices [38].

4.4.5.2 Combinatorial Result – Ghomi

In their book “Unsolved Problems in Geometry”, Croft, Falconer and Guy [33] have dedicated a

section to Dürer’s conjecture and related questions. One question that is directly derived from

the question whether every polyhedron possess a simple unfolding, is whether each combinatorial

type of polyhedron can be unfolded in a non-overlapping way. Ghomi [56] was able to verify in
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2014 that every polyhedron can be affinely transformed and then unfolded in a simple net. The

guiding principle is that the polyhedron is transformed to a slim and needle-shaped form and

then cut lengthwise. The intuition is lead by the image of a banana that is peeled lengthwise

and the strands of the peel spread out in a circular fashion.

In mathematical terms, firstly a stretching is performed on a polyhedron P in general position.

Then for a sufficenty large λ, applying the affine transformation defined by:

Aλ(p) :=
1

λ
(p+ (λ− 1)〈p, u〉u),

results in a needle shaped polyhedron P that peaks in the direction u. Now we can find a

monotone spanning tree that has a root in the minimizing vertex and is strictly monotonly rising

along its simple path towards the leafs. Cutting the polyhedron open along this trees results in

a simple unfolding [56].

Sert and Zamora [141] picked up Ghomi’s idea of streching the polyhedra and were able to

simplify his proof and shorten it considerably. While Ghomi is relying on topological methods,

they employ only elementary linear algebra in their straightforward proof.

4.4.6 Related Problems

The third part of this section about Dürer’s conjecture is dedicated to related problems, such

as the existence of simple unfoldings for non-convex polyhedra, cutting across faces and not just

along the edges. We sum up some results on the inverted question, namely whether a given

polygon can be folded into a polyhedron by joining its boundary and finish with a short glimpse

into the higher dimensional generalization of Dürer’s conjecture.

4.4.6.1 Non-convex Polyhedra

In Biedl et al. [21] a non-convex polyhedron that did not result in a simple unfolding was intro-

duced. The polyhedra in Figure 4.14 are named ortho-stacks, since they are stacked from cubes

and cubical elements. Looking at the polyhedron in Figure 4.13a, one can easily see that the

small cube that is located on top of the bigger cuboid, cannot unfold within the annulus of the

face it is attached to. A less trivial example that does only allow simply connected faces is a

cube with little indentations at the center of the edges. All faces are simply connected. For two
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neighboring big faces two possibilities occur. Either they are still connected, which results in a

lack of space for an unfolding of the indentation, or if they are separated and the indentation is

fully unfolded the big faces overlap. Thus, no simple unfolding for this polyhedron exists [21].

(a) (b)

Figure 4.13: Two non-convex polyhedra with have no simple unfolding. Figure taken from [21].

When we look at the graph of the ortho-stack polyhedron in Figure 4.13b, we see that along

the indentations it is not 3-connected. Thus, the graph does not satisfy Steinitz’ theorem and the

polyhedron is not topological convex, i.e. its graph is not isomorphic to a convex polyhedron [20].

Bern et al. [20] settle the questions whether a non-convex, topologically convex polyhedron

and a non-convex simplicial polyhedron can have no simple unfolding, by constructing two exam-

ples. The polyhedron in Figure 4.14a is constructed from four basic hats that cannot be simply

unfolded. Twisting the spike in the middle of the hat by 60◦ results in a reverse orientation in

comparison to the boundary and “breaks” the trapezoids into triangles, see Figure 4.14b. Thus,

the emerging polyhedron is simplicial. Both of these polyhedra with 24 and 36 faces, respec-

tively, do not possess a simple egde unfolding. Nevertheless, if cutting across faces is allowed,

their boundary can be isometrically embedded into the plane. Thus, edge unfolding is a stronger

restriction than general unfolding [20].

4.4.6.2 General Unfolding

In contrast to the edge unfolding, a general unfolding allows cutting across the faces, but still

respects the vertices of the polyhedron as branches of the cut tree. Two methods that always
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(a) A non-convex, topologically convex
polyhedron that does not possess a sim-
ple unfolding.

(b) A non-convex, simplicial polyhedron
that does not possess a simple unfolding.

Figure 4.14: Both figures taken from [20].

result in simple unfoldings are known: the star unfolding and the source unfolding [35]. The two

are closely related and we will introduce the method of star-unfolding here. Let x be a point on

a polyhedron P that has a unique shortest path to every vertex of P , where the shortest path is

measured on the surface of P . Cutting along these shortest lines results in a simple unfolding for

the polyhedron P . The star unfolding was invented by Alexandrov in 1950 [10] and its property

to be simple was proved by Aronov and O’Rourke in 1992 [12]. See Figure 4.15 for an example

of a net that emerges from a star unfolding of a triangular prism. Note that in this example, the

point x is located in the middle of one of the quadrilateral faces of the prims.

Figure 4.15: Star unfolding of a triangular prism.
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4.4.6.3 Pseudo-Edge Unfolding by Ghomi and Barvinok

Ghomi and Barvinok [16] point out that the concept of an edge is not well understood “from the

point of view of isometric embeddings”. Thus, they investigate unfoldings with respect to pseudo-

edges. A pseudo-edge connects two vertices of a polyhedron as a distance minimizing geodesic,

as does an edge. The actual edges also frame the faces of the polyhedron, a characteristic not

shared by the pseudo-edges. An unfolding that results from cutting along the pseudo-edges thus

might cut across faces [16].

Definition 4.4.4. Let P ∈ R3 be a convex polyhedron. For two distinct points x, y on the

boundary of P consider all shortest paths between them traveling along the surface. A geodesic

is a path between x and y on the surface of P that is at least locally a shortest path.

Ghomi and Barvinok constructed so-called “almost flat convex caps” over an equilateral tri-

angle and applied Tarasov’s unfoldability criterion for pseudo-edge graphs [148]. The caps consist

of 46 vertices each and are assembled to the faces of a tetrahedron. The resulting polyhedron

proves to not be unfoldable in a non-overlapping way with respect to a pseudo-edge graph.

Since edges share many metrical characteristics with pseudo-edges, the counterexample they

found for a pseudo-edge graph is an evidence but not a proof for the negation of Dürer’s conjecture

[16, 57]. The strength of this evidence is uncertain since the authors claim themselves that

“edges do indeed exist intrinsically”, as Alexandrov’s theorem, see Theorem 4.4.5 below, and

especially its constructive proof by Bobenko and Izmestiev [22] demonstrate. They just are not

well understood at the current moment.

4.4.6.4 The Inverted Problem: Is a Polygon a Net of a Polyhedron?

If a simple edge-unfolding of a polyhedron exists, it is a simply connected non-overlapping poly-

gon. Thus, the question whether a simple polygon is the net of polyhedron arises: Given a

bounded polygon G embedded in the plane, can we find an allocation, i.e. glueing rule, for the

boundary of the polygon that results in a polyhedron?

An existential answer to this question is given by Alexandrov’s theorem. For polygon G, two

conditions are required to establish an Alexandrov glueing [35], namely:

• “The positive curvature condition”: for each vertex of the development [polygon], the sum

of the angles glued together at this vertex must be at most 2π.
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• “The Euler condition”: if f , e, and v denote the number of faces, edges and vertices in a

development [polygon], then the equality f − e+ v = 2 must hold.

Then Alexandrov’s theorem reads:

Theorem 4.4.5 (Alexandrov’s Theorem, [Section 2, Theorem 1] [10]). The stated conditions are

not only necessary but also sufficient for a given development [polygon] to define a closed convex

polyhedron by gluing. Moreover, there may be only two such polyhedra: one is the mirror image

of the other, or, which is the same, one of them is the other “inside-out”.

Note that in this formulation a doubly covered polygon which for example emerges from

folding a square at its diagonal, also counts as a polyhedron [10].

We can easily see that these conditions are always fulfilled for convex polygons Pconv when

applying a semiperimeter-glueing: Choose a random point x at the boundary of Pconv and

“pinch” the polyhedron together at x. From there glue all the opposing points at the boundary

left and right of x together. Eventually you will reach the point y that is on the other side of the

perimeter of x and “zip up” the boundary there. This gluing rule suffices both of Alexandrov’s

conditions. Since the polygon is convex, all the angles at the points of the boundary do not

exceed π. Hence, the sum of two angles is not bigger that 2π [116], [35].

The original proof by Alexandrov only proves existence. Thus, it does not contain any

information about the shape or type of the emerging convex polyhedron, nor does it give any

conditions for the shape of the polygon that help us decide whether it folds into a convex

polyhedron or not.

Croft, Falconer and Guy [33] have expressed the wish for “an algorithm to determine whether

or not a given configuration of polygons is a net of some convex polyhedron” while hinting at

Alexandrov’s intrinsic metric. This approach was taken up by Bobenko and Izmestiev in 2008,

who constructively proved Alexandrov’s theorem and also provided a numerical algorithm to

determine the convex polyhedron from a given polygon [22].

Alexandrov’s theorem and the construction algorithm concern only convex polyhedra. Burago

and Zalgaller answered this question in 1996 and showed that every simple polygon is an unfolding

of a (mostly non-convex) non-selfintersecting polyhedron [28]. O’Rourke points out that this

result was already published in 1960, but this paper is available only in Russian [115].
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4.4.6.5 Higher Dimensions

The problem of polyhedral unfoldings can be generalized to higher dimensional polytopes as well.

The cutting in dimension d occurs along (d− 1)-dimensional facets of the polytope. An example

can be seen in Dali’s famous painting “Crucifixion (Corpus Hypercubus)”. It depicts the body

of Christ being crucified to a three dimensional unfolding of a four-dimensional hypercube. This

unfolding occurs without intersection (i.e. overlap) of the cubes.

Little research has been done on higher dimensional unfoldings [35,108]. Miller and Pak [108]

investigated the interaction between the combinatorial structures of polytopes and their metric

characteristic and called it the metric combinatorics of a polytope. Additionally they could

prove that the higher dimensional generalization of the source unfolding always results in a

non-overlapping unfolding.
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Conclusion

This thesis studies mathematical science communication. The case study Polytopia – Adopt

a Polyhedron is at the center of this study and builds the backdrop of all four areas of research

that are touched upon in this interdisciplinary work.

A credible science communication project in mathematics needs a strong foundation in the

science of mathematics. In our case this was the theory of polyhedra. After elaborating on the

history of the term polyhedron, we describe our own use of this notion. For the website data

for all combinatorial types of polyhedra with up to nine vertices was generated. The following

digression into Dürer’s conjecture shows the link between the playful and creative approach of

our project and active mathematical research.

The project’s link to mathematics education is twofold. Adapting the school materials to the

curriculum in such a way that the students can practice tasks of curricular mathematics while

glimpsing into scientific mathematics ensures the inclusion of learners at all skill levels. Borrowing

from modern didactical principles for the overall design of the project shows the possibilities

for informal learning to learn from formal didactics. We believe that knowledge transfer is a

central part of the mandate of (mathematical) science communication. Thus, bringing together

mathematics education and mathematical science communication can create vibrant formats of

knowledge transfer.

The practical realization of the project involved many decisions on the design, the structure

of the website, and its content. Besides reflecting on the process of execution, evaluation is

an essential part of the documentation, as connections can be drawn, problems diagnosed and

needs identified. Unfortunately, no methodology for measuring success of science communication

projects is established yet. Therefore, the chosen evaluation approach must be understood as an

experiment that builds the basis for further development.
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The formalization of the objectives, methods and motivations of mathematical science com-

munication is aligned with the development in the discourse of general science communication.

Analysis of literature demonstrates that some steps in the development of mathematical science

communication are still missing. It is important to emphasize that modern formats in this area

do exist, but it is the discussion about them that is lacking precise formulations. If mathemat-

ical science communication wants to be consistent with its foundational science that lives by a

very active scholarly exchange, it is essential to open up a lively dialogue about the projects

and begin to negotiate on a terminology that identify its objectives, methods and motivations.

Another important point in this dialogue is the clarification of the societal role of mathematical

science communication. The economic argument of cultivating a mathematically and therefore

technically skilled next generation workforce can be augmented with a wider view of mathemat-

ical literacy that for example includes the ability of orientation in an digitalized world that is

increasingly based upon algorithmically assessed data.

The experimental approach turned out to be very fruitful because the process of bringing a

project into a specific form results in many questions. Some of those are easy to answer, others

require some research, whereas further questions reach far into the philosophy of science, or the

political and social environment.

Still, there is an enormous potential for progress in filling the theoretical vacuum of the

practice of mathematical science communication. The entire spectrum, with science on one end

and the public on the other, should be subjected to the investigation for which the following

prompts and questions can serve as impulses:

• Classification and comparison of projects of mathematical science communication. Collec-

tion of the methods, goals and motivations.

• Analysis of the constituency of mathematical literacy and its subsumable concepts like crit-

ical mathematical literacy or algorithmic literacy. What is their relevance for the individual

beyond formal education?

• Development of methods for evaluation of science communication projects and identifying

the peculiarities of mathematics.

• What constitutes to the negative image of mathematics? What does negative mean in this

context? What public image do mathematicians wish to project?
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• Advancing the development of mathematical citizen science, finding suitable research ques-

tions and implementing the collaborative process in a way that invites citizens and honors

the scientific rigor.

• Does the practice of mathematical science communication and its particular projects further

encourage existing structures of inequality?

This thesis is a first step towards studying mathematical science communication as an inde-

pendent scientific field. The area of study is located between mathematics and its education,

sociology, communication science, and journalism. For further understanding of the foundations

of mathematical science communication it is necessary to thoroughly study more than one project

and conduct a comparative analysis of many different projects in the field. Mathematical science

communication is the practice that actively shapes the exchange between mathematics and the

public. Therefore, we believe that the further study of mathematical science communication

deserves attention.
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Dürer’s solid. Journal of Mathematics and the Arts, 8(3-4):111–119, 2014.

[55] Peter Gallin. Dialogisches Lernen. Von einem pädagogischen Konzept zum täglichen Unterricht.
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FAQ

How can I adopt a polyhedron?

You can choose a polyhedron from the matrix. Select your polyhedron by clicking on one of the

black pixels. The green pixels are the polyhedra that have already been adopted, so you can

look at them but not adopt them again. The black ones are free.

When you have clicked on a pixel, you will see a detailed view of the polyhedra. You can

turn it around and look at it from all angles. If you and the polyhedron get along well and you

decide to adopt it, you can click: Adopt me.

A new window pops up and you can sign up with your email address. We will send you a

confirmation email. Go to your email-inbox and click on the link in the email.

Congratulations, you have adopted your very own mathematical object! Now you can give

it a name. This can be your name or the name of your pet or a fantasy name. Try to come up

with a name right away, your polyhedron will be very happy once it is named.

Realize your Polyhedron

In order to free the polyhedron from abstraction, it needs to take shape as a model. There are

two options available. One possibility is to download the paper template below the polyhedron.

You can cut it out and glue it together along the tabs. Here (Video is in production.) is a video

to help you assemble the paper model.

Another possibility to make a model is via a 3D printer. The data can also be downloaded

below the polyhedron. You may use an online 3D print service (We are looking for a sponsor for

you.), and have it sent to your home.

Now your polyhedron has come to life! In order to prove that – you know that proofs are the

bread and butter in mathematics – take a picture and upload it. Since the photo proof is visible

for all users, we would like to ask you to make sure that the photo contains only the polyhedron

and a rather neutral background. Quadratic pictures look best on our website.

Individualize your polyhedron

To add a little personality to your polyhedron you may build a creative model of it. There are

no limits to your unique ideas, or the choice of material. Classical materials like wood, clay or
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cardboard are possible, but polyhedra are naturally keen to experiment and very happy if you

build them out of more creative materials. Why not make a cheese polyhedron in contrast to

the old cheese cube? If you have made an individual model, please also upload a picture.

What is a Polyhedron?

Polyhedra consist of vertices, straight edges, and flat faces. In our project, we focus on convex

polyhedra. This means that all inner angles between two edges or two faces are less or equal

to 180◦. No cavities, holes or indentations are allowed. The word polyhedron comes from the

combination of Greek words poly- (many) and -hedron (face).

Polyhedra are classical objects in geometry. The ancient philosopher Plato describes the

class of regular polyhedra. Nowadays we call them Platonic solids. These bodies consist only of

regular polyhedra, i.e. equilateral triangles, squares and equilateral pentagons. Euclid gave the

first constructive proof of the completeness of that classification in his treatise Elements.

Up until today polyhedra and their higher-dimensional relatives, the polytopes are thoroughly

investigated by mathematicians. You can find more information about polyhedra and their

properties in the glossary.

Is every polyhedron really unique?

Yes, all polyhedra are different from each other. No two are identical. If you adopt a polyhedron,

it really is unique. The polyhedra fundamentally differ in their combinatorial structure. This

means that no two polyhedra have the same order of vertices, edges and polygons.

What does Realization of a polyhedron mean?

A polyhedron is labeled realized when a model has been built. This may be a paper model that

can be crafted from the paper template, or a 3D printed object. In order to prove the realization,

you must upload a picture that you have taken of the model.

What does Individualization of a polyhedron mean?

To get to know your polyhedron a little better and add some personality, you may also individ-

ualize it. This means that you make another model out of a creative material of your choice.
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This could be wood, a sponge carved into the same form, a polyhedral marble-cake or a Plexiglas

figure. It is easiest if you base the structure of your individualized model on the paper or 3D

printed version in order to get the structure of the polyhedron right. Again, a picture proof is

necessary.

Is the adoption of a polyhedron official?

Of course, mathematical objects do not belong to anyone. You can not register patents or sue

someone who has stolen an idea for them. Similarly, the polyhedra in our project are free beings,

like the stars in the universe, which you can also adopt but can not take home. So the adoption is

solely authorized by everyone’s acceptance. The project is backed by the Collaborative Research

Center 109. This is an association of mathematicians of the Technical University Berlin and

Technical University Munich, attached is also the Freie Universität Berlin.

Glossary

Polyhedra

Polyhedra are geometrical bodies that consist of vertices, straight edges and flat faces. In our

project we restrict ourselves to convex polyhedra. This means that all inner angles between two

edges or two faces are less or equal to 180◦. No cavities, holes or indentations are allowed.

The most prominent examples of polyhedra are the cube and the pyramid. You also may

have encountered the prism or the octahedron. But there are so many more polyhedra.

The Platonic solids are a very symmetric and regular class of five polyhedra. They consist

only of congruent (same shape and size), regular (all sides the same length) polygons. The tetra-

hedron, the octahedron and the icosahedron comprise of regular triangles. In every corner of the

tetrahedron, three triangles meet. In the case of the octahedron four and with the icosahedron

five triangles build a joint at each vertex. If you put six equilateral triangles at a vertex, which

each have an interior angle of 60◦, you get a full circle of 360◦ and they lie flat on the ground.

Therefore, no new body emerges. Similarly, the cube is built from three squares and the dodec-

ahedron from three equilateral pentagons at each vertex. Euclid used this approach in his proof
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to show that there can be no further polyhedra with these properties, thus classifying the five

Platonic solids.

(a) (b) (c) (d) (e)

Figure 4.16: The platonic solids.

But symmetric polyhedra are not the only interest of mathematicians. For their research

they are searching for polyhedra (or their higher-dimensional equivalent, the polytopes) that

have specific properties. We have asked some geometers – this is what the mathematicians who

study geometry are called – about their favorite polyhedra and this is what they said:

Figure 4.17: The associahedron.

“If polytopes could be viewed as rocks, then the associahedron is the diamond of polytopes.

Diamonds are made of a very common element in nature – carbon – and likewise the associahe-

dron can be realized via very common tools. Yet it enjoys such a unique and rare structure – and

provides such a fascination– that no other polytope may ever be compared to the diamond.”

Jean-Philippe Labbé

Figure 4.18: The icosahedron.
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“My favorite 3-polytope is the icosahedron, for its complexity yet simplicity. If you start

gluing equilateral triangles, five at a vertex, and no matter what you do you end up with this nice

thing. When I got bored in high school (which, yes, happened), I drew icosahedra in the margins

in my notebooks. Sometimes they were not totally regular; I amused myself making them look

like faces. Last but not least, I am fascinated by the fact that you can decompose its 12 vertices

into three golden rectangles intertwined as Borromean rings.”

Francisco Santos

“My favourite polyhedron is “Miller’s solid”, also known as the “pseudo-rhombicuboctahedron”

or as the “elongated square gyrobicupola”, probably first found by D. M. Y. Sommerville in 1905

– an object that was often overlooked (already by Archimedes’), discovered and rediscovered (by

J. C. P. Miller, among others). It is pretty, but if you look closely it has a certain twist, so it

is not perfect. It looks classical, like an Archimedean solid, but it isn’t really, at least according

to the modern definition of an Archimedean solid. Thus it is a good reminder that we have to be

careful with definitions in mathematics, and always look at possible exceptions and special cases.”

Günter M. Ziegler

Figure 4.19: An example of a Koebe polyhedron.

“My favourite polyhedra are the Koebe polyhedra. All their edges touch a sphere. All faces

of these polyhedra have inscribed discs. The discs of neighbouring faces touch. These exist an

explicit dualization procedure that generates discrete minimal surfaces from Koebe polyhedra. The

corresponding surface is then a discrete P-Schwarz surface and the Koebe polyhedron is its Gauss

map.”

One can read more in: A.I. Bobenko, T. Hoffmann, B.A. Springborn, Minimal surfaces from

circle patterns: Geometry from combinatorics, Ann. of Math. 164:1 (2006) 231-264 and can

see in the animation movie “Koebe polyhedra and minimal surfaces” by Bobenko, Janek and

Techter http://discretization.de/en/movies/koebe/

Alexander Bobenko
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Polygon

A polygon is a two-dimensional polyhedron which consists of vertices and edges. The area

bounded by the edges is the polygon itself. Three-dimensional polyhedra are made up of vertices,

edges and polygons, i.e., the faces.

A special class of polygons are called the regular polygons. They are made up of equilateral

edges (all the same length) and all their inner angles are the same. Some examples of regular

polygons are the square, equilateral triangle, and equilateral pentagon. Regular polygons form

the building blocks for the Platonic and Archimedean solids.

(a) (b) (c) (d)

Figure 4.20: A cube with its net and a polygon with seven corners and the associated net.

Polyhedral Nets

If you cut a hollow cube on enough edges, unfold it and lay it flat on the plane, you get what

is called the net of the cube. If you draw this net on paper, you get an outline which you can

cut out and glue together to form the cube. Of course, this method works for any polyhedra.

In our project, we use exactly these templates to build our models. We simulated this process

of cutting open and unfolding polyhedra with a computer and automatically created the nets of

the polyhedra.

Archimedian Solids

Another very symmetric and hence ‘beautiful’ class of polyhedra are the Archimedean Solids.

They also only consist of regular polygons, but here unlike the Platonic Solids a combination

of them is allowed. The most common representative is the soccer ball. Mathematicians would

rather speak of a truncated icosahedron, since it emerges when you chop off the tip of each vertex

of an icosahedron.
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(a) (b)

Figure 4.21: On the left an icosahedron and on the right its truncation - a soccer ball.

Vertices Polyhedra

4 1
5 2
6 7
7 34
8 257
9 2.606
10 32.300
11 440.564
12 6.384.634
13 96.262.938
14 1.496.225.352
15 23.833.988.129
16 387.591.510.244
17 6.415.851.530.241
18 107.854.282.197.058
19 ???

How many polyhedra are there?

For every fixed number of vertices, there are a certain number of polyhedra. In the table [9], the

number of different types of polyhedra is given for the number of vertices. It is clear that the

number of types increases rapidly. If you have four points in space, they are either all on the

same level (not three-dimensional), or the shape will be a pyramid over a triangle. Therefore,

there is only one polyhedron with four vertices, the tetrahedron.

For five vertices, there are two possibilities: the pyramid over the square, if four of the five

vertices lie the same plane, or the double pyramid over a triangle. For six vertices, finding the

seven different types starts to get more complicated.
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(a) (b) (c) (d) (e)

(f) (g)

Figure 4.22: All seven types of polyhedra with six vertices.

In order to find out how many polyhedra types actually exist for each number of vertices, we

have to create and list them. But how do you know that this list is complete and no polyhedron

is counted twice? In geometry, Steinitz’s Theorem states that each polyhedron can be uniquely

assigned to a graph with certain properties. (Here the notion of a graph is not referring to

the ones living in coordinate systems but the ones that are subject to graph theory). These

graphs are mathematically easier to grasp and therefore count. But even for this, you will need a

computer because the numbers get very large very fast. The number of seven- and eight-vertice

polyhedra, 34 and 257 respectively, were found back in 1899. For the discovery of the 2606

nine-vertice polyhedra in the year 1969 the invention of the computer was necessary.

Dimension

In mathematics, there are many ways to interpret dimensions. One way is to imagine dimensions

as the number of variables. For example, the ingredients of an apple pie (flour, butter, sugar,

eggs, baking soda and apples) can be understood as six variables and therefore the apple pie is

a six-dimensional object.

By looking at photos and films, which are a representation of our three-dimensional world in

a two-dimensional medium, we are used to seeing an extra dimension. This process of mapping

a higher dimension into a lower one that is taking a two-dimensional photograph of the three-

dimensional world, is called a projection in mathematics.
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Unfortunately, it is not possible to truly represent four-dimensional space in the three-

dimensional space surrounding us, but we can use projections to understand it. For example,

if you look at a cube, its faces are squares. A square can be thought of as a two-dimensional

cube, because all its sides are the same length, so the sides of the three-dimensional cube are

two-dimensional cubes. This idea extends to higher dimensions. The side surfaces of a four-

dimensional cube are three-dimensional cubes. The result is a so-called tesseract. Here is a link

to a video where this relationship is graphically visualized.

Convex/Convexity

When we speak of polyhedra, we silently assume that they are convex polyhedra. Convex means

that there are no indentations, cavities or holes. The mathematical definition of convexity states

that for any two points that lie within a set, a straight line connecting them must lie completely

within the set.

(a) (b)

Figure 4.23: On the left a convex, on the right a non-convex object.

Combinatorial Type

Each polyhedron can be geometrically realized in different ways. It can be big or small, and its

shape can also be changed, as long as the structure of the vertices, edges and surfaces remains

the same. This structure, which is the number of edges meeting at the vertices, and the number
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of vertices belonging to each surface, is called the combinatorial type of a polyhedron. We

call two polyhedra combinatorially equivalent if they possess the same combinatorial type, i.e.,

one can uniquely assign vertices to each other so that if two vertices in one polyhedron are

connected by an edge, then the vertices in the other polyhedron are connected by an edge.

Every polyhedron has an infinite number of different geometric interpretations. If you choose a

polyhedron on Polytopia.eu, you will adopt the entire combinatorial type. So you have actually

adopted infinitely many polyhedra. To make it less confusing and easier to make the model,

we have chosen a clear realization of the polyhedron. These are the so-called Koebe-Adreev-

Thurston realizations of polyhedra. In particular, these realizations have a sphere inscribed

inside the polyhedra that touches each of the edges at exactly one point. In particular, each

surface contains a circle that touches the edges just once.

f-vector

The f-vector of the polyhedron indicates how many vertices, edges, and faces it has. A vector

in this case is not a geometric quantity but only the way of representing these numbers. The

cube consists of 8 vertices, 12 edges, and 6 faces, and thus has the f-vector (8,12,6). However,

the polyhedra are not uniquely determined by this vector. There may be other polyhedra with

the same f-vector that have a completely different structure. We call these polyhedra siblings.

(a) (b)

Figure 4.24: Here we see a cube and its sister. She also possesses 6 faces, 12 edges, and 8 vertices
but contains an entirely different structure that the cube.
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Mathematical Models

Physical models and their construction have long played an important role in mathematics. For

one thing, there was simply no other way to understand ideas in a three-dimensional environ-

ment. Of course, three-dimensional models can always be drawn, but then the drawing is only a

projection of the model onto the plane, much like taking a picture of the model. When it comes

to photos of familiar objects, recognizing the space does not cause us any problems, because we

know, for example that a table is usually right-angled. If we see a perspectively distorted table

in a photo, we intuitively know about the right angles. Of course, this intuition is not there

when trying to understand the structure of an unfamiliar geometric object. In order to recognize

certain properties, such as an axis of symmetry, it is very helpful to actually hold an object in

your hand and turn it.

Models serve not only to gain knowledge but also to share knowledge. To make their research

accessible to others, mathematicians needed a way to visualize it. Nowadays, this is done mainly

with computers. There is a lot of software to generate mathematical and geometric graphics.

Rotation of a model using this software also counteracts the problem of restriction to the flat

screen.

Dürer’s Conjecture

Although mathematicians have been dealing with polyhedra since ancient times, not everything

is known about them. For one thing, every question that is answered only brings about new

questions. For example, the number of three-dimensional polyhedra is known only up to 18

vertices. If somebody should find out how many polyhedra there are with 19 vertices, one can

immediately ask about the number of polyhedra with 20 vertices. There are also questions that

have been waiting a long time for an answer. A nice example, because it is easy to understand

and yet still an unsolved problem, is the so-called Dürer conjecture. The painter Albrecht Dürer

spent some years studying mathematics and the concept of the net of a polyhedron goes back to

him. In his book, “The Painter’s Manual” he drew nets of several polyhedra.

A net of a polyhedron is created by considering the polyhedron as an empty shell, which is cut

along its edges in such a way that it remains connected but can be laid flat without distorting the

faces. The question behind Dürer’s conjecture is whether this is possible for every polyhedron
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such that the faces do not overlap when it is unfolded. In other words, does every polyhedron

have a net?

To date, many mathematicians have considered this question and there are some intermediate

results. For example, it is known that you can unfold any polyhedron without overlap if you

pull and distort the faces and thus change its geometrical realization but not its structure (s.

https://arxiv.org/pdf/1305.3231.pdf). The only polyhedron for which we know for sure that can

always be unfolded without changing its geometrical structure is the tetrahedron.

Since we have automatically generated the unfoldings for the polyhedra in our project, it is

possible that the net of your adopted polyhedron is overlapping. If so, write us an email!

Siblings

Polyhedra are siblings if they contain the same number of vertices, edges and faces, hence the

same f-vector. Similar to human siblings, some polyhedral siblings do look alike each other while

others have a completely different form. The cube consists of 8 vertices, 12 edges and 6 faces.

These numbers do not uniquely define its structure. There are polyhedra who have the same

f-vector but an entirely different structure.

Fields of Application of Polyhedra

From a purely mathematical perspective, polyhedra are, above all, beautiful and interesting,

and their exploration requires no further justification. Nevertheless, one can obviously ask the

question, which is almost as old as mathematics itself, what do you really need it for?

One important application of polyhedra is Linear Optimization. It is a method that is often

used in business, among other areas, to make decisions that depend on many factors.

One example is making a timetable and network line for a public transportation system.

There are many variables to be considered, such as arrival and departure times, operational

costs, line capacities and so on. City planners want to meet public expectations for how often

a train comes and also minimize the costs, run enough trains to carry enough passengers, but

are also limited to the number of trains on the tracks for safety reasons. From these variables,

a system of linear inequalities arise and their set of possible solutions form a polytope. The
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optimal solutions are located at the vertices of that polytope. So finding these vertices gives city

planners optimal ways to build the most effective timetable possible.

How do the names of mathematical objects actually come about?

The Greek word for five is “penta”, so a pentagon is a five sided polygon. The hexagon, heptagon,

and octagon get their names in the same way, but there is no trigon. Instead, a triangle is the

3-sided polygon and gets its name from its three angles. But then what is a square? Clearly, it

is not enough that the name alone can give a definition. Although “square” does not describe

the features, it is a commonly known shape. Therefore, it is necessary to actually use the name

so that its meaning is well known.

Mathematical objects are also often named after mathematicians. More often than not, these

objects and other concepts have been named after male mathematicians, but female mathemati-

cians have also left a legacy behind. The Noetherian rings, named after Emmy Noether, and the

Witch of Agnesi, after Maria Agnesi are some examples, but there is a need to close the gender

gap.

Mostly, the objects that are named after mathematicians are given these names by scientists.

The concept of a ring was already known, but to be able to distinguish the rings that Emmy

Noether wrote about from the general ones, one talked about Noetherian rings. The convention

of these rings came first and later a definition was established.

The Dürer conjecture was never proposed by the painter Albrecht Dürer himself but the un-

derlying nets of polyhedra go back to him. The conjecture itself was posed by the mathematician

G. C. Shephard in 1975. Why then it is known as Dürer’s and not Shephard’s conjecture, one

can only speculate.

In summary, the rules and conventions for naming are rather ambiguous. It is similar to

getting a nickname – if everyone knows who or what is meant, then the name sticks.
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Data Protection

The “Polytopia” project aims to provide mathematics to students from a different angle, as well

as to interested adults. On our website users can register and adopt an individual mathematical

object, namely a polyhedron. Through this adoption, a relationship is created, which is intended

to stimulate intensive study and to develop mathematical questions. Results of this activity can

be presented as a photo in one of our galleries, to inspire other participants as well.

We take the protection of personal data very seriously and treat personal data confidentially

in accordance with the statutory data protection regulations and this privacy policy.

We try to avoid the collection of personal data as much as possible. However, an inquiry of

e.g. the email address is essential. Here, you will find the following information:

• Name and address of the responsible person

• General information about data processing

– Extent of processing of personal data

– Legal basis for the processing of personal data

– Data erasure and storage duration

– Creation of log files

– Use of cookies

– SSL encryption

• Forms

– Registration

– Contact form and e-mail contact

– Newsletter

• Rights of the person concerned

Name and address of the responsible person

The person responsible within the meaning of the General Data Protection Regulation (GDPR)

and other national data protection laws of the member states as well as other data protection

regulations:
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Prof. Dr. Alexander I. Bobenko Institut für Mathematik, MA 8-4, Technische Universität

Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany E-Mail: bobenko[at]math.tu-berlin.de

General information about data processing

Extent of processing of personal data

In principle, we process personal data of our users only insofar as is necessary to provide a

functioning website and our content and services. The processing of personal data of our users

takes place regularly only with the consent of the user. An exception applies to cases in which

prior consent cannot be obtained for reasons of fact and the processing of the data is permitted

by law.

Legal basis for the processing of personal data

Insofar as we obtain the consent of the data subject for processing of personal data, Art. 6 para.

1 lit. a EU General Data Protection Regulation (GDPR) serves as legal basis. In the processing

of personal data necessary for the performance of a contract to which the data subject is a party,

Art. 6 para. 1 lit. b GDPR serves as legal basis. This also applies to processing operations

required to carry out pre-contractual actions. Insofar as the processing of personal data is

required to fulfill a legal obligation which the persons responsible must fulfill, Art. 6 para. 1 lit.

c GDPR serves as legal basis. In the event that vital interests of the data subject or another

natural person require the processing of personal data, Art. 6 para. 1 lit. d GDPR serves as

legal basis. If the processing is necessary to safeguard the legitimate interests of the persons

responsible or of a third party, and if the interest, fundamental rights, and freedoms of the data

subject do not prevail over the first interest, Art. 6 para. 1 lit. f GDPR serves as legal basis for

processing.

Data erasure and storage duration

The personal data of the data subject will be deleted or blocked as soon as the purpose of

the storage is deleted. In addition, such storage may be provided for by European or national

legislators in EU regulations, laws, or other regulations to which those responsible are subject.

Blocking or deletion of the data also takes place when a storage period prescribed by the standards
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mentioned expires, unless there is a need for further storage of the data for conclusion of a contract

or fulfillment of the contract.

Creation of log files

Each time our website is accessed, our system automatically collects data and information from

the computer system of the calling computer. The following data is collected here:

• The IP address of the user

• Time of access

• Websites from which the system of the user comes to our website

• Websites that are accessed by the user?s system on our website

A storage of this data takes place in a log file. This is regularly evaluated in order to identify

and correct incorrect links and queries. The log file will then be deleted and the data will not

be processed or passed on to third parties.

Use of cookies

Our website uses cookies. Cookies are text files that are stored in the Internet browser on the

user?s computer system. When a user visits a website, a cookie may be stored in the user?s

browser. This cookie contains a characteristic string that allows the browser to be uniquely

identified when the website is reopened. We use cookies to make our website more user-friendly.

The following data is stored and transmitted in the cookies:

• Log-in information

• Consent to this privacy declaration

When visiting our website, users will be informed by an information banner about the use of

cookies and are referred to this privacy policy.

SSL encryption

This site uses SSL encryption for security reasons and to protect the transmission of sensitive

content, such as the requests you send to us as the site operator. You can recognize an encrypted
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connection by changing the address line of the browser from ?http://? to ?https://? by the lock

symbol in your browser line. If SSL encryption is enabled, the data you submit to us cannot be

read by third parties.

Forms

On our website we use different forms to make our offer available online. Below is a section for

each form that explains this in more detail.

Registration

The following data is collected during the registration process.

• E-Mail address

At the time of registration, the following data will also be stored:

• Date and time of registration

As part of the registration process, the consent of the user to process this data is obtained.

There is no disclosure to third parties in this context.

Registration allows the user to adopt a polyhedron and upload images. Account details can

be deleted by e-mail request to info@polytopia.eu or via the profile of the user.

Contact form and e-mail contact

On our website, a contact form is available which can be used for electronic contact. If a user

utilizes this option, the data entered in the input mask will be transmitted to us and saved.

This data is:

• Specified e-mail address

• Message body

Alternatively, contact via the provided e-mail address info@polytopia.eu is possible. In this

case, the user?s personal data transmitted by e-mail will be stored.

For the processing of the data, the consent of the user is obtained in the context of the sending

process and referred to this privacy policy. In this context, there is no disclosure of the data to
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third parties. The data is used exclusively for the conversation with the respective user and then

deleted.

Newsletter

Visitors of the website can subscribe to a newsletter.

The following data is collected:

• E-mail address

Regularly, the responsible persons inform the registered website visitors, who have signed up

for the newsletter about news on the project. The de-registration from the newsletter is made

by the user by e-mail to info@polytopia.eu. The user is pointed to the opt-out option in every

newsletter e-mail. There is no transfer of the collected data to third parties.

Rights of the person concerned

If your data is processed by our site, you have the following rights according to the GDPR:

• Revocation of consent (Art. 7 Abs. 3 GDPR)

• Information (Art. 15 GDPR)

• Corrigendum (Art. 16 GDPR)

• Deletion (Art. 17 Abs. 1 GDPR)

• Restriction of processing (Art 18 GDPR)

• Data transferability (Art. 20 GDPR)

• Opposition to processing (Art. 21 GDPR)

• Appeal to the supervisory authority (Art. 77 GDPR)
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Feedback Questionnaire

Which of the following groups do you belong to?

• Pupils

• Teachers

• Mathematicians

• University Students

• Other

Are you interested in Mathematics?

• Yes, very, it is actually part of my job.

• Yes, very, it is a hobby.

• Sometimes Mathematics is interesting.

• Rather seldom.

• No, I think Mathematics is boring.

• Other

What statement do you agree the most with?

• I understand Mathematics fast and it is fun for me to discover connections myself.

• When I have some time to do Mathematics, I manage it quite well

• As soon as someone explains things to me at my pace, I understand most of it.

• More often than not I find Mathematics to be rather complicated.

What is your age?

Which gender do you most identify with?
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How did you end up here?

• Randomly surfing the web

• Purposely searching

• We did this at school

• Other

How did you hear about us?

• Internet search

• Internet search

• School

• University

• Friends

• Family

• Media (Radio, Newspaper, Flyer, ...)

• Facebook

• Other

Did you learn something new about math here?

• Nope

• A tiny bit

• An average amount

• Quite a lot

• Yes! I’m an expert on polyhedra now
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How would you rate this page on a scale from 1 to 6?

• 1 (excellent)

• 2 (very good)

• 3 (good)

• 4 (just okay)

• 5 (not so good)

• 6 (needs improvement)

What do you like most about our page?

• Adopting the polyhedra

• The background material

• Our school packets

• The mascots Polly and Ecki

Do you have any other comments or tips for us?



School Material
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Name:  Class:   Date:     
             

    
www.polytopia.eu 

Adopt a Polyhedron 
 

 

 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

There are an infinite number of 

polyhedra. Unlike the cube or the 

pyramid, which are both polyhedra, 

most don’t have a name yet. You can 

help change that! Adopt a polyhedron 

and officially give it a name. 

 

How can I adopt a polyhedron? 

 

1. Build a model: 

Cut out the polyhedral net with the gray tabs attached. Now, fold 

it along the black edges and glue it together using the tabs. 

 

2. Give your polyhedron a name:  

Register on the website www.polytopia.eu. There is a number on 

the craft sheet, which you can use to find your polyhedron by 

searching for it on the website.  Give it a name and it’s yours!  

You can also upload a photo of your polyhedron model. 

 

Convex polyhedra consist of:  

- flat side surfaces 

- straight edges 

- outward pointing corners 

 

              
 

On www.polytopia.eu you can 

discover much more! There are 

games, a 3D polyhedron 

viewer and a ©-feature.  



    
www.polytopia.eu 

Class Set of Polyhedra 
This class set contains up to 36 nets of polyhedra. It is freshly generated from our 
database so each time this class set is downloaded it will consist of different and 
individual polyhedra. Your students can officially adopt the polyhedra on our 
website www.polytopia.eu. There is a number printed on the crafting-sheet, which 
the students can use to find their polyhedra on the website. 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Nr. 901410

The crafting-sheet of a polyhedral 
net with its identification number.  

Tips for modeling: 
- The gray areas are the tabs for gluing. 
These could also be cut off and the model 
can be assembled with tape. 
- If a gluing tab and an adjacent surface 
overlap, as in the photo to the right, one 
has to cut all the way into the corner (the 
thick, dashed line to the tip of the arrow). 
- All black edges should be folded before 
assembly. One tip to make them nice and 
straight is to fold them over a ruler or 
protractor. 
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Finding Research Questions 

 

 

 
 
  
 
 
 
 
  
 
 
 
 
 
 
 
  

Mathematical research always begins with searching for and coming up with 

research questions. Asking interesting questions is already halfway to interesting 

research. That’s why it’s so important to always be thinking about new questions. 

 

 

Write down as many mathematical research questions as you can. 

 

 

 

 

 

 

The special thing about mathematical research questions is that they may be 

very difficult to answer, even if they look simple. Therefore, it is not important if 

you can answer your research questions. Today, it’s just about finding the 

questions. 

 

Which of your questions do you think is the most 

difficult to answer?  I would be happy if you sent 

me an email with this question! 

My email is: ecki@polytopia.eu 

For example, mathematical research 

questions usually begin with why, 

when, how much, what happens if… 
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Teacher’s Handbook for the packet „Class Set“ 
 
There are an infinite number of convex polyhedra. Unlike the cube or the pyramid, 
which are both polyhedra, most of them do not have a name. Together with your 
students, you can change that. Adopt the polyhedra and give them names.  

 

 

 

 
 

Learning Goals: 
The main learning objectives of this project are the relation between space and form 
and understanding different mathematical representations. The handling of spatial 
geometric objects is practiced and the representation of the polyhedron as a 
polyhedral net invites students to consider forms in different dimensions. The two-
dimensional net must be brought into its three-dimensional shape by the process of 
cutting, folding and gluing together. 
 
On the website, students find their personal polyhedra in an interactive, computer-
aided, digital representation. Their polyhedron can be changed by color or by 
switching the corners, edges and side surfaces viewer on and off. The students 
have the opportunity to give their personal polyhedron a name. The symbolic 
representation is therefore chosen by the students and is not given, as is usual in 
mathematics and the natural sciences. In this way, students learn that it is possible 
to participate in shaping science. This change in the perception of mathematics is 
one of the main goals of our project. 
 
 

 

        
 
The cube, pyramid and an 
(still) unnamed polyhedron 
with six corners. 

Convex polyhedra consist of:  
- flat side surfaces 
- straight edges  
- outward pointing corners            
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Polyhedra can be incorporated into many different lesson plans. For example, a 
series of lessons on surface area and volume calculations of geometric bodies or in 
the context of analytical geometry. For ages 10 to 14, we recommend 
accompanying the learning packet “Polly’s Journal” to this class set, which can be 
found on our website. 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 

What do you need for the implementation of the project? 
- Roughly two hours 

 
- A class set of polyhedral nets 
- Adoption worksheet 
- Finding research questions worksheet (optional) 

 
- Scissors 
- Tape or glue  

 
- Internet enabled devices: cell phones, tablets, computers… 
- Email addresses for registration 

 



Teacher’s Handbook „Class Set “   Adopt a Polyhedron
 

                                          
www.polytopia.eu 

Components of the project 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Adoption worksheet: The Adoption worksheet gives the definition of convex 
polyhedra, briefly summarizes the work assignments and contains the website 
address where the polyhedra can be adopted. 
 
Polyhedral nets: Each student receives an individual polyhedral net with a 
number. The nets are cut out along the outer line, folded along the black edges 
and glued together using the gray tabs. 
 
Model building: The models are created from the craft sheets. The class set of 
polyhedra is generated fresh from our database with each download.  
Therefore, these are various and randomly gathered polyhedra that are still 
available for adoption. The polyhedral nets have different complexities and 
therefore can be distributed to students based on their skill level. 
 
Video tutorial: There is a video with instructions for building the models. You can 
watch it on our homepage and download it for use in the classroom. 
 
Adoption: On the website www.polytopia.eu, your students can register with 
their email addresses. From experience, it is helpful to inquire beforehand if the 
students already have email addresses and if they have access to them.  No 
further data is needed. Using the identification number on the crafting sheet, the 
respective polyhedron can be found on the website. 
 
Finding Research Questions worksheet: This worksheet turns the usual 
mathematics lesson on its head. The goal is to find an interesting and not yet 
answered question about polyhedra. As the project “Adopt a Polyhedron” 
springs from scientific mathematics, we would like to invite the students to take 
on a research point of view of polyhedra. 
 
Questions and Feedback: We welcome comments, questions and feedback on 
your project experience. Write us an email: schule@polytopia.eu 
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About the project, “Adopt a Polyhedron” 
The project “Adopt a Polyhedron” is part of the public relations work of the Collaborative 
Research Center “Discretization in Dynamics and Geometry”, which is funded by grants 
from the Deutschen Forschungsgemeinschaft (DFG) and is primarily involved with the 
structure and applications of discrete mathematics. Mathematicians from the Technische 
Univerität Berlin, the Technische Universität München, and the Freie Universität Berlin are 
investigating the discretization of differential geometry and dynamic systems. Discrete in a 
mathematical context means distinguishable. For example, the four corners of a square are 
clearly separated while a circle could be understood as a polygon with an infinite number of 
indefinable corners. Three-dimensional polyhedra, with their well-defined corners, edges 
and side surfaces belong to the classical research field of discrete geometry. 
 

Goals 

The goal of this project is to build models of “all” polyhedra in a collective endeavor. To 
accomplish this, we have initially released all polyhedra with up to nine vertices for 
adoption. It is not possible to realize all polyhedra, as there are an infinite number of them, 
but everyone can help bring as many as possible to life by adopting their own individual 
polyhedron, giving it a name and then building a model. In particular, we would like to invite 
students to actively participate in mathematics by focusing on the construction of geometric 
models. Modeling has long been a central discipline in (university) mathematics and has in 
recent decades been phased out by visualization with computers. However, the manual 
assembling of a model allows engagement and a deeper understanding of mathematics 
beyond abstract ideas.  
 

Citizen Art  

Lately, there has been an increasing effort in Citizen Science to actively engage everyday 
people in scientific research. As mathematicians, we also wish to offer interested people an 
opportunity to participate. Since the construction of models also has a creative and 
individual aspect and we want to emphasize the relationship between mathematics and art, 
we characterize our project under the term Citizen Art. 
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Polly and her family 
 

Name: ____________________ 

 

Hi, I’m Polly! 

Please help me create 

a photo album of my 

family! 

Polly and her family 
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My name is Polly and I am a polyhedron. The great thing about my name is it describes 

what I am! 

The word polyhedron comes from the ancient Greek words “poly”, meaning many and 

“hedron” meaning surface. I am made up of only flat surfaces that meet at straight edges 

and because polyhedra like to eat, we all have corners that stick outwards. As you can 

imagine, I have a very large family. My brother is a superstar. His name is Cube and I’m 

sure you already know him.  You’ve probably seen my aunt, the pyramid, before too. 

Sadly, I do not know all of my family members, so I would like to make a family photo 

album with everyone in it! 

I asked my friends, the mathematicians at the Freie Universität Berlin, if they could help 

me, but they only know the structure of each of my family members and cannot build 

them all – there are just too many of us! 

That’s why I need your help! Please adopt one of my family members and build a model.  

You can even give your own polyhedron an official name. The crafting sheets for building 

my relatives can be downloaded at www.polytopia.eu. After you build the model, please 

take a picture of my relative and upload it so I can get to know them. 

But first, I want to show you what is so special about us polyhedra, how to build your 

model, and much more… 
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What does a polyhedron from Polly’s family look like? 

 

 

 

 

 

 
 
 

 

 

 

 

 

Mark which bodies are polyhedra: 

□     □       □
     
 
 
 
 
 
 

 

All my surfaces are flat.  

Curving is not allowed! 

Polyhedra belonging to Polly’s family are 
bodies that are made of 

• flat surfaces 
• straight edges  
• outward corners  

The cube and the pyramid are examples of 
Polly’s relatives. 
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Do you know any more polyhedra from Polly’s family? Draw as many as 
you can.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Here you can draw bodies that are not part of Polly’s family or are not 
polyhedra. 
 

 

Hint: Look around the classroom or think about your room. You can probably find a few 
polyhedra there. 
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WHICH STATEMENT BEST FITS YOU?  

□ I ALREADY KNEW ABOUT POLYHEDRA.  

□ I KNEW OF SUCH SHAPES, BUT THE TERM POLYHEDRON WAS NEW FOR ME. 

□ THIS IS ALL NEW FOR ME.  

□ I AM STILL NOT SURE WHAT POLYHEDRA ARE. 

□ _________________________________________________________. 

 

Want some more practice? Right this way! If you are already a polyhedron 
expert, continue to the next page. 

 
Fill in the blanks with the correct words from the box. 
 

Polyhedra from Polly’s family are bodies made from _____________ surfaces, 

_____________ edges and _____________________ corners. The cube and the 

pyramid both belong to Polly’s family. The _____________ is not a polyhedron.  

Is it a polyhedron? Mark the box if it is and explain why or why not.  

   
 
 
 

 

   

 
 

straight, ball, round, inward, outward, prism, flat 



Name: Class:  Date: 

 5 www.Polytopia.eu 

The net of a polyhedron 
The painter and mathematician Albrecht Dürer first discussed the 
idea of polyhedral nets more than 500 years ago. If you cut open a 
polyhedron along its edges and unfold it, you get the net of the 
polyhedron. 

 

 

 

 

 

 

 

 

 

There are always several different ways to draw the net of any polyhedron. 
Draw as many cube nets as possible. 
 

 

I am the net 
of the cube! 

Albrecht Dürer 
(1471 – 1528) 

 

What does 
my net look 

like? 



Name: Class:  Date: 

 6 www.Polytopia.eu 

Polly’s friend Ecki has drawn nets of Polly’s siblings. However, Polly 
doesn’t know which net belongs to which sibling. Connect the polyhedra 
to the matching nets. 
  
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now it’s your turn! Draw a net for at least one of the two polyhedra.  
 

 
 
 
 
 
 
 
 

   

Tetrahedron Prism 
 

 

For the quick drawers: Draw a polyhedron from Polly’s family and its net on a 
separate piece of paper. 

 

   

  

  

Thanks Ecki! But I 
can’t tell who is 

who! 

Look Polly, I’ve 
drawn nets of your 

siblings! 
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First, describe your group’s piece with a few words.  
 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

Your whole class can help me bring one of my 

family members to life! To do this, you need to 

build a model of the polyhedron. Your teacher 

has already prepared the net of a polyhedron. 

The goal is to build a big cardboard model of this 

polyhedron together. The polyhedral net will be 

cut apart and each group will receive a piece. As 

a group, you are responsible for the enlargement 

of this piece. In the end, all the sides will be put 

together to make a large polyhedron.  
These questions can help you: How many edges does it have? What is the name of the shape 
of the surface? Are the angles acute, right or obtuse? 
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Draw a sketch of your piece in the box. 
 

 

 

 

 

 

 

 

 

 

 

Now measure the lengths of the edges and the degrees of the 
inner angles of your piece. Write down your results next to the 
edges and angles in your sketch. Also, calculate the surface 
area if you can. 
 

 

 

 

 

  

 

 

 

 

 

 

Hint:  
 

 

 

 

 

 

If the edge length doubles, 
then the surface area increases by a factor of ____. 

 

In a sketch, it is not 

important that the 

lengths and angles are 

exactly right. The surface 

just has to look 

something like the 

original. 

Remember to use the 

correct scale when 

using the protractors! 

1 cm2 1 cm 

1 cm 
2 cm 

2 cm  4 cm2 

16 cm2 

  4 cm 

   4 cm 
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Write the measured lengths of your edges in the table. 
Discuss as a class by what factor you want to increase the 
edge lengths. 

The edge lengths should be ______ times as long. 

Write the calculated enlarged values in the table as well.  
 

 

 

 

 

 

 

 

 

Now we need the cardboard to draw and cut out the new 
enlarged side surface. Before you start cutting, make sure 
to compare your drawing to the template. Are all the 
angles and lengths correct? 

 

 

 

 

 

 

 

 

 

 

 

Original edge length Enlarged edge length 

  

  

  

  

  

  

  

Now the sides can be glued 

together and I have one 

more family member! 

Here’s another tip: start 

drawing with the longest 

edge and then draw the 

angles at its ends. 

Wie groß ist der 
vergrößerte 

Flächeninhalt? 
How big is the 

increased 

surface area? 
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Fact sheet for your class polyhedron 
 

Name: _______________________ 

Birthday: _______________________ 

Number of side surfaces: _______________________ 

Number of edges: _______________________ 

Number of corners: _______________________ 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Paste a photo of your polyhedron here. 

Please upload the photo of your 

polyhedron to www.polytopia.eu.  

Here you can also adopt your own 

polyhedron and build a model. 

Thanks for all your help! 



Name: Class:  Date: 

 11 www.Polytopia.eu 

Fact sheet for your own polyhedron 
 

Name: _______________________ 

Birthday: _______________________ 

Number of side surfaces: _______________________ 

Number of edges: _______________________ 

Number of corners: _______________________ 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

Write something about your polyhedron in the lines below:  

_________________________________________________________________ 

_________________________________________________________________ 

_________________________________________________________________ 

_________________________________________________________________ 

_________________________________________________________________ 

_________________________________________________________________ 

 

 

Paste a photo of your polyhedron here. 
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Write down as many mathematical questions about 
polyhedra as possible:  
 

 

Did you know that mathematical 

research begins with looking for 

new questions?  Let’s research 

together and find interesting 

math questions!  

Mathematical research 

questions could begin with 

why, when, how much, what 

happens if, … 
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Write down a mathematical research question that you 
think is difficult to answer: 

 

 

 

 

 

The special thing about mathematical research 

questions is that sometimes they cannot be solved 

quickly, even if they sound simple.  

 

Therefore, it is not important if you can answer your 

research questions. Today, it is just about finding 

questions! 

 

 

 

 

 

Hint: If you think your own questions are too easy, discuss with your classmates.  
Everyone will have different and interesting questions! 

By the way, we polyhedra love mathematical research 

questions. Feel free to send them to us:  

polly@polytopia.eu 

ecki@polytopia.eu  

We look forward to your emails!  

Bye for now! 

IMPRESSUM: 
Published by the DFG- Collaborative Research Center 
"Discretization in Geometry and Dynamics", Transregio 109 
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Graphics: Johanna Steinmeyer und Max Pohlenz 
 
Translation: Erin Henning 
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Teacher’s Handbook for “Polly’s Journal“  
There are an infinite number of convex polyhedra. Unlike the cube or the pyramid, 
which are both polyhedra, most of them do not have a name. Together with your 
students, you can change that. Adopt the polyhedra and give them names. 

 

 

 

 

 

 

 

With the worksheets in “Polly’s Journal”, your students can get to know polyhedra 
while learning and practicing important content-related and process-related 
mathematical competences. In this handbook for teachers, you will find practical 
hints for the implementation of the project as well as useful links between the project 
and the curriculum as well as an overview of the learning prerequisites and 
objectives. In addition, a solution sheet is provided for the journal. At the end of this 
handbook, you will also find a feedback form for teachers. The email address for 
any feedback, as well as questions and comments is: schule@polytopia.eu. 

Contents of this Handbook 

• Polly’s Journal as a guide for the math class  (p. 2) 
• Learning objectives and prerequisites (p. 3-4) 
• Practical information for preparation (p. 5) 
• About the project (p. 6) 
• Solution sheet (p. 7) 
• Feedback form for teachers (p. 8-9) 

 

        
 
The cube, the pyramid and an 
(still) unnamed polyhedron 
with six corners.  

Convex polyhedra consist of:  
- flat side surfaces 
- straight edges  
- outward pointing corners             
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Polly’s Journal as a guide for the math class 
In order to connect the project “Adopt a Polyhedron” to a standard math class for 
ages 10 to 14, we have developed the learning packet “Polly’s Journal”. Learning 
journals are a major component of dialogical learning. The journal serves as a guide 
for the students where the learning process is simultaneously presented and 
individually controlled.  
The journal contains activities of various kinds, such as reading, writing, drawing, 
matching, measuring and arithmetic. Through these exercises, the students enter 
into an active dialogue with the material. The booklet is designed so that the 
learners can work through it relatively quickly and thus an immediate experience of 
learning success is made possible. While working through the packet, students 
have the possibility for self-reflection and to do two differentiation tasks. 

The journal is divided into four sections. First, the concept of polyhedra is 
introduced and practiced in tasks for recognizing and drawing polyhedra and non-
polyhedral bodies.  The next section deals with polyhedral nets. It starts with the 
already known cube net and is extended to general nets of polyhedra. 

In the third section, the class builds a polyhedron model together. The students are 
divided into small groups and each group receives a different side surface of the 
polyhedron.  The edge lengths of the side surfaces are to be increased by a fixed 
factor, which is either provided by the teacher or determined by the students 
themselves. Here is a more advanced challenge for the students is to discover the 
quadratic relationship between edge lengths and the surface area. While the 
individual enlarged side surfaces are being assembled into a polyhedron, the 
students collect suggested names for the polyhedron. Upon completion of the 
model, a vote is taken to determine a name. Additionally, there is the possibility that 
every student adopts a separate polyhedron. You can download an entire class set 
of polyhedra that is generated from our database, resulting in a new set with each 
download. 

Now that the students have dealt extensively with polyhedra and even adopted one, 
they are invited in the last section to take a research-based look at the subject. The 
usual course of mathematics education is turned upside down, because now it's 
about developing interesting and possibly unsolvable questions. The students take 
on the role of mathematical researchers to improve their overall understanding of 
polyhedra. 

 

 



Teacher’s Handbook for “Polly’s Journal“                                                             Adopt a Polyhedron 

                                          
3 www.polytopia.eu 

Learning objectives 
The main learning objectives of this packet are for students to understand the 
relationship between space and form, to understand different mathematical 
representations of a concept and to calculate area by measuring and arithmetic. 

The convex polyhedra are explored in different geometric representations.  The 
definition of convex polyhedra is presented by visual examples. Recognition and 
determination of convex polyhedra is first practiced on the basis of their three 
defining properties (flat side surfaces, straight corners, and outward pointing 
corners). Geometric bodies are analyzed according to these criteria and students 
must determine whether or not they are convex polyhedra. 

Subsequently, polyhedra and polyhedral nets are associated with each other. In the 
process of assembling the two-dimensional polyhedral net into a three-dimensional 
model by hand, the representation is changed by the learners themselves. Through 
this action, the students also gain insight into how the same form can be perceived 
in different dimensions. The interactive visualization tool on the website offers 
another form of representation. For the students with access to VR glasses, another 
visualization experience is available to add even more perspective. 

On the website, students find their personal polyhedra in an interactive, computer-
aided, digital representation. Students can change the color of their polyhedron or 
change the perspective by switching the corner, edge or side surface viewers on 
and off. The students have the opportunity to give their personal polyhedron a name 
as well. The symbolic representation is therefore chosen by the students and is not 
given, as is usual in mathematics and the natural sciences. In this way, students 
learn that it is possible to participate in shaping science. This change in the 
perception of mathematics is one of the main goals of our project.  

Finally, during the construction of the enlarged polyhedron, the lengths and angles 
of the side surfaces must be measured. Here, the handling of a protractor and its 
different scales is practiced. The measured quantities are entered into a table with 
reasonable accuracy. When enlarging the pieces, the lengths of the edges are 
multiplied but not the angles. Using a protractor will again be practiced when the 
students are drawing the enlarged side surface piece onto the cardboard. 
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Learning prerequisites:  
The students do not need to be completely comfortable with the prerequisites listed 
below. Most of these are repeated in “Polly’s Journal”, giving students a chance to 
practice and recall. The central prerequisites are: 

• Measuring polygon edges 
• Measuring and drawing angles 
• Handling units of measure, such as centimeters and degrees 
• Drawing of triangles and other polygons 
• Multiplication of decimal numbers with an integer factor 
• The net of the cube 
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Practical information for preparation:  

Print 

• Learning Journal “Polly’s Journal”, one copy per student 
• A class polyhedron, three times 
• Set of polyhedral nets (if possible printed on stronger paper) 
• Solution sheet for hanging in the classroom  

Need 

• Cardboard (if possible in different colors) 
• Tape (if the class polyhedron is enlarged, the gluing tabs are cut off and 

needs to be assembled with tape) 

Plan 

• Remind students to bring scissors, glue and a protractor.  
• Do the students have active and accessible email addresses? 
• Consider whether a factor for the enlargement of the side surfaces is given or 

determined by the students themselves. (Pay attention to the dimensions of 
the cardboard and what is feasible). 

• Number the side surfaces of the class polyhedron on all three sheets.  Cut 
one of the nets apart, also cutting off the grey gluing tabs. 
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About the project, “Adopt a Polyhedron“ 
The project “Adopt a Polyhedron” is part of the public relations work of the Collaborative 
Research Center “Discretization in Dynamics and Geometry”, which is funded by grants 
from the Deutschen Forschungsgemeinschaft (DFG) and is primarily involved with the 
structure and applications of discrete mathematics.  Mathematicians from the Technische 
Universität Berlin, the Technische Universität München, and the Freie Universität Berlin are 
investigating the discretization of differential geometry and dynamic systems. Discrete in a 
mathematical context means distinguishable. For example, the four corners of a square are 
clearly separated while a circle could be understood as a polygon with an infinite number of 
indefinable corners. Three-dimensional polyhedra, with their well-defined corners, edges, 
and side surfaces belong to the classical research field of discrete geometry.  
 

Goals 
The goal of this project is to build models of “all” polyhedra in a collective endeavor. To 
accomplish this, we have initially released all polyhedra with up to nine vertices for 
adoption. It is not possible to realize all polyhedra, as there are an infinite number of them, 
but everyone can help bring as many as possible to life by adopting their own individual 
polyhedron, giving it a name and then building a model, 
 
In particular, we would like to invite students to actively participate in mathematics by 
focusing on the construction of geometric models. Modeling has long been a central 
discipline in (university) mathematics and has in recent decades been phased out by 
visualization with computers. However, the manual assembling of a model allows 
engagement and a deeper understanding of mathematics beyond abstract ideas.  
 

Citizen Art  

Lately, there has been an increasing effort in Citizen Science to actively engage the public 
in scientific research. As mathematicians, we also wish to offer interested people an 
opportunity to participate.  Since the construction of models also has a creative and 
individual aspect and we want to emphasize the relationship between mathematics and art, 
we characterize our project under the term Citizen Art. 
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Solutions  
 

  
Here you will find all the 

solutions to the learning 

journal!  

And, was 

everything correct?  
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Feedback:  
 

 

 

 

1. In which grade / age level did you implement the project? 

 

 

2. In which country / city is your school located? 

 

 

3. How would you describe the performance of your students?  Did the learning 
journal meet their learning level? 

 

 

 

4. How much time did you plan for the project and how long did it actually take? 

 

 

 

5. Did you complete the whole packet or only selected sections?  If yes, which 
sections? 

 

 

6. What worked well? 

 

 

 

 

We would like to know your thoughts on the project “Adopt a Polyhedron” and kindly 
ask you to complete this questionnaire.  You can either copy these questions into an 
email and send them to schule@polytopia.eu, or by mail to: Anna Maria Hartkopf, 
Institut für Mathematik, Freie Universität Berlin, Arnimallee 2, 14195 Berlin.   
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7. What did not work as well? 

 

 

 

 

8.  Which mathematical skills have your students newly learned or strengthened? 

 

 

 

 

9. Were the students able to grasp a new view of mathematics through the project?  
If yes, how so?  

 

 

  

10.  Do you have any suggestions, tips or comments for improvement?  

Thanks for your feedback! 
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Materials and ideas for model construction 
To build an individualized polyhedron, i.e. a more creative and artistic model, 
various materials are available. Below, we have put together some ideas for 
inspiration. 
 

Clay, Play-Dough or Papier-mâché (Solid Model) 
Using clay, play-dough or papier-mâché, the body of the polyhedron can be 
shaped. Papier-mâché can be slightly easier to handle. Solid clay models should 
not be fired in an oven because they are too thick, but they will harden completely 
when dry.  
 

Chickpeas or Polymer Clay and Shish Kebab Sticks (Edge Model) 
Soak the dry chickpeas overnight in water. The next day, they can be used as 
corner joints for the polyhedron edges. Let the model dry overnight so the 
chickpeas can solidify around the sticks. This will hold the model together nice and 
tightly. Polymer clay is also suitable as a connecting material for the polyhedron 
edges. 
 

Cardboard or Fabric (Polyhedral nets) 
From cardboard, the net of the polyhedron can be redesigned while the size can 
also be changed.  Anyone who can sew could also use the net of the polyhedron as 
a pattern for a soft toy polyhedron.   
 

             
 A clay polyhedron, an edge model and an enlarged polyhedral net model. 



Profile

My polyhedron’s name is

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f -vector ( . . . . . . . , . . . . . . . , . . . . . . . )
V E F

Glue your polyhedron
model here.

Mark the appropriate properties
for your polyhedron.

� simple

� simplicial

� has an Euler path

The graph of your polyhedron

My family

same type: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

same f -vector: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

& . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Discover Card 0 The polyhedron

A polyhedron is made up of vertices (V ),
edges (E) and faces (F ).
Well known examples are the cube and the pyramid.

Exercises

1. Congratulations! You have just adopted your first polyhedron. Give your polyhedron a name.

2. To build a model, cut out the net of the polyhedron and glue it together using the tabs.

3. Now take a photo of your polyhedron model and upload it to the website.
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Discover Card 1 The vertices, edges and faces of a
polyhedron

To start studying polyhedra, count the number of vertices, edges and
faces. These numbers are written in the f-vector.
The polyhedron on the left has 5 vertices, 9 edges and 6 faces.
Its f -vector is (V,E, F ) = (5, 9, 6).

Exercises

1. Count the number of vertices, edges and faces of the
pyramid to the right.

Write them down in the f -vector below.

2. Find a polyhedron with the f -vector (8, 12, 6). Draw it!

3. What is the f -vector of your polyhedron? Write it in the
profile of your polyhedron. ( , , )

V E F
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Discover Card 2 The graph of a polyhedron

The graph of a polyhedron is the structure of its vertices
and edges. Imagine as if the polyhedron had rubber bands
for edges so you could stretch them and stick all the vertices
to the ground. The polyhedron now lies flat on the ground
and this is what the graph of a polyhedron looks like.

Exercises

1. Match each of the polyhedra to its graph.

One of the polyhedra has two graphs.

2. Which polyhedron has the graph to the left?

Can you draw it?

3. Draw the graph of your polyhedron. It is
not so easy! Draw several sketches.

Once you are satisfied with a sketch, draw
the graph on your polyhedron’s profile.
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Exercises

1. Match each of the polyhedra to its graph.

One of the polyhedra has two graphs.

2. Which polyhedron has the graph to the left?

Can you draw it?

3. Draw the graph of your polyhedron. It is
not so easy! Draw several sketches.

Once you are satisfied with a sketch, draw
the graph on your polyhedron’s profile.



Discover Card 3 Euler characteristic
The graph on the left has 5 vertices, 9 edges and divides the plane into
6 areas, or faces. Five of the faces are inside, bounded by the edges,
and the sixth face is the whole outer area.
We add the number of vertices and faces and subtract the number of
edges:
V + F − E = 5 + 6− 9 = ?
This number is the Euler characteristic of the graph, named after
the mathematician Leonhard Euler. For the graph of a polyhedron, it
can be directly calculated from the f -vector, where the number of
vertices, edges and faces are noted.

Exercises

1. Count the number of vertices, edges and faces of each of the graphs shown
and use them to calculate their Euler characteristics.

2. What is the Euler characteristic of the graph of your polyhedron? Write it
on the board.

3. What did the others write on the board? Try to guess what the Euler
characteristic of the graph of a polyhedron must always be.
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Discover Card 4 Euler path

A

B

C

D

E

To the left is the well-known House of Santa Claus. You can draw it
without lifting your pencil off the paper and never draw the same edge
twice.
See for yourself! Try the sequence of vertices, for example:
A−B − C −D − E −B −D − A− E.
Such a sequence of vertices containing each edge of the graph exactly
once is called an Euler path.
Leonard Euler was a really important mathematician, both the Euler
characteristic and the Euler path are named after him.

Exercises

1. Try to draw the House of Santa Claus by starting at different vertices. From which starting vertices
can the house be drawn? Which vertex will you reach last?

2. What is special about these vertices?

Hint: Count how many edges go out from each vertex.

3. Find a connected graph for which there is no Euler path. Why can the graph not have an Euler path?

4. Does the graph of your polyhedron have an Euler path? If no, why not? If yes, draw it on the graph
of your polyhedron.
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Discover Card 5 Simple and Simplicial

Now we want to learn about two important types of polyhedra.
• A polyhedron is simple if exactly three edges meet at each

vertex.
• A polyhedron is simplicial if all its faces are triangles.

The tetrahedron shown on the left is the only polyhedron that is
both simple and simplicial.

Exercises

1. Which of the polyhedra on the right are simple? Which are simplicial? Which are
neither simple nor simplicial?

2. Is your polyhedron simple? Is it simplicial? Write the answers on the profile of your
polyhedron.

Additional exercises
Imagine we have a simple polyhedron with 6 vertices. Even without knowing
anything else about the polyhedron, we can find out how many edges it has.
Each vertex of the simple polyhedron has exactly 3 edges coming out of it. Each
edge in a polyhedron connects exactly two vertices. So the simple polyhedron has
(3 · V )÷ 2 = (3 · 6)÷ 2 = 9 edges.
Question: Can there be a simple polyhedron with 5 vertices?
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Additional Card Schlegel diagram

Imagine looking through one of the faces
of the polyhedron shown on the left. The
edges and vertices that you see form a graph
without overlapping the edges.
The resulting graph is called the Schlegel
diagram of the polyhedron. The Schlegel
diagram is a special way to draw the graph
of the polyhedron.

Exercises

1. Connect the Schlegel diagrams to the
matching polyhedra.

(Be careful, there are two different Schlegel
diagrams for one of the polyhedra.)

2. Draw the Schlegel diagram for the
square pyramid in the given triangle
by looking through a triangular face.

3. Now draw a Schlegel diagram by looking
through the bottom square face.

How does the diagram change?

4. Pick a face of your polyhedron and draw the
appropriate Schlegel diagram.

Compare it with the graph of your
polyhedron on the its profile page.



The type of a polyhedron

In mathematics, polyhedra are sorted by their
f-vectors. There may be different polyhedra with
the same f-vector. If two polyhedra have the same
f-vector and the same graph then they are of the
same type.
The two ’dice’ are of the same type. On the left
is the typical geometric cube, on the right is a
cube-type polyhedron.

Exercises

1. Search among your classmates for those whose polyhedra have the same f -vector and form a group.

2. Compare the graphs of your polyhedra. Which polyhedra are of the same type? Put the names of the
polyhedra on your polyhedron’s profile.

Hint: Because the same graphs can look different, depending on how they are drawn, compare what
shape the faces of the polyhedra are, how many of each shape, or how many edges meet at each vertex.
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Abstract

Diese Arbeit befasst sich mit der Theorie und Praxis von mathematischer Wissenschaftskom-

munikation. Zunächst geben wir eine Übersicht über die Entwicklungen der allgemeinen Wis-

senschaftskommunikationsforschung. Dies ist notwendig, um eine Grundlage zu schaffen anhand

derer wir die sehr spärlich vorhandene Literatur zu mathematischer Wissenschaftskommunikation

analysieren. Nachfolgend entwickeln wir eine Terminologie der Ziele, Methoden und Motivation

von Wissenschaftskommunikation im Fach Mathematik.

Ein weiterer Fokus liegt auf der auf der Fallstudie Polytopia – Adoptiere ein Polyeder.

Dieses Projekt zum informellen Lernen von Mathematik schafft einen Zugang zur Mathematik

auf der Beziehungsebene. Die vielen Entscheidungen über Design, Aufbau und Inhalt des Projek-

tes werden reflektiert, die Ergebnisse der Nutzer*innenbefragung werden deskriptiv dargestellt.

Weiter beleuchten wir die Bezüge zu den didaktischen Methoden, die einerseits dem Projektde-

sign insgesamt und andererseits dem dazugehörigen Schulmaterial zugrunde liegen.

Die Mathematik, die das Fundament für das Projekt bildet, wird von drei Seiten beleuchtet.

Zunächst vollziehen wir die Entwicklung des Begriffs des Polyeders in einer historischen Per-

spektive nach. Dann definieren wir die im Projekt benötigten mathematischen Konzepte und

beschreiben ihre Anwendung. Die dritte Perspektive ist eine Zusammenfassung über die Ergeb-

nisse zu Dürers Vermutung. So wird die Frage bezeichnet, ob jedes Polyeder in ein überschnei-

dungsfreies Netz zerlegt werden kann.

In dieser Arbeit werden Verbindungen zwischen diesen vier Bereichen geschaffen. Damit wird

eine fundamentale Grundlage zur Etablierung der mathematischen Wissenschaftskommunikation

als ein unabhängiges Wissenschaftsfeld gelegt und eine Agenda für ihre die weitere Entwicklung

aufgesetzt.
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