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Abstract

This dissertation consists of three essays which investigate the economic implications
of monetary and fiscal policy, with an emphasis on times of severe recessions. In the first
essay, I study the implications of a higher central bank’s inflation target as a policy tool to
reduce the risk of hitting the zero lower bound (ZLB) on nominal interest rates. As a novel
and surprising result, I find that higher inflation targets can, in fact, increase the risk of hitting
the ZLB and produce deep recessions more often. Using a standard New Keynesian model, I
show that a higher inflation target changes the price-setting behavior of firms in a substantial
way. Specifically, firms become more forward-looking, inflation is more volatile and, thereby,
the nominal interest rate fluctuates more. I show that even with more "room-to-manoeuvre"
for the nominal interest rate due to a higher inflation target, the higher volatility of the nominal
interest rate implies that the economy ends up – on net – more often at the ZLB. In the second
essay, I analyze the implications of a temporary cut of the value-added tax rate (VAT) in
deep recessions with a binding ZLB on nominal interest rates. Standard New Keynesian
models predict that a temporary VAT cut has adverse effects at the ZLB. However, I show
that a temporary VAT cut has highly expansionary effects in normal times and also in deep
recessions once I account for a more realistic consumption basket, including non-durable
and durable goods. The reason is that purchases of durable goods are highly intertemporally
substitutable - consumers will stock up on storable goods when prices are currently low. Most
interestingly, I find that the boom in demand for durables affects the demand for non-durables:
consumption of durables and non-durables increase in response to the temporary VAT cut.
In both essays, I use global solution techniques to correctly account for the effects from
uncertainty on the solution of the model. I propose an algorithm that is considerably faster
and more efficient compared to the standard implementation of the method in the literature. In
the third essay, I describe the algorithm and discuss the performance of my approach based on
an application for a New Keynesian model with a ZLB constraint on the nominal interest rate.
The main innovation of the algorithm is to show that the model can be represented as a system
of equations over the pre-defined grid. This way, it is possible to determine the solution of the
model in one computation step instead of solving for each grid point individually.

Keywords: zero lower bound, inflation targets, durable goods, consumption taxes, monetary
policy, fiscal policy.





Zusammenfassung

Diese Dissertation besteht aus drei Aufsätzen, welche die ökonomischen Implikationen
von Geld- und Fiskalpolitik mit einem Fokus auf schwere Rezessionen untersuchen. Der erste
Aufsatz analysiert die Implikationen einer Anhebung des Inflationsziels einer Zentralbank
als Politikinstrument für die Senkung des Risikos die Nullzinsgrenze zu erreichen. Als ein
bislang unbeachtetes und unerwartetes Ergebnis zeigt meine Studie auf, dass ein höheres
Inflationsziel das Risiko einer Absenkung des Zinses zur Nullgrenze, in der Tat, erhöhen und
häufiger zu tiefen Rezessionen führen kann. Auf Basis eines klassischen neukeynesianischen
Modells kann ich darlegen, dass ein höheres Inflationsziel das Preissetzungsverhalten von
Firmen substantiell ändert. Firmen agieren vorwärtgerichteter, Inflation wird volatiler und
der Nominalzins fluktuiert folglich stärker. In meiner Studie zeige ich, dass ein höheres
Inflationsziel zwar den Handlungsspielraum für Zinsänderungen erweitert, die höhere Infla-
tionsvolatilität aber dazu führt, dass die Nullzinsgrenze – im Endeffekt – häufiger erreicht
wird. Der zweite Aufsatz untersucht die Implikationen einer temporären Absenkung der
Mehrwertsteuer in tiefen Rezessionen mit bindender Nullzinsgrenze. Klassische neukeyne-
sianische Modelle sagen voraus, dass eine temporäre Mehrwertsteuersenkung adverse Effekte
an der Nullzinsgrenze hat. In meiner Studie kann ich allerdings zeigen, dass eine temporäre
Mehrwertsteuersenkung sowohl in normalen Zeiten als auch in tiefen Rezessionen expansiv
wirkt sofern ein realistischerer Konsumkorb berücksichtigt wird, welcher kurzlebige Ver-
brauchsgüter und langlebige Gebrauchsgüter beinhaltet. Der Grund ist, dass Anschaffungen
von langlebigen Gebrauchsgütern intertemporal stark substituierbar sind – Konsumenten
erweitern ihren Bestand an Gebrauchsgütern in Zeiten niedriger Preise. Interessanterweise
kann ich auch zeigen, dass der Nachfrageboom für langlebige Gebrauchsgüter die Nachfrage
nach kurzlebigen Verbrauchsgütern beeinflusst: der Konsum von langlebigen und kurzlebi-
gen Gütern steigt in Folge einer temporären Mehrwertsteuersenkung. In beiden Aufsätzen
verwende ich globale Lösungstechniken, um die Effekte von Unsicherheit auf die Lösung
des Modells in korrekter Weise zu berücksichtigen. Ich schlage einen Algorithmus vor,
der wesentlich schneller und effizienter ist im Vergleich zur Standardimplementierung der
Methode in der Literatur. Im dritten Aufsatz beschreibe ich den Algorithmus und diskutiere
die Leistungsfähigkeit meines Ansatzes basierend auf einer Anwendung für ein neukeynesian-
isches Modell unter der Restriktion der Nullzinsgrenze. Die wesentliche Innovation meines
Algorithmus geht darauf zurück zu zeigen, dass das Modell als Gleichungssystem auf einem
vordefinierten Grid dargestellt werden kann. Auf diese Weise ist es möglich die Lösung des
Modells in einem einzigen Auswertungsschritt zu bestimmten anstelle das Modell für jeden
Gridpunkt individuell zu lösen.

Schlagwörter: Nullzinsgrenze, Inflationsziel, langlebige Gebrauchsgüter, Konsumsteuern,
Geldpolitik, Fiskalpolitik.
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Chapter 1

Introduction

The primary tool that central banks have to fight recessions is to reduce interest rates so as to

encourage borrowing and spending and stabilize the economy. However, during the Great

Recession many advanced economies experienced that there is a natural limit to how low

nominal interest rates can go: it is known as the zero lower bound (ZLB) or effective lower

bound. To date, the ZLB on nominal interest rates is still a major concern for economists and

policy markers as it appears to change the economic environment in many ways.

In a recent policy debate, prominent economists have proposed to raise the central

bank’s inflation target to increase long-run nominal interest rates and provide more "room-

to-manoeuvre" for monetary policy to reduce nominal interest rates in recessions before

reaching the ZLB (e.g. Blanchard et al. (2010) or Ball (2013)). The discussion whether or

not to raise the inflation target was further fueled by the recent decline in the natural interest

rate documented for major advanced economies. The natural interest rate is defined as the

short-term real interest rate consistent with the economy operating at its full potential. A

declining natural rate of interest poses real challenges for a central bank. Given that inflation

and inflation expectations are stable, a lower natural interest rate is associated with lower

nominal interest rates. Consequently, the ZLB would be reached more frequently, limiting the

central bank’s ability to stabilize the economy in recessions. In Chapter 2 titled “Inflation

Targets and the Zero Lower Bound”, I study the implications of a higher inflation target as

a policy tool to reduce the risk of reaching the ZLB on nominal interest rates. However,

as a novel and surprising result, I find that higher inflation targets can, in fact, increase the

risk of reaching the ZLB and produce deep recessions more often. Using a standard New

Keynesian model, I show that a higher inflation target changes the price-setting behavior of
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firms in a substantial way. Specifically, firms become more forward-looking at higher target

rates of inflation. This reflects the increased relevance of future expected demand for today’s

price-setting decisions because firms anticipate that inflation will erode their real profits over

time. When economic shocks are persistent, as is commonly considered in the literature to

gauge the persistent effects of the financial crisis and the Great Recession, inflation becomes

more volatile and, thereby, the nominal interest rate fluctuates more. I show that even with

more "room-to-manoeuvre" for the nominal interest rate due to a higher inflation target, the

higher volatility of the nominal interest rate implies that the economy ends up - on net -

more often at the ZLB. Overall, my main findings adds a new angle to the policy debate over

whether the inflation target should be raised. In fact, my results caution against raising the

inflation target while neglecting the consequences for the behavior of households and firms.

Recent research suggests that fiscal policy has very different effects when nominal interest

rates have reached the ZLB (e.g. Eggertsson (2010)). One particular finding is that fiscal

policy that targets the supply side can have negative macroeconomic effects if the policy leads

to deflationary pressures at the ZLB. If the central bank cannot adjust the nominal interest

rate, deflationary pressures translate into an increase of the real interest rate, contracting

demand. Chapter 3 titled “Are Consumption Tax Cuts Expansionary in a Liquidity Trap?”

investigates the macroeconomic effects of a temporary cut of the value-added tax rate (VAT).

This study is motivated by a fiscal experiment in the United Kingdom (UK) from 2008–2009.

In an effort to stimulate private demand in the onset of the global financial crisis, the UK

government lowered the standard VAT rate from 17.5% to 15% between December 2008 and

December 2009. The VAT is a general consumption tax that is collected incrementally along

the supply chain. Retailers pay the VAT on their sales but can reclaim the VAT paid on goods

and services purchased for use in earlier stages of production. Ultimately, the tax burden will

be paid by the final consumer. Consumers typically pay the final sales price which is inclusive

of the VAT. The particular set-up of the VAT system can lead to deflationary pressures in

response to a tax cut. A lower VAT rate will only affect final consumers if retailers are able to

adjust their final sales price inclusive of the VAT. If a VAT cut is not immediately passed on to

final prices, consumers will expect a period of falling prices following the tax cut.

First, I study the implications of a temporary reduction in the VAT rate in a standard New

Keynesian model and show that this policy is expansionary in normal times but contractionary

when nominal interest rates are constrained by the ZLB. A potential problem is that the
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standard New Keynesian model only accounts for consumption of non-durable goods. How-

ever, in countries that levy VAT, consumer durables typically represent roughly 40% of total

consumption expenditures on goods and services that are subject to the VAT. Second, I revisit

the analysis in a New Keynesian model that allows for non-durable goods and durable goods

consumption. Using the extended model, I find that a temporary VAT cut is expansionary in

normal times and in deep recessions when the ZLB is reached. The reason is that purchases

of durable goods are highly intertemporally substitutable. Consequently, consumers will stock

up on storable goods in response to the VAT cut. However, most interestingly, I find that the

boom for durable goods affects the demand of non-durables. Hence, consumption of both

durable goods and non-durable goods increase. A temporary VAT cut in a recession would

increase the demand for durable goods and dampen the fall in employment and wages. Higher

aggregate wages prevent marginal cost of firms and prices to deteriorate. I find that this effect

is sufficiently strong to reduce deflationary pressures and dampen the rise in the real interest

rate. My results show that a simple New Keynesian model neglects an important transmission

channel to study the effects of consumption tax policies. In fact, the analysis points to the

possibility that fiscal policy that seeks to stimulate consumption via the supply side can be

expansionary even in a low interest rate environment.

The ZLB constraint on nominal interest rates can be interpreted as an occasionally binding

constraint in macroeconomic models. Solving models with occasionally binding constraints

poses a non–trivial challenge to contemporary macroeconomic analysis. The major problem

with models that feature non-linear elements such as the ZLB constraint is that they typically

have no closed-form solution and, hence, require alternative solution strategies. For the

analysis in Chapter 2 and 3, I use global solution techniques to solve the New Keynesian

models subject to the ZLB constraint on the nominal interest rate. The global solution method

is based on an approximation of the model’s solution on a finite grid. An important advantage

of this approach is that it is able to accurately take into account the effects from future shock

uncertainty for the solution of the model. A growing body of work shows that future shock

uncertainty can have non-negligible implications for the decision functions of households and

firms (e.g. Fernández-Villaverde et al. (2015), Gust et al. (2017), Nakata (2016) or Richter

and Throckmorton (2017)). However, the main drawback of grid–based solution methods is

typically the high computational burden. I propose an algorithm that is considerably faster

and more efficient compared to standard implementation of the method in the literature.
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Chapter 4 titled "An Efficient Algorithm to Solve DSGE Models with Occasionally Binding

Constraints" describes the algorithm and discusses the performance of my approach based on

an application for a New Keynesian model with a ZLB constraint on the nominal interest rate.

The model features habit formation and price and wage rigidities. The algorithm is based on a

policy function iteration method with time iteration. I use a collocation method to interpolate

the value of the policy function between grid points and extrapolate it outside the grid, based

on Miranda and Fackler (2002) or Schmidt (2013). The main innovation of my algorithm

is to show that the model can be represented as a system of equations over the pre-defined

grid. This way, I can solve for the complete unknown policy function in one computation

step instead of solving for the policy function on each grid point individually. The solution

method is fast even without parallel computing. I provide detailed results of accuracy tests

and solution times for alternative specifications of the New Keynesian model. Overall, I can

show that the algorithm can solve the model with many state variables fast and accurately.



Chapter 2

Inflation Targets and the Zero Lower
Bound

Does a higher inflation target help to reduce the risk of hitting the zero lower bound (ZLB)
on nominal interest rates? Recently, higher inflation targets for central banks have been
proposed to allow for more "room-to-manoeuvre" in deep recessions. Advocates of this
proposal suggest an inflation target of 4% to reduce the risk of hitting the ZLB. I show that the
opposite may happen: a 4% inflation target can, in fact, increase the risk of hitting the ZLB
compared to a 2% inflation target. Using a standard New Keynesian model, a higher inflation
target changes the price-setting behavior of firms in a substantial way. Specifically, firms
become more forward-looking, inflation is more volatile and, thereby, the nominal interest rate
fluctuates more. I show that even with more "room-to-manoeuvre" for the nominal interest
rate due to a higher inflation target, the higher volatility of the nominal interest rate implies
that the economy ends up – on net – more often at the ZLB.

2.1 Introduction

Prominent economists have advocated to raise the central bank’s inflation target to increase

long-run nominal interest rates and provide more "room-to-manoeuvre" for monetary policy

to reduce its policy rate in recessions. For example, Blanchard et al. (2010) and Ball (2013)

propose a target inflation rate of 4%, arguing that the benefits to the economy could be

substantial while the costs of 4% inflation are likely to be rather small. Others have voiced

concern over the potential risks associated with a higher inflation target. In his 2010 Jackson

Hole speech, Ben Bernanke observed the following:

"Inflation expectations appear reasonably well-anchored, and both inflation expec-
tations and actual inflation remain within a range consistent with price stability. In
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this context, raising the inflation objective would likely entail much greater costs
than benefits. Inflation would be higher and probably more volatile under such a
policy, undermining confidence and the ability of firms and households to make
longer-term plans, while squandering the Fed’s hard-won inflation credibility."

The discussion about whether or not to raise the inflation target was fueled by the recent

decline in the natural real interest rate (e.g. Del Negro et al. (2017), Hamilton et al. (2015),

Gagnon et al. (2016), and Eggertsson et al. (2017)). Figure 2.1 shows the evolution of the

nominal effective Federal Funds Rate, inflation and an estimate of the real natural interest rate

for the United States. Given that inflation has been fairly stable in the past 20 years, lower

long-run real interest rates lead to lower average nominal interest rates. As a consequence, the

ZLB would be reached more frequently, hampering the ability of monetary policy to stabilize

the economy. Proponents of higher inflation targets argue that higher long-run nominal interest

rates will provide more leeway for monetary policy.

In light of this debate, the central question I seek to answer in this Chapter is whether

higher target rates of inflation necessarily reduce the probability of hitting the ZLB. To this

end, I investigate the implications of higher inflation targets for the behavior of households

and firms and the consequences for monetary policy - especially, when the economy is hit by

large adverse shocks.

In macroeconomic models with nominal rigidities, positive trend inflation changes the

price-setting behavior of firms (see e.g. Kiley (2007), Ascari and Ropele (2009) or Ascari

and Sbordone (2014)). Firms become more forward-looking at higher target rates of inflation

because they anticipate that inflation will erode their real profits over time. When economic

shocks are persistent, as is commonly considered in the literature to gauge the persistent

effects of the financial crisis and the Great Recession, inflation becomes more volatile. So

far, the literature has not considered the implications of higher inflation volatility caused by

higher inflation targets in deep recessions with a binding ZLB.

Intuitively, higher inflation targets generate the following trade-off. On the one hand,

higher steady state inflation increases long-run nominal interest rates, allowing for larger

decreases of nominal interest rates before the ZLB starts to bind. On the other hand, when

higher inflation targets are a source of increased inflation volatility, larger cuts in the nominal

interest rate are required to stabilize the economy in the wake of adverse macroeconomic

developments.
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Fig. 2.1 The Nominal FED Funds Rate, Consumer Price Index (CPI) and the Real Natural
Rate

Source: FRED

These considerations can be illustrated in a simple experiment. Figure 2.2 shows illustra-

tive probability density functions for the short-term nominal interest rate. In the benchmark

case, the mean of the distribution equals the average of the federal funds rate from 1970

to 2017 (gray shaded curve). The variance, say σ2, is chosen such that the probability of

hitting the ZLB is 5% as in Reifschneider and Williams (2000). The vertical line indicates the

nominal interest rate at zero percent. All realizations to the left of the vertical line represent

instances in which the ZLB is binding. Suppose an increase in the inflation target from 2%

to 4% moves the mean of the distribution by 2 percentage points but the variance is kept

unchanged (black dashed line). It is straightforward to see that ZLB episodes become less

likely in this case. However, if a higher inflation target changes the mean and also the variance

of the density – as perhaps a result of the change in the behavior of households and firm – the

distribution becomes more dispersed (blue solid line). Specifically, I assume that the standard

deviation of the nominal interest rate doubles. In Figure 2.2, the level increase in the mean of

the nominal interest rate is dominated by the increase in the volatility of the distribution. All

told, the ZLB binds more often.

In this Chapter, I examine the implications of higher inflation targets in a standard New

Keynesian model. The model features Calvo (1983) price setting frictions. Following Ascari
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Fig. 2.2 Probability Density Functions for the Nominal Interest Rate

and Sbordone (2014), the model abstracts from price indexation. In the model, a higher

inflation target is a source of larger fluctuations of inflation in response to economic shocks.

Based on the model, I provide an example in which larger inflation volatility has a first-order

effect on the probability of hitting the ZLB. In this case, raising the inflation target would be

associated with more frequent rather than less frequent episodes at the ZLB. Hence, adopting

a higher inflation target is ineffective in reducing the probability of hitting the ZLB and

aggravates the effects of large adverse shocks on the economy.

I develop and discuss the results of this Chapter analytically and numerically. The

analytical part is useful to understand the intuition. For tractability, I follow Eggertsson (2010)

or Eggertsson and Woodford (2003) in assuming a two-state Markov chain process for the

economic shocks. This way, it is possible to represent the equilibrium conditions by aggregate

supply (AS) and aggregate demand (AD) schedules. While a positive inflation target does not

affect the aggregate demand side directly, it can change the slope of the AS curve. Specifically,

higher rates of steady state inflation imply a steeper AS curve, triggering larger fluctuations

of inflation in response to variations in demand.
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The intuition for this result is as follows. Price-setters anticipate that they may be stuck

with today’s price for some period of time while their real profits erode over time due to future

inflation. The higher steady state inflation, the higher the degree of forward-lookingness for

today’s price decisions, reflecting the increased relevance of future expected demand. Assume

that the economy is hit by a large and persistent recessionary demand shock such that firms

expect future demand to be low. In this case, as a higher inflation target makes firms more

forward-looking, firms tend to cut prices more aggressively in order to maximize the net

present value of real profits. All else equal, the expectation of a persisting contraction implies

a stronger period of disinflation the higher the target rate of inflation.

The numerical section reports the results based on stochastic simulations of the model. In

this section, I assume an AR(1) process for the economic shocks and revisit the frequency

and average duration of ZLB episodes for the benchmark case at 2% and an alternative target

of 4%. The model is calibrated to generate a ZLB probability of around 5% for the baseline

scenario at 2% (Reifschneider and Williams (2000)). I find that the likelihood of ZLB events

increases to 7.2% when the target rate is 4%. Moreover, the duration of a ZLB episode is

2.5 quarters longer at 4% inflation compared to the baseline case. The quantitative results

are sensitive to the persistence of the shocks, the degree of price rigidity and the degree of

inflation indexation. I provide an extensive sensitivity analysis in a separate section.

For the stochastic simulations, I solve the model using a global solution technique to

account for future shock uncertainty affecting the decision rules of households and firms. The

solution approach is based on a collocation method (see e.g Judd (1998), Miranda and Fackler

(2002) and Schmidt (2013)). Based on this method, I develop an algorithm that exploits the

fact that the model equations can be represented as a system of difference equations over a

pre-defined grid. The major advantage of this approach is a significant speed improvement

compared to the standard implementation of the algorithm for this global solution method.

All told, my main findings shed new light on the ongoing debate about inflation targets

and the ZLB. Based on the conjecture in the Jackson Hole speech by Ben Bernanke (2010), I

investigate the implications of higher inflation targets for the behavior of firms and households.

My results caution against proposals to raise the inflation target as a policy tool to reduce the

risk of ZLB episodes. My analysis highlights the importance to keep in mind that a higher

inflation target moves the mean and, more importantly, the variance of the distribution of the
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nominal interest rate. I show that because of a change in the firms’ price-setting behavior, the

effect on the variance dominates the effect on the mean of the nominal interest rate.

The remainder of the Chapter is organized as follows. Section 2.2 provides a review of

related literature. Section 2.3 develops the New Keynesian that I use in my analysis. Section

2.4 presents the analytical analysis, and Section 2.5 reports the simulation results from the

numerical analysis. Section 2.6 provides a sensitivity analysis. Finally, Section 2.7 concludes.

2.2 Related Literature

A substantial body of work has analyzed the potential for the ZLB to impede macroeconomic

performance. Starting in the early 1990s, Summers (1991) raised concerns that, as nominal

interest rates cannot fall below zero, monetary policy faces a trade-off between achieving

low average inflation and macroeconomic stability given that the latter occasionally requires

negative real interest rates to offset contractionary disturbances. Among others, Orphanides

and Solow (1990), Reifschneider and Williams (2000), Coenen et al. (2004), Williams (2009),

and Kiley and Roberts (2017) consider and quantify the effects of the ZLB in structural and

semi-structural models.

Reifschneider and Williams (2000) and Kiley and Roberts (2017), in particular, study the

consequences of higher steady state nominal interest rates for the likelihood of hitting the ZLB.

Based on stochastic simulations of the FRB/US model using historical shocks, Reifschneider

and Williams (2000) analyze how the steady state distributions of macroeconomic variables

vary when policymakers adopt different inflation targets. Their findings suggest that the zero

lower bound binds around 10% of the time at an inflation target of 0%. Raising the inflation

target rate to 2% would reduce the ZLB risk to 5%. At an inflation target of 4%, the federal

funds rate would be at ZLB only 1% of the time.

Similarly, the results in Kiley and Roberts (2017) also lend support to the idea that higher

inflation targets may be beneficial. These authors find that the ZLB binds more frequently, as

much as 40% of the time. The ZLB constraint makes it harder for monetary policy to achieve

its 2% inflation objective. As a result, Kiley and Roberts (2017) suggest that policymakers

seek an inflation target near 3%.
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The complexity of the FRB/US model makes it difficult to trace out the underlying key

mechanisms that give rise to the findings in Reifschneider and Williams (2000) and Kiley

and Roberts (2017). One important difference, however, is the absence of price indexation

in my model compared to previous work. Price indexation reduces the degree of forward-

lookingness of price-setting firms as prices are set mechanically. Consequently, with full

indexation, inflation volatility is unaffected at positive rates of steady state inflation. In

my analysis, I choose to abstract from price indexation in the model as there is little to

no empirical micro-evidence that firms adjust their prices mechanically. I dwell deeper on

this issue in Section 2.6. In addition, Kiley and Roberts (2017) solve the model under the

assumption of certainty equivalence (perfect foresight) whereas I allow for shock uncertainty

to affect the model solution using global solution methods.

Several papers have studied the optimal inflation target in light of the ZLB likelihood and

the economic costs associated with higher inflation. Ngo (2018) finds that the probability

of hitting the ZLB probability falls monotonically in the inflation target when the central

maximizes household welfare. In difference to Ngo (2018), I abstract from price indexation

and consider persistent demand shocks. Both features are crucial for my perhaps surprising

result that a higher inflation can increase the risk of hitting the ZLB. He finds that the optimal

target rate is greater than 2% when the unconditional probability of hitting the ZLB is larger

than 2.5%. Schmitt-Grohé and Uribe (2010) find that the optimal inflation rate is around 0%.

However, they assume that the central bank is able to commit to policy plans such that the

ZLB risk is zero. Coibion et al. (2012) report that the optimal inflation rate is around 1.5%. I

conduct a positive analysis of the implications of higher inflation targets. I show that a higher

inflation target can be associated with substantial welfare losses as it increases the probability

of deep recessions with a binding ZLB.

A possible concern of higher target rates of inflation is the higher risk of unanchoring of

inflation expectations (see e.g. Bundesbank (2018)). An extensive literature studies the role

of trend inflation for equilibrium determinacy (e.g. Kiley (2007), Ascari and Ropele (2009),

Ascari and Sbordone (2014) or Arias et al. (2017)). The general consensus is that higher

steady state inflation shrinks the determinacy region, requiring monetary policy to act more

aggressively in response to economic disturbances.
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2.3 The Model

This section presents the basic New Keynesian DSGE model with positive trend inflation as

in Ascari and Sbordone (2014). In the baseline model, I abstract from price indexation. The

role of price indexation will be discussed in the sensitivity analysis in Section 2.6.

Households. The representative household maximizes expected lifetime utility of con-

sumption, Ct , and labor, Nt :

E0

∞

∑
t=0

β
t
ζt

{
lnCt −

N1+ϕ

t

1+ϕ

}
(2.1)

subject to the period-by-period budget constraint:

Pt Ct +Bt ≤ (1+ it−1)Bt−1 +Pt wt Nt +Γt . (2.2)

Here, Pt is the price of the final good, Bt represents holdings of a one-period bond with

nominal return it , wt is the real wage, and Γt denotes firms’ profits that are distributed to

households. ζt is an exogenous discount factor shock. The household optimization problem

yields the following first-order conditions:

wt = Nϕ

t Ct (2.3)

1
Ct

= β Et

[
1

Ct+1

1+ it
1+πt+1

δt+1

]
(2.4)

where 1+πt ≡ Pt/Pt−1 denotes the (gross) inflation rate and δt+1 ≡ ζt+1
ζt

.

Final good firms. A final good Yt is produced by perfectly competitive firms, using a

continuum of intermediate inputs Yj,t indexed by j ∈ (0,1) and a production function,

Yt =
(∫ 1

0 Y (ε−1)/ε

j,t d j
)ε/(ε−1)

, with ε > 1. Taking prices as given, the representative final good

producer chooses quantities of intermediate goods Y j,t to maximize profits, resulting in the

following demand function:

Yj,t =

(
Pj,t

Pt

)−ε

Yt (2.5)
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where Pj,t is the price for intermediate good j. The aggregate price index is

Pt =
(∫ 1

0 P1−ε

j,t d j
)1/(1−ε)

.

Intermediate goods firms. Intermediate inputs Yj,t are produced by a continuum of mo-

nopolistically competitive firms indexed by j ∈ (0,1) using the linear production technology

Yj,t = N j,t . Intermediate good producers face price setting frictions as in Calvo (1983). In

each period, a firm can reoptimize its nominal price, defined as P∗
j,t , with fixed probability

1− θ . With probability θ , the firm keeps its price unchanged. Firms do not index their

price to either past inflation or trend inflation. The firm chooses its optimal re-set price P∗
t to

maximize profits

Et

∞

∑
i=0

θ
i
Λt,t+i

( P∗
j,t

Pt+i
−wt+i

)
Yj,t+i (2.6)

subject to the demand schedule in Eq. (5). Λt,t+i ≡ β
Ct

Ct+i
is the stochastic discount factor,

evaluating future profits in utility units since the household is the owner of the firm. Note that

in the model, the real wage equals real marginal cost of the firm. Finally, the aggregate price

level evolves as:

Pt =
[
θP1−ε

t−1 +(1−θ)P∗(1−ε)
t

] 1
1−ε

. (2.7)

The solution to the profit maximization problem can be written as:

P∗
j,t

Pt
=

ε

ε −1

Et ∑
∞
i=0 θ i Λt,t+i

(
Pt+i
Pt

)ε

wt+iYt+i

Et ∑
∞
i=0 θ i Λt,t+i

(
Pt+i
Pt

)ε−1
Yt+i

. (2.8)

Eq. (2.8) can be used to show that trend inflation changes the price-setting behavior

of firms (see for example Kiley (2007), Ascari and Ropele (2009) or Ascari and Sbordone

(2014)). Note that Pt+i
Pt

= (1+ πt+i)× ·· · × (1+ πt+1)). Thus, firms use future expected

inflation rates to discount future marginal cost that is,
(

Pt+i
Pt

)ε

and
(

Pt+i
Pt

)ε−1
in the nominator

and denominator of Eq. (2.8), respectively. The higher future expected inflation, the larger

the weight on future expected marginal cost. Hence, firms effectively become more forward-

looking, placing more weight on future rather than on current economic conditions. I will

discuss the implications of this feature of the model in further detail in the next sections.
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Price dispersion. Price dispersion is an important characteristic of models with staggered

price setting. For intermediate good firm j, it holds that Yt

(
Pj,t
Pt

)−ε

= N j,t . Integrating over j

and rearranging yields:

Yt =
1
st

Nt (2.9)

with

st =
∫ 1

0

(
Pj,t

Pt

)−ε

d j. (2.10)

The variable st measures the relative price dispersion across intermediate firms. st is bounded

from below by unity (e.g. Yun (1996), Christiano et al. (2011) or Schmitt-Grohé and Uribe

(2007)) and can be interpreted as a resource cost: the higher is the dispersion in relative prices,

the more labor input is needed to produce a given level of output. It is straightforward to see

that st evolves as:

st = (1−θ)
P∗

j,t

Pt

−ε

+θ π
ε
t st−1. (2.11)

Market clearing. The market clearing conditions in the goods market and the labor market

are:

Yt =Ct (2.12)

Nt =
∫ 1

0
N j,t d j. (2.13)

Monetary policy. The central bank sets the short-term nominal interest rate according to

a Taylor rule subject to the ZLB:

1+ i = max

{
1,(1+ i)

(
1+πt

1+π

)φπ
(

Yt

Y

)φY
}

(2.14)

where φπ and φY denote the response coefficients to inflation and output, respectively. i

represents the steady state nominal interest rate, which is given by i ≡ 1+π

β
−1. Y is steady

state output.
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2.3.1 The Log-Linearized Model

This section provides the log-linear approximations of the equilibrium conditions around a

steady state with a positive inflation target, i.e. π > 0. In Section 2.6, I will show results

based on the non-linear model.

Imposing the resource constraint Yt =Ct , the Euler Equation is given by:

Ŷt = EtŶt+1 −
(

ît −Et π̂t+1

)
−Et δ̂t+1 (2.15)

where π̂t denotes the log-deviation of gross inflation and ît the log-deviation of the nominal

interest rate from its steady state. Similarly, for the monetary policy rule, we have:

ît = max
{
−i,φπ π̂t +φyŶt

}
(2.16)

where i is the steady state nominal interest rate.

The New Keynesian Phillips curve is derived by log-linearizing a recursive formulation of

Eq. (2.8) and combining it with the log-linearized expressions of Eqs. (2.7), (2.9) and (2.11).

The New Keynesian Phillips curve consists of two equations that describe the dynamics of

inflation, π̂t , and the evolution of the present discounted value of marginal cost, ψ̂t :

π̂t = βα(π)Et π̂t+1 +κ(π)[(1+ϕ)Ŷt +ϕ ŝt ]+η(π)Etψ̂t+1 (2.17)

ψ̂t = (1−β θ π
ε)
(
(1+ϕ)Ŷt +ϕ ŝt

)
+β θ π

ε Et (ψ̂t+1 + ε π̂t+1) (2.18)

with the following expressions:

α(π) = 1+ ε π (1−θ (1+π)ε−1)> 0 (2.19)

κ(π) =
(1−θβ (1+π)ε)(1−θ (1+π)ε−1)

θ (1+π)ε−1 > 0 (2.20)

η(π) = β π (1−θ (1+π)ε−1)> 0 (2.21)

Finally, the evolution of price dispersion st is derived from log-linearizing Eq. (2.11):

ŝt = θ (1+π)ε ŝt−1 +

[
ε θ (1+π)ε−1

1−θ (1+π)ε−1 π

]
π̂t . (2.22)
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Note that for π = 0, it holds that η(π) = 0, α(π) = 1 and ŝt ≈ 0. In this case, the New

Keynesian Philipps curve reduces to:

π̂t = β Et π̂t+1 +
(1−θβ )(1−θ)

θ
(1+ϕ)Ŷt . (2.23)

2.4 Analytical Results

This section presents the key analytical results. For simplicity and analytical tractability, I

assume that ϕ = 0 in this section, i.e. linear labor disutility. This assumption simplifies the

specification of the New Keynesian Phillips curve.1 In the numerical analysis of Section 2.5,

I allow for the more general case of ϕ > 0.

A recursive formulation of the New Keynesian Phillips curve. Iterating the New Keyne-

sian Phillips curve in Eq. (2.17) forward yields:

π̂t =
∞

∑
j=0

β
j
α(π) j Et

[
κ(π)(1+ϕ)Ŷt+ j +η(π)β ψ̂t+1+ j

]
(2.24)

In this analysis, I focus on low to moderate values for the inflation target, π . In particular,

assume that 1 ≤ 1+π < (θ)−
1

ε−1 , 1 ≤ 1+π < (θ β )−
1
ε .2 Furthermore, assume βα(π)< 1

such that the infinite sum in (2.24) converges to a finite number. Then, it holds that α(π)≥ 1

implying that the weight of future expected demand and marginal cost in determining current

inflation, π̂t , increases progressively in j.

More generally, a higher trend inflation alters the firms’ price-setting behavior: an increase

in π decreases the weight on current demand (i.e. ∂κ(π)/∂π < 0) and increases the weights

on future expected demand and marginal cost (i.e. ∂α(π)/∂π > 0, and ∂η(π)/∂π > 0).3

Hence, the contemporaneous relationship between inflation and output weakens and inflation

becomes less sensitive to variations in current demand. Instead, firms become effectively

1When labor disutility is linear, the labor supply equation (2.3) is independent of hours worked and also of
the measure of relative price dispersion, st . Consequently, the variable st , which is a predetermined variable,
does not affect the dynamics of inflation and output. It only determines the evolution of labor.

2These conditions ensure that α(π)> 0, κ(π)> 0 and η(π)> 0.
3For a formal proof, see Ascari and Ropele (2009).
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more forward-looking, placing more weight on future than on present economic activity.

The exogenous process. In this section, I assume that the exogenous process δ̂t follows a

two-state Markov chain as in Eggertsson and Woodford (2003) and Eggertsson (2010). In

the short run the discount factor shock is δ̂t = δ̂S and reverts back to steady state, δ̂t = 0,

with probability 1− µ in each period. This approach allows to derive the main results

analytically and represent the equilibrium conditions of the model as Aggregate Supply (AS)

and Aggregate Demand (AD) schedules. Let T denote the period in which δ̂t has reverted

to the steady state. Hence, the time t ≥ T denotes the long run while t < T is the short

run. I focus on a long-run equilibrium at positive interest rates (i.e. i = 1+π

β
− 1 > 0) and

Ŷt = π̂t = ŝt = ψ̂t = 0.4

First, consider a large contractionary discount factor shock, δ̂S, such that the ZLB is

binding:

δ̂S > δ̂
∗(π), (2.25)

where δ̂ ∗(π) = [φπ ωπ(π)+φY ωY (π)]
−1 i and the analytical expressions for ωπ(π) and

ωY (π) are shown in Table 1. Then, there exists a locally unique bounded equilibrium at zero

interest rate in the short run such that ît =−i and π̂t = π̂ZLB
S , Ŷt = Ŷ ZLB

S and ψ̂t = ψ̂ZLB
S .5

Second, suppose the condition in Eq. (2.25) is not satisfied so that the ZLB is not reached.

Denote this case as "normal times" (NT). Then, there exists a locally unique bounded equi-

librium with ît >−i and π̂t = π̂NT
S , Ŷt = Ŷ NT

S and ψ̂t = ψ̂NT
S . Appendix A.0.2 provides the

conditions for determinacy of the rational-expectations equilibrium.

The short-run AS. For periods t < T , the two-state Markov chain concept implies that

Et π̂t+1 = EtŶt+1 = 0 with probability 1− µ or alternatively Et π̂t+1 = π̂t and EtŶt+1 = Ŷt

with probability µ . Combining the New Keynesian Phillips curve in (2.17) and the present

discounted value of marginal cost in (2.18) yields the short-run AS curve:

4Appendix A.0.2 provides a proof showing that there exists a locally unique bounded equilibrium such that
i = 1+π

β
−1 > 0 and Ŷt = π̂t = ψ̂t = 0 in t ≥ T . Here, I implicitly assume a long-run monetary policy regime

which excludes that the zero lower bound is binding as a steady state outcome (see for example Eggertsson
(2010), Eggertsson and Woodford (2003)).

5Generally, my analysis focuses only on zero lower bound events that are driven by real disturbances and
does not consider liquidity traps resulting from self-fulfilling expectations as for example in Mertens and Ravn
(2010).
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Table 2.1 Summary of Parameters and Analytical Expressions

Parameter Description Parameter Description

α̃(π) α(π)+η(π) θ π
ε

ε µ

1−β θ π
ε

µ
ωπ(π)

K̃(π)
1−µ+φY+K̃(π)(φπ−µ)

κ̃(π) κ(π)+η(π)µ
1−θ π

ε
ε

1−β θ π
ε

µ
ω ′

π(π)
K̃(π)

1−µ−K̃(π)µ

K̃(π) κ̃(π)
1−β α̃(π)µ

ωY (π)
1

1−µ+φY+K̃(π)(φπ−µ)

ω ′
Y (π)

1
1−µ−K̃(π)µ

π̂t = β α̃(π)µπ̂t + κ̃(π)Ŷt (2.26)

where the expressions for κ̃(π) and α̃(π) are provided in Table 1. Define the slope of the

AS curve as K̃(π)≡ κ̃(π)/(1−β α̃(π)µ). The slope of the AS curve depends on the relative

weights attached to future and present terms. I can show that the AS curve becomes steeper

when the inflation target increases if the following sufficient condition is satisfied.

Proposition 1. A sufficient condition for a steeper AS curve if the inflation target rate is

increased (i.e. ∂ K̃(π)
∂π

> 0) is:

β α(π)µ ≥
−∂κ(π)/∂π

κ(π)

−∂κ(π)/∂π

κ(π) + ∂α(π)/∂π

α(π)

> 0. (2.27)

The proof can be found in Appendix A.0.3. Proposition 1 is a key result: a steeper AS

curve is associated with larger changes in inflation in response to variations in demand in

the short run. Intuitively, the inequality in Proposition 1 states that the effective discounting

on future expected output must be larger than the relative elasticity of the slope of the New

Keynesian Phillips curve, κ(π), with respect to an increase in the inflation target π . This

condition ensures that the weight on future expected output is large enough to compensate for

the weaker response to current output.

To gain more intuition, consider first the special case in which µ = 0. The discount factor

shock δ̂S reverts to the steady state with probability one in the next period. Here, Proposition
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1 would be clearly violated and the slope of the AS equation becomes flatter. The reason is

the following: forward-looking firms anticipate that the economy will return to its long-run

equilibrium in the next period and are reluctant to change their (relative) price because with

some probability they will be unable to readjust the price while inflation erodes their real

profits over time. Consequently, Proposition 1 is satisfied only if µ > 0 is sufficiently large.

The expectation of a persistent contraction in demand can lead to a stronger change in inflation

when π is higher because firms cut prices more aggressively in order to maximize the net

present value of real profits.

The short-run AD. Combining the New IS curve in (2.15) and monetary policy in (2.16)

yields the Aggregate Demand curve. For t < T , the Aggregate Demand curve in normal times

and at the ZLB are:

AD: Normal Times Ŷ NT
S = µ Ŷ NT

S −
[
φπ π̂

NT
S +φY Ŷ NT

S −µ π̂
NT
S

]
−µ δ̂S (2.28)

AD: ZLB Ŷ ZLB
S = µ Ŷ ZLB

S −
[
−i−µ π̂

ZLB
S
]
−µ δ̂S (2.29)

At the ZLB, higher inflation expectations decrease the real interest rate, reducing the

households’ desire to save and making current spending relatively cheaper. Hence, the slope

of the AD curve becomes positive at the ZLB.

The AS-AD schedules. Figure 2.3 illustrates the short-run AS and AD schedules graphi-

cally. Note that a higher inflation target does not affect the aggregate demand side but only the

aggregate supply side as it affects the firms’ price-setting behavior. All else equal, a higher

inflation target increases the slope of the AS curve if δ̂S is sufficiently persistent while the AD

curve remains unaffected. Hence, higher inflation targets lead to a larger response in inflation

both in normal times and at the ZLB.
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Fig. 2.3 Aggregate Supply and Aggregate Demand Schedules

(a) Normal Times (b) At ZLB

Inflation target and macroeconomic volatility. The intersection of the AS and AD curves

represent the short-run equilibrium of the model. The solutions in normal times and at the

ZLB are:

Case 1: Normal Times π̂
NT
S =−ωπ(π)µ δ̂S (2.30)

Case 2: ZLB π̂
ZLB
S =−ω

′
π(π)

[
i−µ δ̂S

]
(2.31)

where ωπ(π) and ω ′
π(π) are defined in Table 1. Based on the solutions, I can show that a

higher inflation target amplifies the impact of the shock on inflation. This effect is stronger

when the ZLB is binding because the adjustment of the nominal interest rate is too weak to

match the drop in inflation, further deteriorating output and prices.

Proposition 2. Given that ∂ K̃(π)
∂π

> 0, an increase in π leads to a stronger inflation response

to the shock δ̂S:

∂ωπ(π)/∂π > 0 and ∂ω
′
π(π)/∂π > 0 (2.32)

Generally, inflation responds stronger at the ZLB than in normal times, that is, ∂ω ′
π(π)/∂π >

∂ωπ(π)/∂π > 0.
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The proof can be found in Appendix A.0.5.. Similarly, the solution for output is:

Case 1: Normal Times Ŷ NT
S =−ωY (π)µ δ̂S (2.33)

Case 2: ZLB Ŷ ZLB
S =−ω

′
Y (π)

[
i−µ δ̂S

]
(2.34)

Proposition 3. Given that ∂ K̃(π)
∂π

> 0, an increase in π leads to a weaker response of output

to the shock δ̂S in normal times but a stronger response at the ZLB:

∂ωY (π)/∂π < 0 and ∂ω
′
Y (π)/∂π > 0 (2.35)

In normal times, higher fluctuations in inflation lead to larger adjustments of the nominal

and real interest rate, dampening the effects of the shock on output. This is not possible at

the ZLB: lower inflation leads to a higher real interest rate causing a larger contraction in

demand.

Inflation volatility and ZLB probability. A steeper AS curve can lead to a higher proba-

bility of reaching the ZLB. Suppose the shock δ̂S is drawn from a normal distribution such

as δ̂S ∼ N (0,σ2) where σ is the unconditional standard deviation of the shock. As in

(2.25), define δ̂ ∗(π) as the minimum shock that needs to materialize such that the ZLB binds.

Furthermore, denote the probability to observe the shock δ̂S = δ̂ ∗(π) for target rate π as p.

Hence, the lower δ̂ ∗(π), the likelier it becomes to reach the ZLB.

A higher inflation target can reduce the threshold δ̂ ∗(π). Suppose π
′ > π . It is likelier to

reach the ZLB at π
′ iff δ̂ ∗(π ′)< δ̂ ∗(π) which is satisfied if

i′

i
<

φπ ωπ(π
′)+φY ωY (π

′)

φπ ωπ(π)+φY ωY (π)
(2.36)

where i′ is the steady state nominal interest rate at inflation target π
′. To understand how

(2.36) is related to the slope of the AS curve, K̃(π), consider the following example. Let

φπ = 1.5 and φY = 0.5 and normalize the slope of the AS curve at inflation target rate π to 1.

In this case, the likelihood to be at the ZLB for π
′ increases only if:

K̃(π ′)>
i′

i −0.5

1.5− i′

i

. (2.37)
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Imagine that the higher inflation target, π
′, is associated with an increase in the steady state

nominal interest rate from 4% to 5% such that i′

i = 1.25. Then, the zero bound regime

becomes likelier if the slope of the AS curve for π
′ is three times higher than before, i.e.

K̃(π ′)> 3.

2.5 Numerical Results

This section reports the results from numerical simulations of the model for alternative

inflation targets. There are two important differences compared to Section 2.4. First, the

assumption of linear labor disutility is removed, allowing the dispersion of relative prices to

affect inflation and output dynamics (i.e. ϕ > 0). Second, I assume that δ̂t follows an AR(1)

process given by:

δ̂t = ρ δ̂t−1 + εt , εt ∼ N (0,σ2). (2.38)

2.5.1 Solution Method and Calibration

The log-linearized model is solved using a global solution method. More specifically, I use

a collocation method to obtain approximations of the unknown policy functions as in Judd

(1998), Miranda and Fackler (2002) or Schmidt (2013). This method allows to take the

uncertainty arriving from the stochastic nature of the discount factor shock correctly into

account in that firms’ and households’ expectations represent probability distributions over

future economic outcomes. Numerous papers have studied the effects of shock uncertainty

for the solution of the linearized and nonlinear New Keynesian model. Examples are Lindé

and Trabandt (2018b), Adam and Billi (2006), Adam and Billi (2007), Fernández-Villaverde

et al. (2015), Gust et al. (2017), Nakata (2016) and Richter and Throckmorton (2017). These

authors show that accounting for future shock uncertainty may or may not have non-negligible

implications for equilibrium dynamics.

I discretize the continuous stochastic process for δ̂t using the Rouwenhorst (1995) method.

The Rouwenhorst (1995) method approximates the continuous process through a finite-state

Markov chain that mimics closely the underlying process. Based on the collocation method

by Miranda and Fackler (2002) or Schmidt (2013), I develop an algorithm that exploits the
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fact that the log-linearized model can be represented on a pre-defined grid as a linear system

of difference equations. Then, the algorithm solves for the policy function approximations

iteratively. In each iteration, the procedure identifies the collocation nodes at which the

ZLB constraint is binding and updates the solution of the model accordingly. The details of

the application of the algorithm are described in Appendix A.0.6. Chapter 4 discusses the

algorithm in further detail.

The model is parameterized at quarterly frequency. The parameter values are reported in

Table 2.2. The discount factor β is set to 0.995 to match a steady state nominal interest rate

of 4% annually. The elasticity of substitution between differentiated goods, ε , is set to 6,

implying a steady-state price markup of 20 percent in line with Rotemberg and Woodford

(1997). The price contract parameter θ is set to 0.84 so that the slope of the Phillips curve,

κ(π), given β and ε , equals 0.022 at a 2% inflation target. Moreover, based on the values

for β and ε , the weight on expected inflation in the Phillips curve, α(π), is 1.004 and the

coefficient on the present discounted value for marginal cost, η(π), is 0.07/100 at a 2%

inflation target.

It may be possible that firms adjust prices more frequently when the inflation target

is higher6. If this is the case, price-setting may – in fact– become less forward-looking,

dampening the amplification effects of higher trend inflation on inflation dynamics. Ultimately,

the sensitivity of the frequency of price adjustment to variations in the inflation target remains

an empirical question. However, the evidence on the relationship between higher trend

inflation and the frequency of price adjustment is mixed. For example, Fernández-Villaverde

and Rubio-Ramírez (2008) and Cogley et al. (2010) study estimated versions of the New

Keynesian model for the pre- and the post-Volcker periods. These authors find that the

estimate of the Calvo probability has remained quite stable over time. Based on micro-data

from Argentina, Alvarez et al. (2011) report that the frequency of price changes is fairly

unresponsive for inflation rates below 10%. Nakamura et al. (2018) report a substantial

increase in the frequency of price adjustment for the US in the early 1980s when inflation

increased to 16%. However, the frequency of price adjustment is found to be stable for low

inflation periods. The focus of my analysis lies on low to moderate rates for the inflation

6For example, Bakhshi et al. (2007) study a model with state-dependent pricing as in Dotsey et al. (1999). In
this economy, the New Keynesian Phillips curve is a function of steady state inflation but is also a function of
the steady state distribution of price vintages and the number of price vintages. As trend inflation rises, firms
adjust their prices more frequently and the number of vintages declines.
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Table 2.2 Benchmark Parameterization

Parameter Value Description

β 0.995 Discount factor (quarterly)

ϕ 1 (Inverse) labor supply elasticity

ε 6 Substitution elasticity of inputs

θ 0.84 Prob. of not resetting price

φπ 1.5 Taylor rule: Inflation response coefficient

φY 0.125 Taylor rule: Output response coefficient

ρ 0.9 AR(1)-coefficient discount factor shock

σ 0.125/100 Standard deviation of shock innovation

5% ZLB probability at π = 2% annually

α(π) 1.0042 Inflation weight in Phillips curve at π = 2%

κ(π) 0.022 Slope of Phillips curve at π = 2%

γ(π) 0.07/100 Marginal cost coefficient in Phillips curve at π = 2%

target. It therefore seems reasonable to assume that the Calvo parameter is independent of the

level of π .

For monetary policy, I use the standard Taylor (1993) rule parameters φπ = 1.5 and

φY = 0.125. Finally, in the baseline calibration, the AR(1)-coefficient of the discount factor

shock, ρ , is set to 0.9 to match the persistent effects of the financial crisis and the Great

Recession. The unconditional standard deviation of the discount factor shock is calibrated to

σ = 0.125/100 so that the probability of being at the ZLB is around 5% at an inflation target

rate of 2% (Reifschneider and Williams (2000)).

2.5.2 Numerical Experiment

The main analysis in this section is based on computations of moments from simulations

of the model. In computing these simulations, I generate 6000 samples of 200 periods (i.e.

50 years) initialized at the model’s non-stochastic steady state following Kiley and Roberts

(2017). The shocks are drawn from the unconditional distribution with standard deviation σ .

Similar to Kiley and Roberts (2017), Reifschneider and Roberts (2006) and Reifschneider

(2016), the stochastic simulations allow for back-to-back recessions. The economy has not

necessarily fully recovered from a recessionary period before additional adverse shocks are
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realized. All else equal, the simulations are performed for an economy with inflation targets

ranging from 0% to 4% annually.

Table 2.3 reports the results of the stochastic simulations of the New Keynesian model.

The numbers in brackets are the standard deviations of selected model variables based on

a simulation of the New Keynesian model that ignores the ZLB constraint. In this case,

the nominal interest is allowed to fall below zero. In the baseline scenario (π = 2%), the

probability of reaching the ZLB is 5.14%. At an inflation target of 3%, the ZLB probability

declines relative to the baseline case. The ZLB is expected to bind only 2.16% of the time.

The standard deviation of inflation and the nominal interest rate are slightly higher compared

to π = 2%. However, this channel is not sufficiently strong at π = 3%. Here, a higher

inflation target renders monetary policy more scope to stabilize the economy, dampening the

fluctuations in output.

Table 2.3 Simulation Results

Zero Lower Bound Standard Deviation (in %)

π Probability Duration π̂ ŷ î−Eπ̂ î

000% 22.86% 4.60 0.60(0.26) 1.87(0.43) 0.48(0.25) 0.29(0.44)

111% 10.10% 3.15 0.32(0.26) 0.67(0.40) 0.27(0.25) 0.43(0.45)

222% 5.14% 2.51 0.31(0.28) 0.48(0.35) 0.26(0.25) 0.46(0.47)

333% 2.16% 2.19 0.32(0.31) 0.29(0.25) 0.25(0.26) 0.49(0.50)

444% 7.21% 5.07 0.56(0.50) 0.90(0.75) 0.31(0.28) 0.67(0.70)

Note: Mean duration at ZLB in quarters. The model with π = 1% and π = 0 are solved and simulated using
σ = 0.11/100. π̂: inflation, ŷ: output, î−Eπ̂: real interest rate, î: nominal interest rate. Numbers in brackets
are standard deviations from a model which ignores ZLB constraint.

The volatility effect dominates at a 4% inflation target rate. Macroeconomic performance

deteriorates significantly relative to the baseline case with inflation and output volatility

being substantially higher. The additional margin for monetary policy at π = 4% becomes
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effectively irrelevant in the wake of large recessions: monetary policy responds to larger

fluctuations of inflation by larger cuts in the nominal interest rate. In an economy with π = 4%,

the ZLB is expected to bind around 7.21% of the time. The expected average duration at the

ZLB increases by 2.5 quarters relative to the baseline case (5.07 quarters vs. 2.51 quarters).

Output volatility increases substantially because it becomes more difficult for monetary policy

to stabilize the economy in response to adverse shocks.

The probability of reaching the ZLB is substantially higher for inflation targets 0% and

1% relative to the benchmark case. Higher fluctuations in inflation, output and the real interest

rate can be mostly attributed by the inability of monetary policy to stabilize the economy

when the ZLB is reached. The simulated standard deviations of inflation, output and the real

interest rate differ, in parts, significantly from their counterparts in an economy in which the

ZLB is not a binding constraint.

Fig. 2.4 Simulated Probability Density Functions: π = 2% vs. π = 4%
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Figure 2.4 plots the probability density functions for the nominal interest rate, the real

interest rate, inflation and output from simulations of the New Keynesian model with π = 2%

(gray shaded area) and π = 4% (blue solid line), respectively. The distributions for the

nominal interest rate are truncated at the ZLB. In general, the distributions of all variables

are more dispersed in an economy with π = 4%. The shape of the distributions for the real

interest rate is fairly similar in both scenarios. However, there are slightly more positive

realizations of the real interest rate at π = 4% as a result of the higher probability of being at

the ZLB.

Fig. 2.5 Impulse Responses to Positive Discount Factor Shock

To further illustrate the macroeconomic implications of higher inflation targets, I simulate

the model for a large adverse discount factor shock that generates an expected 4-quarter

liquidity trap in the benchmark scenario (i.e. π = 2%). Figure 2.5 compares the impulse
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responses for the benchmark case for a target at 2% (black dash-dotted line), at 3% (gray

dashed line) and 4% (blue solid line), respectively. At π = 4%, the fall in inflation is

substantial and leads to a larger cut of the nominal interest rate as compared to the benchmark

case. At the ZLB, the real interest rate increases as expected inflation declines, rendering

current spending more costly and, hence, contracting demand. The large contraction leads to

a longer period at the ZLB: at π = 4%, the nominal interest rate is zero for 8 quarters.

Fig. 2.6 5% ZLB Probability: Minimum Inflation Target

Note: min. π: minimum inflation target, θ : Calvo parameter, ρ: AR(1)-coefficient of discount factor shock

The previous results are sensitive to the degree of shock persistence and the degree of

price rigidities. Firms are more forward-looking if prices are more rigid and the shock is

more persistent. Figure 2.6 shows the minimum inflation target rate that is associated with a

(marginally) higher probability of reaching the ZLB relative to the benchmark case of π = 2%

for different combinations of the shock persistence ρ and Calvo parameter θ .7 Figure 2.6

shows ρ on a range between 0.75 and 0.9 and θ between 0.75 and 0.84. πmin is 9.2% for

7All else equal, I simulated the New Keynesian model for different values of ρ , θ and π . All other parameter
values are shown in Table 2.2.
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ρ = 0.75 and θ = 0.75. This means that π = 9.2% is the lowest target rate that would be

associated with a higher probability of hitting the ZLB relative to π = 2%. Interestingly, πmin

declines with higher θ for given ρ but remains nearly constant as ρ increases for given θ .

Hence, the degree of price rigidities, θ , plays a key role in determining πmin.

Fig. 2.7 5% ZLB Probability: Minimum Value for Taylor Coefficients

So far, I have assumed that a higher inflation target does not change how monetary policy

responds to fluctuations in inflation and output. However, a higher inflation target can increase

the risk that inflation expectations become unanchored. As Ascari and Sbordone (2014) and

Ascari and Ropele (2009) and others argue, higher trend inflation shrinks the determinacy

region requiring a stronger policy response to inflation and a weaker response to output to

ensure determinacy. The previous analysis has shown that different monetary policy strategies

are desirable not only due to a higher risk of unanchored inflation expectations. A stronger

policy response to inflation could lower the risk of reaching the ZLB for higher inflation

target rates. I simulated the New Keynesian model again for different combinations of the

inflation target and the Taylor coefficients on inflation, φπ , and output, φY . Figure 2.7 reports

the lowest value for φπ and φY that leads to a probability at the ZLB similar to the one at

π = 2%, i.e. around 5%, for different levels of the inflation target. The left panel shows

the minimum value of the Taylor coefficient on inflation φπ while holding φY constant at

0.125. The minimum φπ increases for target rates higher than 4% relative to the baseline case

(gray vertical line at φπ = 1.5). Hence, it would require a stronger response to deviations
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of inflation from its target to avoid the ZLB. Between π = 2% and 4%, the minimum value

of the Taylor coefficient on inflation is lower relative to the baseline. In this case, monetary

policy can allow for a weaker response to deviations of inflation from its target to achieve a

5% probability of reaching the ZLB. The right panel in Figure 2.7 shows the minimum value

of the Taylor coefficient on output φY while φπ is constant at 1.5. Here, φY declines relative to

the benchmark for π > 3%. An interpretation of this results is that inflation stabilization is

more important than output stabilization in order to reduce the ZLB probability.

2.6 Sensitivity Analysis

In this section, I examine the robustness of the main findings in the previous sections. In

particular, I study the implications of higher inflation targets in the non-linear New Keynesian

model and examine the role of price indexation. Furthermore, I test the sensitivity of the main

findings against an alternative solution method and, finally, consider additional shocks for the

stochastic simulations.

Solution to the Non-Linear Model. The analysis so far is based on the semi-loglinear

New Keynesian model. All equilibrium conditions were log-linearized around the steady

state with positive inflation target, except for the interest rate rule. The implicit assumption is

that the linearized solution is sufficiently accurate. However, recent research by Lindé and

Trabandt (2018a,b) and Boneva et al. (2016) find that the results of the linearized model can

substantially differ from the solution of the non-linear model.

Boneva et al. (2016) study fiscal multipliers at the ZLB in a tractable non-linear New

Keynesian model with zero inflation in steady state. Their findings complement earlier work

by Eggertsson (2010), Christiano et al. (2011) or Woodford (2011) in that they suggest

that supply side policies are effective in stabilizing the economy even in a low interest rate

environment. Boneva et al. (2016) argue that the reason for the conflicting results is the

solution method. Boneva et al. (2016) use the non-linear New Keynesian model and show

that the dispersion of relative price have non-negligible effects in the non-linear model. In the

linearized version of the model, the dispersion of relative prices is approximately zero.

Lindé and Trabandt (2018a,b) analyze the implications of non-linearities in a New Keyne-

sian model that allows for non-linearities in the price-setting behavior of firms as in Kimball
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(1995). Under Kimball (1995) preferences, each producer faces a price elasticity of demand

that is increasing in its own relative price, while the desired price mark-up over marginal

cost is decreasing in the relative price. Thus, a firm will temper any price increases as this

would endogenously reduce its desired mark-up. This effect is absent in a linearized model.

Lindé and Trabandt (2018a) compare the effects of government spending in a linearized and

a non-linear model. They find that fiscal spending multipliers in the non-linear model are

significantly lower than in the linearized model at constant nominal interest rates. In the

non-linear model inflationary pressures in response to the government spending shock are

muted under the Kimball (1995) specification, dampening the drop in the real interest rate.

Building on their previous work, Lindé and Trabandt (2018b) show that non-linearities in

price and wage-setting can explain the small decline in inflation in the Great Recession.

I consider a model with a Dixit-Stiglitz (1977) aggregator and a constant price elasticity

of demand. Hence, the non-linearities in firms’ price-setting behavior that are present under

Kimball (1995) are not relevant for my analysis. However, there might be other effects that

are associated with the non-linear model. I redo the stochastic simulations from the previous

section for the non-linear New Keynesian model. Table 2.4 summarizes the simulation

results.8 The main finding is robust: an inflation target of 4% is associated with a higher

probability of hitting the ZLB relative to the benchmark case of 2%. However, the differences

are quantitatively smaller in the non-linear model. Macroeconomic variables are less volatile

which reduces both the incidence of the ZLB and the average duration at the ZLB. An

interpretation of this results is that the linearized model overstates the degree of forward-

lookingness of firms.

8The unconditional standard deviation of the discount factor shock, σ is chosen such that the ZLB is binding
for 5% of the time for π = 2%.
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Table 2.4 Simulation Results for the Non-Linear Model

Zero Lower Bound Standard Deviation (in %)

π Probability Duration π̂ ŷ î

222% 5.12% 1.61 0.21 0.30 0.31

333% 1.05% 1.05 0.23 0.16 0.29

444% 5.61% 2.03 0.34 0.45 0.35

Note: Mean duration at ZLB in quarters. π̂: inflation, ŷ: output, î: nominal interest rate.

Price Indexation. For the main analysis, I considered a New Keynesian model that

abstracts from price indexation. To match the persistence of inflation in the data, prices

are often indexed to steady-state inflation or to past inflation rates in the literature (see

for example Yun (1996), Christiano et al. (2005), and Smets and Wouters (2007)). Price

indexation mitigates the amplification of inflation in response to economic shocks. Moreover,

price indexation can completely neutralize the effects of trend inflation if firms index their

prices fully to trend inflation (e.g. Ascari and Ropele (2009) or Ascari and Sbordone (2014)).

Here, the steady state allocation coincides exactly with the allocation under flexible prices.

However, the assumption of price indexation is hardly justified on empirical and theoretical

grounds. First, studies based on micro-data on prices do not show that prices change all the

time, a property that price indexation would imply (Ascari and Sbordone (2014)). Second, as

Cogley and Sbordone (2008) or Ascari and Sbordone (2014) have shown, price indexation

is not needed to match the inflation persistence in the data when trend inflation has been

correctly taken into account in the New Keynesian Phillips curve. Cogley and Sbordone

(2008) and Ascari and Sbordone (2014) estimate a hybrid version of the New Keynesian

Phillips curve under positive trend inflation and find no evidence for a significant coefficient

on the backward-looking term.
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To analyze the role of price indexation in generating the previous results, I assume the

following version of the maximization problem of a price-setting firm j:

max
P∗

j,t

Et

∞

∑
i=0

θ
i
Λt,t+i

(( P∗
j,t

Pt+i
Ωt,t+i−1

)
−wt+i

)
Y j,t+i (2.39)

subject to

Yj,t+1 =

(
Pj,t

Pt+1
Ω

ν
t,t+i−1

)−ε

Yt+1 (2.40)

where

Ωt,t+i−1 = π
(1−ω)

(
Pt+i−1

Pt−1

)ω

. (2.41)

Ωt,t+ j−1 represents a general price indexation rule. The parameter 0 ≤ ν ≤ 1 measures the

overall degree of indexation, while the parameter 0 ≤ ω ≤ 1 denotes the degree of indexation

to the inflation target and/or past realized inflation. Suppose that either ω = 0 (indexation

to the inflation target only) or ω = 1 (indexation to past realized inflation only). Moreover,

I set ν to ν = 0.139, ν = 0.5 or ν = 1. ν = 0.139 corresponds to the estimate in Smets and

Wouters (2003) for indexation to past inflation. Finally, I choose the unconditional standard

deviation of the discount factor shock such that the ZLB probability is roughly 5% at π = 2%.

All other parameters are shown in Table 4.1.

Table 2.5 reports the simulation results. Price indexation dampens fluctuations in inflation.

The main findings are not robust under a price indexation rule for the baseline parameteri-

zation as shown in Table 2.2. Under the benchmark parameterization, a 4% inflation target

is associated with a lower probability of reaching the ZLB relative to π = 2% for all speci-

fications of ν and ω . Under mild price indexation to steady state inflation (ν = 0.139), the

previous result can be restored if the persistence of the discount factor shock is sufficiently

high. Reaching the ZLB becomes likelier at π = 4% if ρ = 0.92.

The Role of Uncertainty. The main analysis is based a solution of the New Keynesian

model that allows for future shock uncertainty. To assess the sensitivity of the solution method

for the main results, I redo the analysis using a perfect foresight approach to solve the model.

This method ignores any potential effects of the variance of the discount factor shock on the

decision rules of firms and households.
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Table 2.5 Simulation Results for the Log-Linearized Model with Price Indexation

ZLB Probability

Indexation to Inflation Target (ω = 0) Indexation to Past Inflation (ω = 1)

ρ = 0.90 ρ = 0.92 ρ = 0.90 ρ = 0.92

π ν = 0.139

222% 5.1% 5.2% 5.1% 5.2%

444% 4.6% 6.3% 0% 0.5%

π ν = 0.5

222% 5.3% 5.3% 5.0% 5.0%

444% 2.3% 4.9% 0% 0%

π ν = 1

222% 5.9% 5.1% 5.1% 5.1%

444% 1.6% 3.8% 0% 0%

Table 2.6 compares the simulation results in the previous section with the deterministic

solution. In both cases, the discount factor shock is drawn from a normal distribution with

mean zero and standard variance σ = 0.125/100. Shock uncertainty generally affects the

solution of the model, elevating the effects of adverse shocks and the ZLB risk. The frequency

of ZLB events for the deterministic model is lower by roughly 2 percentage points for target

rates 2% and 4%, respectively. The results for an inflation target of 3% differ only minimally

between the stochastic and the deterministic approach: as ZLB events are generally rare,

shock uncertainty basically does not impact the model solution.

Overall, my main findings do not hinge on the specific solution method. The quantitative

differences between both approaches reflect the impact of future shock uncertainty on the

decision rules of households and firms.
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Table 2.6 Simulation Results: Stochastic Model vs. Deterministic Model

Stochastic Model Deterministic Model

ZLB ZLB
π Probability Duration Probability Duration

222% 5.14% 2.51 3.2% 2.09

333% 2.16% 2.19 1% 1.50

444% 7.21% 5.07 5.5% 3.88

Note: Mean duration at ZLB in quarters.

Effects of Additional Shocks. In addition to the discount factor shock, I consider a price

markup shock which affects inflation dynamics via the New Keynesian Phillips curve. In this

case, the Phillips curve is given by:

π̂t = βα(π)Et π̂t+1 +κ(π)[(1+ϕ)Ŷt +ϕ ŝt ]+η(π)Etψ̂t+1 + γ̂t (2.42)

where ζ̂t is an exogenous shock following an AR(1) process

γ̂t = ρM γ̂t−1 + εM with εM ∼ N (0,σ2
M). (2.43)

Assume that ρM = 0.75. All other parameters are shown in Table 4.1 in the previous

section. Figure 2.8 shows the impulse responses to a large negative markup shock for an

economy with inflation target 2% (dash-dotted black line), 3% (dashed gray line) and 4%

(blue solid line), respectively. The negative markup shock causes a decline in inflation. To

match the large decline in inflation, the nominal interest rate is reduced to its lower bound.

As a consequence, the real interest rate increases and thus output falls. The ZLB lasts for

5 quarters in the baseline case π = 2%. A 4$ inflation target amplifies inflation dynamics,

further deteriorating economic activity. For π = 4%, the ZLB lasts for 10 quarters. Note that

in response to smaller markup shocks that do not imply a binding ZLB inflation and output

would move in opposite directions.
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Fig. 2.8 Impulse Responses to Negative Markup Shock

I solve the model allowing for random disturbances of the discount factor shock and a

price markup shock. I assume that both shocks are uncorrelated. For simplicity, assume that

σ = σM which is chosen such that the observed probability of being at the ZLB is about 5%.

Table 2.7 summarizes the simulation results for alternative values of the AR(1)-coefficient

for the price markup shock, ρM. A higher inflation target leads to a higher probability of

hitting the ZLB only if the cost push shock is sufficiently persistent. A 4% inflation target is

associated with a higher risk of hitting the ZLB relative to a 2% target for ρM ≥ 0.75.
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Table 2.7 Simulation Results: Discount Factor Shock and Markup Shock

Zero Lower Bound Standard Deviation (in %)

Probability Duration π̂ ŷ î

π ρM = 0.5

222% 5.12% 2.01 0.25 0.43 0.25

444% 2.51% 1.85 0.31 0.48 0.29

π ρM = 0.75

222% 5.11% 2.66 0.34 0.51 0.35

444% 8.70% 5.50 0.55 1.22 0.44

Note: Mean duration at ZLB in quarters. ρC: AR(1) coefficient for cost-push shock. π̂: inflation, ŷ: output, î:

nominal interest rate.

2.7 Conclusion

This paper studies the implications of inflation targets for the behavior of firms and households

in light of the current debate to raise the inflation target as a policy tool to reduce the incidence

of the ZLB. I argue that the level of inflation itself can be a source of macroeconomic volatility,

especially in deep recessions with binding ZLB. This generates a non-trivial economic trade-

off as higher fluctuations in inflation require stronger adjustment in the nominal interest rate,

limiting the effective safety margin for monetary policy in recessions. My paper presents a

case in which inflation volatility has a first-order effect. Based on stochastic simulations of

the New Keynesian model, I find that higher inflation targets are associated with a higher

probability of hitting the ZLB. In this example, an increase in the inflation target rate from

2% to 4% would increase the probability of hitting the ZLB from around 5% to 7.21%.
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The main focus of this paper is to investigate the role of higher inflation targets as a

driving factor for inflation volatility. In this context, the choice of a simple New Keynesian

framework seems reasonable to present the results in a tractable way. However, a direction for

future research would be to examine to which extent the key findings in this paper are robust

to extensions of the model. One dimension involves the estimation of the parameters of the

model. In particular, it is straightforward to see that crucial parameters are the persistence

of the shocks, the average duration of a firm’s price, as well as the degree of indexation.

For the latter, macroeconomic evidence commonly suggests that the slope of the Phillips

curve is rather low, corresponding to a high duration between price changes (e.g. Smets and

Wouters (2003, 2007) or Altig et al. (2011)). Other considerations concern the relevance of

the mechanism that are described in this paper for larger models incorporating more nominal

and real frictions (see e.g. Smets and Wouters (2003, 2007) or Christiano et al. (2005)). In

this context, it would be interesting to study the role of wage rigidities for inflation dynamics.

On the one hand, wage stickiness as modelled for example in Erceg et al. (2000) can reinforce

price stickiness and, hence, forward-looking behavior of firms. This generates an additional

source of higher inflation volatility when inflation target are raised. On the other hand, wage

rigidities add persistence to inflation, counterbalancing the effects of higher inflation targets

on inflation volatility.

While this paper focuses on the implications of the level of the inflation target for the

ZLB risk, it generally abstracts from other issues that relate to the implementation of a higher

inflation target. One concern is how to manage the transition to a higher target rate. It would

involve effective communication of the permanent nature of the monetary regime shift as

well as the conduct of policies to move up inflation and inflation expectations. The recent

experience in Japan shows how difficult the effective implementation of an inflation target

could be. As part of a large-scale policy package known as Abenomics, the Bank of Japan

introduced an official inflation target of 2% in 2013. Currently, while inflation expectations

have generally increased, inflation is still below target, suggesting that private agents are

still doubtful whether the adopted inflation target is indeed credible (e.g De Michelis and

Iacoviello (2016)).

Overall, the main finding in this paper adds a new angle to the debate over whether the

inflation target should be raised. It highlights the role of the level of the inflation target itself

for inflation volatility, effectively determining the likelihood of reaching the ZLB on nominal
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interest rates. As a consequence, the results caution against raising the target rate of inflation

while ignoring how this would change the behavior of economic agents. Finally, they call

for rethinking and reevaluating the benefits and risks involved in changing a central bank’s

inflation target.





Chapter 3

Are Consumption Tax Cuts
Expansionary in a Liquidity Trap?

Do temporary value-added tax (VAT) cuts stimulate aggregate consumption? I show that
the canonical New Keynesian model predicts that they are expansionary in normal times but
contractionary in deep recessions (i.e. when an effective lower bound on nominal interest
rates is binding). A potential issue is that standard models only account for consumption
of non-durable goods. However, in countries that levy VAT, consumer durables typically
represent roughly 40% of total consumption expenditures on goods and services that are
subject to the VAT. I allow for consumption of durable goods in the New Keynesian model and
now find that the previous results are completely overturned: temporary consumption tax cuts
have large positive macroeconomic effects both in normal times and in a liquidity trap. The
reason is that purchases of durable goods are highly intertemporally substitutable - consumers
will stock up on storable goods when prices are currently low. But most interestingly, I observe
that the boom in the durable goods sector spills over to the non-durable goods sector. The
VAT cut becomes expansionary for both non-durable and durable goods consumption. The
findings of this paper suggest that it is important to distinguish between different types of
consumption goods to study the aggregate effects of consumption tax changes.

3.1 Introduction

Recent research suggests that fiscal policy has very different effects when nominal interest

rates have reached a zero lower bound (ZLB). For example, Eggertsson (2010) finds that

employment and output decrease in response to a cut in the labor tax rate, a property he refers

to as the "paradox of toil". In a standard New Keynesian model, he shows that such a tax cut

would generate deflationary pressures by reducing the marginal costs of firms. If the central
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bank cannot accommodate by lowering nominal interest rates, real interest rates increase and,

thereby, contract demand.

Using a New Keynesian Dynamic Stochastic General Equilibrium (DSGE) framework,

I analyze the effects of a novel fiscal policy: a temporary cut in the value-added tax (VAT).

Around 150 countries levy VAT, including all countries of the European Union. The VAT is

a general consumption tax that is collected incrementally along the supply chain. Retailers

pay the VAT on their sales but can receive reimbursements for the previous VAT they paid

at earlier stages of production. Hence, the taxation is effectively based on the value-added

at every point of sale along the supply chain. Ultimately, the tax burden will be paid by the

final consumer. Consumers typically pay the final sales price which is inclusive of the VAT.

The VAT system is distinctly different from a sales tax. For example, the United States and

Canada levy a sales tax. With a sales tax, the consumption tax is only collected once at the

final point of purchase by a consumer. Moreover, the sales tax will be added directly on top of

the final price when a good or service is purchased. The particular set-up of the VAT system

may give rise to deflationary pressures in response to a tax cut. A lower VAT rate will only

affect final consumers if retailers are able to adjust their final sales price inclusive of the VAT.

If a VAT cut is not immediately passed on to final prices, consumers will expect a period of

falling prices following the implementation of the lower tax rate.

This study is generally motivated by a fiscal experiment in the United Kingdom (UK). In

an effort to boost private consumption expenditure in the onset of the global financial crisis,

the UK government lowered the standard VAT rate by 2.5 percentage points (from 17.5% to

15%) from December 2008 to December 2009. The tax change was entirely unanticipated by

retailers and consumers and implemented only one week after it was announced. The VAT cut

affected the major share of total household expenditure. Figure 3.1 shows the composition of

an average private consumption basket in the UK in 2008.1 While 40% of total expenditures

are on goods and services that either attract zero VAT (e.g. food) or the reduced VAT (e.g.

energy), the remaining 60% of consumer spending is subject to the standard VAT rate. Within

the latter group, semi-durable and durable goods together contribute to 43% of consumer

expenditure.

1The composition of the representative consumption baskets in other European countries is very similar (see
Figure B.1 in Appendix B.).
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Fig. 3.1 Representative Consumption Basket of Goods and Services for UK in 2008

Non-VAT Goods

(e.g. food, energy

insurance)

40%

Non-durables

(e.g.household goods)

15%

Services

(e.g. restaurants)

19%Semi-durables

(e.g. clothing)

13%

Durables

(e.g. furniture)

13%

Source: Eurostat, own calculations

I study the following questions: (i) What are the macroeconomic effects of a temporary

VAT cut in normal times and in deep recessions (i.e. when the ZLB on nominal interest rates is

reached)? And (ii) is it important to distinguish between different types of consumption goods

that are subject to the VAT (i.e. perishable goods (non-durables and services) and long-lived

goods (semi-durables and durables)? In the standard New Keynesian model, households

consume a bundle of non-durable goods. Using the standard New Keynesian model, I find that

a VAT cut is expansionary in normal times but contractionary when nominal rates are at the

ZLB, consistent with the conjecture in Eggertsson (2010). However, the novel contribution

of this study is that this result no longer holds if I account for an empirically more realistic

household consumption basket. I extend the standard New Keynesian model to allow for

non-durable and durable goods consumption. Semi-durables and durables are consumer goods

with extended product life yielding utility over time. Using the extended model, I find that a

temporary VAT cut is expansionary both in normal times and in deep recessions at the ZLB

for nominal interest rates. I show that in response to the VAT cut, demand for durable goods

increases, but – most interestingly – also demand for non-durable goods increases.

The reason is the following: purchases of durable goods are highly intertemporally

substitutable and consumers stock up on durables when prices are currently low after the VAT

cut. In a New Keynesian model with non-durable and durable consumption, Barsky et al.

(2007) show that the shadow value of long-lived goods is rather unresponsive to temporary
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economic disturbances because it reflects utility from expected service flows over the lifetime

of the durable goods. The fact that the shadow value is nearly constant implies that consumers

are indifferent on the timing of durable goods purchases. When their relative price is low – for

example, when the VAT rate is reduced– consumers increase spending on consumer durables.

But more interestingly, I find that demand for non-durables increase in response to a VAT cut

even in deep recessions with a binding ZLB on nominal interest rates. The higher demand

for durable goods dampens the fall in employment and wages in the economy in a recession.

Higher aggregate wages prevent marginal cost of firms and prices to deteriorate. I find that

this effect is sufficiently strong to reduce deflationary pressure and dampen the rise in the

real interest rate. The results show that a simple New Keynesian model neglects an important

transmission channel to study the effects of consumption tax policies. In fact, the analysis

points to the possibility that fiscal policy that seeks to stimulate consumption via the supply

side can be expansionary even in a low interest rate environment.

Fig. 3.2 Summary of Results

Figure 3.2 illustrates the main results. The baseline model denotes the standard New

Keynesian model. It features price and wage rigidities. The extended model is a two-sector

model in which one sector produces non-durable consumption goods and the other produces
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durable consumption goods. Workers are assumed to be perfectly mobile between the sectors.

Price and wage rigidities are present in both sectors. Now, I consider the following scenario:

assume that the models are subject to a large transitory adverse shock and monetary policy

responds by lowering the nominal interest rate to zero for an expected duration of 8 quarters.

In addition, a VAT cut may or may not be implemented. If it is implemented, the VAT will be

reduced in the first period when the ZLB on nominal interest rates is binding and will remain

lower for 4 quarters consistent with the UK experience. The tax cut is entirely unexpected by

households and firms. Figure 3.2 shows the differences of impulse responses for aggregate

consumption between a scenario with a VAT cut and a scenario without a VAT cut for the

different New Keynesian models. A VAT cut lowers aggregate consumption in the standard

New Keynesian model (gray line with circles) but stimulates demand in the New Keynesian

model with non-durable and durable goods consumption (black solid line). Furthermore, I

assume an alternative scenario in which the model is subject to a small adverse shock and

monetary policy is perfectly accommodative. In this case, the standard New Keynesian model

(red dash-dotted line) and the extended model (blue dashed line) predict that the VAT cut is

expansionary.

The results are sensitive to the choice of two key parameters: the share of durable goods

in the overall consumption basket and the relative degree of price rigidity in the durable goods

sector and the non-durable goods sector. The share of durable goods is calibrated to match

its contribution to the representative consumption basket for the UK in 2008. The degree

of price rigidities determines to which extent the VAT cut will be passed on to consumer

prices. Ultimately, the degree of tax pass-through to consumer prices is an empirical question.

Several papers have estimated the pass-through of VAT changes to consumer prices. For

example, Bernedek et al. (2015) and Carare and Danninger (2008) consider a series of VAT

changes in European countries and find that the pass-through on aggregate prices is less than

full on impact. For the UK in 2008/2009, Crossley et al. (2014) document that prices did not

immediately adjust by the size of the tax cut. Using UK data, I estimate the degree of the pass-

through from the temporary VAT cut in 2008/2009 on consumer final prices. The evidence

suggests that consumer prices of semi-durable and durable goods declined significantly on

impact after the implementation, while the pass-through was limited for non-durable goods

and services. Full pass-through of the lower VAT rate on prices, however, can be rejected in

both cases.
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I solve all models using a global solution technique to account for future shock uncertainty

affecting the decision rules of households and firms. The solution approach is based on

a collocation method that solves for the decision functions of households and firms on a

pre-defined grid (see e.g Judd (1998), Miranda and Fackler (2002) and Schmidt (2013)). One

major drawback of grid-based solution methods is the computational burden. Computation

times increase with the size of the model and the number of endogenous state variables and

exogenous processes. Based on this method, I develop an algorithm that exploits the fact that

the model equations can be represented as a system of difference equations over a pre-defined

grid. The main advantage of this approach is a significant speed improvement compared to

the standard implementation of the algorithm for this global solution method. The algorithm

is particularly useful for the two-sector model which features a non-negligible number of state

variables.

Throughout the analysis, I assume that tax changes do not impose any direct income

effects for consumers, i.e. Ricardian equivalence holds in all models. In principle, it cannot

be ruled out that income effects matter for households’ spending decisions. This might,

for example, be the case if consumers face borrowing constraints. I abstract from such

considerations to focus mainly on understanding the role of price dynamics for aggregate

demand. My findings show that price dynamics in a multi-sector model can be fundamentally

different and, hence, change the implications of fiscal policy that targets the supply side in a

low interest rate environment.

All told, my main findings shed new light on the discussion about the effects of supply

side shocks in a liquidity trap. A VAT cut can have expansionary macroeconomic effects in

normal times and in severe recessions with a binding ZLB on nominal interest rates if the

model accounts for a more realistic consumption basket. Moreover, a temporarily lower VAT

rate can be an appealing policy option in practice for three main reasons. First, the policy

can be applied in many countries. Second, it affects a large share of total private spending

and, hence, can be an effective approach to stimulate demand. And third, the implementation

can be very fast. In the UK, the lower VAT rate was set in place only one week after it was

announced. For example, tax rebates can take months to become effective.

The remainder of this Chapter is organized as follows. Section 3.3 describes the baseline

New Keynesian model and the two-sector New Keynesian model. Section 3.4 summarizes the

calibration of the models and explains the solution method. Section 3.5 discusses the results
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of the simulations and the tax multipliers. Section 3.6 reports relevant robustness checks.

Finally, section 3.7 concludes.

3.2 Related Literature

A number of papers point out that durable goods consumption have important implications

for monetary and fiscal policy (e.g. Erceg and Levin (2006), Barsky et al. (2015), Basu and

Di Leo (2017)). The mechanisms that are stressed in this Chapter are closest to Boehm (2019).

He studies the effects of fiscal policy in a two-sector New Keynesian model and finds that

the size of government spending multiplier depends on the composition of goods that are

purchased by the government. More specifically, he finds that the fiscal mutiplier tends to

be smaller if the government buys durables or investment goods. The crowding-out effect

for these goods is particularly strong because private demand is highly price elastic. Hence,

a policy that increases the relative price of durable goods has contractionary effects in this

model.

My study is also related to the literature that analyzes the relationship between consump-

tion and inflation expectations. Using a New Keynesian model, Correia et al. (2013) suggest

to raise consumption taxes to induce positive inflation expectations at the ZLB. They show

that by engineering an increasing path for consumption taxes over time, it would be possible

to generate negative real interest rates and stimulate demand in a liquidity trap. Their analysis

differs from mine in one key dimension. Correia et al. (2013) study a sales tax that allows for

instantaneous pass-through on consumer final prices. Consequently, their optimal tax policy

might have completely different implications if the consumption tax was a value-added tax.

D’Acunto et al. (2017), Bachmann et al. (2015) and Ichiue and Nishiguchi (2015) empiri-

cally test the hypothesis that higher (expected) consumer prices have expansionary effects

at constant nominal interest rates. While Bachmann et al. (2015) do not find any effects

for consumer behavior, D’Acunto et al. (2017) and Ichiue and Nishiguchi (2015) document

that people tend to increase durable goods purchases when they expect consumer prices to

increase in the future. This result is in line with my results. The demand for new durables

is particularly high (i) in the first period of the VAT cut when relative price of durables is

lowest and (ii) in the last period of the VAT cut when households are expecting final prices to

increase again once the tax rate has reverted to its old level.
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3.3 The Models

This section describes the model economies. The baseline model is a standard New Keynesian

model with wage rigidities as in Erceg et al. (2000). The second model is a two-sector New

Keynesian model that allows for non-durable and durable goods consumption similar to

Barsky et al. (2007). In addition, I introduce a value-added tax (VAT) on all consumption

goods. The tax is collected from all sellers in each stage of the supply chain and is a percentage

of the sale price. In this model economy, the supply chain consists of a final good producer

and intermediate good producers. The VAT is distinctly different from a general sales tax. In

particular, the sales tax is typically imposed on the customers directly at the final stage as a

percentage on top of the sale price.

3.3.1 The Baseline New Keynesian Model

The model is formulated in discrete time with an infinite horizon. The economy is populated

by households, a final good producer, a continuum of intermediate good producers and a

monetary policy authority.

Final good production. A final good, YC,t , is produced by competitive and identical

firms using the technology

YC,t =

[∫ 1

0
YC,t( j)

ε−1
ε d j

] ε

ε−1

with ε > 1. (3.1)

The representative firm chooses input goods, YC,t( j), j ∈ [0,1], to maximize her profits. Let

τt be the VAT rate in period t. The firm sells its good at a price inclusive of the VAT, PC,t but

pays the fraction τt
1+τt

PC,t of the final price as a tax.2

The representative final good producer purchases intermediate good j at final price

inclusive of VAT, PC,t( j). However, the final good producer is allowed to recover the tax from

purchasing intermediate goods. It will be compensated with the amount τt
1+τt

PC,t( j) that has

been collected from the intermediate good producer.

2Given the final price PC,t , the producer receives the net-of-tax price Pnet
C,t = PC,t −PC,t

τt
1+τt

= 1
1+τt

PC,t . Hence,
the VAT rate can be interpreted as a tax on the net-price with PC,t = (1+ τt)Pnet

C,t . To further illustrate the idea
of the VAT, imagine that τt is 10 % and final consumer price inclusive tax is PC,t = 1.1. The VAT share of the
sale price is τt

1+τt
≈ 0.091. This implies that the retailer’s tax liabilities are PC,t

τt
1+τt

= 1.1×0.091. Her effective
net-of-tax price is : Pnet

C,t = PC,t −PC,t
τt

1+τt
= 1.
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The representative final good firm maximizes profits

PC,tYC,t −
∫ 1

0
PC,t( j)YC,t( j)d j−

(
PC,t

τt

1+ τt
YC,t −

∫ 1

0
PC,t( j)

τt

1+ τt
YC,t( j)d j

)
︸ ︷︷ ︸

VAT liabilities

(3.2)

subject to the production function in Eq. (3.1). Rewriting Eq. (3.2) shows that taxation is

based on the value-added, 1
1+τt

(
PC,tYC,t −

∫ 1
0 PC,t( j)YC,t( j)d j

)
.

The firm’s demand for input j and the price index, PC,t , are:

YC,t( j) =
(

PC,t( j)
PC,t

)−ε

YC,t , (3.3)

PC,t =

(∫ 1

0
PC,t( j)1−εd j

) 1
1−ε

. (3.4)

Note that for the representative final good producer, the VAT only scales the profits but

does not affect the optimal choice of input YC,t . This holds as long as final good producers are

perfectly competitive.

Intermediate good production. Intermediate goods are produced by a unit continuum

of differentiated firms, each of which produces a single variety j. Each intermediate good

firm has a constant returns to scale production function YC,t( j) = NC,t( j) using labor Nt( j)

as the only input factor. Retailers have monopolistic power in the product market and are

competitive in the factor market, i.e. labor market.

Every retailer sets her price inclusive VAT, PC,t( j), subject to the demand in Eq. (3.3),

facing price frictions as in Calvo (1983):

PC,t( j) =

PC,t−1( j) with probability θC

P∗
C,t( j) with probability 1−θC

(3.5)

where P∗
C,t( j) is the firm’s optimal re-set price. Given VAT rate τt , a firm that is allowed to

re-optimize its sale price in period t maximizes:
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Et

∞

∑
s=0

(θCβ )s
Λt+s

P∗
C,t( j)−P∗

C,t( j)
τt+s

1+ τt+s︸ ︷︷ ︸
VAT liabilities

−PC,t mcC,t+s

YC,t+s( j) (3.6)

subject to Eq. (3.3). Λt+s is the firm’s stochastic discount factor and mcC,t is real marginal

cost which is defined as:

mcC,t =
Wt

PC,t
. (3.7)

where Wt is the nominal wage rate. The optimal relative re-set price satisfies:

P∗
C,t

PC,t
=

∑
∞
s=0 (θCβ )s ε

ε−1mcC,t+s
(
ΠC

t,t+s
)ε YC,t+s

∑
∞
s=0 (θCβ )s

Λt+s
1

1+τt+s

(
ΠC

t,t+s
)ε−1YC,t+s

(3.8)

where ΠC
t,t+s denotes the cumulative gross inflation rate over s periods:

Π
C
t,t+s =

 1 for s = 0(
PC,t+1
PC,t

)
× ...×

(
PC,t+s

PC,t+s−1

)
for s = 1,2, ...

(3.9)

Suppose that there is an increase in the tax rate τt . This affects the optimal re-set price of

the profit-maximizing producers as follows: producers that are able to adjust their sale price

would pass on the higher tax rate to the buyer by increasing PC,t( j). All other firms will adjust

their price in the following periods. Suppose instead that it is credibly communicated in period

t that the VAT rate is raised in the following period. Price-setting is forward-looking, reflecting

the relevance of future expected marginal cost and price dynamics for today’s optimal price.

This implies that future expected changes in the VAT rate will be fully internalized in today’s

price-setting decision.

Log-linearizing the price-setting condition around a zero inflation steady state yields the

New Keynesian Phillips curve:

Π̂C,t = β Et Π̂C,t+1 +κC

(
m̂cC,t +

τ

1+ τ
τ̂t

)
, withκC ≡ (1−θC)(1−βθC)

θC
(3.10)

where Π̂C,t are log-deviations of (gross) inflation from steady state. The " ̂ " denote log-

deviation from the steady state and " ¯ " denotes the steady state value. In the presence of

price setting frictions, there exists an imperfect pass-through of the VAT on aggregate inflation.
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Specifically, a change in the tax rate τ̂t cannot be passed on instantly to final sale prices. The

degree of immediate pass-through depends on the degree of price rigidity, reflected by the

slope of the Phillips curve κC.

Households. There is a continuum of households indexed by i ∈ [0,1]. Households are

subject to wage-setting frictions as in Erceg et al. (2000). More specifically, assume that there

exists a continuum of monopolistically competitive households, each of which supplies a

differentiated labor service N(i) to the production sector. A representative labor aggregator

combines households’ labor services in the same proportions as firms would choose. Thus,

the aggregator’s demand for each household’s labor is equal to the sum of firms’ demands.

The labor index, NC,t , is given by:3

NC,t =

[∫ 1

0
Nt(i)

εw−1
εw di

] εw
εw−1

(3.11)

where εw represents the elasticity of substitution between labor types. Let Wt(i) denote

the nominal wage for labor of type i. Wages are set by workers of each type and taken as

given by all firms. Cost minimization yields the demand schedule for each labor type i:

Nt(i) =
(

Wt(i)
Wt

)−εw

Nt (3.12)

where Wt is the aggregate wage index defined as

Wt ≡
[∫ 1

0
Wt(i)1−εw di

] 1
1−εw

. (3.13)

The life-time utility of the individual household is given by

E0

∞

∑
t=0

β
t
{

log
(
Ct(i)−hC Ct−1 −νC,t

)
− Nt(i)1+φ

1+φ

}
(3.14)

where Ct(i) is consumption of a non-storable consumption good and Ct is aggregate consump-

tion. The parameter hC ∈ [0,1] disciplines the degree of external habit formation. νC,t is a

consumption preference shock as in Erceg and Lindé (2014) or Blanchard et al. (2016).

3As in Erceg et al. (2000), I assume that the representative labor aggregator combines households’ labor
hours in the same proportions as firms would choose. Thus, the aggregator’s demand for each household’s labor
is equal to the sum of firms’ demands.
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The household has the following period t budget constraint:

PC,tCt(i)+Bt(i)≤ (1+ it−1)Bt−1(i)+Wt(i)Nt(i)+Γt −Tt (3.15)

where PC,t denotes the price of the consumption good, Wt(i) is individual nominal wage rate

and Bt(i) is a risk-free nominal government bond, paying interest rate it in the following period.

The household pays lump-sum taxes net of transfers Tt and receives a share Γt of the profits

of all intermediate firms. Each household maximizes expected lifetime utility with respect to

consumption, labor supply and holdings of bonds subject to its budget constraint (3.15) and

the labor demand function (3.12). Combining the first-order conditions for consumption and

bond holdings yields the Euler equation:4

1 = β Et

{
1+ it

1+πC,t+1

Ct −hC Ct−1 −νC,t

Ct+1 −hC Ct −νC,t+1

}
(3.16)

where πC,t denotes the inflation rate.

Households set nominal wages as staggered contracts. In particular, assume that a constant

fraction (1−θw) of households can renegotiate its wage in each period. The remainder θw

stays with the past wage Wt−1(i). The first-order condition associated with the choice of the

optimal wage W ∗
t (i) is given by

Et

∞

∑
k=0

(β θw)
k
{

1
Ct+k −hCt+k−1 −νC,t

Nt+k(i)
(

W ∗
t (i)

Pt+k
− εw

εw −1
MRSt+k

)}
= 0 (3.17)

where MRSt ≡ Nt(i)φ
(
Ct −hCt−1 −νC,t

)
.

Define the real wage as wt =Wt/PC,t . Log-linearizing the optimal wage condition above

around the steady state yields the wage inflation equation:

Π̂
w
t = βEt Π̂

w
t+1 +κw µ̂t (3.18)

where Π̂W
t = ŵt − ŵt−1 and µ̂t = M̂RSt − ŵt and κw = (1−θw)(1−βθw)

θw(1+εwφ) .

4Erceg et al. (2000) show that if there exist state contingent claims that insure households against idiosyncratic
wage risk, and if preferences are separable in consumption and leisure, households will be identical in their
choice of consumption and bond-holdings. They will only differ in their wage and in their labor supply.
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Monetary and Fiscal Policy. Monetary policy follows a Taylor rule subject to a zero

lower bound constraint on the nominal interest rate it :

1+ it = max
{

1,(1+ i)
(

1+πC,t

1+πC

)γπ
}

withγπ > 1 (3.19)

where i is the steady state nominal interest rate and πC is the inflation target.

The government can temporarily change the value-added tax rate. These changes are

modeled as a shock to the tax rate τt :

τt = τ exp(ετ
t ) with ε

τ
t ∼ N (0,σ2

τ ) i.i.d. (3.20)

where τ is the steady state tax rate. The government collects value-added tax and balances its

budget in every period:5

Tt +(1+ it−1)Bt−1 = τtPC,tYC,t +Bt . (3.21)

Market clearing. I assume market clearing in the final goods market, Yt =Ct , and in the

labor market. The labor market clearing condition is given by

NC,t =
∫ 1

0
NC,t( j)d j. (3.22)

For intermediate good firm j, it holds that
[
PC,t( j)/PC,t

]−ε YC,t = NC,t( j). Integrating over

j and rearranging yields:

YC,t =
NC,t

pC,t
(3.23)

with

pC,t =
∫ 1

0

(
PC,t( j)

Pt

)−ε

d j (3.24)

pC,t ≥ 1 can be interpreted as a measure of output loss due to price dispersion (Yun

(1996)).
5The balanced budget constraint is not restrictive here as Ricardian equivalence holds. Alternatively, it can

be assumed that bonds Bt = 0 while Tt = τtPC,tYC,t .
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3.3.2 A New Keynesian Model with Durable Goods

In this section, I extend the baseline New Keynesian model by allowing for durable goods

consumption as in Barsky et al. (2007). Durable goods are storable and can be used repeatedly.

Firms and Price Setting. The production of non-durable goods and durable goods takes

place in two distinct sectors. Sector C produces a non-durable consumption good, while

sector X produces a durable consumption good. Assume that labor can move freely between

the two industries and the nominal wage is determined on a joint labor market. The industry

structure of the durable goods sector is identical to the production sector for non-durables

described above. Similarly, intermediate good firms in the durable goods sector face price

setting rigidities.

Denote Xt to be newly produced durable goods. The New Keynesian Phillips curve for

sector S ∈ {C,X} is:

Π̂S,t = β Et Π̂S,t+1 +κS

(
m̂cS,t +

τ

1+ τ
τ̂t

)
(3.25)

where κS =
(1−θS)(1−βθS)

θS
. Note that mcS,t = MCS,t/PS,t is real marginal cost in terms of the

sector-specific price index PS,t .

Households. Households derive utility from non-durables and from service flows of

durable goods. Let Dt(i) be the stock of durables of household i. The household maximizes:

E0

∞

∑
t=0

β
t
{
(1−α) log

(
Ct(i)−hC Ct−1 −νC,t

)
+α log(Dt(i)−hD Dt−1 −νD,t)−

Nt(i)1+φ

1+φ

}
(3.26)

subject to the nominal budget constraint

PC,tCt(i)+PX ,tXt(i)+Bt(i)≤ (1+ it−1)Bt−1(i)+Wt(i)Nt(i)+Γt −Tt (3.27)

and the accumulation equation for durables

Dt(i) = Xt(i)+(1−δ )Dt−1(i). (3.28)
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α is the share of durables in the households overall consumption basket and δ is the depreci-

ation rate on the existing stock of durable goods. νC,t and νD,t are consumption preference

shocks for non-durable goods and durable goods consumption, respectively. Xt(i) is new

investment of durable goods.

Let λt be the Lagrange multiplier on the budget constraint in Eq. (3.27) and ηt be the

Lagrange multiplier on the accumulation equation of durable goods in Eq. (3.28). Note that ηt

can also be interpreted as the shadow value for newly purchased durables. Optimal behavior

of the household requires:

PX ,t

PC,t
=

ηt

λt
(3.29)

ηt =UD,t +β (1−δ )Etηt+1 (3.30)

λt =UC,t (3.31)

λt = βEt

{
λt+1

1+ it
1+πC,t+1

}
(3.32)

with

UC,t = (1−α)
(
Ct(i)−hC Ct−1 −νC,t

)−1 (3.33)

UD,t = α (Dt(i)−hD Dt−1 −νD,t)
−1 (3.34)

Eq. (3.29) characterizes the demand function for new durables as a function of the relative

price PX ,t/PC,t . Eq. (3.30) relates the shadow value of additional durables to the discounted

flow utility from durable goods consumption. Finally, combining Eq. (3.31) and (3.32) gives

the standard Euler equation for non-durable consumption goods.

The wage setting problem follows Erceg et al. (2000) and is identical to the solution in the

benchmark model. On a general note, the implications of the two-sector model as discussed

in Barsky et al. (2007) is at odds with VAR evidence. Following a monetary policy shock, the

model would generate negative co-movement across sector output. Several remedies have

been proposed in the literature (e.g. Monacelli (2009), Sterk (2010), Carlstrom and Fuerst

(2010)). One of those is to incorporate wage rigidities (see for example Carlstrom and Fuerst

(2010) or Cenesiz and Guimaraes (2018)). I follow the literature in using wage rigidities to

avoid a co-movement puzzle in a two-sector model.
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Monetary and Fiscal Policy. The central bank follows a Taylor-type policy rule that

targets weighted inflation in the durable and non-durable goods sector:

1+ it = max

{
1,(1+ i)

((
1+πX ,t

1+πX

)1−α(1+πC,t

1+πC

)α
)γπ
}

withγπ > 1 (3.35)

Again, the shock to the VAT rate is:

τt = τ exp(ετ
t ) with ε

τ
t ∼ N (0,σ2

τ ) i.i.d. (3.36)

As before, the government balances it budget in every period:

Tt +(1+ it−1)Bt−1 = τt
(
PC,tYC,t +PX ,tYX ,t

)
+Bt . (3.37)

where YX ,t and YC,t are output in the durable and the non-durable goods sector, respectively.

Market Clearing. I assume that the labor market clearing condition in every sector S is

given by

NS,t =
∫ 1

0
NS,t( j) d j with S ∈ {C,X} . (3.38)

Furthermore, I assume that the aggregate labor market is cleared:

Nt = NC,t +NX ,t . (3.39)

Finally, assume that the markets for non-durable consumption goods and durable consumption

goods clear:

Ct =
NC,t

pC,t
. (3.40)

and

Xt =
NX ,t

pX ,t
. (3.41)

with

pS,t =
∫ 1

0

(
PS,t( j)

Pt

)−ε

d j with S ∈ {C,X} (3.42)

where the ratio pS,t ≥ 1 with S ∈ {C,X} denotes Yun’s (1999) price dispersion measure

for the non-durable and the durable goods sector, respectively.
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3.3.3 Key Properties of the Model

This section discusses two key properties of the two-sector New Keynesian model.

Demand elasticity for new durables. The inverse demand function for new purchases of

durables can be derived using the household’s optimality conditions in Eqs. (3.29), (3.30) and

(3.34). Solving forward gives:

PX ,t

PC,t
= λ

−1
t Et

∞

∑
k=0

[β (1−δ )]k α
(
Dt+k −hDDt+k−1 −νD,t+k

)−1 (3.43)

given the stock of durables

Dt = Xt +(1−δ )Dt−1. (3.44)

As stated in Boehm (2019), a demand elasticity for durable goods is difficult to obtain

analytically due to the dynamic structure of the model. Instead, I simulate a 1% decrease in

the price for durables ceteris paribus and calculate the exact demand elasticities for different

values of the depreciation rate δ using β = 0.9975 and α = 0.4. The parameter α is chosen

in such that the share of durable goods consumption in the overall consumption basket of

the household corresponds to around 40%. For the UK in 2008, the share of expenditure

on durable goods among all goods and services that are subject to the standard VAT rate is

roughly 40%. For simplicity, I assume for now that hD = 0 and νD,t = 0.

Table 3.1 Demand Elasticity for Durable Goods

Rate of Depreciation Demand Elasticity
δ = 1 (Non-durable) 1
δ = 0.7 (1.3 quarters service life) 2.03
δ = 0.5 (2 quarters service life) 3.9
δ = 0.1 (2.5 years service life) 91.7
δ = 0.01 (25 years service life) 5025.7

Table 3.1 reports the price elasticities of demand for new durable goods for different

depreciation rates δ . For a durable good with 2 quarters of service life, a 1 % drop in the price

is associated with an increase of spending by 3.9 %. Similarly, demand would go up by 91.7

% for a good that lasts for 2.5 years. The price elasticities are computed given an exogenous

change in the price for durables all else equal. However, in general equilibrium, demand for
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new durable goods will be ultimately determined by the (effective) relative price PX ,t
PC,t

λt .

The Euler equation for the stock of durables. Combining the household’s optimality

conditions in Eqs. (3.32) and (3.29) yields the Euler equation for durables:

ηt = βEt

{
ηt+1

1+ it
1+πX ,t+1

}
. (3.45)

Eq. (3.45) shows that the household seeks to smooth consumption of durable goods over

time. However, there is a distinct difference between consumption smoothing of durables and

non-durables. The marginal utility from durables, ηt , is derived from the stock of durables,

Dt , which is inherently less volatile than the flow. In the limiting case when durable goods

are never used up (δ → 0), Barsky et al. (2007) show that the shadow value of the durable

good ηt is quasi-constant for the following reasons. First, durables with low depreciation

rates have high stock-to-flow ratios. The steady-state stock-flow ratio is 1/δ in this model. A

high stock-to-flow ratio implies that even large changes in the production of durables have

only small effects on the total stock of durables. Barsky et al. (2007) show that the latter

implies that the aggregate stock of durables is approximately constant Dt ≈ D. Second, if β is

close to 1, ηt largely depends on marginal utility flows in the distant future. In a stationary en-

vironment with temporary shocks, ηt will be dominated by future utility flows in steady-state.6

To sum up, spending on new durables is subject to a high demand elasticity while at the

same time the degree of consumption smoothing is naturally high for the existing stock of

durables. Since the marginal utility from a stock of durables is naturally smooth, consumers

are willing to tolerate larger fluctuations in new purchases of durables. Hence, consumers

will find it optimal to buy durables when the (relative) price is temporarily low and use up the

stock of durables when the (relative) price is high.

6Note that if ηt ≈ η , the Euler equation for durables implies that there is a one-to-one relationship between
the nominal interest rate and expected inflation in the durable goods sector. A first-order approximation of the
the durable Euler equation around the steady state approximately gives

ît ≈ Et π̂X ,t+1. (3.46)

This relationship shows that there is a pure Fisher effect for the prices of durables (Barsky et al. (2015)). This is
the result of an extreme form of consumption smoothing. In every period, the consumer derives utility from the
same, constant stock of durables.
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3.4 Calibration and Solution Method

3.4.1 Calibration

I calibrate the New Keynesian model at quarterly frequency. The following parameter values

apply to both models: the household’s discount factor β is set to 0.9975 and the steady

state (net) inflation rate to zero, so that πC = πX = 0. This implies an annual steady state

interest rate of 1% in line with Christiano et al. (2011). The inverse Frisch elasticity φ is

set to unity, which is consistent with Barsky et al. (2007), Kimball and Shapiro (2008) and

Hall (2009). The elasticity of substitution between differentiated goods, εC, is set to 6. This

implies a steady-state price markup of 20 percent in line with Rotemberg and Woodford

(1997). Furthermore, I assume that εW = 2 and θW = 0.45 which corresponds to a wage

contract duration of roughly 2 quarters consistent with the findings in Galí (2011). The habit

persistence parameters are hC = hD = 0.5. Macro-based estimates of habits persistence range

from 0.55 in Smets and Wouters (2003), 0.76 in Altig et al. (2011) to 0.98 as reported by

Bouakez et al. (2005). Micro-based estimates are smaller, e.g. Ravina (2007) documents

values from 0.29 to 0.5. For monetary policy, I use the standard Taylor (1993) rule parameter

γπ = 1.5.

Furthermore, α is set to 0.4 to correspond to around 40 % of total expenditures for semi-

durable and durable goods subject to the standard VAT rate. I choose δ = 0.5 as a compromise

between durable and semi-durable goods.

Finally, I define the preference shock for non-durable goods consumption as µ̂C,t =

Et ν̂C,t+1 − ν̂C,t . µ̂C,t and ν̂D,t follow an AR(1)-process:

µ̂C,t = ρCµ̂C,t−1 + εC,t with εC,t ∼ N (0,σ2
C) i.i.d. (3.47)

ν̂D,t = ρDν̂D,t−1 + εD,t with εD,t ∼ N (0,σ2
D) i.i.d. (3.48)

The AR(1) coefficients are set to ρC = ρD = 0.8 to gauge the effects of the global

financial crisis and the Great Recession. Finally, I set the unconditional standard deviations to

σC = σD = 0.025/100.
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Evidence on Imperfect VAT Pass-through. To calibrate the degree of price rigidities in

the two sectors, θC and θX , I draw on evidence from the temporary VAT cut in the UK in

2008/2009. The UK government lowered its standard VAT rate by 2.5 p.p. (from 17.5% to

15%). The VAT on goods subject to the reduced rate of 5% (mainly food and energy) and on

alcohol and tobacco remained unchanged.

A full pass-through of the VAT cut in the UK would have implied a fall in consumer prices

by 2.1 percentage points.7 Between November 2008 and December 2008, annual CPI inflation

in the UK fell by 1 percentage point. A number of papers have estimated the pass-through

of the temporary tax shock on aggregate inflation. Pike and Turner (2009) find that around

38% of the tax cut was passed on to consumer prices. However, their estimate may be biased

because they assume that any reduction in prices for VAT goods between December 2008 and

2009 was due to the cut. Crossley et al. (2014) estimate the effects of the tax cut on prices

and spending using inflation dynamics of non-VAT goods to identify the counterfactual. They

cannot reject full pass-through in the first month of implementation. Over the entire period,

however, their estimate is insignificant suggesting that prices were reversed again before the

tax cut ended. In an alternative approach, Crossley et al. (2014) estimate a counterfactual path

for prices in the UK using data on prices in other OECD countries. This specification rejects

full pass-through in the first month at 10% significance level. Again, the results suggest that

at least part of the VAT cut was reversed early.

Following Crossley et al. (2014), I use the evolution of prices and purchases in 9 other

European countries to estimate the counterfactual. A counterfactual analysis is necessary

because many other factors might have affected prices in December 2008. One reason could

be the drop in food and energy prices in late 2008. I consider the following countries: Austria,

Belgium, Finland, France, Germany, Italy, the Netherlands, Portugal and Sweden. Figure 3.3

shows the Consumer Price Index (CPI) between 2006 and 2010 for different sub-categories

and countries. The index of consumer prices for "VAT goods and services" is a weighted index

of prices for all goods and services at the standard VAT rate. Price dynamics of non-durables

and services that accrue the standard tax rate are summarized by the category "Non-durables

and Services". Likewise, the CPI for semi-durable and durable consumption goods at standard

VAT rate are shown under "Semi-durables and Durables". All indices are computed as annual

7Suppose Pnet is the net-of-tax price. Then, the rate of change in the sale price under full pass-through is
1.15×Pnet−1.175×Pnet

1.175×Pnet =−0.021.
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Fig. 3.3 Harmonized Index of Consumer Prices (Annual Rate of Change) by Consumption
Category for Selected Countries
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The shaded area indicates the temporary VAT cut in the UK. Between November and

December 2008, inflation for "VAT Goods and Services" in the UK fell by 1.5 percentage

points. Almost half of the drop was reversed in February 2009 when inflation in VAT goods

rose again by 0.65 percentage points. Most of the fall in inflation of VAT goods came from

prices of semi-durable and durable goods. For these goods, prices changes by about 2.5

percentage points. In contrast, inflation for non-durables and services changed minimally

over the same period.

Despite some variation across countries prior to the UK VAT cut, the evolution of inflation

in the European countries displays by and large a similar trend before December 2008 and

after January 2009. Moreover, the policy impact of the VAT cut is evident, especially for

semi-durables and durables.
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Detailed information on the data is provided in Appendix B. The data is used on a monthly

basis and covers the period from January 2002 to December 2010. I estimate the pass-through

of the VAT cut on inflation using the following difference-in-difference specification separately

for each good category k, where k are either non-durables/services or semi-durables/durables:

In f lationa,k
i,t =β0 +β1UKi +β2UKi ∗Cutm

t +β3Cutm
t (3.49)

+β4 totalsalesi,t−1 +β5 totalsalesk
i,t−1 +β6 Trendi,t + εi,t (3.50)

where In f lationa,k
i,t is the Consumer Price Index. Trendi,t is a (one-sided) HP-filtered trend.

totalsalesk
i,t−1 are retail sales or turnover in good group k.8 totalsalesi,t−1 are aggregate retail

sales of the previous period.

The superscript m denotes the time span which is considered in the specification. Hence,

Cutdec08− jan09
t is a dummy set to 1 for all countries in December 2008 and January 2009.

Suppose m = dec08. Then, β2 is an estimate of inflation pass-through from the VAT cut

unique to the UK in December 2008. Intuitively, the coefficient picks up changes in inflation

in UK in the first month of the VAT cut after differencing out any price changes that were

common in December 2008 for all countries.

All regression results are reported in Table 3.2. The estimates of β2 are negative in the first

month of implementation indicating that prices fell in December 2008 for all good categories.

Zero pass-through on inflation can be rejected at 1% significance level. Interestingly, the

estimated pass-through coefficients for non-durables/services and semi-durables/durables are

insignificant from February onwards suggesting that price changes were undone very early.

I use the estimation results to calculate the average degree of inflation pass-through

implied by the estimates in Table 3.2. Figure 3.4 shows the results. Overall, full pass-through

of the tax shock to consumer prices in the first month of implementation can be rejected for all

VAT goods and services. The degree of pass-through averages around 25% for non-durables

and services and 75% for semi-durables and durables in December 2008. Note that the

standard errors for the estimates for semi-durables and durables are higher compared to the

standard errors in the other regression. Yet, the lower bound of the 95% interval would imply

a pass-through of 65% and remains higher than the lower bound of the same interval for

non-durable goods and services.

8Sales are included with a one period lag to avoid simultaneity issues.
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Table 3.2 Regression Results

(1) (2)

Annual inflation (p.p.) Non-durables and Services Semi-durables and Durables

UK*Cutdec08 -0.418∗∗∗ -1.583∗∗∗

(0.156) (0.232)

UK*Cutdec08− jan09 -0.418 ∗∗ -1.16∗∗

(0.178) (0.573)

UK*Cutdec08− f eb09 -0.208 -0.78

(0.169) (0.628)

UK*Cutdec08−mar09 -0.0008 -0.328

(0.154 ) (0.585)

UK*Cutdec08−apr09 0.034 -0.198

(0.165) (0.527)

UK*Cutdec08−may09 -0.073 -0.198

(0.145) (0.527)

UK*Cutdec08− jun09 -0.093 -0.033

(0.126) (0.422)

100 % Pass-Through corresponds to -2.128 -2.128

No. of observations 1043 1043

(Avg.) Adj. R2 0.51 0.71

(i) Robust standard errors in parentheses

(ii) ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The Calvo parameters θC and θX are chosen to reflect the general findings of the estimation.

Consequently, I set θC to 0.75 implying that retailers are able to change their sale prices with

a probability of 25%. θX is 0.35 such that firms face a probability of 65% to adjust their price

in every period.9 Bils and Klenow (2004) document that prices of durable goods are generally

more flexible than those of non-durable goods. However, Nakamura and Steinsson (2008)

do not find any systematic evidence of larger flexibility of durable prices, and estimate an

average frequency of adjustment of about four quarters regardless of durability. To investigate

9The choice of θX reflects the lower bound of the estimated immediate pass-through on prices of semi-
durables and durables in response to the tax shock.
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the sensitivity of the results to the parameter choice, I will consider different values for θD in

the next section. Table 3.3 reports the baseline calibration for the model parameters.

Fig. 3.4 Estimated Price Pass-Through of VAT cut
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3.4.2 Solution Method

For both New Keynesian models, I log-linearize all model equations around a deterministic

steady state, except for the max-operator in the Taylor rule. All log-linearized equilibrium

equations are provided in Appendix B. The models are solved using a global solution method.

In particular, the solution method approximates the value of the decision functions of the

agents under rational expectations at a finite number of grid points based on a collocation

method (i.e. Judd (1998), Miranda and Fackler (2002), Schmidt (2013), Schmidt (2017)).

Further details are provided in Chapter 4.

The baseline New Keynesian model has 4 state variables (i.e. 2 endogenous state variables

(non-durable goods consumption and the real wage) and 2 exogenous processes (preference

shock and VAT shock)). The two-sector model has 6 state variables in total (i.e. 4 endogenous
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Table 3.3 Calibration of the Baseline Model and the Two-Sector Model

Parameter Value Description
β 0.9975 Discount factor (quarterly)
α 0.4 Share of durables in utility
δ 0.5 Depreciation rate of durables
φ 1 Inverse labor supply elasticity
hC 0.5 Habit formation parameter: Non-durables
hD 0.5 Habit formation parameter: Durables
εC 6 Elasticity of substitution btw. varieties: ND sector
εD 6 Elasticity of substitution btw. varieties: D sector
εw 2 Elasticity of substitution btw. labor input
θC 0.75 Share of non-price adjusting firms (ND sector)
θX 0.35 Share of non-price adjusting firms (D sector)
θw 0.45 Share of non-wage adjusting workers
γπ 1.5 Monet. policy: Inflation coefficient
τ 0.175 Steady State VAT rate
τ̃ 0.15 Temporary VAT rate
ρC 0.8 AR(1) parameter (preference shock, ND)
ρD 0.8 AR(1) parameter (preference shock, D)
σC 0.025/100 Standard deviation of shocks to µ̂C

σD 0.025/100 Standard deviation of shocks to ν̂D

state variables (non-durable and durable goods consumption, the real wage and the relative

price between durables and non-durables) and 2 exogenous state variables (preference shock

and VAT shock)). The special characteristic of the VAT shock is its deterministic nature.

Given that the VAT cut is perfectly credible, households and firms are able to perfectly foresee

the path of the tax rate. Suppose the VAT cut lasts for 4 quarters. The model will have a

distinctly different solution for each of the 4 periods of the VAT cut. I propose an iterative

scheme to solve for the solution of the model in each period. My approach solves backward

for the decision functions starting in the last period of the VAT cut in t = 4. Given the solution

in t = 4, it is possible to find the decision functions in period t = 3. This scheme will be

repeated for periods t = 2 and t = 1. The details of the solution method are described in

Appendix B.
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3.5 Results

In this section, I present the main findings of the analysis and discuss the implications of a

temporary VAT cut in the baseline model and in the two-sector New Keynesian model.

3.5.1 Constructing a Liquidity Trap and a Temporary VAT Cut

For the baseline scenario, I assume that the economy is hit by a large adverse preference

shock similar to Erceg and Lindé (2014), Christiano et al. (2011) so the the ZLB on the

nominal interest rate is binding for 8 quarters. More specifically, I assume in the baseline

New Keynesian model that the economy is subject to a temporary, positive preference shock

µ̂C,t . In the two-sector model, the economy is hit by a similar positive preference shock that

affects both non-durable goods consumption and durable goods consumption equally.

Then, I add the following tax experiment to the baseline scenario: assume that the value-

added tax is cut by 2.5 percentage points (from 17.5% to 15%) for 4 periods and returns to

its previous level again. The policy is implemented in the same period when ZLB starts to

bind.10 Households and firms do not anticipate the tax shock but are able to foresee the path

of the VAT rate in the following periods. Figure 3.5 shows the evolution of the tax rate.

3.5.2 Simulation Results

Baseline New Keynesian Model: Unconstrained Monetary policy. Suppose for now that the

ZLB constraint on the nominal interest rate is ignored. Figure 3.6 shows the impulse responses

to an adverse preference shock in the baseline New Keynesian model with a temporary VAT

cut (black solid line) and without a temporary VAT cut (blue dashed line). The tax shock

dampens the fall in aggregate consumption and output.

A temporary VAT cut affects consumer prices in the following way: under sticky prices, a

fraction of retailers are unable to adjust their sale price on impact in response to the VAT cut.

Since firms are profit maximizers, consumers will expect those firms to adjust prices later and,

hence, anticipate a period of falling prices. Monetary policy matches deflationary pressure

10In March 2009, the Bank of England lowered the base interest rate (Official Bank Rate) for secured overnight
lending from 1% to 0.5%. It had remained at this level until it was further dropped in August 2016 to 0.25%.
The UK temporary VAT cut came into effect when the base rate was not yet close enough to a lower bound.
Hence, the scenario that is considered in this Chapter studies the general implications of a temporary VAT cut in
a New Keynesian model but does not necessarily recount the historical facts.
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Fig. 3.5 A Temporary VAT cut

by lowering the nominal interest rate and, hence, reduces the real interest rate so that current

demand expands.

Baseline New Keynesian Model: Monetary policy with ZLB constraint. Figure 3.7

shows the impulse responses for an expected 8-quarter liquidity trap. Now, a temporary VAT

cut deepens the recession at the ZLB causing a larger drop in consumption and output (black

solid line). If the central bank is unable to accommodate to deflationary pressure, the real

interest rate increase, further discouraging private spending.

In 2008, the UK government has stressed two major working channels of the VAT cut

(Treasury (2008)). First, consumers will enjoy the same basket of goods at lower prices and

may spend the extra savings (income effect). Second, temporarily lower prices encourage

consumers to forward the purchase of goods either for immediate consumption or hoarding

(intertemporal substitution). Both channels do not work in the standard New Keynesian

model with imperfect price pass-through of the value-added tax. The positive income effect

stemming from cheaper prices is more than offset by the large drop in income in equilibrium

that is necessary to reduce the households’ temporary desire to save when the real interest rate
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Fig. 3.6 Impulse Responses: Unconstrained Monetary Policy in Baseline Model

rises. Furthermore, in their attempt to smooth marginal utility of consumption, households

delay purchases rather than forward them.

The Two-Sector New Keynesian Model. Figure 3.8 shows the impulse responses to a

large adverse shock that leads to a binding ZLB on the nominal interest rate for an expected

duration of 8 quarters in the two-sector New Keynesian model. The (gross) real interest rate is

defined in terms of inflation of non-durable goods, i.e. 1+ rt ≡ Et
1+it

1+πC,t+1
. In the two-sector

model, a VAT cut dampens the recession and has expansionary effects on private spending for

non-durable and durable goods (black solid line). Aggregate output is higher by roughly 0.3

percentage points on impact. For non-durable goods, the difference is roughly 0.08 percentage

points. The largest difference can be observed for durable goods. Spending on new durables

differ by nearly 0.75 percentage points in the two scenarios.
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Fig. 3.7 Impulse Responses: 8-Quarter Liquidity Trap in Baseline Model

Given that prices for durable goods are more flexible, the relative price PX ,t
PC,t

falls on

impact in response to a VAT cut and shifts spending to new durable goods. Spending on new

durables increases substantially because the price elasticity of demand is high. The interesting

observation in the two-sector model, however, is that demand for non-durable goods also

increases. The reason is the following: the boom in the durable goods sector dampens the fall

in labor hours and, hence, in the real wage in both sectors assuming a frictionless labor market.

This attenuates the fall in marginal costs and prices in the durable and non-durable goods

sector. The latter dampens the increase in the current real interest rate at the ZLB and further

reduces the expected future real interest rate. Expecting lower real interest rates in the future,

households start to expand current consumption of non-durable goods. This observation

points to the role of price dynamics in general equilibrium for multi-sector models. The

expansion in the durable goods sector has implications for inflation dynamics in both sectors.
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Fig. 3.8 Impulse Responses: 8-Quarter Liquidity Trap in Two-Sector Model

Note: the relative price is expressed as price of durable goods relative to the price of non-durables. The real
interest rate is expressed in terms of inflation of non-durable goods.

Note that demand peaks one quarter before the VAT cut ends. The anticipated increase in

the VAT rate in period 4 generates positive inflation expectations. Higher inflation expectations

at the ZLB reduces the real interest rate and, hence, increase consumers’ incentives to increase

current spending. Consistent with the prediction of the UK government, a temporarily lower

VAT rate induces an intertemporal substitution effect for goods that can be hoarded and

consumed at a later point in time. The expansion stops after the tax cut and consumers start

enjoying service flows from the accumulated stock of durables. In fact, demand for new

durables remains lower (black solid line) compared to the case without VAT change (blue

dashed line) after the VAT cut has ended.
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Fig. 3.9 Simulation Results in Two-Sector Model: The Relative Importance of α and θX

Notes: the plots report the impact tax multipliers for aggregate consumption, expenditures on non-durable goods
and durable goods.

The results in the two-sector model are sensitive to the choice of two key parameters: α ,

the share of durable goods, and θX , the degree of price rigidities in the durable goods sector.

Figure 3.9 shows the difference between the simulations with VAT cut and without VAT cut

in the period when the adverse preference shock hits the economy for different combinations

of α and θX . The dark-shaded areas represent instances when the difference is positive, i.e.

the VAT cut is expansionary. The light-shaded areas show negative difference, i.e. the VAT

cut is contractionary. The VAT cut is on aggregate expansionary only if the share of durables

α is sufficiently large and the Calvo parameter θX small, i.e. prices of durables sufficiently

flexible. α is a key parameter for generating positive spill-over effects from the durable to
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the non-durable goods sector. For low values of α , the size of the durable goods sector is too

small to change aggregate wage and inflation dynamics. The ratio of the Calvo parameters θC

and θX determines the extent to which the relative price for durables can fall in response to

the VAT cut. Given the baseline calibration θC = 0.75 and α = 0.4, the highest value for θX

to ensure that the tax policy is expansionary for consumption of non-durables and durables is

θX = 0.47.

3.5.3 Tax Multipliers

This section reports the tax multipliers. Let t +Tn be the exit date of the liquidity trap. It will

be endogenously determined by the first period in which the nominal interest rate exceeds the

zero lower bound (Erceg and Lindé (2014)) with

Tn = min
j

(
it+ j > 0

)
. (3.51)

To generate liquidity traps of the same lengths, I adjust the size of the preference shocks in

the models accordingly.11

The tax multiplier on aggregate output Yt is defined as:

mt =
∆Yt

−∆(τt ×Yt)
(3.52)

where the ∆-operator represents the difference between the scenario with and without the tax

cut. ∆(τt ×Yt) is the difference in tax revenues. Hence, mt > 0 (mt < 0) is the gain (loss) in

output for any monetary unit of tax revenue that is forgone. A multiplier above 1 would imply

that the change in output outweighs the loss in tax revenues. Finally, mS
t with S ∈ {C,X} is

the tax multiplier for private spending on non-durable and durable goods, respectively:

mS
t =

∆Y S
t

−∆(τt ×Yt)
. (3.53)

11Alternatively, we can fix the size of the shocks and assume that monetary policy is passive over a horizon
T where T is the duration of the liquidity trap (see e.g. Kiley (2016)). There is a drawback to this approach
for the presented model framework. The central bank implicitly promises to keep a certain interest rate for T
periods. In fact, if the recessionary shock is rather small, a passive policy would keep the interest rate lower for
longer than under active monetary policy when nominal rates are free to adjust to changes in inflation. This has
expansionary macroeconomic effects if agents are rational and forward-looking. It is hard to control for these
effects when I calculate the tax multipliers.
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A VAT cut from 17.5% to 15% for 4 quarters. Figure 3.10 shows the average impact tax

multipliers in the two models. Duration 0 stands for the scenario in which monetary policy is

ignored. The analysis is restricted to liquidity traps which are expected to last longer than 8

quarters. For smaller preference shocks, the expansionary effects of the 4-quarter VAT cut

can be large enough to change the expected duration at the ZLB.

Fig. 3.10 Average Tax Multipliers: Baseline Model vs. Two-Sector Model

The tax multipliers are positive in all models when the ZLB is ignored. However, the

multiplier for aggregate consumption in the two-sector model is notably larger (0.35) than in

the baseline model (0.16). This observation goes back to the boom in the durable goods sector.

The tax multiplier for newly purchased durables is roughly 0.78. The difference between the

multipliers for non-durables is negligible (0.065 in the basic model vs. 0.063 in the two-sector

model).
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The tax multipliers in the baseline model are negative in a liquidity trap and further decline

with the duration at the ZLB (-0.31 for a 8-quarter vs. -0.52 for a 12-quarter liquidity trap).

Suppose for simplicity that hC = 0. Then, solving the Euler equation forward yields

Ĉt = Et

{
Ĉt+Tn+1 −

Tn

∑
i=0

(
logβ −Et π̂C,t+i+1 + µ̂C,t+i

)}
(3.54)

where Tn is the ZLB duration. Current consumption, Ĉt , depends on four terms. First,

it depends positively on expected consumption when the economy exits the liquidity trap,

EtĈt+Tn+1. Second, it depends negatively on the sum of the lower bound of the (log-linearized)

gross nominal interest rate, logβ , over the liquidity trap and, third, on the cumulative expected

inflation from 0 to Tn, Et π̂C,t+i+1. And finally, consumption depends negatively on preference

shocks, µ̂C,t+i. Imagine, monetary policy could completely stabilize the economy once it

exits the liquidity trap, so that EtĈt+Tn+1 = Et π̂t+Tn+1 = 0. Then, the difference in current

consumption in a scenario with and without VAT cut depends only on the cumulative expected

inflation until Tn:

ĈVAT
t −Ĉt = Et

{
Tn

∑
i=0

(
π̂

VAT
C,t+Tn+1 − π̂C,t+Tn+1

)}
. (3.55)

The VAT cut has contractionary effects and further amplifies the fall in prices. Hence, the

gap between expected inflation in Eq. (3.55) can be non-zero even when the temporary VAT

shock is over. Furthermore, the sum in Eq. (3.55) decreases in Tn.

In the two-sector model, tax multipliers are strictly positive and further increase with

the duration at the ZLB. Consequently, the expression in Eq. (3.55) is positive and the

sum increases in Tn. At the same time, the shadow value of non-durables, λt , falls when

non-durable goods consumption increases. This further reduces the effective relative price

for durables, PX ,t
PC,t

λt , amplifying the boom in the durable goods sector. Intuitively, the loss

in utility that the consumer suffers if he sacrifices the last unit of non-durables in order to

purchase durables instead, becomes smaller as λt falls. Interestingly, tax multipliers reach

values larger than 1 in long liquidity traps. This result comes from the combination of two

effects. First, the expansionary effect of a VAT cut on consumption on impact rises with Tn.

Second, the loss in tax revenue shrinks as the difference in ĈVAT
t −Ĉt becomes larger. For

even longer liquidity traps, it could be possible that the VAT cut is self-financing.
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Fig. 3.11 Average Tax Multipliers: Targeted VAT Cut

Tax multipliers are higher if if the temporary VAT cut is restricted to durable goods only.

This way, any deflationary pressure on prices of non-durable goods could be completely

eliminated. Figure 3.11 shows the tax multipliers for the targeted VAT policy. The tax shock

is highly effective in a liquidity trap and less expensive to finance.

Marginal Tax Multipliers. In this section, I consider VAT shocks that are sufficiently

small to leave the liquidity trap duration unaffected. Figure 3.12 shows marginal tax multipli-

ers illustrating the impact of a minor change in the fiscal instrument. In general, the size of

the tax multipliers depends on the duration of the VAT shock. A longer tax cut is associated

with smaller or even negative multipliers if the ZLB duration is rather short. For long liquidity

traps, however, the fiscal instrument can be very effective.



76 Are Consumption Tax Cuts Expansionary in a Liquidity Trap?

As the tax shock is very small, it will affect the relative price of durable goods and

non-durable goods only minimally. Hence, the dynamics of the effective relative price PX ,t
PC,t

λt

will be mainly influenced by the shadow value of non-durable goods λt . Additionally, if the

duration of the VAT cut exceeds the length of the liquidity trap, monetary policy is able to

respond to changes in inflation attributed to the reversion of the tax rate to its previous level.

Consequently, the fall in the real interest rate will be muted in period 4 discouraging spending

on non-durable goods and new durable goods.

Fig. 3.12 Marginal Tax Multipliers: Two-Sector Model
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3.6 Sensitivity Analysis

In this section, I examine the robustness of the main findings in the previous sections. In

particular, I test the sensitivity of the main findings against an alternative solution method

and study the implications of habit formation for durable and non-durables goods. Finally, I

discuss the implications of a temporary sales tax cut.

Stochastic solution vs. deterministic solution. Using a global solution method allows

future shock uncertainty to affect the decision rules of the households and firms. Numerous

papers have pointed out that the model solution under shock uncertainty can substantially

differ from the deterministic solution, e.g. when certainty equivalence is assumed (e.g. Lindé

and Trabandt (2018b), Adam and Billi (2006), Adam and Billi (2007), Fernández-Villaverde

et al. (2015), Gust et al. (2017), Nakata (2016) and Richter and Throckmorton (2017)).

I redo the previous exercises based on the New Keynesian models that are solved under

certainty equivalence. As before, I simulate the different models for a scenario in which the

economy is subject to a large contractionary preference shock that generates an expected

8-quarter liquidity trap. Likewise, I assume that the VAT cut is implemented in the same

period when the preference shock hits the economy and lasts for 4 quarters. Figure 3.13

shows the difference of the impulse responses between the scenario with VAT cut and without

VAT cut in the two-sector model. The effectiveness of the tax cut is smaller on impact in the

stochastic model (solid black line) relative to the deterministic model (blue dashed line). The

effects are reversed after the tax cut has ended in period 4. An explanation for this result is

that future expected changes in the real interest rate due to the reversal of the tax rate are less

relevant in determining current consumption decisions under uncertainty.

The role of habit formation. This section explores the role of external habit for non-

durable goods and durable goods in the two-sector model. Similarly to the approach taken

above, the impulse responses in Figure 3.14 are obtained as the difference between the

simulation with tax shocks and the simulation with preference shock only. The contractionary

preference shocks generate an expected 8-quarter liquidity trap. The VAT shock reduces the

tax rate by 2.5 percentage points and lasts for 4 quarters. Figure 3.14 shows the comparison

of impulse responses for alternative specifications of the two-sector model. In particular,
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Fig. 3.13 Two-Sector Model: Stochastic vs. Deterministic Solution

Note: the plots show the difference of the impulse responses between a scenario with VAT cut and without VAT
cut.

the black solid lines show the responses of aggregate consumption, non-durable and durable

goods consumption for the model discussed in the previous section. The black dash-dotted line

is the two-sector model with hC = 0.5 and hD = 0 while the blue lines with dots corresponds

to the model with hC = 0 and hD = 0.5. The impulse responses for spending on new durable

goods vary only marginally for alternative model specifications in the first 4 quarters after

the shocks. Hence, the differences in the response of aggregate consumption can be mainly

attributed to the dynamics of non-durable goods consumption.

The tax cut is most effective in the first 4 quarters for the third case, i.e. hC = 0 and

hD = 0.5. In contrast, tax cut is contractionary for non-durable good consumption on impact

if hC = 0.5 and hD = 0. Essentially, habit for non-durable goods dampens the response in
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spending and, hence, reduces the spill-over effects from the durable goods sector.

Fig. 3.14 Two-Sector Model: Habit Formation in Consumption of Non-durables (ND) and
Durables (D)

Note: the plots show the difference of the impulse responses between a scenario with VAT cut and without VAT
cut.

VAT vs. Sales Tax. While all countries in the European Union levy a value-added tax12,

the consumption tax in the United States or in Canada is a sales tax. The sales tax is collected

by the retailer at the final sale to the end-consumer.

12Other countries with a VAT system include Australia, Singapore and New Zealand.
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Suppose, a sales tax is charged on newly purchased non-durables and durables. A sales

tax would affect the budget constraint in the following way:

Pc,t(1+τ
S
t )Ct(i)+Px,t(1+τ

S
t )Xt(i)+Bt(i)≤ (1+ it−1)Bt−1(i)+Wt(i)Nt(i)+Γt −Tt (3.56)

where τS
t is the sales tax rate. The household’s first order conditions are:

PX ,t

PC,t
(1+ τ

S
t ) =

ηt

λt
(3.57)

ηt =UD,t +β (1−δ )Etηt+1 (3.58)

UC,t = βEt

{
UC,t+1

1+ it
1+πC,t+1

1+ τS
t

1+ τS
t+1

}
(3.59)

An unexpected, temporary drop in the tax rate will affect the effective relative price of

durables instantaneously and make durables cheaper (see Eq. (3.57)). Furthermore, consumers

anticipate a positive change in
1+τS

t+1
1+τS

t
in the last period of the VAT cut. Higher

1+τS
t+1

1+τS
t

reduces

the expected real interest rates at the ZLB. Under complete markets, consumers are extremely

forward looking and react to distant changes in the real interest rate (McKay et al. (2016)). The

plots on the right hand side in Figure 3.15 show the tax multipliers for a 4-quarter temporary

cut in the tax rate for a sales tax and value-added tax. A temporary tax cut in the sales tax has

significantly larger expansionary effects than a VAT cut.13

13Sales tax multipliers for a 12-quarter liquidity trap would exceed the value 100 and are too large to report
here. The reason is that for longer liquidity traps, the change in the tax revenue becomes very close to zero or
even positive.



3.6 Sensitivity Analysis 81

Fig. 3.15 Two-Sector Model: VAT vs. Sales Tax
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3.7 Conclusion

Motivated by a temporary VAT cut from 2008 to 2009 in the United Kingdom, this paper

studies a similar tax experiment using a New Keynesian framework. In a standard New

Keynesian model, I find that a transitory cut in the VAT rate is expansionary in normal times

but contractionary when the ZLB on nominal interest rates is binding. Lowering the tax rate

at the ZLB generates deflationary pressure on consumer prices. Hence, the real interest rate

increases and contracts demand.

However, the baseline New Keynesian model does not consider long-lived consumption

goods that account for roughly 40% of all goods and services subject to the VAT in the UK. I

revisit the analysis using a two-sector New Keynesian model which allows for durable goods

consumption. In this model, a VAT cut is highly expansionary even in deep recessions with

a binding ZLB. But most interestingly, I find that consumers increase spending on durable

goods but only on non-durable goods. The reason is the following: the temporary fall in prices

stimulates demand for durable goods. Assuming a frictionless labor market, the boom in the

durable goods sector affects aggregate wage dynamics and reduces deflationary pressure in

both sectors. Hence, expected real interest rates fall and reduce the households’ desire to save.

These observations hinge on the choice of two key parameters: the share of the durable goods

in the households’ consumption basket and the relative degree of price rigidity in the durable

goods sector and the non-durable goods sector. A boom in the sector for durable goods can

affect aggregate wage dynamics only if the consumption share for these goods is sufficiently

large. Likewise, consumers only increase spending on new durables if they become relatively

cheaper.

This analysis focuses on consumption behavior based on the intertemporal substitution

channel in response to tax shocks. Ricardian equivalence holds in the models so that tax

changes have no direct income effects. Although the primary focus of this study is to under-

stand how price dynamics for durable and non-durable goods together affect intertemporal

consumption decisions, it would still be a promising avenue to explore similar tax experiments

in a more elaborate setting which abandons the Ricardian equivalence assumption.

Overall, the main findings in this Chapter point out that the standard New Keynesian

model, which only features consumption of non-durable goods, ignores important transmission

channels that determine aggregate inflation dynamics. The two-sector model allows to study
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the relative importance of price dynamics for durable goods and non-durable goods in

determining aggregate dynamics. My results shed new light on the role of supply-side policies

as a means to stimulate the economy both in normal times and in severe recessions.





Chapter 4

An Efficient Algorithm to Solve DSGE
Models with Occasionally Binding
Constraints

I propose an algorithm to solve Dynamic Stochastic Equilibrium Models (DSGE) with
occasionally binding constraint efficiently and fast. The algorithm is based on a policy
function iteration method with time iteration. I use a collocation method to approximate
off-grid values of the policy function. However, the main advantage of my algorithm compared
to standard implementation of these methods is the fact that the model can be represented as
a system of equations over the pre-defined grid. This way, I can solve for the complete policy
function in one computation step instead of solving for the policy function on each grid point
individually. The solution method is fast even without parallel computing. I apply the method
to a New Keynesian model with a zero lower bound constraint (ZLB) on the nominal interest
rate. The model features habit formation, price and wage rigidities. I show that the algorithm
can solve the model with many state variables fast and accurately.

4.1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models are an important tool for macroeco-

nomic analysis. During much of the recent period, the prospects of interest rates at the zero

lower bound (ZLB), potential changes in monetary and fiscal policy regimes or the importance

of heterogeneity of firms and households for macroeconomic outcome, have become crucial

elements in contemporary macroeconomics. Much work has been devoted to model these

scenarios and incorporate non-linearities in DSGE models. However, these models often fail

to have closed-form solutions and require alternative solution strategies. A major problem for
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the solution and estimation of nonlinear models is the heavy computational burden. Solving

this class of models often requires iterative procedures where the computational expense

grows rapidly with the dimensionality of the model and number of the state variables.

In this chapter, I propose an algorithm to solve DSGE models with occasionally binding

constraints efficiently and fast. The special focus of the analysis is on a model with a ZLB

constraint on the nominal interest rate. The solution method fully takes into account the

stochastic nature of the model. The proposed approach contributes to the class of policy

function iteration methods with time iteration. However, the major advantage of the algorithm

comes from using the fact that the model can be represented as a system of equations over

the pre-defined grid. Using a collocation method to interpolate and extrapolate the value of

the policy functions, it is possible to solve for the entire unknown policy function in one

computation step.

Another strategy to reduce the computational time is to take advantage of parallel comput-

ing (e.g. Richter et al. (2014), Gust et al. (2017) or Fernández-Villaverde and Zarruk Valencia

(2018)). Multi-core processing allows to run computations simultaneously. Richter et al.

(2014) document the relative speed gains from parallelization. Running their solution method

on each core of the 6-core processor (3.47GHz each) simultaneously can reduce the computa-

tional time by a factor of 24 for their model as compared to using a single core.

My solution method uses parallel computing in parts. Hence, parallelization will provide

additional speed gains but they do not increase one-to-one with the number of cores or workers.

This clearly generates a trade-off: on processors with many cores, policy function iteration

methods that rely on parallel computing can be very fast whereas the speed improvements

of my algorithm would be bounded. However, basic computers typically come with 2- or

4-cores. Thus, my algorithm may be particularly interesting for the application on processors

with a low number of cores and, hence, for a larger community of researchers.

The general idea of the proposed method is to find the values of the policy functions for

a defined grid set on the state space. I use a collocation method to approximate the policy

functions at points that lie between the grid nodes or outside of the grid. The collocation

method provides a very efficient interpolation and extrapolation scheme to approximate the

policy function over the entire state space. I use spline functions to interpolate or extrapolate

the values of the policy function. The key innovation of the algorithms goes back to the fact

that the values of the spline functions are constant when solving for the policy function. Hence,
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it is possible to construct a matrix which is defined over the entire grid and contains the values

of the spline functions before the algorithm starts. I refer to this matrix as the "collocation

matrix". The algorithm is particularly suited for linear model, e.g. semi-loglinearized models

with occasionally binding constraint. However, the algorithm can be easily adapted to

completely non-linear models.

I show that, in a linear environment, the model can be represented as a system of linear

difference equations over the grid. Let CCC be the vector that contains the unknown values of

the policy functions. Then, the solution of the model can be represented as:

CCC = PPPΩ̂ΩΩΦ̂ΦΦ(SSS
EEE
)CCC+KKK (4.1)

where PPP is a matrix containing the model’s parameters and KKK is a matrix containing the

constants of the model. The occasionally binding constraint will be entirely reflected by PPP and

KKK. Φ̂ΦΦ(SSS
EEE
) is the collocation matrix for the expected state variables SSS

EEE
. For the application of

the algorithm, I assume that the exogenous processes are continuous and stochastic processes.

To discretize the exogenous processes, I use a quadrature scheme with Ω̂ΩΩ containing the

constant quadrature weights.

The goal of the algorithm is to find the solution for the policy function CCC. I propose

an iterative approach to find CCC. First, I guess the solution for CCC. Based on the guess, the

algorithm checks for grid points on which the constraint is binding and computes PPP and KKK,

accordingly. Second, I solve the system of difference equations in (4.1) for CCC. Using the

solution for CCC, the algorithm identifies the grid points with binding constraint and updates PPP

and KKK. Third, the algorithm repeats the previous steps until it converges to the final solution

for CCC.

All routines required to implement the algorithm are written in MATLAB using the

Parallel Computing Toolbox. In this paper, I focus on a New Keynesian model with price and

wage rigidities, habit formation and a ZLB constraint on the nominal interest rate. However,

the suite of MATLAB programs can be easily adapted to solve models with, for example, (i)

binding collateral constraints, (ii) endogenous regime switches, or (iii) heterogeneous agents.

One important characteristic of a good solution method is the accuracy of the solution. I

analyze the trade-off between accuracy and speed of the solution method using alternative

specifications for the model. Overall, the method provides accurate results in line with the
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findings in Aruoba et al. (2006) and Richter et al. (2014). Accuracy decreases if the number

of quadrature weights for the numerical integration is lower (<10) or future shock uncertainty

is higher. For the latter, a potential remedy would be to increase the number of grid points for

the discretized exogenous process. However, this comes at the cost of higher computation

times.

Another section of this Chapter is devoted to the question how shock uncertainty affects

equilibrium dynamics. A increasing body of work has analyzed the effects of the ZLB

constraint in a stochastic environment (e.g. Lindé and Trabandt (2018b), Adam and Billi

(2006), Adam and Billi (2007), Fernández-Villaverde et al. (2015), Gust et al. (2017), Nakata

(2016) and Richter and Throckmorton (2017)). They find that shock uncertainty may or

may not alter macroeconomic dynamics. I find that the stochastic model can substantially

differ from the deterministic model depending on the degree of shock uncertainty. Higher

standard deviations for the exogenous processes would be associated with a higher probability

of reaching the ZLB. In a recession with binding ZLB, economic activity deteriorates more

in the stochastic economy than in the deterministic economy. I find that the differences are

quantitatively non-negligible.

The remainder of this Chapter is organized as follows. Section 4.2 describes the New

Keynesian model that I use to demonstrate the algorithm. Section 4.3 provides the benchmark

calibration of the model. Section 4.4 describes the algorithm and the solution steps for

different specifications of the model. Section 4.5 reports solution times and the results of

accuracy tests. Section 4.6 discusses the effects of shock uncertainty for the model solution.

In Section 4.7, I adapt the algorithm to solve the completely non-linear New Keynesian model.

Finally, Section 4.8 concludes.

4.2 The Model

This section describes the model economy. The model is formulated in discrete time with an

infinite horizon. The economy is populated by households, a final good producer, a continuum

of intermediate good producers and a monetary policy authority.



4.2 The Model 89

Households. There is a continuum of households indexed by i ∈ [0,1]. Households are

subject to wage-setting frictions as in Erceg et al. (2000). More specifically, assume that there

exists a continuum of monopolistically competitive households, each of which supplies a

differentiated labor service N(i) to the production sector. A representative labor aggregator

combines households’ labor services in the same proportions as firms would choose. Thus,

the aggregator’s demand for each household’s labor is equal to the sum of firms’ demands.

The labor index, Nt , is given by:1

Nt =

[∫ 1

0
Nt(i)

εw−1
εw di

] εw
εw−1

(4.2)

where εw represents the elasticity of substitution between labor types.

Let Wt(i) denote the nominal wage for labor of type i. Wages are set by workers of each

type and taken as given by all firms. Cost minimization yields the demand schedule for each

labor type i:

Nt(i) =
(

Wt(i)
Wt

)−εw

Nt (4.3)

where Wt is the aggregate wage index defined as

Wt ≡
[∫ 1

0
Wt(i)1−εw d j

] 1
1−εw

. (4.4)

The utility of household i is given by

E1

∞

∑
t=1

β
t−1

[
t−1

∏
s=0

δs

]{
log(Ct(i)−hCt−1)−

Nt(i)1+χ

1+χ

}
(4.5)

where the variables Ct(i) is consumption of an individual household and Ct is aggregate

consumption. The parameter h ∈ [0,1] disciplines the degree of external habit formation. δt is

a discount factor shock following an AR(1) process:

logδt = ρd logδt−1 + ε
d
t , ε

d
t ∼ N (0,σ2

d ). (4.6)

1As in Erceg et al. (2000), I assume that the representative labor aggregator combines households’ labor
hours in the same proportions as firms would choose. Thus, the aggregator’s demand for each household’s labor
is equal to the sum of firms’ demands.
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The household has the following period t budget constraint:

Pt Ct(i)+Bt(i) ≤ Bt−1(i)Rt−1 +Wt(i)Nt(i)+Pt Γt (4.7)

where Pt is the price of the consumption good, Wt(i) is the individual nominal wage rate

and Bt(i) is a stock of risk-free bonds, paying gross interest Rt in the following period. Γt are

firms’ profits that are paid out to the households through dividends.

Each household maximizes expected lifetime utility with respect to consumption, labor

supply and holdings of bonds subject to its budget constraint (4.7) and the labor demand

function (4.3). Combining the first-order conditions for consumption and bond holdings

yields the Euler equation:2

1
Ct −hCt−1

= β Et δt
1

Ct+1 −hCt

Rt

Πt+1
(4.8)

with Πt =
Pt

Pt−1
representing (gross) inflation.

Households set nominal wages as staggered contracts. In particular, assume that a constant

fraction (1−θw) of households can renegotiate its wage in each period. The remainder θw

stays with the past wage Wt−1(i). The first-order condition associated with the choice of the

optimal wage W ∗
t (i) is given by

Et

∞

∑
k=0

(β θw)
k

[
k

∏
s=0

δt+s

]{
1

Ct+k −hCt+k−1
Nt+k(i)

(
W ∗

t (i)
Pt+k

− εw

εw −1
MRSt+k

)}
= 0

(4.9)

where MRSt ≡ Nt(i)χ (Ct −hCt−1).

Producers. There is a representative final good producer and a continuum of intermediate

good produces indexed by j ∈ [0,1]. The final good producer purchases intermediate goods,

processes them into the final good using a CES technology, and sells it to the households. The

problem of the final good producer is given by

2Erceg et al. (2000) show that if there exist state contingent claims that insure households against idiosyncratic
wage risk, and if preferences are separable in consumption and leisure, households will be identical in their
choice of consumption and bond-holdings. They will only differ in their wage and in their labor supply.
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max
{Yt( j)}

Pt Yt −
∫ 1

0
Pt( j)Yt( j)d j (4.10)

subject to (4.11)

Yt =

[∫ 1

0
Yt( j)

γt−1
γt d j

] γt
γt−1

where Yt( j) is the quantity intermediate good of type j. γt is stochastic and determines the

time-varying markup in the goods market. I assume that γt follows an AR(1) process:

logγt = (1−ργ) logγ +ργ logγt−1 + ε
γ

t , ε
γ

t ∼ N (0,σ2
γ ) (4.12)

Intermediate good producers use labor to produce imperfectly substitutable intermediate

goods according to the linear production function

Yt( j) = Nt( j). (4.13)

As in Calvo (1983), each firm faces a constant probability θ of not being able to adjust its

price and stays with the price from the previous period Pt−1( j). Hence, an intermediate firm

sets the optimal price, P∗
t ( j), of its own good in order to maximize the expected discounted

sum of future profits. Its problem is given by

max
P∗

t (i)
Et

∞

∑
k=0

(β θ)k

[
k

∏
s=0

δt+s

]
Λt,t+k (P∗

t ( j)Yt( j)−Wt Nt(i)) (4.14)

subject to Eq. (4.13) and demand Yt( j) = [Pt( j)∗/Pt ]
−γt Yt . Here, Λt,t+k is the stochastic

discount factor.

Monetary Policy. Monetary policy follows a Taylor-type rule subject to the zero lower

bound constraint,

Rt = max
{

1,R
(
Π

ϕ

t νt
)}

(4.15)
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where R is the steady state (gross) nominal interest rate and νt is a monetary policy shock

which follows an AR(1) process:

logνt = ρν logνt−1 + ε
ν
t , ε

ν
t ∼ N (0,σ2

ν ). (4.16)

Market Clearing. I assume market clearing in the final goods market, Yt =Ct , and in the

bond market, Bt = 0. Furthermore, the labor market clearing condition is given by

Nt =
∫ 1

0
Nt( j)d j. (4.17)

For intermediate good firm j, it holds that [Pt( j)/Pt ]
−γt Yt = Nt( j). Integrating over j and

rearranging yields:

Yt =
Nt

st
(4.18)

with

st =
∫ 1

0

(
Pt( j)

Pt

)−γt

d j (4.19)

where the ratio st ≥ 1 denotes Yun’s (1999) price dispersion measure.

4.2.1 The Log-Linearized Equilibrium Conditions

The equilibrium can be characterized by the following set of equilibrium conditions which

are log-linearized around the steady state with zero inflation. The ̂ denotes log-deviations

from steady state. π̂t and R̂t are log-deviations of (gross) inflation and the (gross) nominal

interest rate, respectively. Furthermore, the variable wt denotes the real wage and π̂w
t is wage

inflation.
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Euler Equation: Ĉt =
1

1+h
EtĈt+1 +

h
1+h

Ĉt−1 −
1−h
1+h

(
R̂t −Et π̂t+1

)
+

1−h
1+h

δ̂t

(4.20)

Market Clearing: Ŷt = Ĉt (4.21)

Production: Ŷt = N̂t (4.22)

Wage Phillips Curve: π̂
w
t = β Et π̂

w
t+1 +κw

(
χ N̂t +

1
1−h

Ĉt −
h

1−h
Ĉt−1 − ŵt

)
(4.23)

withκw ≡ (1−θw β ) (1−θw)

θw (1+χ εw)
(4.24)

Wage Inflation: π̂
w
t = ŵt + π̂t − ŵt−1 (4.25)

Phillips curve : π̂t = β Et π̂t+1 +κ ŵt + γ̂t with κ ≡ (1−β θ)(1−θ)

θ
(4.26)

Monetary Policy: R̂t = max{logβ ,ϕ π̂t + ν̂t} (4.27)

The model consists of 7 model equations in 7 variables
{

π̂t ,Ĉt ,Ŷt , N̂t , ŵt , π̂
w
t , R̂t

}
and 3 ex-

ogenous processes δ̂t , γ̂t , ν̂t . Furthermore, there are 2 endogenous state variables
{

Ŷt−1, ŵt−1

}
.

4.3 Benchmark Calibration

Table 4.1 lists the baseline parameterization for the full model. The model is parameterized at

quarterly frequency. The discount factor β is set such that the implied annualized steady state

interest rate is 2%. Throughout the analysis, I assume the same AR(1) coefficients for the

exogenous processes. In particular, I choose ρd = 0.8 (discount factor shock), ργ = 0.5 (mark-

up shock) and ρν = 0.5 (monetary policy shock). The unconditional standard deviations of the

shocks σd , σγ and σν determine the probability of reaching the ZLB and will be determined

separately for each exercise. All parameters are fairly in line with the literature.
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Table 4.1 Benchmark Parameterization

Parameter Value Description

β 0.995 Discount factor (quarterly)

h 0.5 Consumption habit

χ 1 (Inverse) labor supply elasticity

θ 0.75 Prob. of not resetting price

θw 0.75 Prob. of not resetting wage

εw 0.33 Substitution elasticity for labor input

ϕ 1.5 Taylor rule: Inflation response coefficient

ρd 0.8 AR(1)-coefficient discount factor shock

ργ 0.5 AR(1)-coefficient markup shock

ρν 0.5 AR(1)-coefficient monetary policy shock

4.4 The Numerical Algorithm

This section outlines the algorithm to solve the New Keynesian model. I use a collocation

method with linear splines to obtain approximation of the unknown policy function. Generally,

a collocation method approximates a functional equation so that the approximated function is

exact at certain pre-specified points of the domain (Judd (1998), p. 384). I use a collocation

method that approximates a function with a linear combination of n basis functions using n

prescribed points of the domain, called the collocation nodes.

The algorithm is particularly suited for linear model, e.g. semi-loglinearized models with

occasionally binding constraint. However, the algorithm can be easily adapted to non-linear

models. I will show in this section that, in a linear environment, the model can be represented

as a system of difference equations over the pre-defined grid. Suppose that the vector CCC

contains the unknown values of the policy functions. Then, the solution of the model can be

represented as:

CCC = PPPΩ̂ΩΩΦ̂ΦΦ(SSS
EEE
)CCC+KKK (4.28)
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where PPP is a matrix containing the model’s parameters, KKK is a vector of constants, Φ̂ΦΦ(SEEE
)

is the collocation matrix for expected states SSS
EEE

. I use a Gaussian quadrature scheme to

discretize and integrate across the expected realizations of the state. Ω̂ΩΩ contains the Gaussian

quadrature weights. The non-linearity from the ZLB constraint on the nominal interest rate

will be entirely reflected in the parameter matrix PPP and the vector of constants KKK.

The goal of the algorithm is to find the unknown policy function CCC. I propose an iterative

approach to solve for CCC. The algorithm starts with a guess for CCC and checks the grid points on

which the ZLB is binding. It computes PPP and KKK, accordingly. Then, the algorithm solves the

difference equation in (4.28) for CCC. Based on the updated policy function, CCC, the algorithm

checks for grid points with binding ZLB again and updates PPP and KKK. The algorithm repeats

the previous steps until it converges to the final solution of the policy function CCC.

4.4.1 Basic Formulation of the Algorithm

In this section, I present a basic formulation of the algorithm: I consider a reduced form of the

model to make it easier to understand the key steps of the algorithm. Section 4.4.3 describes

the solution approach for the full model. Furthermore, I focus on the semi- loglinear model.

As summarized in Section 4.2.1, all equilibrium equations are log-linearized around a zero

inflation steady state, except for the max operator that truncates the nominal interest rate.

Assume that the discount factor shock is the only shock in the economy, i.e. γt = γ and

νt = ν . Moreover, θw = 0 such that wages are fully flexible. Then, the equilibrium conditions

reduce to:

Ŷt =
1

1+h
EtŶt+1 +

h
1+h

Ŷt−1 −
1−h
1+h

(
R̂t −Et π̂t+1

)
+

1−h
1+h

δ̂t (4.29)

π̂t = β Et π̂t+1 + κ̃ Ŷt (4.30)

R̂t = max{logβ ,ϕ π̂t} (4.31)

where κ̃ ≡ (1−β θ)(1−θ)
θ

(1+ χ). To further reduce the set of equations, I substitute Eq.

(4.31) into Eq. (4.29). Let Z =
[
π̂ ′, Ŷ′

]′
be the vector of decision rules for the two variables

of the model, inflation and output. I approximate Z over the states sss which are defined over
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the state variables Ŷt−1 and δ̂t by a linear combination of n known basis functions φi for

i = 1, ...n:

Z(sss)≈ Φ̂ΦΦ(((sss)))C (4.32)

where C = [cπ cy]′ and c j = [c j
1 ... c j

n], j = {π,y} and

Φ̂ΦΦ(sss) =

ΦΦΦ(((sss))) 000

000 ΦΦΦ(((sss)))

 (4.33)

where ΦΦΦ(((sss))) is defined as ΦΦΦ(((sss))) = [φ1(sss) . . .φn(sss))]. φi(sss), i = 1, ..,n is a vector of basis

functions over the states sss. The coefficient vector CCC is set such that Eq. (4.32) holds exactly at

n selected collocation nodes. Let the column vectors ddd and yyy contain the grid points of the

discount factor shock and output, respectively. The vectors have length nl , l ∈ {d,y}. The

total number of grid points is n = nd ×ny. The grid is defined by matrix S:

S =

[111ny ⊗ddd]′

[yyy⊗111nd ]
′

′ (4.34)

where S has dimension n×2 and 111h is a column vector of ones of length h. ⊗ denotes the

Kronecker product. Then, it holds:

Z(SSS) = Φ̂ΦΦ(SSS)C (4.35)

Note that Φ̂ΦΦ(SSS) is a block matrix

Φ̂ΦΦ(SSS) =


ΦΦΦ(((SSS))) 0 . . . 0

0 ΦΦΦ(((SSS))) . . . 0
... 0 . . . ...

0 . . . 0 ΦΦΦ(((SSS)))

 (4.36)

where

ΦΦΦ(((SSS))) =


φ1(SSS(1,:)) . . . φn(SSS(1,:))

... . . .
...

φ1(SSS(n,:)) . . . φn(SSS(n,:))

 (4.37)
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Φ̂ΦΦ(SSS) has dimension 2n×2n and ΦΦΦ(((SSS))) is n×n. SSS(k,:) refers to the elements in row k of

matrix SSS. For example, the value of the policy function for inflation and output on grid point{
d j,yk

}
will be approximated by

π̂(d j,yk) =
n

∑
i=1

φi(d j,yk)cπ
i

ŷ(d j,yk) =
n

∑
i=1

φi(d j,yk)cy
i .

I use linear spline basis functions where the breakpoints coincide with the collocation

nodes. This implies that Φ̂ΦΦ(SSS) is an identity matrix. Thus, the policy function approximations

are identical to the vector coefficients CCC:

Z(SSS) = C. (4.38)

The discount factor shock follows an AR(1) process: δ̂t = ρd δ̂t−1 + εd
t with εd

t ∼

N (0,σ2
d ). I use a Gaussian quadrature scheme to discretize normally distributed random

variables. Assume that εεε = [ε1 . . .εm]
′ is a column vector with m quadrature nodes and

ωωω = [ω1 . . .ωm]
′ is a column vector of length m containing the quadrature weights. For the

expected functions, the basis functions φi are evaluated for the matrix SSS
E

:

SSS
E
=

[111ny ⊗ddd
E
]′

[cccy ⊗111m]
′

′ (4.39)

where

ddd
E
=


(ρd d1 ⊗111m)+ εεε

...

(ρd dnd ⊗111m)+ εεε


Note that the basis function will be evaluated at the policy function approximations for

output, cccy. SSS
E

has dimension nm ×2 and ddd
E

is a column vector of length ndm. Hence, the

approximation of expected inflation and output on grid point
{

d j,c
y
k

}
is given by:
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Eπ̂(d j,c
y
k) =

m

∑
l=1

n

∑
i=1

ωl φi(ρd d j + εl,c
y
k)cπ

i

Eŷ(d j,c
y
k) =

m

∑
l=1

n

∑
i=1

ωl φi(ρd d j + εl,c
y
k)cy

i

Now, the expected functions can be written compactly as:

EZ(S) = Ω̂ΩΩΦ̂ΦΦ(SSS
E
)CCC (4.40)

where

Ω̂ΩΩ =

 ΩΩΩ 000n×nm

000n×nm ΩΩΩ

 ΩΩΩ =


ωωω ′ 0 . . . 0

0 ωωω ′ . . . 0
... 0 . . . ...

0 . . . 0 ωωω ′



Φ̂ΦΦ(SSS
E
) =

ΦΦΦ(((SSS
EEE
))) 000nm×n

000nm×n ΦΦΦ(((SSS
EEE
)))

 ΦΦΦ(((SSS
EEE
))) =


φ1(SSS

E
(1,:)) . . . φn(SSS

E
(1,:))

... . . .
...

φ1(SSS
E
(mn,:)) . . . φn(SSS

E
(mn,:))


Ω̂ΩΩ is of dimension 2n×2mn, ΩΩΩ is n×mn, Φ̂ΦΦ(SSS

E
) is 2mn×2n and ΦΦΦ(((SSS

EEE
))) is mn×n.

Now, it is possible to write a system of log-linearized equations over the grid SSS. In matrix

notation, the system of difference equations over the grid S is given by:

AAAZZZ(((SSS))) = BBBEZZZ(((SSS)))+DDD+FFF S. (4.41)

Or equivalently,

AAACCC = BBBΩ̂ΩΩΦ̂ΦΦ(SSS
E
)CCC+DDD+FFF S (4.42)

where AAA, BBB, DDD and FFF are matrices that contain the parameters or constants of the model

equations. The goal of the algorithm is to find the policy function approximation CCC using an

iterative approach. In each iteration step, I use the current solution for CCC to check for grid

points where the ZLB is binding. Recall the truncated Taylor rule: R̂t = max{logβ ,ϕ π̂t}.
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The column vector DDD has elements equal to logβ at the grid points for which the ZLB is

binding and 0 otherwise. At these grid points the Taylor rule will be basically "turned off"

and the Taylor coefficient, ϕ is effectively zero. Similarly, I set ϕ = 0 in parameter matrix

AAA at all points where the ZLB is binding. I use the following iterative approach to find the

coefficient vector CCC:

1. Start with a guess CCC0. Compute SSS
E

, Φ̂ΦΦ(SSS
E
), AAA and DDD based on CCC0.

2. Given SSS
E

, Φ̂ΦΦ(SSS
E
), AAA and DDD, solve for CCCnew:

CCCnew = [AAA−BBBΩ̂ΩΩΦ̂ΦΦ(SSS
E
)]−1[DDD+FFF SSS] (4.43)

3. Update CCC1 = λCCC0 +(1−λ )CCCnew with λ = 0.5. Then, compute SSS
E

, Φ̂ΦΦ(SSS
E
), AAA and DDD

based on CCC1.

4. Redo the previous steps until ||vec(CCCs −CCCs−1)||< z with z = 10−8 or s >= 300.

I set the convergence criteria to z = 10−8 and the maximum number of iterations to

s = 300. All routines required to implement the algorithm are written in MATLAB using

the Parallel Computing Toolbox. The details of the implementation is provided in Appendix

C.0.1.

4.4.2 A Special Case: No Endogenous State Variables

The New Keynesian model discussed in Section 4.2 nests a special case with no endogenous

state variables if h = 0 and θw = 0. This parameter choice would completely eliminate

consumption habit formation and restores flexible wages. The solution algorithm simplifies

significantly for models without continuous state variables. The key difference between this

set up and the formulation of the algorithm in Section 4.4.1 goes back to the computation of

the collocation matrix Φ̂ΦΦ(SSS
E
). If the model has no endogenous state variables, it is sufficient to

compute Φ̂ΦΦ(SSS
E
) only once because SSS

E
is defined only over the dicretized exogenous variables.

Here, SSS
E

is fixed and does not change in each iteration based on the current approximation of

the policy function. Consider the model from Section 4.4.1 with h = 0. In this case, SSS
E

is

given by:
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SE
=
[
[111ny ⊗d

E
]′
]′

(4.44)

where

d
E
=


(ρdd1 ⊗111m)+ εεε

...

(ρddnd ⊗111m)+ εεε


Again, I use the following iterative approach to find the coefficient vector CCC:

1. Start with a guess CCC0 and define SSS
E

and Φ̂ΦΦ(SSS
E
). Compute AAA and DDD based on CCC0.

2. Given AAA and DDD, solve for CCCnew:

CCCnew = [AAA−BBBΩ̂ΩΩΦ̂ΦΦ(SSS
E
)]−1[DDD+FFF SSS] (4.45)

3. Update CCC1 = λCCC0 +(1−λ )CCCnew with λ = 0.5. Then, compute AAA and DDD based on CCC1.

4. Redo the previous steps until ||vec(CCCs −CCCs−1)||< z with z = 10−8 or s >= 300.

4.4.3 General Formulation of the Algorithm

The full New Keynesian model discussed in Section 4.2 has two continuous state variables,

Ŷt−1 and ŵt−1 and three continuous stochastic variables, δ̂t , µ̂t and ν̂t . The total grid is defined

over all state variables. Let S be the array for each state variable where every position

represents a unique permutation of the discretized state variables. The size of S is n×5 where

n is the product of the number of nodes for each state variable and 5 is the total number

of state variables. Similarly, SE represents the array for the expected realizations of the

stochastic variables in t +1. Every position in SE is a unique perturbation of the expected

realization of the discretized state variable in time t +1 given the solutions of the endogenous

state variables in time t. Assume that n j, j ∈ {d,m,mp,y,w}, is the number of nodes for the

discount factor shock, markup shock, monetary policy shock, lagged output and lagged real

wage, respectively. m j, j ∈ {d,m,mp} is the number of quadrature nodes for the realizations

of the discount factor shock, markup shock and monetary policy shock, respectively. Then,

n = nd ×nm ×nmp ×ny ×nw and m = my ×mw and the total size of the array SE is nm×5.
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There is a delicate balance between the size of the grid points and the tractability of the

problem. More specifically, the dimension of SE is increasing not only in n but in nm. I

apply parallel computing to avoid the storage of large matrices. In particular, I break down

SE such that the basis functions φi for i = 1, ...n can be evaluated for different parts of the

grid simultaneously. Then, the basis functions are multiplied by the respective combination

of quadrature weights in each parallel process. Finally, the different outcomes are combined

such that it yields the collocation matrix:

Φ̂ΦΦ(SSS
E
) f inal = Ω̂ΩΩΦ̂ΦΦ(SSS

E
) (4.46)

which has dimension n×n. Parallel computing leads to substantial speed gains for large

models.

The rest of the algorithm follows an iterative approach to find the approximation of the

policy functions, CCC. Again, the iterative approach has the following steps:

1. Start with a guess CCC0. Compute SSS
E

, Φ̂ΦΦ(SSS
E
), AAA and DDD based on CCC0.

2. Given SSS
E

, Φ̂ΦΦ(SSS
E
), AAA and DDD, solve for CCCnew:

CCCnew = [AAA−BBBΩ̂ΩΩΦ̂ΦΦ(SSS
E
)]−1[DDD+FFF SSS] (4.47)

3. Update CCC1 = λCCC0 +(1−λ )CCCnew with λ = 0.5. Then, compute SSS
E

, Φ̂ΦΦ(SSS
E
), AAA and DDD

based on CCC1.

4. Redo the previous steps until ||vec(CCCs −CCCs−1)||< z with z = 10−8 or s >= 300.

4.5 Solution Times and Accuracy

In this section, I report solution times and accuracy diagnostics for the New Keynesian model.

The solution times depend on the size of the model (i.e. the number of grid points) and the

number of endogenous state variables. The full model has two continuous state variables, Ŷt−1

and ŵt−1, and three continuous stochastic variables, δ̂t , µ̂t and ν̂t . Depending on the choice

of parameter values, this setup nests reduced forms of the model. In particular, consumption

habit is ruled out if h = 0. Likewise, wages are perfectly flexible if θw = 0.
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Table 4.2 reports the solution times across the different specifications of the New Key-

nesian model and modifications, i.e. multi-core processing. All routines were computed

with a 4-core processor (3.5 GHz) using MATLAB’s Parallel Computing Toolbox. I ran all

computations also on a 2-core processor (2.4 GHz). The results are reported in Appendix

C.0.2. The different models vary in the number of exogenous processes and the number of

endogenous state variables. The smallest model features the discount factor shock (denoted by

DF in Table 4.2) and exhibits no consumption habit and wage rigidities (denoted as "0 lagged"

in Table 4.2). In this case, I set the parameters h = 0 and θw = 0. This model can be solved

in 0.019 seconds. Computation times increase significantly if this model has two exogenous

processes (discount factor shock (DF) and markup shock (M)) and three exogenous processes

(discount factor shock (D), markup shock (M) and monetary policy shock (MP)). The only

reason for this is the larger grid size. As stressed in Section 4.4.2, models with no endogenous

state variables represent a special case in which the collocation matrix ΦΦΦ(((SSS
EEE
))) is constant and

is evaluated only once before the algorithm starts. Hence, multi-core processing does not

provide any speed gains for models with no endogenous variables because parallel computing

is used only to update ΦΦΦ(((SSS
EEE
))).

Solution times also increase significantly with the number of endogenous state variables.

In Table 4.2, the model with 1 lagged variable accounts for consumption habit (h = 0.5)

but assumes no wage rigidities (θw = 0). Finally, the specification with 2 lagged variables

considers both consumption habit (h = 0.5) and wage rigidities (θw = 0.75). Using additional

processors provides relative speed gains (denoted as 1, 2 or 4 processors in Table 4.2) . Notice

that solution times do not decrease one-to-one with the number of processors. There are two

apparent reasons for this result. First, only parts of the code use parallel computing. Second,

there is minimal communication overhead that cannot be entirely eliminated.

Following Judd (1998), Aruoba et al. (2006), Caldara et al. (2012) or Richter et al. (2014),

I provide Euler equation errors and the integral of Euler equation errors as a measure of

accuracy of the model solutions. All accuracy diagnostics are based on the solution of the

large New Keynesian model with consumption habit formation (h = 0.5) and wage rigidities

(θw = 0.75). I calculated Euler equation errors for the consumption Euler equation and the

New Keynesian Phllips curve. Generally, the model solution is exact if

Et [ f (xxxt−1,,,xxxttt ,,,yyyt−1,,,yyyttt ,,,yyyt+1)] = 0 (4.48)
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Table 4.2 Solution Times for Selected Models (in Seconds)

DF DF and M DF, M and MP

Processors nd = 20 nd = nm = 20 nd = nm = nmp = 10

0 lagged 1 0.019 0.4238 8.5775

nd = 20, my = 10
nd = nm = 20,
my = 10

nd = nm = nmp = 7,
my = 5

1 lagged 1 0.4872 46.3535 524.3196

2 1.3672 38.3587 403.6988

4 1.5707 24.8325 325.894

nd = 20, my =
mw = 10

nd = nm = 10,
my = mw = 5

nd = nm = nmp = 5,
my = mw = 5

2 lagged 1 45.8439 177.9769 589.0075

2 36.3547 167.137 438.6066

4 41.3928 158.6442 349.5804

Note: DF: discount factor shock, M: markup shock, MP: monetary policy shock, 0 lagged: no endogenous state
variables, 1 lagged: consumption habit formation, 2 lagged: consumption habit and wage rigidities. nd ,nm,nmp:
no. of grid points for discount factor shock, markup shock and monetary policy shock. my,mw: no. of gridpoints
for output and real wage. I use 10 quadrature nodes for the numerical integration in all models.

where xxxttt is the vector of exogenous variables and yyyt the vector of endogenous variables. f (·)

is the forecast error based on the candidate solution of the model. More specifically, I calculate

f (·) as the difference of the left hand side and the right hand side of the consumption Euler

equation and the Phillips curve using the approximations of the policy functions. Moreover, I

use a Gaussian Hermite quadrature method to approximate the value of Et [ f (·)].

Figure 4.1 compares Euler equation errors of the New Keynesian model with consumption

habit (h = 0) and wage rigidities (θw = 0.75) for the consumption Euler equation and the New

Keynesian Phillips curve. For the ease of the presentation, absolute errors are reported in base

10 logarithms. The plots in Figure 4.1 show the Euler equation errors for each node of the
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discretized discount factor shock, markup shock and monetary policy shock, respectively.3

Across all specifications in Figure 4.1, I assume that solutions are based on a state space of

2,000 nodes (10 points on Ŷt−1 and ŵt−1, 20 on one exogenous process). The unconditional

standard deviation of all exogenous processes is set to σ = 0.1/100. The only difference

between the models in Figure 4.1 is the number of quadrature nodes for the numerical

integration. Using 5 quadrature nodes yields the least accurate solution. The approximation

is worse towards the end of the grid because it heavily relies on extrapolation outside of the

state space. Euler equation errors lower significantly with the number of quadrature nodes.

However, this comes at the cost of higher computation times. In general, all numbers are in

line with Aruoba et al. (2006) and Richter et al. (2014). As a complementary measure of

accuracy, Table 4.3 reports the integral of the Euler equation errors (in base 10 logarithms)

across different specifications of the model with consumption habit and wage rigidities, i.e.

h = 0.5 and θw = 0.75. To compute the integral, I simulate each model for 10,000 periods and

compute the Euler equation error for the consumption Euler equation and the New Keynesian

Phillips curve in every period. I use 10 quadrature nodes for all specifications. Again, all

numbers are fairly in line with the findings in Aruoba et al. (2006) and Richter et al. (2014).

The solutions become less accurate the higher the standard deviation of the shock. However,

this can be partly compensated by increasing the number of grid points for the shock which

comes at the cost of higher computation times. Note that the Euler equation error integrals

are largest for the discount factor shock and smallest for the monetary policy shock. This

inaccuracy goes back to the approximation errors when the ZLB constraint is binding. Table

C.2 in Appendix C.0.3 shows Euler Error integrals for the New Keynesian model that ignores

the ZLB constraint. In this case, the size of the integrals of the Euler equation errors is nearly

identical for every shock across all model specifications.

3Lagged output and lagged real wage, both in log-deviations from steady state, are assumed to be zero.
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Fig. 4.1 Euler Equation Errors: Consumption Euler Equation and New Keynesian Phillips
Curve

Note: Equation Errors are reported in base 10 logarithms. nd = nm = nmp = 20 and ny = nw = 10 for all models.



106
A

n
E

fficientA
lgorithm

to
Solve

D
SG

E
M

odels
w

ith
O

ccasionally
B

inding
C

onstraints

Table 4.3 Euler Equation Error Integrals

σσσ === 000...000555///111000000 σσσ === 000...111///111000000 σσσ === 000...222///111000000

nnn === 10 20 50 10 20 50 10 20 50

Euler
Equation

DF -11.60 -11.42 -19.28 -7.81 -8.82 -13.29 -4.99 -6.64 -8.49

M -20.91 -21.63 -22.12 -8.37 -8.91 -10.28 -5.29 -5.46 -6.08

MP -19.06 -31.18 -31.95 -31.21 -32.35 -32.04 -31.57 -31.76 -31.66

Phillips
Curve

DF -12.78 -12.17 -20.23 -8.99 -10.06 -14.09 -6.62 -7.52 -9.02

M -21.11 -21.18 -21.18 -9.84 -9.56 -9.67 -6.26 -5.68 -5.65

MP -19.89 -31.62 -37.62 -36.94 -37.04 -36.79 -36.29 -36.44 -36.40

Note: All Euler Equation Error Integrals are reported in base 10 logarithms. DF: discount factor shock, M: markup shock, MP: monetary policy shock, σ : unconditional
standard deviation of respective shock, n: number of grid points for respective shock.
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4.6 The Effects from Uncertainty

This section analyzes to which extent the presence of uncertainty alters the policy functions of

the model variables. Numerous papers have documented the effects of shock uncertainty for

macroeconomic analysis. Examples are Lindé and Trabandt (2018b), Adam and Billi (2006),

Adam and Billi (2007), Fernández-Villaverde et al. (2015), Gust et al. (2017), Nakata (2016)

and Richter and Throckmorton (2017). These authors show that future shock uncertainty can

have non-negligible implications for equilibrium dynamics.

Fig. 4.2 Policy Functions: Stochastic vs. Deterministic Model

Note: Blue dashed lines: deterministic model. Black solid lines: mean responses from stochastic model. Dashed

black and dash-dotted blue vertical lines indicate the level of δ̂t above which the ZLB is binding in the

stochastic model and the deterministic model, respectively.

Figure 4.2 shows the policy functions in the stochastic economy (solid black lines) and

those in the deterministic economy (blue dashed lines) in response to the discount factor

shock. The only difference between the two economies is that the unconditional standard



108 An Efficient Algorithm to Solve DSGE Models with Occasionally Binding Constraints

deviation of the shock is set to σd = 0 in the deterministic model while it is σd = 0.269/100

in the stochastic model. An increase in the discount factor shock, δ̂ , means that the household

becomes more impatient and, hence, wants to save more and spend less. Consequently, current

demand falls and leads to lower inflation. Following the truncated Taylor rule, a reduction in

inflation is accompanied by a reduction in the nominal interest rate. For a sufficiently large

increase in δ̂t , the nominal interest rate reaches the ZLB and cannot further decline. As a

result, the declines in output and inflation are larger when the ZLB is binding in both the

deterministic and the stochastic economies.

The policy functions for inflation and wage inflation are substantially different even before

the ZLB constraint is binding. In particular, inflation and wage inflation decline by a larger

amount in the stochastic model than in the deterministic model. The possibility of reaching

the ZLB in future periods lowers expected marginal cost leading forward-looking firms to

reduce prices today. When the nominal interest rate declines more than one-for-one with

inflation, the real interest rate decreases and dampens the fall in output.

Table 4.4 Simulation Results: Stochastic vs. Deterministic Model

ZLB Standard Deviation

Probability Duration Ŷ π̂ R̂

σd = 0.269
100

stoch. model 10.22% 3.23 q. 0.20% 1.39% 0.14%

determ. model 3.76% 2.63 q. 0.17% 1.23% 0.13%

σd = 0.37
100 determ. model 10.40% 3.32 q. 0.24% 1.78% 0.17%

Table 4.4 compares the results of stochastic simulations of the discount factor shock in the

two economies. For the stochastic simulations, I simulate 6000 samples of 100 periods for

each model as in Kiley and Roberts (2017) or Reifschneider and Williams (2000). Table 4.4
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shows the results of the stochastic simulations with σd = 0.269/100 for both economies. In

particular, it shows the average probability of being at the ZLB, the mean duration at the ZLB

and standard deviations for output, inflation and the nominal interest rate. The probability of

reaching the ZLB is substantially higher in the stochastic economy than in the deterministic

economy. Likewise, periods at the ZLB tend to be longer in the stochastic model. The last row

in Table 4.4 provides an alternative look at the implications of uncertainty at the ZLB. It shows

the results of simulations of the deterministic model based on δ̂ with a unconditional standard

deviation σz chosen such that the ZLB frequency corresponds to the one in the stochastic

model. It requires a substantially higher σz = 0.37/100 to replicate the same ZLB frequency

as in the stochastic economy. As a result, the standard deviations of output, inflation and the

nominal interest rate are larger and periods at the ZLB become longer on average.

Fig. 4.3 Impulse Response Functions: Stochastic vs. Deterministic Model

Note: Blue dashed lines: deterministic model. Black solid lines: mean responses from stochastic model. Shaded
gray areas: 95% probability distribution at time t.
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Figure 4.3 shows the impulse responses of the model’s variables in response to a large

initial increase in the discount factor shock so that the ZLB is expected to hold for 8 quarters in

the stochastic model. The dashed blue lines depict the impulse responses for the deterministic

model, while the solid black lines are the mean responses for the stochastic model. The

shaded gray areas represent the variable’s probability distribution at time t, covering 95%

of the distribution. Figure 4.3 shows that the decline in inflation, output, wage inflation and

real wages are larger in the stochastic model. The differences are quantitatively important.

For example, output decreases by initially 8 percent in the stochastic model, while only by

roughly 6 percent in the deterministic model. Inflation initially drops by 5.8 percent in the

stochastic model but only by 4 in the deterministic model. As a result, the expected duration

at the ZLB in the deterministic economy is 1 quarter shorter than in the stochastic economics.

The differences between the impulse responses are large during the periods in which the ZLB

is binding but becomes smaller over time. Due to the presence of wage rigidities and price

rigidities, the differences in the expected paths for inflation and the real wage diminish only

after 20 quarters when the nominal interest rate is well above zero.

The quantitative importance of uncertainty at the ZLB depends on the standard deviation

of the shock σd . Figure 4.4 documents the differences in the policy functions for the model’s

variables of the stochastic model relative to the deterministic model. To measure the distance

between the policy functions, I calculate the vector norms of the differences between the

policy functions of the stochastic model and those of the deterministic model. The relative

importance of uncertainty increases with σd . For relatively small σd , the policy functions are

fairly the same in both models. However, the differences are exponentially increasing in σd

for all variables.
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Fig. 4.4 The Effect of σd: Stochastic vs. Deterministic Model

Note: Outer contour of curves: Euclidean norm of policy functions from stochastic vs. deterministic model.
Gray dash-dotted vertical lines: level of σd associated with 1%, 10% and 15% probability to reach the ZLB
(from left to right).
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4.7 Solving the Non-Linear Model

The solution approach for the non-linear model is fairly similar to the one for the semi-

loglinear model. One important difference is that the non-linear model will be represented as a

system of non-linear equations. For the purpose of illustration, consider the non-linear model

described in Section 4.2 with h = 0 (no habit formation) and θw = 0 (no wage rigidities).

Furthermore, assume that νt = ν and γt = γ for all t so that the discount factor shock δt is the

only relevant shock. For this model, the grid will be defined over the pre-defined values for

the discount factor shock, δ , and price dispersion, s. Let ddd and sss be the column vectors that

represent the values of the discount factor shock and the values of lagged price dispersion.

Then, the grid is defined by matrix SSS:

S =

[111ns ⊗ddd]′

[sss⊗111nd ]
′

′ (4.49)

where nl with l ∈ {d,s} is the number of collocation nodes for the discount factor shock and

price dispersion, respectively. The system of equations for a single grid point
{

d j,sk
}

can be

written as:

Euler Equation:
1

Y (d j,sk)
=

1
EY (d j,sk)

d j
R(d j,sk)

EΠ(d j,sk)
(4.50)

Labor Supply: w(d j,sk) = Y (d j,sk)N(d j,sk) (4.51)

Market clearing: Y (d j,sk)) =
N(d j,sk)

s(d j,sk)
(4.52)

Optimal Price: P(d j,sk) =
γ

γ −1
K1(d j,sk)

K2(d j,sk)
(4.53)

Price Setting 1: K1(d j,sk) = w(d j,sk)+θ β EΠ(d j,sk)
γEK1(d j,sk) (4.54)

Price Setting 2: K2(d j,sk) = 1+θ β EΠ(d j,sk)
γ−1EK2(d j,sk) (4.55)

Price Setting 2: P(d j,sk) =

(
1−θ Π(d j,sk)

γ−1

1−θ

) 1
1−γ

(4.56)

Price Dispersion: s(d j,sk) = (1−θ)P(d j,sk)
−γ +θ Π(d j,sk)

γ sk (4.57)

Monetary Policy: R(d j,sk) = max
{

1,RΠ(d j,sk)
ϕ

ν
}

(4.58)
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where EY (d j,sk) and EΠ(d j,sk), are 1-period ahead expected output and inflation, re-

spectively. EK1(d j,sk) and EK2(d j,sk) are the 1-period ahead expectations for the variables

K1 and K2 which are associated with the price setting condition. The solution for each variable

can be written as a column vector over the grid. Denote the column vector for output YYY ,

for inflation ΠΠΠ, for nominal interest rate RRR, for real wage www, for labor hours NNN, for price

dispersion sss, for optimal price PPP, for the first price setting condition KKK111 and for the second

price setting condition KKK222. Then, I stack the column vectors to define the policy function CCC

so that CCC =
[
YYY ′,ΠΠΠ′,RRR′,www′,NNN′,sss′,PPP′,KKK′

111,KKK
′
222
]′.

The continuous process for the discount factor shock is given by δt = δ
ρd
t−1 expεd

t with

εd
t ∼ N (0,σ2

d ). Again, I use a Gaussian quadrature scheme to discretize δt . Assume that

εεε = [ε1 . . .εm]
′ is a column vector with m quadrature nodes and ωωω = [ω1 . . .ωm]

′ is a column

vector of length m containing the quadrature weights. The expected functions will be evaluated

over matrix SSS
E

:

SSS
E
=

[111ns ⊗ddd
E
]′

[sss⊗111m]
′

′ (4.59)

with

ddd
E
=


(d

ρd
1 ⊗111m)exp [εεε]

...

(d
ρd
nd
⊗111m)exp [εεε]


where exp [εεε] is an elementwise exponential. Then, I can approximate the expected

variables as:

EYYY = ΩΩΩΦ̂ΦΦ(SSS
E
)Y (4.60)

EΠΠΠ = ΩΩΩΦ̂ΦΦ(SSS
E
)Π (4.61)

EKKK111 = ΩΩΩΦ̂ΦΦ(SSS
E
)K1 (4.62)

EKKK222 = ΩΩΩΦ̂ΦΦ(SSS
E
)K2 (4.63)

where Φ̂ΦΦ(SSS
E
) is the matrix containing the basis functions evaluated for SSS

E
and ΩΩΩ contains the

quadrature weights.
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The model equations defined over the grid SSS can be represented as:

0 = f
(

CCC,Φ̂ΦΦ(SSS
E
),SSS

E
)

(4.64)

given the model parameters and the matrix ΩΩΩ containing the quadrature weights. I use a root

finding method (Newton-Raphson-method) to solve for the unknown policy function CCC. A

particular advantage of the non-linear setting as compared to the linear setting is that the

solution method can directly account for the occasionally binding constraint. In the linear

model, the algorithm checks for the grid points on which the ZLB is binding and updates

the parts of the system of equations that are affected by the occasionally binding constraint

accordingly. Specifically, the algorithm in Section 4.4 updates the parameter matrix and the

vector of constants. This step is irrelevant for the non-linear model. Hence, the algorithm

will only update the expected state matrix SSS
E

and the corresponding matrix of basis functions

Φ̂ΦΦ(SSS
E
) as the interpolation and extrapolation points depend on the current solution CCC. The

algorithm reduces to the following steps:

1. Start with a guess CCC0. Compute SSS
E

and Φ̂ΦΦ(SSS
E
) based on CCC0.

2. Given SSS
E

and Φ̂ΦΦ(SSS
E
), solve the root-finding problem to determine CCCnew:

0 = f
(

CCCnew,Φ̂ΦΦ(SSS
E
),SSS

E
)

(4.65)

3. Update CCC1 = λCCC0 +(1−λ )CCCnew with λ = 0.5. Then, compute SSS
E

and Φ̂ΦΦ(SSS
E
) based

on CCC1.

4. Redo the previous steps until ||vec(CCCs −CCCs−1)||< z with z = 10−8 or s >= 300.

Generally, I find that the initial CCC0 is important for the algorithm to converge to the final

solution of the model. A reasonable first guess CCC0 is the solution of the model in the steady

state.

4.8 Conclusion

Models with occasionally binding constraints have become important for contemporary

macroeconomic analysis. Policy function iteration methods represent a reliable way to solve
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models with non-linearities accurately. However, these methods often suffer from a severe

drawback: they rely on grid-based techniques which impose non-negligible computational

costs that are even increasing in the dimension of the model.

Another possible concern is the degree of curvature in the policy functions. It can be

difficult to obtain solutions to the New Keynesian model if the ZLB is reached too often

across the state space. One approach to tackle this problem could be a good initial conjecture

of the policy function. In particular, one can start solving the model with a parameterization

that induces less curvature in the policy functions and iterate on the parameters of interest.

This paper presents an algorithm which helps to reduce the computational burden for the

solution of models with occasionally binding constraints. One key difference of my approach

as opposed to other policy function iteration methods is that it solves for the whole policy

function in one computation step. This makes it unnecessary to solve for the candidate value

of the policy function on each grid node, which would lead to higher computational times.

Parallel computing can provide additional speed gains. However, the key improvement of the

algorithm does not come from parallelizing different processes and, hence, is still considerably

fast without parallel computing.
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Appendix A

Appendix to Chapter 2

A.0.1 Derivation of the New Keynesian Phillips Curve Under a Positive
Inflation Target

Suppose that in each period a firm can re-optimize its nominal price with fixed probability

1−θ , while with probability θ it charges the price of the previous period. The firm j which

re-optimizes its price in period t chooses P∗
j,t to maximize expected profits:

Et

∞

∑
i=0

(θβ )i
Λt+i

(
P∗

j,tYj,t+i −Γ(Y j,t)
)

(A.1)

subject to the demand function

Yj,t+i =
P∗

j,t

Pt+i

−ε

Yt+i (A.2)

where Λt+i is the stochastic discount factor, Γ(Yj,t) =mct+iYj,t+i is total cost and mct+i =wt+i

is marginal cost.

Let p∗j,t =
P∗

j,t
Pt

be the relative price of the optimizing firm in period t. The first-order condition

of the firm’s problem can be written as:

p∗j,t =
ε

ε −1

Et ∑
∞
j=0 θ jΛt+iYt+iΠ

ε
t,t+imct+i

Et ∑
∞
i=0 θ iΛt+iYt+iΠ

ε−1
t,t+i

=
ε

ε −1
ψt

φt
(A.3)

where Πt,t+i denotes the cumulated gross inflation rate over i periods:

Πt,t+i =

 1 for i = 0

πt+1 × ...×πt+i for i = 1,2, ...
(A.4)
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with πt =
Pt

Pt−1
is the gross inflation rate. We can rewrite ψt and φt recursively:

ψt = ΛtmctYt +θβEt [π
ε
t+1ψt+1] (A.5)

φt = ΛtYt +θβEt [π
ε−1
t+1 φt+1] (A.6)

Let Pt be the price index associated with the final good yt . It is a CES aggregate of the prices

of the intermediate goods, Pj,t . It evolves as follows:

Pt =

[∫ 1

0
P1−ε

j,t di
] 1

1−ε

=
[
θP1−ε

t−1 +(1−θ)P∗1−ε

j,t

] 1
1−ε (A.7)

Rearraging the equation above gives:

p∗j,t =

[
1−θπ

ε−1
t

1−θ

] 1
1−ε

(A.8)

Price dispersion between intermediate goods prices Pi,t affects the relationship between em-

ployment, Nt and output Yt . Assume each firm produces with a linear production technology:

Y j,t = N j.t . Using the demand function in Eq. (3.3), aggregate labor demand is:

Nt =
∫ 1

0
N j,td j (A.9)

=
∫ 1

0
Yj,td j = Yt

∫ 1

0

(
Pj,t

Pt

)−ε

d j (A.10)

Let st be a measure of price dispersion:

st =
∫ 1

0

(
Pj,t

Pt

)−ε

d j, (A.11)

aggregate output can be expressed as:

Yt =
Nt

st
. (A.12)
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Using Eq. (A.7), we can rewrite st :

st =(1−θ)

(P∗
j,t

Pt

)−ε

+θπ
ε
t

×

{
(1−θ)

(
P∗

t−1

Pt−1

)−ε

+θ
2(1−θ)

(
P∗

t−2

Pt−1

)−ε

+ ....

}
=(1−θ)(p∗j,t)

−ε +θπ
ε
t st−1. (A.13)

We can now log-linearize Eqs. (A.3), (A.5), (A.6) and (A.8) around a deterministic steady

state with trend inflation rate π . Let̂denote log-deviations from steady state. We do not

model the household side explicitly. Note that Λ̂t =−Ŷt . We obtain the following expression

for the dynamics of inflation:

π̂t = βω(π)Et π̂t+1 +κ(π)m̂ct +η(π)Etψ̂t+1 (A.14)

with ψ̂t = b(π)
(
(ϕ +1)Ŷt +ϕ ŝt

)
+(1−b(π))Et (ψ̂t+1 + π̂t+1) (A.15)

ω(π) = 1+ ε π (1−θ (1+π)ε−1)

κ(π) =
(1−θβ (1+π)ε)(1−θ (1+π

ε−1))

θ (1+π
ε−1)

η(π) = β π (1−θ (1+π
ε−1))

b(π) = 1−θβ (1+π
ε)

Furthermore, we have following labor supply equation: ŵt = Ŷt +ϕN̂t . Using Eq. (A.12), we

can rewrite m̂ct :

m̂ct = (1+ϕ)Ŷt +ϕ ŝt . (A.16)

We can use the expression above to obtain the generalized New Keynesian Phillips curve:

π̂t = βω(π)Et π̂t+1 +κ(π)[(1+ϕ)Ŷt +ϕ ŝt ]+η(π)Etψ̂t+1 (A.17)

Finally, we can use Eqs. (A.13) and (A.8) to show that price dispersion evolves as:

ŝt = c(π)ŝt−1 +d(π)π̂t (A.18)
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with c(π) = θπ
ε and d(π) = εθπ

ε−1

1−θπ
ε−1 (π −1). Note that in a zero inflation steady state, i.e.

π = 1, we have:

ŝt = θ ŝt−1. (A.19)

Hence, small perturbations have a zero first-order impact on ŝt . This implies that for π = 1

that Eq. (A.17) becomes the familiar New Keynesian Phillips curve:

π̂t = βEt π̂t+1 +κŶt . (A.20)

with κ = (1−θβ )(1−θ)
θ

.

A.0.2 Determinacy Conditions

In the long-run (i.e. δ̂t = 0), the matrix representation of the model is given by
Ŷt

π̂t

ψ̂t

= A×


Ŷt+1

π̂t+1

ψ̂t+1

 (A.21)

with

A =


1+φY φπ 0

−κ(π) 1 0

1−θ β π
ε 0 1


−1

1 1 0

0 β α(π) η(π)

0 θ β π
ε

ε θ β π
ε

 (A.22)

In general, the characteristic polynomial associated with the cubic matrix, A, is:

−λ
3 +T λ

2 −M λ +D, (A.23)



127

where T , M, D denote the trace, the sum of principal minors of order two, and the determinant

of matrix A, respectively. Here, it holds that

T =
1

1+φY +κ(π)φπ

[1+κ(π)+β α(π)(1+φY )−b(π)φπ η(π)− (b(π)−1)(1+φY +κ(π)φπ)]

(A.24)

M =
(α(π)β −η(π)b1(π))− (b(π)−1)κ(π)− (b(π)−1)(1+φY )(α(π)β −η(π)ε)

1+φY +κ(π)φπ

(A.25)

D =
−β (b(π)−1)

1+φY +κ(π)φπ

(A.26)

Brooks (2004) states that a necessary and sufficient condition for determinacy is that all

eigenvalues of A lie inside the unit circle. The necessary and sufficient conditions in terms of

T , M and D are:

|D|< 1 (A.27)

|T +D|< M+1 (A.28)

D2 −T D+M < 1 (A.29)

Substituting the expressions for T , M and D in the conditions above returns the expressions

stated in the text.

A.0.3 Proof of Proposition 1

First, note that ∂α(π)/∂π > 0, ∂κ(π)/∂π < 0 and ∂η(π)/∂π > 0 hold if Assumption 2 is

satisfied (the proof can be find in Ascari and Ropele (2009)). Define b2(π) =−(b(π)−1).

It can be easily seen that ∂b2(π)/∂π = β θ ε π
ε−1 > 0. If the determinacy conditions are

fulfilled, we can solve for the aggregate supply curve:

π̂S =
κ̃(π)

1−β α̃(π)µ
ŶS. (A.30)
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Substituting the expressions for α̃(π) and κ̃(π) gives

π̂S =

[
1− µ2 η(π)b2(π)ε

1−β α(π)µ

]−1 [
κ(π)

1−β α(π)µ
+

η(π)µ b(π)
(1−β α(π)µ)(1−µ b2(π))

]
ŶS.

(A.31)

We can rewrite the expression above as:

π̂S =

[
1−β α(π)κ(π)

κ(π)

1−µ θ β π
ε

1−β µ θ π
ε−1 −µ

2
θ

2
β

2
ε π

ε π
ε −π

ε−1

(1−β θ π
ε)(1−β µ θ π

ε−1)

]−1

ŶS.

(A.32)

Recall that ε > 1. Denote B = κ(π)
1−β α(π)µ

. Then, a sufficient condition to ensure that

∂ π̂t/∂ŶS > 0 is
∂B
∂π

=
∂κ(π)/∂π

1−β α(π)µ
+

κ(π)β µ∂α(π)/∂π

(1−β α(π)µ)2 ≥ 0 (A.33)

Rearranging yields

β α(π)µ ≥
−∂κ(π)/∂π

κ(π)

−∂κ(π)/∂π

κ(π) + ∂α(π)/∂π

α(π)

> 0. (A.34)

A.0.4 Proof of Proposition 2

The solutions for inflation are:

Case 1: Normal times π̂
NT
S =−ωπ(π) ẑS (A.35)

Case 2: ZLB π̂
ZLB
S =−ω

′
π(π) ẑS (A.36)

with ωπ(π) =
K̃(π)

1−µ+φY+K̃(π)(φπ−µ)
and ω ′

π(π) =
K̃(π)

1−µ−K̃(π)µ
.

Provided that ∂ K̃(π)/∂π > 0 and φφ > 1, it holds that ∂ωπ (π)
∂π

> 0 and ∂ω ′
π (π)

∂π
> 0 that is

Case 1: Normal times
∂ K̃(π)

∂π

[
1−µ +φY

1−µ +φY + K̃(π)(φπ −µ)

]
> 0 (A.37)

Case 2: ZLB
∂ K̃(π)

∂π

[
1−µ

1−µ − K̃(π)µ

]
> 0 (A.38)

Note that ∂ω ′
π (π)

∂π
> ∂ωπ (π)

∂π
as

K̃(π)φπ (1−µ)> 0. (A.39)
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Hence, an increase in π leads to a higher inflation response in the model at the ZLB.

A.0.5 Proof of Proposition 3

The solutions for output are:

Case 1: Normal times Ŷ NT
S =−ωY (π) ẑS (A.40)

Case 2: ZLB Ŷ ZLB
S =−ω

′
Y (π) ẑS (A.41)

with ωY (π) =
1

1−µ+φY+K̃(π)(φπ−µ)
and ω ′

Y (π) =
1

1−µ−K̃(π)µ
.

Provided that ∂ K̃(π)/∂π > 0 and φφ > 1, it holds that ∂ωY (π)
∂π

< 0 and ∂ω ′
Y (π)

∂π
> 0 that is

Case 1: Normal times − ∂ K̃(π)

∂π
(φπ −µ)< 0 (A.42)

Case 2: ZLB
∂ K̃(π)

∂π
µ > 0 (A.43)

A.0.6 Numerical Algorithm

The solution method to solve the stochastic models follows closely the algorithm presented

in Chapter 3. However, I use the Rouwenhorst (1995) method to discretize the exogenous

process. The Rouwenhorst (1995) method approximates the continuous process through

a finite-state Markov chain that mimics closely the underlying process. The Rouwenhorst

(1995) method is an efficient method to discretize, in particular, continuous processes with

very high persistence, near unit root.

This section describes the solution method for the model presented in Section 2.5. Assume

the following process for the discount factor shock: δ̂t = ρ δ̂t−1+εt with εt ∼N (0,σ2). The

Rouwenhorst (1995) method approximates the discount factor shock through a discrete-spaced

Markov chain over an evenly spaced grid δ of length nd for the discount factor shock. The

values for the shock over the grid will be determined by the unconditional standard deviation

σ . I choose nd = 45 and σ = 0.125/100. The method generates the equally spaced grid ddd for

the discount factor shock and an nd ×nd transition matrix for the discount factor shock. Let

ΩΩΩ
R be the transition matrix. It is defined as:
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ΩΩΩ
R =


ωωωR(d1)

′

...

ωωωR(dnd)
′

 (A.44)

where ωωωR(d j)
′ is a column vector containing the transition probabilities associated with the

element d j of vector ddd.

In addition, define an equally spaced grid for the price dispersion variable st . The variable

st is an endogenous state variable. Denote the grid for price dispersion as column vector sss.

I set the length of sss to ns = 11. The number of total grid points is n = nd × ns. Then, the

complete grid is defined by the matrix SSS:

S =

 [111nd ⊗ddd]′

[sss⊗111(nd)]
′

′ (A.45)

where cs are the elements in CCC associated with the solution of the price dispersion variable.

111nl is a column vector of ones with length nl where l ∈ {d,s}. Let ZZZ =
[
π̂ππ
′
,ŶYY

′
, ψ̂ψψ

′
, ŝss′
]′

be the

vector of policy functions of 4 variables which are inflation, output, marginal cost and price

dispersion. I approximate ZZZ over SSS. Similar to the approach in Chapter 3, it is possible to

represent the model as a system of difference equations over the grid SSS:

AAAZZZ(((SSS))) = BBBEZZZ(((SSS)))+DDD FFFSSS (A.46)

where AAA, BBB and FFF are matrices containing the model parameters and DDD is a vector of constants

which has nonzero elements on all grid points for which the ZLB is binding. Similar to

the exercise in Chapter 3, I use linear spline basis functions where the breakpoints coincide

with the collocation nodes. Then, ZZZ(((SSS))) = CCC is the policy function approximations for the

pre-defined grid. For the expected function, EZZZ(((SSS))), the basis functions are evaluated for the

matrix SSS
E,R

:

SE,R
=

[(111nd ⊗ddd
)
⊗111ns]

′

[cccs ⊗ (111nd ⊗111nd)]
′

′ (A.47)

Then, the expected function, EZZZ(((SSS))), can be represented as:

EZ(S) = Ω̂ΩΩ
R

Φ̂ΦΦ(SSS
E,R

)CCC (A.48)
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where

Ω̂ΩΩ
R
=


Ω̃ΩΩ

R
000n×n2

dns
000n×n2

dns
000n×n2

dns

000n×n2
dns

Ω̃ΩΩ
R

000n×n2
dns

000n×n2
dns

000n×n2
dns

000n×nm Ω̃ΩΩ
R

000n×n2
dns

000n×n2
dns

000n×n2
dns

000n×n2
dns

Ω̃ΩΩ
R

 Ω̃ΩΩ
R
=


ω̃ωω

R 0 . . . 0

0 ω̃ωω
R . . . 0

... 0 . . . ...

0 . . . 0 ω̃ωω
R



ω̃ωω
R =


ωωωR(d1)

′ 0 . . . 0

0 ωωωR(d2)
′ . . . 0

... 0 . . . ...

0 . . . 0 ωωωR(dnd)
′



Φ̂ΦΦ(SSS
E,R

)=


SSS

E,R
000n2

dns×n 000n2
dns×n 000n2

dns×n

000n2
dns×n SSS

E,R
000n×n2

dns
000n2

dns×n

000n2
dns×n 000n2

dns×n SSS
E,R

000n2
dns×n

000n2
dns×n 000n2

dns×n 000n2
dns×n SSS

E,R

 ΦΦΦ(((SSS
EEE
)))=


φ1(SSS

E
(1,:)) . . . φn(SSS

E
(1,:))

... . . .
...

φ1(SSS
E
(n2

dns,:)) . . . φn(SSS
E
(n2

dns,:))



Ω̂ΩΩ
R

is of dimension 4n×4n2
dns, Ω̃ΩΩ

R
is n×n2

dns, ω̃ωω
R is nd ×n2

d , Φ̂ΦΦ(SSS
E,R

) is 4n2
dns ×4n and

ΦΦΦ(((SSS
E,R

))) is n2
dns ×n.

In matrix notation, the system of difference equations over the grid S is given by:

AAAZZZ(((SSS))) = BBBEZZZ(((SSS)))+DDD+FFF S. (A.49)

Or equivalently,

AAACCC = BBBΩ̂ΩΩ
R

Φ̂ΦΦ(SSS
E,R

)CCC+DDD+FFF S (A.50)

I use the following iterative approach to find the coefficient vector CCC:

1. Start with a guess CCC0. Compute SSS
E,R

, Φ̂ΦΦ(SSS
E,R

), AAA and DDD based on CCC0.

2. Given SSS
E,R

, Φ̂ΦΦ(SSS
E,R

), AAA and DDD, solve for CCCnew:

CCCnew = [AAA−BBBΩ̂ΩΩ
RRR

Φ̂ΦΦ(SSS
E,R

)]−1[DDD+FFF SSS] (A.51)
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3. Update CCC1 = λCCC0 +(1−λ )CCCnew with λ = 0.5. Then, compute SSS
E,R

, Φ̂ΦΦ(SSS
E,R

), AAA and

DDD based on CCC1.

4. Redo the previous steps until ||vec(CCCs −CCCs−1)||< z with z = 10−8 or s >= 300.



Appendix B

Appendix to Chapter 3

B.0.1 Model Equations

Below I provide the log-linearized equilibrium conditions of the benchmark model and the

two-sector model. The equilibrium equations are log-linearized around a zero inflation steady

state. Define ΠS,t = 1+πS,t as the gross inflation rate in sector S.

The Benchmark Model

Euler equation (non-durables): Ĉt −
hC

1+hC
Ĉt−1 =

1
1+σC

EtĈt+1 −
1

1−h2
C

(
ît −EtΠ̂C,t+1 + µ̂C,t

)
(B.1)

Wage inflation: Π̂w,t = ŵt − ŵt−1 + Π̂C,t (B.2)

Wage Phillips Curve: Π̂w,t = β Et Π̂w,t+1 +κw

(
φ N̂t +

1
1−hC

(
Ĉt −hCĈt−1

)
− ŵt

)
with κw =

(1−βθw)(1−θw)

(1+ εw φ)θw
(B.3)

Non-durables production: ŶC,t = N̂C,t (B.4)

Non-durables market clearing: ŶC,t = Ĉt (B.5)

Phillips curve (non-durables): Π̂C,t = β Et Π̂C,t+1 +κC

(
Ŵt +

τ

1+ τ
τ̂t

)
with κC =

(1−θC)(1−βθC)

θC
(B.6)

Taylor rule: ît = max
{

lnβ ,γπΠ̂C,t

}
(B.7)

Taste shock (non-durables): µ̂C,t = ρC µ̂C,t−1 + εt (B.8)

VAT shock: τ̂t = ε
τ
t (B.9)
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The Two-Sector Model

Euler equation (non-durables): Ĉt −
hC

1+hC
Ĉt−1 =

1
1+hC

Et Ĉt+1 −
1

1−h2
C

(
ît −EtΠ̂C,t+1 + µ̂C,t

)
(B.10)

Demand for durables: q̂t −
1

1−hC

(
Ĉt −hCĈt−1

)
=−1−hD −β (1−δ )

1−hD

(
D̂t −hDD̂t−1

)
+β (1−δ )Et

{
q̂t+1 −Ĉt+1

}
+ ν̂D,t (B.11)

Wage inflation: Π̂w,t = ŵt − ŵt−1 + Π̂C,t (B.12)

Wage Phillips Curve: Π̂w,t = β Et Π̂w,t+1 +κw

(
φ N̂t +

1
1−hC

(
Ĉt −hCĈt−1

)
− ŵt

)
with κw =

(1−β θw)(1−θw)

(1+ εw φ)θw
(B.13)

Non-durables production: ŶC,t = N̂C,t (B.14)

Durables production: ŶD,t = N̂D,t (B.15)

Relative price: q̂t = Π̂D,t − Π̂C,t + q̂t−1 (B.16)

Non-durables market clearing: ŶC,t = Ĉt (B.17)

Durables market clearing ŶD,t =
1
δ

(
D̂t − (1−δ )D̂t−1

)
(B.18)

Labor market clearing: N̂t = (1−α) N̂C,t +α N̂D,t (B.19)

Phillips curve (non-durables): Π̂C,t = β Et Π̂C,t+1 +κC

(
ŵt +

τ

1+ τ
τ̂t

)
with κC =

(1−θC)(1−βθC)

θC
(B.20)

Phillips curve (durables): Π̂D,t = β Et Π̂D,t+1 +κD

(
ŵt +

τ

1+ τ
τ̂t

)
with κD =

(1−θD)(1−βθD)

θD
(B.21)

Taylor rule: ît = max
{

lnβ ,γπ

[
(1−α)Π̂C,t +αΠ̂D,t

]}
(B.22)

Preference shock (non-durables): µ̂C,t = ρC µ̂C,t−1 + εt (B.23)

Preference shock (durables): ν̂D,t = µ̂C,t (B.24)

VAT shock: τ̂t = ε
τ
t (B.25)
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B.0.2 Numerical Algorithm

The solution method to solve the stochastic models follows closely the algorithm presented in

Chapter 3. The semi-loglinear models can be represented as a system of difference equations

over the grid S:

AAAZZZ(((SSS))) = BBBEZZZ(((SSS)))+DDD+FFF S. (B.26)

Similar to the exercise in Chapter 3, I use linear spline basis functions where the breakpoints

coincide with the collocation nodes. Then, ZZZ(((SSS))) =CCC is the policy function approximations

for the pre-defined grid. For the expected functions, the basis functions φi are evaluated for

the matrix SSS
E

which contains the expected values of all state variables. Then, the system of

equations can be written as

AAACCC = BBBΩ̂ΩΩΦ̂ΦΦ(SSS
E
)CCC+DDD+FFF S (B.27)

where Ω̂ΩΩ contains the Gaussian quadrature weights and matrix Φ̂ΦΦ(SSS
E
) contains the basis

functions evaluated for SSS
E

.

The VAT cut can be interpreted as a deterministic shock. Assuming that the VAT cut is

perfectly credible, households and firms are able to foresee the evolution of the VAT rate

perfectly. In Section 3.5.2, I assume that the VAT cut lasts for 4 periods. I propose an iterative

scheme to solve for the policy functions for each of the 4 periods of the VAT cut. In the last

period of the VAT cut in t = 4, the grid for the shock associated with the VAT has values 0 or

1. 0 means that the VAT cut has reversed to steady state while 1 implies that the VAT cut is

active. However, in period t = 4, we perfectly know that the VAT cut will be over in the next

period. Hence, the expected functions of the model will be evaluated at those points of the

grid for which the VAT cut is inactive. I use the following iterative approach to find the policy

function CCC4 in period t = 4:

1. Start with a guess CCC0
4. Compute SSS

E
4 , Φ̂ΦΦ(SSS

E
4 ), AAA4 and DDD4 based on CCC0

4.

2. Given SSS
E
4 , Φ̂ΦΦ(SSS

E
4 ), AAA4 and DDD4, solve for CCCnew

4 :

CCCnew
4 = [AAA4 −BBB4 Ω̂ΩΩΦ̂ΦΦ(SSS

E
4 )]

−1[DDD4 +FFF SSS4] (B.28)
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3. Update CCC1
4 = λCCC0

4 +(1−λ )CCCnew
4 with λ = 0.5. Then, compute SSS

E
4 , Φ̂ΦΦ(SSS

E
4 ), AAA4 and DDD4

based on CCC1
4.

4. Redo the previous steps until ||vec(CCCs
4 −CCCs−1

4 )||< z with z = 10−8 or s >= 300.

In period t = 3, agents correctly anticipate that the VAT cut will continue to be active

in the next period. Hence, the grid for the shock associated with the VAT only has value 1.

Given the solution CCC4, it is now possible to solve for the policy function in period t = 3. The

system of equations in period t = 3 is given by:

AAA3CCC3 = BBBΩ̂ΩΩΦ̂ΦΦ(SSS
E
3 )CCC4 +DDD3 +FFF S3 (B.29)

I solve for CCC3 using an iterative approach given CCC4:

1. Start with a guess CCC0
3. Compute SSS

E
3 , Φ̂ΦΦ(SSS

E
3 ), AAA3 and DDD3 based on CCC0

3.

2. Given SSS
E
3 , Φ̂ΦΦ(SSS

E
3 ), AAA3 and DDD3, solve for CCCnew

3 :

CCCnew
4 = AAA−1

4 [BBB3 Ω̂ΩΩΦ̂ΦΦ(SSS
E
3 )CCC4 +DDD3 +FFF SSS3] (B.30)

3. Update CCC1
3 = λCCC0

3 +(1−λ )CCCnew
3 with λ = 0.5. Then, compute SSS

E
3 , Φ̂ΦΦ(SSS

E
3 ), AAA3 and DDD3

based on CCC1
3.

4. Redo the previous steps until ||vec(CCCs
3 −CCCs−1

3 )||< z with z = 10−8 or s >= 300.

Equivalently, we can find the solution for period t = 2 given CCC3 and the solution for period

t = 1 given CCC2.

The two-sector models has in total 6 state variables: preference shock, VAT shock, non-

durable goods consumption, stock of durable goods, real wage and the relative price. For this

model, I assume the following numbers of breakpoints: nµ = 15 (preference shock), nτ = 2

(VAT shock), nc = 5 (non-durable goods consumption), nd = 5 (stock of durable goods) ,

nw = 8 (real wage) and nq = 6 (relative price). Therefore, the total grid size is n = 36,000.

Furthermore, the grid points are unequally distributed for ccc (non-durable goods consumption),

ddd (stock of durable goods), www (real wage) and qqq (relative price) with twice as many grid points

for negative values. Finally, I set the number of quadrature nodes to m = 10.
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B.0.3 Data

Price data is taken from Eurostat1 and is disaggregated for individual good categories accord-

ing to the Classification of Individual Consumption by Purpose (COICOP).2 Prices used in

the CPI calculation includes taxes such as the VAT. All data is provided on a monthly basis.

I exploit the detailed classification of household consumption to split the data into non-

VAT goods ( goods that do not attract VAT or the reduced rate of VAT, e.g. food, energy or

education) and VAT goods (goods that attract the standard VAT rate) according to HMRC

guidelines.3 In the regression analysis, I restrict attention to VAT goods. Furthermore, I

aggregate the goods into 2 main consumption categories: non-durable goods (non-durables

and services) and durable consumption goods (semi-durables and durables).4

Data on household consumption is available only on quarterly or annual basis. To account

for consumer purchases on a higher frequency, I use retail sales as a proxy. Information on

retail trade and sales is available on a monthly basis and is taken from the statistical offices

of every country in the sample. In particular, I use the (nominal) turnover index for retail

sales with base year 2005. The index is provided for a series of retail categories that allows

to construct an aggregate index for turnover on non-durables, semi-durables, durables and

services. The sample covers data from January 2002 to December 2010.6

1Eurostat uses the data to compute the Harmonized Index of Consumer Prices
(http://ec.europa.eu/eurostat/data/database).

2See for further information http://unstats.un.org/unsd/cr/registry/regcst.asp?Cl=5.
3For details, see http://www.hmrc.gov.uk/vat/forms-rates/rates/goods-services.htm.
4I use Eurostat’s data on item weights for the Harmonized Index of Consumer Prices to aggregate the

individual data. The item weights are used to compute a price index for a representative consumption basket.
Item weights are updated every year by Eurostat. The official definition for non-durable goods, semi-durable
goods, durable goods and services are taken from the OECD. According to their definition, a non-durable good
is "one that is used up entirely after less than a year while semi-durables can be used repeatedly or continuously
over a period longer than a year"5. The latter differs from a durable good in its expected lifetime which is still
significantly shorter and its price is substantially lower in most cases.

6In 2011 the VAT rate was permanently increased to 20% in the UK.
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B.0.4 Figures

Fig. B.1 Representative Consumption Basket of Goods and Services for Selected Countries
and EU in 2008 and in 2017 (left: all goods and services; right: goods and services that are
subject to standard VAT rate)

0 20 40 60 80 100
%

UK
Sweden

Spain
Portugal

Netherlands
Luxembourg

Italy
Greece

Germany
France
Finland

EU
Denmark
Belgium
Austria

Total Consumption

0 20 40 60 80 100
%

UK
Sweden

Spain
Portugal

Netherlands
Luxembourg

Italy
Greece

Germany
France
Finland

EU
Denmark
Belgium
Austria

VAT Goods

(a) 2008

Non−durables Services

Semi−durables Durables

0 20 40 60 80 100
%

UK
Sweden

Spain
Portugal

Netherlands
Luxembourg

Italy
Greece

Germany
France
Finland

EU
Denmark
Belgium
Austria

Total Consumption

0 20 40 60 80 100
%

UK
Sweden

Spain
Portugal

Netherlands
Luxembourg

Italy
Greece

Germany
France
Finland

EU
Denmark
Belgium
Austria

VAT Goods

(b) 2017

Non−durables Services

Semi−durables Durables



Appendix C

Appendix to Chapter 4

C.0.1 Implementation of the Algorithm and MATLAB Routines

All of the routines required to implement the algorithm are written in MATLAB. All codes are

available at https://tinyurl.com/Budianto-CollocationCodes. To compute the basis functions

Φ̂ΦΦ(SSS), I use the functions fspace.m, funnode.m and funbas.m provided in the CompEcon

Toolbox developed by Miranda and Fackler (2002). The toolbox can be downloaded at

https://pfackler.wordpress.ncsu.edu/compecon/154-2/.

Note that the log-linearized model with n exogenous state variables and m endogenous

state variables can be rewritten as a system of linear difference equations over the pre-defined

grid:

AAACCC = BBBΩ̂ΩΩΦ̂ΦΦ(SSS
E
)CCC+DDD+FFF S (C.1)

In order to find the policy function approximations CCC, I use the following iterative ap-

proach:

1. Start with a guess CCC0. Compute SSS
E

, Φ̂ΦΦ(SSS
E
), AAA and DDD based on CCC0.

2. Given SSS
E

, Φ̂ΦΦ(SSS
E
), AAA and DDD, solve for CCCnew:

CCCnew = [AAA−BBBΩ̂ΩΩΦ̂ΦΦ(SSS
E
)]−1[DDD+FFF S] (C.2)

3. Update CCC1 = λCCC0 +(1− λ )CCCnew where λ is between 0 and 1. Then, compute SSS
E

,

Φ̂ΦΦ(SSS
E
), AAA and DDD based on CCC1.

4. Redo the previous steps until ||vec(CCCs −CCCs−1)||< δ . with δ = 10−8 or s >= 300.

https://tinyurl.com/Budianto-CollocationCodes
https://pfackler.wordpress.ncsu.edu/compecon/154-2/
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The algorithm is broken down into a sequence of easily implementable steps that are

executed with the following set of functions:

• mainscript.m - The main script that executes all functions and saves the results in the

structure M.

• vars.m - Outputs a structure SV, containing specifications of the names of the model

variables.

• sstate.m - Outputs a structure SZ, containing spefications of the state variables, e.g.

names, number of break points or boundaries of the grid.

• xcoll.m - Outputs a structure GZ, containing the matrices S, d
EEE and the Gaussian-

Hermite quadrature weights ωωω .

• params.m - Outputs a structure Params, containing the parameter matrices AAA, BBB, DDD and

FFF for the initial step.

• xiter.m -Outputs the structure D, containing specifications for the iteration approach,

e.g. number of maximal iteration steps or convergence criteria.

The algorithm starts by specifying the initial CCC0 and Φ̂ΦΦ(SSS
E
). By default, CCC0 is a zero

vector and Φ̂ΦΦ(SSS
E
) is evaluated at the grid points. Depending on the size of the grid and

the number of state variables, computing Φ̂ΦΦ(SSS
E
) can be fairly involved. To speed up the

computation and avoid storing large matrices, I break down SE into n/nd matrices of

size ndm×2 and parallelize the computation of the basis functions. This is performed

with collmat2.m.



141

C.0.2 Solution Times Using Dual-Core (2.4 GHz) Processors

Table C.1 reports solution times for the different models computed with a 2-core processor

(2.4 GHz) using MATLAB’s Parallel Computing Toolbox.

Table C.1 Solution Times for Selected Models (in Seconds)

DF DF and M DF, M and MP

Processors nd = 20 nd = nm = 20 nd = nm = nmp = 10

0 lagged 1 0.0461 0.4915 9.8548

nd = 20, my = 10
nd = nm = 20,
my = 10

nd = nm = nmp = 7,
my = 5

1 lagged 1 0.7457 55.7491 628.3464

2 2.2899 47.2253 489.9326

nd = 20, my =
mw = 10

nd = nm = 10,
my = mw = 5

nd = nm = nmp = 5,
my = mw = 5

2 lagged 1 55.1337 225.0477 745.0218

2 57.8905 227.3864 618.8270

Note: DF: discount factor shock, M: markup shock, MP: monetary policy shock, 0 lagged: no endogenous state
variables, 1 lagged: consumption habit formation, 2 lagged: consumption habit and wage rigidities. nd ,nm,nmp:
no. of grid points for discount factor shock, markup shock and monetary policy shock. my,mw: no. of gridpoints
for output and real wage. I use 10 quadrature nodes for the numerical integration in all models.

C.0.3 Euler Equation Error Intergrals for the New Keynesian Model

without ZLB

Table C.2 reports Euler equation error integrals for the New Keynesian model with consump-

tion habit formation (h = 0.5) and sticky wages (θw = 0.75). I assume no ZLB constraint on

the nominal interest rate. The integrals were computed over the Euler equation errors in every

period based on a simulation of the models for 10,000 periods.
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Table C.2 Euler Equation Error Integrals (in base 10 logarithms)

σσσ === 000...000555///111000000 σσσ === 000...111///111000000 σσσ === 000...222///111000000

nnn === 10 20 50 10 20 50 10 20 50

Euler
Equation

DF -22.51 -22.89 -23.24 -22.50 -22.65 -22.94 -22.26 -22.02 -22.05

M -19.87 -20.10 -20.65 -18.85 -19.20 -19.55 -18.79 -19.12 -19.48

MP -22.33 -22.84 -23.11 -19.03 -19.02 -19.64 -18.92 -19.24 -19.62

Phillips
Curve

DF -24.95 -25.29 -25.60 -24.66 -24.76 -24.99 -24.31 -24.06 -24.07

M -22.43 -22.66 -23.18 -21.59 -21.96 -22.32 -21.56 -21.91 -22.31

MP -24.86 -25.37 -25.65 -21.74 -21.73 -22.35 -21.65 -21.95 -22.33

Note: DF: discount factor shock, M: markup shock, MP: monetary policy shock, σ : unconditional standard deviation of respective shock, n: number of grid points for respective
shock.
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