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1. ABSTRACT 
 

A methyl group deposited on cytosines incorporated into the sequence of the DNA, so 

called DNA methylation, decorates the genomes of a large number of species, from 

archaea to man. Over the last two decades, a large body of research discovered that 

this small chemical moiety elicits a profound effect on the gene expression program. In 

particular, DNA methylation restricts transcriptionally active regions of the genome, 

therefore ensuring a faithful interpretation of the regulatory information encoded in the 

DNA sequence. This fundamental role played by the methylation of DNA helps define 

cell identity at a molecular level, thus it enables a biologically complex transition such as 

from a zygote to an organism to occur in a unidirectional and orchestrated manner. 

Perturbations in the pattern of DNA methylation have been frequently found in 

pathological processes such as tumorigenesis. 

The pattern of DNA methylation decorating the genome of a cell is precisely copied 

during cell division by maintenance machinery composed of the DNMT1 enzyme and its 

associated proteins. The absence of DNMT1 elicits a wide-range of deleterious effects, 

from loss of cell fitness of in vitro cultured cells to embryonic lethality and loss of 

homeostasis of somatic tissues. Previous studies reported pleiotropic effects and 

mutually exclusive phenotypes of DNMT1 knockout depending on the design of the study 

– from apoptosis and genomic instability to accelerated cell cycle and trans-

differentiation. How exactly these phenotypes arise in a response to DNMT1 deficiency 

is unknown. 

We employed the state-of-the-art next generation sequencing technologies and coupled 

them with molecular and cell biology techniques to elucidate the causes for the loss of 

fitness of DNMT1-deficient human embryonic stem cells. In contrast to previous studies, 

we did not observe the proposed DNA damage or genomic instability. Our work 

demonstrated that an acute depletion of DNMT1 results in a uniform decay of DNA 

methylation that we characterized in depth at a single cell level. Interestingly, our 

transcriptome profiling in single cells followed by functional validations revealed a change 

in the way how the transcriptional machinery interprets the genome in the absence of 

DNMT1. The loss of global DNA methylation without its maintenance machinery resulted 

in transcriptional changes mainly related to some gonad-specific genes and also a few 

genes encoding key players of a signaling transduction pathway. This finding inspired us 

to discover that the cells deficient for DNMT1 display a lower threshold for activating 

transcription once challenged with external stimuli. Our findings therefore provide new 

insights into how genome deficient for cytosine methylation becomes transcriptionally 
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amenable, thus capable to integrate and respond to new signals from the environment. 

Our work lays a foundation for future studies on how such process leads to 

developmental defects and disease states. 
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2. ZUSAMMENFASSUNG 
 

Methylgruppen an in die DNA eingebauten Cytosinbasen, die sogenannte DNA-

Methylierung, zieren die Genome einer großen Anzahl von Arten, von den Archaea bis 

zu den Menschen. In den letzten zwei Jahrzehnten hat eine Vielzahl von 

Forschungsarbeiten ergeben, dass diese kleine chemische Einheit eine tiefgreifende 

Auswirkung auf das Genexpressionsprogramm hat. Insbesondere beschränkt die DNA-

Methylierung die transkriptionell aktiven Regionen des Genoms und gewährleistet so 

eine genaue Interpretation der in der DNA-Sequenz kodierten regulatorischen 

Informationen. Diese grundlegende Rolle der Methylierung von DNA hilft dabei, die 

Zellidentität auf molekularer Ebene zu definieren und ermöglicht so, dass biologische 

komplexe Übergänge, wie z.B. von der Zygote zum Organismus, auf unidirektionaler und 

orchestrierter Art und Weise stattfinden können. Störungen im Muster der DNA-

Methylierung werden häufig bei pathologischen Prozessen wie der Tumorentstehung 

gefunden. 

Das Muster der DNA-Methylierung auf dem Genom einer Zelle wird während der 

Zellteilung durch eine Wartungsmaschinerie, die aus dem DNMT1-Enzym und damit 

verbundenen Proteinen bestehen, präzise kopiert. Die Abwesenheit von DNMT1 hat 

eine Vielzahl von schädlichen Auswirkungen, von einem Verlust der Tauglichkeit von in 

vitro kultivierten Zellen bis zur embryonalen Letalität und einem Verlust der Homöostase 

von somatischen Geweben. Frühere Studien wurden pleiotrope Effekte und sich 

gegenseitig ausschließende Phänotypen des DNMT1-Knockouts in Abhängigkeit vom 

Studiendesign beschrieben–von Apoptose und genomischer Instabilität bis hin zu einem 

beschleunigten Zellzyklus und der Transdifferenzierung von Zellen. Wie genau diese 

Phänotypen bei einer Reaktion auf einen DNMT1-Mangel auftreten, ist nicht bekannt. 

Wir setzten die neuesten Sequenzierungstechnologien ein und kombinierten diese mit 

molekularen und zellbiologischen Techniken, um die Ursachen für den Fitnessverlust 

von menschlichen embryonalen Stammzellen mit DNMT1-Mangel aufzuklären. Im 

Gegensatz zu bisherigen Studien haben wir keine DNA-Schädigung oder genomische 

Instabilität beobachtet. Unsere Arbeit zeigte, dass eine akute Reduktion von DNMT1 zu 

einem gleichmäßigen Abbau der DNA-Methylierung führt, den wir auf Einzelzellebene 

eingehend charakterisierten. Interessanterweise ergab unsere Auswertung des 

Transkriptoms einzelner Zellen, gefolgt von funktionellen Validierungen, dass sich die 

Art und Weise, wie die Transkriptionsmaschinerie das Genom interpretiert, in 

Abwesenheit von DNMT1 verändert. Der Verlust der globalen DNA-Methylierung ohne 

ihre Erhaltungsmaschinerie führte zu Veränderungen der Transkription einiger 
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gonadenspezifischer Gene und einigen wenigen Genen, die die Hauptakteure eines 

Signaltransduktionswegs kodieren. Dieser Befund führte zu unserer Entdeckung, dass 

die Zellen, denen DNMT1 fehlt, eine niedrigere Schwelle für die Aktivierung der 

Transkription aufweisen, sobald sie mit externen Stimuli in Kontakt gebracht werden. 

Unsere Ergebnisse liefern daher neue Erkenntnisse darüber, wie Genome, denen die 

Cytosinmethylierung fehlt, transkriptionszugänglich werden und somit in der Lage sind, 

neue Signale aus der Umwelt zu integrieren und auf diese zu reagieren. Unsere Arbeit 

bildet die Grundlage für zukünftige Studien darüber, wie ein solcher Prozess zu 

Entwicklungsstörungen und Krankheitszuständen führt. 
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3. INTRODUCTION 

 

Through the process of cell division and subsequent differentiation, a single cell can form 

all the tissues of a multicellular organism. This is possible, because all the cells share 

the same genome – a deoxyribonucleic acid (DNA) entity, which encodes genes. Intrinsic 

and extrinsic signals cooperate to shape the expression of genes resulting in 

morphologically and functionally diverse cells. Inability to secure the proper gene 

expression profile can be detrimental to a cell by changing its properties, restricting 

differentiation potential or altering its interaction with the surrounding environment. This 

simple principle lays a foundation for each process in biology such as development, 

tissue homeostasis or aging. How this complex process gene expression is executed 

and regulated has been one of the fundamental questions in biology. 

 

3.1 Regulation of gene expression 
 

The genes are expressed in the process of transcription, where a specialized protein 

machinery uses DNA as a template to produce molecules of messenger RNA (mRNA), 

which then serve to instruct the synthesis of proteins. The decision which DNA sequence 

is transcribed depends mainly on two factors: (1) the presence and engagement of 

transcription factors (TFs), instructed in cis by the so-called TF binding motifs encoded 

in the DNA and (2) an additional layer of information independent on the DNA sequence 

that influences the accessibility of the DNA. The latter is largely defined by chromatin – 

the assembly of proteins and DNA, which serves to compact the genetic information in 

the cell nucleus. The basic unit of chromatin is the nucleosome – a composite of DNA 

wound around an octamer of histone proteins. The N-terminal tails of histones are 

substrates for post-translational modification by enzymes, which in turn recruits or 

inhibits the binding of large chromatin-modifying complexes that control the accessibility 

of the chromatin and thus impact transcription1.  

Not only the nucleosomes, but also the nitrogenous bases of the DNA can be modified 

by enzymes in a manner that does not change the DNA base pairing. Such modification 

of may be instructive for DNA-binding proteins and, indirectly, regulate the transcriptional 

potential of underlying genes. Collectively, heritable modifications affecting gene 

expression without modifying the DNA sequence are called “epigenetic modifications”. 
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Among many possible modifications of the DNA, methylation of the 5th carbon in cytosine 

ring embedded in the DNA (referred thereafter as the DNA methylation) was identified in 

19252 and has been extensively studied for decades. This small modification is highly 

conserved, present in bacteria, through the earliest eukaryotes3, plants4, fungi5 and 

animals6. Interestingly, DNA methylation is absent in some model organisms, such as 

yeast, C. elegans or the fruit fly7. Why some organisms do not possess DNA methylation 

remains unknown.  

Technological advances over the last decades enabled both quantitative (mass 

spectrometry8) and qualitative (DNA sequencing9) studies of modification of nucleotides 

present in the DNA. Mass spectrometry experiments performed on mammalian genomic 

DNA identified methylation of about 1-2% cytosines in the genome of mammalian cells, 

which makes the cytosine methylation the predominant modification found in the 

mammalian DNA. The DNA methylation occurs in the context of CpG dinucleotides and, 

to a lesser extent, CpA dinucleotides10. The methyl group is deposited on cytosines in 

the DNA by specialized enzymes, called the DNA methyltransferases (DNMTs)11. 

 

3.2 The establishment of DNA methylation 
 

To date, three enzymes were identified to deposit methyl groups onto previously 

unmodified cytosines (de novo methylation), thus establishing a genome-wide DNA 

methylation pattern. DNA methyltransferase 3A and 3B (DNMT3A and DNMT3B)12 are 

expressed across various cell types, while the recently-identified DNMT3C13 is restricted 

to the male germline of mice and rats, and is not in the scope of this study. 

In order to secure the specificity and fidelity of their enzymatic activity, DNMTs are 

composed of multiple domains. 

DNA methyltransferase domain. Cytosine methylation is performed by a highly 

conserved methyltransferase (MTase) domain present at the C-terminus of all 

catalytically active DNMTs14. The catalytic activity of DNMT3A and B is enhanced by 

DNMT3L15 (an inactive DNA methyltransferase) in the germline. Two chromatin-

recognizing domains restrict the substrate specificity of de novo methyltransferases.  

ADD domain. The ATRX-DNMT3-DNMT3L (ADD) domain binds unmodified N-terminal 

tail of histone H3 and it is repelled by modification on lysine 4 (H3K4)16. Unless the 

binding to H3K4 occured, the ADD domain has autoinhibitory properties and hinders the 

MTase domain17.  
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PWWP domain. The Proline-Tryptophan-Tryptophan-Proline (PWWP) domain 

specifically binds the methylated histone H3 at the lysine 36 (H3K36me3), which is 

sufficient for DNMT3B recruitment18. As the methylation of H3K36 is a co-transcriptional 

process19, it is believed that the PWWP domain confers specificity for methylation of 

actively-transcribed genes by DNMT3A and B.  

 

3.3 Maintenance of DNA methylation 
 

Cytosines are methylated in the context of a CpG dinucleotide, the symmetry of which 

allows maintenance of this mark over DNA replication. Specifically, when nascent the 

strand is synthesized, by the virtue of DNA complementarity, a CpG dinucleotide on the 

parental strand will be paired with another CpG on the new strand. The existence of an 

enzyme that can recognize mCpG:CpG pairing (so-called “hemimethylated DNA”) and 

methylate the nascent strand CpG using the parental strand as a template had been 

predicted20 and, eventually, the responsible protein was identified. The DNA 

methyltransferase 1 (DNMT1) faithfully maintains the genome-wide DNA methylation 

over cell divisions21.  

DNMT1 is structurally different from the de novo DNMTs even though they all share the 

MTase domain. In addition, DNMT1 contains different N-terminal domains and also 

distinct interacting proteins that altogether dictate its specificity to hemimethylated DNA, 

as well as its stability22.  

BAH domains. In contrast to DNMT3A and 3B, the isolated MTase domain of DNMT1 

is catalytically inactive and its proper folding depends on two bromo-adjacent homology 

(BAH) domains, which adopt a dumbbell-like shape in close contact with the catalytic 

domain23. 

RFTS domain. Similarly to the ADD domain in DNMT3 enzymes, DNMT1 is auto-

inhibited by an replication foci targeting sequence (RFTS) domain24. In order to release 

the MTase domain, RFTS binds the ubiquitinated N-terminal tail of histone H3. This mark 

is bestowed upon histones by DNMT1 binding partner – Ubiquitin-like with PHD and Ring 

Finger Domains 1 (UHRF1)25,26.  

DNMT1-interacting protein, UHRF1. This E3 ubiquitin-protein ligase recognizes 

hemimethylated DNA through its SET- and RING- associated (SRA) domain25,26. 

Furthermore, its tandem TUDOR-PHD (TTD- PHD) domain allows for binding to 

methylated lysine 9 on histone H3 (H3K9me2 and me3)27, facilitating the recruitment of 
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DNMT1 to heterochromatin. In agreement with UHRF1 being required for DNMT1 

function, UHRF1 knockout phenocopies the DNMT1 knockout in vivo26.  

CxxC domain. Although DNMT1 possesses a CXXC domain, which is known to bind 

unmethylated CpG-rich DNA regions28, it is unclear whether this domain regulates the 

DNMT1 enzyme specificity29.  

PCNA-interacting domain. The faithful maintenance of the methylated cytosine pattern 

on both strands of DNA occurs during DNA replication in the S-phase of the cell cycle. 

Indeed, DNMT1 interacts with the DNA polymerase complex through Proliferating Cell 

Nuclear Antigen (PCNA), which ensures that the entire genome becomes a substrate for 

copying the methyl mark30.  

PTMs regulating DNMT1. Besides the protein-protein interactions dictating the spatial 

distribution of DNMT1, DNMT1 is also restricted temporally based on its abundance via 

post-translational modifications (PTMs). A number of PTMs on DNMT1 were described 

so far. For example, the ubiquitination of DNMT1 on lysine K142 occurs in late S-phase 

and marks the protein for proteasomal degradation in a cell-cycle dependent manner, so 

that it is not present outside of the S-phase31. In contrary, a phosphorylation of serine 

S143 stabilizes DNMT132. Another mode of the proteasomal degradation of DNMT1 may 

be proceeded and promoted by acetylation of lysine residues followed by the UHRF1-

mediated DNMT1 ubiquitination33. This mode of DNMT1 degradation is antagonized by 

a specific set of deacetylases and deubiquitinases34,35. 

Altogether, multiple enzymes and mechanisms act on DNMT1 to restrict its function in a 

spatial and temporal manner, and to secure the process of maintaining the pattern of 

DNA methylation. 

 

3.4 Genome-wide distribution of DNA methylation 
 

The distribution of DNA methylation across the genome is non-random. This is because 

the distribution of substrate cytosines in CpG dinucleotide is not uniform across the 

genome. Less than 10% of CpGs occur in the highly CpG-dense regions of high cytosine 

and guanine content termed the CpG islands (CGIs)36. This DNA sequence feature is 

enriched in the promoters of two thirds of genes and virtually all housekeeping genes37. 

In contrast, the “open sea” CpG dinucleotides (outside of the CGIs) are mostly 

methylated. Overall, out of about 28 million CpGs in the human genome, 60-80% are 

methylated in somatic cells38,39. In the following section, we will further discuss the 
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function of DNA methylation across the genomes and focus on its role in (1) controlling 

transcription and (2) as a source of mutagenesis. 

DNA methylation controls gene expression on sex chromosomes.  
Male and female genomes differ with respect to the so-called sex chromosomes. While 

females have two X chromosomes, males have an X and a Y chromosome. This poses 

a challenge for the female genome, which has to reduce the dose of the gene products 

present on the X chromosomes, so that it equals the transcriptional output of the X 

chromosome in the male genome. This so-called dosage compensation process occurs 

during early embryonic development via a transcriptional shutoff of one of the X 

chromosomes in the process termed X chromosome inactivation (XCI)40. The inactivated 

X becomes coated in the Xist lnc-RNA, which leads to transcriptional silencing, followed 

by chromatin remodeling41. The transcriptional silencing process requires the CGIs of 

the inactive X chromosome to become methylated by DNMT3B42.  

 

DNA methylation controls of gene expression on autosomes.  
Imprinted and germline-specific genes. A number of studies reported the function of 

DNA methylation in suppressing the expression of imprinted genes43. A selective DNA 

methylation of either the maternal or the paternal allele of certain genomic regions, 

known as the imprint control regions (ICR), leads to monoallelic transcription of 

neighboring genes44. The exact mechanism of imprinting is not known, however, loss of 

imprinting is associated with multiple human diseases45,46. In addition, high levels of DNA 

methylation are found on the promoters of germline-specific genes47. It is thought that 

this mark restricts the expression of such genes outside the gonads.  

Transposable elements. About a half of the human genome consists of mobile selfish 

genetic elements, termed transposable elements (TEs). Such genetic elements have 

been debated as a potential source of new genes and cis-regulatory elements therefore 

contributing to genetic variation48. However, an uncontrolled expression and 

transposition of these genetic elements leads to a random mutagenesis, thus potentially 

impairing cell fitness49. Therefore, multiple mechanisms are deployed in gonads and 

somatic cells to restrict the expression of these genetic elements.  

In gonads, the PIWI-interacting small RNAs (piRNAs) pathway acts to recognize 

transcriptionally active transposons and repress their transcription of transposons using 

chromatin modification, such as histone H3 methylation and DNA methylation50. Specific 

details of the piRNA pathway-induced TE silencing in mammals have not been yet 

elucidated.   
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While the piRNA pathway operates on evolutionary young TEs, another TE silencing 

pathway operates on evolutionary old TEs in the somatic cells. Here, the hundreds of 

Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs) evolved to recognize 

DNA sequence motifs of TEs51. ZFPs recruit KRAB-associated protein 1 (KAP1), which 

acts as a scaffold for assembling gene-silencing complexes operating on chromatin. This 

includes the chromatin-modifying NuRD complex, as well as SETDB1 histone 

methyltransferase and HP1 chromodomain protein52. Upon the removal of active histone 

marks by the NuRD, SETDB1 methylates histone 3 lysine 9, which is recognized by HP1, 

a protein which compacts the chromatin. Subsequently, the DNMTs are recruited to the 

site, which results in hypermethylation of transposable element sites53.  

Genomic repeats. DNA methylation is enriched in tandem repeat regions and is 

believed to act to restrict their latent transcriptional activity54. An example of that are 

pericentromeric repeats, which consist of thousands of tandemly repeated copies, 

stretching from either side of the centromere to ensure the proper centromeric 

assembly55. Uncontrolled transcription from these loci is thought to interfere with the 

centromere assembly54,56. 

Other genes. In contrast to germline-specific genes, imprints or repetitive elements, the 

relationship between DNA methylation and most coding gene expression is not linear. 

Most coding gene promoters are in fact unmethylated. Conversely, the DNA methylation 

of active gene bodies is mediated through H3K36me3-dependent recruitment of de novo 

methyltransferases and thus positively correlates with gene expression18. Roles in 

inhibiting cryptic, intragenic promoters and instructing splicing have both been proposed 

for DNA methylation at gene bodies57,58. Also, a recent study analyzing the DNMT3B-

depleted cells found aberrant transcription initiation sites in subtelomeric regions59. 

These findings demonstrate that although DNA methylation is often associated with 

transcriptionally inert genomic regions, it has also roles in regulating actively transcribed 

genes. 

 

3.5 How DNA methylation exerts its function 
 

Several modes of action have been proposed to date. DNA methylation is recognized 

specifically by methylated DNA binding domain (MBD) family of proteins60. As MBD 

proteins are known to interact with histone deacetylase and chromatin remodeling 

complexes61, the transcriptionally repressive character of DNA methylation could be 

achieved by these 5mC-specific readers. High redundancy has obscured the studies of 
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the role of MBD proteins in gene silencing, as single knockouts do not exhibit severe 

phenotypes62. 

Recently, multiple lines of research have focused on how DNA methylation impacts the 

ability of TF to bind its cognate sequence in the DNA. Exhaustive studies of TF specificity 

revealed that the binding of over 170 transcription factors was impaired by DNA 

methylation63. Presence of DNA methylation at distal regulatory elements could, in 

principle, impede transcriptional activity even of unmethylated CGI-promoter genes64. 

Strikingly, there are transcription factors with preference for methylated DNA adding a 

further layer of complexity to the interpretation of the roles of DNA methylation in 

transcriptional regulation63.  

 

3.6 Methylated cytosine as a mutagen 
 

The high levels of DNA methylation on the TEs and other repeats in the mammalian 

genome not only confer the transcriptional silencing, but could also introduce to a 

permanent alteration in the underlying DNA sequence through the process of 

deamination65. Unmodified cytosines undergo spontaneous deamination, which results 

in a conversion of the base to uracil. Such mutation is identified by the cell and corrected 

by base excision repair (BER)66. However, when methylcytosine is deaminated, it is 

converted to thymine, therefore introducing mutation. There is a dedicated enzyme called 

thymine DNA glycosylase (TDG) that corrects the aberrant G:T pairing67. However, if the 

mismatch was not recognized and repaired, it can be passed on to the daughter cell. 

Alteration in the DNA sequence of regulatory elements could, for example, impair 

transcription. 

Recent study found that DNA methyltransferases introduced the toxic lesion 3-

methylcytosine at a low rate both in vitro and in vivo. Comparative studies of nematode 

species that possess or lost DNMTs demonstrated that DNA methylation co-evolved with 

Alpha-Ketoglutarate Dependent Dioxygenase (ALKB2), an enzyme which repairs 

alkylation DNA damage68. Altogether, mutations are a byproduct of DNA methylation. 

 

3.7 The removal of DNA methylation 
 

There are two ways in which DNA methylation can be removed from its locus.  
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First, emerging directly from the mechanism of DNA methylation, is the lack of the 

maintenance for example by disrupting its machinery. Then, DNA methylation will 

become diluted over consecutive replication cycles (passive demethylation). 

Alternatively, in the process of active demethylation, specialized enzymes from the ten 

to eleven transferase (TET) family can catalyze the hydroxylation of methylcytosine to 5-

hydroxymethylcytosine (5hmC)69, 5-formylcytosine (5fC) and 5-carboxylcytosine 

(5caC)70. Not only are these modifications not recognized by DNMT1 and are not 

maintained, they also engage thymine DNA glycosylase (TDG), which excises the base 

and the abasic site is repaired by downstream DNA damage repair71. TET dioxygenases 

and de novo DNMTs were found to competitively bind and regulate the level of DNA 

methylation in some loci72. This active demethylation acts independently of DNA 

replication and has more specificity than ablating DNA methylation maintenance. It is 

therefore well-suited for dynamically regulating the levels of this modification. In fact, 

TETs are indispensable for mouse embryonic development73. 

 

3.8 DNA methylation is dynamic in the early development 
 

Although, the CpG methylation reaches 60-80% in the mammalian somatic cells, the 

levels of global DNA methylation fluctuate throughout the early embryonic development 

(FIG 1)74. During the early embryonic development, the DNA methylation pattern is 

erased from specialized cells (the egg and the sperm) in the so-called first wave of global 

DNA demethylation75. A subsequent re-establishment of DNA methylation is essential 

for the development of the newly forming organism76,77.  

Both passive demethylation (by excluding DNMT1 from the nucleus) and active 

demethylation mediated by TET oxidases contribute to the demethylation wave that 

result overall in about 20% of DNA methylation being retained. This includes the maternal 

and paternal imprints, as well as DNA methylation at the evolutionarily young and more 

potent transposable elements78. During embryo implantation, the genome becomes re-

methylated to reach the ~80% DNA methylation maintained throughout the somatic 

lineages of the organism with a few modifications thereafter79.  



20 
 

 

Figure 1: Global DNA methylation dynamics during development. Adapted from80. 

 

The second demethylation wave occurs during the development of primordial germ cells 

(PGCs) in a two-step manner. First, passive demethylation by the exclusion of UHRF1 

from the nucleus occurs. In the second step81, TET dioxygenases (specifically TET1 and 

TET2) remove DNA methylation mostly from imprinted loci, preparing the germline for 

establishing ICRs anew82,83. After the passive and active demethylation, only about 7% 

of CpGs in the primordial germ cells remain methylated84. The global DNA methylation 

is re-established in a sex-specific manner, with sperm having a significantly higher levels 

of methylation than oocytes85,86. While both waves of global DNA demethylation result in 

cell types with very low levels of methylcytosine, the state of hypomethylation occurs 

only transiently and even then the methylation of several loci is strictly maintained.  

 

3.9 The impact of loss of DNMT on embryonic development 
 

Function of DNA methylation in regulating gene expression, as well as its high 

conservation throughout the tree of life implies that it may play an important role at 

organismal level. Indeed, the previous genetic studies of the knockouts of DNA 

methyltransferases DNMT1 and DNMT3B demonstrated their early embryonic lethality, 

while the mice devoid of DNMT3A died shortly after birth76,77. Mouse embryos deficient 

for DNMT1 show a number of pathologies that emphasize the role of DNA methylation 

in a developing organism. In these DNMT1-deficient embryos resorption occurs around 

the neurulation stage76. Also, the knockout embryos were distinguished from littermates 

by their stunted growth at the E9 stage of development. The specimens fail to close the 

neural tube with an incomplete somitogenesis76. Likewise, the development of limb buds 

is retarded as well as allantois structures were abnormal in most of these embryos. 
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Moreover, histological analysis of several knockout embryo-derived tissues showed an 

increase in apoptosis. Lastly, the embryos do not produce blood and no blood vessels 

have been observed in the developing yolk sac76.  

In order to bypass the embryonic lethality of DNMT1KO embryos, mice containing one 

copy of a hypomorphic DNMT1 allele were engineered to produce only ~10% of DNMT1 

protein compared to wild type (WT) cells87. Although these mice were viable, a marked 

loss of DNA methylation was observed on repetitive elements. These mice developed 

fatal T cell lymphomas87. 

The pleiotropic KO phenotype and link between DNA hypomethylation and cancer upon 

DNMT1 depletion prompted multiple in vitro studies to identify the exact cause of 

DNMT1KO embryo lethality and identify which of the functions of DNA methylation 

specifically is imperative for the survival of an organism.  

 

3.10 DNMT1 deficiency in embryonic stem cells 
 

In order to model the early embryonic development, cells from the inner cell mass of the 

blastocyst are cultured in vitro, as the so-called embryonic stem cells (ESCs). These 

cells retain their ability to self-renew and differentiate into the three germ layers that form 

the embryo: ecto-, meso- and endoderm88. Previous efforts established both mouse and 

human embryonic stem cells in cultures89,90. Interestingly, both cultures differ by their 

morphology, growth conditions and also molecular features such as gene expression 

and DNA methylation level. Comparative studies between the two cell types 

characterized mouse ESCs (mESCs) as closely resembling the inner cell mass91. In 

contrast, the human ESCs (hESCs) display the molecular markers of the epiblast stage 

of development, which proceeds the blastocyst implantation92. Reflective of these 

developmental differences, hESCs have higher levels of DNA methylation than 

mESCs93.  

Genetic studies depleting the DNA methyltransferases in hESCs and mESCs were vastly 

different. While the knockout of de novo methyltransferases (DNMT3A and 3B) was 

tolerated in both cell types94,95, the removal of the maintenance methyltransferase 

(DNMT1) resulted in a loss of fitness in hESCs exclusively, although global DNA 

hypomethylation was observed in both mouse and human cells. The removal of Dnmt1 

alone or in combination of Dnmt3A and 3B led to a complete loss of DNA methylation in 

mESCs without affecting their self-renewal capability94. However, the differentiation of 
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Dnmt1-deficient mouse ESCs was impaired96. For example, in methylcellulose 

hematopoietic progenitor assay (used to assess the potential of ES cells to differentiate 

into hematopoietic lineage cells) had a low level of erythroid cell differentiation and no 

myeloid cells were formed96.  

 

3.11 DNMT1 deficiency in somatic stem cells 
 

Because (1) a direct differentiation of Dnmt1KO mESCs to cell type of interest is 

impossible and (2) knockout embryos do not develop to the point to form many of the 

tissues of interest, alternative means were used to obtain somatic cells deficient for 

Dnmt1.  

The commonly used Cre recombinase-based system for inducing gene knockout is 

bases on the ability of the CRE protein to guide recombination between small DNA 

sequences called loxP97. When two loxP sites are inserted into the genome in the same 

orientation, the recombination will result in the removal of the sequence between them, 

which is a potent way to engineer knockouts. Crosses between Dnmt1fl/fl (loxP flanked 

exons 4 and 5)98 mice and ones that expressed CRE in a tissue-specific manner (usually 

by placing it under the control of a tissue-specific gene promoter) enabled studies of 

Dnmt1KO cells in embryonic fibroblasts98, pancreas99, developing intestine100, 

myoblasts101, hematopoietic stem cells (HSCs)102, neural progenitor cells (NPCs)103 and 

both post-mitotic neurons and neuronal precursors104. The results of these tissue-specific 

knockouts of DNMT1 are confounding and often mutually exclusive, therefore only a few 

general, common themes emerge that will be described below. 

Cell cycle arrest followed by apoptosis. Mouse embryonic fibroblasts (MEFs) were 

reported to undergo cell cycle arrest and apoptosis in culture98. Furthermore, this loss of 

fitness phenotype was accompanied by gene expression deregulation and activation of 

transposable elements.  

Biased differentiation. In contrast, DNMT1 knockout in the more committed myoblasts 

(progenitors of muscle cells) in mice resulted in the preferential transdifferentiation of 

these somatic stem cells into osteocyte-like cells (progenitors of bone cells), both in vivo 

and in vitro. Trowbridge and colleagues examined the effect of the Dnmt1 ablation on 

hematopoiesis, by crossing the Dnmt1fl/fl and the Mx-Cre mice102. Interestingly, using 

the Mx-Cre system lead to a knockout in both HSCs and their bone marrow 

microenvironment, however, no defect in lineage composition or cellularity of the bone 
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marrow was observed. Hematopoietic stem cell knockout of Dnmt1 followed by 

transplantation into irradiated wild-type host (normal microenvironment) resulted in a 

preferential differentiation down the lymphoid lineage instead of myeloid lineage. At the 

same time, the overall number of HSCs was reduced upon transplantation. This event 

was not caused by apoptosis, but rather an increased rate of cell division and terminal 

differentiation. Of note, transcriptional analysis reported the expression of the same 

transposable elements as those observed in MEFs98,102.  

An analogous situation was observed in neural progenitor cells, which also had a biased 

differentiation potential and preferentially formed glial, rather than neuronal cells103. A 

more detailed analysis of Dnmt1 knockout in the neural lineage was performed by Fan 

and colleagues104. In agreement with the role of Dnmt1 as a maintenance 

methyltransferase acting during DNA replication, the depletion of this enzyme in the 

postmitotic neurons did not have a detrimental effect either in vitro or in vivo. Using the 

Nestin-Cre system to specifically knock out Dnmt1 in the brain resulted in either the 

embryonic lethality or the postnatal death, depending on how efficient the Dnmt11 

knockout was performing (95% versus 30%, respectively)104. The differentiated neurons 

did not display apoptotic markers, however, in the mice that survived due to the Dnmt1-

KO mosaicism (Cre recombinase worked in only 30% of cells), the Dnmt1-deficient 

neurons were eliminated from the postnatal brain within 3 weeks of birth104.  

Failure in differentiation. In contrast to the reports from HSC and NPC-specific 

knockouts, pancreatic progenitor cells fail to differentiate, rather than differentiating 

precociously. The p53-dependent apoptosis was attributed to the loss of progenitors and 

haploinsufficiency of trp53 rescued the ability of the cells to form an organ, albeit of a 

smaller size than in the wild-type littermates99. Both premature differentiation and 

apoptosis were the cause of reduced proliferation of the perinatal intestinal epithelium 

and consequently the death of most pups before weaning. The surviving crypt cells 

exhibited differences in the transcriptional program, notably upregulating DNA damage 

response and cell cycle checkpoint genes100.  

DNMT1 knockdown approach was in turn used to study the effect of maintenance 

methyltransferase depletion on the keratinocyte proliferation105. By expressing a short 

hairpin (sh)RNA with the sequence complementary to the DNMT1 mRNA, RNA 

interference (RNAi) machinery is directed to the targeted mRNA for its subsequent 

degradation that eventually leads to either partial or complete absence of a protein 

product. This strategy was employed to deplete DNMT1 in human keratinocytes (skin 

progenitors), followed by engraftment into immunodeficient mice105. Loss of the 
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maintenance methyltransferase resulted in premature differentiation of these progenitors 

and eventual tissue loss, similarly to what was reported for intestinal cells.  

 

3.12 DNMT1 deficiency in cancer cells 
 

Cancer cells divide rapidly and thus were utilized as a model to study the consequences 

of DNMT1 depletion. With the RNAi-based methods, previous studies generated cancer 

cell lines106,107 displaying higher or lower reduction of DNMT1 protein. These 

knockdowns were reported to trigger replication stress checkpoint106, or mismatch repair 

(MMR) deficiency-like phenotype107. A complete knockout of DNMT1 in HCT116 colon 

cancer cell line resulted in G2/M phase arrest108.  

Overall, these results present a complex repertoire of in vivo phenotypes that have been 

associated with the loss of DNMT1. Molecular mechanism of how a cell responds to and 

tolerates the deficiency in DNA methylation would likely dissect the underlying causes of 

such a broad range of observations in the literature. 
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4. AIMS OF THE STUDY 
 

The aim of this study is to consolidate our understanding of how loss-of-function of the 

DNA maintenance methyltransferase affects cell homeostasis. Through a combination 

of next generation sequencing and molecular biology methods, we aim to characterize 

the general mechanisms of response to the absence of DNMT1. We concentrate on 

verifying phenotypes reported in the previous studies of DNMT1KO cell lines – both 

cancer and non-transformed. 

Specifically, we aim to address the following: 

(1) Characterize how DNMT1-deficiency affects cell growth, by assessing the 

number of growing cells, the cell cycle length and potential checkpoints, as well 

as the number of apoptotic cells;  

 

(2) Describe the effect of DNMT1-deficiency on genomic stability, by investigating 

DNA damage markers, expression of transposable elements and possible 

defects occurring during mitosis; 

 

(3) Investigate the effects of DNMT1 depletion on the level of DNA methylation and 

its distribution across the genome and how it affects the transcriptional output of 

the globally hypomethylated cells. 
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5. MATERIALS AND METHODS 
 

Cell culture 
Human Embryonic Stem Cells HUES64109 or Human Induced Pluripotent Stem Cells 

ZIP13K2110 were cultured in a 5% CO2, 37°C incubator. The medium consisted of 

mTeSR1 (STEMCELL Technologies), with a 1:100 supplementation of Revitacell 

(Thermo scientific) during passaging and the first 24h after plating. The cells were plated 

on Geltrex (Thermo Scientific) basement membrane matrix-coated plates. The Geltrex 

stock was diluted 1/10 in Dulbecco Phosphate Buffered Saline (DPBS; Thermo 

Scientific) and the plates were stored in the incubator for 1h for coating.  

The media was changed daily and the cultures were passaged once every 4 days. For 

passaging, the cells were washed once with DPBS, followed by 3-5minute incubation in 

0.5nM EDTA in DPBS solution in the incubator. Cells were collected and washed once 

with mTeSR1 media and re-plated in small clumps at a 1:8 dilution. For freezing, cells 

were collected in the same way, re-suspended in mTeSR1, 1:100 Revitacell, 10% 

dimethyl sulfoxide (DMSO; Sigma-Aldrich), transferred to cryo vials (Thermo scientific) 

and stored overnight at -80°C in a Mr. Frosty (Thermo) ispopropanol freezing box. The 

vials were stored in liquid nitrogen tank. 

 

Cell counting 
For cell count experiments, the cells were collected using Accutase (STEMCELL 

Technologies), according to manufacturer’s instructions. Single cells were plated at 

40 000/well in a 12-well plate in triplicates and collected daily with the same method and 

for subsequent passage, another 40 000cells/well in a 12well plate were seeded. For 

counting, 10µL of cell suspension was mixed with Countess Trypan Blue Stain (0.4%, 

Thermo Scientific), loaded onto countess slides (Thermo Scientific) and counted on a 

Countess Automated Cell counter. The number of living cells was noted. 

The number of cells were plotted as “surviving cells with respect to control”, where at 

each time point the percentage of cells was calculated according to the formula: 

 𝑠𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔 𝑐𝑒𝑙𝑙𝑠(𝑦) =
#𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛×100%

#𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
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Western Blot 
Nuclear protein extraction protocol was performed on live cells, briefly, we rinsed a 

confluent 10cm plate 2x with PBS and scraped into a 15mL Falcon. Spun @1200rpm for 

3min. Re-suspended in 7mL ice cold buffer A (+fresh PI and DTT). Spun @1500rpm for 

5min. Re-suspended the pellet in 500µL ice cold buffer C (+fresh PI and DTT). Spun 

@3000g for 5min. For WB re-suspended in 500µL RIPA (+PI and DTT, also DNase I and 

RNase A). Vortex 20min @4°C. Spun @max speed for 15min, moved the supernatant 

to a new tube and discarded the pellet. Added 83.3uL 4x LDS sample buffer (Thermo) 

to the supernatant. Denatured the samples @70°C for 10min and stored them at -20 to 

-80°C, or used immediately. If frozen, we first thawed the sample and heated it up to 

40°C. Vortexed briefly before running on a NuPAGE gel (Thermo). For immunoblotting, 

we resolved 7.5 – 15uL sample in the XCell SureLock Mini-Cell (Thermo) using 4-12% 

BisTris gels (Thermo) and MOPS buffer (Thermo) according to the manufacturer’s 

instructions. The protein was then transferred into nitrocellulose membrane using the 

iBlot 2 blotting system with pre-made transfer sandwiches (Thermo). The membrane was 

then blocked in 5% blotting grade blocker (Biorad) w/v solution in 1x Tris Buffered Saline 

– Tween-20 (TBS-T, Thermo). The same solution was used for staining with antibodies 

(overnight at 4°C): anti-DNMT1 (Chromotek E8; 1:500), anti-tubulin (Hybridoma bank 

12G10; 1:10 000). The blots were washed 5 times with TBS-T and then incubated with 

secondary antibodies: anti-Rat Horse-Raddish Peroxidase (HRP; Thermo 1:10 000) and 

anti-mouse HRP (Thermo; 1:10 000). The blots were visualized using SuperSignal kit as 

per manufacturer’s instructions (BioRad), followed by imaging in BioRad ChemiDoc on 

automatic settings. HiMark Protein standard (Thermo) was used to estimate the height 

of the bands.

Buffers used consisted of: 

 

Buffer A 

25mM HEPES pH 7.6 

5mM MgCl2 

25mM KCl 

0.05mM EDTA 

10% Glycerol 

0.1% IGEPAL 

 

 

Buffer C 

10mM HEPES pH 7.6 

3mM MgCl2 

100mM KCl 

0.01mM EDTA 

10% Glycerol 
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Table 1. Nuclear extraction buffer composition. 

The ready buffers were filtered through 0.2µm filter and stored at 4°C 

Added to all buffers right before use: 1xRoche PI (25x stock in dH2O; Sigma), 1mM DTT 

(1M stock in dH2O; Sigma) and optionally 1mM PMSF (100mM stock in isopropanol; 

Sigma). Added to RIPA buffer right before use: 1:1000 DNaseI (NEB, optional), 1uL 

RNase A (Qiagen). 

 

Genomic DNA extraction 
Genomic DNA was extracted using the Qiagen blood and tissue sample kit (Qiagen), 

according to manufacturer’s instructions. 

 

5mC ELISA 
Purified genomic DNA was diluted to 20ng/µL and 100µL of each sample was used per 

replicate in 5mC ELISA (Zymo). The procedure was performed according to 

manufacturer’s instructions, with one modification: the DNA was denatured for 20 

minutes, instead of 5 minutes. The plates were resolved in CyTation5 Plate Reader 

(Biotek). 

 

EdU stain 
The cells were stained using the Click-iT EdU Stain Kit, (protocol for attached cells; 

Thermo) according to manufacturer’s instructions, with modifications: the growing cells 

were incubated with half of the recommended EdU dose dissolved in basal DMEM 

(Gibco) medium for 30 minutes, followed by immediate fixation with 4% 

Paraformaldehyde (PFA; Thermo) in PBS. Stained cells were imaged using Cell 

 

RIPA 

50mM Tris pH 8 

200mM NaCl 

5% Glycerol 

0.5% Triton X-100 

0.1% Sodium Deoxycholate 
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Discoverer (Zeiss) microscope and the number of EdU positive and total cells were 

automatically counted using ZEN software (Zeiss). 

 

TUNEL stain 
The cells were stained using the In Situ Cell Death Detection Kit, Fluorescein (Sigma), 

according to manufacturer’s instructions. Stained cells were imaged using Cell 

Discoverer (Zeiss) microscope and the number of TUNEL-positive and total cells were 

automatically counted using ZEN software (Zeiss). 

 

CFSE stain 
The cells were detached using Accutase (described above) and incubated for 30 minutes 

with the CellTrace CFSE reagent dissolved in basal DMEM medium in the incubator, 

according to manufacturer’s instructions. The cells were then washed and plated 

normally, followed by detachment using Accutase and fixation with RNAprotect Cell 

Reagent (Qiagen). The cells were stored in the fridge until all the samples were collected. 

The cells were then stained with Hoechst 33342. The green and blue fluorescent cells 

were gated for and counted. The absolute fluorescence of CFSE was plotted using 

FlowJo software (FlowJo LLC).  

 

Hoechst 33342/DAPI stain  
Either DAPI (1mg/mL; Thermo) or Hoechst solution (10mg/mL; Thermo) were dissolved 

at 1:10 000 in PBS. A 10-minute incubation on a rotating platform in the darkness was 

followed by FACS analysis on FACS Aria II (BD Biosciences); or a single DPBS wash 

and fluorescence microscopy. 

 

Immunofluorescence staining 
The cells were imaged on the plates they were grown in. For confocal microscopy, we 

used ibidi polymer coated 60mm thin bottom dishes (Ibidi). The cells were fixed with 4% 

PFA, followed by 2 washes in DPBS. The cells were then permeabilized using 0.5% 

Triton X in PBS solution for 10 minutes, followed by blocking in a 5% Bovine Serum 

Albumin (BSA; Sigma), 0.2% Triton X in PBS for 30 minutes on a rotating platform, at 

room temperature. The same blocking solution was used to immunostain the cells with 

the following antibodies overnight, at 4°C:  
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Antigen Concentration Company Catalog number 

Mre11 1:500 NOVUS NB100-1425s 

BLM 1:250 Santa Cruz 365753 

53BP1 1:250 Bethyl A300-272A 

T 1:500 R&D AF2085 

SOX17 1:500 R&D MAB1924 

Nestin 1:1000 R&D MAB1259 

tubulin 1:500 Sigma T9026 

 Table 2. Primary antibodies used in immunofluorescence microscopy. 

The samples were washed using 5% Bovine Serum Albumin (BSA; Sigma), 0.2% Triton 

X in PBS, 3 times each. The same buffer was used to incubate the cells with secondary 

antibodies: 

Antigen Concentration Company 

Mouse IgG; Alexa488 
conjugated 

1:1000 Thermo 

Rabbit IgG; Alexa488 
conjugated 

1:1000 Thermo 

Goat IgG; Alexa488 
conjugated 

1:1000 Thermo 

Goat IgG; Alexa594 
conjugated 

1:1000 Jackson 
ImmunoResearch 

Table 3. Secondary antibodies used in the study. 

After 3 additional washed, the cells were stained with DAPI (described above) and 

imaged using CellDiscoverer microscope (Zeiss) for fluorescence microscopy or 

LSM800 with Airyscan (Zeiss) for confocal microscopy. Representative images were 

pseudocolored, merged and cropped using ImageJ (NIH). 

Regular brightfield images were obtained using Nikon Eclipse Ts2 benchtop microscope 

(Nikon). 

 

Karyotyping 
G-band karyotyping was performed by Cell Line Genetics (CLG). 20 cells per line were 

imaged and representative karyotypes were visualized in a karyogram. 
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Cloning 
Plasmids were constructed by restriction enzyme digestion of a donor plasmid. 10nM 

each forward and reverse primers were used for PCR-amplifying desired DNA fragments 

(Phusion High-fidelity Master Mix GC, NEB), purifying both DNA fragments in Tris-

Acetate-EDTA (TAE) agarose gel. Bands of the desired size were excised from the gel 

and purified using Qiagen Gel extraction kit (Qiagen). The fragments were recombined 

together using Infusion cloning kit (Takara) according to manufacturer’s instructions. 

Stellar competent bacteria (Takara) were used for plasmid transformation, according to 

manufacturer’s instructions. In order to confirm correct insertion of the fragments, the 

transformed bacteria were plated on agarose plates consisting of LB and Ampicillin 

(100ng/mL). Resistant colonies were incubated in LB broth overnight on a bacteria 

shaker at 37°C and subsequently purified using Qiagen Miniprep kit. Purified 

recombinant plasmids were Sanger-sequenced by Eurofins genomics. The correct 

sequence of the plasmid was verified using Benchling. 

For transfection-quality purification, 50mL cultures of bacteria were grown overnight on 

a bacterial shaker at 37°C and purified using the Midiprep kit (Qiagen) according to 

manufacturer’s instructions.  

The knockout lines presented in this study were performed using CRISPR/Cas9 

technology111. Guide RNAs: lentiCRISPRv2 was a gift from Feng Zhang (Addgene 

plasmid # 52961 ; http://n2t.net/addgene:52961 ; RRID:Addgene_52961)112. We 

modified the plasmid by substituting Puromycin resistance gene with a Blasticidin 

resistance gene (BLA) sequence ordered from IDT.  

The design of guide RNAs used in this study was performed in Benchling 

(www.benchling.com) and the cloning was performed according to the instructions from 

the GeCKO protocol (http://genome-engineering.org/gecko/wp-

content/uploads/2013/12/lentiCRISPRv2-and-lentiGuide-oligo-cloning-protocol.pdf)112.  

Target gRNA sequence 

TP53 GGATGATTTGATGCTGTCCC 

LEFTY1 CTGTGGCTCTGCTGGGCACTC 

Table 4. Guide RNAs used in this study. 

The pLV-TRE3G-UCOE-GFP-WPRE plasmid was a kind gift from the Lindquist lab. 

NODAL or LEFTY1 cDNA sequences were ordered from IDT and inserted into the 

plasmid downstream of the promoter site as described above. 

 

http://www.benchling.com/
http://genome-engineering.org/gecko/wp-content/uploads/2013/12/lentiCRISPRv2-and-lentiGuide-oligo-cloning-protocol.pdf
http://genome-engineering.org/gecko/wp-content/uploads/2013/12/lentiCRISPRv2-and-lentiGuide-oligo-cloning-protocol.pdf
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Viral transduction 
HEK 293T cells were grown in a Dulbecco's Modified Eagle Medium/Nutrient Mixture F-

12 (DMEM/F12) basal medium (Gibco), supplemented with 10% Fetal Bovine Serum 

(FBS; Gibco), 1x Penicillin-Streptomycin (STEMCELL Technologies) and 1x GlutaMax 

(Thermo). To make lentiviruses, these HEK cells were plated at 3.2x106 cells in a 10cm 

dish, and next day transfected with 30µL Mirus LT1 reagent (Mirus), 5µg donor plasmid, 

3.75µg psPAX2 plasmid (psPAX2 was a gift from Didier Trono (Addgene plasmid # 

12260 ; http://n2t.net/addgene:12260 ; RRID:Addgene_12260), 1.5µg VSV-G (pCMV-

VSV-G was a gift from Bob Weinberg (Addgene plasmid # 8454 ; 

http://n2t.net/addgene:8454 ; RRID:Addgene_8454) in 1mL DMEM basal medium.  

The next day the cells were fed 20% FBS medium (otherwise the same recipe as above) 

and incubated for 48-72h. The medium from the cells was harvested, centrifuged to get 

rid of the pellet of dead cells and mixed with LentiX concentrator (Takara) in a 3:1 ratio. 

The mix was incubated at 4°C overnight and centrifuged for 45min at 1500g in cooled 

centrifuge. The pellet containing lentivirus was re-suspended in 2mL DMEM, aliquoted 

and either used immediately or stored at -80°C. 

For transduction, hESCs were seeded in 6well plates at a regular density. On the 

following day they were incubated with 1mL mTeSR1, followed by the addition of 5µg/mL 

Polybrene (Santa Cruz Biotechnology), between 5 and 25µL concentrated virus re-

suspended in another 1mL of mTeSR1. After 24h of incubation with the virus mix, the 

media was changed to regular mTeSR and, following 2-4days of recovery, the cells were 

selected for virus integration. 

 

Antibiotic selection 
Cells recovered after viral transduction were plated sparsely on 10cm dishes in the 

presence of 4µg/mL Blasticidin. The drug was supplied until a control plate of WT cells 

treated in the same way has perished (usually within 4 days). Surviving colonies were 

grown for 10 days and manually scraped off and moved to a well in a 96well plate with a 

P200 pipette. The content of each well was then divided into two 96-well plates and 

grown until confluency. One plate was expanded and maintained, while the other served 

for genotyping. 

 

Genotyping 
Confluent cells were lysed using Direct PCR Lysis Reagent (Viagen) according to 

manufacturer’s instructions. 1µL of lysate was used for a genotyping PCR ran with the 
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Phusion GC master mix (NEB), the PCR products were resolved on a 1% TAE agarose 

gel, excised and purified using Qiagen gel extraction kit and cloned into TOPO vector 

using a Blunt-end TOPO kit (Thermo), according to manufacturer’s instructions. The 

bacteria were selected and genotyped as described above.  

Genotyping primer Sequence 

TP53_forward CGTCGAGCCCCCTCTGAGTCAGG 

TP53_reverse GGCCAGGCATTGAAGTCTCATGGAAGC 

Lefty1_forward AGGCTATAAAGCTGCCCAGGCTTG 

Lefty1_reverse CTTAGACCGTGGCCCTCACTCAGC 

Table 5. Genotyping primers used in this study. 

 

RNA extraction 
One well of a 6well plate was used per extraction. The cells were lysed in 1mL TRIzol 

reagent (Thermo), each milliliter of Trizol was mixed with 200µL of Chloroform (Sigma) 

and transferred into a heavy phase lock tube (VWR). After 15 seconds shaking, the 

mixture was incubated for 5min at room temperature to allow phase separation. The 

tubes were centrifuged at 12000g 4°C centrifuge for 15 minutes. The top aqueous phase 

was mixed with 1mL isopropanol, incubated at -20°C for an hour and centrifuged at 

maximum speed in a 4°C centrifuge for 30min. The supernatant was discarded and the 

pellet was washed once with 75% ethanol, followed by a wash with pure ethanol. After 

air-drying the pellet, the RNA was re-suspended in pure water (RNase free) and the 

concentration was measured using Nanodrop (Thermo).  

 

Reverse transcription 
1µg RNA was first subjected to a DNaseI digest using amplification grade DNaseI 

(Invitrogen), according to the manufacturer’s instructions. The reaction was then used 

directly for first strand synthesis using RevertAid kit (Thermo), according to the 

manufacturer’s instructions. Random hexamers were used for non-exon spanning 

primers (such as repeats), or oligo dT for exon-spanning primers (coding genes). The 

lack of DNA product was confirmed with a –RT (no reverse transcriptase enzyme) 

negative control reaction for each sample. 
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qRT-PCR 
1µL RT reaction was mixed with 10nM each forward and reverse primer, 2x SYBR Green 

Master Mix (Thermo) and water, up to a total volume of 11µL. The reactions were 

pipetted into 384-well qPCR plates and ran on a ViiA 7 System machine (Thermo), using 

default settings. The results were analyzed in Excel normalized to the internal 

housekeeping gene control 𝑥 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 
2∧(−𝐶𝑡 𝑠𝑎𝑚𝑝𝑙𝑒)

2∧(−𝐶𝑡 ℎ𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑖𝑛𝑔)
 for n=2 technical 

replicates. 

PRIMER 

TARGET 

SEQUENCE REFERENCE 

GAPDH GCACCGTCAAGGCTGAGAAC 113 

 AGGGATCTCGCTCCTGGAA  

NODAL agacatcatccgcagccta 114 

 caaaagcaaacgtccagttct  

LEFTY1 ctgcacaccctggacctt 114 

 atcccctgcaggtcaatgta 

 

 

LEFTY2 cctggacctcagggactatg 114 

 atcccctgcaggtcaatgta  

CER1 gccatgaagtacattgggaga 114 

 cacagccttcgtgggttatag  

NEUROG2 GAC ATT CCC GGA CAC ACA C 115 

 TAC CTC CTC TTC CTC CTT CA  

NF1B GACATGAACTCGGGGGTCAATCTT 
 

113 

 GTAGTCGGAGAAGACATATCTTGATC  

SOX9 CGAGCACTCGGGGCAATCC 
 

113 

 CTGCCCCCCTCTGGCAAG  

GFAP GGTTGAGAGGGACAATCTGGCACA 116 

 CTATAGGCAGCCAGGTTGTTCTCGG  

18S RRNA GTAACCCGTTGAACCCCATT 117 

 CCATCCAATCGGTAGTAGCG  

ALPHA 

SATELLITE 

AAGGTCAATGGCAGAAAAGAA 118 

 CAACGAAGGCCACAAGATGTC  

L1 GCTGGATATGAAATTCTGGGTTGA 118 

 AGGAAATACAGAGAACGCCACAA  

HERVK AAATAAGACCCAACCGCCAGTAGC 117 



35 
 

 GAATTGCCATGCCTCAGTATCTCC  

Table 6. qRT-PCR primers used in this study. 

 

ScoreCard 
The Scorecard (Thermo) experiment was performed as per manufacturer’s instructions, 

with modifications in the Reverse Transcription stage. We used 1.5µg RNA reverse-

transcribed according to the RevertAid kit (Thermo) instructions, in double the 

recommended volume. The reactions were then diluted with miliQ water and processed 

according to the ScoreCard manual. The score was calculated by the SCORE web 

browser app (Thermo).  

 

NPC differentiation 
80% confluent hESCs were detached from the plate using Dispase (Thermo) for about 

20min. The colonies were washed in DMEM/F12 basal medium and carefully transferred 

to a low attachment 6-well plate (Corning) and cultured in media containing N2 

supplement (Thermo), B-27-RA (no retinoic acid) supplement (Thermo) in DMEM/F12 

medium, supplemented freshly with 100nM LDN193189 (Sigma) and 10µM SB431542. 

Cells were cultured in suspension to form Embryoid Bodies and their media was carefully 

changed every second day. After 7 days, the EBs were plated on regular culture plates 

coated for 3h with matrix consisting of Poly-ornithine (20µg/mL; Sigma) and Laminin 

(5µg/mL; Thermo) and cultured in the same medium for another 7-10 days until neural 

rosettes formed. These were collected with neural rosette medium (STEMCELL 

Technologies). The rosettes were seeded again on Polyornithine-Laminin coated plates 

in NPC medium: the same DMEM/F12; N2; B27-RA base, supplemented with 20ng/mL 

basal FGF (STEMCELL) and 1µg/mL laminin. After a week, the cells differentiated into 

NPCs and were grown in the NPC medium on 83.3µg/mL Matrigel (Corning) re-

suspended in ice cold DMEM/F12 matrix (coating 1h, double washing before re-plating 

cells). The NPCs were passaged every week at a 1:3 ratio.  

 

Small molecules, antibiotics, cytokines and morphogens 
The cells were incubated with the following chemicals, which were diluted as per 

manufacturer’s instructions to make stock solutions stored at -20 to -80°C (the dose and 

the treatment length for each experiment are indicated in the Methods and Results 

sections): 
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Name Company 

Doxycycline Sigma 

dTAG-13 Torcis 

5-AzaC Sigma 

Camptothecin Selleckchem 

Zeocin Thermo 

Blasticidin Thermo 

Doxorubicin Sigma 

SB431542 STEMCELL 

LEFTYB Millipore 

NODAL R&D 

WNT3A R&D 

LIF (mouse) Thermo 

BMP4 Sigma 

LDN193189 Sigma 

bFGF STEMCELL 

Table 7. Small molecules, morphogens and cytokins used in the study. 

 

 

Figures 
Figures were generated and assembled using GraphPad Prism 7 (Graphpad), Adobe 

Illustrator 2017 (Adobe) and ImageJ (NIH). The tables were generated in Excel 

(Microsoft). 

 

Dual protocol scRNAseq+RRBS 
The protocol was designed by Hongcang Gu, Andreas Gnirke and Arman Mohammad, 

who also prepared the libraries. It is based on G&Tseq with minor modifications119. Full 

protocol can be found in supplementary material, along with expression and methylation 

data. Briefly: 

The cells were detached from the plate using accutase, followed by fixation in RNA 

Protect buffer (Qiagen). The cells were then stored in the fridge and FACS sorted 

together into 96well plates containing 15 μl of RLT plus buffer (Qiagen) and 1 U μl−1 of 

SUPERase·In RNase inhibitor (Thermo). After sorting and freezing β-mercaptoethanol 

(Sigma), was added to the sample and the suspension was transferred into 96-well DNA 
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LoBind plate (Eppendorf). M-280 streptavidin beads conjugated to oligo dT reverse 

transcription primer were added to each sample, followed by incubation at 72 °C for 3 min 

and at room temperature for 25 min on a rotating platform. The mRNA was separated by 

a DynaMag-96 Side Magnet (Thermo) and to reverse transcribed as described in the 

Smart-seq2 protocol119. The genomic DNA was stored in a fresh LoBind plate. Following 

reverse transcription, the cDNA was amplified and an RNA-seq library was generated as 

described before120. The libraries were pooled and sequenced by an Illumina Hiseq2500 

sequencer. 

Agencourt AMPure beads (Beckman Coulter) were used to purify genomic DNA, which 

was eluted with 15 μl of low Tris–EDTA buffer. For the RRBS library generation, we used 

the CutSmart buffer (NEB) for the enzymatic reactions: MspI digestion, end-repair/A-

tailing and DNA ligation using T4 DNA ligase (NEB), without changing the solution 

between steps to avoid sample loss.  

The genomic DNA was set up for an 80min digestion reaction using 16U MspI (New 

England Biolabs) at 37 °C, followed by incubation at 65 °C for 15 min to inactivate the 

enzyme. The DNA ends were repaired and A-tailed using Klenow fragment (3’ to 5’ 

exonuclease) (New England Biolabs) reaction, supplemented with 0.3 mM dATP and 

0.03 mM each dCTP and dGTP at 30 °C for 25 min, followed by incubation at 37 °C for 

25 min, and heat inactivation at 70 °C for 10 min.  

The A-tailed DNA fragments were then ligated with 7nM indexed adapters overnight at 

16 °C, using T4 DNA ligase, followed by heat inactivation at 65 °C for 15 min. The 

libraries were pooled, and the adaptor dimers were removed using AMPure beads. The 

tagged DNA was eluted in 30μl of low Tris-EDTA buffer.  

Qiagen EpiTect Fast Bisulfite Conversion Kit was used according to manufacturer’s 

instructions (protocol marked with *), with a minor modification. We extended the bisulfite 

conversion time to 2 cycles of 20 min each, maximize the bisulfite conversion rates to 

over 99%. The bisulfite-converted DNA fragments were PCR amplified and the library 

DNA was purified using AMPure beads. The RRBS libraries were sequenced for 2 × 100 

cycles (paired-end).  
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Quality control 
The QC and read alignment were performed by Ayush Raman, Caleb Laureau and 

Martin Aryee. The scRNAseq data was processed as described before120. The scRRBS 

data was processed using a cloud-based computational pipeline121. Briefly, the quality of 

raw reads was assessed using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc ; Andrews, 2010). The 

average per-base quality score across the sequencing samples was satisfactory to pass 

the QC. Trim galore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) 

was used to trim low-quality bases from the ends of the reads. The reads were aligned 

to the human hg38 reference genome using Bismark2122. Duplicated reads were 

removed, and subsequently the number of covered CpGs was calculated.  

The estimate of methylation from the ratio between methylated and unmethylated alleles 

calculated across all the CpGs in the genome was summarized in a so-called ß-matrix. 

In this method, a ß-value per CpG is between 0 (unmethylated) and 1 (fully methylated).  

 

The data set was then tested for biases using scmeth package in R environment121. Low-

quality samples were identified based on alignment and discarded, average methylation 

per base across the reads (M-bias, Citation: Vermunt et al. Cell Reports 2014) was 

estimated, followed by calculating CpG and mean methylation across samples. Sufficient 

sequencing depth was ensured by plotting the downsampling saturation curve (number 

of CpGs as a function of read number), indicating that the probability of sequencing a 

new CpG plateaued with the number of reads we covered. 

 

The replicates of the cells from the same time point (i.e., same day) were pooled together 

by taking the mean of the ß-values. Next, the genome was divided into 1-kb non-

overlapping tiles and averaged ß-value per tile was calculated. All the tiles with no signal 

(i.e., ß-value and coverage equal to 0) were removed.  

 

scRRBS data was analysed by Dr Jocelyn Charlton using R studio and Bioconductor 

packages123, while the scRNAseq and combined analyses were performed by Dr Sudhir 

Thakurela using R studio and Seurat package124. The DEG analysis, GO term 

analysis125,126, gene pools overlap analysis (using Venny: 

https://bioinfogp.cnb.csic.es/tools/venny/) and plotting the expression of particular genes 

(using Graphpad Prism), as well as data interpretation was performed by myself. 

 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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Bulk RNA-seq 
The libraries were prepared by the MPI-MG Berlin sequencing facility, briefly: RNA 

libraries were prepared using the TrueSeq RNA Sample Prep v2 HS Protocol (Illumina), 

followed by 50 bp paired-end sequencing on the NextSeq500 Sequencing System 

(Illumina). The QC and alignment were performed by Dr Jocelyn Charlton. FastQ raw 

reads were trimmed using Cutadapt127. The reads were then aligned using STAR 

aligner128 (to the hg19 human genome assembly) and Stringtie v1.3129 was used for 

transcript assembly.  
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6. RESULTS 
 

6.1 Genetic approach to study the consequences of the disruption of 

the maintenance of DNA methylation. 
 

We set out to study DNMT1 using a genetic approach considering the following criteria: 

1. As DNMT1 acts alongside replication, its loss-of-function phenotype was almost 

exclusively reported in mitotic cells. We thus reasoned that the culture needed to 

be replicating to allow the passive loss of methylation from the DNA, to 

recapitulate the most severe phenotypes of DNMT1KO studied before. In fact, 

many of the cases of DNMT1-deficiency published up to date resulted in a loss 

of fitness76,98,102,106.  

2. To study the precise cause for this, we would also employ a model with a strong 

and penetrant phenotype arising from the depletion of DNMT1.  

3. Lastly, we were interested in cells that are genetically stable. Previous, molecular 

biology studies often utilize cancer cell lines, such as U2OS or HCT116, due to 

their easy culturing, rapid growth and suitability for nucleic acid delivery, which 

renders them permissive for genetic manipulation130. However, due to their 

genomic instability and abnormal global DNA methylation pattern, cancer cell 

lines could potentially yield confounding results in our study. Therefore, we 

decided to utilize a non-tumor-derived line instead. This will enable the distinction 

between an intrinsic cell line instability and the consequences of DNMT1 absence 

as has been reported for some of the cases of DNMT1 depletion in 

vitro87,106,108,131. 

Given the listed criteria, an attractive alternative to cancer cells were embryonic stem 

cells (ESCs). This cell type, derived from the inner cell mass (ICM) of a developing 

mammalian embryo, is characterized by a virtually indefinite self-renewal potential. 

Importantly for our studies, ESCs remain genetically stable and euploid in cell culture 

conditions over multiple passages. Previous studies demonstrated that mouse ESCs 

sustain normal cell proliferation in the absence of DNMT1 and de novo 

methyltransferases DNMT3A and 3B94. Unlike the mouse model, DNMT1 is essential for 

the proliferation of human ESCs95. Although both cell lines were derived from the 

blastocyst inner cell mass of the respective species, human ESCs are believed to 

represent a later stage of development called the epiblast, based on their growth 

condition requirements, X chromosome inactivation and gene expression pattern91,132,133. 
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Because of these differences, we chose human embryonic stem cells as a suitable model 

for studying DNMT1. 

Since the growth of hESCs is incompatible with the absence of DNMT195, we employed 

an inducible depletion strategy instead of conventional knockout strategies. In this study, 

we used two complementary approaches to dissect the consequences of DNMT1. Either 

strategy eliminated technical biases that were confounding factors in previous studies. 

In order to ensure consistency in our methodology, we have cultured the both cell lines 

in identical conditions in a complete human pluripotent stem cell medium (mTeSR) on 

membrane matrix (Geltrex). 

 

CHAPTER 1. Characterization of tools to acutely remove DNMT1. 
 

6.2 DNMT1 depletion on the transcript level with tetracycline-

inducible system  

The generation of the cell line has been described in ref. 7, where our group employed 

a Tet-off system134 to control the expression of DNMT1. Briefly, the cell line was created 

using lentiviruses to ectopically integrate a wild-type DNMT1 cDNA under the control of 

Tet-response element (TRE) and a tetracycline transactivatior (tTA). The binding of tTA 

to TRE allows for the expression of DNMT1 from a separately delivered exogenous allele 

in the absence of tetracycline analog doxycycline (dox). The endogenous alleles of 

DNMT1 were subsequently knocked out (Fig. 2A). The resulting cell line expresses a 

functional DNMT1 only from the transgenic allele, which is not transcribed in the 

presence of doxycycline (Fig. 2B). We will further refer to this line as “TetOFF DNMT1”. 

To independently validate the system for this study, we first assayed its performance. To 

this end, we checked the kinetics of the DNMT1 protein depletion using western blot (Fig 

4A, left panel). We extracted the nuclear proteins from the control and DNMT1-depleted 

cells. The protein lysates were separated on an SDS-polyacrylamide gel, transferred 

onto a nitrocellulose membrane and incubated with a monoclonal antibody specific to 

human DNMT1. We observed a nearly complete depletion of DNMT1 already after 48h 

post transcriptional inhibition and the protein is not detectable after 72h (FIG 4A). 

Due to the differences in bioethics regulations between the USA and Germany, the 

originally used HUES64-based line had to be substituted with a human induced 

pluripotent cell (hiPSC) line. These cells are derived by reprogramming of human 
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fibroblasts135 and were found nearly identical to hESCs in terms of morphology, gene 

expression, DNA methylation and histone modification landscape136,137(Fig 4B). 

 

 

Figure 2. TetOFF DNMT1 inducible depletion system. A. In the absence of endogenous 

DNMT1 (crossed out green bar), the source of functional DNMT1 transcript (black lines) 

in the cells is an exogenous allele (DNMT1 cDNA – blue box), under the control of TRE 

promoter (grey bar). It is activated by tTA (red shape), the product of exogenous tTA 

gene (orange bar). B. In the presence of doxycycline (yellow circle), tTA is unable to the 

TRE promoter and the expression of transgenic DNMT1 is shut down. 
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6.3 DNMT1 depletion on the protein level with PROteolysis TArgeting 

Chimera (PROTAC)  
 

In the final stages of this work, we switched to using a hiPSC cell line (created by Simon 

Lauer), which utilizes an alternative approach to deplete DNMT1 at the protein level (FIG 

3). We employed a proteolysis targeting chimera (PROTAC) based technology138, 

whereby a heterofunctional, small molecule is used to recruit the ubiquitin ligase complex 

to the protein of interest. The resulting ubiquitinated product is subjected to proteasomal 

degradation. Because there was no molecule that targets DNMT1 specifically, we used 

a strategy described by Nabet et al139. Briefly, the gene of interest is endogenously 

tagged with a variant of a chaperone protein (mutFKBP), which is recognized by a highly 

specific PROTAC molecule called dTAG-13. In the absence of dTAG-13, the stability of 

the mutFKBP-tagged protein is not affected. However, upon addition of dTAG-13 to the 

media, both mutFKBP and the Cereblon (CRBN) E3 ligase complex directly bind, thereby 

facilitating ubiquitination of the tagged protein. Due to its high specificity for mutFKBP 

(and not the ubiquitously expressed wild-type FKBP), the system does not have off-target 

effects and has been validated for a variety of targets139,140. 

In our study, this protocol was further modified to knock in the mutFKBP linked to 

mCerulean fluorescent protein into both endogenous DNMT1 alleles. In our study, this 

protocol was further modified to knock in the cDNA encoding the mutFKBP linked to 

mCerulean into the both alleles of the DNMT1 gene. 

By default, the TetOFF DNMT1 was used for the majority of the expreiments presented 

here. The experiments involving degDNMT1 have a suitable annotation in the figure 

legends. 
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Figure 3. PROTAC-based DNMT1 inducible depletion system. A. XY plot summarizing 

a bioinformatic analysis of the DNMT1 protein predicted structural organization using two 

programs: IUpred2 (red line) and ANCHOR (blue line). Higher score represents less 

intrinsic structure. B. Schematic representation of donor sequence used to 

endogenously target the DNMT1 gene for the creation of the degDNMT1 fusion gene. 

mCerulean (blue), GS linker (yellow), mutFKBP (dark green), endogenous DNMT1 (light 

green). C. The DNMT1 protein (light green) has been endogenously tagged with 

mutFKBP (dark green) and mCerulean (blue). The domains are linked by a flexible GS 

linker (yellow). The addition of dTAG-13 small molecule (red) facilitates the recruitment 

of Cereblon E3 ligase complex (scaffold shown in grey) by directly binding CRBN 

(orange).  The E2 ligase (violet) ligates ubiquitin (purple) to the DNMT1 chimeric protein, 

thus targeting it for proteasomal degradation. 
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Bioinformatic analysis of amino acid sequence composition of DNMT1. In order to 

choose a suitable terminus to tag DNMT1, we performed a bioinformatic analysis of the 

amino acids composition and the domain organization of the DNMT1 protein (FIG 3A), 

to ensure that the tag does not impair its function. The most suitable place for the tag on 

a protein is at the terminus which is intrinsically unstructured with no functionally 

important fold or domain in its vicinity. Our analysis using the Prediction of Intrinsically 

Unstructured Proteins tool141,142 revealed that these criteria are met for the N terminus of 

DNMT1 (FIG 3A). 

Indeed, based on previous studies, which tagged either the endogenous wild-type or 

ectopically expressed DNMT1 with GFP, the N-terminal fusions do not affect DNMT1 

stability or localization143. This is consistent with the structure of DNMT1 protein, which 

is highly organized towards the C-terminal end, due to the presence of the structured 

methyltransferase domain. 

Validation of the PROTAC-based strategy. Our N-terminal tagging approach resulted 

in the transcription of a fusion mutFKBP-mCerulean-DNMT1 protein referred to here as 

“degDNMT1” (FIG 3A,B). Such mutFKBP-mCerulean-DNMT1 chimeric protein enables 

depletion at the protein level after the addition of small molecule ligand dTAG-13. We 

validated the depletion system by monitoring protein level using a western blot assay. In 

contrast to the TetOFF system, the PROTAC-based depletion cell line underwent a rapid 

DNMT1 degradation within 24h post 125nM dTAG-13 addition and the protein was not 

detectable after 48h (Fig 4A, right panel). Consistent with our expectations, the direct 

degradation of DNMT1 at the protein level elicited faster depletion of the protein than 

controlling the transcription of the DNMT1 gene. 
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Figure 4. Molecular characterization of the inducible DNMT1 depletion systems. A. 

Western blot showing the presence of DNMT1 under normal and long exposure. TetOFF 

DNMT1 (left panel) and degDNMT1 (right panel) were treated with doxycycline (2 µg/mL) 

and dTAG-13 (125 nM), respectively, until DNMT1 protein was no longer detectable. B. 

Representative brightfield images of the control (top panels) and small molecule treated 

(bottom panels) TetOFF DNMT1 and degDNMT1 cell lines. DNMT1 was depleted in 
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each of the lines for 5days. Scale bar: 100 µm. C. 5mC ELISA results depicting the DNA 

methylation retained by doxycycline-treated TetOFF DNMT1 (red, top panel) or dTAG-

13 treated degDNMT1 (blue, bottom panel) cell lines. The value is expressed as the 

proportion of 5mC compared to the untreated, control line. Error bars: SD. N=3 D. XY 

plot depicting the survival of small-molecule treated depletion cell lines, calculated as the 

percentage of live cells with respect to the untreated controls. TetOFF DNMT1 is 

represented by red line and degDNMT1 by blue line. Passages are indicated by vertical 

dashed lines.  Error bars: SD. N=3. 

 

6.4 Systematic analysis of downstream effects caused by the loss of 

DNMT1. 
 

After successful validation of the DNMT1 depletion systems, we turned to study the 

downstream consequences triggered by the lack of DNMT1. Because of DNMT1’s 

function and mode of action, we focused on DNA methylation levels, cell cycle and cell 

fitness. 

Global levels of DNA methylation. Given that DNMT1 maintains DNA methylation 

throughout replication, as expected, the depletion of this enzyme in hESCs leads to a 

decrease in global levels of DNA methylation3. We validated these observations in our 

study using an ELISA assay that provides a quantitative measure of 5-methylcytosine 

(5mC) abundance (FIG 4C). Briefly, we purified the genomic DNA and hybridized it to 

the assay plates for a subsequent incubation with a 5mC-specific antibody. After rigorous 

washing of the unbound antibody, we detected the specific signal, which reports on the 

amount of the 5mC in the sample. Depleting DNMT1 on the transcriptional or protein 

level led to a 75% reduction in global DNA methylation as compared to the control cells 

with intact DNMT1. In agreement with the technical differences between the TetOFF and 

degron systems, the loss of global levels of DNA methylation in the two varies, yet shows 

the consistent downtrend. In the TetOFF system the methylation is gradually lost over 

the course of 5 days (equal to 5 cell doublings) post dox addition. This DNMT1 depletion 

leaves the cells with only a quarter of their initial DNA methylation content. This is in line 

with our western blot results showing complete protein depletion after 3 days. In contrast, 

the degDNMT1 cells reach 50% of wild-type global DNA methylation levels already 24h 

after depletion of DNMT1, followed by modest losses of methylation over the course of 

the next few days. Neither of the cell lines lost 100% of DNA methylation, despite the 

absence of DNMT1. The incomplete demethylation regardless of the DNMT1 depletion 

strategy could be explained by the activity of remaining DNA methyltransferases 

DNMT3A and 3B, which function independent of DNMT1. 
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Cell growth. Since DNMT1 is essential for the survival of hESC95, we assessed the 

fitness of the DNMT1-deficient cells and primarily focused on the viability of the 

population. To this end, we adapted the hESCs and hiPSCs to single-cell growth. Next, 

we plated the DNMT1-deficient and non-induced control cells in equal numbers and 

counted them during each passage to assay their proliferation potential. The alive cells 

were subsequently plated in equal numbers for the next passage until no live cells were 

present. The cells deficient for DNMT1 grew slower than their respective control lines 

(FIG 4D). The absence of DNMT1 led to a progressive reduction in the number of live 

cells in three to four passages. Regardless of the method used and its efficiency in 

depleting DNMT1, we observed the most striking effect on population growth during the 

second passage of the experiment. Between days 4 and 8 of the experiment, the 

proportion of live cells decreased the most, concurrently to the changes in cell 

morphology and the reduction in global DNA methylation level (FIG 4A and C). 

Therefore, we concluded that the ability to proliferate is inversely correlated with the 

number of passages following DNMT1 depletion. 

 

6.5 Cell cycle progression  
 

The reduction in cell proliferation prompted us to investigate the cell cycle of the DNMT1-

depleted cells. Since DNMT1 acts concurrent to replication, we hypothesized that their 

attenuated growth could be attributed to a cell cycle arrest, specifically the S-phase 

disruption.  

EdU incorporation. To measure the proportion of dividing cells, we employed a thymine 

homolog 5-Ethynyl-2´-deoxyuridine (EdU) incorporation followed by fluorescent 

microscopy. EdU is integrated into the newly synthesized DNA and can be fluorescently 

stained using click chemistry144 allowed us to mark cells actively undergoing 

replication145. The proportion of EdU positive cells did not change immediately after 

DNMT1 was depleted, however, the proportion of cells actively undergoing S-phase was 

reduced after the first passage (Fig. 4A). Furthermore, although DNA replication 

occurred in around 20% of cells even after 3 passages, it was significantly diminished 

with 40% of EdU positive cells, compared to the control population. The loss of DNA 

methylation may therefore affect the ability of cells to undergo DNA replication. We have 

a few explanations for this observation. First, we noted that not all cells behaved 

uniformly (i.e. some remained replicating while others did not), which might be explained 

by the amount of retained DNA methylation that could affect the severity of the phenotype 

between cells. Alternatively, the DNMT1-deficiency could lead to terminal differentiation 
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in a fraction of cells, which in turn decreases the proportion of cells entering the S-phase. 

Also, we cannot exclude that the DNMT1-depleted cells have a defect in the 

incorporation of the EdU during replication. The cell cycle and the EdU result specifically 

will be discussed later in this thesis. 

 

Figure 5. Characterization of the cell cycle progression in the TetOFF DNMT1 cell line. 

A. Bar graphs summarizing the proportion EdU-. DNMT1-depleted cells (red bars) and 

control cells (grey bars) were stained with respective stains and imaged using Zeiss Cell 

Discoverer. Positive cells in the images, as well as total number of cells counterstained 

with DAPI, were automatically counted by Zeiss ZEN software. Error bars: SD. * 
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pval≤0.05; ** pval≤0.005; *** pval≤0.0005; n.s. – not significant. N=3 B. Bar plot 

summarizing the results of FACS analysis on Hoechst-stained cells. N=2 C. Histograms 

of CFSE-positive cells in control (top panel) and DNMT1-depleted (bottom panel) cells. 

Histogram colors represent time-matched cells, defined in the legend. Light blue – freshly 

stained positive control. Grey – unstained negative control. N=2 D Bar graph 

summarizing the number of TUNEL- positive cells. N=3 The imaging, counting and 

plotting strategy employed are described in A.  

 

Cell cycle arrest. Next, we checked if the proportion of cells in respective phases of the 

cell cycle was perturbed by the loss of DNA methylation. To this end, we stained the cells 

with DNA-binding chemical Hoechst 33342, which provides an estimate the total amount 

of DNA in the cells146. 

We used fluorescence-activated cell sorting (FACS) approach to estimate the 

abundance of cells in G1 (2n DNA), G2/M (4n DNA) and S phase (2-4n DNA). In order 

to avoid technical bias in the staining efficiency, we have fixed TetOFF DNMT1 cells at 

several time points (Fig 5B) and stained them together. We observed an enrichment of 

cells in the G2/M phase after 2 days of DNMT1 depletion, but did not detect other 

signatures of cell cycle arrest at any other time points. 

The length of the cell cycle. The decreased proportion of actively replicating cells could 

result from the prolongation of the entire cell cycle that would have been missed when 

applying the previous methods. In order to examine whether the cells in the critical time 

point between day 4 and day 8 of DNMT1 depletion divide slower than their wild type 

counterparts, we employed Carboxyfluorescein succinimidyl ester (CFSE) staining with 

the cell-penetrable dye that covalently attaches to lysine residues, thus fluorescently tags 

all cellular proteins and becomes progressively diluted over cell divisions147. After a pulse 

stain with the dye followed by a wash out, we quantified the fluorescence of protein-

incorporated dye by FACS (Fig 5C). Comparing the DNMT1-deficient line to untreated 

control demonstrated no changes in the rate of dye dilution indicating no change in the 

duration of the cell cycle. Taken together, we did not observe any defect in the length of 

or an arrest in the cell cycle in DNMT1-deficient hESCs despite a defect in proliferation. 

Although the EdU staining showed fewer DNA hypomethylated cells underwent DNA 

replication, we did not observe arrest at any of the cell cycle phases or decreased rate 

of the cell cycle progression in the TetOFF DNMT1-depleted cells compared to control. 

We thus hypothesized that the DNMT1 absence could trigger apoptosis, rather than cell 

cycle arrest or cell cycle prolongation. 
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Apoptosis. Programmed cell death can result from a failure to respond to stress 

subsequently leading to loss of fitness of cultured cells148. As DNA fragmentation is the 

final step and a hallmark of cell death, we used Terminal deoxynucleotidyl transferase 

dUTP Nick End Labeling (TUNEL), a method to stain the free DNA ends resulting from 

genome fragmentation in the cells undergoing apoptosis149. We observed an increase in 

the number of TUNEL-positive DNMT1-deficient cells (compared to control) in the 

second passage, which was elevated further in the third passage (Fig 5D). However, we 

find that this minor difference in the apoptotic cells cannot explain the strong defect in 

cell proliferation at the corresponding time point (passage 2; FIG 4D). We speculate that 

a different mechanism of cell death, such as necrosis, could be responsible for the loss 

of fitness in the DNMT1-deficient cells. Further work will be required to dissect this mode 

of death.  

 

6.6 Uncoupling DNA hypomethylation from the presence of DNMT1 
 

Although the three main catalytically active DNA methyltransferases DNMT1, DNMT3A 

and DNMT3B are essential for development and survival of mouse pups, the double 

knockout of de novo methyltransferases (DNMT3A-/-; DNMT3B-/-), hence referred to as 

the DKO line, is compatible with human ESC survival95. The reason for that could be that 

DKO cells retain more global DNA methylation than DNMT1-depleted cells. Overall, this 

may suggest a limit to how DNA hypomethylated a viable hESC can become. 

 

 

Figure 6. Global DNA hypomethylation using 5-azacytydine. 5mC ELISA results 
depicting the global cytosine methylation amount in the control 3A/B double knockout 
cells and 5-AzaC treated counterparts. Error bars: SD. * pval≤0.05; ** pval≤0.005; *** 
pval≤0.0005; n.s. – not significant. N=2. 
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Small molecule-induced DNA hypomethylation. In order to assess whether the total 

amount of DNA methylation is correlated with cell viability, we induced global DNA 

demethylation in a DNMT1-independent way with a small molecule. Cytosine homolog, 

5-azacytydine (AzaC), is incorporated into the DNA and mimics a substrate for DNA 

methylation. However, unlike the regular cytosine, it entraps the methyltransferases 

covalently linked to the DNA. Because the DNMTs are no longer able to catalyze methyl 

group transfer, this results in a global DNA hypomethylation. In addition, the crosslinking 

of DNMTs to the DNA across the entire genome leads to DNA damage150. In order to 

reduce the global DNA methylation levels while avoiding cytotoxicity caused by AzaC, 

we utilized the DKO line. We reasoned that any methylation lost in the DKO cells by 

trapping the remaining DNMT1 enzyme would be permanently lost, thus the DNA 

methylation can no longer be fully replenished. Therefore, we considered to treat DKO 

cells with AzaC for over two cell divisions (3 days). This would deplete DNA methylation 

so we would then stop treatment to allow recovery from any DNA damage while 

maintaining the new, less methylated state. The cycle of AzaC treatment and recovery 

could be repeated in consecutive passages, until a minimal level of DNA methylation 

compatible with cell survival is reached. In this experiment (performed by Toshiyuki 

Ushijima), the DKO cells were treated with low doses (1 or 10nM) of AzaC for 3 days, 

followed by a day of recovery, passaging (in the absence of AzaC) and resumed 

treatment two days after attachment. We assayed the amount of methylated DNA after 

each treatment using 5mC ELISA (Fig 5). While 1nM AzaC did not change level of DNA 

methylation, 10nM AzaC treatment reduced the DNA methylation to 41%. The treatments 

in the two following passages rendered cell populations retained a surprisingly high 35% 

global DNA methylation level. Higher concentrations of the drug or subsequent 

treatments resulted in cell death. Notably, the retained DNA methylation level is higher 

than in the TetOFF DNMT1-depleted cell line. Although we cannot completely rule out 

the impact of DNA damage on the survival of the AzaC-treated DKO cells, we note that 

the cells were still able to proliferate between the second and third treatment, but the 

drug no longer reduced their DNA methylation levels. It is therefore likely, that complete 

DNA demethylation is incompatible with hESC survival. The level of 35% DNA 

methylation could represent a threshold, below which cell fitness is affected. 
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6.7 Summary 
 

In this chapter, we confirmed that the depletion of DNMT1 in hESCs results in diminished 

levels of DNA methylation and a perturbed cell fitness. Specifically, we observed a 

reduction in cell number during consecutive passaging, accompanied by alterations in 

cell morphology. Even though we did not detect changes in the overall duration of the 

cell cycle or the cell cycle profiles, loss of DNMT1 correlated with a decrease in EdU-

incorporating cells. Moreover, the loss of cell fitness correlated with an increased number 

of apoptotic cells after each consecutive passage. Interestingly, we noticed that the  DNA 

methylation level is reduced and maintained at the low level (about 25% of the control 

line methylation in the TetOFF system and about 35% in degDNMT1 cells), but not 

directly after the loss of DNMT1 protein. Furthermore, when using AzaC to reduce the 

global levels of DNA methylation in hESCs, we also observed a retention of a similar 

level of global DNA methylation, despite repetitive attempts with prolonged treatment. 

We conclude that the loss of methylated DNA, rather than the absence of DNMT1 is the 

cause of the loss-of-fitness phenotype described in this chapter. In fact, our group 

previously showed that DNMT1KO-associated cell death cannot be rescued with a 

catalytically inactive DNMT195. 

The lethality phenotype we observed appears fundamentally different than what was 

reported in cancer lines or mouse embryonic fibroblasts devoid of DNMT198. For 

example, we did not observe an accumulation of G2/M arrested cells, as was shown by 

Chen and colleagues for DNMT1KO HCT116 cells108. Altogether, the DNMT1-deficient 

hESCs display a severe loss-of-fitness phenotype, distinct from previously published 

studies98,102,105,108. 
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CHAPTER 2. The impact of global DNA hypomethylation on 

genome stability. 
 

Because ablation of DNMT1 from cells elicits a vast reduction in the methylated 

cytosines, we wondered if this effect has consequences on genomic integrity, as 

previously suggested  

6.8 DNA damage  
Could then the hypomethylation cause a damage in the DNA? In fact, multiple studies 

have put forward this hypothesis studying various systems. For example, the DNMT1KO 

cancer model cell lines106,108, non-transformed cells106 and a tissue-specific DNMT1KO 

in mouse liver151. 

All in all, the conclusions drawn from depleting DNMT1 from cancer cells are not 

coherent and depend on the specific design of a study, therefore considered 

controversial. For example, DNMT1-deficient hepatocytes were reported to present 

markers of DNA damage that in turn induced the hepatocyte senescence; measured by 

the G1 phase arrest and an upregulation of a senescence marker, p21151. Another study 

found that the DNMT1KO in HCT116 cells resulted in the G2/M phase arrest, due to the 

accumulated DNA damage and mitotic defects108. Lastly, Unterberger and colleagues 

reported DNMT1 knockdown with siRNA to cause ataxia telangiectasia and Rad3-related 

(ATR)-dependent activation of DNA damage signaling in human bladder transitional 

carcinoma-derived cells and also in untransformed human fibroblasts. The authors 

proposed that the DNMT1 deficiency triggered an activation of the S-phase checkpoint 

that stopped further progression through the cell cycle106. If these inconsistencies stem 

from technical differences or heterogeneity of cancers remains a burning question in the 

field.  

Because our system for depleting DNMT1 from cells has proven efficient and tight, and 

presents a technological advance over the previously used approaches, we explored if 

DNMT1-deficient iPSCs show hallmarks of genomic instability. Notably, our cells do not 

show defects in all aspects of the cell cycle studied, such as length and arrest, therefore 

we do not anticipate an excessive DNA damage that would perturb these parameters. 

We set out to confirm the observation with another technique and asses the signature of 

DNA damage in a more direct way. To this end, we employed fluorescence microscopy 

to monitor a highly conserved sensor for DNA double-stranded breaks (DSB) called 

Mre11152. As a part of the MRN complex, Mre11 binds the sites of damage and 

orchestrates the response to the insult153. Importantly, Mre11 is present at the sites of 

DNA damage occurring due to an error, such as replication fork collapse154 or exposure 
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to genotoxic agents, but also when DNA damage is caused by sister chromatid exchange 

(SCE)155. It promotes both the repair via homologous recombination156 and non-

homologous end joining157. We, therefore, anticipated that regardless of the mechanism 

leading to double-strand break formation, MRE11 foci accumulation will be a reliable 

readout. Furthermore, it marks the DSBs very specifically, without creating a wide 

domain around the damage site158. 

 

Figure 7. DNMT1 depletion does not cause Mre11 foci formation. Fluorescent 
microscopy images of degDNMT1 cell line stained with antibody against Mre11 (green) 
and counterstained with DAPI (blue). Cells in white dashed-line squares are shown 
enlarged in the last column. Top row: control degDNMT1 cells. Middle row: 
hypomethylated degDNMT1 cells, treated with dTAG13 for 5 days. Bottom row: control 
positive for DNA damage – cells treated with 50µg/ml zeocin. Scale bars: 10µm. 

 

We stained the hypomethylated degDNMT1 hiPSC line with an antibody specifically 

recognizing Mre11 and found that while Mre11 accumulated in nuclear foci after 

treatment with a genotoxic agent zeocin159 (positive control, FIG 7). After 5 days of 

continuous DNMT1 depletion, we did not observe any accumulation of Mre11 in the 

DNMT1-depleted cells as compared to controls (FIG 7). We attempted to corroborate 

these results with an alternative method, that relies on monitoring DNA damage-
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dependent phosphorylation of histone H2A.X, which is a widely used marked of DNA 

damage160. To this end, we employed fluorescence microscopy with all commercially 

available antibodies. However, we found that none of them succeeded in reporting a 

specific signal in our positive control samples (data not shown), unlike the staining with 

the antibody against Mre11. 

Altogether, we concluded that the depletion of DNMT1 and the subsequent DNA 

hypomethylation does not lead to the Mre11 foci accumulation, and therefore likely not 

causing double strand DNA breaks in human pluripotent stem cells. 

 

6.9 Chromosomal instability 
 

The link between DNA methylation and chromosomal integrity is an area of active 

research. One of the reasons is a rare, autosomal recessive disease called the 

Immunodeficiency, Chromosomal instability and Facial anomaly (ICF) syndrome161 

caused primarily by mutations in de novo methyltransferase DNMT3B162. On the 

molecular level, the defect is characterized by the loss of DNA methylation on classical 

satellites of chromosomes 1, 9 and 16 and decondensation of juxtacentromeric 

regions163. This leads to the formation of abnormally condensed chromosomes 

characterized by multiradial shape. If global hypomethylation of DNA elicits similar 

abnormalities has not yet been studied. Similarly, there is no known mechanism that 

would link the loss of DNMT1 to increased genomic instability.  

Karyotyping of DNMT1-deficient cells. To address if the DNA hypomethylation 

impacts centromere stability, we employed a widely-used method, Giemsa (G-band) 

karyotyping of TetOFF DNMT1 cells. We looked for hallmarks of ICF such as centromere 

decondensation, however, we did not observe differences between cells with a normal 

DNA methylation level and the cells affected by the loss of DNMT1 for 5 consecutive 

doublings (Representative karyotypying results for two genotypes; FIG 8). Unexpectedly, 

3 out of 20 karyotyped, deficient for DNMT1 cells exhibited loss of chromosomes 3, 15 

or Y, respectively. Because of that, the cells have undergone loss of heterozygosity 

(LOH) on these chromosomes.   

A similar observation was previously made in the hypomethylated mouse lymphomas87. 

Because DNMT1 is a haplosufficient gene, the Jaenisch lab created a “chip” 

hypomorphic allele of DNMT1, which led to a decreased expression of DNMT1 in the 

derived from it mESCs164. Mice bearing only the chip DNMT1 allele (the so-called chip/- 

mice87) expressed about 10% of the wild-type DNMT1 levels, which resulted in DNA 
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hypomethylation of the tested IAP retrotransposable elements and centromeric repeats. 

These specimens developed aggressive T-cell lymphomas that led to death by reaching 

8 months old in 80% of the pups. While retrotransposable elements were not upregulated 

in the chip/- mice, the lymphomas exhibited gains or partial losses of chromosomes. 

However, no karyotype analysis was performed in other mouse tissues in this study. The 

genomic rearrangements in the T-cells (such as gain of chromosome 15) are well-known 

to result in a growth advantage and frequently occur in lymphomas87 suggesting that this 

particular mutation could show a selective advantage in the course of the disease 

development. Despite the reduction of DNA methylation and accumulation of 

chromosomal abnormalities, both ICF syndrome patients and model chip/- mice undergo 

complete embryonic development. Therefore, it is highly unlikely, that the occasional 

chromosomal loss in DNMT1-depleted hESCs directly leads to the dramatic loss of 

fitness observed in the TetOFF DNMT1 cells or the DNMT1KO mouse embryos.  
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Figure 8. Representative karyotypes of control and DNMT1-deficient cells. 

Representative images of G-band karyotyping in control TetOFF DNMT1 cell line A. and 

doxycycline-treated B. performed by Cell Line Genetics. 
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6.10 Mitotic defects 
 

Anaphase bridges. We wondered if the LOH observed in a few cells depleted for 

DNMT1 could point to a defect in mitosis. Interestingly, a previous study demonstrated 

that the knockdown of DNMT3B in HCT116 cells yielded accumulation of anaphase 

bridges and misaligned metaphase chromosomes165 that are prime examples of 

abnormal mitosis166. Therefore, we investigated similar phenotypes in the TetOFF 

DNMT1 cells in the control and after the DNMT1-depletion (FIG 9). We utilized 4′,6-

diamidino-2-phenylindole (DAPI) to image mitotic chromosomes during the anaphase of 

mitosis. Regardless of the presence or absence of DNMT1 (5 cell doublings - minimal 

time required to hypomethylate the genome), we observed identical early anaphase 

bridges and resolved late anaphases without lagging chromosomes (FIG 9). 

 

Figure 9.  Anaphase bridge formation occurs in early anaphases during hESC mitosis. 

Representative pictures of anaphases stained with DAPI in control (top row) and 

DNMT1-deficient (bottom row) hESCs. Early (<10µm distance between daughter cells’ 

chromosomes) and late (>10µm distance between daughter cells’ chromosomes) 

anaphases are shown in left and right column, respectively. Red arrow – anaphase 

bridge. Scale bars: 10µm. 
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Figure 10. Ultra-fine BLM bridges are resolved during anaphase. Fluorescent 

microscopy images depicting early (first row; <3µm distance between daughter cells’ 

chromosomes), intermediate (second row; <10µm distance between daughter cells’ 

chromosomes) and late (third row; >10µm distance between daughter cells’ 

chromosomes) anaphases in HUES64 hESCs, stained with antibodies against BLM 

(white) and counterstained with DAPI (blue). Bottom row: positive control for BLM bridge 

formation depicting anaphase in cells treated with topoisomerase inhibitor camptothecin. 

Scale bars: 10 µm.  

 



61 
 

Chromosome decatenation. Next, we further examined alternative anaphase-related 

phenotypes and focused on chromosome decatenation, which is a mechanism to 

untangle sister chromatids for faithful chromosome segregation167. This process is 

performed on anaphase DNA structures called PICH-bridges, also known as Ultra-Fine 

Bridges (UFBs)168, proposed to be the remnants of centromeric chromatin catenates that 

hold sister chromatids together and provide tension between the kinetochores to clear 

the spindle assembly checkpoint (SAC). PICH and BLM DNA-dependent ATPases 

resolve such catenates with topoisomerase, Topo IIα169. Due to these DNA bridges being 

very thin, they do not accumulate enough DAPI signal to be visible under a fluorescent 

microscope unlike the intact chromosomes; however, the thin DNA bridges accumulate 

the Bloom helicase that could be stained with an antibody to indirectly monitor them. 

Consistently with previous studies168, we observed a decline in the number of UFBs over 

the course of anaphase in wild-type cells (FIG 10). Cells in early anaphase, with mitotic 

chromosomes of daughter cells only beginning separate, display multiple BLM-positive 

bridges. The bridges are stretched out in intermediate anaphase (less than 10µm 

distance between chromosomes of daughter cells) and are completely resolved before 

late anaphase (over 10µm distance between chromosomes of daughter cells). The wild-

type cells treated with a topoisomerase inhibitor, camptothecin170 (positive control) 

display an increased formation of the DNA bridges (FIG 10). When we examined cells 

deficient for DNMT1 (for 2, 4, 6 or 8 doublings, respectively), we observed no difference 

as compared to wild-type cells; the vast majority of observed anaphases were completely 

resolved before or during intermediate anaphase, regardless of condition (Fig 11). These 

results indicate that the hypomethylated cells are capable of decatenating UFBs. 

Therefore, we concluded that DNMT1-deficient cells do not display decatenation defects 

in anaphase.  
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Figure 11. DNMT1-depleted cells are able to resolve anaphase UFBs. . Fluorescent 

microscopy images depicting late anaphase with bridge resolution in TetOFF DNMT1 

cells stained with antibodies against BLM (white) and counterstained with DAPI (blue). 

Top row: control cells; subsequent rows: cells treated with dox for 2, 4, 6 or 8 days, 

respectively. Scale bars: 10 µm. 
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Because DNMT1 acts co-replicatively, we hypothesized that its depletion could lead to 

a defect in the S-phase of the cell cycle. However, this type of defect would not manifest 

itself by arresting the cells in S-phase, as we did not observe any accumulation of the S-

phase-arrested cells after removal of DNMT1 (FIG 5B). In such case, we considered an 

accumulation of under-replicated DNA as a possible mechanism. Discrete regions in the 

genome called Chromosomal Fragile Sites (CFS) are difficult to replicate due to, for 

example, their repetitive nature171. Thus, if replication of these regions is incomplete, the 

partially synthesized DNA can be carried on through the cell cycle172. Previous studies 

identified 53BP1 as a protein that creates protective foci around the under-replicated 

DNA in the subsequent G1 phase to prevent further damage and was used as a sensitive 

marker of such loci173. In order to elucidate whether the under-replication phenomenon 

occurs in the hypomethylated hESCs, we quantified the 53BP1 foci. Lukas and 

colleagues found that wild type cells accumulate fewer than 6 foci per nucleus173, 

whereas a challenge with doxorubicin (a drug that intercalates in the DNA causing 

damage) vastly increased the number of foci (FIG 12A). 

In the cells depleted for DNMT1 (for 2, 4, 6 or 8 days, respectively) we observed a minor, 

but not statistically significant increase in the 53BP1 foci (day 4, 6 and 8), as compared 

to matched, untreated controls (FIG 12B). This is an interesting observation given the 

hypomethylated hESCs incorporate less EdU during replication, which may implicate a 

change in kinetics or fidelity of DNA synthesis (FIG 5A). Future experiments will be 

required to address this discrepancy with alternative approaches, such as DNA combing, 

and also examine, for example, if the cells depleted for DNMT1 do not display a 

compromised uptake of the EdU nucleotide.  
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Figure 12. Loss of DNMT1 does not promote the accumulation of 53BP1 foci. A. 

Representative pictures of fluorescence microscopy imaging of TetOFF DNMT1 cells 

stained with an antibody against 53BP1. Top row: positive control of cells treated with 

10nM doxorubicin. Middle row: TetOFF DNMT1 cells. Bottom row: DNMT1-deficient 
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TetOFF DNMT1 line treated with doxycycline for four days. Right column: enlarged view 

of cells shown in the red dotted line squares. Scale bar: 50 µm. 100 cells were screened 

per condition. B. Quantification of 53BP1 staining in TetOFF DNMT1 cells. Bars 

represent the percentage of cells with 6 or more 53BP1 foci.  

 

Mechanisms masking mitotic defects. Although our data demonstrates only 

occasional loss of chromosomes in a very few cells, we considered the possibility that 

the major defects could have already caused a cell death and, because of that, were 

missed in our analysis. Alternatively, the potential deleterious effect of global 

hypomethylation of DNA could be masked by a cellular buffering system that 

compensates for the insults to genomic stability. In fact, a very thorough study of cell-

cycle regulators demonstrated that a single knockout of genes involved in replication, 

such as CDT1 or ORC1, did not impact the mitosis in these cells, however a double 

knockout with the TP53 gene had a synergistic effect, with nearly all mitoses being 

erroneous174. Therefore, the product of the TP53 gene, the p53 protein may have a 

modulatory effect on several knockouts and buffer their loss. p53 is a tumor suppressor 

transcription factor, often referred to as “the guardian of the genome” due to its central 

role in responding to cellular stress. Some of its many roles include integrating signals 

from DNA damage or triggered cell cycle checkpoints and regulates genes involved in 

DNA repair, senescence and apoptosis to elicit a suitable response175. Interestingly, 

knockout of the trp53 gene in mouse embryonic fibroblasts was shown to partially rescue 

the DNMT1KO-associated growth defect98. We sought to test these findings in the 

DNMT1-deficient hESCs. To this end, we knocked out the TP53 gene in the TetOFF 

DNMT1 cell line using lentivirally-delivered Cas9 together with a guide RNA that targets 

the TP53 genomic locus (FIG 13). To select the most efficient gRNA with the lowest 

number of off-targets, directing the Cas9 enzyme to an exon shared by all TP53 

transcript isoforms, we used an integrated gRNA prediction platform provided by 

Benchling. We confirmed homozygous knockout in clonally derived cell line using a PCR-

based genotyping strategy followed by Sanger sequencing. The selected clone 

contained an out-of-frame deletion in one allele and an in-frame insertion of 51 

nucleotides containing three in-frame stop codons that would result in the loss of protein 

product. The resulting TetOFF DNMT1; TP53-/- line was characterized by significantly 

increased growth rate compared to the parent line (FIG 14A). We then compared the cell 

number of DNMT1- and DNMT1;TP53-depleted cells after one passage. In line with the 

findings of Jackson-Grusby and colleagues98, the hypomethylated cells devoid of TP53 



66 
 

show an increased survival as compared to the hypomethylated cells (FIG 14B). Next, 

we monitored the kinetics of the loss of fitness for both cell lines.  

 

Figure 13. The creation of TetOFF DNMT1; TP53KO cell line. A. Parental TetOFF 

DNMT1 was transduced with a lentiviral vector containing wild-type Cas9 cDNA, a guide 

against human TP53 and a drug resistance cassette. The untransduced cells were 

selected against with blasticidin. Clonal colonies of surviving cells were picked and 

genotyped. B. Chromatogram results of genotyping of the TP53-exon 4 in WT hESCs 
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(top panel) and the TetOFF DNMT1; TP53KO line. Consensus sequence is shown on 

top of each panel as a grey bar. Green arrows: guide sequence. Chromatograms: 

sequences of the alleles of TP53. 

 

 

Interestingly, the TP53KO suppressed the cell death of DNMT1KO cells at passage 2, 

hence delaying severe loss of cells by one passage. However, the TP53KO was not able 

to rescue the initial drop in cell viability      within the first passage (4 doublings) of DNMT1 

depletion (FIG 14C). These results suggest that the DNMT1-deficiency-associated 

growth phenotype in hESCs is at least partially dependent on TP53.  

To check if the presence of p53 in the hypomethylated cells masks otherwise-occurring 

genomic instability, we have employed confocal microscopy to score metaphase defects. 

Previous study174 employed DAPI and tubulin staining to image mitotic chromosomes 

and the mitotic spindle and distinguished three abnormal metaphase phenotypes. We 

used the same method to score the mitotic abnormalities occurring in the DNMT1-

deficient hESCs. Representative examples of each defect are shown in (FIG 15A). Off-

axis chromosomes (FIG 15 A, white arrow) do not assemble with the other chromosomes 

in the mitotic plate. Spindle multipolarity results from more than two centrosomes 

creating additional mitotic poles. Major plate defects manifest themselves by the lack of 

mitotic plate formation. 
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Figure 14. TP53 knockout impacts the growth of control and DNMT1-deficient hESCs. 

A. and B. Bar graphs depicting the number of cells grown one passage (4days) after 

single-cell plating of TetOFF DNMT1 control cells (black bar) in comparison to TetOFF 

DNMT1; TP53KO lineage (A), or TetOFF DNMT1-depleted cells compared to cells 

deficient in both DNMT1 and TP53 (B). C. Scatter plot depicting the DNMT1-deficient 

TetOFF DNMT1 or TetOFF DNMT1; TP53KO cells that survived each passage. The 

values are expressed as a fraction of cell number achieved by control dox untreated cells 

of respective lineage. Vertical dashed lines represent re-plating for a new passage. * 

pval < 0.05; ** pval < 0.005; *** pval < 0.0005. Error bars: SD. 

 

 

We scored the mitoses in DNMT1-depleted cells and observed whether the absence of 

p53 can modulate the phenotype (FIG 15B). While DNMT1-depleted cells displayed a 

minor increase in the proportion of off-axis chromosomes, we observed similar ratios of 

unaffected mitoses in the control and DNMT1-depleted cells (87% versus 86%, 

respectively). In stark contrast, TP53 deletion resulted in an increase in all mitotic defects 

compared to control cells, with only 70% normal mitoses. Lastly, depletion of both 

DNMT1 and p53 further exacerbated the number of mitotic defects seen in the TP53KO 

cell line. For example, a major increase in off-axis chromosome defect cell arose from 
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19% in TP53KO to 31% in the double knockout. Our data suggests a synergistic effect 

between DNMT1 and TP53 with respect to mitotic defects, thus the double knockout 

presents an additive phenotype that is stronger than each of them separately Therefore, 

this genetic experiment implies that DNMT1 and TP53 act in separate pathways in 

regards to mitosis defects. Interestingly, despite the accumulated genomic insults in the 

double knockout line, these cells show a growth advantage over the DNA 

hypomethylated cells. If this is due to the impaired checkpoints in the TP53 knockout or 

whether genomic instability does not affect the fitness of DNMT1-depleted cells will be 

an exciting area of further research. Future studies will be required to address the 

mechanism behind the increased survival of the DNMT1KO-TP53KO cells. In addition, 

to examine specificity of TP53, it will be interesting to examine if a deletion of any other 

tumor suppressor gene would yield a similar result. 
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Figure 15. TP53KO does not act synergistically with DNMT1-depletion in causing 
metaphase errors. A. Representative images of cells undergoing normal (first column) 
or erroneous metaphases (second to fourth columns). Cells were stained with an 
antibody against tubulin (green), counterstained with DAPI (blue) and imaged using 
confocal microscopy. White arrows – off-axis chromosomes. Scale bars: 5 µm. B. Pie 
charts depicting the quantification of the proportion of metaphases scored according to 
the key shown in A. Each genotype is presented in a separate circle; colors represent 
mitotic phenotypes. 20<N<40 metaphases per condition. 
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6.11 Expression of transposable elements 
 

Repetitive sequences such as transposable elements (TEs) typically bear highly 

methylated DNA at their genomic loci. This was proposed to be a mechanism by which 

the cells prevent the expression and transposition of these elements. Multiple studies 

reported the demethylation of transposable elements in DNMT1 knockout cell lines and 

embryos87,98,102,176. The global loss of DNA methylation resulted in transcriptional 

activation of TEs98,102. Jackson-Grusby and colleagues hypothesized that such 

expression of transposable elements, which belonged to the intracisternal A particle 

(IAP) family, could cause of DNMT1KO MEF cell death via increased transposition and 

resulting DNA damage98.  

Although transposons make up nearly half of the human genome80, very few are able to 

transpose. This is ascribed to the degeneration of TE sequences, caused by 

accumulation of mutations or truncations due to an incomplete transposition. DNA 

transposons are believed to be virtually extinct in the context of the human genome177. 

RNA transposons, however, contain transposition-competent elements. Human LINE 

elements, which occupy the most of the human genome out of all the TE classes, only 

an estimated 60-100 are capable of transposition178. Another transposition-competent 

class, analogous to the mouse IAP, are human endogenous retroviruses (HERVs). 

Particularly the HERVk subtype has been shown to transpose into new locations in the 

human genome179. 

Although the expression of different classes of transposons has resulted in mutations180, 

however, it also occurs during normal embryonic development and transition from primed 

to naïve state in hESC117. We decided to investigate if the transcription of transposable 

elements occurs in the TetOFF DNMT1-deficient hESCs. To this end we used 

quantitative reverse transcription polymerase chain reaction (qRT-PCR) to directly 

compare the level of TE transcripts between control and the globally hypomethylated 

cells (FIG 16). Specifically, we chose primers amplifying the HERVk gag sequence117 

and to the consensus sequence among all L1 transposons, including the most recent 

L1_Hs class181. 

No significant upregulation of the L1 transcript level accompanied the loss of DNMT1 

(FIG 16A). In contrast, HERVk elements were increased 4 fold (FIG 16B). This is 

comparable to HERVk upregulation during in vitro reprogramming of primed hESCs to 

naïve state, a process that does not lead to cell death117 We therefore conclude that 

minor upregulation of the TEs is not likely the underlying cause of the DNMT1 depletion-

mediated loss of fitness in disagreement with  the observations by Jackson-Grusby and 

colleagues98. 
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Figure 16. The effect of DNMT1 depletion on repetitive element expression. Bar graphs 
depicting the expression level of A. L1, B. HERVk, C. Alpha satellite repetitive elements. 
* pval < 0.05; ** pval < 0.005; *** pval < 0.0005. n.s – not significant. Error bars: SD. N=3. 
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Centromeric repeats. Centromeric DNA hypomethylation following the mutations in 

DNMT3B is one of the hallmarks of ICF syndrome161,162. Although we did not find any 

evidence for chromosome decondensation in our TetOFF DNMT1-depletion cell line, we 

explored whether global DNA hypomethylation could impact the transcription of 

centromeric repeats.  

The change in transcription level of satellite repeats has been observed in various cancer 

types. For example, pancreatic cancer cells upregulated alpha satellites over 40-fold, 

compared to healthy tissue182. Nevertheless, its role in disease or genomic instability is 

not well understood. 

We performed qRT-PCR in the TetOFF DNMT1-deficient hESCs using primers mapping 

to the consensus sequence of human alpha satellite 171bp repeats, which are present 

in the higher order repeats in centromeres of all the human chromosomes183. 

Interestingly, we only observed a modest, less than 2-fold upregulation of ALRs following 

DNMT1 depletion (FIG 16C). This result indicates that the hypomethylated DNA in 

DNMT1-deficient cells is not likely a trigger for centromeric transcription. 

 

6.12 Summary 
 

We have employed fluorescence and confocal microscopy approaches to investigate if 

a hypomethylated genomic DNA poses an insult to genomic stability. We showed that 

the DNA damage markers were not enriched in the acutely hypomethylated human 

ESCs compared to control, even though the DNA damage was previously reported in 

other types of DNMT1-deficient cells. If this is due to the unique biology of embryonic 

stem cells as compared to cancer cells or simply an indirect effect remains to be 

studied. Even though the hypomethylated ESCs lack the known DNA damage markers, 

we detected a loss of single chromosomes in a few cells. In the future, it will be interesting 

to track chromosomal aberrations in hESCs, examine how these affect the cell survival 

and when they occur with respect to the loss of DNA methylation.  

We also considered if the hypomethylated hESCs would display markers of genomic 

instability more prominently in the absence of p53. While loss of TP53 increased the 

survival of DNMT1-deficient cells, it also increased the occurrence of mitotic 

abnormalities. This observation uncouples the impaired proliferation from the presence 

of mitotic defects, therefore suggesting that both processes are rather independent. 

Whether the absence of p53 uncovered genomic insults posed by the hypomethylated 
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genome or if it creates a sensitive, genetic background more prone to defects, remains 

to be studied in the future and likely will bring new mechanistic insights.  

Our results demonstrated that global DNA hypomethylation did not significantly impact 

the expression of transposition-competent elements or the major satellite repeat 

sequences. Although DNA methylation levels are significantly downregulated in the 

absence of DNMT1, DNMT-independent mechanisms in the cells work to repress 

transposable elements. Notably, the KRAB-associated protein (KAP1), directed by Zinc 

Finger Proteins, is able to recruit the H3K9 methyltransferase SET domain bifurcated 1 

(SETDB1) to the transposon loci and thus facilitate their silencing even after the depletion 

of DNMT1176.  

Other non-coding sequences in the genome, such as microsatellites, are too repetitive 

to be examined using qRT-PCR or conventional RNA sequencing techniques. Further 

studies using nanopore sequencing methods, which are adapted for long reads, could 

be applied to elucidate the changes in expression of these sequences in DNMT1-

deficient cells. Although demethylated transposable elements were found to be 

recombination hotspots in testis49, our DNA damage staining and karyotyping results 

argue against the recombination or chromosomal translocation events occurring in the 

DNMT1-deficient hPSCs. 

Taken together, we conclude that hypomethylation of DNA does not likely trigger a 

genomic instability directly, albeit we cannot exclude the presence of DNA abnormalities 

as secondary, indirect consequence. These observations prompted us to consider and 

investigate other mechanisms that are responsible for the loss of fitness observed upon 

the DNMT1 removal in human embryonic stem cells. 

 

 

 

 

 

 



75 
 

CHAPTER 3. Simultaneous profiling of cytosine methylation and 

transcripts levels in individual cells. 
 

Our 5mC ELISA-based measurements in the DNMT1-depleted hESCs highlighted that 

about 30% of DNA methylation was retained in the cell population. This result could be 

achieved in two ways: (1) either the majority of cells retain a similar low levels of the 

global DNA methylation or (2) the population consists of a heterogeneous mixture of cells 

containing both high and low levels of DNA methylation. In order to elucidate which 

possibility is correct, we employed a technique that would allow us to quantify the 

methylation level and genome-wide distribution of this epigenetic mark in individual cells. 

Bisulfite conversion. Sequencing-based methods assaying DNA methylation rely on 

bisulfite conversion9 reaction, in which unmethylated cytosines are deaminated and 

thereby converted to uracil. The methylation status of each cytosine is monitored by the 

subsequent DNA sequencing, where deaminated cytosines pair with adenines and are 

thus interpreted as thymines, while methylated cytosines are not. By comparing the DNA 

sequence of a reference human genome with the sequencing results after bisulfite 

conversion, the converted cytosines (previously methylated) are distinguished from 

endogenous thymines. Because of the introduced nucleotide alteration, the sequencing 

reads carry the information about the DNA methylation status and can be subjected to 

quantitative and qualitative analyses. 

Genome-wide profiling of DNA methylation. Due to the large information content and 

complexity of genomes, mapping DNA methylation sites across the entire genome 

requires next generation sequencing (NGS) approaches.  Several methods 

implementing bisulfite conversion have been developed to date. For example, the Whole-

Genome Bisulfite Sequencing (WGBS)184, can be used for quantifying the cytosine 

methylation level across all the CpGs in the genome. Because CpGs are 

underrepresented and unevenly distributed across the human genome, sequencing of 

the entire genome is cost inefficient. Therefore, several strategies have been developed 

to enrich for the reads of interest. One of such approaches is an immunoprecipitation of 

methylated DNA (MeDIP), which uses an antibody against 5-methylcytosine to enrich for 

DNA fragments containing methylated cytosines185. Another strategy, called Reduced 

Representation Bisulfite Sequencing (RRBS), focuses sequencing on the relevant, CpG-

containing loci, enriching for the gene-proximal regions and lowering the coverage of 

numerous repetitive sequences or gene deserts 186. RRBS utilizes the DNA restriction 

enzymes that contain the CG dinucleotide in their recognition sites to fragment the DNA, 

producing fragments containing CpG-enriched sequences.   



76 
 

Single-cell sequencing. We recognized that the RRBS technology presents an 

attractive and powerful approach to assess the cytosine methylation status in our studies 

on the DNMT1-dependent DNA methylation. Therefore, we leveraged the power of DNA 

methylation analysis and combined it with the sequencing of single cells. Single cell 

sequencing methods are the state-of-the-art approach to address heterogeneity in a cell 

population. For example, single cell sequencing of transcriptomes facilitated the 

identification of cell subpopulations in complex tissues, such as the brain187 and 

characterization of dynamically changing processes, such as gastrulation188. Protocols 

assaying transcription, DNA methylation, chromatin accessibility, histone modifications 

or combinations of several readouts have been developed and implemented in a number 

of recent studies189–191.  

Because the amount of DNA material for all single cell analyses is the limiting factor, we 

considered the variant of RRBS, the single-cell reduced representation bisulfite 

sequencing (sc-RRBS)192 approach as the most suitable for our studies.  The protocol 

for the sc-RRBS includes all the steps of a regular RRBS in a single tube to minimize 

loss of DNA material from the single cell. This technique succeeded at quantifying the 

demethylation of maternal and paternal pronuclei in mouse zygotes, as well as, providing 

qualitative data on the regions that were losing DNA methylation with a different kinetics 

than others192.  

DNA methylation profiling combined with transcriptome profiling in individual 

cells. Because one of the roles of methylated cytosines is to restrict transcription193, 

ideally one would combine information of the cytosine methylation status together with 

transcript profiles in every cell. Therefore, we decided to combine the sc-RRBS with 

another technique: single cell RNA sequencing (scRNAseq)120. RNA sequencing is a 

method for assaying the mRNA transcripts level of all the genes; and its single cells 

version has been broadly used recently.  

The development of a new technology (FIG X) that combines single-cell methylome and 

transcriptome analysis was performed by Hongcang Gu, Arman Mohammad and 

Andreas Gnirke of the Broad Institute. To obtain single-cell libraries, the polyadenylated 

RNA was first isolated by hybridysation of biotinylated oligo(dT) followed by 

immunopurification of poly(A)-containing mRNAs with streptavidin beads. After the 

subsequent reverse-transcription reaction, the cDNA was converted into SMART-Seq2 

sequencing library and processed as described before120. Concomitantly, the genomic 

DNA of each sample was purified, digested with enzymes, ligated to adapters and 

bisulfite-converted. Our collaborators Caleb Laureau, Ayush Raman and Martin Aryee 
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have processed the raw sequencing data and aligned the reads to the human genome 

using a custom firecloud-based pipeline for scRRBS121. The DNA methylation and 

transcription data were analyzed by Jocelyn Charlton and Sudhir Thakurela, 

respectively. Altogether, the resulting technology of dual sequencing - scRNAseq+RRBS 

(described in more details in the Methods section) empowered us to simultaneously 

study the distribution of DNA methylation and the transcriptional output originating from 

each individual cell.  

 

6.13 The combined scRNAseq and RRBS dual protocol dataset  
 

We followed the decay of DNA methylation and its impact on the steady state RNA 

abundance after transcriptional shutoff of DNMT1 in the TetOFF DNMT1 hESCs. Our 

study included 9 timepoints (day 0 to day 8 with or without the transcriptional shutoff of 

the DNMT1 transgene) where cells were fixed daily and FACS-sorted simultaneously. 

The libraries were prepared as described and sequenced on the Illumina HiSeq 4000 

machine. With 78% read mapping to the human genome a median of 1,031,026 CpGs 

were covered at least once, which is very similar to the efficiency obtained by Guo and 

colleagues in their sc-RRBS protocol194. By comparison, an alternative sc-WGBS195 

protocol yielded more CpGs mapped (3.7x106 on average), however, (1) it covers fewer 

CpGs than the RRBS methods and (2) there are fewer matched regions covered 

between cells, which would make that method less optimal for our purposes. 

The scRNAseq protocol yielded a median of 963,842 transcripts uniquely mapping to the 

genome. This covers a median of 5,626 genes expressed per cell with an expression 

level of at least 0.1 transcripts per million (TPM).  Overall, these statistics from the both 

sc-RRBS and sc-RNAseq indicate that the experiment and the general approach were 

technically successful and thus will be suitable for further analyses. 

In order to avoid biases and false data, we filtered out cells where the protocol yielded 

suboptimal results, for example, we excluded cells with low number of mapped reads in 

either protocol. In the analysis of scRNAseq, we also excluded the cells with read number 

higher than 1 standard deviation from the average, as these were highly likely to 

represent cell doublets. 96% and 76% of the cells passed the scRBBS and RNAseq, 

respectively. Taken together, 72% of the cells passed both the RRBS and RNAseq 

criteria and were used in our analysis.  

While mapping the cells to the genome, we noticed that cells collected after day 4 show 

expression profiles enriched in ribosomal RNAs (rRNAs). Because the transcript capture 
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method used in our protocol is based on purifying the polyadenylated RNAs and rRNAs 

are not polyadenylated, we suspected that this scRNAseq library was contaminated with 

the genomic DNA. Thus, the samples representing this time point were excluded from 

the transcriptome analyses.  

 

 

Figure 17. Dual protocol overview. 

 



79 
 

6.14 Quantitative and qualitative study of DNA methylation in the 

individual DNMT1-depleted cells  
 

We used the resulting data sets to analyze the amount and distribution of the methylated 

cytosines in the individual cells, as well as in the pools of cells from the matching time 

point with the goal of finding a common characteristic for the regions retaining DNA 

methylation in the DNMT1-deficient cells. To this end, we investigate the methylation on 

the scale of chromosomes, as well as at specific sets of loci, stratified by their function. 

First, we plotted the mean DNA methylation of cells at each time point, as well as the 

methylation average of individual cells (FIG 18). Consistently with our 5mC ELISA results 

(FIG 4C), the global levels of methylated cytosines decrease gradually over time and 

plateau in samples collected five days after the transcriptional shutdown of DNMT1. 

Interestingly, the DNA methylation profile shows highly variable patterns between the 

cells before this time point (for example, at day 3) and thus, after averaging, gives an 

intermediate value. This variability could stem from (1) a technical reason, the 

heterogeneous response to blocking transcription in the TET-OFF system; (2) a 

biological reason, intrinsically heterogeneous response to the reduction of the DNMT1 

protein levels; or (3) the number of cell division the cells went through since the reduction 

of DNMT1 protein. 
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Figure 18. DNMT1 depletion results in loss of DNA methylation. Violin plot representing 
the mean methylation (indicated on top) across hESCs depleted for DNMT1 for the 
indicated amount of time. Each dot represents the mean DNA methylation of a single 
cell. 

 

Interestingly, even at the final time point (after 8 days of DNMT1 depletion), we did not 

find cells that would retain less than 10% global methylation, suggesting that further 

reduction in global DNA methylation could be incompatible with survival. On the contrary, 

only a few cells retained the methylation levels above 60% beyond day 5, which could 

be a result of their early, spontaneous terminal differentiation into a non-mitotically 

engaged cell type that would prevent dilution of the methylated cytosines in the genome 

even in the absence of the maintenance DNA methyltransferase, DNMT1.  

 

6.15 Investigating the DNA methylation on chromosomal level 
 

We wondered if any retention of methylated cytosines could occur by the virtue of 

inheriting highly methylated chromosomes from the parental cell. Therefore, we sought 
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to characterize the global DNA methylation decay on the chromosomal level in more 

details. 

Even though cytosine in the CpG dinucleotide is the substrate for DNA methylation, there 

are specific sequence contexts that are preferably unmethylated. These are the CpG-

dense regions of high guanine-cytosine richness called the CpG islands (CGIs)36, 

genomic features overlapping with 70% of gene promoters in the human genome37. 

In contrast, in the other parts of the genome, CpG dinucleotides are typically 

underrepresented (averages at less than 1% while expected is 4.4%)38. The sequence 

of the human chromosome 19 is enriched for the CpGs, as it contains high gene density. 

In fact, its total cytosine methylation content is reduced 3-6% as compared to the average 

in the human genome. The same trend was maintained in the DNMT1-depleted cells 

while monitoring the loss of DNA methylation (FIG 19A, B). 
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Figure 19. Mean chromosome CpG density does not predict DNA methylation retention 
in DNMT1-depleted hESCs. A. Plot depicting the CpG density of each of the human 
autosomes. B. Plot depicting the deviation of DNA methylation from the average of all 
the cells belonging to the indicated time point (Y axis), and the chromosome CpG density 
(X axis). 
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We plotted the mean methylation of each chromosome in each individual cells (FIG 20). 

The control cells (day 0) display a high level of DNA methylation across all chromosomes 

(60-80% of CpGs). We suspect that this variation is likely due to some cells actively 

undergoing replication. In the control cells, the DNA methylation of any given 

chromosome closely correlates with the mean DNA methylation level of the cell. 

As the cells lose DNMT1, the pattern of mean DNA methylation on chromosomes 

changes profoundly. After three days of DNMT1 depletion, the cells retain a consistent 

methylation average on their chromosomes, however, we observed variability between 

cells (FIG 20). In contrast, the cells collected at day 4 consisted of both highly and lowly 

methylated chromosomes, despite their similar methylation means. We hypothesize that 

these variable patterns at day 3 could likely result from a kinetics of DNMT1 protein 

depletion, for example the cells could retain DNA methylation across the genome thanks 

to the residual DNMT1 (that would be below the western-blot detection limit; see FIG 

5A). At day 4, however, the DNMT1 protein is no longer present, thus the retained 

methylation level will depend solely on how much DNA methylation was inherited from 

the parental cell. At the latest time point, day 8 after the transcriptional shutoff of DNMT1, 

the analyzed cells show a homogenous and consistently low DNA methylation pattern 

on chromosomes. We did not find evidence of specific retention of DNA methylation on 

any particular chromosome.  The DNA methylation level we found in the cells at day 8 

likely marks the minimal level of DNA methylation compatible with survival.  

Overall, our results indicate that the survival of the DNMT1-deficient cells is not linked to 

the DNA methylation level at any particular chromosome, but rather the retention of this 

epigenetic mark across the entire genome. We hypothesize that the retained DNA 

methylation reflects the level of the mark required for survival. It remains to be studied if, 

in the absence of DNMT1, the de novo methylation obtained through overexpressing 

DNMT3A/B could substitute it. 

Next, we asked if the position of CpGs along the chromosome determines their 

maintenance in the absence of DNMT1. FIG 21 shows a representative plot of CpG 

methylation at chromosome 5 in 30 randomly chosen cells at day 0, 5 and 8 (due to the 

limiting number of reads, these CpGs were not matched). We found the DNA methylation 

seems to be scattered across the chromosome length and does not show any 

preferential maintenance towards the telomeric or centromeric end of either arm (FIG 

21).  
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Figure 20. Mean chromosome methylation of globally DNA hypomethylated DNMT1-
deficient hESCs. Heatmap representing the mean DNA methylation of each 
chromosome in the cells at the indicated time point. Gray square – no data. 
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Figure 21. Distrubution of DNA methylation across the chromosome in DNMT1-depleted 
cells. Heatmap of DNA methylation of each CpG mapped across the short (p) and long 
(q) arms of chromosome 1 in 30 randomly selected cells and day 0, 3 and 8. Red bar 
represents methylated cytosines and black bar represents unmethylated cytosines. 

 

 

 

6.16 Qualitative analysis of DNA methylation 
 

Because downstream in-depth analyses required a more substantial read coverage, we 

pooled the scRRBS reads from the cells belonging to a single time point. For the 

subsequent analysis, we stratified the human genome based on the function of each 

region. Our features of interest were gene promoters, introns, exons, enhancers, CpG 

islands and transposable elements. Intrinsically, these different regions vary in the DNA 

methylation level. The CGIs had the lowest average methylation level, averaging at less 

than 15% methylation. As these coincide with most of gene promoters in human genome, 

the promoter regions showed lower DNA methylation than the genome average (FIG 

22A). In contrast, gene bodies are methylated, evident from the mean methylation levels 

of both introns and exons. We identified intermediate levels of DNA methylation at 

annotated enhancers. The DNA methylation level of transposable elements, such as 

LINEs, was about 10% higher than the genome average (FIG 22B). This is consistent 

with the conserved role of DNA methylation in transcriptional silencing of these 

regions196. Again, once we analyzed the genome DNA methylation profile of DNMT1-

depleted cells, the genomic features showed neither preferential depletion nor 

preferential retention of the mark. Therefore, we considered to stratify the genome based 

on histone modifications and monitored the methylation level at regions enriched in 

specific histone marks based on the ENCODE ChIP-seq data197. Of our interest were 

marks found at enhancers (H3K27ac, H3K4me3), promoters (H3K4me3) and active 

genes (H3K36me3) as well as the repressive mark H3K9me3198 (FIG 22C). Similarly to 

genomic features, none of the histone marks was associated with preferential retention 
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of DNA methylation. For example, H3K9 trimethylation, a histone mark associated with 

heterochromatin was enriched with high DNA methylation, as previously observed199. 

Similar to the pattern in the entire genome, the loss of DNMT1 elicits a progressive 

reduction in DNA methylation in the H3K9me3-associated regions.  

 

Figure 22. DNA methylation is lost proportionally across genomic features in DNMT1 

deficient cells. A., B., and C. Mean DNA methylation level from pooled scRRBS data for 

each time point for listed genomic features, repetitive elements and DNA underlying 

chromatin marks, respectively. D. Representative snapshot of DNA methylation plotted 

across 200kb of the human genome (location listed above), including POU5F1 locus. 

The data was captured in WGBS200 (in gray) or scRRBS (cells from each time point were 

pooled together). Each dot represents a single cytosine. Red box encircles an enhancer 

element, while the green box encircled the promoter.  
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We used the pooled the scRRBS data to visualize the extend of the global DNA 

methylation decay (FIG 22D). A representative snapshot of POU5F1 locus shows the 

high global levels of DNA methylation in wild-type hESCs (gray; published WGBS 

data200) and untreated TetOFF DNMT1 line, punctuated by loci of low DNA methylation 

(promoter). Upon the depletion of DNMT1, previously highly methylated regions become 

intermediately methylated. Sharp dip in enhancer methylation (red box) became wider 

due to the methylation around being lost. The POU5F1 promoter (green box) maintained 

its unmethylated state (FIG 22D).  

Altogether, consistent with previously published results95, we observed that DNA 

methylation was lost proportionally at all the listed features, following the trend line of the 

bulk genome average. While the features with low DNA methylation lost less of the mark 

as compared to transposons, all of them retained the methylated cytosines at about 50% 

their respective initial levels. Indeed, only 22% of the autosomal CpGs are dynamically 

regulated throughout normal development200, suggesting that the remaining CpG 

methylation could likely be maintained by DNMT1. This agrees with the DNMT1 role as 

a global maintenance methyltransferase201. 

Gene promoters. Subsequently, we studied the DNA methylation decay in the 

promoters of coding genes (FIG 23A). We hypothesized that since the very few 

promoters are highly methylated in hESCs202, they could preferentially retain DNA 

methylation, but not be well-represented when plotting the average methylation of all 

promoters. Instead, we plotted the frequency of promoters bearing certain DNA 

methylation levels at each time point of the experiment. As previously reported, the 

majority of promoters were unmethylated, with very few promoters methylated above 

80% in control cells (red line). Contrary to our hypothesis, the highly methylated 

promoters did not retain their methylation when DNMT1 was absent. Instead, the 

population of highly methylated promoters (>80%) was gradually reduced after day 5 

(<20%; FIG 23A).  

Because the majority of promoters for coding gene consist of CpG Islands, they display 

low levels of DNA methylation. In fact, the difference is so striking that they create dips 

of a local hypomethylation in the otherwise highly methylated genome200. The edges of 

these CpG Islands were named CGI shores and these are thought to be dynamically 

methylated by competition between de novo DNA methyltransferases (DNMT3A/B) and 

TET demethylases 72. In order to examine if the distribution of DNA methylation within 

the promoter region was altered, we performed a metagene analysis centered around 

the transcriptional start sites (TSS) of all genes surrounded by 5kb upstream and 5kb 
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downstream sequences (FIG 23B). We found that the DNA methylation in TetOFF 

DNMT1 cells was reduced evenly throughout the experiment. We observed no 

preferential retention of the epigenetic mark up- or downstream of the TSS. A similar 

metagene analysis of all the exons and their surrounding regions displayed the identical 

trend of a gradual loss of DNA methylation with no qualitative change in its pattern (FIG 

23C).  

 

Figure 23. The distribution of DNA methylation across promoters and exons in DNMT1-

deficient hESCs. A. Density plot depicting DNA methylation across the promoters  
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(± 1kb from the TSS, with at least 5 CpGs covered; n = 22,555) in pooled cells from each 

time point. B. and C. Metagene analysis of DNA methylation of all promoters and all 

exons, respectively, including ±5kb region around.  

 

Overall, our in-depth analysis demonstrates the DNMT1-depleted cells did not 

preferentially maintain DNA methylation at any genomic features. It is possible, however, 

that there are certain genomic regions that are (1) not annotated or (2) covered by 

multiple annotations. To gain an unbiased view on the genome, we tested if DNA 

methylation was retained at any loci using a differential analysis. To this end we divided 

the human genome into 500bp tiles and kept only the tiles with five or more CpGs present 

(FIG 24A). Next, we asked if any of the tiles contained over 50% DNA methylation at the 

given time point. As expected, the number of such tiles decreased over time, but there 

were still some present even at late time points, between days 6 and 8 of DNMT1-

depletion (FIG 24A). We asked if any of these methylated tiles are present in multiple 

final time points (FIG 24B). We have found 4,237 regions maintained (0.7% of all tiles) 

at days 6, 7 and 8, and 19,956 (3.5% of all tiles) that were maintained in at least 2 out of 

3 time points. We asked what genomic features the overlapping tiles belonged to (FIG 

24C). The majority of tiles was located in introns and they were mostly mapped to repeat 

elements (75%). The main repeat element was assigned to short interspersed nuclear 

elements (SINEs) (over 50% of tiles). Closer inspection revealed that most of these 

SINEs were Alu elements, the most abundant class of SINEs in the human genome(FIG 

24D)80. Curiously, both evolutionary young Alu elements203 (such as AluY) and more 

conserved (AluSx) were found with high DNA methylation levels despite the loss of 

DNMT1 (FIG 24E). Of note, our analysis used reads uniquely mapped to the human 

genome to assign their identity and genomic coordinates with high confidence. As most 

of the repeat elements are present in multiple copies in the human genome, we might 

only capture a fraction of highly methylated Alu elements. Future analysis using the 

newest sequencing technologies applying long sequencing reads for long single DNA 

molecule analysis will be required to determine the methylation at other repetitive 

elements. 
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Figure 24. Preferential retention of CpG methylation in DNMT1-deficient hESCs. A. 

Density plot depicting the methylation of the genome divided into 500bp tiles (n = 571,303 

500bp tiles with at least 5 CpGs covered) in cells pooled from each time point of the 

scRRBS experiment. Bray dotted line represents 50% DNA methylation cutoff. B. Venn 

diagram depicting the overlap of 500bp genomic tiles from A., which retained at least 

50% methylation at designated time points. Number of overlapping tiles is listed. Overlap 

significance pval ≤10-270 C. The identity of genomic features that include the 50%≤ DNA 

methylated tiles overlapping at time points 6, 7 and 8. SE – super enhancers, CGI – CpG 

islands, TSS – transcriptional start site. D. Table depicting the frequency of top 5 classes 

of transposable elements overlapping with the DNA methylation-retaining tiles in the 

experiment (left side) and in the genome (right side). E. Table depicting the identity of 

top10 SINE elements most frequently overlapping with the tiles preferentially retaining 

DNA methylation. 

 

Why is the DNA methylation retained at these elements? One possible explanation could 

be that these particular elements were recognized by the TRIM28/ZFP machinery 

specialized in silencing transposons51. The TRIM28-based silencing system facilitates 

specific recruitment of de novo DNA methyltransferases. The odds of these elements 

being actively methylated could be affected by the fact that they lie mostly in the 

intragenic regions. Alternative a TRIM28-independent mechanism would involve a 

chromatin marker of transcribed genes, a histone modification H3K36me3, which is 

recognized by PWWP domain-containing proteins204. It was shown that DNMT3A and B 

both contain the PWWP domain that are necessary and sufficient to recruit the enzymes 

to DNA for its subsequent action18. Further experiment will need to be conducted to 

address the role of TRIM28 and the transcription process in the DNMT1-independent 

DNA methylation maintenance of SINEs. 

 

6.17 Summary 
 

In this study, we employed a single-cell sequencing method to measure the abundance 

and genomic distribution of DNA methylation in the DNMT1-deficient hESCs. In 

agreement with our previous 5mC ELISA results, we found that depletion of DNMT1 on 

the transcriptional level leads to a gradual, but not complete, loss of DNA methylation. 

By examining methylation levels in individual cells, we demonstrated that in the final time 

point of the experiment the low average levels (around 25%) of this mark in DNMT1-

depleted cells are maintained across the population. The DNMT1-depletion phenotype 

is therefore robust, as we did not see cells that would retain their DNA methylation 

despite the absence of the maintenance methyltransferase. 



92 
 

Curiously, we have not captured any cell that would retain less than 10% of global DNA 

methylation, suggesting that, unlike mESCs, a complete demethylation of hESCs is 

deleterious. The alternative explanation could be that de novo methyltransferases 

DNMT3A/B are able to maintain this level of DNA methylation on their own. Single-cell 

sequencing data of even later time points than examined here (such as the day 12th), 

could further corroborate this hypothesis.  

Through the analyses of (1) chromosomes, (2) regions or (3) tile-level DNA methylation, 

we were able to demonstrate that the distribution of retained DNA methylation was 

largely stochastic. The only exception was a small subset of elements, mostly belonging 

to the Alu TE family, which remained highly methylated (over 50% mean methylation), 

even up to 8 days post DNMT1 depletion. These regions were continuously methylated 

across examined time points suggesting the ongoing maintenance process in a DNMT1-

independent manner. In such case, the maintenance could only be performed by the de 

novo methyltransferase enzymes DNMT3A and DNMT3B.  

Our lab demonstrated that DNMT3A and 3B maintain DNA methylation on a set of 

genomic loci95. However, we did not observe changes on these loci in the absence of 

DNMT1. Our data could indicate that DNMT3A and 3B are only preferentially recruited 

to a few of their substrate loci for methylation, while the rest of their targets are the 

genomic regions maintained by DNMT1. In the absence of DNMT1, de novo DNA 

methyltransferases are presented with thousands of new substrate loci for DNA 

methylation, nevertheless the DNA methylation drops to low levels. We hypothesize that 

the de novo DNMTs abundance could be the limiting factor for maintaining global DNA 

methylation in the absence of DNMT1. An alternative explanation could be a lack of 

additional factor, which would be needed to recruit DNMT3A or 3B to the hypomethylated 

loci. Finally, the loss of DNA methylation could be followed by transcriptional activation 

which, in turn, prevents the establishment of de novo DNA methylation. Further studies 

will offer some other possible interpretations of this paradigm. Indeed, the 

overexpression of DNMT3B in mouse cells was found to cause DNA hypermethylation205, 

reinforcing the hypothesis that the abundance of de novo methyltransferases in a cell 

could be a mechanism to maintain global DNA methylation in the absence of DNMT1. It 

would be interesting to study, whether overexpression of DNMT3B could substitute for 

DNMT1 by maintaining higher levels of global DNA methylation. 
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6.18 Single-cell transcriptome  
 

The transcriptional state determines the identity of the cell and reacts to intracellular and 

extracellular signals. Because of the role of DNA methylation in repressing transcription, 

we hypothesized that a genome-wide loss of DNA methylation will impact the 

transcriptome of the cells. Previous studies of the expression changes in DNMT1KO 

cells98,102,176 reported different extent to which the transcriptomes were affected by the 

global DNA hypomethylation. This could be ascribed to many factors, such as differences 

between cell types and sequencing methods used. With our dual-sequencing protocol, 

we analyzed the transcriptome of single cells, as well as the relationship between gene 

methylation and expression. We have also pooled scRNA-seq data from cells to compare 

changes in gene expression across time points. 

With our dual-sequencing protocol, we had the unique ability to analyze not only DNA 

methylation but also the transcriptome of single cells that gave us a relationship between 

the gene methylation and expression. Therefore, we have the pooled scRNA-seq data 

from cells to compare changes in gene expression across time points. 

 

The tSNE clustering. In order to visualize the differences between transcriptional states 

of single cells, we utilized tSNE clustering, which is an analysis method that groups cells 

based on the similarities between their transcriptomes (FIG 25).  While, in this method 

the composition of the transcriptomes is the most relevant to assign single cells into 

clusters, the distances between clusters is less crucial. We then colored the plot based 

on different criteria, such as the time point of collection (FIG 25, 26), number of mapped 

reads, number of expressed genes or mean DNA methylation. We did not observe 

technical bias introduced by these variables that could affect the clustering. 

Next, we examined how biological factors, such as the time point of collection post-

DNMT1 depletion or the mean level of DNA methylation correlate with the clustering. We 

observed distinct clustering of cells from time points 0 and 3, which formed one cluster. 

The cells from time points 1 and 2 formed a separate cluster. In contrast, the cells from 

later time points (5 through 8) formed three distinct clusters. These results suggest that 

later time point hypomethylated cells are more similar to one another than to the cells at 

earlier time points (days 1 and 2), or the control. We did not observe clustering of cells 

according to the mean level of DNA methylation (FIG 25B). For example, cells from the 

highly methylated time point 0 cluster with the cells from time point 3, which exhibit a 

variable amount of DNA methylation. These results suggest that the length of DNMT1 
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deficiency period is a better predictor of transcriptional cell-to-cell similarity than the 

amount of methylation retained by the individual cells.  

 

Figure 25. tSNE clustering of DNMT1-deficient hESCs based on their transcriptomes. 

A. Unsupervised clustering of TetOFF DNMT1 hESCs collected in the scRNAseq 

experiment. B. tSNE clustering colored by mean DNA methylation of each cell. C. tSNE 

clustering colored by the collection time point. 
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Figure 26. tSNE clustering of DNMT1-deficient hESCs does not depend on technical 

variability. A. Unsupervised clustering of TetOFF DNMT1 hESCs collected in the 

scRNAseq experiment. B. tSNE clustering colored by library run in which the cells were 

prepared and sequenced. C. tSNE clustering colored by number of genes expressed 

per cell. D. tSNE clustering colored by the number of mapped reads. 
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6.19 Identifying transcriptional changes occurring in response to the 

loss of DNMT1 
 

In order to identify any DNA methylation level-driven changes, we analyzed differentially 

expressed genes between the highly and lowly methylated cells from time points 5-8. 

We compared the transcriptomes of cells retaining the highest mean DNA methylation 

(more than 35%) to the least methylated ones (less than 20% average DNA methylation; 

FIG 27). Interestingly, no genes differed significantly in their expression between the two 

groups (representative examples shown in FIG 27B). We then concentrated on the 

transcriptomic differences between time points to define their possible effect on cell 

fitness. To this end, we explored the differences between the transcriptomes of pooled 

cells at each time point of the experiment (1-8) to the control cells (time point 0). The 

number of differentially expressed genes (DEGs; at least 2-fold difference in the average 

expression between the time points and a qval≤0.05) is shown in FIG 28. We observed 

that the number of upregulated genes is higher than the number of genes that become 

downregulated for each of the time points. Both day 1 and day 2 exhibited around 300 

DEGs each. While we only saw 24 DEGs at day 3, consistent with cells from that time 

point clustering closely with control cells, cells at day 5 again exhibited an increased 

transcriptional deregulation. Moreover, the longer the cells were hypomethylated, as 

seen in the case of time points 5 through 8, the more DEGs were identified. The lists of 

top 100 differentially expressed genes can be found in Table 8. 



97 
 

 

Figure 27. Expression in most and least DNA methylated cells from DNA hypomethylated 
time points. A. Violin plot depicting mean DNA methylation of cells at the experimental 
time points post DNMT1 depletion. Pink rectangle encircles the top highly methylated 
cells (mean methylation >0.35). Blue rectangle encircles the most hypomethylated cells 
(mean methylation <0.2). The number of cells and cells also covered in the scRNAseq 
analysis is listed. B. Violin plots depicting representative examples of differentially 
expressed genes. 

 

In order to explore the function of the differentially expressed genes, we sub-divided 

them into classes of functionally related genes. To this end, we performed gene ontology 

(GO) analysis125,126,206 on the separated groups of up- and downregulated genes at each 
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time point. Top 10 GO terms with the lowest FDR for the gene sets are shown in Table 

9. Since day 3 only presented 24 DEG in total, it was not significantly enriched for any of 

the terms and is not represented in the figure. 

 

 

Figure 28. Differentially expressed genes. Bar graph representing the number of 

differentially expressed genes between pooled scRNAseq data from control cells and 

each experimental time point. Up- and downregulated genes are colored in orange and 

blue, respectively. 

 

Transcriptional downregulation in the DNMT1-deficient cells. We first focused on 

the analysis of downregulated genes that came out unexpectedly given the negative 

regulator role of DNA methylation. We found the analyzed time points were enriched in 

several categories, such as Signal Recognition Particle (SRP)-dependent co-

translational protein targeting to membrane, viral process, or nonsense-mediated decay 

(NMD). It turned out that all these processes were actually significantly enriched because 

of the same group of genes ascribed to multiple categories. The inspected genes 

belonged to Ribosomal Protein Genes (RPGs), a family of highly conserved proteins 

that, together with ribosomal RNAs (rRNA), make up the ribosome. There are nearly 80 

RPGs in the human genome207 and a recent publication has sub-divided RPGs based 

on profiles of expression in different tissues and in cancer cells, suggesting that subsets 

of the ribosomal protein genes have a common regulatory mechanism208. We have 

compared the RPGs downregulated across early (days 1 and 2) and late (days 6 – 8) 

time points with the published RPG classification. The RPGs downregulated in our 
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experiment did not belong to tissue-specific or cancer-downregulated classes defined in 

the previous study208 (FIG 29). 

 

 

Figure 29. Downregulated Ribosomal Protein Genes do not belong to a single expression 
group. A. Heat map representing the expression of downregulated RPGs. B. and C. 
Venn diagrams depicting the overlap between previously distinguished208 subgroups of 
ribosomal protein genes (in blue and pink) and RPGs downregulated at day 2 (B.) or day 
8 (C.) in the DNMT1-deficient hESCs. 
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Upon the removal of RPGs from the downregulated gene lists, a few general metabolic 

terms were found to be statistically significant. We investigated the roles of these genes 

in metabolism and found several housekeeping genes209 that became downregulated, 

however, they did not belong to a single metabolic pathway. For example, we observed 

a downregulation of PGK1 (a glycolytic enzyme), tubulin (TUBA1B, which codes for a 

component of microtubules) or PPIA, a peptidyl prolyl cis/trans isomerase, a chaperone. 

It is worth noting that none of the housekeeping genes was completely silenced, 

however, they underwent a statistically significant 2- to 3-fold reduction in their 

expression.  

 

6.20 Transcriptional upregulation following depletion of DNMT1.  
 

Pro-apoptotic BAX gene. We next moved to study the genes upregulated in the 

DNMT1-deficient cells that are conceptually in line with the repressive role of DNA 

methylation in transcription. This pro-apoptotic protein is able to dimerize, open channels 

in the mitochondrial membrane to cause cytochrome C release into the cytosol and, in 

consequence, trigger the canonical apoptosis pathway210. The process is dependent on 

BH3-only family of proteins, which activate BAX. Another mitochondrial membrane 

protein called Bcl-2 acts as a safeguard. Upon BAX activation, Bcl-2 can inhibit 

mitochondrial membrane perforation by directly binding BAX211. Only after Bcl-2 is 

completely bound, excess of active BAX can lead to the activation of apoptosis212. BH3-

only family of proteins are activated by p53213. In the previous chapter we were able to 

demonstrate that TP53 knockout is able to partially rescue the DNMT1 absence-caused 

loss of fitness (FIG 14). If spontaneous BAX activation occurred in the DNMT1-depleted 

hESCs, the knockout of upstream factor (p53) would not confer rescue. 

The common upregulated genes in DNA hypomethylated cells. We continued the 

analysis of upregulated genes at other time points, again relying on the gene ontology 

analysis. Both day 1 and day 2 upregulated genes were enriched for GO terms related 

to metabolism. The fact that the transcriptome at day 3 was again more resembling the 

control argues against a differentiation program being triggered in response to the loss 

of DNMT1 protein. We hypothesize that this transient gene deregulation could be a 

response to the addition of doxycycline to medium or the cell plating conditions which, in 

order to maintain good attachment efficiency and survival, included treatment with Rho 

kinase inhibitor (ROCKi) for 24h after plating. Ideally, a second control consisting of dox-

untreated cells plated in the same way as the treated cells could confirm this hypothesis. 
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We then compared the differentially expressed genes conserved across the time points 

and asked what were the constantly upregulated genes. Out of 151, 144, 357 and 707 

genes upregulated with respect to control for days 5,6,7 and 8; 64 were upregulated in 

all time points (FIG 30). 

  

 

Figure 30. Overlap of Differentially Expressed Genes in globally DNA hypomethylated 
hESCs. Venn diagram depicting the overlap between DEGs from time point 5 (green), 6 
(blue), 7 (purple) and 8 (pink). The number of genes in each overlap is indicated. 

 

We have also explored genes upregulated at earlier time points (d5 and d6) and later 

time points (d7 and d8). The lists of top 100 upregulated genes common for designated 

time points can be found in Table 10. The upregulated genes common for all time points 

between day 5 and 8 included transcripts present only in a variety highly specialized 

tissues, such as MYL7 – myosin light chain specifically expressed only in the heart 

muscle. Another example is the upregulation of neurotensin (NTS) that encodes for a 

neurotransmitter. A different category found in the upregulated genes included metabolic 

genes which are highly expressed in most tissues, such as the carbonyl reductase 1 

(CBR1), an NADH-dependent enzyme with wide substrate specificity. Interestingly, a 

common group of genes significantly upregulated in the examined time points were 

morphogens that belong to the Activin/Nodal signal transduction pathway – LEFTY1, 

CER1 and FST. The expression of LEFTY1 lies downstream of NODAL-mediated signal 

transduction and we were able to confirm NODAL upregulation at day 3, preceding 

LEFTY1 upregulation. The analysis of genes upregulated at only at the earlier time points 

(day 5 and day 6) showed similar upregulation of a few widely expressed and specialized 
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tissue genes, such as leucine tRNA synthetase (LARS1) and cranio-facial E3 ubiquitin 

ligase NOSIP, respectively. The latest time points (day 7 and day 8) were also enriched 

in metabolic and specialized tissue-specific genes, like cystatin (CST; a protease 

inhibitor present in saliva and other secretions). We also observed an upregulation of 

gonad-specific genes, such as the transposon silencer MAEL or a meiotic protein, called 

SYCP3. In line with the germline-specific coding genes becoming upregulated, we 

observed an upregulation of germline-specific long, non-coding RNAs (lncRNAs) from 

the XAGE, MAGE and GAGE families. Although numerous germline genes were 

derepressed, we did not observe the expression of the canonical germline markers (such 

as DPPA3 or DDX4), which suggests that the cells did not undergo differentiation into 

the germline lineage.  

Previous studies conducted in diverse cell types reported that DNMT1KO leads to the 

deregulation of germline-specific genes, since the expression of some gonad-specific 

genes is inversely correlated with the promoter DNA methylation, which is a negative 

regulator of gene expression91. We aimed to find out if more genes in the DNMT1-

deficient hESCs display similar expression dynamics. To explore this possibility, we 

identified genes, which lose DNA methylation at their promoter regions (d0 methylation 

is higher than d8 methylation by at least 40%) and belong to the genes upregulated at 

the d8 category. Both mean methylation and expression of such genes is plotted in FIG 

31. Indeed, for most germline-specific genes (including MAEL and SYCP3) the 

expression increases after promoter methylation has decreased. The upregulation of a 

few specialized tissue-specific genes (such as MYL7) also correlated with loss of the 

repressive DNA methylation from their promoter region. Nevertheless, less than 70 

genes identified in our analysis exhibited the trend of transcriptional upregulation 

following promoter hypomethylation. This is consistent with the idea that not only the 

absence of the repressive chromatin mark but also a positive signal, such as the 

presence of correct transcription factors is necessary for transcriptional activation. 

 



103 
 

 

Figure 31. Genes in which promoter methylation negatively correlates with expression. 

Heat maps representing the expression of indicated gene in all cells in the designated 

time point (left) or mean DNA methylation of their promoter (right). 

 

6.21 Summary 
 

We purified polyadenylated RNA from the single cell-sorted hESCs and processed it 

concurrently to the genomic DNA to obtain both transcriptome and DNA methylome 

information from single cells. We clustered the cells based on their gene expression 

profiles and found out that our cells clustered into three main groups: (1) Day 3 cells 

showed few genes that were differentially expressed with regards to control cells and 

thus clustered with time point 0. (2) Co-clustering of day 1 and day 2 cells, which was 

most likely caused by a response to passaging, ROCK inhibitor and doxycycline common 
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to these time points. (3) Cells collected at day 5 and onwards clustered separately and 

showed a most severe difference in gene expression compared to the control cells out 

of all the experimental time points. 

We analyzed the differentially expressed genes between cells belonging to different time 

points and control cells to identify how the loss of DNMT1 affects the transcriptional 

output of the cells. The DNA hypomethylated cells from time points 5- 8 demonstrated a 

progressively increased number of DEGs, suggesting that even when the DNA 

methylation is brought down to a minimum (a mean of about 25%), the changes in 

transcriptome are progressing. Upon investigation of the upregulated gene lists, we were 

able to identify certain gene expression patterns. The upregulated genes in DNA 

hypomethylated cells (time points 5-8) could generally be assigned to one of the three 

categories: (1) widely expressed metabolic genes; (2) specialized tissue-specific genes, 

which belong to diverse lineages; (3) gonad-specific transcripts. The deregulation of a 

large number of genes seemed to be mostly stochastic; the loss of DNA methylation at 

the promoter region directly preceded the activation of only a few genes.  

Taken together, our scRNAseq results identified some of the known genes upregulated 

in response to DNA hypomethylation, as well as other genes, the upregulation of which 

could be a hESC-specific response to global DNA hypomethylation. In the next chapter, 

we follow up on the changes in a few of these newly-identified DEGs, which belong to 

the Activin/Nodal signal transduction pathway. 

 

CHAPTER 4. Loss of DNMT1 increases sensitivity to the 

stimulus-dependent activation of transcription. 
 

Our transcriptomic analysis revealed that DNMT1 deficiency resulted in deregulation of 

gene expression. Furthermore, each consecutive day after ablation of DNMT1 yielded 

more differentially expressed genes with respect to controls. Among the upregulated 

genes, we found the Activin/Nodal signal transduction pathway. Since the activity of this 

pathway is essential for the pluripotency of hESCs214,215, we decided to explore how the 

imbalance in the expression of the Activin/Nodal pathway impacts the growth of hESC, 

and whether it contributes to the DNMT1-deficiency growth defect. 
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6.22 Characterization of the TGFβ superfamily Activin/Nodal signal 

transduction pathway. 
 

Morphogens are molecules which act proximally and distally to orchestrate embryo 

patterning216. Because of their mode of action, they are typically secreted and act through 

binding to an extracellular receptor. Some of the most studied morphogens belong to the 

Transforming Growth Factor Beta (TGFβ) superfamily, which includes the Activin/Nodal, 

BMP and GDF signal transduction pathways217.  

In mammals, the TGFβ/Activin/Nodal signal transduction pathway is activated by the 

following morphogens: TGFβ, Activin A, Activin B or NODAL. Activin A/B are recognized 

by heterotetrameric receptors consisting of two subunits of each ActRIIB and Alk4218. 

NODAL requires a co-receptor CRIPTO to enable signal transduction via ActRIIB and 

Alk4219. Therefore, both Activin A/B and NODAL converge on the same ActRIIB and Alk4 

receptors. On the other hand, TGFβ is recognized by a distinct heterotetrameric receptor 

consisting of TβRII and Alk5220.  

The binding of morphogens to their respective receptors results in the phosphorylation 

of receptor-associated Small Mothers Against Decapentaplegic (SMAD) proteins 

SMAD2 and SMAD3221. Upon phosphorylation, these factors bind a common mediator-

SMAD (co-SMAD), called SMAD4, and translocate to the nucleus to activate 

downstream target genes222. The target specificity is confined by distinct DNA sequence-

specific transcription factors modulating the binding of SMADs, such as p53, FoxH1 or 

OTX2223,224. In this way, the Activin/Nodal signal transduction pathway activates gene 

expression in a cell non-autonomous manner. One of the downstream targets of the 

pathway is the Nodal gene itself, which creates a positive feedback loop to amplify the 

initial input signal in this signaling pathway. This mechanism exists in the early embryo 

to maintain the high levels of NODAL protein in the epiblast and sustain its growth and 

identity225. Other genes activated downstream in a response to the NODAL stimulus are 

genes, the protein products of which act as direct inhibitors of NODAL: Lefty homologs 

(LEFTYA and B)226,227 and Cerberus (CER1). CER1 functions as a broader inhibitor of 

Nodal, BMP and Wnt228 signal transduction pathways. This creates a negative feedback 

loop, which in turn restricts the spatial activity of NODAL. 

In response to TGFβ/Activin/Nodal stimuli, a wide range of genes change their 

expression pattern. This transcriptional response downstream of the stimuli controls the 

viability of the epiblast cells and primitive streak formation (in vivo), or hESCs survival 

and meso- and endoderm differentiation (in vitro)229–231. We therefore explored if the 
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perturbations in morphogen expression could contribute to the loss of fitness phenotype 

in the DNMT1-deficient cells.  

 

6.23 Nodal signal transduction pathway components in cells 

deficient for DNMT1 
 

We re-visited our results of scRNAseq to investigate the expression of genes acting in 

the Activin/Nodal signal transduction pathway. We observed that loss of DNA 

methylation coincided with the deregulation of nearly all the morphogens in the Nodal 

signal transduction pathway (NODAL, FST, LEFTY1, LEFTY2, CER1) at different time 

points of the scRNAseq analysis. The only factor not deregulated was the gene encoding 

for Activin A, which is not expressed in hESCs (Fig 32A). The expression level of 

Follistatin (FST), a direct inhibitor of Activin232, increased as soon as day 1 after the 

transcriptional shut off of DNMT1 and remained upregulated throughout the experiment 

(FIG 32A). In contrast, NODAL was upregulated as soon as day 3 post DNMT1 depletion. 

Indeed, NODAL was one of the few differentially expressed genes between control and 

day 3 cells (Table 8). In agreement with LEFTY1 being a direct target of the NODAL-

induced signal transduction, the expression level LEFTY1 increased at day 5 and 

onwards, following the surge in NODAL expression (FIG 32A). 
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Figure 32. scRNAseq expression of Activin/Nodal signal transduction pathway 

morphogens. A. Heat map representing the expression value [TPM] of chosen genes 

of the Activin/Nodal signal transduction pathway. INHBA – Activin A. B. tSNE clustering 

of cells used in the DNMT1-depletion scRNAseq colored by time point, for reference to 

C. tSNE plot of scRNAseq results colored by the expression of chosen morphogens. 

Scale bar: log10(TPM+0.1). 
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To elucidate if the changes in expression were present in the most DNA hypomethylated 

cells, or if a small number of cells highly upregulated these factors, we examined the 

expression of NODAL inhibitors in the individual cells (FIG 32B and C). While nearly all 

cells from time points 5-8 expressed LEFTY1, the two remaining inhibitors of NODAL - 

LEFTY2 and CER1 became expressed as late as at days 7 and 8 and in smaller subset 

of cells. Nevertheless, the upregulation in these few cells significantly raised the average 

expression for the respective time point (Fig 32C and 33A).  

 

Figure 33. Expression of chosen morphogenes in DNMT1-deficient hESCs. A. Heat 

map representing the fold change in expression of NODAL, LEFTY1 and CER1 in 

scRNAseq hESC, B. bulk RNAseq and C. qRT-PCR (N=3). 

 

In order to corroborate these observations and gain further insights in gene expression, 

we performed RNAseq on the bulk population of DNMT1-deficient hESCs at the crucial 

time points of day 3, day 5 and day8 post DNMT1 depletion. To avoid naming confusion 

with the single-cell study, this will be referred to as “bulk RNAseq” (FIG 33B). 

We observed a similar trend of changes in the two sequencing analyses, when looking 

at the expression patterns of NODAL and LEFTY1. For example, we found ~2-fold 

NODAL upregulation at day 3, followed by subsequent increase in the expression of 

LEFTY1 at day 5, which was elevated further (5-6 fold) at day 8. Conversely to our 

scRNAseq results, which showed a 25-fold upregulation of CER1 at day 8, we observed 

a twofold upregulation of that gene in the bulk RNAseq study (FIG 33B). This analysis 

was further confirmed by qPCR measuring the transcription of the morphogens of 

interest (FIG 33C). As CER1 was highly expressed in a small subset of cells in 

scRNAseq, it could have been underrepresented in the bulk sequencing. Alternatively, 

the variation between the two approaches could stem from normalization methods during 

data processing. Nevertheless, both data sets agree on the trend of the change. 
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Altogether, our analyses show that the upregulation of NODAL is followed by the 

upregulation of LEFTY1 after depletion of DNMT1 in hESCs. 

 

6.24 Morphogen deregulation in the absence of Activin/Nodal signal 

transduction 
 

We next examined, whether the global DNA hypomethylation is (1) sufficient for the 

deregulation of NODAL and its antagonists and (2) if the signaling via SMADs is 

necessary in this process. Since hESCs rely on the SMAD2/3-mediated signaling for 

survival215, we genetically engineered the degron into the DNMT1 locus in Human 

Embryonic Kidney (HEK293T) cells, (developed by Simon Lauer); and utilized the 

PROTAC-based degDNMT1 strategy to induce small-molecule mediated depletion of 

DNMT1 (Described in chapter 2.2; further referred to as HEKdegDNMT1 line).  Addition 

of dTAG13 small molecule to these engineered HEKdegDNMT1 cells resulted in 

depletion of the DNMT1 protein in the western blot assay (fig 34A, clone #3).  
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Figure 34. Absence of Activin/Nodal morphogen upregulation in response to DNMT1 
depletion in HEK263T cells. A. Western blot results depicting the degDNMT1 HEK cell 
line inducible depletion of DNMT1 in the presence of dTAG13. Loading control – tubulin. 
Clone #3 was used in the subsequent analysis. Performed by Simon Lauer. B. qRT-PCR 
analysis of the expression of chosen morphogens (normalized to GAPDH) in cells 
deficient in DNMT1 and treated for 48h with 2µM SB421543 (TGFβ/Activin/Nodal 
receptor inhibitor). Error bars: SD. * pval≤0.05; ** pval≤0.005; *** pval≤0.0005; no 
comparison – not significant. N=3 
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To confirm if the SMAD2/3 phosphorylation does not occur in the DNMT1-depleted cells, 

we used a small molecule inhibitor of Alk4/5/7 receptor, called SB431542233. Next, we 

performed a qPCR analysis of the expression of genes that function in the Nodal 

signaling pathway in the control- and DNMT1-depleted HEKdegDNMT1cells, as well as 

the SB431542-treated cells (FIG 34B). As expected, none of the studied targets 

(NODAL, LEFTY1, LEFTY2 or CER1) was expressed in the HEK293T cells in the 

presence or absence of SB431542. Depleting DNMT1 using the degron system also did 

not lead to any significant changes in the expression of the examined morphogens (FIG 

34B; note very low expression levels). The result did not change upon the depletion of 

DNMT1 combined with SMAD2/3 inhibition by SB431542 (FIG 34B). The result did not 

change upon the depletion of DNMT1 combined with SMAD2/3 inhibition (FIG 34B). This 

is consistent with previous studies demonstrating that the expression of NODAL and its 

antagonists dependents on the Activin/Nodal signal transduction pathway activity227. 

Inducing the DNA hypomethylation is therefore insufficient to activate the expression of 

NODAL, LEFTY1/2 and CER1 in HEK293T cells probably due to the absence of 

TGFβ/Activin/Nodal receptor stimulation.  

While these results suggest that changes in the expression of Activin/Nodal morphogens 

are not a universal response to global DNA hypomethylation, we reasoned that it could 

contribute to the loss-of-fitness phenotype we observe in the DNMT1-deficient hESCs. 

For example, LEFTY1 could negatively impact the fitness of the DNMT1-deficient hESCs 

if NODAL-dependent signal transduction is required for hESC growth. In fact, 

corroborating observations were reported recently234. In the study by Fiorenzano and 

colleagues, a CRIPTO-blocking peptide was used to treat hESCs, which specifically 

disrupted the interaction between NODAL and its receptor (without affecting TGFβ1 

binding to TβRII and Alk5)235. Despite culturing in TGFβ-supplemented medium, the cells 

performed poorly in proliferation assay compared to control controls. Moreover, reducing 

the amount of CRIPTO protein using shRNAs led to lower growth rate and a spontaneous 

differentiation in the CRIPTO knock-down hESC lines234. Inspired by previous studies, 

we perturbed the NODAL-induced receptor stimulation in hESCs by ectopic expression 

of LEFTY1 or its protein product LEFTYB (FIG 35). 
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Figure 35. LEFTY1 is a negative regulator of hESC growth. A. XY graph depicting the 

growth curve of TetOFF DNMT1 hESCs (black), treated with 5ng/mL recombinant 

LEFTYB (green), 5ng/mL recombinant NODAL (purple) or DNMT1-deficient TetOFF 

DNMT1 cells, counted at passage 2, days 5-8 post DNMT1 depletion (red). N=2. B. 

Schematic representation of lentiviral vector construct used for NODAL or LEFTY1 

overexpression in hESCs. LTR – Long Terminal Repeats, UCOE – Ubiquitous 

Chromatin Opening Element, TRE – Tet Response Element, rtTA – recombinant Tet 

transactivator. C. Representative images of NODALoe and LEFTY1oe cell lines 

exposed to varying concentrations of doxycycline for 24h. Phase view of live colonies 

(gray) is overlaid with morphogen expression visualized via GFP fusion (green). D. Bar 

graph representing cell counts to compare growth of NODALoe and LEFTY1oe lines 

exposed to indicated amount of doxycycline for a single passage (4 days). Error bars: 

SD. * pval≤0.05; ** pval≤0.005; *** pval≤0.0005; n.s. – not significant. N=3 

 

6.25 LEFTY1 impacting the proliferation of hESC  
 

Gain of function assessment. To examine whether LEFTYB (the protein product of the 

gene LEFTY1) could affect the growth of hESCs, we compared the growth of DNMT1-

deficient cells in passage 2 (day 5-day 8 after DNMT1 depletion) with the growth of 

control cells treated with recombinant NODAL and LEFTYB proteins (Fig 35A). 

Treatment with a recombinant NODAL resulted in a similar growth as the control cells, 

despite an initial lag (FIG 35A). In contrast, treatment with LEFTYB inhibited the growth 

of hESCs. We thus concluded that LEFTYB, but not NODAL, negatively impacts 

proliferation of hESCs in a manner comparable to the depletion of DNMT1 (FIG 35A). 

Supplementation of a recombinant protein does not recapitulate the steps of processing 

and secretion that naturally follow the expression of a signaling molecule. In order to 

examine the impact of ectopic expression of NODAL and LEFTY1 on hESC growth, we 

engineered a lentiviral delivery system that would enable an inducible expression of a 

gene in wild-type HUES64 cell line (FIG 35B). Briefly, the expression cassette sequence 

was flanked by LTR repeats236 to mediate random integration into the genome. Next, an 

upstream chromatin element opening sequence (UCOE) was introduced to prevent 

silencing of a TRE promoter237. We PCR-amplify the cDNA of either NODAL or LEFTY1 

and cloned them into the donor vector. Each gene was C-terminally fused to super-folded 

GFP (sfGFP) to provide reliable readout of the doxycycline-induced transgene 

expression. The second transgene consisted of an rtTA transactivator linked by 

cleavable liner (P2A)238 to the blasticidin-resistance cassette. In the presence of 

doxycycline, the rtTA binds the TRE promoter and activates the transcription of the 

NODAL or LEFTY1 gene. The blasticidin resistance gene served as a selection method 

for donor integration and activity. The clonal picking of the blasticidin-resistant colonies 
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led to the generation of the morphogen-overexpression hESC lines call thereafter: 

NODALoe and LEFTY1oe. After doxycycline supplementation (24h), the respective 

transgenes were activated in hESCs in a dose-dependent manner (FIG 35C). To 

measure the effect of morphogen overexpression on cell growth, we performed a cell 

count on the NODALoe/LEFTY1oe lines induced with 0.1µg/ml doxycycline (FIG 35D). 

Again, the results demonstrated a deleterious effect of LEFTY1, but not NODAL, 

expression on the hESC growth. Taken together, we concluded that the ectopic 

expression of LEFTY1 has a negative effect on the growth of hESCs. We suspect that 

this is linked to its role as an inhibitor of the Activin/Nodal signal transduction pathway.  

 

Loss of function. If the increased expression of LEFTY1 negatively affects the hESC 

growth, we hypothesized that knockout of LEFTY1 could alleviate the DNMT1-deficient 

cell growth defect. In order to explore this possibility, we turned to lentiviral strategy 

presented in FIG 13. to deliver the Cas9 protein and an sgRNA against LEFTY1 to disrupt 

the gene in the TetOFF DNMT1-inducible depletion cell line. After transduction with such 

virus and subsequent selection for its expression, we individually collected single cell-

derived colonies and genotyped the LEFTY1 locus to identify a LEFTY1 heterozygote 

(+/-) and a LEFTY1 homozygous knockout (-/-) clones (FIG 36A and B). We noted that 

while the LEFTY1+/- cell line did not affect the growth of hESCs, the complete LEFTY1 

knockout cell line had a significant growth advantage over wild-type cells, consistent with 

our observations of LEFTY1 being a negative regulator of hESC growth (FIG 36C).  

We next compared the growth of the TetOFF DNMT1-depleted parental line with TetOFF 

DNMT1; LEFTY1+/- and TetOFF DNMT1; LEFTY1-/- lines (FIG 36D). We observed that 

the initial loss of fitness of the DNMT1-deficient cells in the first passage was not affected 

by of the absence of LEFTY1. This is consistent with our RNA sequencing data, which 

demonstrated that LEFTY1 is not significantly upregulated immediately after DNA 

methylation loss (FIG 33). In contrast, the proportion of surviving cells at day 8 was 

significantly higher in the TetOFF; LEFTY1-/- compared to just the DNMT1-depleted cells. 

On average, the growth of DNMT1-depleted; LEFTY1-/- double-deficient line was a 

quarter of that of reached by the TetOFF; LEFTY1-/- single knockout line. In contrast, 

after two passages the growth of DNMT1-deficient cells was 10% of that reached by 

control cells. The heterozygous cell line TetOFF; LEFTY1+/- did not show a statistically 

significant rescue of the TetOFF DNMT1 parental line. 
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Figure 36. LEFTY1 knockout can partially rescue DNMT1 depletion-induced growth 
defect. A. and B. Sanger sequencing results visualizing the mutations in LEFTY1 exon 
1 (yellow bar) in TetOFF DNMT1; LEFTY1+/- cell line and TetOFF DNMT1; LEFTY1-/- line, 
respectively. The sequence of guide RNA used is shown in gray. C. Bar graph depicting 
the number of cells of the respective TetOFF DNMT1 cell lines after a single passage (4 
days) in the absence of doxycycline. D. XY graph representing the cell growth of DNMT1-
deficient cell lines as a proportion of live cells with respect to DNMT1-present controls, 
calculated after every passage. Error bars: SD. * pval≤0.05; ** pval≤0.005; *** 
pval≤0.0005; n.s. – not significant. N=3 
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We conclude that LEFTY1 upregulation is one of the consequences of global loss of 

DNA methylation in hESCs, which negatively impacts the growth of the cells. Since the 

rescue provided by LEFTY1 knockout was partial, additional mechanisms must be 

involved in reducing the fitness of the DNMT1-deficient cells. 

 

6.26 DNMT1-deficiency affects transcriptional response in hESC  
 

The pluripotency of hPSCs is maintained in the cell culture conditions by supplementing 

the medium with TGFβ1 and the Fibroblast Growth Factor (FGF)133. Balance between 

these two signal transduction pathways dictate the propensity of hPSCs to differentiate 

into ectoderm (FGF) versus meso- and endoderm (Activin/Nodal). This process is 

coordinated by the transcription factor NANOG215. Interestingly, NANOG is one of the 

direct downstream targets of the Activin/Nodal signal transduction, as well as a co-factor 

acting to fine-tune this pathway and restrict its endoderm-inducing potential. On the other 

hand, NANOG acts to inhibit the expression of the FGF2-mediated neuroectoderm 

factor. The multiple functions of NANOG are regulated by inputs from extracellular stimuli 

that activate the downstream signaling cascade that converge on transcription.  
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Figure 37. DNMT1 deficiency results in changes in expression of transcription factors. 

A. Bar graphs representing the bulk RNAseq results of expression of the pluripotency-

associated transcription factors (NANOG, SOX2 and POU5F1, respectively) in control 

cells and TetOFF DNMT1-depleted cells for 3, 5 or 8 days. B. Bar graph of bulk 

RNAseq expression of ectoderm-associated TFs. SOX1 has not been detected at any 

of the time points (RPKM<0.1). C. Bar graph representing the bulk RNAseq 

measurement of the expression of meso- and endoderm-associated transcription 

factors in TetOFF DNMT1 cells. Error bars: SD. * pval≤0.05; ** pval≤0.005; *** 

pval≤0.0005; n.s. – not significant. 
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Since DNA hypomethylation influences the expression of the Activin/Nodal signal 

transduction pathway morphogens, we hypothesized that this could influence the 

transcriptional balance maintained by NANOG and in turn lead to the differentiation of 

the DNMT1-deficient hESC. To test this hypothesis, we turned to our bulk RNAseq 

data to compare the expression level of transcription factors characteristic for either the 

pluripotent hESCs (NANOG, POU5F1, SOX2; FIG 37A), ectoderm (PAX6, SOX1; FIG 

37B) or combined meso- and endoderm stages of germ layer differentiation (EOMES, 

T, SOX17, FOXA2, GATA4; FIG 37C). Although we did not observe a transcriptional 

shut off of POU5F1 in the DNA hypomethylated cells, NANOG was significantly 

downregulated. The decrease in NANOG expression could further result in 

differentiation of hESCs in agreement with its role as a balance between Activin/Nodal 

and FGF signal transduction pathways. Our analysis showed the low level of PAX6 

expression at day 8 of DNMT1 depletion and the absence of SOX1 expression that 

overall indicate a lack of ectoderm differentiation. In contrast, the expression pattern of 

the meso- and endoderm markers after DNMT1 depletion gradually resembled the in 

vitro differentiation of hESCs towards mesendoderm and endoderm, respectively239. 

For example, we observed an initial upregulation of BRACHYURY (encoded by the T 

gene), which was subsequently downregulated, as well as upregulation of FOXA2 and 

SOX17 (FIG 38). In addition, we observed an upregulation of PRDM1, a transcription 

factor found in mesoderm-derived primordial germ cells, indicating that the hESCs are 

not strictly following endoderm differentiation program. 

 

Figure 38. Changes in expression of key TFs suggest mesendodermal differentiation of 

DNMT1-deficient hESCs. Heat map representing the expression (log2RPKM) of key 

TFs measured in bulk RNAseq in the presence (control) or absence of DNMT1 for 3, 5 

or 8 days, respectively.  
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In order to validate these observations, we performed immunofluorescence microscopy 

on control and DNMT1-deficient hESCs to estimate the protein level of BRACHYURY 

and SOX17. Consistent with our RNAseq results, we noted higher amount of SOX17 

present in the DNMT1-deficient cells compared to control. The levels of BRACHYURY 

protein were also increased even at day 8 of DNMT1 depletion, despite lowered 

abundance of the T transcript with respect to the control in the RNAseq results (FIG 39). 
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Figure 39. The expression of T and SOX17 changes in DNMT1-deficient hESCs over 

time. Representative images depicting the DNA staining using DAPI (top row) and 

immunofluorescent staining against T (second row) and SOX17 (third row). The images 

were pseudocolored and merged (bottom row). Scale bar: 100µm. 
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The differentiation genes are targets of SMADs. Since the mesendoderm 

differentiation program is induced in the presence of Activin in vitro240, we explored if the 

upregulation of genes in response to global DNA hypomethylation could be ascribed to 

the mesendodermal gene activation by SMAD2/3, the signal transducers of the 

TGFβ/Activin/Nodal receptors (FIG 40). We employed Genomic Regions Enrichment of 

Annotations Tool (GREAT)241 to identify genes with a TSS within 10kb of a SMAD2/3 

binding site in undifferentiated hESCs, or cells subjected to mesendoderm differentiation 

regimes. This approach identified 583 and 3326 SMAD2/3target genes in ESCs and 

mesendoderm, respectively. We then investigated the overlap between these targets 

and genes upregulated at the final time point in DNMT1-depleted cells (scRNAseq; 707 

genes total). 

  

 

Figure 40. DNMT1-deficient hESCs upregulate mesendodermal targets of SMAD2/3. 

A. Venn diagram depicting the overlap between genes upregulated at day 8 of DNMT1-

depletion (scRNAseq) and hESC SMAD2/3 binding target genes. B. Venn diagram 

depicting the overlap between genes upregulated at day 8 of DNMT1-depletion 

(scRNAseq) and human mesendoderm SMAD2/3 binding target genes. Significance of 

each overlap is listed beneath the graphs. 

 

Out of 583 hESC SMAD target genes, only 24 overlapped with the day 8 upregulated 

genes (FIG 40A). We expected this result, as the genes regulated by SMAD2/3 are likely 

already active in the control hESCs. Strikingly, 171 genes overlapped between the target 

genes of SMAD 2/3 binding and the day 8 upregulated genes (24% of day 8 upregulated 

genes), which bore high statistical significance (p <1.05x10-7; FIG 40B). As a control, we 

assessed the overlap between day 8 upregulated genes and a randomly generated 

3326-gene list. Only 84 genes were shared by the control lists, therefore, the overlap 
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between SMAD2/3 targets and day 8 upregulated genes is non-random. This suggests 

that the changes in the transcriptional program resulting from DNA hypomethylation 

could, to some extent, be caused by the abnormal engagement of the already active 

Activin/Nodal signal transduction pathway. Instead of being restricted to the pluripotency 

genes, this signaling pathway activates additionally the gene expression program of the 

mesendoderm. In agreement with these results, we observed an increased expression 

of meso- and endoderm marker transcription factors as early as 3 days post DNMT1 

depletion, followed by the upregulation of mesendoderm targets of the Activin/Nodal 

signal transduction pathway – of note, the mesendoderm-upregulated transcription factor 

genes, such as T and SOX17 also are the SMAD2/3 targets in this lineage (FIG 31; FIG 

38).  

We next examined the differentiation potential of the DNMT1-deficient hESCs using a 

Scorecard experiment (FIG 41). Scorecard is a qRT-PCR based assay, which uses an 

algorithm established based on differentiation profiles of differentiated hESC lines136,242 

to estimate the propensity of hESCs to differentiate into ecto-, meso- or endoderm. The 

result is presented as a “score” - an auxiliary unit summarizing the expression of key 

lineage markers, used to directly compare the “differentiation state” of cells within one 

line or across different experiments. Consistent with our observations of mesoderm 

program activation in the absence of DNMT1 in hESCs, the DNMT1-deficient cells have 

a higher mesoderm score than the control cell line. Our hypothesis was that the treatment 

with the meso- or endoderm differentiation-promoting signaling molecules will affect the 

score of the DNMT1-deficient and control cells. To this end, we cultured the cells for 6 

days in the absence of DNMT1 to induce DNA hypomethylation, followed by 2 days 

treatment with LIF (as a control, as this cytokine is not associated with hESC 

differentiation), WNT3A (endoderm-promoting factor) or BMP4 (mesoderm-promoting 

factor). Both the control and DNMT1-deficient cells responded transcriptionally to the 

treatment with each factor, as reported by the change in score. Curiously, although the 

response always displayed the same trend, i.e, both control and DNMT1-deficient hESCs 

had an increased endoderm or mesoderm score in response to WNMT3A and BMP4, 

respectively, the score was always higher for the DNMT1-deficient cells. These results 

suggest that the DNMT1-deficient hESCs are more receptive to respond when exposed 

to extracellular cues, compared to control cells. The implications of this finding will be 

further elaborated on in the discussion section. 
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Figure 41. hESC response to morphogen induction changes upon DNMT1 depletion. 

Heatmap depicting the score (auxiliary unit) of control and degDNMT1 hiPSCs, derived 

from their expression of a panel of Pluripotency, Ecto-, Meso- and Endoderm-

associated genes. Mock control untreated cells (8d – 2 passages culture), DNMT1-

deficient cells (degDNMT1; 8d of 125nM dTAG-13 – 2 passages culture) or either cell 

line grown for 6 days, followed by 2 days of treatment with 500U ml−1 LIF, 100 ng ml−1 

BMP4 or 50nM ml−1 WNT3A, respectively were used (total 8d – 2 passages growth). 

 

Whether the DNA methylation-dependent, spontaneous differentiation is a cause of loss 

of fitness is unclear. Prompted by the recent report that DNMT1KO hNPCs are viable243, 

we next investigated if alternative model using different stimulus such as differentiation 

towards the ectoderm lineage could alleviate the loss-of-fitness phenotype of the TetOFF 

DNMT1-deficient cells. 
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Figure 42. DNMT1-deficient hESCs cannot undergo NPC-directed differentiation. A. 

Schematic of the hESC to NPC differentiation protocol steps, with representative 

images of each stage depicted below. First row – differentiation of control cells. Middle 

row – differentiation of cells depleted of DNMT1 at the beginning (time point 0) of the 

protocol. Bottom row – differentiation of cells depleted of DNMT1 after EB plating (time 

point 7). Scale bar 50µm. B. Representative image of phase microscopy of wild-type 

NPCs and fluorescent microscopy to visualize the immunofluorescence of the NPC 

marker Nestin (green). Scale bar 50µm. 
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6.27 Neural Progenitor Cell (NPC) differentiation of DNMT1-deficient hESCs 

 

We subjected the TetOFF DNMT1 cell line to a three-step differentiation regime towards 

NPC (FIG 42A). Briefly, the undifferentiated colonies were aggregated into Embryoid 

Bodies (EBs) and grown in the presence of inhibitors for the Activin/Nodal and BMP4 

signal transduction pathways to promote the ectoderm differentiation over the meso- and 

endoderm lineages. The EBs were then seeded on laminin-covered plated until they 

formed neural rosettes. Selectively passaging the rosettes into the bFGF-supplemented 

medium yielded the differentiation into NPCs, which show presence for the NPC marker 

Nestin over the course of 21 days (FIG 42B). First, we wanted to learn if the DNMT1 

depletion interferes with the ability of hESCs to undergo and complete this differentiation 

procedure. To this end, we induced the transcriptional shutdown of DNMT1 in our cells 

at the beginning of the NPC-derivation. While the DNMT1-depleted cells were able to 

form EBs, they failed in producing rosettes (FIG 42A; middle row). When DNMT1 was 

depleted later in the grown rosettes, the cells still failed to form NPCs when the conditions 

were switched from Nodal/BMP inhibition to bFGF (FIG 42A; bottom row). Altogether, 

these results demonstrated that global DNA hypomethylation interferes with 

differentiation of hESCs into NPCs. This is likely due to an interference of the global DNA 

hypomethylation with the ectoderm differentiation program or with coordinating the 

transcriptional shutdown of the pluripotency factors necessary to commit to a new 

lineage. 

As embryogenesis in mice deficient for DNMT1 does not progress to the NPC-

differentiation stage, we could not compare our results to the in vivo model. However, a 

study by Fan and colleagues engineered mice bearing the NPC-specific DNMT1 

knockouts to study the impact of DNA hypomethylation on NPC differentiation 

potential103. NPCs give rise to both neurons and glial cells (such as astrocytes), however, 

their propensity to differentiate into either lineage was affected without DNMT1. The 

DNMT1-depleted NPCs are more likely to differentiate towards the glial lineage, rather 

than neural lineage in vivo103. Furthermore, global DNA hypomethylation accelerated the 

differentiation towards glia in in vitro cultured DNMT1KO primary NPCs compared to 

controls, when both were exposed to the glia-inducing Leukemia Inhibitory Factor 

(LIF)103. LIF is a small a cytokine which activates the Janus Kinase – Signal Transducers 

and Activators of Transcription (JAK-STAT) signal transduction pathway244. This 

pathway is essential for neural progenitor cell differentiation into astrocytes. Fan and 

colleagues demonstrated that 2 days of LIF supplementation was sufficient to induce the 
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expression of Glial Fibrillary Acidic Protein (GFAP; an astrocyte marker) in DNMT1KO, 

but not in the control NPCs. 

Inspired by the previous findings, we tested them in our system. We depleted DNMT1 in 

the TetOFF DNMT1-derived NPCs and investigated the expression levels of GFAP, 

along with the transcription factors found to induce astrocyte differentiation (NF1b, 

SOX9)113 and, as a control, the master transcription factor regulating neural 

differentiation – Neurogenin2 (NEUROG2) (245; FIG 43A). Remarkably, we observed that 

the expression of SOX9 was elevated in the DNMT1-depleted NPCs compared to the 

control cells. Even though the expression levels of NEUROG2 changed in the DNA 

hypomethylated cells as well, the difference was not statistically significant. We did not 

detect the expression of GFAP in either condition, thus, DNMT1-depletion is insufficient 

to trigger and complete the entire glial differentiation in human NPCs in vitro (FIG 42A). 

When we induced the differentiation towards glia via the addition of LIF for 2 days, we 

saw that the expression levels of both SOX9 and NF1b increased in both wild-type and 

DNMT1-depleted NPCs, with regard to respective controls (FIG 43A). Despite the 

presence of these glia-specific transcription factor, we did not detect GFAP mRNA in 

either of the conditions (FIG 43A). We hypothesize that additional environmental stimuli 

might be required to trigger expression of this glial differentiation marker in hESCs, even 

in the DNMT1-deficient state. Indeed, a special astrocyte medium is used to differentiate 

human NPCs into astrocytes246. Similarly to the LIF treatment experiment, culturing the 

DNMT1-deficient NPCs in the astrocyte medium did not result in an increased expression 

of GFAP (data not shown).  
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Figure 43. DNMT1 depletion leads to an increase in SOX9 in the presence of JAK-

STAT agonist. A. Bar graph depicting qRT-PCR analysis of NPC expression of 

neuronal and glial genes. B. Bar graph of representative qRT-PCR analysis of the 

expression of SOX9, an astrocyte TF that is a known JAK-STAT signal transduction 

pathway target in TetOFF DNMT1 hESCs. N=5. C. Bar graph depicting qRT-PCR 

analysis of the expression of NF1b, a glial TF that is not a known JAK-STAT signaling 

pathway target, in TetOFF DNMT1 hESC line. Cells in A., B. and C underwent DNMT1-

depletion for a total of 8 days in the presence of 2µg/mL doxycycline. LIF treatment: 
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48h, 1000U. D. Bar graph representing the results of qRT-PCR analysis of SOX9 

depletion in degDNMT1 hiPSCs. The cells were DNMT1-depleted for a total of 8 days 

and the LIF treatment was 48h long in the presence of 500U LIF. Error bars: SD. * 

pval≤0.05; ** pval≤0.005; *** pval≤0.0005; n.s. – not significant. N=2. 

 

Taken together, the human NPC deficient for DNMT1 did not spontaneously differentiate 

into astrocytes, nor was the glial differentiation induced shortly after exposing cells to 

astrogenesis-promoting conditions, as this was the case for mouse DNMT1KO NPCs. 

This could be an inherent difference between mouse and human NPCs, or a technical 

difference in the propensity to differentiate between primary and in-vitro derived NPCs. 

Nevertheless, our results demonstrated that SOX9 – one of the main transcription factor 

driving glial development, was significantly upregulated in human DNMT1-deficient 

NPCs compared to controls. Furthermore, LIF treatment for two days was sufficient to 

increase SOX9 expression further in control and DNMT1-deficient NPCs. This is 

consistent with SOX9 being a direct target of JAK-STAT signal transduction pathway247 

We hypothesize that cells with the reduced levels of DNA methylation are more prone to 

mount an unrestricted response to a signaling cue.  

Strikingly, when instead of the NPCs, we repeated the experiment in the TetOFF DNMT1 

hESCs (where the cells were depleted of DNMT1 for 6 days, followed by 2 days of LIF 

treatment) we also saw a statistically significant increase in the expression of SOX9, but 

not the negative control NF1b in the DNA hypomethylated cells (FIG 43B and C). Next, 

we sought to reproduce these results in the degDNMT1 cell line (FIG 43D). Exposure to 

LIF elicited a statistically significant upregulation of this transcription factor in DNMT1-

deficient, but not control cells. Of note, unlike the TetOFF DNMT1, the degDNMT1 cells 

expressed a basal level of SOX9 in the control and the DNMT1-deficient state. 

Why was SOX9 upregulated in the presence of LIF in the DNMT1-deficient, but not 

control hESCs? We hypothesized that the global loss of DNA methylation could affect 

the chromatin accessibility of SOX9 enhancer regions and enable transcription of this 

gene exclusively in the DNA hypomethylated cells. To further explore this possibility, we 

investigated the changes in DNA methylation levels on the known SOX9 enhancers in 

control and the DNMT1-deficient hESCs using our scRRBS data (CHAPTER 3). 

SOX9 is a transcription factor important for the development and function of diverse 

tissues. Aside from glial differentiation, SOX9 is indispensable for chondrocyte and testis 

gene regulation248,249. Mutations in a single allele of SOX9 results in a severe 

developmental defect called campomelic dysplasia (CD)250, which results in a pleiotropic 

phenotype including skeletal malformations and sex reversal in male patients. Multiple 
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enhancers of SOX9 have been identified through studies of CD cases resulting from 

mutations in non-coding loci251 and mutagenesis approaches252. We sought to compare 

the DNA methylation status of SOX9 enhancer loci in the control and DNMT1-depleted 

cells. 

 

Figure 44 SOX9 enhancers lose DNA methylation in the absence of DNMT1. Heat map 
depicting scRRBS DNA methylation averages of three SOX9 enhancer regions in hESCs 
under control conditions or after DNMT1 depletion for indicated period of time. 

 

We identified three enhancer regions that were represented in our sequencing data with 

enough coverage for further analyses. Interestingly, these regions were all highly 

methylated in control cells (mean methylation of 82%, 75% and 99%, respectively.; FIG 

44) which is consistent with no detectable gene product. In turn, after 8 days of DNMT1 

depletion, their methylation was reduced to 35%, 0.4% and 17%, respectively. Further 

experiments will be required to identify the role of DNA methylation in indirectly 

controlling SOX9 expression. Deeper coverage of DNA methylation data combined with 

TF binding motif analysis, will be instrumental to elucidate the requirement for the JAK-

STAT signaling-dependent in the SOX9 activation in the normal development (such as 

germline) and the DNMT1-deficiency models of the global DNA hypomethylation. 
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6.28 Summary 
Among genes upregulated in response to global DNA hypomethylation, the Activin/Nodal 

signaling pathway drew our attention in particular. Not only is that pathway essential for 

the survival of hESCs, but also the deregulation of its components (especially LEFTY1) 

was consistent across single-cell and bulk RNAseq measurements and further confirmed 

by qPCR.  We therefore examined the impact of their protein products, morphogens: 

NODAL and LEFTY1, on the hESCs proliferation. Both the addition of the recombinant 

LEFTYB, as well as its ectopic overexpression had a negative impact on the hESC 

growth. In contrast, the NODAL treatment or overexpression did not exert any visible 

effect on these stem cells. In order to directly probe the impact LEFTY1 upregulation 

could elicit on the loss of fitness of DNMT1-deficient hESCs, we knocked out either one 

or both alleles of LEFTY1 in the TetOFF DNMT1 background. The depletion of LEFTY1 

partially restored the stunted growth of the DNMT1-depleted cells in the late (passage 

2), but not the early (passage 1) time point, consistent with the timing of LEFTY1 

expression in the DNMT1-deficient hESCs. 

While LEFTY1 is a negative regulator of hESC growth, our study of NODAL and LEFTY1 

expression in HEK293 cells demonstrated that the loss of DNMT1 is not sufficient to 

cause the expression of these morphogens. NODAL and its inhibitors could have been 

upregulated in the hypomethylated hESCs by the virtue of being regulated by SMAD2/3, 

rather than directly orchestrating the expression of downstream genes. We therefore 

investigated if the global DNA hypomethylation-induced changes in gene expression 

could be explained by activity of the Activin/Nodal-stimulated signal transduction. Our 

bioinformatics analysis demonstrated that nearly a quarter of genes upregulated in 

response to DNA hypomethylation are previously described targets of the Activin/Nodal 

signal transduction pathway. Surprisingly, the targets were not specific to hESCs, but 

rather to mesendoderm, a lineage derived from pluripotent cells in response to the WNT 

and Activin signaling pathways, even though no WNT was supplemented in the medium. 

This change in expression could have been executed significant increase in the 

expression meso- and endodermal transcription factors, which followed the loss of 

DNMT1 in hESCs.  

Depletion of DNMT1 in hNPCs in the presence of LIF resulted in an increased expression 

of glial marker and JAK-STAT target SOX9. Strikingly, loss of DNMT1 facilitated the 

activation of SOX9 in the presence of LIF in hESCs as well. These results suggest that 

the changes in gene expression upon global DNA hypomethylation are influenced by the 

environment of the cells. Comparison of gene expression between hESCs and DNMT1-

deficient cells demonstrates necessity of DNA methylation as a licensing factor in 
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response to all the environmental cues that otherwise would be instructive to elicit an 

aberrant transcriptional program.  

The fact that the DNMT1-deficient hESCs did not uniformly differentiate into endoderm 

could be explained by multiple reasons: (1) the lack of WNT, another signal transduction 

pathway crucial for mesendodermal development, (2) the inhibitory effect of FGF present 

in the medium or (3) the inability of the DNA hypomethylated cells to inhibit the 

expression of pluripotency factors, which are incompatible with the new identity (such as 

POU5F1), which has been reported before96. 

The aberrant gene expression downstream of the Activin/Nodal signal transduction in 

the absence of DNMT1 prompted us to explore if changing the culture conditions to 

exclude extracellular signal cues could result in a rescue the loss of fitness of the 

DNMT1-depleted hESCs. Temporal ablation of signaling during NPC derivation did not 

improve the growth of DNA hypomethylated cells in comparison to controls under the 

same conditions, suggesting other, cell-autonomous mechanisms are responsible for the 

loss-of-fitness phenotype of the DNMT1-deficicent hESCs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



132 
 

7. DISCUSSION 
 

7.1 The epigenetic landscape 
 

Over the course of development, a totipotent cell undergoes differentiation into all the 

cell types of an organism. Totipotent cells give rise to pluripotent cells, which have a 

restricted potential, because they can become one of the three germ layers, and can no 

longer commit to the extraembryonic lineage. Each subsequent commitment to a new 

cell type restricts the number of possible cell states that can be achieved, until the cell 

commits to a final function, thus becoming terminally differentiated. 

Conrad Waddington described that process in the metaphor of a ball (representing a cell) 

rolling down a rugged hillside (FIG 45A)253. The ball falls into one of the valleys and 

continues down this specific route, until it meets an inflection in the landscape, where it 

can again roll in one of several possible directions. At the same time, the slope and the 

hills prevent the cells from rolling over to the neighboring valley. In the same way, cells 

cannot abruptly change their identity by switching to a parallel differentiation route. 

Altogether, the route taken by the cell determines where it eventually lands (which 

terminally differentiated cell fate it assumes).  

 

Figure 45. The Waddington landscape.Adapted from253. 

The topology of this landscape is underpinned by ropes anchored to the ground (FIG 

45B). Each anchor represents a gene exerting its influence on the shape of the 

landscape above through a set of interconnected ropes. Although genes are the ultimate 

anchor points, their action is modulated through the chemical properties of gene products 

(ropes), which can interact with one another and the environment, changing the ultimate 
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shape of the landscape above the genes – an epigenetic landscape (greek “epi”, 

meaning “above”)253.  

Decades of research identified a vast repertoire of complex processes that regulate gene 

expression in a DNA sequence-independent manner. This is orchestrated by chromatin 

– an entity composed of the DNA and nucleosomes, which carry posttranslational 

modifications, that can alter the binding capabilities of proteins initiating gene expression. 

Such modes of regulation offer a platform for genome interpretation.  

Transcription factors take advantage of permissive environment to bind their recognition 

motif. While the short binding motifs are found in multiple loci across the genome for 

each transcription factor, only a fraction are actually bound254. The specificity of 

transcription factors is also controlled by other means, such as combinatorial binding of 

two or more factors. Furthermore, DNA and chromatin modifications can act refractory 

to transcription factors by blocking the binding. For example, the methylation of cytosines 

in the DNA can inhibit DNA-binding proteins directly by altering their binding motif, or 

indirectly via recruiting methyl-binding proteins (MBDs), which occupy methylcytosine-

marked loci255.  

Chromatin modifications, DNA methylation and transcription factors can integrate 

extracellular cues and, altogether, these variables shape the Waddington epigenetic 

landscape. How exactly the cell-autonomous and non-cell-autonomous cues are 

reconciled and integrate at chromatin to instruct a cell for a lineage commitment has 

been an area of intensive research.   

 

7.2 What happens in the absence of instructive signals? 
 

Pluripotent stem cells can exit their self-renewing state to differentiate into ecto-, meso- 

or endoderm. In vivo genetic experiments elucidated multiple signal transduction 

pathways, which are essential for these differentiation processes216. However, can a cell 

autonomously commit down a differentiation pathway in the absence of environmental 

stimuli that supports either self-renewal or lineage commitment? Or, to put it in the 

metaphor of Waddington pathway, does a single “valley” constitute the preferred 

direction of differentiation for a cell? This concept of a “default pathway” was explored in 

elegant experiments by Tropepe and colleagues256. The culture of mouse embryonic 

stem cells in the absence of any signaling molecules resulted in a spontaneous 

differentiation towards the ectoderm. The explanation to this finding was proposed by 
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Argelaguet and colleagues, who found that the DNA methylation and chromatin 

accessibility profile of pluripotent and ectoderm cells are more similar to one another 

than to the primitive streak-derived meso- and endoderm191. Active remodeling of 

chromatin is, therefore, required to enable the differentiation towards the latter two germ 

layers. In line with these findings, active remodeling of the pattern of DNA methylation 

occurs during the gastrulation and is guided by the DNA demethylating TET enzymes. 

Perturbation of their function in the mouse embryo result in defects in gastrulation and 

the formation of mesoderm-derived tissues73.  

 

7.3 How can DNA methylation contribute to maintaining hESC 

pluripotency? 
 

The work presented here explored how the withdrawal of one factor controlling the shape 

of Waddington landscape, namely DNA methylation, affects the self-renewal of human 

embryonic stem cells. We found that, unlike the results presented in the “default 

pathway” model, cells with reduced levels of DNA methylation did not differentiate 

towards the ectoderm. We believe these results are consistent with the presence of 

TGFß in the hESC medium, as the early observations of the “default pathway” claimed 

that the TGFß-superfamily of signal transduction factors act refractory to the default 

commitment256. The human ESCs are cultured in a medium which contains TGFß and 

FGF - these signaling cues promote self-renewal, but can also induce a lineage 

commitment. These contradicting roles are reconciled through the action of NANOG, 

which imposes stasis on lineage commitment215.  

Could the withdrawal of the extracellular signaling cues permit the “default pathway” 

differentiation of the DNMT1-deficient hESCs? We tested this possibility during the hESC 

differentiation toward the neural progenitor cell lineage. We observed that these cells 

were not viable. Whether DNA methylation was necessary for the differentiation towards 

the ectoderm or for sustaining the ectoderm lineage is a topic for future studies.  

We describe how the depletion of DNMT1 in hESCs under normal culturing conditions 

resulted in an upregulation of the meso- and endoderm-specific transcription factors 

followed by the expression of the TGFß targets specific for these lineages. Together with 

our previous study, this work demonstrated that the DNMT1 depletion in hESCs led to 

the upregulation of genes associated with the embryo posterior fates (meso- and 

endoderm), such as NODAL or LEFTY1136,226,257. 
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Importantly, this effect is not a general response to the DNMT1 depletion, as it was not 

present in the DNMT1-deficient cells devoid of the TGFß signaling. We hypothesize that 

the global DNA hypomethylation led to a misinterpretation of the signaling cues – the 

TGFß mediated signal transduction prompted the incorrect activation of the 

mesendoderm-specific targets of the SMAD proteins (effectors of the TGFß signaling)258, 

instead of exclusively to loci promoting self-renewal. 

Can the loss of DNA methylation alter TF binding? In vitro and in vivo studies 

investigating the TF specificity to either methylated or unmethylated DNA reported that 

various TFs show preference to methylated or unmethylated DNA, or not exhibit a 

preference at all63,259,260. The answer is, therefore, highly context-specific. Whether the 

SMAD family of transcription factors are DNA methylation sensitive is not known. Due to 

the SMAD binding as obligate heterotrimers, they were not thoroughly characterized in 

systematic in vitro assays. Testing the specificity of the SMAD binding in response to the 

different signal transduction pathways and with different co-factors is, therefore, an 

interesting direction for future study.  

Curiously, when we introduced additional molecules capable of inducing meso- and 

endoderm lineage commitment, we observed a more robust transcriptional response in 

the DNMT1-deficient hESCs compared to control. We hypothesize that the loss of DNA 

methylation does not activate genes, but rather renders their loci permissive for TF 

binding, such that newly induced transcription factors (effectors of signal transduction 

pathways) can easily activate their targets in the more accessible chromatin 

environment. Investigating whether the global loss of DNA methylation changed the 

binding specificity of signal transduction pathway effectors or other transcription factors 

is necessary to better understand the transcriptional changes underlying the DNMT1 

depletion in hESCs. Combining our data on the DNA methylation level at the enhancer 

elements with the information on transcription factor binding and the nascent 

transcription (for example, after metabolic labelling of RNA with the SLAM-seq 

method261), could provide a comprehensive picture of the stepwise induction of 

differentiation by environmental factors in the presence and absence of DNA 

methylation. 

DNMT1 depletion has profound effects on the proliferation of hESC, which manifests 

itself shortly after DNA methylation is depleted throughout the genome. Transcriptional 

deregulation could be one of the factors that contributes to such loss of fitness. It could 

act both through the upregulation of negative regulators of the hESC growth, such as 

LEFTY1, and conflicting transcriptional programs being active simultaneously (for 



136 
 

example, the pluripotency program versus the mesendodermal program).  The rapid 

onset of the loss of fitness of the DNMT1-deficient hESCs could also result from a 

deregulation of other, transcription-independent mechanisms of maintaining cell 

homeostasis. Investigating the immediate consequences of DNMT1 depletion in more 

detail is another area open to future studies. 

 

7.4 DNMT1KO in mouse embryonic stem cells 
 

Reduction of the global level of DNA methylation is an essential step during early 

embryonic development in vivo. Both the cells of the inner cell mass of the blastocyst 

and the primordial germ cells contain significantly less DNA methylation than somatic 

cell types. Whether there is a common mechanism guarding these cells from the 

negative effects of reduced DNA methylation is not known. Surprisingly, the knockout of 

DNMT1 has a completely different phenotype in both the cell types. Loss of DNMT1 in 

the PGCs led to a precocious terminal differentiation and, in the long term, infertility262. 

In contrast, the depletion of the maintenance DNA methyltransferase, or even all three 

DNA methyltransferases, did not affect mouse embryonic stem cell self-renewal, 

however, it disabled them from differentiating into the three germ layers94. In agreement 

with these observations, DNMT1KO mESCs are unable to form teratomas when injected 

into immunocompromised mice263. Of note, previous studies demonstrated that several 

factors associated with chromatin repression, such as Polycomb Repressive Complex 2 

or Mbd3 subunit of the NuRD deacetylase complex are also dispensable for mouse 

embryonic stem cell self-renewal, but essential for differentiation and in the somatic 

lineages264. The differences in how chromatin is assembled and maintained in embryonic 

stem cells compared to somatic cells to tolerate such deep changes in chromatin 

landscape is an exciting question for future studies. 

How mouse embryonic stem cells specifically cope with the loss of DNA? It is possible 

that even if new transcription factor-binding motifs become accessible in the DNMT1-

deficient mESCs, these cells simply lack the transcription factors to bind them and 

prompt spontaneous differentiation. A study of DNaseI hypersensitive binding sites that 

arise upon DNA demethylation in mESCs found that few transcription factors expressed 

in mESCs created novel binding sites259. How many TFs in somatic cell lines modify their 

binding in vivo in response to global loss of DNA methylation is not known. 

Alternatively, other mechanisms of transcriptional repression, such as by the 

H3K27me3-mediated silencing (a mark mediated by the Polycomb repressive complex) 
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could repress hypomethylated loci in the absence of DNMT1265. The relationship 

between DNA methylation, chromatin accessibility and gene expression is complex. 

DNA methylation and the Polycomb-mediated H3K27me3 chromatin mark are mutually 

exclusive and, in the absence of DNMTs, the Polycomb loci were found to spread during 

the transition from primed (more DNA methylation) to naïve (less DNA methylation) stem 

cell states265. Recent study demonstrated that the “confinement” of the Polycomb 

domains by DNA methylation is necessary for the local compaction and maintaining the 

higher-order chromatin structure266. Strikingly, the depletion of DNMTs led to a loss of 

some higher order chromatin contacts, however, the impact of these changes on gene 

expression was very limited266. Whether the spreading of H3K27me3 occurs in other cell 

types with reduced levels of DNA methylation (for example, DNMT1-deficient somatic 

stem cells), and how that affects both the chromatin structure and gene expression is an 

interesting direction for future studies. 

 

7.5 DNMT1KO in somatic stem cells 
 

Our findings have pronounced implications for the previous studies of DNMT1KO in 

somatic stem cells. The propensity of the DNMT1-deficient cells to transdifferentiate or 

spontaneously differentiate into one of the possible lineages has been reported in 

multiple lineages (described in detail in the Introduction section). For example, the 

preference towards lymphoid versus myeloid differentiation in the DNMT1KO HSCs 

could be dictated by the change in the interpretation of extracellular cues. The interaction 

with bone marrow stromal cells267 and the cytokine-inducted transcription mediated by 

interleukin-7 (IL-7)268 are both important for the differentiation of lymphoid cells. 

Curiously, the DNMT1KO phenotype manifested itself only after knockout HSCs were 

transplanted into wild type donors, but not in the DNMT1KO bone marrow of mutant 

mice. Whether the DNMT1KO HSCs misinterpret the stimuli from the wild type 

environment and prematurely differentiate towards the lymphoid lineage remains to be 

elucidated.  

Could the loss of DNA methylation enable signal transduction that does not specifically 

lead to stem cell self-renewal or differentiation? A study of DNMT1-deficient myoblasts 

demonstrated that myogenic differentiation is impaired in the DNA hypomethylated cells. 

Liu and colleagues observed trans-differentiation of the mutant myoblast cells to 

osteoblasts, which was exacerbated by the BMP signaling101.  
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We previously reported that the knock-out of de novo methyltransferase DNMT3A in 

hESCs led to an aberrant expression of transcription factors (including SOX9) during 

attempts to differentiate these cells into ecto- or mesoderm257. In the experiment 

described here, the LIF treatment of the DNMT1-deficient hESCs caused an activation 

of SOX9 – a downstream JAK-STAT pathway target, which is not normally activated 

during human embryonic stem cell differentiation towards any of the three germ layers. 

DNA methylation could act as a barrier not only to differentiation, but also other cell fate 

changes. Whether an aberrant activation of transcription factors in DNMT1 or DNMT3A-

deficient cells led to the subsequent binding and regulation of their target loci is an 

important follow-up question for future consideration. 

Altogether, our study presents a possible mechanism by which DNMT1 depletion 

induces a range of seemingly dissimilar phenotypes across various stem cell types. The 

knockout of DNA maintenance methyltransferase leads to global DNA hypomethylation 

which, in turn, could render the chromatin more permissive to transcription factor binding. 

This would lead to various gene activation depending on the cell type and extracellular 

environment, thus producing different outcomes.  

 

7.6 Maintaining cell identity 
 

The imperative character of transcription factors in the process of determining cellular 

identity was demonstrated by Yamanaka and colleagues in the Nobel prize-winning 

discovery, that ectopic expression of four transcription factors can reprogram fibroblasts 

into pluripotent stem cells, essentially allowing the cells to “roll upwards” the epigenetic 

landscape of Waddington135.  

Nevertheless, reprogramming to pluripotency happens with a low efficiency. The process 

is inhibited by the barriers, which safeguard somatic cell identity. As a byproduct of 

reprogramming induction, some cells stop at an intermediate stage and fail to reprogram. 

DNA methylation inhibition using AzaC resulted in increased reprogramming 

efficiency269. Moreover, partially reprogrammed cells which failed to form iPSCs were 

characterized by high DNA methylation levels at key pluripotency loci (such as POU5F1) 

and were able to reprogram completely in the presence of DNA methylation inhibitor269.  

Recent RNAi screens identified several other factors, which are refractory to iPSC 

generation. Chromatin assembly factor (CAF-1) is a histone chaperone complex, the 

suppression of which loosened the chromatin structure, reduced H3K9me3 levels at 
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regions normally resistant to reprogramming and thus increased both speed and 

efficiency of reprogramming. Maintaining proper chromatin structure is also refractory to 

changing the cell fate, the equivalent of “rolling sideways” in the epigenetic landscape of 

Waddington. Increasing chromatin accessibility by the means of knocking down the 

subunits of CAF-1 complex enhanced transdifferentiation from the B cells to 

macrophages and from the MEFs to neurons270.  

Multiple studies reported a negative correlation between DNA methylation and chromatin 

accessibility271,272. Notably, when the two variables were compared in pluripotent stem 

cells induced to differentiate, the correlation between them decreased272. This suggests 

that as the cells commit to a somatic lineage, the methylated DNA becomes more 

prevalent. We hypothesize that DNA demethylation during reprogramming induced by 

Mikkelsen and colleagues, as well as by the DNMT1 depletion in this study, promotes 

chromatin relaxation and increased binding of transcription factors269. In agreement with 

our hypothesis, loss of nearly all (95%) total DNA methylation in a DNMT hypomorphic 

cell line increased the number of accessible sites272.  

 

7.7 DNA hypomethylation and cancer 
 

The increased accessibility of unmethylated DNA to transcription factors could not only 

contribute to reprogramming or transdifferentiation, but generally increase transcriptional 

promiscuity, which could be a potential mechanism of tumorigenesis.  

The DNA methylation landscape in cancer cells is characteristic – high local 

hypermethylation of CpG islands combined with global hypomethylation273,274. In 

contrast, the bulk of a healthy methylome is hypermethylated, with puncta of 

unmethylated CpG islands. How that change in the epigenome of cancer cells is 

achieved is not yet understood, however, mutations in DNMTs, as well as their 

overexpression, have been identified in multiple cancer types275–277. Furthermore, 

previous studies in patients with Chronic Lymphocytic Leukemia (CLL) reported that 

changes in the global DNA methylation pattern precede cancer278. A different study of 

tumorigenesis in the haematopoietic lineage identified mutations in DNMT3A which 

confer repopulation advantage to the hematopoietic stem cells and lead to Acute Myeloid 

Leukemia (AML)279. Whether the changes in the DNA methylation landscape are 

causative to the tumorigenic transformation and by what mechanism is not known. 

However, our previous study identified that transcriptional variability is increased in 

DNMT3A and 3B/DKO knockout hESCs providing a potential explanation257. The global 
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DNA hypomethylation of pre-cancer cell could result in an increased transcription of 

various genes followed by positive selection for cells with (1) high expression of self-

renewal genes or (2) silencing of tumor suppressor genes via promoter 

hypermethylation. As both the tissue vascularization and the cell growth are dependent 

on extracellular signaling, investigation into whether a reduction of global DNA 

methylation levels could lead to an increased response to these signals is an interesting 

direction for future studies. 

Despite mutations in DNA methyltransferases reported in cancer, DNA methylation is 

indispensable for transformed cells. In fact, the DNMT1-depletion in cancer cell lines 

results in DNA damage and apoptosis. Curiously, no apoptosis or DNA damage were 

reported in most of DNMT1KO somatic stem cells102,103,105. Likewise, we did not observe 

such a phenotype in the hESCs, despite the extensive investigation of the DNA damage 

markers, as well as the mitotic abnormalities. This difference in the phenotype could 

stem from the use of different models. Cancer cells are known to selectively 

hypermethylate the CGI promoters of tumor suppressor genes280, such as at the Ink4a-

ARF locus281. The loss of DNMT1 could lead to the de-repression of these factors that 

would eventually mediate senescence and apoptosis via imposing cell cycle arrest.  

 

7.8 The role of DNA methylation maintenance in embryogenesis 
 

Nearly three decades ago, Li and colleagues demonstrated that DNMT1 is essential for 

the mouse embryonic development76. Crossing the DNMT1 heterozygous mice yielded 

no homozygous pups brought to term. Further investigation revealed an embryonic 

lethality before the embryonic day 12.5 (E12.5). Compared to their wild-type littermates, 

the E10 DNMT1-knockout embryos were smaller and developmentally delayed. 

Abnormalities observed in these embryos included also defects in somitogenesis, neural 

tube closure, allantois and no blood formation, accompanied by an increase in apoptotic 

cells76. How the loss of DNA methylation resulted in this broad range of developmental 

phenotypes is not known.  

The authors pointed out that the allantois abnormal structures were observed before in 

parthenogenetic and gynogenetic embryos282 and were thus likely caused by loss of 

imprinting. One of the crucial roles of DNA methylation is maintaining monoallelic 

expression of some genes known as imprinted genes. Maternal contribution of oocyte-

specific isoform of Dnmt1 (Dnmt1o) mRNA is essential for the imprint preservation during 

the pre-implantation reprogramming of the global DNA methylation patterns283. Lack of 
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maternal Dnmt1o resulted in loss of imprinting (LOI) on some imprint control regions and 

a variety of phenotypes. The study reported embryo resorption in the last trimester of 

pregnancy or stunted growth of rare pups delivered to term, despite maintaining a high 

level of global DNA methylation and the somatic version of Dnmt1283. In agreement with 

these results, a knockout of Zinc finger protein 57 (Zfp57), which is responsible for 

maintaining imprints on many loci, phenocopies the Dnmt1o depletion284. Altogether, the 

maintenance of imprinted genes is essential for embryonic development, however, the 

LOI does not fully explain the lethality around E10 in the full Dnmt1KO embryos. 

Although the Dnmt1KO embryos were noted to develop normally from E1-7, the analysis 

of E9.5 noted no blood or blood vessel formation, a process which begins at E7, with the 

migration of mesoderm cells to the yolk sac to form hemangioblasts285. These 

progenitors of blood and epithelium develop outside of the embryo in so-called blood 

islands and form structures essential for the transport of nutrients to the developing 

organism. A knockout of Flk1, a gene encoding vascular endothelial growth factor 

(VEGF) receptor is essential for the formation of hemangioblasts. Homozygous Flk1 

knockout embryos fail to form blood vessels and blood and die in utero around E9.5, 

mid-somitogenesis286. The Dnmt1KO embryo lethality could, therefore, also result from 

a lack of blood and vasculature. Whether such lack of blood formation in the Dnmt1KO 

embryo occurs due to the disruption of the VEGF-mediated gene expression or via 

another mechanism remains to be determined. Further studies on the role of DNA 

methylation in the VEGF signaling and early hematopoiesis, for example using in vitro 

cultured hemangioblasts, could shed light on the developmental lethality and delay of 

Dnmt1-deficient embryos. 

The indispensability of DNA methylation for embryo development and tissue 

homeostasis is well-documented, yet the precise mechanisms by which DNA 

methylation exerts its functions in these processes is still unknown. Our work presented 

here opens new study trails for in vitro and in vivo research, which could bring insight 

into how chromatin integrates extracellular signals and helps maintain cell identity, which 

has great consequences for embryonic development and tumorigenesis. 
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APPENDIX 
 

 



Table 8. Top 100 up- and downregulated differentially expressed 
genes 
   

Upregulated genes  Downregulated genes 

d1 d2 d3 d5 d6 d7 d8  d1 d2 d3 d5 d6 d7 d8 

B3GNT7 B3GNT7 
NPPB 

MYL7 NPPB NPPB C8orf4  RPS16 GAPDH 
GLIPR1L1 

MT-CO3 
HNRNPA
1 MT-ND3 MT-ND2 

SYTL2 ARRDC3 MYL7 APOA2 DKK1 LCN15 NPPB  GABRP NACA IFITM2 CLDN11 AMFR RPL19 COX7C 

ALG1 SLC35F6 CST1 DUSP23 GAGE12F DKK1 LCN15  MT-ND4 CALB1 AMFR ALDOA RPS12 NPM1 GAPDH 

HIST1H4
C 

AL10981
1.4 

FABP3 
RHBDD3 MYL7 APOA1 CDH6  RPL13A RPLP2 

MTRNR2L
10 CFL1 MT-ND1 NME2 NME2 

MVD 
ARHGEF1
2 

HAS2 
CBR1 SYTL2 XAGE1B APOA1  HSPD1 RPL4 

AXL 
LDHB KPNA2 RPS16 RPS5 

TMEM22
2 SYTL2 

FN1 
FAM110D PLSCR2 XAGE1A PRSS2  SLC25A3 TUBA1B 

ZNF688 
HSPD1 RPL10 MT-ND4 UBA52 

AKAP9 DCLRE1C 
SPP1 

KEL FAM110D RNASE1 CD48  RPLP2 
C14orf1
66 

CLDN11 
RPS4X CFL1 RPS2 MT-CYB 

SLCO1C1 HIST1H4C 
FST 

LEFTY1 DUSP23 APOA2 XAGE1B  
C14orf16
6 PPIA 

KIN 
RACK1 ALDOA MT-ND5 COX5A 

CCND1 AKAP9 PON2 SYTL2 RHBDD3 MAEL XAGE1A  RPL10 RPL7A MT1G PPIA RPS3 GABRP GSTP1 

DHDDS FABP3 
TMEM9
7 CEBPZOS CBR1 GAGE2A APOA2  UBA52 UBE2C 

TNFSF13
B MT-ND2 CD24 ATP5A1 CCT5 

NSMAF ARID4B 
HMGC
S1 STAG3 DDIT3 

FAM110
D LGI1  RPL4 CTSC 

PRRT2 
RPS28 PPIA KRT18 RPL35 

APC BRD8 NODAL VCY MAP3K13 GAGE12F CST1  RPL14 MT-CYB  RPL28 HSPD1 MT-ND4L RPS12 

RAF1 FST ACAT2 VCY1B FAM184A MYL7 GAGE2A  RPL29 ATP1B3  MT-ND5 RACK1 RPS12 TPM3 

C19orf48 MYDGF  CER1 EPHA4 CST1 MAEL  NACA EDF1  
C14orf16
6 AXL RPS5 IFITM1 

STAG3 VSIG10  HAS2 CEBPZOS SYTL2 
GAGE12
F  RPL18 RPS12  KPNA2 HHLA1 UBA52 EIF3M 



SPP1 ANKRD12  LSP1 LEFTY1 RPL10L MYL7  RPS12 RPS2  EPCAM RPL18 MT-CYB RPL11 

DCLRE1C NR6A1  AGAP4 EOMES PLSCR2 RPL10L  MT-CO3 SLC2A3  MT-CYB LDHB UBB RPS2 

RNF121 AGAP4  CCND1 SMARCA2 DSCR8 CXCR4  MT-ND6 RPL10  
HIST1H2
BK RPS4X ENO1 RPS15A 

PEF1 C19orf48  GTSF1 INPP5F 
FAM184
A CROT  RPS2 MT-CO3  DYNLRB1 

HIST1H2
BK HDAC2 ATP5I 

CCNL2 TNFRSF12A TAGLN HAS2 DDIT3 GDF15  RPS3 MT-ND4  MT-ND1 OAT PGAM1 RPL19 

FABP3 CD58  
TNFRSF12
A 

TNFRSF12
A CBR1 

AC270107
.8 LDHB PRDX1  

MT-
ND4L 

C14orf16
6 HSPA8 UBE2C 

WDR6 CCND1  RASEF AGAP4 RHBDD3 SHISA2  RACK1 EIF1  S100A10 DYNLRB1 MDH2 
NDUFA1
3 

FST MUM1  BAX C12orf4 HAS2 
FAM184
A  MT-CYB CFL1  FH RPS28 RPL4 HSPE1 

SLC5A6 BCL11A  AKAP9 DPPA5 KEL BRDT  MT-ND5 DDX39B  VDAC1 EDF1 PSME2 ATP5A1 

ZNF75A ZNF625  CDK10 FST CER1 TTN  RHOA ATF7IP2  KIN SYPL1 PRDX6 CLDN11 

TNFRSF1
2A SPP1  DPPA5 CADM1 BRDT PRTG  HHLA1 LDHB  CSNK2B S100A10 GPX1 NPM1 

WDR74 RNF34  C19orf48 MAGEA6 LEFTY1 PLSCR2  RPL7A IFITM3  AXL ATP6V1F RPL29 RPLP2 

KANSL2 PAN3  DDX55 TAGLN 
TNFRSF1
2A AMPD2  MT-ND1 MPV17  GDF3 MT-ATP8 PRDX1 SLC25A3 

THOC6 TIMP4  TSPAN4 DCLRE1C 
MAP3K1
3 PLK2  RPS4X HSPD1  CDA EPCAM EIF2S1 NDUFS8 

NSD1 GOLIM4  TRDN STAG3 EPHA4 RAB17  TUBA1C CLDN11  LDHA VIM HNRNPDL PGAM1 

SLC3A2 SRSF6  CCNL2 CER1 P3H4 
FAM110
D  IFITM3 

NADSYN
1  PGK1 PIGU RPL7A RPS25 

ING5 C6orf62  LPP C19orf48 BBS9 VCX  RPS28 MDH2  
SH3BGRL
3 LDHA NACA ATP5G2 

MCM5 STAG3  CYP3A5 CDK10 
SMARCA
2 BBS9  FXYD5 

C17orf4
9  NABP1 

MAPK1IP
1L HHLA1 CUTA 



VSIG10 CENPX  SLFN13 CD58 NSMAF VCX3A  MT-ND2 
HNRNPA
1  FXYD5 EDNRB TUBA1C RPL35A 

IFRD2 EBP  LUZP1 SLC3A2 CEBPZOS CBR1  IFITM2 RPL28  MT-CO1 DCXR EIF3M EIF3C 

RABGAP
1L CTTN  

TMEM10
6C LPP LMO7 SYTL2  MT-ND3 PRDX6  IFITM2 RPL28 PDHB RPL18 

SURF2 ATRX  CADM1 BAX CCND1 DSCR8  MDH2 SLC25A3  MT-ATP8 GDF3 FKBP1A RPL29 

MYDGF SRPRB  ACADVL CCND1 RCOR3 SAXO2  RPL28 RACK1  ZNF688 CSNK2B ILF2 RPL24 

HM13 MCRS1  FSTL4 RASEF STAG3 RHBDD3  CCT8 RPL18  PRRT2 KDELR1 HNRNPA1 COX8A 

ZDHHC12 ZNF654  SLC25A6 NFKBIA LEFTY2 NFE4  S100A11 VIM  AMFR 
SH3BGRL
3 UBE2C 

HSP90A
B1 

TOX4 SYF2  DCLRE1C AKAP9 DCLRE1C CER1  LDHA RPS3  
TNFSF13
B MT-CO1 ATP5G2 BTF3 

MCRS1 
HNRNPH
1  ANKRD12 SPINK9 TNNC1 FN1  

MT-
ND4L RHOA   VDAC1 RPL28 GSTO1 

DDX55 ANKRD10  SLCO1A2 HUWE1 RUNX1T1 ZNF677  CSNK2B MT-ND5   PGK1 PSMB2 
PGRMC
1 

ZWINT KANSL2  SPINK9 DCAF8 FN1 
TMEM6
3A  KIN KDELR1   ZNF688 RHOA GPX1 

BAX METTL1  CHD9 MYDGF TXNRD2 
CCDC14
4A  CSTB SYPL1   KIN MT-ND6 RAN 

GPATCH8 MAP1B  INTS11 MCM5 GTSF1 HAS2  HHLA3 
S100A1
3   CAPNS1 ATP5G3 

WDR83
OS 

IGF2BP1 POLR3E  MCM5 
AC01581
3.2 DPPA5 NFRKB  CRABP1 RPS28   CSTB TPM3 SNRPD3 

AUP1 CCNL2  PDE4DIP ANKRD12 LRIG3 SPATA7  MT-ATP8 BEX4   FXYD5 MT-ND2 RPS3 

BRD8 SURF2  ARID4B GLS TAGLN LEFTY1  VDAC1 TIMP1   CDA TPI1 PSENEN 

WDR73 MRPL1  C19orf60 HIST1H4C APC KEL  DUSP6 AMFR   PRRT2 RPS28 TUBA1B 

NELFCD HMGCS1  INPP5F NODAL FST NDRG4  ZNF688 SUCLA2   

TNFSF13
B BRK1 TUBA1A 



DCP1A DGCR6L  SLC25A37 TRDN INPP5F SHC4  
SH3BGRL
3 FXYD5    BANF1 LSM4 

DGCR6L NELFCD  MRPL28 MTRR APOBEC2 ITGA5  CTSK OAT    CCT8 PSMD6 

MAP1B BAX  FANCA MCRS1 
COMMD
3 LEFTY2  PGK1 CSNK2B    RPL18 RPL38 

TCF7L2 KPNA6  SUOX BCL11A AGAP4 LRIG3  DYNLRB1 RPS4X    RPL10 
TXNDC1
7 

PDCD11 RNF121  LRRTM4 RNF34 GAD1 ACAA1  MT-CO1 IFITM2    RPS3 RPL32 

SERINC5 PIN1  BCL11A DCP1A EOMES SLC38A4  GDF3 PPIH    GANAB ATP5H 

DHCR24 
SLC25A3
7  ZNF124 FSTL4 TSPAN4 

CSNK1G
1  NUDT15 LRRK1    NANS RPL36 

QTRT1 IQCF3  IGF2BP1 YTHDF3 CADM1 RCOR3  
HIST1H2
BK CRABP1    VIM RPL22L1 

TAGLN CTNND1  HMGXB4 WDR74 C19orf48 
RHOBTB
3  CLDN11 

MT-
ND4L    CFL1 

TRAPPC
2L 

FADS1 TMEM106C SERPINB9 
TMEM10
6C PYCR1 

CEBPZO
S  MT1G CSTB    TIMP1 RPL37 

BRCC3 KANSL1L  NSD1 IFRD2 B3GNT7 STAG3  CDA SNRPA    TUBA1A UBB 

MTRR 
CDC42BP
A  PHACTR2 GTF3C3 RASEF PHYKPL  PRRT2 SLC7A3    SLC25A3 

HNRNPA
1 

TMEM20
8 QTRT1  MCRIP2 SERPINB9 AKAP9 LSP1  AMFR TTC9C    GAPDH RPL7A 

PHAX SON  MARK3 GPATCH8 MCRS1 POLE  
TNFSF13
B DCXR    

C14orf11
9 PHB2 

BCL11A TGFBR1  PWWP2A MRPL28 
ANKRD1
2 

CYP26A
1   DUSP6    C9orf135 CD24 

GPRC5B KNOP1  DCAF8 DCTN5 LPP SYCP3   HIST1H2BK   EDF1 TPI1 

FGFR1 PUS7L  NOL8 SRSF6 SLC3A2 TNNC1   HHLA1    AMFR EPCAM 

SRPRB BAZ2B  FUOM KANSL2 SRSF6 CADM1   EDNRB    

C14orf16
6 RHOA 



ATP2B1 PSMC3  FKBP10 GAD1 CDK10 TNPO2   

S100A1
0    JPT1 PRDX1 

POLR3E TLK1  KIFC3 CBY1 TCF7L2 LAMA1   VDAC1    PPIA HSPA8 

MTG1 ANKIB1  PHAX BRD8 RAF1 CRIM1   GABRP    PCLAF NQO2 

DCTN5 
TMEM20
8  SLC3A2 ESRP1 LPAR6 ANKRD1   MT-ND2    KPNA2 

NDUFB1
1 

LPP NUCB2  GLS NSD1 ZNF84 CDK10   

S100A1
1    TUBA1B PCLAF 

FADS2 FRG1  PDXDC1 ZNF518A SOCS2 EPHA4   PTBP1    RACK1 
C17orf4
9 

CTNND1 TMED1  DGCR6L PHAX SCAF11 LPP   GANAB    MT-ATP8 DECR1 

RSF1 SMC2  NOSIP KNOP1 BRD8 DCAF8   LDHA    RPS4X UBE2I 

ANKRD1
2 FADS1  FGF8 PDE4DIP RNF34 INPP5F   ZNF688    PTBP1 RPL10 

MAP4K5 CDK10  MYDGF SERINC5 SPP1 AGAP4   

MT-
ATP8    

AC08763
2.1 GAL 

SON NKTR  BET1L SON CCNT1 EXOG   MT-ND3    HSPD1 RACK1 

HMGXB4 NUBP2  SPG7 C19orf60 DCAF8 PDXDC1   

SH3BGR
L3    MT-ND1 H3F3A 

CHD9 GPATCH8  HYOU1 SLCO1A2 MYDGF TAGLN   MT-ND1    LDHB SSBP1 

PSMC3 PHAX  CTNND1 SPG7 CYP26A1 RAF1   HHLA3    CDK2AP1 PSMB2 

KNOP1 OTX2  GRB2 BCAS3 SLFN13 LY6E   TUBA1C    DPCD 
HIST1H4
J 

GPATCH4 NOL8  NUBP2 TTC3 PTGR1 HOOK2   MT-ND6    

MAPK1IP
1L RPL14 

ZMYND8 
RABGAP1
L  MED7 DPY19L4 PAN3 TXNRD2   CTSK    DECR1 POLR3G 

NR6A1 PPP2R2B  C11orf49 SNUPN ZNF518A SUOX   

DYNLRB
1    ZNF688 PIGU 



MAGEA2 FABP7  FRG1 FRG1 
CASP8AP
2 LIFR   KIN    ALDOA SNU13 

RNF34 MTG1  MYO19 SLC11A2 UTRN CCND1   PGK1    DYNLRB1 CFL1 

SCAF11 PWWP2A  MANBAL PWWP2A ERBIN 
ANKRD 
36C  NUDT15    PIGU 

HSD17B
10 

SGPL1 CRBN  FST MED7 BAX PTGR1   GDF3    VSNL1 SUMO2 

ARID4B MCM7  NDUFV1 BET1L PHACTR2 UBE2D4   MT-CO1    SLC25A5 MRPS23 

TMED1 SERINC5  FN1 EXOSC5 RNPC3 SZT2   CAPNS1    OAT NACA 

NDUFV1 
THUMPD
1  BCAS3 

AC00732
6.4 SPINK9 AKAP9   CDA    LDHA ALDOA 

PDE5A DDX55  ZNF808 CTNND1 B2M NR2C2   MT1G    VDAC1 ATP5G3 

MANBAL CCDC66  SCAF11 B9D1 C6orf62 F3   

TNFSF13
B    CSTB MT-ND1 

DKC1 SGPL1  
AC00732
6.4 LAMTOR3 MCM5 CFLAR   PRRT2    

SH3BGRL
3 NME1 

PLEKHA5 HMGXB4  HUWE1 PHACTR2 FSTL4 NFKBIA       KIN CNMD 

LMAN2 TIMM10B  ZNF518A ARL4A ESRP1 BAX       GDF3 KPNA2 

TAX1BP1 RBBP8  MAPK10 C21orf91 DDX55 CYP3A5       FXYD5 CAPNS1 

 



TABLE 9. Top 10 GO terms for differentially expressed genes 

 Upregulated genes    Downregulated genes   

 Top GO terms FDR  Top GO terms FDR 

d1 primary metabolic process  6.43E-09 d1 SRP-dependent cotranslational protein targeting to membrane  9.82E-19 

 cellular metabolic process  5.36E-09  cotranslational protein targeting to membrane 1.02E-18 

 metabolic process 1.64E-08  protein targeting to ER 2.05E-18 

 organic cyclic compound metabolic process 1.46E-08  viral transcription 2.36E-18 

 organic substance metabolic process 1.26E-08  establishment of protein localization to endoplasmic reticulum 2.59E-18 

 
cellular nitrogen compound metabolic process 1.85E-08  

nuclear-transcribed mRNA catabolic process, nonsense-
mediated decay 

3.67E-18 

 gene expression 3.68E-08  viral gene expression 1.28E-17 

 nitrogen compound metabolic process 1.54E-07  protein localization to endoplasmic reticulum 1.94E-17 

 heterocycle metabolic process 7.77E-07  translational initiation 3.61E-17 

 cellular aromatic compound metabolic process 1.50E-07  protein targeting to membrane 6.40E-16 

          

d2 gene expression 1.06E-09 d2 ATP metabolic process 6.68E-09 

 cellular nitrogen compound metabolic process 6.36E-09  viral gene expression 7.84E-09 

 cellular metabolic process  1.05E-08  cotranslational protein targeting to membrane 8.69E-09 

 organic cyclic compound metabolic process 2.27E-08  symbiotic process 8.79E-09 

 metabolic process 2.72E-08  SRP-dependent cotranslational protein targeting to membrane  9.19E-09 

 organic substance metabolic process 1.14E-07  protein localization to endoplasmic reticulum 9.82E-09 

 cellular aromatic compound metabolic process 1.50E-07  translational initiation 1.27E-08 

 nucleic acid metabolic process 3.40E-07  interspecies interaction between organisms 1.32E-08 

 heterocycle metabolic process 4.78E-07  protein targeting to ER 1.44E-08 

 primary metabolic process  6.49E-07  viral transcription 1.69E-08 

          

d5 no statistically significant results   d5 ATP metabolic process 2.93E-09 

      generation of precursor metabolites and energy  5.59E-09 

d6 regulation of execution phase of apoptosis  1.77E-02  oxidative phosphorylation  4.04E-07 

 
negative regulation of execution phase of 
apoptosis 

1.49E-02  ATP synthesis coupled electron transport 2.00E-06 
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 negative regulation of molecular function  1.26E-02  cellular respiration 2.30E-06 

      mitochondrial ATP synthesis coupled electron transport  2.33E-06 

d7 nitrogen compound metabolic process 8.14E-08  electron transport chain 4.75E-06 

 cellular metabolic process  9.07E-08  respiratory electron transport chain  5.00E-06 

 macromolecule metabolic process 1.02E-07  energy derivation by oxidation of organic compounds  2.37E-05 

 primary metabolic process  1.22E-07  oxidation-reduction process 2.57E-05 

 organic substance metabolic process 1.41E-07      

 metabolic process 7.49E-07 d6 interspecies interaction between organisms 9.13E-09 

 cellular macromolecule metabolic process 1.69E-05  symbiotic process 1.47E-08 

 nucleic acid metabolic process 3.58E-04  viral process 2.53E-08 

 organic cyclic compound metabolic process 1.03E-03  protein localization to endoplasmic reticulum 6.99E-06 

 cellular component organization  1.20E-03  SRP-dependent cotranslational protein targeting to membrane  1.56E-05 

      cotranslational protein targeting to membrane 1.81E-05 

d8 cellular component organization  2.06E-11  protein targeting to ER 2.55E-05 

 cellular component organization or biogenesis 2.89E-10  viral transcription 2.65E-05 

 cellular metabolic process  2.30E-09  establishment of protein localization to endoplasmic reticulum 2.82E-05 

 
primary metabolic process  4.35E-09  

nuclear-transcribed mRNA catabolic process, nonsense-
mediated decay 

3.16E-05 

 organelle organization 1.25E-08      

 cellular macromolecule metabolic process 1.26E-08 d7 symbiotic process 6.70E-20 

 macromolecule metabolic process 1.32E-08  interspecies interaction between organisms 5.41E-19 

 nitrogen compound metabolic process 1.34E-08  viral process 1.77E-18 

 organic substance metabolic process 3.82E-08  translational initiation 9.31E-15 

 metabolic process 2.19E-07  SRP-dependent cotranslational protein targeting to membrane  2.15E-14 

      cotranslational protein targeting to membrane 3.53E-14 

      viral gene expression 3.86E-14 

      ATP metabolic process 5.58E-14 

      protein targeting to ER 6.56E-14 

      establishment of protein localization to endoplasmic reticulum 9.59E-14 

          

     d8 translational initiation 2.77E-26 
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      SRP-dependent cotranslational protein targeting to membrane  4.83E-26 

      cotranslational protein targeting to membrane 9.55E-26 

      protein targeting to ER 3.70E-25 

      establishment of protein localization to endoplasmic reticulum 6.46E-25 

      viral transcription 6.52E-25 

      symbiotic process 1.40E-24 

      
nuclear-transcribed mRNA catabolic process, nonsense-
mediated decay 

1.42E-24 

      viral gene expression 9.00E-24 

      protein localization to endoplasmic reticulum 1.84E-23 
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Table 10: Top 100 upregulated genes 
overlapping between the listed time points  

Unique Shared 

d5 d6 d7 d8 d5d6 d5d6d7d8 d5d6d7 d6d7d8 d7d8 

VCY C12orf4 RNASE1 C8orf4 DUSP23 MYL7 DPPA5 NPPB LCN15 

VCY1B MAGEA6 P3H4 CDH6 DPPA5 RHBDD3 BCL11A GAGE12F APOA1 

INTS11 CD58 NSMAF PRSS2 TMEM106C CBR1 SERPINB9 PLSCR2 XAGE1B 

MCRIP2 YTHDF3 LMO7 CD48 BCL11A FAM110D PHAX FAM184A XAGE1A 

MARK3 IFRD2 RUNX1T1 LGI1 SERPINB9 LEFTY1 NOSIP EPHA4 MAEL 

FUOM DCTN5 APC CXCR4 PHAX SYTL2 LARP7 EOMES GAGE2A 

DGCR6L KNOP1 APOBEC2 CROT NOSIP CEBPZOS GNL3 MTRR CST1 

HYOU1 DPY19L4 COMMD3 GDF15 HUWE1 STAG3 PSMC3 MCRS1 RPL10L 

PRR11 SNUPN PYCR1 AC270107.8 ETFB CER1 LARS RNF34 DSCR8 

CENPX LAMTOR3 B3GNT7 SHISA2 LARP7 HAS2 SSB DCP1A BRDT 

  C21orf91 TCF7L2 TTN GNL3 AGAP4   GPATCH8 BBS9 

  MPHOSPH6 LPAR6 PRTG PSMC3 CCND1   KANSL2 RCOR3 

  TRA2A ZNF84 AMPD2 LARS TAGLN   SERINC5 LEFTY2 

    SOCS2 PLK2 SSB TNFRSF12A   SON TNNC1 

    CCNT1 RAB17   RASEF   TTC3 TXNRD2 

    CASP8AP2 VCX   BAX   SLC11A2 LRIG3 

    UTRN VCX3A   AKAP9   ANKRD18B RAF1 

    ERBIN SAXO2   CDK10   TAX1BP1 SPP1 

    RNPC3 NFE4   C19orf48   ANXA3 CYP26A1 

    RNF170 ZNF677   TRDN   PCSK5 PTGR1 

    MMS22L TMEM63A   CCNL2   MCM7 PAN3 

    MGST2 CCDC144A   LPP   MTRNR2L8 C6orf62 

    GNS NFRKB   CADM1   FSTL1 FNDC3B 

    PDCD11 SPATA7   FSTL4   ATP2B1 CFLAR 

    ATP1B1 NDRG4   DCLRE1C   MCFD2 TOX4 

    PUS7L SHC4   ANKRD12   MTRNR2L12 NUCB2 

    TIMM23B ITGA5   SLCO1A2   PWP1 USP24 

    RABGAP1L ACAA1   SPINK9     UPP1 

    THAP5 SLC38A4   CHD9     WDR73 

    ERGIC2 CSNK1G1   MCM5     PLCB1 

    TOP3A RHOBTB3   PDE4DIP     CHD4 

    PPIC PHYKPL   C19orf60     ENOSF1 

    CAV1 POLE   INPP5F     KANSL1L 

    RBBP8 SYCP3   MRPL28     MFSD8 

    CENPE TNPO2   LRRTM4     CCDC84 

    AC138811.2 LAMA1   NSD1     NKTR 

    FKBP14 CRIM1   PHACTR2     OTX2 

    SECISBP2L ANKRD1   PWWP2A     FBXO38 

    RIC8B EXOG   DCAF8     CCDC66 

    GAR1 LY6E   SLC3A2     ZNF649 

    ADM HOOK2   GLS     MAP4K5 

    FAM111B LIFR   MYDGF     POLR3E 

    PBRM1 ANKRD36C   BET1L     XPO6 



    IFRD1 UBE2D4   SPG7     SAR1B 

    RND3 SZT2   CTNND1     EIF2AK4 

    PIGP NR2C2   MED7     ZNF420 

    TMEM138 F3   FRG1     TMED1 

    SRPRB RNF213   FST     REV3L 

    CCNDBP1 PTK7   BCAS3     C2orf68 

    ZMYND8 ZKSCAN1   AC007326.4     ALG11 

    CLDN7 TOP3B   ZNF518A     SPINT2 

    TIPIN TAC4   GAD1     AGO3 

    SALL4 ANKRD36   GABRG2     HIST2H2AA4 

    ALG5 ST5   DTNA     ODF2L 

    PPP4R3A PPFIBP1   ANKRD10     ZFC3H1 

    HYAL2 NELFCD   GTF3C3     SPATS2L 

    PSMG3 ZNF160   BRD8     NSFL1C 

    REST FBXO16   LMAN2     ADAMTSL3 

    TMEM208 KDM5A   PIGN     TMEM243 

    MLEC TIGD1   KIAA1328     NPC1 

    NSRP1 ZNF571   CALD1     GPBP1 

    DNMT3A WDR72   BLOC1S6     APOC1 

    KIAA1551 ZNF611   NTS     ZC2HC1A 

    RARS2 SELENOP   B2M     FANCD2 

    CHID1 MOSPD2         LCLAT1 

    OSBPL8 PRMT7         SLC20A1 

    COMMD2 ANKFY1         PON2 

    TTC14 GABBR1         CRBN 

    CCDC59 NAT9         TNRC6B 

    CHD1 ZNF331         LRP6 

    MGEA5 PEAK1         MDK 

    CCL2 MFAP5         MRPS25 

    QPRT PRKAA1         MAP1B 

    ICE2 RAD51B         PLEKHA5 

    TLK1 DDX11         ABCD4 

    SELENOT CENPC         NEPRO 

    SELENOS ZNF614         CLN5 

    BST2 RANBP17         NR6A1 

    TMED3 MGA         ATM 

    CD320 ANK2         FAM133B 

    MAGOHB PSMD5         UBE2B 

    ARL6IP1 GGA1         KTN1 

    ITM2C SIN3A         NEMF 

    DERL2 CD99         TPR 

    CNIH4 DRAM1         NCOR1 

    CAPZA1 ASH1L         TMEM87A 

    ATP6V0B PI4KA         RIMKLB 

    PRDX4 CYR61         PLPP5 

    U2SURP PAAF1         YIF1B 

    CXADR AC256236.1         POLR2E 



 

 

      BMP4         ZCCHC11 

      FSIP2         SERINC3 

      FZD5         USP34 

      ATG13         POGZ 

      BACH1         TMEM41B 

      ENTPD4         LGALS1 

      KIAA0100         ZNF195 

      PABPC1L         CELF1 

      MIPOL1         TBL1XR1 

      PDE7A         CBWD5 



Table 11. Abbreviations used in this thesis. 

Abbreviation Meaning 

5-azaC 5-azacytydine 

A adenine 

ac acetylation 

ADD ATRX-DNMT3-DNMT3L  

ALKB2 Alpha-Ketoglutarate Dependent 
Dioxygenase  

AML Acute Myeloid Leukemia 

Amp   ampicillin  

APC/C   Anaphase Promoting Complex / 
Cyclosome  

ATP   adenosine 5ʼtriphosphate  

BAH bromo adjacent homology 

BER base excision repair 

BMP bone morphogenesis factor 

bp   base pairs  

C cytosine 

C.elegans Caernohabditis elegans 

CGI CpG island 

CLL Chronic Lymphatic Leukemia 

CpG cytosine phosphate guanine 

CXXC cytosine-x-x-cytosine 

d day 

DEG differentially expressed gene 

DMSO   dimethylsulfoxide  

DNA deoxyribonucleic acid 

DNAase   deoxyribonuclease  

DNMT DNA methyltransferase 

DNMT3L DNA methyltransferase 3-like 

DSB   double strand break  

DTT   dithiothreitol  

E1   ubiquitin activation enzyme  

E2   ubiquitin conjugation enzyme  

E3   ubiquitin ligase  

E4   ubiquitin chain elongation enzyme  

EDTA   ethylenediaminetetraacidic acid  

ESC embryonic stem cell 

FACS   Fluorescence Activated Cell Sorting  

G guanine 

GFAP Glial Fibrillary Acidic Protein  

h hour 

H3K27 Histone 3 Lysine 27 

H3K36 Histone 3 Lysine 36 

H3K4 Histone 3 Lysine 4 

H3K9 Histone 3 Lysine 9 

HR   homologous recombination  

HRP   Horse Radish Peroxidase  

IAP intracisternal A-particle 



Ig   immunoglobulin  

iPSC induced pluripotent stem cell 

JAK-STAT Janus Kinase – Signal Transducers and 
Activators of Transcription  

KAP1 KRAB-associated protein 1  

kb   kilo base pairs  

kDa   kilo Daltons  

KRAB-ZFP Krüppel-associated box domain zinc finger 
proteins  

LB   Luria Bertani  

LIF leukemia inhibotory factor 

LINE  long interspersed element 

LTR  long terminal repeat 

MBD methyl binding domain 

mC methylcytosine 

me2 dimethylation 

me3 trimethylation 

MEF mouse embryonic fibroblast 

min minute 

MOPS 3-N-Morpholinopropane sulfonic acid 

NEUROG 2 Neurogenin2  

NPC Neural Progenitor Cells 

ORF   Open Reading Frame  

PAGE   Polyacrylamide Gel Electrophoresis  

PBS  phosphate buffered saline  

PCNA Proliferating Cell Nuclear Antigen  

PCNA   Proliferating Cell Nuclear Antigen  

PCR   polymerase chain reaction  

PHD Plant Homeodomain 

PIWI P-element Induced WImpy testis 

PMSF   phenylmethylsulfonyl fluoride  

POL   polymerase  

PROTAC PROteolysis TArgeting Chimera 

PTM posttranslational modification 

PWWP Proline-Tryptophan-Tryptophan-Proline 

RAD   RADiation sensitive  

RFTS replication foci targeting sequence  

RING   Really Interesting New Gene  

RNA ribonucleic acid 

RNase   ribonuclease  

rpm   rounds per minute  

RRBS Reduced Representation Bisulfite 
Sequencing 

RT   room temperature  

sc single cell 

SDS   sodium dodecylsulfate  

seq sequencing 

SINE  interspersed element 

SMAD Small Mothers Against Decapentaplegic 



SOX SRY-related HMG-box genes 

SRA SET- and RING- associated  

TBS  tris buffered saline  

TDG thymine DNA glycosylase  

TE transposable element 

TET ten-eleven-transferase 

TF transcription factor 

Tris   Tris (hydroxymethyl) aminomethane  

Ub   ubiquitin  

UHRF1 Ubiquitin-like with PHD and Ring Finger 
Domains 1  

UV   ultraviolet light  

v/v   volume per volume  

VEGF Vascular endothelial growth factor 

w/v   weight per volume  

WNT Wingless Int-1 

WT   wild type  

XCI X chromosome inactivation  

 


